Verifiable Security of Boneh-Franklin
Identity-Based Encryption

Federico Olmedo
Gilles Barthe Santiago Zanella Béguelin

IMDEA Softarelnstitute, Madrid, Spain

51 International Conference on Provable Security
2011.10.17

|dentity-Based Encryption (IBE)

Problem of standard PKE:

key management is involved and troublesome

|dentity-Based Encryption (IBE)

Problem of standard PKE:
key management is involved and troublesome
Proposed solution by Shamir:

to use recipient’s ID as public key

|dentity-Based Encryption (IBE)

Problem of standard PKE:
key management is involved and troublesome
Proposed solution by Shamir:

to use recipient’s ID as public key

Alice

|dentity-Based Encryption (IBE)

Problem of standard PKE:
key management is involved and troublesome
Proposed solution by Shamir:

to use recipient’s ID as public key

©

Encrypt with public key
bob@comp. com

G/’@ E 5

Alice

|dentity-Based Encryption (IBE)

Problem of standard PKE:
key management is involved and troublesome
Proposed solution by Shamir:

to use recipient’s ID as public key

@ @ i
Encrypt with public key
bob@comp. com

Alice

|dentity-Based Encryption (IBE)

Problem of standard PKE:
key management is involved and troublesome
Proposed solution by Shamir:

to use recipient’s ID as public key

PKG

b

© @

Encrypt with public key Bob authenticates

bob@comp. com

5 "5
=

Alice

“bob@comp. com’’s
private key

Should we rely on IBE schemes?

Shamir Boneh & Franklin Galindo

1984 2001 2002 2003 2004 2005

Gentry & Silverberg, Horwitz & Lynn,
Al-Riyami & Peterson, Yao et al,
Cheng & Comely

1984: Conception of identity-based cryptography

2001: First practical provably-secure IBE scheme.
2002-2005: Used as building block for many other protocols
2005: Security proof is flawed (but can be patched)

Improving the security argument

Verifiable security paradigm

Use formal methods to build certified security proofs of cryp-
tographic systems

o Gives strong evidence of correctness of security arguments
o Enables automation in proofs

o Demonstrated applicability and effectiveness

4 /21

Outline

@ The provably-secure BasicIdent scheme
@ CertiCrypt framework
© Machine-checked proof of BasicIdent security

@ Summary and perspectives

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

Setup Encrypt

Extract Decrypt

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

sec. param
Setup Encrypt

Extract Decrypt

ol

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

public
params
sec. param
Encrypt
public
params

Extract Decrypt
public public
params

params

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

public
params
sec. param
Setup Encrypt
F——
master key
public
params

Extract Decrypt
public public
params

params

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

public .
params plaintext .
sec. param IR - | ciphertext
Setup Encrypt
N -
master key ID

public
params

Ciphertext) plaintext

Extract

Decrypt

secret key

public

public
params

params

An IBE Scheme

An identity-based encryption scheme is specified by four polynomial algorithms:

public .
params plaintext .
sec. param N ciphertext
Setup Encrypt
N -
master key ID
public
params
ID secret key ciphertext plaintext
Extract Decrypt
master key secret key

public
params

public
params

Boneh-Franklin's recipe

@ Extend the notions of IND-CPA and IND-CCA to IBE schemes
@ Build an IND-CPA-secure IBE scheme BasicIdent

© Apply a variant of Fujisaki-Okamoto transformation to turn BasicIdent
into an IND-CCA-secure IBE scheme

The BasicIdent scheme (definition)

Consider
o G1 and Ga, two cyclic groups of prime order q,
@ &: Gy X G1 — Ga, an efficiently computable bilinear map
&(aP, bQ) = &(P, Q)*
(P)=G1 = (&(P,P)) =G

@ Two hash functions
Hi1:{0,1}* = Gy
Ho: G — {0, 1}"

The BasicIdent IBE-scheme is defined as

Setup(k) i P& GY; mk & Z&; Pous + mk-P; return ((P, Pous), mk)
Extract(mk, ID) : Qip < Ha1(ID); return mk-Qip
Encrypt(ID, m) © Qip < H1(ID); ¢ & ZF; m' + Ha(e(Qip, Pous)®);

return (c-P,m& m’)

Decrypt(sk, (u, v)) : return v & Ha(&(sk, u))

8 /21

The BasicIdent scheme (security proof)

@ Proof by reduction (in the random oracle model)
o Define security goal (and adversarial model)

o Consider a computational assumption

o Reduce the security of the scheme to the intractability assumption.

B

Problem instance Solution

A breaks B solves the
Pr [the scheme } 7 (Pr [hard problem })

IN

The BasicIdent scheme (security proof)

@ Proof by reduction (in the random oracle model)
o Define security goal (and adversarial model)

= |ndistinguishability under Chosen Plaintext Attack
Strengthened notion of PKE IND-CPA for IBE

o Consider a computational assumption

o Reduce the security of the scheme to the intractability assumption.

B

Problem instance Solution

Pr |: A breaks } <7 (Pr |: B solves the })

the scheme hard problem

9 /21

The BasicIdent scheme (security proof)

@ Proof by reduction (in the random oracle model)
o Define security goal (and adversarial model)
= |ndistinguishability under Chosen Plaintext Attack
Strengthened notion of PKE IND-CPA for IBE
o Consider a computational assumption
= Bilinear Diffie-Hellman assumption

It is hard to compute &(P, P)2b¢ given a random tuple (P, a-
P,b-P,c-P).

o Reduce the security of the scheme to the intractability assumption.

B

Problem instance Solution

Pr A breaks 7 (pr B solves the
hard problem

the scheme

IN

9 /21

The BasicIdent scheme (security proof)

@ Proof by reduction (in the random oracle model)
o Define security goal (and adversarial model)

= |ndistinguishability under Chosen Plaintext Attack
Strengthened notion of PKE IND-CPA for IBE

o Consider a computational assumption

= Bilinear Diffie-Hellman assumption
It is hard to compute &(P, P)?P¢ given a random tuple (P, a
P,b-P,c-P).

o Reduce the security of the scheme to the intractability assumption.

B

Problem instance Solution

Pr [A breaks } <7 (Pr [B solves the })

the scheme hard problem

exp(1) g3, (1+qesx)

A B
- Adviyp.ip.cpa < Advgpy 5

9 /21

Tidying the proof up

The game-playing technique

Security Goal Reduction

Game Gg Game G; Game G,

e AQ)

Prg, [So] < A(Pre, [Si]) < -+ < fo(Pr, [Sn])

CertiCrypt: machine-checked crypto proofs

Certified framework for building and verifying crypto proofs in the Coq proof
assistant J

@ Combination of programming language techniques and
cryptographic-specific tools

@ Game-based methodology, natural to cryptographers

@ Several case studies:

o Encryption schemes: ElGamal, Hashed EIGamal, OAEP
o Signature schemes: FDH, BLS
o Zero-Knowledge protocols: Schnorr, Okamoto, Diffie-Hellman, Fiat-Shamir

11 /21

Inside CertiCrypt (language syntax)

Language-based proofs

Formalize security definitions, assumptions and games using a probabilistic
programming language.

pWhile: a probabilistic programming language

C == skip nop
| ¢ C sequence
| V& assignment
| V&D random sampling
| if £thenCelseC conditional
| while £doC while loop
|

V<« PeE,... . E) procedure call

o x & d: sample the value of x according to distribution d

@ The language of expressions (£) and distribution expressions (D) admits
user-defined extensions

12 /21

Inside CertiCrypt (standard tools)

Observational equivalence

Ea~bo

Exa {01}y xopz~E ys {01} xeyadz

—{x.y,z}

o Useful to relate probabilities

VA CO Ea~bo m=m
Pr [Cl, ma . A] =Pr [Cz, mo A]

13 /21

Inside CertiCrypt (crypto-specific tool)

Fundamental lemma of game-playing

Game G Game G»

bad « true; c; bad < true; c»

Two identical up to bad games

If G1 and Gy are identical up to bad, then

|Pr [G1, m: Al — Pr[Gz, m : A]| < max{Pr[Gy, m : bad], Pr [G2, m : bad]}

14 / 21

Our proof in CertiCrypt

We extended CertiCrypt with:
@ Types and operators for the groups G1, G2
@ An operator for a bilinear map &: G1 x G1 — G2

o Simplification rules for computing normal forms of applications of the
bilinear map &

@ An instruction for sampling from Bernoulli distributions

15 / 21

Our proof in CertiCrypt

Formalizing the security goal:

4 1\
Game Ginp-ID-cPa :

(params, mk) < Setup(k);
(mo, my, ID 4) < Ay(params);
b & {0,1};

¢ < Encrypt(ID 4, mp);

ba + Az(c)

@ The adversary is modeled by two procedures (of unknown code) A; and
A> that communicate through shared variables

e A; and A> have oracle access to the extraction algorithm and to both
random oracles

o Neither A; nor A is allowed to query the challenge ID 4 to the extraction
oracle.
1

Adva-lD-CPA = Prenpap.cea [b=ba] - 2

Our proof in CertiCrypt

Formalizing the assumptions

o The Bilinear Diffie-Hellman assumption

B .
Game GBDH : AdngH Ul:ef PrGSDH [Z = é(P, P)abc}
P& Gi; abcs Zg;
2+ B(P,a-P,b-P,c-P) VB« PPT(B) —> negl(Advepn)

@ The random oracle model

Oracle H1(ID) : Oracle #Ha(r) :

if ID ¢ dom(Ly) then if r ¢ dom(Lz2) then
R & Gi; m & {0,1}";
Li(ID) <+ R Ly(r) <+ m

return L1(ID) return La(r)

Our proof in CertiCrypt

Building the reduction. ..

(Game Ginp.ip-cpa :
(parm, mk) < Setup(k); Game G5py ¢
G I P ST
e Enl:ry;')t(IDA,mb); z+«+ B(P,a-P,b-P,c-P)
b +— .Az(c)

|\ J

1 1
< AdvEDH exp(1) qn; (1+qgx)

IN

A
Advinp.ip-cpa

@ Seven intermediate games

@ Lazy sampling, fundamental lemma, Coron's technique

@ Same bound as Boneh & Franklin proof

Our proof in CertiCrypt

@ Our reduction is direct in contrast to Boneh-Franklin proof that goes
through an intermediate IND-CPA-secure (non-IBE) encryption scheme

Used a simpler argument instead of an inductive argument in
Boneh-Franklin's proof that we could not reproduce

5000 lines of Coq script

@ Built in 3 man-months (but automatically verifiable in 10 minutes)

19 / 21

Summary and Perspectives

Contributions

o Presented a machine-checked reduction of the security of the BasicIdent
IBE scheme to the Bilinear Diffie-Hellman assumption

o Demonstrated that CertiCrypt can be extended to deal with complex
security proofs of cryptographic schemes

Perspectives

o Formalize Fujisaki-Okamoto meta-result.

o Eliminate RO assumption on Gi: formalize Brier et al work about
indifferentiability of hash functions into elliptic curves.

Final remarks

Questions?

Get CertiCrypt (and EasyCrypt) from:
http://certicrypt.gforge.inria.fr

http://certicrypt.gforge.inria.fr

Inside CertiCrypt (language semantics)

Programs map an initial memory to a distribution of final memories:
[ceC]: M — DM)
We use Paulin’s measure monad to represent distributions:
D(A) ¥ (A—]0,1]) = [0,1]
For instance

[x & {true, false}] m = Af - (%f(m[x/true]) + %f(m[x/false]))

To compute probabilities, just measure the characteristic function of the event:

Pric,m: Al & [c] m1a

What does it take to trust a proof in CertiCrypt

@ You need to

o trust the type checker of Coq

o trust the definition of the language semantics

o make sure the security statement and the computational assumption (a few
lines in Coq) are what you expect it to be

@ You don't need to

understand or even read the proof
trust proof tactics, program transformations
trust program logics, wp-calculus

]
]
]
o be an expert in Coq

Our proof in CertiCrypt |

Game CPA :

L17 Lz, L3 <« nil;

P & Gf; as Z};

Ppub = aP;

(mo, m1,ID 4) < A1(P, Ppup);
d& {071};

y < E(ID 4, my);

da + Aa(y)

Game BDH :
P&Gr; a,b,cé;Zqu;
z + B(P, aP, bP, cP)
B(Po, Py, P2, P3) :
Ly, Ly, L3, V, T < nil;
while |T| < gg, do

t& true@pfalse; Tt T
P < Po; Ppup < P1; P’ < Po;
(mo, m1, 1D 4) = A1(P, Ppup);

Qa < Hi(IDp); v/ + V(/D_A)fl;

R & {0,1}"; y < (v'Ps,R);
da = Az(y);
i & [1..|La[]; return fst(L2[i])

Oracle £X(ID) :
if ID ¢ L3 then
L3 «~ ID :: L3
Q < H1(ID);
return aQ

Oracle £X(ID) :
if ID ¢ L3 then
L3 «— ID : L3
Q < H1(ID);
return aQ

Oracle H1(ID) :

if ID ¢ dom(Ly) then
R & GT;
Li(id) « R

return Ly (/D)

Oracle H3(r) :

if r ¢ dom(L2) then
m & {0, l}n;
La(r) < m

return La(r)

Oracle #1(ID) :
if ID ¢ dom(Ly) then
v & Z;;
V(ID) «+ v;
if T[|L1]] then
Ly(ID) + vP’
else
Ly(ID) « vP
return Ly (/D)

Oracle Hy(r) :

if r ¢ dom(L2) then
m & {0,1}7
La(r) < m

return La(r)

Semantic security of an IBE scheme

'

(mo, my)

bs {01}

Encrypt(my, ID)

axmozZmrr— >IN

b e{0,1}

An IBE scheme is IND-ID-CPA-secure iff

VA PPT(A) =

Prb=b] -2

is negligible

ITmMmXAO>—-4>

Semantic security of an IBE scheme

'O

(mo, mz1), D4

Encrypt(my, ID 4)

b& {0,1}

TmoOZmMmr—r>IN

b e€{0,1}

An IBE scheme is IND-ID-CPA-secure iff

VA sPPT(A) =

Prib=b] -3

is negligible

ITmMmXO>—H-4>

Semantic security of an IBE scheme

'O

Setup

public params

(mo, mz1), D4

b& {0,1}

Encrypt(my, ID 4)

TmoOZmMmr—r>IN

b e€{0,1}

An IBE scheme is IND-ID-CPA-secure iff

VA sPPT(A) =

Prib=b] -3

is negligible

ITmMmXO>—H-4>

Semantic security of an IBE scheme

) SR
Setup public params
u
C ID1,1IDs, ..., 1D,
H Extract ski,skz,...,skn A
A T
L (mo, m1), 1D T
L A
E Encrypt(my, ID. C
N b s {0,1} ypt(my A) K
G E
E IDny1,Dpt2, ..., IDpyr R
R Skn+1,Skny2,. .., Skntr
b e{o0,1}
-) -

An IBE scheme is IND-ID-CPA-secure iff

VA PPT(A) A Pr [/\nil id; # idA] =1 = |Pr[b=0"b] - % is negligible

	Appendix

