Blockchains face a scalability limitation, partly due to the throughput limitations of consensus protocols, especially when aiming to obtain a high degree of decentralization. Layer 2 Rollups (L2s) are a faster alternative to conventional blockchains. L2s perform most computations offchain using minimally blockchains (L1) under-the-hood to guarantee correctness. A sequencer is a service that receives offchain L2 transaction requests, batches these transactions, and commits compressed or hashed batches to L1. Using hashing needs less L1 space—which is beneficial for gas cost—but requires a data availability committee (DAC) service to translate hashes into their corresponding batches of transaction requests. The behavior of sequencers and DACs influence the evolution of the L2 blockchain, presenting a potential security threat and delaying L2 adoption. We propose in this paper fraud-proof mechanisms, arbitrated by L1 contracts, to detect and generate evidence of dishonest behavior of the sequencer and DAC. We study how these fraud-proofs limit the power of adversaries that control different number of sequencer and DACs members, and provide incentives for their honest behavior. We designed these fraud-proof mechanisms as two player games. Unlike the generic fraud-proofs in current L2s (designed to guarantee the correct execution of transactions), our fraud-proofs are over pre-determined algorithms that verify the properties that determine the correctness of the DAC. Arbitrating over concrete algorithms makes our fraud-proofs more efficient, easier to understand, and simpler to prove correct. We provide as an artifact a mechanization in LEAN4 of our fraud-proof games, including (1) the verified strategies that honest players should play to win all games as well as (2) mechanisms to detect dishonest claims.