Runtime Verification for Timed Event Streams with Partial Information

Abstract

Runtime Verification (RV) studies how to analyze execu- tion traces of a system under observation. Stream Runtime Verification (SRV) applies stream transformations to obtain information from observed traces. Incomplete traces with information missing in gaps pose a common challenge when applying RV and SRV techniques to real-world sys- tems as RV approaches typically require the complete trace without miss- ing parts. This paper presents a solution to perform SRV on incomplete traces based on abstraction. We use TeSSLa as specification language for non-synchronized timed event streams and define abstract event streams representing the set of all possible traces that could have occurred during gaps in the input trace. We show how to translate a TeSSLa specification to its abstract counterpart that can propagate gaps through the transformation of the input streams and thus generate sound outputs even if the input streams contain gaps and events with imprecise values. The solution has been implemented as a set of macros for the original TeSSLa and an empirical evaluation shows the feasibility of the approach.

Publication
Proc. of the 19th Int’l Conf. on Runtime Verification (RV'19), vol 11757 of LNCS, pp 273-291, Springer, 2019
César Sánchez
César Sánchez
Research Professor

My research focuses on formal methods, in paricular logic, automata and game theory. Temporal logics for Hyperproperties. Applications to Blockchain.