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Abstract

Aspect Oriented Programming (AOP) is a paradigm with signifi-
cant potential to separate functionality and cross-cutting concerns.
In particular, AOP supports an incremental development process, in
which the expected functionality is provided by a baseline program,
that is successively refined, possibly by third parties, with aspects
that improve non-functional concerns, such as efficiency and secu-
rity. Therefore, AOP is a natural enabler for Proof Carrying Code
(PCC) scenarios that involve, in addition to the code producer and
the code consumer, untrusted intermediaries that modify the code.

The purpose of this article is to explore a PCC architecture that
accommodates such an incremental development process. In order
to support a wide range of policies, we extend our earlier work
on certificate translation, and show in the context of a very simple
language that it is possible to generate certificates of executable
code from proofs of aspect-oriented programs. To achieve this goal,
we introduce a notion of specification-preserving advice, which
provides a mild generalization of the notion of harmless advice by
Dantas and Walker, and provide a sound verification method for
programs with specification-preserving advices.

1. Introduction

While reliability and security of executable code is an important
concern in mobile computing scenarios, many program verification
techniques and tools target high-level languages, and thus do not
address directly the concerns of the code consumers, who require
automatic and efficient verification procedures that can be run lo-
cally on executable code and that dispense them from trusting code
producers (that are potentially malicious), networks (that may be
controlled by an attacker), and compilers (that may be buggy).
Proof Carrying Code (PCC) [25, 23, 24] provides a security ar-
chitecture where executable code is formally verified. In a typical
PCC architecture, programs are compiled with a certifying com-
piler that returns, in addition to executable code, program anno-
tations, which specify program invariants tailored to the desired
policy, and a self-explanatory and independently checkable proof,
known as certificate, that the code is indeed compliant to the policy.
Typically, a certifying compiler will generate both program anno-
tations, as well as proof objects, a.k.a. certificates, that the program
is correct. Through its associated verification mechanisms for exe-
cutable code, PCC suitably addresses the security concerns for mo-
bile code. Nevertheless, current instances of certifying compilers
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mostly focus on basic safety policies and do not take advantage of
the existing methods for verifying source code. Overcoming these
limitations is a central theme of the Mobius project [4], and crucial
to provide a PCC architecture that accomodates a larger class of
security policies, and a larger class of programming idioms.

Earlier work [8, 6, 9, 10, 22] has considered expressive verifi-
cation methods for executable code and established their adequacy
with respect to verification methods for source programs, so as to
be able to transfer evidence from source programs to executable
code. In particular, Burdy and Pavlova [9] and Charles et al [10]
have developed a proof compiler for Java, that enables certificates
of Java bytecode programs to be constructed from source code ver-
ification with JML-based tools such as ESC/Java and Jack. More
foundational work on certificate translation [8, 5, 7] has focused on
building certificates for executable code from correctness proof of
the corresponding source code, in settings where compilation per-
forms aggressive optimizations.

Proof compilation is an important step towards supporting ex-
pressive policies since proof compilers allow certificate generation
to rely on widely used program verification environments, and thus
enables to realistically address (at the cost of interactive verifica-
tion) expressive policies. Nevertheless, proof compilation currently
targets Java programs and does not provide support to generate cer-
tificates for programs that have been developed using advanced pro-
gramming idioms such as aspects.

Contributions The main contribution of this work is to study
proof compilation for Aspect Oriented Programming (AOP), and to
show in the context of a very simple language that it is possible to
generate certificates of executable code from proofs at source level.
Being designed to isolate cross-cutting aspects of the software from
its main functionality, AOP is a natural enabler for PCC scenar-
ios that involve, besides the code consumer and the code producer,
several untrusted intermediaries that enhance the mobile code with
specific added value, e.g. related to security and efficiency [21].
Thus our work suggests the feasibility of developing a PCC archi-
tecture where untrusted intermediaries modify code using aspects.

In order to realize proof compilation for AOP, we introduce the
notion of specification-preserving advice. Informally, an advice a is
specification-preserving for an annotated piece of code {®}c{¥},
where @ and W respectively denote the pre- and post-condition
for c, if the advised code a < c satisfies the same specification,
ie. {®}a > c{¥}. Specification-preserving advices are natural
in the context of PCC with intermediaries, since many aspects
related to security (resource management, logging, efc.) and effi-
ciency (e.g. cached functions, optimized code,etc.) fall in this cat-
egory. Moreover, specicification-preserving advices support “sep-
arate verification” (as coined by [19]) and allow intermediaries
to treat correctness proofs of the baseline code as black-boxes.
Concretely, intermediaries will only be required to prove that ad-
vices are specification-preserving w.r.t. the code they advise, and
an appropriate certificate translator will produce certificates of the
weaved code.
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In summary, the main technical contributions of this article are:

the definition of the class of specification-preserving advices
that find many uses both for security and efficiency, and that
support modular reasoning;

the relationship between specification-preserving advices and
harmless advices [14], which are required to verify the stronger
property of preserving the semantics of advised code, except for
the possibility of modifying the termination behavior. Inspired
by this relationship, we provide a simple static analysis that
ensures that advices are specification-preserving;

the first study of certificate translation in the context of AOP,
and the definition of a certificate translator that takes as input
an AOP program p and a certificate ¢ of its correctness, and
returns a certificate for the compiled program [p];

e a mild generalization of the classification of specification-
preserving advices to sequences of advices.

2. A basic motivating example

Consider the program p with a procedure main and another proce-
dure twice advised unconditionally by a:

main(z) = y:=twice(x);z :=y+ x; return z
twice(z) = return (z+ x)
a(z) = x:=0;z:= proceed(z); return z

The correctness of the program is established w.r.t. a specification
table I' that associates to each procedure a triple consisting of a pre-
condition, a post-condition, and a modifies clause that states which
variables are modified. We choose the obvious specifications for
main and twice, i.e.

[(main) = (true,res=x* +z* + 2*,0)
[(twice) = (true,res =z* + z*,0)

(We consider that the variables y and z are local variables, and thus
are not declared in the modified clauses).

One can generate for each procedure a verification condition
that guarantees, in a traditional setting, that the procedure meets
its specification. Both verification conditions hold obviously. Nev-
ertheless all terminating executions of the program will simply re-
turn the value given as input, and thus the post-condition will not
be satisfied if main is called with an input distinct from 0. In this
case, the problem is caused by the fact that a forces twice to be ex-
ecuted with input 0. In other words, a is not parameter-preserving,
i.e. causes f to be called with an input different from the one that
is declared in the program.

A similar problem shall occur if an advice modifies a global
variable that is otherwise unmodified by the procedures it ad-
vises. More generally, advices should, in addition to be parameter-
preserving, preserve specifications. Consider the modified advice:

a(zx) = (if z =0 then z := proceed(z) else z := 0);
return z

As in the previous case, the post-condition will not be satisfied if
main is called with an input distinct from 0. The problem is caused
by the fact that a is not specification-preserving. Indeed, consider
the function a derived from a by replacing the proceed statement
by acall to f:

a(x) = (if z =0then z := twice(z) else z := 0);
return z
One cannot prove that the procedure & satisfies the specification

of twice, since the proof obligation for a with the same pre- and
post-condition as twice is logically equivalent to

r=0=>z+zrz=x+2xANzc#0=>0=zx+x

Commands c vi=f(e)

v:= proceed(e)
vi=e

cc

if bthencelsec
while bdoc
skip

return e
farg® cp

if b around f
ptd" a arg* cq
proc® advice™

Procedures proc
Point-cut descriptors ptd
Advices advice

Programs  Prog

Figure 1. SYNTAX OF SAL PROGRAMS

which does not hold.
Now consider instead the correct advice a:
a(z) = (if z # 0 then z := proceed(z) else z := 0);
return z

The function a derived from a by replacing the proceed statement
by acall to f:

a(r) = (if = # 0 then z := twice(x) else z := 0);
return z

is specification-preserving, since the proof obligation for a with
with the same pre- and post-condition as twice is logically equiva-
lent to

r#0=>zx+rz=r4+xANc=0=>0=x+=zx

and it is thus valid. Note that the verification condition generation
for a relies on the specification of twice, but not on its code.

3. A simple AOP language

This section introduces SAL, a simple procedural language with
aspects. For simplicity, SAL is restricted to around advices, to
point-cuts at procedure calls, and to point-cut descriptors that do
not refer to the control-flow graph.

3.1 Syntax

The syntax of commands can be found in Figure 1, where v ranges
over the sets V of local variables and X of global variables, arg
ranges over local variables, f ranges over the set F of procedure
names, and a ranges over the set A of advice names. A baseline
command is a command that does not contain any proceed com-
mand. We let ¢, and ¢, range respectively over baseline and advice
commands.

Point-cut descriptors are of the form if b around f, where b
is a boolean condition and f is a procedure name. Then, each
procedure is composed of an identifier, its formal parameters and a
command that represents its body. Each advice is composed of an
identifier from a set .4 of advice names, a non-empty set of point-
cut descriptors, its formal parameters, and an extended command
that represents its body. A program is a given by a set of procedures
with a distinguished main procedure and a set of advices.

3.2 Semantics

Advice weaving, which enables aspects to influence the execution
of programs at designated program points and under certain condi-
tions, is the fundamental mechanism that determines the semantics
of AOP programs. Thus, the essence of SAL programs is captured
by the transition rules for the commands call and proceed, which
are described informally below. For simplicity, we restrict our at-
tention to procedures and advices with a single formal parameter.
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Figure 2. SPECIFICATION LANGUAGE

The semantics of all remaining constructs is defined in the usual
way.

Upon reaching a call statement of the form v:=f(e), one checks
in the order prescribed by the declaration of advices whether the
guard of a point-cut descriptor for f is satisfied. If there is no
point-cut descriptor for f such that the guard is satisfied, then one
starts a new execution frame, initializes the local variable par with
the value of e, and executes the body of f; otherwise, if a is the
first advice for f whose guard is satisfied, then one starts a new
execution frame, initializes the local variable par with the value of
e, and executes the body of a.

Upon reaching a proceed statement of the form v:= proceed(e)
one must examine the call stack to determine the current procedure,
say f, and the current advice, say a. Then one checks for all advices
that occur after a in the declaration of advices whether the guard of
a point-cut descriptor for f is satisfied. If there is no point-cut de-
scriptor for f such that the guard is satisfied, then one starts a new
execution frame, initializes the local variable par with the value of
e, and executes the body of f; otherwise, if a’ is the first advice for
f whose guard is satisfied, then one starts a new execution frame,
initializes the local variable par with the value of e, and executes
the body of a’.

Under such a semantics, the body of f will not be executed
whenever a procedure call to f, say v:=f(e), triggers an advice
that does not contain any proceed statement, or contains a proceed
statement that is not reached during execution. Furthemore, if an
advice contains two or more proceed statements, then execution
will stop upon reaching the second proceed statement.

Formally, the semantics of advice weaving is defined by com-
pilation to an intermediate language SBL, defined in Section 6. For
the purpose of the next sections, it is sufficient to know that the
semantics of SAL programs can be modeled by judgments of the
form

pp o, v
which read: the execution of program p with initial memory u
terminates with final memory v and returns value v.

4. Verification of baseline code

In this section, we focus on baseline programs, i.e. programs with-
out advices, and introduce for such programs a verification method
based on the idea of contract. Therefore, each procedure is speci-
fied in terms of a pre-condition, which captures the situations under
which the procedure can be called, and a post-condition, which es-
tablishes a relationship between the inputs and outputs of the pro-
cedure, and a frame condition that specifies which variables that are
modified during the execution of f, and that is used by the verifica-
tion condition generator to improve its context-sensitivity.

The set of propositions is defined in Figure 2, where z* is a
special, so-called starred, variable representing the initial value of
the variable x, and res is a special value representing the final value
of the evaluation of the program. Program specifications rely on
particular classes of propositions:

e preconditions, which do not refer to starred variables, nor the
special variable res;

e postconditions, which do not refer to local variables;

e loop invariants, which do not refer to the special variable res.

Each precondition ® yields a predicate over states, denoted p = ®
for a state u, whereas a post-condition ¥ yields a ternary relation
over an initial state, a final state, and a result, denoted u, v, v = ¥
for the states p and v and the value v. Likewise, invariants yield
binary relations over an initial and a current state.

In order to reason effectively about programs, we assume that
each procedure is annotated, i.e. that all while loops in its body
carries an invariant (we use whiles(b){s} to denote the loop
while; (b){s} annotated with invariant I), and that we dispose of
a specification table I" that associates to each procedure f a triple
(@, ¥, W) where ® is a precondition, ¥ is a postcondition, and
W is a modifies clause that declares all variables that are modified
during the execution of f.

Given a specification table I', one can compute for each anno-
tated procedure f a set POr(f) of verification conditions. The ver-
ification conditions are defined using an extended predicate trans-
former vcg, which takes as input a baseline command ¢ and a post-
condition ¥, and returns a pre-condition ¢ and a set of proof obli-
gations Ay. Formally, the set POr(f) is defined as Ay U {® =
&' [Yy«1}, where T'(f) = (®, ¥, W), y stands for every variable in
Vr and veg(e, U) = (@', Ay), where c is the body of f. We say
that a procedure is valid if all its proof obligations are valid formu-
lae, and that a program is valid if all its procedures are. The formal
definition of vcg is given in Figure 3.

For the verification method to be sound, we must also check the
correctness of the modifies clause. Even though we can propose
a logic to verify this frame condition, we assume a sound but
incomplete automatic analysis that check its correctness.

The weakest precondition calculus is sound in the sense that
if a program p is valid w.r.t. a specification table I" with a main
procedure specificied by (®, ¥), then all executions of p initiated
with a memory g satisfying ® will terminate with a final memory
W and value v such that (u, v, v) satisfy U.

Lemma 1 (Soundness). Let p be a baseline program over a set
F of procedures. Let T be a specification table for p and let
I'(main) = (®,V, W). Assume that p is valid w.rt. T'. Then, if
p,uv,vand p = D, then p,v,v = V.

In the setting of PCC, we require that proof obligations are cer-
tified, i.e. that programs come equipped with independently check-
able proofs of their validity. For the purpose of our work, we do not
need to commit to any particular format for certificate, nor do we
need to specify an algorithm to check certificates. Instead, we rely
on an abstract notion of certificate, using the formalism of proof
algebra defined in Fig. 4. Finally, we define a certified program as
one whose functions are certified, i.e. carry valid certificates for
the proof obligations attached to them. Formally, let p be an an-
notated baseline program and I' be a specification table. Then, a
certificate for the program p w.r.t. I' is an indexed set of certificates
(¢5)sepor(f), rer such that ¢s : = § for all 6 belonging to POr(f)
and for all procedures f. If such a certificate exists, we say that p is
certified w.r.t. I'.

If a program p is certified w.r.t. a specification table I', then it is
obviously valid w.r.t. I".

5. Verifying programs with advices

As illustrated by the examples of Section 2, soundness fails for pro-
grams with advice, as expected since verification condition genera-
tion is oblivious to aspects. The purpose of this section is to define a
method to verify SAL programs; the verification method is based on
the notion of specification-preserving advice, which is introduced
formally below.
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Figure 3. WEAKEST PRECONDITION FUNCTION
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Figure 4. PROOF ALGEBRA

Throughout this section, we consider a program p in which all
procedures are annotated, i.e. have loop invariants, and specified in
a table I'. Furthemore, we let Vr be the set of variables that appear
in the specification of baseline procedures.

5.1 Specification-preserving advices

In order to reason about advices, we extend the verification condi-
tion generator to proceed statements. The extension is parameter-
ized by the name of the advised function, and the proceed statement
is interpreted as a call to this function; see Figure 3. Note that when
reasoning about an advice a, in order for the verification condition
generator to be effective we need one set of loop invariants for each
procedure f that a is advising.

Definition 1. An advice a with guard b is specification-preserving
w.rt. f and I if it satisfies the specification

(bAD,T,W)
where T'(f) = (®, ¥, W), and W N Vr C W.

The condition W’ NVr C W states that the advice a only mod-
ifies in W, unless they do not appear originally on the specification
of the baseline program. We let POr ¢ (a) stand for the set of proof
obligations required to prove that the advice a is specification-
preserving w.r.t. f and I'. Formally, if T'(f) = (®, ¥, W) and ¢
is the body of a, the set POr ; is defined as A,y U {® = ¢[%y+]}
where (¢, 0q,7) = veg(c, ¥) and y* stands for every starred vari-
able in ¢.

If all advices are specification-preserving, then baseline pro-
gram verification is sound. To state this result, one first extends the
notion of valid advice, and valid program. Let (p,T") be an anno-
tated program. We say that an advice a is valid if for all procedures

f that it advises, the set of proof obligations POr f(a) is valid.
Then, we say that the program p is valid if all its procedures and all
its advices are valid.

We can now state soundness of the verification method in the
presence of advice weaving.

Lemma 2 (Soundness). Let (p,I") be a valid annotated program.
Then, ifp, pu | v,v and p |= D, then p,v,v = V.

One can extend the notion of certified baseline program to pro-
grams with specification-preserving advices, by requiring that pro-
grams come equipped with a certificate that advices are specification-
preserving.

Remark. We can extend the scope of this paper to a language
with a richer set of point-cut descriptors, for instance to point-cut
descriptors that refer to the control-flow graph. To this end, as an
alternative to reasoning about the control-flow graph or the call-
stack in our logic, we propose a stronger definition of specification
preserving advices. An advice a is specification-preserving w.r.t.
f and T if it satisfies the specification (®, ¥, W) where T'(f) =
(®, T, W), and W NVr C W. Notice that, in contrast to previous
definition, the guard b does not appear in the precondition of a.

5.2 Example

To illustrate the approach with a running example we assume an ex-
tended program syntax. Consider a procedure g = slowRetrieve
of a SAL program p, that returns the value stored in a slow ac-
cess memory. That is, given as parameter the integer Address i, the
procedure g returns the value mem[i], where mem is a global array
variable, if i is within the accessible range.

Since we plan to improve the efficiency of the procedure g, we
consider two global array variables available and cache and the
procedures fi = updateCache and fo = isAvailable. Let the
proposition ¢ stand for the consistency of the cache variable with
respect to the array availability, i.e.

¢ = Vi.(available[i] = cache[i] = mem[i]) .

For simplicity, we assume that global variables available and
cache are only accessible by these procedures.
Consider a specification table I" such that I'(g) = (@, ¥, W)
where ® =0<i< NA@ ¥ =res=men[i] A¢pand W = {.
Similarly, we need to specify procedures f; and fo with their
respective pre and post-conditions:
P =9
U, = cache = cache*[i — v] A ¢
P =0<i< N
Uy = res = availablel]
Consider the introduction of an advice a = fastRetrieve that
improves the store access time by taking advantage of the array

variables available and cache and the procedures fi and fa.
This advice replaces the functionality of method g by receiving
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as parameter the store address i and returning the cached value
if available or, otherwise, by permitting the original function g to
continue:

around slowRetrieve(Address i) fastRetrieve {
b:= isAvailable(i);
if b
return cache[i]
else
v:=proceed(i);
updateCache(i, v);
return v

}

Then, we can prove that a is specification preserving by show-
ing that the proposition

Py A Vb.(\Ifz[b/res] =
b:\P[cache[i]/res} /\d)
N
b= P A Vres. (U= By A

\v/cache’ (\Ill [caChel/cache] [caChe/cache*] =

(W A §)[*" eacne])))
is implied by .

5.3 Harmless advices

In general, it is not decidable whether an advice a is specification-
preserving w.r.t. a specification table I" and a procedure f. There-
fore, it is of interest to develop automated approximate methods
to detect specification-preserving advices. A natural condition is
to require that the advice does not modify the variables in Vr and
always executes a proceed statement. Since such requirements are
closely related to the notion of harmless advice, we call such ad-
vices specification-harmless.

The set of SAL commands is extended with assertions assert(¢)
and ghost assignments set z’ := z, where ¢ is a proposition and
2’ is a ghost variable not appearing in the original program. The
definition of vcg is extended accordingly:

veg(assert(g), ) = (o, {d=¢})
veg(set 2’ i=e,0) = (4[7-],0)

Formally, an advice a with parameters ¢ and guard b is specification-

harmless w.r.t. f and T if the procedure @ whose body is obtained
from the body of a by substituting 2:= proceed(€) by

assert(z+ = 2);a:=f(J);seta’, 2 :=x, 7
satisfies the specification
(bA®, 2’ =resA 2z =Z, W)

where I'(f) = (®, ¥, W), and W N Vr = 0, and where 2/, 2/
are fresh ghost variables, and where Z'is an enumeration of Vr.
We classify an advice as control flow preserving if every path in its
control flow contains exactly one proceed statement. We assume
an automated approximate static analysis for this condition.

Lemma 3. Let a be a control-flow preserving advice. Then, if a
is specification-harmless advice with respect to f and T, then it is
specification-preserving.

Dantas and Walker [14] propose a mechanism to check that
the execution of an advice does not interfere with the final value
produced by the computation of the baseline procedure. It consists
on a type-effect system inspired on information flow type systems
that does not consider timing nor termination behaviour. One can
use this type system as a static analysis to detect whether an advice
is specification-harmless.

instr = nop

| push v

| load x

| store ©

| jmp !

| jmpif cmp [
| invoke

| return

Figure 5. INSTRUCTION SET FOR SBL

5.4 Beyond harmless advices

There are many natural examples of advices that do not necessar-
ily trigger a proceed statement. For example, advices that seek to
improve efficiency by replacing a procedure call by a semantically
equivalent but more efficient computation will not call a proceed
statement. For such examples of advices, it is still possible to use
the property of specification-harmless to ensure that the advice is
specification-preserving for those paths in which a proceed state-
ment is effectively called, and generate a proof obligation for all
paths that do not call to proceed.
Recall the advice of the basic example shown in Section 2:

a(z) = (if = # 0 then z := proceed(z) else z := 0);
return z

Clearly, we have two possible execution paths depending on
whether the input value is equal to O or not. To verify that a pre-
serves the specification of f, i.e. (true, res = z*+x*), we consider
each possible path separately. In case that the parameter x is not
equal to 0 we know that exactly one proceed statement will be ex-
ecuted, that no variable is modified and that the expression returned
by the proceed statement is passed unchanged by the advice. Thus,
we can use a simple static analysis to detect whether this path is
specification-harmless. However, the path corresponding to an in-
put equal to 0 does not execute a proceed statement, so we need
to generate proof obligations that ensures that the specification is
still preserved. In this case, it corresponds to the valid proposition
r=0=>0=x+=x.

6. Compiling advices

From an applicative perspective, aspect-orientation is transparent
and AOP compilers target typical back-ends: indeed, it is the role
of the compiler to integrate these concerns into a single executable
object, through a weaving mechanism that modifies the code of
each procedure depending on the advices that operate over it. In
this section, we define the compilation of SAL programs to a stack-
based language.

6.1 Target language

The target language is a simple stack-based language (SBL) that
can be used to compile the imperative core of SAL. The syntax
of SBL instructions is given in Figure 5, where v and [ ranges
over integers, x ranges over program variables, cmp over relations
between integer values, and g ranges over function names. A SBL
program consists of a set of function names, and for each function
g a declaration of the form g args® = instr*. The operational
semantics of SBL programs is standard, and defined by a small-step
relation ~» between states. A state is either final, in which case it
consists of a global memory p and a result value v, or intermediary,
in which case it consists of a global memory y and a set of frames
lf, each frame consisting of the name of the function being called,
of a program counter, of a local memory with a distinguished
variable par that stores the parameter of the function being called,
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p#li] = invoke f

(. (', pe,lm, v < 0s) = 1f) ~ (u, (£, 1, [par — v, €) = (f',pe+ 1,1m, 0s) =2 Lf)
pyli] = return

</’L’ <f7pc7 lm7v : OS> - <fl7pcl7lm,7osl> n lf> ~ <ILL7 <fl7pc,7lm,7v o 08/> o lf>

Figure 6. OPERATIONAL SEMANTICS OF SBL

and of an operand stack. Figure 6 gives the rules for invoke and
return instructions, where [par — v] denotes the local memory
that only assigns v to par.

6.2 Compiler

The compiler for SAL programs is defined in Figure 7 as a function
[] that takes a command and returns a list of labeled instructions.
It relies on a compiler for integer expressions and a compiler for
boolean conditions, namely [J and [J. The compiler [] takes an
integer expression e and returns a sequence of instructions whose
effect is to push on top of the stack the evaluation of the expression
e. The compiler [y takes, in addition to a boolean expression b, a
label [ and outputs a sequence a instructions that forces the program
execution to jump to the program point labeled [ if the condition
b evaluates to true. The compiler for commands is standard, to
the exception of the function call statement, whose compilation
involves advice weaving, and the proceed statement. Since SBL
does not feature a dedicated mechanism for advice weaving, each
advice is compiled multiple times, exactly once per procedure it
advises, and the procedure call z:=f(e) is compiled into

[e]e :: invoke ay :: store

where a is the first advice for f, and Gy is its specific compilation
for f. The code of ay is of the form

[b, {]b :: load par :: invoke @y :: return :: [I : ay]

where ay is obtained by compilation from a by translating any
proceed statement of the form xz:= proceed(e) by

[e] :: invoke af :: store z

where a’ is the next advice for f. In other words, the code of s
tests if the guard for a holds, and if so proceeds to execute the body
of the advice, or lets @y proceed otherwise.

In order to achieve the desired effect, the compiler is thus
parametrized by a procedure (used in the clause for procedure calls
to trigger the appropriate advice), or by a procedure and an advice
(used in the clause for proceed to trigger the appropriate advice).
For readability, we use superscripts to indicate the parameter and
omit the superscript in all cases where it is not used.

7. Certificate translation

In this section, we show that a valid SAL program is compiled into
a valid SBL program. To this end, we first define a verification
method for SBL programs. The method is strongly inspired from
earlier work, and in particular [8].

7.1 Verification of SBL programs

While program annotations are similar to those of SAL programs,
the weakest precondition computation will produce propositions
that refer to the operand stack, and thus the language of SBL
annotations is extended to such propositions.

e The extended set of logical expressions is defined in Figure 8;
the logical propositions are built as before. In the definition,
os is a special variable representing the current operand stack

[skip] = [I:nop]

[x:=e] = letinse=[e]e in
ins. :: store x

[ei;e2] = letinsi=[c1] in
let ins2=[c2] in
insy ::insg

[if b then ¢1 else 2] =
letins;=[c1] in
let ins2=[c2] in
let insp=[b, 11 ]» in
insp ::insg :: jmp { :: [l1:insq] @ [1:nop]
[while bdo c] =
let ins.=[c] in
let insp=[b, ] in
jmp:: [lezinse] i [L:insy]
[x:=h(e)]? = letins.=[e]e in
ins. :: invoke ay :: store x
[returne] = letins=[e]e in
ins :: return
[x:= proceed(e)]} = letins.=[e]e in
ins :: invoke a :: store &

Figure 7. COMPILER FOR SAL PROGRAMS

os|&: s |1* os
res|z* |z |c|eéopé|oslk]

stack expressions  0s
logical expressions ¢

Figure 8. LOGICAL SBL EXPRESSIONS

and 1% s denotes the stack s minus its k-first elements. An
annotation is a proposition that does not contain stack sub-
expressions.

e An annotated bytecode instruction is either a bytecode instruc-
tion or a proposition and a bytecode instruction:

i o= il (9,10)

¢ An annotated program is a pair (p,I), where p is a bytecode
program in which some instructions are annotated and I is a
specification table that associates to each procedure f a triple
(®, ¥, W) where @ is a precondition, W is a postcondition, and
W is a modifies clause that declares all variables that may be
modified during the execution of f.

Verification of SBL programs is defined in terms of a weakest
precondition function wp that operates on annotated programs.
In order for the wp function to be well-defined, we must restrict
our attention to well-annotated programs [5, 8, 26], i.e. programs
in which all cycles in the control-flow graph must pass through
an annotated instruction. We characterize such programs by an
inductive and decidable definition.

An annotated program p is well-annotated if every procedure is
well annotated. A procedure g is well-annotated if every program
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point satisfies the inductive predicate reachAnnot, defined by the
clauses:
glk] = (¢,i)  glk] = return
k € reachAnnot, k € reachAnnot,
VE'. k— k' = k' € reachAnnot,
k € reachAnnoty

Given a well-annotated procedure, one can generate an asser-
tion for each label, using the assertions that were given or previ-
ously computed for its successors. This assertion represents the
pre-condition that an initial state before the execution of the cor-
responding label should satisfy for the procedure to terminate only
in a state satisfying its post-condition.

Let (p,I") be a well-annotated program.

¢ The weakest precondition calculus over (p, I') is defined in Fig-
ure 9. Formally, the result of the weakest precondition calculus
is a program in which all instructions are annotated.

e The set PO(f) of verification conditions of the procedure f is
defined by the clauses:

fIk] = (¢,9)
¢ = wp; (k) € POr(f)

@ = wp,(0)[*/] € POr(f)

As before, an annotated SBL program is valid with respect to a
specification table T if all its sets proof obligations POr(f) are
valid.

7.2 Preservation of validity

The purpose of this section is to prove that valid SAL programs
are compiled into valid SBL programs. To this end, we first extend
the compiler of Section 6 so that compiled programs are well-
annotated. This is achieved by modifying the compiler clause for
loops:

[whiler (b){c}] = letinscz[[c]] in
let insy=[b, l] in

Jjmp o [le inse] [l (1, insp)]

where we denote (I, insp) the sequence of instructions obtained by
annotating the first instruction of ins; with . In the rest of this
section, for any SBL function g, we denote g[l,1’] the sequence of
instructions g[l] :: g[l + 1] == ... g[l' — 1].

Lemma 4. Assuming the axioms for stacks (v :: 0s)[0] = v and
1 (v :: 0s) = os, he auxiliary compilers []e and [.]b satisfy the
following properties:

i) for every integer expression e and function g such that g[l,1'] =
[elle, wp (1) is equivalent to wp  (I')[*%s];
ii) for every boolean expression b and function f such that
gll, "] = [b, '], wp, (1) is equivalent to
b=wp, (') A =b=wp, (")
Given a specification table I" for SAL programs, we say that
I is a specification table for SBL programs extending I" if for
every advice a and any procedure f advised by a, I'(ay) =
(©f, Uy, Wy) and T'(ay) = (25 Ab, Wy, Wy), where I'(f) =
(@, Uy, Wy). In the following paragraphs, we implicitly consider
the specification tables I" and I’ respectively for the verification of
SAL and SBL programs.

Lemma 5. Let g be a SBL function such that g[l,1'] = [c], and let
(¢,5) = veg(c,wp,(I")). Then, ¢ = wp (1) and the proof obli-
gations in S are equivalent to the proof obligations corresponding
to the annotated instructions in g[l,1'].

Consider a SBL program p’ compiled from an annotated SAL
program p. The following result states that if p is a valid SAL
program with respect to T, then p’ is a valid SBL program with
respect to I,

Theorem 1. Suppose that (p, I') is a valid annotated program. That
is, for every procedure f and for every advice a, the sets of proof
obligations Ay and POr ¢ (a) are valid. Then, for every function
f,ay and ay, the sets POr/(f), POr/(ay) and POy (éGys) contain
valid proof obligations.

Furthermore, we can prove that a SAL programs certified with
respect to I' is compiled into a SBL program certified with respect
to I'". More precisely, using the rules of the proof algebra extended
with the axioms (v :: 0s)[0] = v and 1 (v :: 0s) = os, for every
equivalent proof obligations & and §’, we can transform a certificate
cs for 6 to a certificate cs/ for §’. Therefore, if for every procedure
f € F, (cs)sepor(y) and (c(;)(;eponf@) are indexed sets of
certificates for a SAL program p, then for every function g of p’
we can generate a certificate for the proof obligation 6 € POr(g).

8. Increasing the Power of Verification

Consider a procedure f executing under the advice of a1 and as,
and suppose that neither a; nor az, when executed in isolation,
preserve the specification of f. However, it can be the case that the
execution of each advice, when complemented by the execution
of the other one, preserves the specification of f. Then, since it
may seem a bit restrictive to require that every advice in its own
is specification-preserving, we propose to study instead whether a
sequence of advices is specification preserving.

While gaining in completeness, this more general verification
method makes more difficult to find an automated approximate
procedure.

Verification of advices in isolation. 'We extend the specification
of advices such that for every advice a we have, in addition to the
tuple (@, T, W), a specification for the code invoked by a proceed
statement. That enables to reason about the correctness of an ad-
vice without considering the possible contexts in which this advice
may be invoked. More precisely, the specification extension for an
advice a consists on an extra and distinct tuple (&, &', W'), in ad-
dition to the tuple (@, ¥, W). The tuple (&', &', W) is such that
W' specifies the set of variables that the invoked code is allowed to
modify, and ®" and ¥’ are respectively the pre and post-conditions
of such invocation. The propositions ® and ¥’ may refer, in ad-
dition to the input and output arguments of a (in and res), to the
input and output arguments of the invoked code, respectively repre-
sented with the new variables in’ and res’. To complete the proof,
a second phase explained in the next paragraphs checks, for every
context in which the advice @ may be executed, that the code al-
lowed to proceed satisfies a specification that is consistent with the
extension of the specification of a.

The predicate transformer wp is, thus, modified accordingly for
proceed statements:

wp, (z:= proceed(e), ¢) =
CAT , o
/\vy’,res/ -\Ijg [e/ing][y/y] [y/y*’] :>¢[TES/I] [y/y] [e/infl]v S)

where (&', U’ W) correspond to the specification of the proceed
statement and y € W',

By using this modified wp function we can prove that the body
of an advice satisfies its specification as long as the code invoked
by a proceed statement satisfies the specification (&', U’ W),

Verifying weaved code.  After statically determining the sequence
of advices @y executing around a procedure f, we are interested in
identifying a set of sufficient proof obligations that ensures that the
sequence dy is specification-preserving.
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let I'(f)=(Py, Qs, W) and y represent every variable in W:
wp; (k) = wpg(k+ 1)[“ s if g[k] = push ¢
wp, (k) = wpy(k -+ 1)[(sl0] ep oslL): 12 os] if g[k] = binop op
wp, (k) = wpg(k+ 1)["%:] if g[k] = load =
wp; (k) = wp(k+ 1)1 ] if g[k] = store x
wp; (k) = wp,(l) ) if g[k] = jmp {
wo (k) = (os[0] #0 = wp(k + 1)) i glK] = jmpit {
A os[0] = 0 = wp ()] %)
wp, (k) = W] if g[k] = return
wp;(k) = Pp[*,] if g[k] = invoke f
A
(vres, o/ Qs [Pl o+ )] = woo (k+ D[*“Ws]"A))
wpe(k) = ¢ if g[k] = ¢
wp,(k) = wp,(k) otherwise

Figure 9. WEAKEST PRECONDITION FOR SBL PROGRAMS

Since we do not require that every sub-sequence of advices
preserves the specification, we must consider a judgement of the
form

F, Fa [ {<I>}az . a]'{\I/}
for every a; . .. a; sub-sequence of dy.

To verify a judgement I', T, {®}d@,{¥}, we proceed by in-
duction on the length of the sequence d, to identify the set of proof
obligations Az, (P, V).

Given a non-trivial sequence @, = a :: @, we consider two
alternative sets of verification conditions, depending on whether
we can statically ensure that the code of the advice a control flow
preserving. We assume an automated static mechanism to check
this condition.

In case that it cannot be checked whether a is control-flow
preserving we apply the following rule:

Ta(a) = ((Pa, Va, Wal, (<I>:17 \Ijizv W¢,z)>

r,,Fa - {@:}a’g{\ll’}

W' [Pafing ][ fres] = W,

D, = P[0, | WoUWar CW,

I\ Tab{®a}a :: dg{¥a}

For simplicity, we are not considering the boolean condition speci-
fied in the point-cut descriptor.

Unfortunately, the rule above makes hard to propagate the infor-
mation carried by the specification (®', ¥'), unless it is explicitly
stated in the specification (®,, ¥,) of a. However, under the hy-
pothesis that a is a control flow preserving advice we can apply the
following alternative rule:

Ta(a) = ((Pa; Ya, Wa), (5, ¥, Wy))
[, Ta-{®}a, {¥}
®=>Dq AV (B[ /a] = ¥ [Pohng [V]) Wy UWay C W,
W[5y [hes] [V ] = Wl AV (Wa[Fin, ][7] = W [7])
I, Tak{®}a :: dg{¥}

where z’ represents the global variables potentially modified by a,
and W, specifies the variables that are allowed to be modified by
the execution triggered by the proceed statement.

For every procedure f advised by dy, we define Az, (@, ¥)
as the set of proof obligations required to derive the judgement
I T,-{®}as{¥}. Assume the specification table I is such that
I(f) = (®y, Vs, W). Then, we say that the sequence dy is
specification preserving with respect to f, I" and I',, if &y = @,
W=V and the proof obligations in Az, (@, ¥) are valid.

Lemma 6. Let p be a SAL program over a set F of procedures
and a set A of advices. Let T be a specification table for F and T,

be a specification table for A. Assume that for every procedure f
that is advised by dy, the sequence Gy is specification preserving
with respect to f, I and Ts. Then, if p,u § v,v and p = ®, then
u,v,v = U

The dynamic nature of some point-cut descriptors can make
static verification a difficult task. Consider for example a cflow
point-cut descriptor, for which program semantics must refer to a
collecting call stack to decide whether a cflow condition is valid.

Although possible, it is cumbersome to reason explicitly about
the call stack in the program logic. Furthermore, we cannot asso-
ciate a priori a condition specifiable in our logic to each cflow dec-
laration.

We propose the following simple derivation rule to reason in the
presence of cflow point-cut descriptors:

I L.H{®}ara,{¥} TI,I.+-{P}a,{v}
cflowﬁ,
ag{V}

where aCfllswc‘ig denotes that the execution of the advice a is condi-
tional on cflow statement. The rule can be interpreted as the fact
that, regardless of whether the cflow condition is valid, the speci-
fication (®, ¥) will still be verifiable with respect to the sequence

I T.+-{®}a

—/

of advices aCfII;)Wag. Although incomplete, this rule may prove to
be useful as long as the advice a is specification preserving with
respect to (P, ).

We have formally proved the soundness of the verification
method proposed in this section. In addition, we have shown how
to extended the compiler with a mechanism to translate a formal
certificate of correctness of a SAL program to a certificate for the
compiled code.

9. Related work

Reasoning about advices As the invasive nature of aspects cause
them to break modularity, the design of sound and practical verifi-
cation methods for aspect-oriented programs is particularly chal-
lenging. There have been many works that explore the design
space for such verification methods, and propose different trade-
offs between the modularity of verification and the generality of the
method. In addition, there are been many works that isolate partic-
ular classes of aspects that are well-suited for modular reasoning
and provide automatic analysis methods to detect when an advice
fits in one of these classes. We mention some of the most relevant
work below.

2008/1/21



Clifton and Leavens [12] define a notion of modular reason-
ing and show why modularity is not a general property in Aspect]
and how this can be improved. They define a classification for as-
pects as spectators or assistants: the former include aspects that
only modify the state space they own and do not alter the control
flow, whereas assistants can interfere with the original behavior of
the program but only if explicitly accepted by the original program.
Based on this classification, Clifton and Leavens suggest a veri-
fication method, which is described in more detail in [11]. More
recently, Clifton, Leavens and Noble [13] have developed an ef-
fect system to specify and verify the control and heap effect of as-
pects in the MAO language. Their system helps to verify whether an
advice is a spectator, and provides valuable static information ex-
ploitable by subsequent verification. To our best knowledge, there
is however no sound program verification method based on these
ideas, although Clifton [11] argues informally that the method he
proposes is indeed sound. In a similar vein, Rinard et al [27] pro-
vide a classification of advices, and a static analysis that automati-
cally classifies aspects. They illustrate the usefulness of their static
analysis, but do not develop any verification mechanism based on
it.

In addition to these works, here have been several efforts to de-
velop modular model-checking techniques for AOP. The prevailing
trend to achieve modularity is to isolate specific classes of aspects
that exhibit an appropriate behavior. Early work by Katz et al. [18]
proposes a classification of aspects as spectative, regulative or inva-
sive, and analyze the class of temporal properties that are preserved
by aspects that fall in these categories. In a subsequent work, Gold-
man and Katz [17] have formalized the idea that weakly invasive
aspects preserve temporal properties. More recently, Djoko Djoko
et al [15] have given a formal treatment of similar ideas based on a
slightly different classification. These works resembles our own in
the sense that they favor modularity of the verification process and
makes emphasis on the preservation of original properties. Krishna-
murthi ez al [19] propose an alternative method where modularity is
achieved by requiring that the set of point-cut designators is known
statically.

While the above works consider different classes in which ad-
vices are allowed to interfere more or less with baseline programs,
Dantas and Walker [14] choose to consider advices that are op-
timally suited for modular verification. They define the notion of
harmless advice, which may interfere with the control flow (by
preventing termination) and may also perform I/O, but it does not
interfere with the final result of the underlying code. This weak
interference property is an instance of specification-preserving ad-
vice, and thus permits to reason about the original program inde-
pendently. They propose an information-flow type system over a
core AOP language [28] to check harmlessness with respect to the
main program. As discussed in Section 5.3, their type system can
be combined to form part of our hybrid logic to certify and check
that an advice does not interfere with the original global state.

Aldrich [1] has proposed a module system called “Open Mod-
ules” that enables class interfaces to explicitly control the visibility
of internal control-flow points. Thus, it provides a mechanism to
restrict the interference of external advice, by forbidding the at-
tachement of advices to hidden internal join-points.

Proof compilation As discussed in the introduction, there have
been several efforts to study proof compilation for non-optimizing
and optimizing compilers. Our work is most closely based on the
work of [8], who show that, given a specific VCGen, a sufficiently
simple compiler generates, from an imperative source program, a
stack based low-level piece of code, whose proof obligations are
syntactically equal to that of the source program. Similar results on
a wider verification framework are detailed by Pavlova [26], for a
significant subset of Java Bytecode.

There has been a closely related effort by Zhao and Rinard [29]
to provide state-of-the-art specification and verification tools for
AOQOP, and to relate them to standard verification. They have de-
fined Pipa [29], an extension to JML [20] for Aspect] [2], to sup-
port specification for aspects invariants, pre and post-conditions
for advices and variable introductions, and provided a compiler
that transforms a Pipa-annotated Aspect] program into a JML-
annotated Java program. However, they do not provide any formal
treatment to support their approach.

10. Conclusion

We have introduced the notion of specification-preserving advice,
that mildly generalizes the notion of harmless advice of Dantas
and Walker, and that is expressive enough to capture many advices
related to security and efficiency. In addition, we have developed
a modular verification method for programs with specification-
preserving advices, and shown how proof compilation extends nat-
urally to this setting. Our results, while preliminary, establish the
feasibility of a Proof Carrying Code scenario with untrusted in-
termediaries modifying the code by aspects. In future work, we
intend to build on the theoretical and practical efforts of the Mo-
bius project on proof compilation for Java and extend our results
towards an expressive fragment of AspectJ, taking into account re-
cent developments in optimizing compilation for aspects [3]. In ad-
dition, it would be interesting to target our compiler to low level
languages with appropriate support for aspects [16], and investi-
gate certificate translation in that setting.
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