
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable D2.1

Intermediate Report on Type Systems

Due date of deliverable: 2006-08-31 (T0+12)

Actual submission date: 2006-10-09

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: LMU

Revision — Final

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary:
Intermediate Report on Type Systems

This document summarises deliverable D2.1 of project FP6-015905 (MOBIUS), co-funded by the European
Commission within the Sixth Framework Programme. Full information on this project, including the con-
tents of this deliverable, is available online at http://mobius.inria.fr.

We present intermediate results that were obtained during the first year of the MOBIUS project in
WP2, tasks 2.1 (Types for Information flow Security), 2.3 (Types for Basic Resource Policies), and 2.5
(Alias Control Types). We have developed type systems for properties in all three domains, both at the
level of bytecode and at higher language levels. We motivate the usage of type systems for facilitating proof
generation as is required for a proof-carrying-code scenario. In order to prepare for the correspondong work
in WP4, an important aspect of our work in the remaining time for the present tasks will be to formally
relate the presented type systems to the MOBIUS logic and the Bicolano model of the Java Virtual Machine.

2

http://mobius.inria.fr

Contents

1 Introduction 5

2 Types for Information Flow Security 6

2.1 Security policy . 7

2.2 Type system . 8

2.2.1 Extra security annotations . 8

2.2.2 Typing judgment and typing rules . 10

2.2.3 Typable programs . 12

2.2.4 Typable example . 13

2.3 Non interference theorem . 14

2.3.1 Memory model . 14

2.3.2 Indistinguishability . 15

2.3.3 Formal definition of non-interference . 16

2.3.4 Type system soundness . 17

2.4 Related work . 17

2.4.1 Typed assembly languages . 17

2.4.2 Higher-order low-level languages . 17

2.4.3 JVM . 17

2.4.4 Java . 18

2.4.5 Logical analysis of non-interference for Java . 19

2.4.6 Concurrency . 19

2.4.7 Declassification . 20

2.5 Foreseen improvements . 20

2.5.1 Multi-threading . 20

2.5.2 Distributedness and fault tolerance . 20

2.5.3 Bounded memory, arrays and subroutines . 21

2.5.4 Declassification . 21

3 Types for Basic Resource Policies 22

3.1 Analysis of heap space consumption . 22

3.1.1 Type system for constant heap space . 22

3.1.2 General heap analysis for object-oriented programs . 28

3.2 Access permissions in Midlets . 28

3.2.1 Permission model . 28

3.2.2 Secure programs . 29

3.2.3 Abstract program model . 29

3.2.4 Static enforcement of secure permission usage . 30

3.2.5 Toward a PCC resource checker for midlets . 31

3.3 Explicit Accounting of External Resources . 31

3.3.1 Resource Managers in Java . 32

3

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

3.3.2 Syntax and Semantics of a Language for Resource Managers 33
3.3.3 Effect Types . 36
3.3.4 Related Work . 39
3.3.5 Future Work . 39

3.4 Execution Time Estimation . 39
3.4.1 Overview of the Approach . 40
3.4.2 Platform-Dependent Static Cost Analysis . 40
3.4.3 Dealing with the Builtin and External Operations in the Language 43
3.4.4 Calibrating Constants via Profiling . 44
3.4.5 Assessment of the Calibration of Constants . 45
3.4.6 Assessment of the Prediction of Execution Times . 46
3.4.7 Related Work . 47

4 Alias Control Types 48
4.1 Universe Type System . 48
4.2 UJ - Universe Java . 49

4.2.1 Types, and Type Soundness . 51
4.2.2 Encapsulation . 52
4.2.3 Universe Types and the Bicolano Logic . 53

4.3 GUJ - Generic Universe Java . 54
4.4 UJ and Concurrency . 56
4.5 Future Work . 58
4.6 Related Work . 58

5 Conclusion 59

4

Chapter 1

Introduction

This deliverable reports on initial progress on type systems for Mechanisms for Safe Information Release
(Chapter 2), Basic Resource Policies (Chapter 3), and Alias Control (Chapter 4).

This deliverable includes contributions from all MOBIUS partners involved in the tasks covered by tasks
2.1 (Types for information flow security), 2.3 (Types for basic resource policies), and 2.5 (Alias control
types), namely INRIA, RWTH, CTH, IC, LMU, UEDIN, UPM, and ETH.

Types are syntactically defined automatically decidable assertions about program behaviour. The type
systems developed here guarantee adherence to security and resource-related properties of mobile code. The
soundness of a type system must be proved independently and anew for each type system developed.

Property-independent certification, on the other hand, is afforded by formalised program logics and
operational semantics, see D3.1. Concrete certifications in program logic or proofs in a formalised meta
logic about operational semantics are very cumbersome to produce directly. In MOBIUS, we therefore
proposed to map typing derivations automatically into program logics or meta proofs about operational
semantics and therefore combine the highest possible degree of trustworthiness and independent verifiability
with state-of-the-art automation.

While these translations form the subject of WP4 we have asked the task leaders who have contributed
to this deliverable to describe the respective type systems in such a way that the possibility of a translation
into certifiable logic becomes apparent.

Chapter 2 describes a type system for flow-sensitive maintenance of level-based security policies for
the JVM. While the central ideas of the type system were already known and have to a large extent been
developed by members of the consortium which comprises leading players in this field, the main contribution
consists of the adaptation and considerable extension to the JVM, notably objects and exceptions. In this
way, type-based information security becomes applicable within MOBIUS.

Chapter 3 describes various type systems for controlling resource, notably execution time, heap space,
peripheral resources, and access. Again, pre-existing work from within the consortium had to be considerably
adapted and extended to fit the MOBIUS requirements, in particular the translatibility into program logic.
The type system on access control has been designed from scratch for MOBIUS.

Chapter 4 differs from the previous two chapters in that the property guaranteed here is less intuitive
to grasp in this case and alias control is to be seen as an auxiliary device to help other analyses and
methodologies to fulfil their more tangible goals. Accordingly, the issue of translatability into program logic
is not yet covered in this document.

In a nutshell, alias control introduces the ownership relation between objects and guarantees that certain
kinds of access to an object are performed only by its owners. While this kind of property is trivial in a
purely functional or procedural setting it becomes delicate in the presence of pointers and aliasing as we
find them in the JVM hence in MOBIUS.

Once established, alias control can then be instantiated in a number of ways, e.g., it can contribute to
maintenance of security levels by requiring that owners of any object have the security level required to
access it.

5

Chapter 2

Types for Information Flow Security

The Java security architecture combines static and dynamic mechanisms to enforce innocuity of applications;
in particular, it features a bytecode verifier that guarantees statically safety properties such as the absence
of arithmetic on references, and a stack inspection mechanism that performs access control verifications.
However, it lacks of appropriate mechanisms to guarantee stronger confidentiality properties. One weakness
of the model is that it only concentrates on who accesses sensitive information, but not how sensitive
information flows through programs.

The purpose of this chapter is to present a type system to enforce confidentiality of object-oriented
applications executing on a Java-like virtual machine, and to show that the type system enforces non-
interference, a baseline information-flow policy that is increasingly considered in the context of language-
based security.

Information-flow policy Any information flow policy must specify1 a lattice of security levels. The
choice of the lattice depends on the nature of the property to be enforced, i.e. confidentiality or integrity,
and on the granularity of the policy. In addition, any information flow policy must state the observational
capabilities of the attacker. Many different models have been considered in the literature; in our work, we
focus on attackers that can only observe the input and output of programs. Since we are dealing with an
object-oriented virtual machine, the input is the set of parameters of the method and the initial heap, and
the output is the result value and the final heap (as a simplifying assumption, we assume that all methods,
and in particular the main method of a program, return a value).

Policies and modularity In order to ensure its scalability and its compatibility with dynamic class load-
ing, the Java bytecode verifier performs modular verification, and verifies each method independently using
method signatures to simulate method calls and returns at type level. Thence, an important requirement
of our work is that our information-flow type system should also operate on a method per method basis,
and thus we are led to attach security signatures to methods; the idea of considering security signatures to
methods is not new, and can be found e.g. in [9].

Virtual machine Our type system applies to a stack-based virtual machine that is similar to the Java
Virtual Machine in several respects; in particular, our machine features instructions for stack and heap
manipulation, method invocation and exception handling. We follow closely the formal definition of the
JVM semantics given in the Bicolano project [74]. The most significant differences with the Java Virtual
Machine are the assumption of an unbounded memory for the heap, and the lack of arrays, multi-threading,
and subroutines. We will discuss these limitations when presenting the future extensions of this work.

Our analysis is proven correct2, and encompasses some major features of the JVM: objects, exceptions,
and method calls. The work builds upon known techniques, especially from [9] and [10], but solves a number

1Information flow security requirements relevant to global computing have been specified in MOBIUS deliverable 1.1 [66].
2Proofs can be consulted in a companion report [12]

6

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

of non-trivial difficulties due to the complexity of the language.

Preliminaries We let A? denote the set of A-stacks for every set A. We use hd and tl and :: and ++ to
denote the head and tail and cons and concatenation operations on stacks.

Throughout the paper, we assume a given lattice (S,≤,t,u) of security levels.

2.1 Security policy

A program in the JVM is composed of a set of classes. Each class includes a set of fields and a set of
methods, including a distinguished method main that is the first one to be executed. Each method includes
its code (set of labeled bytecode instructions), a table of exception handlers, and a signature that gives the
type of its arguments and of its result3. We note Handler(i, C) = t when there is a handler at program point
t for exception of class (or a subclass of) C thrown at program point i. We note Handler(i, C) ↑ when there
is no handler for exception of class (or a subclass of) C thrown at program point i.

A method takes a list of arguments, and may terminate normally by returning a value, or abnormally by
returning an exception object if an uncaught exception occurred during execution, or may hang. We do not
consider “wrong” executions that get stuck, as such executions are eliminated by bytecode verification. The
semantics of methods is captured by judgments of the form (hi, lv) ⇓m (r, hf), meaning that executing the
method m with initial heap hi and parameters lv yields the final heap hf and the result r, where r is either
a return value, or an exception object. The definition of this judgment can be found in the Bicolano [74]
formal semantics.

The security policy is based on the assumption that the attacker can only draw observations on the
input/output behavior of methods. On the other hand, we adopt a termination insensitive policy which
assumes that the attacker is unable to observe non-termination of programs. Formally, the policy is given
by a lattice (S,≤,t,u) of security levels, and:

• a security level kobs ∈ S that determines the observational capabilities of the attacker. Essentially, the
attacker can observe fields, local variables, and return values whose level is below kobs;

• a global policy ft : F → S that attaches a security level to fields (we let F denote the set of fields).
The global policy is used to determine a notion of equivalence ∼ between heaps. Intuitively, two heaps
h1 and h2 are equivalent if h1(l).f = h2(l).f for all locations l and fields f s.t. ftf ≤ kobs; the formal
definition of heap indistinguishability is rather involved and deferred to Section 2.3.2;

• local policies for each method (we let M denote the set of methods). In a setting where exceptions

are ignored, local policies are expressed using security signatures of the form kv
kh−→ kr where kv

provides the security level of the method local variables (including methods arguments4), kh is the
effect of the method on the heap, and kr (called output level) is a list of security level of the form
{n : kn, e1 : ke1 , . . . en : ken}, where kn is the security level of the return value and ei is an exception
class that might be propagated by the method in a security environment (or due to an exception-
throwing instruction) of level ki. In the rest of the paper we will write kr[n] instead of kn and kr[ei]
instead of kei . The vector kv of security levels is used to determine a notion of indistinguishability ∼kv

between arrays of parameters, whereas the output level is used to define a notion of indistinguishability
∼kr between execution outputs.

Essentially, a method is safe w.r.t. a signature kv
kh−→ kr if:

1. two terminating runs of the method with ∼kv -equivalent inputs, i.e. inputs that cannot be distin-
guished by an attacker, and equivalent heaps, yield ∼kr-equivalent results, i.e. results that also cannot
be distinguished by the attacker,

3Methods may have a void return type, in which case they return no value. However, our description assumes for the sake
of simplicity that all methods return a value upon normal termination.

4JVM programs use a fragment of their local variables to store parameter values.

7

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

2. the method does not perform field updates on fields whose security level is below kh—as a consequence,
it cannot modify the heap in a way that is observable by an attacker that has access to fields whose
security level is below kh.

Formally, the security condition is expressed relative to the operational semantics of the JVM, which is
captured by judgments of the form (hi, lv) ⇓m (r, hf), meaning that executing the method m with initial
heap hi and parameters lv yields the final heap hf and the result r.

Then, we say that a method m is safe w.r.t. a signature kv
kh−→ kr if its method body does not perform

field updates on fields of level lower than kh and if furthermore it satisfies the following non-interference
property: for all heaps hi, hf , h

′
i, h
′
f , arrays of parameters a and a′, and results r and r′,

(hi,a) ⇓m (r, hf)
(h′i,a

′) ⇓m (r′, h′f)

hi ∼ h′i
a ∼kv a′

 ⇒ hf ∼ h′f ∧ r ∼kr r
′

There are two important underlying choices in this security condition: first, the security condition focuses
on input/output behaviors, and so does not consider the case of executions that hang; however, it also does
not consider “wrong” executions that get stuck, as such executions are eliminated by bytecode verification.
Second, the security condition is defined on methods, and not on programs, as we aim for a modular
verification technique in the spirit of bytecode verification.

2.2 Type system

In this section, we define an information flow type system that guarantees safety of all methods in a program.

2.2.1 Extra security annotations

Bytecode verification for secure information flow requires not only verification of direct flows such as as-
signments of high values to low memories, but also verification of implicit flows, such as assignments to low
memories in branches of the program that depend on high values. Tracking information flow via control flow
in a structured language without exceptions is easy since the analysis can exploit control structure [?, 9].
For unstructured low level code, such as Java bytecode, implicit flows can be tracked using extra security
annotations.

Class and exception analysis The class analysis returns an over-approximation of classes of exceptions
of a program point while the exception analysis gives a superset of the escaping exceptions of each method.
For the soundness of the information flow type system, we assume that both the class-analysis and the
exception-analysis are in the trusted computing base. The type system exploits the information of these
analyses to restrict the static flow graph of a program and hence reject less non-interferent programs.

Control dependence regions An analysis of control dependence regions (cdr) gives information about
dependencies between blocks in the program due to conditional or exceptional instructions. This analysis
can be statically approximated [13, 76]. These regions are used by the type system to prevent implicit flows.

A control dependence region for a branching instruction at program point i must include at least those
program points that will not be reachable in all executions, or more precisely those program points that will
be reachable in executions depending on instruction found in i. A junction point for a program point i is
a program point that is not included in its control dependence region, but that is reachable from program
points in the control dependence region and that will always be executed if program point i is executed first
(however the junction point of i does not depend on the result of the execution of instruction at program
point i).

8

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Pm[i] ∈ {binop op, push c, pop, load x, store x, ifeq j}

i 7→∅ i+ 1

Pm[i] ∈ {ifeq j, goto j}

i 7→∅ j

Pm[i] = return

i 7→∅

Pm[i] ∈ {getfield f, putfield f, throw, invokevirtual mID} Handler(i,NullPointer) = t

i 7→NullPointer t

Pm[i] ∈ {getfield f, putfield f, throw, invokevirtual mID} Handler(i,NullPointer) ↑
i 7→NullPointer

Pm[i] = throw C ∈ classanalysis(m, i) Handler(i, C) = t

i 7→C t

Pm[i] = throw C ∈ classanalysis(m, i) Handler(i, C) ↑
i 7→C

Pm[i] = invokevirtual mID C ∈ excanalysis(mID) Handler(i, C) = t

i 7→C t

Pm[i] = invokevirtual mID C ∈ excanalysis(mID) Handler(i, C) ↑
i 7→C

Figure 2.1: Successor relation

In order to obtain a more accurate cdr analysis in presence of multiple exceptions, the analysis of regions
is computed on top of the class analysis to refine the set of exceptions that can be thrown by the throw
instruction.

The correctness of the cdr analysis is expressed using the successor relation 7→m on program points. The
relation is decorated by an element (called tag) in {∅} + C in order to reflect the nature of the underlying
semantics step: ∅ for a normal step and c ∈ C for a step where an exception of class C has been thrown.

The definition of this new relation is given in Figure 2.1. This relation can be statically computed thanks
to the handler function of each method.

Intuitively, i 7→τ j means that there is an instruction at program point i whose execution is of kind τ
and may lead to the program point j in the same method. i 7→τ means that the execution of method m
may end at program point i (normal return or uncaught exception). The formal definition of 7→ is given
in Figure 2.1 . Successors of a throw instruction are approximated thanks to the class analysis result and
successors of a invokevirtual thanks to the exception analysis result of the called method.

Formally, cdr results are associated not only to program points but also to tags:

regionm : PP × ({∅}+ C)→ ℘(PP) junm : PP × ({∅}+ C) ⇀ PP

We call return point a point i such that there exists τ ∈ {∅}+C with i 7→τ . When necessary will write i 7→ j
for ∃τ, i 7→τ j. The following definition captures the expected properties of the cdr structure.

SOAP1: for all program points i, j, k and tags τ such that i 7→ j, i 7→τ k and j 6= k (i is hence a branching
point), k ∈ region(i, τ) or k = jun(i, τ);

SOAP2: for all program points i, j, k and tags τ , if j ∈ region(i, τ) and j 7→ k, then either k ∈ region(i, τ)
or k = jun(i, τ);

SOAP3: for all program points i, j and tags τ , if j ∈ region(i, τ) (or i = j) and j is a return point then
jun(i, τ) is undefined;

SOAP4: for all program points i and tags τ1, τ2, if jun(i, τ1) and jun(i, τ2) are defined and jun(i, τ1) 6=
jun(i, τ2) then jun(i, τ1) ∈ region(i, τ2) or jun(i, τ2) ∈ region(i, τ1);

SOAP5: for all program points i, j and tags τ , if j ∈ region(i, τ) (or i = j) and j is a return point then
for all tags τ ′ such that jun(i, τ ′) is defined, jun(i, τ ′) ∈ region(i, τ).

Junction points uniquely delimit ends of regions. SOAP1 expresses that successors of branching points
belong to (or end) the region associated with the same kind as their successor relation. SOAP2 says that a

9

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

successor of a point in a region is either still in the same region, or it is the junction point at its end. SOAP3
forbids junction points for a region which contains (or starts with) a return point. SOAP4 and SOAP5
express properties between region of a same program point but with different tags. SOAP4 says that if two
differently tagged regions end in distinct points, the junction point of one must belong to the region of the
other. SOAP5 imposes that the junction point of a region must be within every region which contains (or
starts with) a return point and possesses a different tag.

These conditions allow to program a straightforward checker in order to verify that a given cdr result
verifies them. Figure 2.2 presents an example of safe cdr for an abstract transition system.

i

E2

region(i, E1)

region(i, ∅)

jun(i, E2)

jun(i, E1)

region(i, E2)

E1 ∅

jun(i, ∅)

Figure 2.2: Example of cdr. Only relevant tags are presented here.

2.2.2 Typing judgment and typing rules

Typing rules impose constraints on stack types (stack of security levels) and security environments (mapping
from program points to security levels). Stack types are used to track the security level of an expression
whose evaluation has been compiled into a sequence of stack manipulations. Security environments give
for each program point the security level of branching conditions on which its accessibility depends and are
used to prevent implicit flow leaks.

The typing judgment considered is of the form

Γ, region, se, sgn, i `τ st1 ⇒ st2 Γ, region, se, sgn, i `τ st1 ⇒

where Γ is a table of method signatures, region a cdr result for the method under verification, se a security
environment, i the current program point, τ the tag of the current transition, and st1, st2 two stack types.

The table Γ of method signatures is necessary for typing rules involving method calls — as in bytecode
verification, we use the signature of other methods to perform the analysis in a modular way. This table
associate to each method identifier5 mID and security level k ∈ S, a security signature Γm[k]. This signature
gives the security policy of the method m called on object of level k (as in the type system [9] for source
program). This allows a more flexible type system than having only one signature per method.

Figure 2.3 presents some selected typing rules. The full set of rules is available in a companion report
[12].

Below we comment this selection of rules:

5Associating signatures with method identifier instead of method allows to enforce that overriding of a method preserve its
declared security signatures.

10

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Pm[i] = ifeq j ∀j′ ∈ region(i, ∅), k ≤ se(j′)

Γ, region, se,ka
kh−→ kr, i `∅ k :: st⇒ liftk(st)

Pm[i] = return k t se(i) ≤ kr[n]

Γ, region, se,ka
kh−→ kr, i `∅ k :: st⇒

Pm[i] = invokevirtual mID ΓmID [k] = k′
a

k′
h−→ k′

r

k t kh t se(i) ≤ k′h length(st1) = nbArguments(mID)

k ≤ k′
a[0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ k′

a[i+ 1]

ke =
⊔
{ k′

r[e] | ∃e ∈ excanalysis(mID),∃t ∈ PP,Handler(i, e) = t }
∀j ∈ region(i, ∅), k t ke ≤ se(j)

Γ, region, se,ka
kh−→ kr, i `∅ st1 :: k :: st2 ⇒ liftktke ((k′

r[n] t se(i)) :: st2)

Pm[i] = invokevirtual mID ΓmID [k] = k′
a

k′
h−→ k′

r

k t kh t se(i) ≤ k′h length(st1) = nbArguments(mID)

k ≤ k′
a[0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ k′

a[i+ 1]

e ∈ excanalysis(mID) ∀j ∈ region(i, e), k t k′
r[e] ≤ se(j) Handler(i, e) = t

Γ, region, se,ka
kh−→ kr, i `e st1 :: k :: st2 ⇒ (k t k′

r[e]) :: ε

Pm[i] = invokevirtual mID ΓmID [k] = k′
a

k′
h−→ k′

r

k t kh t se(i) ≤ k′h length(st1) = nbArguments(mID)

k ≤ k′
a[0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ k′

a[i+ 1]

e ∈ excanalysis(mID) k t k′
r[e] ≤ kr[e] ∀j ∈ region(i, e), k t k′

r[e] ≤ se(j) Handler(i, e) ↑

Γ, region, se,ka
kh−→ kr, i `e st1 :: k :: st2 ⇒

P [i] = putfield f k1 t se(i) t k2 ≤ ft(f) kh ≤ ft(f)
∀j ∈ region(i, ∅), k2 ≤ se(j)

Γ, region, se,ka
kh−→ kr, i `∅ k1 :: k2 :: st ⇒ liftk2

st

Pm[i] = putfield f k1 t se(i) t k2 ≤ ft(f)
∀j ∈ region(i,NullPointer), k2 ≤ se(j) Handler(i,NullPointer) = t

Γ, region, se,ka
kh−→ kr, i `NullPointer k1 :: k2 :: st ⇒ k2 t se(i) :: ε

Pm[i] = putfield f k1 t se(i) t k2 ≤ ft(f)
k2 ≤ kr[NullPointer] ∀j ∈ region(i,NullPointer), k2 ≤ se(j) Handler(i,NullPointer) ↑

Γ, region, se,ka
kh−→ kr, i `NullPointer k1 :: k2 :: st ⇒

Pm[i] = getfield f ∀j ∈ region(i, ∅), k ≤ se(j)

Γ, region, se,ka
kh−→ kr, i `∅ k :: st ⇒ liftk((ft(f) t se(i)) :: st)

Pm[i] = getfield f ∀j ∈ region(i,NullPointer), k ≤ se(j) Handler(i,NullPointer) = t

Γ, region, se,ka
kh−→ kr, i `NullPointer k :: st ⇒ k t se(i) :: ε

Pm[i] = getfield f Handler(i,NullPointer) ↑ k ≤ kr[NullPointer]

Γ, region, se,ka
kh−→ kr, i `NullPointer k :: st ⇒

Pm[i] = throw e ∈ classanalysis(i) ∪ {NullPointer}
∀j ∈ region(i, e), k ≤ se(j) Handler(i, e) = t

Γ, region, se,ka
kh−→ kr, i `e k :: st ⇒ k t se(i) :: ε

Pm[i] = throw e ∈ classanalysis(i) ∪ {NullPointer}
k ≤ kr[NullPointer] ∀j ∈ region(i, e), k ≤ se(j) Handler(i, e) ↑

Γ, region, se,ka
kh−→ kr, i `e k :: st ⇒

Figure 2.3: Selected typing rules

11

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

• The typing rule for ifeq requires that the result stack type is lifted with the level of the guard, i.e.
the top of the input stack type. It is necessary to perform this lifting operation to avoid illicit flows
through operand stack leakages.

• The transfer rule for return requires se(i) ≤ kr that avoids return instructions under the guard of
expressions with a security level greater than kr[n]. In addition, the rule requires that the value on
top of the operand stack has a security level above kr[n], since it will be observed by the attacker.

• The typing rule for virtual call contains several constraints. The heap effect level of the called method
is constrained in several manners. The goal of the constraint k ≤ k′h is to avoid invocation of methods
with low effect on the heap with high target objects. Two different target objects (in two executions)
may mean that the body of the method to be executed is different in each execution. If the effect of
the method is low (kh ≤ kobs), then low memory is differently modified in both executions, leading to
leak of information. The constraint se(i) ≤ k′h prevents implicit flows (low assignment in high regions)
during execution of the called method. The constraint kh ≤ k′h prevents the called method to update
fields with a level lower that kh. It allows to avoid invocation of methods with low effect on the heap
by a method with high effect.

Constraints k ≤ k′a[0] and ∀i ∈ [0, length(st1)− 1], st1[i] ≤ k′a[i+ 1] link argument levels with formal
parameter levels.

In the first typing rule, the next stack type is lifted with level k t ke. Lifting with level k avoids
indirect flows because of null pointer exception on the current object. ke is greater that all levels of
the exceptions that may escape from the called method. If abnormal termination of the called method
reveals secret information then ke is high and the next stack type must be high too. The security level
of the return value is (k′r[n]t se(i)). k′r[n] correspond to the level of the return value in the context of
th called method. se(i) prevent implicit flow on the result after the virtual call.

The second and the third typing rule are parameterised by an exception e that may be caught by the
called method. In the second rule, this exception is caught in the current method while in the third it
is not. In both rule ktk′r[e] gives an upper-bound on the information that can be gained by observing
if the called method reached the point i+ 1. This level is hence used to constrain region(i, e), the top
of the stack when e is caught and the security level kr[e] when it is not.

• The transfer rule for putfield requires that k1 ≤ ft(f), where k1 is the security type of the object of the
field, in order to prevent an explicit flow from a high value to a low field. The constraint se(i) ≤ ft(f)
prevents an implicit flow caused by an assignment to a low field in a high security environment. The
constraint k2 ≤ ft(f) prevents modifying low fields of high objects that are alias to a low object.
Finally, the constraint kh ≤ ft(f) prevents modification of field with a level not greater than the heap
effect of the current method.

• In the rule for getfield f the value pushed on the operand stack has a security level at least greater
than ft(f) and the level k of the location (to prevent explicit flows) and at least greater than se(i) for
implicit flows.

2.2.3 Typable programs

A program P is typable with respect to a table Γ and a family of safe cdr result (regionm)m (one by method),
written region ` P : Γ, if for each declared method m and for each security signature sign of m (w.r.t. to
Γ) there exist S ∈ PP → S? and a security environment se such that Γ, region ` m : sign, S, se. We define
Γ, region ` m : sign, S, se as follows:

• S0 contains the empty stack type;

• for all program points i in m and j s.t i 7→τ j there is st such that Γ, region, se, sign, i `τ Si ⇒ st and
st v Sj .

12

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

• if i 7→m then Γ, region, se, sign, i `τ Si ⇒.

2.2.4 Typable example

The following method may throw two kind of exception: an exception of class C if the parameter x is true
and of class NullPointer in the other case. The first exception depends on x while the second depends
both on x and y. Normal return depends on y because execution terminates normally only if it is not null .

int m(boolean x,C y) throws C {

if (x) {throw new C();}

else {y.f = 3;};

return 1;

}

At the bytecode level we obtain the following method:

0 : load x
1 : ifeq 4
2 : new C
3 : throw
4 : load y
5 : push 3
6 : putfield f
7 : const 1
8 : return

Such a method is typable with the signature

m : (x : L, y : H)
H−→ {n : H, C : L, NullPointer : H}

thanks to the cdr6, the stack types and the security environment given below:

i region(i, ·) jun(i, ·) Si se(i)

0 ∅ 1 ε L
1 {2, 3, 4, 5, 6, 7, 8} undef L :: ε L
2 ∅ 3 ε L
3 ∅ undef L :: ε L
4 ∅ 5 ε L
5 ∅ 6 H :: ε L
6 {7, 8} undef L :: H :: ε L
7 ∅ 8 ε H
8 ∅ undef H :: ε H

The next method gives an example of code with method invocation where fine grain exception handling
is necessary. To keep the example short, we here give a compressed version of a compiled code.

foo :
0 load xL
1 load yH
2 invokevirtual m
3 store zH
4 load oL
5 push 1
6 putfield fL

handler : [0, 2],NullPointer→ 3

6In this example, it is safe to take the same cdr for all tags, so we do not distinguish them here.

13

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

V = N + L+ {null} values
LocalVar = X → V local variables
OpStack = V∗ operand stacks

O = C × (F ⇀ V) objects
Heap = L⇀ O heap
State = Heap× PP × LocalVar×OpStack states

FinalState = (V + L)× Heap final states

with

N : the set of numerical values
L : the set of locations
X : the set of variable names
C : the set of class names

F the set of field names

Figure 2.4: Memory model of the JVM

i region(i, ∅) jun(i, ∅) region(i,NP) jun(i,NP) region(i, C) jun(i, C) Si se(i)

0 ∅ 1 ∅ 1 ∅ 1 ε L
1 ∅ 2 ∅ 2 ∅ 2 L :: ε L
2 ∅ 3 ∅ 3 {3, 4, 5, 6, . . .} . . . H :: L :: ε L
3 ∅ 4 ∅ 4 ∅ 4 H :: ε L
4 ∅ 5 ∅ 5 ∅ 5 ε L
5 ∅ 6 ∅ 6 ∅ 6 H :: ε L
6 {. . . } . . . {. . . } . . . {. . . } . . . L :: L :: ε L

Update oL.fL = 1 at point 6 is accepted if and only if se(5) and se(6) are low. Thanks to the fine grain
regions, typing rule for virtual call only propagate exception levels of m in distinct regions:

∀j ∈ region(i,NullPointer) = ∅, kr[NullPointer] = H ≤ se(j)
∀j ∈ region(i, C) = {3, 4, 5, 6, . . .}, kr[C] = L ≤ se(j)

It follows that se(5) and se(6) are low and the update is accepted by our type system.

2.3 Non interference theorem

2.3.1 Memory model

The memory model is summarised in Figure 2.4. During the execution of a method values manipulated by
the JVM are either numerical values (taken in a set N), locations (taken in an infinite set L), or simply the
null constant. Method computation is done on states of the form 〈h, pc, ρ, s〉 where h is the heap of objects,
pc is the current program point, ρ is the set of local variables and s the operand stack. Heaps are modelled
as a partial function h : L ⇀ O, where the set O of objects is modelled as C × (F ⇀ V), i.e. a class name
and a partial function from fields to values. A set of local variables is a mapping ρ ∈ X → V from local
variables to values. Operand stacks are lists of values. A method execution terminates on final states. A
final state is either a pair (〈v〉v, h) ∈ V × Heap (normal termination), or a pair (〈l〉e, h) ∈ L × Heap (the
method execution terminates because of an exception thrown on an object pointed by a location l, but not
caught in this method).

14

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

2.3.2 Indistinguishability

The observational power of the attacker is formally defined by various indistinguishability relations ∼D on
each different semantic sub-domains D of the JVM memory.

The manipulation of dynamically allocated values requires to parameterise the indistinguishability rela-
tions: two locations/values can be considered indistinguishable at a low level, even if they are different. In
this case, we require these values to be in correspondence with respect to a permutation between locations,
following the approach proposed by Banerjee and Naumann [9]. Such a permutation models the difference
of allocation history between two states. This permutation is defined with the help of a partial bijection β
on locations. The partial bijection maps low objects allocated in the heap of the first state to low objects
allocated in the heap of the second state. Each indistinguishability relation is hence parameterised by a
partial function β ∈ L⇀ L.

Definition 2.3.1 (Value indistinguishability) Given two values v1, v2 ∈ V, and a partial function β ∈
L⇀ L value indistinguishability v1 ∼Vβ v2 is defined by the clauses:

null ∼Vβ null
v ∈ N
v ∼Vβ v

v1, v2 ∈ L β(v1) = v2

v1 ∼Vβ v2

Value indistinguishability is extended point wise to local variable maps (for low variables, i.e. local with
low security levels according to global policy ft).

Definition 2.3.2 (Local variables indistinguishability) Two local variable maps ρ1, ρ2 ∈ LocalVar are
indistinguishable with respect to a partial function β ∈ L ⇀ L and a type annotation for local variables kv

if and only if for all x ∈ X , kv(x) ≤ kobs ⇒ ρ1(x) ∼Vβ ρ2(x). We denote this fact: ρ1 ∼LocalVar
β,kv

ρ2

The definition of object indistinguishability is similar.

Definition 2.3.3 (Object indistinguishability) Two objects o1, o2 ∈ O are indistinguishable with re-
spect to a partial function β ∈ L⇀ L and a type annotation for fields ft if and only if

• o1 and o2 are objects of the same class;

• for all fields f ∈ dom(o1), ft(f) ≤ kobs ⇒ o1(f) ∼Vβ o2(f).

We note this fact: o1 ∼Oβ,ft o2

Note that because o1 and o2 are objects of the same class we have dom(o1) = dom(o2) and o2(f) is well
defined.

Heap indistinguishability requires β to be a bijection between the low domains (i.e. locations reachable
from low local variables) of the considered heaps.

Definition 2.3.4 (Heap indistinguishability) Two heaps h1 and h2 are indistinguishable with respect to

a partial function β ∈ L⇀ L, written h1 ∼Heap
β h2, if and only if:

• β is a bijection between dom(β) and rng(β);

• dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2);

• for every l ∈ dom(β), h1(l) ∼Oβ,ft h2(β(l)).

15

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Definition 2.3.5 (Final state indistinguishability) Given a partial function β ∈ L⇀ L, a level l ∈ S,
and a type annotation ft for fields, an output level kr (for normal termination and termination by an
uncaught exception), indistinguishability of two final states is defined by the clauses:

h1 ∼Heap
β,ft h2 kr[n] ≤ kobs ⇒ v1 ∼Vβ v2

(〈v1〉v, h1) ∼FinalState
β,ft,kr

(〈v2〉v, h2)

h1 ∼Heap
β,ft h2 class(h1, l1) : k ∈ kr k ≤ kobs l1 ∼Vβ l2

(〈l1〉e, h1) ∼FinalState
β,ft,kr

(〈l2〉e, h2)

h1 ∼Heap
β,ft h2 class(h1, l1) : k ∈ kr k 6≤ kobs

(〈l1〉e, h1) ∼FinalState
β,ft,kr

(〈v2〉e, h2)

h1 ∼Heap
β,ft h2 class(h2, l2) : k ∈ kr k 6≤ kobs

(〈v1〉e, h1) ∼FinalState
β,ft,kr

(〈l2〉e, h2)

h1 ∼Heap
β,ft h2 class(h1, l1) : k1 ∈ kr class(h2, l2) : k2 ∈ kr k1 6≤ kobs k2 6≤ kobs

(〈l1〉e, h1) ∼FinalState
β,ft,kr

(〈l2〉e, h2)

2.3.3 Formal definition of non-interference

Here we give the semantic definition of non-interfering JVM programs. We rely on the following semantic
judgement: p : s ⇓m fs with p a program, m a method of p, s a state and fs a final state. This means that if
an execution of method m (taken in a program p) is run on a state s, it terminates on a final state fs. The
exact definition of this bigstep semantics is formally defined in the Bicolano project [74].

Definition 2.3.6 (Secure method) A method m (in a program p) is said secure with respect to a signa-

ture ka
kh−→ kr if and only if for all arrays of local variables ρ1, ρ2 ∈ LocalVar, for all heaps h1, h2 ∈ Heap, for

all final states (ret1, h
′
1), (ret2, h

′
2) ∈ FinalState, for all type annotation ft for fields and for all partial function

β ∈ L ⇀ L such that ρ1 ∼LocalVar
β,kr

ρ2, h1 ∼Heap
β,ft h2, 〈h1, 0, ρ1, ε〉 ⇓m (ret1, h

′
1) and 〈h2, 0, ρ2, ε〉 ⇓m (ret2, h

′
2)

the following properties hold:

• there exists a partial function β′ ∈ L ⇀ L such that β ⊆ β′ and final states (ret1, h
′
1) and (ret2, h

′
2)

are indistinguishable with respect to β′, ft and output level kr: (ret1, h
′
1) ∼FinalState

β′,ft,kr
(ret2, h

′
2);

• no modification under level kh is done on h1 and h2: for all field f ∈ F such that kh 6≤ ft(f),

– for all location l ∈ L such that h1(loc).f is defined then h′1(loc).f is defined and equal to h1(loc).f ;

– for all location l ∈ L such that h2(loc).f is defined then h′2(loc).f is defined and equal to h2(loc).f .

A method is said secure if it is secure with respect to all its signatures.

The set of security signature of a method m is defined as PoliciesΓ(m) = { Γm[k] | k ∈ S }. We use it to
define the notion of safe program.

Definition 2.3.7 (Non-interfering program) A program is safe with respect to a table of method signa-
ture Γ if for all its method m, m is safe with respect to all policies in PoliciesΓ(m).

In order to better understand the notion of partial function β in the definition of secure method, we end
this section with a simpler property verified by particular secure methods.

Lemma 1 Let m a method (in a program p) returning a numerical value and which is secure with respect to

a signature ka
kh−→ kr. Let h0, h1, h2 some heaps, ρ1, ρ2 two arrays of local variables such that for all variable

x, ft(x) ≤ kobs implies ρ1(x) = ρ1(x) (parameter are equal for low variables) and n1, n2 two numeric values
such that

〈h, 0, ρ1, ε〉 ⇓m (n1, h1) and 〈h, 0, ρ2, ε〉 ⇓m (n2, h2)

Then, if kr[n] ≤ kobs, both returned values are equals: n1 = n2.

16

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

2.3.4 Type system soundness

Theorem 2.3.8 Let p a program and Γ a table of signature, if there exists a family of safe cdr results
(regionm)m such that p is well-typed with respect to Γ and (regionm)m then p is non-interfering with respect
to Γ.

The proof is given in a companion report [12].

2.4 Related work

We refer to the survey article of Sabelfeld and Myers [81] for a more complete account of recent developments
in language-based security, and only focus on related work that deals with low-level languages, or develops
ideas that are relevant to consider in future work.

For convenience, we separate related work between works that deal with typed assembly languages, and
higher-order low-level languages and finally with the JVM and Java. Then, we focus on issues of concurrency
and information release that are not considered in the work presented. Ongoing work and future objectives
are further discussed in Section 2.5.

2.4.1 Typed assembly languages

The idea of typing low-level programs and ensuring that compilation preserves typing is not original to
information flow, and has been investigated in connection with type-directed compilation. Morrisett, Walker,
Crary and Glew [68] develop a typed assembly language (TAL) based on a conventional RISC assembly
language, and show that typable programs of System F can be compiled into typable TAL programs.

The study of non-interference for typed assembly languages has been initiated by Medel, Bonelli, and
Compagnoni [?], who developed a sound information flow type system for a simple assembly language called
SIFTAL. A specificity of SIFTAL is to introduce pseudo-instructions that are used to enforce structured
control flow using a stack of continuations; more concretely, the pseudo-instructions are used to push or
retrieve linear continuations from the continuation stack. Unlike the stack of call frames that is used in
the JVM to handle method calls, the stack of continuations is used for control flow within the body of a
method. The use of pseudo-instructions allows to formulate global constraints in the type system, and thus
to guarantee non-interference. More recent work by the same authors [62] and by Yu and Islam [93] avoids
the use of pseudo-instructions. In addition, Yu and Islam consider a richer assembly language and prove
type-preserving compilation for an impreative language with procedures.

2.4.2 Higher-order low-level languages

Zdancewic and Myers [94] develop a sound information flow type system for a CPS calculus that uses
linear continuations and prove type-preservation for a linear CPS translation from an imperative higher-
order language inspired from SLAM [44] to their CPS language, providing thus one early type-preservation
result for information flow. The use of linear continuations in the CPS translation is essential to guarantee
type-preserving compilation.

In a similar line of work, Honda and Yoshida [48] develop a sound information flow type system for the π-
calculus and prove type-preserving compilation for the Dependency Core Calculus [1] and for an imperative
language inspired from Volpano and Smith [88]. Furthermore, they derive soundness of the source type
systems from the soundness of the type system for the π-calculus. As in the work of Zdancewic and Myers,
linearity is used crucially to ensure that the compilation is type-preserving.

2.4.3 JVM

Lanet et al. [22] provide an early study of information flow for the JVM. Their method consists of specifying
in the SMV model checker an abstract transition semantics of the JVM that manipulates security levels,

17

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

and that can be used to verify that an invariant that captures the absence of illicit flows is maintained
throughout the (abstract) program execution. Their method is directed towards smart card applications,
and thus only covers a sequential fragment of the JVM. While their method has been used successfully to
detect information leaks in a case study involving multi-application smartcards, it is not supported by any
soundness result. In a series of papers initiating with [18], Bernardeschi and co-workers also propose to use
abstract interpretation and model-checking techniques to verify secure information.

In a predecessor to the work presented in this chapter, Barthe, Basu and Rezk [10] propose a sound
information flow type system for a simple assembly language that closely resembles the imperative fragment
(i.e. expressive enough for compiling programs written in a simple imperative language) of the JVM studied
of this paper, and show type-preserving compilation for the imperative language and type system of [88].
Later, Barthe and Rezk [13] extend this work to a language with objects and a simplified treatment of
exceptions, and Barthe, Naumann and Rezk [11] show type-preserving compilation for a Java-like language
with objects and a simplified treatment of exceptions.

Genaim and Spoto [41] have shown how to represent information flow for Java bytecode through boolean
functions; the representation allows checking via binary decision diagrams. Their analysis is fully automatic
and does not require that methods are annotated with security signatures, but it is less efficient than type
checking.

2.4.4 Java

Jif is an extension of Java with information flow types developed by Myers and co-workers. Jif builds
upon the decentralized label model and offers a flexible and expressive framework to define information flow
policies. The rich set of features supported by Jif has proved useful in realistic case studies such as an
implementation of mental poker [?], but makes it difficult to prove that the information flow type system is
sound.

Banerjee and Naumann [9] develop a sound information flow type system for a fragment of Java with
objects and methods. The type system is simpler than Jif:

• due to the absence of certain language features such as exceptions. For example, their return signatures
is reduced to a single level, since abnormal termination is not considered.

• by design. For example, there is no mechanism for information release.

The type system has been formally verified in PVS [72], and [86] present a type inference algorithm that
dispenses users of writing all security annotations.

More recently, Hammer, Krinke and Snelting [43] have developed an information flow analysis based on
control dependence regions; they use path conditions to achieve precision in their analysis, and to exhibit
security leaks if the program is insecure. Their approach is automatic and flow-sensitive, but less efficient
than type-based approach.

Both the type systems of [70] and of [9] rely on the assumption that references are opaque, i.e. the
only observations that an attacker can make about a reference are those about the object to which it
points. However, Hedin and Sands [?] have recently observed that the assumption is unvalidated by methods
from the Java API, and exhibited a Jif program that does not use declassification but leaks information
through invoking API methods. Their attack relies on the assumption that the function that allocates
new objects on the heap is deterministic; however, this assumption is perfectly reasonable and satisfied by
many implementations of the JVM. In addition to demonstrating the attack, Hedin and Sands show how a
refined information flow type system can thwart such attacks for a language that allows to cast references
as integers. Intuitively, their type system tracks the security level of references as well as the security levels
of the fields of the object its points to.

18

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

2.4.5 Logical analysis of non-interference for Java

In a different line of work, several authors have investigated the use of program logics to enforce non-
interference of Java programs. Darvas and co-workers [29] use dynamic logic to verify information flow
policies of Java Card programs. One of their encodings of non-interference is based on the idea of self-
composition (see also [?]), where the program is composed with a renaming of itself to ensure properties
that involve two executions of a program. The idea of self-composition has also been put in practice by
Dufay and co-workers [35], who used an extension of the Krakatoa tool [61] with self-composition primitives
to verify that data mining programs from the open source repository weka adhere to privacy policies cast in
terms of information flow. Both [29, 35] are application-oriented and do not attempt to provide a theoretical
study of self-composition for Java. In a recent article, Naumann [73] sets out the details of self-composition
in presence of a dynamically allocated heap; in short, one main issue tackled by Naumann is the definition
of a meaningful notion of “renaming” for the heap.

Independently, Banerjee and his co-workers [5] develop a logic that allows to verify non-interference
without resorting to self-composition. The logic, which is tailored to object-oriented languages, handles the
heap using independence assertions inspired from separation logic.

2.4.6 Concurrency

Extending information flow type systems to concurrent languages is notoriously difficult because the parallel
composition of secure sequential programs may itself not be secure [85]. The source of the problem is that
races lead to non-determinism in a program’s behavior, at least for intermediate states in an execution.
Non-determinism, however, is in conflict with security definitions that require a program to lead to indis-
tinguishable states given that the starting states are indistinguishable. Another problem is caused by the
so-called internal timing leaks, which allow an attacker to exploit differences in the timing behavior of a
program, even if he does not have access to a clock. An additional difficulty is that language definitions are
usually parametric in the scheduler, while the presence of internal timing leaks closely depends on scheduling.

Work on type systems for information flow security often focuses on bisimulation-based notions of security
that require indistinguishability for intermediate execution steps. The resulting security conditions prevent
information leakage, permit concurrency, support a compositional analysis and are robust in the choice
of the scheduler (e.g., [82, 80]), but they are over-restrictive in the sense that they reject many programs
that are intuitively secure. Type systems for such security definitions reject even more intuitively secure
programs, because being type correct constitutes a conservative approximation of the already restrictive
security conditions. As a consequence, some secure programs are rejected solely because they, e.g., contain
a loop with a high guard or perform a low assignment after a high branching statement.

Motivated by the desire to provide flexible and practical enforcement mechanisms for concurrent lan-
guages, recent work addressed the above limitations. One can identify three major research directions,
depending on whether (1) the type system, (2) the programming language, or (3) the security condition is
modified. The Mobius partners explored and advanced each of these directions:

1. In order to eliminate differences in the timing behavior between alternative execution paths, the cross-
copying technique [?, 82] pads each branch with skip commands that emulate the timing behavior
of the respective other branch. This was a first solution to permitting high guards in conditionals,
without the protect statements needed in earlier type systems [89]. Köpf and Mantel further improve
this approach by replacing the cross-copying technique with a unification-based transformation [50].

Ultimately, the underlying security condition limits what one can achieve by solely improving the type
system. Unless one were willing to sacrifice soundness, any intuitively secure program that does not
satisfy the given security condition must also be rejected by the type system. Similarly, the scope of
transformations is limited as they can only support the programmer in making programs type correct.

2. Since language definitions are usually parametric in the specification of the scheduler, it is desirable
to make the information flow analysis robust with respect to the particular choice of a scheduler.

19

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

However, without making any assumptions about the class of possible schedulers, one arrives at rather
restrictive security definitions like the strong security condition [82], as demonstrated in [79].

One can constrain scheduling decisions by adding explicit scheduling directives to a program, which
can then be exploited in the security analysis in order to accept more programs that are intuitively
secure. Russo and Sabelfeld introduce two commands to lift a thread from public to secret, or to make
a temporarily secret thread public again, and require that the scheduler does not pick any public thread
for execution as long as a temporarily secret thread is executing. They develop a sound information
flow type system that enforces termination-insensitive non-interference in a concurrent setting [78].

3. Scheduler-independent security conditions for concurrent languages are usually either bisimulation
based or determinism based. While the first approach leads to over-restrictive constraints on the
flow of information (typically excluding, e.g., loops with high guards), the second approach limits
concurrency by requiring that a program’s behavior is deterministic in its low part [95].

Mantel, Sudbrock and Kraußer propose an approach to using security type systems following these
traditions in combination when analyzing a given program [60]. The combining calculus provides
typing rules for a compositional analysis and plugin rules for different information flow analyses.

2.4.7 Declassification

Information flow type systems have not found substantial applications in practice, in particular because
information flow policies based on non-interference are too rigid and do not authorize information release.
In contrast, many applications often release deliberately some amount of sensitive information. Typical
examples of deliberate information release include sending an encrypted message through an untrusted
network, or allowing confidential information to be used in statistics over large databases. In a recent
survey [83], A. Sabelfeld and D. Sands provide an overview of relaxed policies that allow for some amount of
information release, and a classification along several dimensions, for example who releases the information,
and what information is released. A first solution to an integrated control for multiple dimensions of
declassification is developed in [77].

2.5 Foreseen improvements

The work presented in Sections 2.1–2.3 does not yet address all aspects of the bytecode language. On-going
and future efforts (in Task 2.1 and Task 2.2) aim at overcoming the most important, remaining limitations.

2.5.1 Multi-threading

An investigation of existing security type systems for multi-threaded languages revealed that the available
approaches were not yet suitable for a practical information flow analysis of bytecode programs. As outlined
in Section 2.4.6, three research directions were explored in order to determine an approach that is suited
for the goals of the project. An outcome of these investigations is that it is most promising to accompany
improvements to the security type system by improvements of the underlying security condition. This will
be the approach taken to extend the security type system to concurrent programs. We plan to adapt the
two solutions proposed in [78, 60] to the bytecode language. These solutions are complementary: the first
achieves greater precision by exploiting scheduler directives in a program while the second is applicable also
for the usual scheduler implementations that do not yet support such scheduler directives.

2.5.2 Distributedness and fault tolerance

The work will start by augmenting Java byte code with a primitive for RMI invocation and develop a typing
system guaranteeing secure information flow. This work will include a basic notion of process failure. The
uniform type structure for secure information flow developed in [48] will form the basis of this work, but

20

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

needs to be extended to deal with failures. Basic notions of failure will be modelled following [16]. The key
problem is to investigate the precise effect of failures on information flow.

2.5.3 Bounded memory, arrays and subroutines

Information flow analysis without bounded memory assumption requires to mix this work with a memory
usage analysis. Resource analysis is the subject of the next chapter of this deliverable.

An extension of our type system to arrays is proposed in the companion report [12]. Special care has
been taken to allow public arrays handling secret informations as it is done at source level in Jif. In their
case study [?], Askarov and Sabelfeld show that such a mechanism is important to type realistic programs.

We do not plane to handle subroutines for our type-system. We have already worked on an extension,
but without soundness proofs at the moment. We feel it is not necessary to continue in this direction because
subroutines are currently disappearing in Java (and are already missing in MIDP).

2.5.4 Declassification

Security-critical systems usually rely on some possibility to intentionally release secrets. This makes the
integration of declassification a key step to enabling technology transfer into standard security practice [81].

In Task 2.2, we plan to develop policies and mechanisms for safe information release that are adequate
for expressing and enforcing intentional declassification. We will investigate the three dimensions of in-
formation release: what information is released, who controls information release, and where in the system
information is released [59]. Most research has focused on one of these dimensions in isolation, but it appears
essential to also study the relationship between the different dimensions and possibilities for enforcing them
in combination. Currently, little is known about the relationship between different aspects of information
release. This creates hazardous situations where policies provide only partial assurance that information
release mechanisms cannot be compromised. For example, consider a policy for describing “what” infor-
mation is released. This policy stipulates that a limited set of the digits of a credit card number might
be released when a purchase is made (as often needed for logging purposes). This policy specifies “what”
can be released but says nothing about ”who” controls which of the numbers are revealed. Leaving this
information unspecified leads to an attack where the attacker launders the entire credit card number by
asking to reveal different digits under different purchases. Beyond a flexible composition of security policies,
the goal is also to automate their enforcement at the level of programming languages. Little has been done
for enforcing information release policies for bytecode languages. It is the objective of Task 2.2 to enhance
security type systems developed under Task 2.1 with possibilities for intentional information release.

21

Chapter 3

Types for Basic Resource Policies

In this section, we summarise work on type systems for resources. In the first year, work has concentrated
on basic formalisms for heap space (Section 3.1), static analysis of resource managers (Section 3.3), access
permissions of MIDlets (Section 3.2), and a framework which combines cost analysis with profiling techniques
in order to infer functions which yield bounds on platform-dependent execution times of procedures (Section
3.4). Future work will aim to generalise and extend the presented work to more complex policies and
patterns of resource access, and interprete selected type systems in the program logic and the verification
infrastructure developed in WP3.

3.1 Analysis of heap space consumption

3.1.1 Type system for constant heap space

In this section, we present a type system that ensures a constant bound on the heap consumption of bytecode
programs. The type system is formally justified by a soundness proof with respect to the MOBIUS base
logic, and may serve as the target formalism for type-transforming compilers.

The requirement imposed on programs is similar to that of the analysis presented by Cachera et. al. in
[23] in that recursive program structures are denied the facility to allocate memory. However, our analysis
is presented as a type system while the analysis presented in [23] is phrased as an abstract interpretation.
In addition, Cachera et. al.’s approach involves the formalisation of the calculation of the program repre-
sentation (control flow graph) and of the inference algorithm (fixed point iteration) in the theorem prover.
In contrast, our presentation separates the algorithmic issues (type inference and checking) from semantic
issues (the property expressed or guaranteed) as is typical for a type-based formulation. Depending on the
verification infrastructure available at the code consumer side, the PCC certificate may either consist of
(a digest of) the typing derivation or an expansion of the interpretation of the typing judgements into the
MOBIUS logic. The latter approach was employed in our earlier work [17] and consists of understanding
typing judgements as derived proof rules in the program logic and using syntax-directed proof tactics to
apply the rules in an automatic fashion. In contrast to [17], however, the interpretation given in the present
section extends to non-terminating computations, albeit for a far simpler type system.

Having proved the typing rules sound w.r.t. a formal interpretation of the typing judgments in the base
logic, we outline a connection to a simple first-order functional intermediate language. We prove that code
resulting from compiling program written in this language into bytecode satisfies the bound asserted by a
high-level type system: derivability in the high-level type system guarantees derivability in the bytecode
level type system. The whole presentation is based on a representation in a theorem prover, for a variant of
the MOBIUS program logic that differs from the one described in [67] in minor ways. More precisely,

• only a subset of bytecode instructions is considered, with a simplified syntax for jump operations.
Apart from basic instructions (arithmetic, operand and object-manipulating instructions,. . .) we treat
jumps and static method invocations with a single argument. The subset sufficies for translating our

22

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

high-level language, but future work will seek to extend the formalism to the remaining instructions
covered by Bicolano. This should not be too difficult: Array operations do not access heap. The rules
for exception handlers will be similar to the rules for jumps. For method-internal recursion we expect
that the context-based technique employed in the bytecode logic (see [67]) may be lifted to types, and
corresponds to the traditional high-level mechanism for dealing with recursive program structures.
Finally, the behavioural subtyping condition on virtual methods will amount to the requirement that
overriding methods must not consume more memory than the overridden method.

• neither the operational model nor the program logic contain exceptions, i.e. the corresponding side
conditions have been deleted from the proof rules. The incorporation of explicit exceptions into the type
system will involve a rule for instruction Throw (which allocates one memory cell, for the construction
of the exception object), and rules for handling exceptions. The latter rules will be similar to the
rules for jump operations. However, the fact that almost all bytecode instructions may implicitly
raise exceptions (e.g. NonNullException) will introduce further side conditions in may of the rules given
below, unless additional program analysis is present that guarantees the absence of such exceptions.

• the last component of method invariants and local invariants are of type heap instead of type state.
This reflects the fact that operand stacks and local variables of subframes are of little interest outside
the frame, and simplifies the presentation of the type system’s interpretation. This difference is a
simple implementaion difference between the logics, and the conversion into the judgement form of
the bytecode logic as presented in [67] is trivial.

Bytecode-level type system Following the notation used in the exposition of the MOBIUS logic, we
consider an arbitrary but fixed bytecode program P that assigns to each method identifier a method im-
plementation. Method identifiers m are pairs m = (C,M) consisting of a class name and a method name.
Program points pc = m, l consist of a method identifier m and an instruction label l. We use P (pc) to
denote the instruction at program point pc in P , and m ∈ domP to denote the fact that P provides an
implementation for m. The initial label of the implementation of m is denoted by initm, while sucm(l)
denotes the successor instruction of instruction l in m.

The type system consists of judgements of the form `Σ pc : n, expressing that the segment of bytecode
whose initial instruction is located at pc is guaranteed not to allocate more than n memory cells. Here,
signature Σ assigns types (natural numbers n) to identifiers of (static) methods. The rules are as follows.

C-New
P (m, l) = New C `Σ m, sucm(l) : n

`Σ m, l : n+ 1

C-Instr
basic(m, l) ¬P (m, l) = New C ¬P (m, l) = Athrow `Σ m, sucm(l) : n

`Σ m, l : n

C-Ret
P (m, l) = Return

`Σ m, l : 0
C-If

P (m, l) = If0 l′ `Σ m, l′ : n `Σ m, sucm(l) : n

`Σ m, l : n

C-Invs
P (m, l) = Invokestatic m′ m′ ∈ domP `Σ m, sucm(l) : n Σ(m′) = k

`Σ m, l : n+ k
C-Sub

`Σ pc : n n ≤ k
`Σ pc : k

The first rule, C-New, asserts that the memory consumption of a code fragment whose first instruction
is New C is the increment of the remaining code. Rule C-Instr applies to all basic instructions (in the case
of Goto l′ we take sucm(l) to be l′), except for New C – the predicate basic(m, l) is defined as

basic(m, l) ≡ P (m, l) ∈
{

Iload x, Istore x, . . .Const t z, Ibinop o, . . . ,New C,
Getfield F,Putfield F,Getstatic F,Putstatic F, . . . ,Athrow,Goto l′

}
.

in [67]. The memory effect of these instructions is zero, as is the case for return instructions, conditionals,
and (static) method invocations.

We call P well-typed for Σ, notation `Σ P , if for all m and n, Σ(m) = n implies `Σ m, initm : n.

23

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Short summary of the MOBIUS logic Before outlining the interpretation of the type system, we briefly
recapitulate the specification and verification structure of the MOBIUS logic. A more detailed exposition
may be found in [67]. The global specification structure of a program P consists of a method specification
table M, that contains for each method identifier m in P

• a method specification S = (R, T,Φ), comprising a precondition R, a postcondition T , and a method
invariant Φ,

• a local specification table G, i.e. a context of local proof assumptions, and

• a local annotation table Q that collects the (optional) assertions associated with labels in m.

An entry M(m) = ((R, T,Φ),G,Q) is to be understood as follows. The tuple (R, T) represents a partial-
correctness specification, i.e. the postcondition T (s0, t) is expected to hold whenever an execution of m
with initial state s0 that satisfies R(s0) terminates, where t is the final state. The tuple (R,Φ) represents
a method invariant, i.e. the assertion Φ(s0, s) is expected to hold for any state s that arises during the
(terminating or non-terminating) execution of m with initial state s0 satisfying R(s0). The annotation table
Q is a finite partial map from labels occurring in m to assertions Q(s0, s). If label l is annotated by Q, then
Q(s0, s) will be expected to hold for any state s encountered at program point (m, l) during a terminating
or non-terminating execution of m with initial state s0 satisfying R(s0). Finally, the proof context G collects
proof assumptions that may be used during the verification of the method. It consists of a finite partial
map from labels in m to the components (A,B, I) of local proof judgements G,Q ` {A} pc {B} (I).

The verification of bytecode phrases uses local judgements of the form G,Q ` {A} pc {B} (I). Here,

1. A is a (local) precondition, i.e. a predicate A(s0, s) that relates the state s at program point pc (i.e. the
state prior to executing the instruction at that program point) to the initial state s0 of the current
method invocation,

2. B is a (local) postcondition, i.e. a predicate B(s0, s, t) that relates the state s at pc to the initial state
s0 and the final state t of the current method invocation, provided the execution of the current method
invocation terminates,

3. I is a (local) invariant, i.e. a predicate I(s, s′) that relates the state s at pc to any future state
encountered during the continued execution of the current method, including those arising in sub-
frames.

4. G is the proof context which may be used to store recursive proof assumptions, as needed e.g. for the
verification of loops.

Additionally, if pc = (m, l) and Q(l) = Q, then the judgement G,Q ` {A} pc {B} (I) implicitly also mandates
that Q(s0, s) holds for all states s encountered at l, where s0 is as before.

The verification task for full programs consists of showing that M is justified. For each entry M(m) =
(S,G,Q), we need to show that:

1. The body bm of m satisfies the method specification. This amounts to deriving the judgement G,Q `
{A0}m, initm {B0} (I0) where the assertion A0, B0, and I0 are obtained by converting the method
specification S into the format suitable for the local proof judgement.

2. All entries in the proof context G are justified.

3. The specification table M satisifies the behavioural subtyping condition, i.e. the specification of an
overriding method implies the specification of the overridden method.

Together, these conditions form the verified-program property, which we denote by M ` P .

24

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Interpretation of the type system The interpretation for the above type system is now obtained by
defining for each number n a triple JnK = (A,B, I) consisting of a precondition A, a postcondition B, and
an invariant I, as follows.

JnK ≡

 λ (s0, s). True,
λ (s0, s, t). |heap(t)| ≤ |heap(s)|+ n,
λ (s0, s,H). |H| ≤ |heap(s)|+ n

Here, |H| denotes the size of heap H. We specialise the main judgement form of the bytecode logic to

G,Q ` pc {n} ≡ let (A,B, I) = JnK in G,Q ` {A} pc {B} (I).

By the soundness of the MOBIUS logic, the derivability of a judgement G,Q ` pc {n} guarantees that
executing the code located at pc will not allocate more that n items, in terminating (postcondition B) and
non-terminating (invariant I) cases. For (A,B, I) = JnK we also define the method specification

Spec n ≡ (λ s0. True, λ (s0, t). B(s0, state(s0), t), λ (s0, H). I(s0, state(s0), H)).

Finally, we say that M satisfies Σ, notation M |= Σ, if for all m and n, Σ(m) = n holds exactly if
M(m) = (Spec n, ∅, ∅). Thus, we require proof contexts G and annotation tables Q to be empty.

We can now prove the soundness of the typing rules with respect to this interpretation. By induction
on the typing rules, we first show that the interpretation of a typing judgement is derivable in the logic.

Proposition 1 Let M |= Σ, m ∈ domΣ and `Σ m, l : n. Then ∅, ∅ ` m, l {n}.

Based on this result, the fact that the bahavioural subtyping condition trivial due to the absence of
virtual methods, and the fact that proof context are empty, it is easy to see that well-typed programs satisfy
the verified-program property:

Theorem 3.1.1 Let M |= Σ and `Σ P . Then M ` P .

Intermediate-level type system We consider a functional language that is suitably restricted to serve
as an intermediate code representation, similar to the one presented in [7]. The syntax is stratified into
primitive expressions and general expressions similar to the A-normal form discipline [40]. We include
primitives for constructing empty and non-empty lists and a case expression former for deconstructing lists
– other algebraic data types could be included in a similar way. In order to simplify the translation into
bytecode, we employ bytecode-level method identifiers m as function names. Functions are restricted to
have only a single formal parameter.

P 3 p ::= i | uop u x | bop o x y | Nil | Cons(x, y) | m(x)

E 3 e ::= prim p | let x = p in e | if x then e else e | (case x of Nil⇒ e | Cons(x, y) ⇒ e)

A program F consists of a collection of function declarations in the standard way, i.e. for function name m,
the declaration F (m) = (x, e) consists of an expression e with at most the free variable x.

Figure 3.1 presents the rules for a type system with judgements of the form ΣB p : n and ΣB e : n. As
before, signatures Σ map function identifiers to types n. Apart from the construction of a non-empty list
and function calls, all primitive expressions have the trivial type 0. This includes Nil which is compiled to
a null reference. Intuitively, the types play the same role as at the low level n, i.e. a typing Σ B e : n is
intended to represent the fact that the evaluation of e consumes no more than n allocations, provided any
function f evaluated en route conforms to its specification in Σ. In particular, recursive functions will only
be typeable for type 0.

Definition 3.1.2 Program F is well-typed w.r.t. signature Σ, notation ΣBF , if domΣ = domF and for all
m, e and x, F (m) = (x, e) implies ΣB e : Σ(m).

25

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

T-int
ΣB i : 0

TP-un
ΣB uop u x : 0

TP-bin
ΣB bop o x y : 0

TP-nil
ΣB Nil : 0

T-cons
ΣB Cons(x, y) : 1

T-call
Σ(m) = n

ΣBm(x) : n

T-prim
ΣB p : n

ΣB prim p : n
T-let

ΣB p : n ΣB e : k

ΣB let x = p in e : n+ k
T-sub

ΣB e : k k ≤ n
ΣB e : n

T-cond
ΣB e1 : n ΣB e2 : n

ΣB if x then e1 else e2 : n
T-case

ΣB e1 : n ΣB e2 : n

ΣB case x of Nil⇒ e1 | Cons(x, y) ⇒ e2 : n

Figure 3.1: High-level typing rules

Figure 3.2 defines a compilation JeKCl into the bytecode language. The translation is defined using an
auxiliary compilation function JpKCl for primitive expressions. In both cases, the result (C ′, l′) extends the
code fragment C by a code block starting at l such that l′ is the next free label. Primitive expressions leave
an item on the operand stack while proper expressions translate into method suffixes. We write P = JF K
if M contains precisely the translations of the function declarations in F , i.e. for all m, x, and e we have

F (m) = (x, e) precisely if the m ∈ domP and the implementation P (m) is (JeK[]
l , initm).

Type soundness for primitive expressions justifies the high-level typing judgements by showing the de-
riviability of suitable low-level judgements for the compiled code. It shows that an execution commencing
at l satisfies the bound that is obtained by adding the costs for the subject expression to the costs for the
program continuation.

Proposition 2 If ΣB p : n, JpKCl = (C1, l1), domΣ ⊆ domP , and `Σ m, l1 : k, then `Σ m, l : n+ k.

For proper expressions, the soundness result does not mention program continuations, since expressions
compile to code blocks that terminate with a method return.

Proposition 3 If ΣB e : n, domΣ ⊆ domP , and JeKCl = (C1, l1), then `Σ m, l : n.

Both results are easily proven by induction on the typing judgement. We thus have that well-typed high-level
programs yield well-typed bytecode programs.

Proposition 4 If ΣB F and P = JF K then `Σ P .

Combining this result with Theorem 3.1.1 yields the final soundness result.

Theorem 3.1.3 If ΣB F , P = JF K and M |= Σ, then M ` P .

Discussion on the style of the soundness proof In this section, we presented a bytecode-level type
system with a formalised soundness proof with respect to the MOBIUS program logic, and a translation
from a high-level type system into the bytecode level formalism. Together, these results yield a soundness
proof for the high-level type system with respect to a particular compilation strategy.

Traditionally, soundness proofs of type systems have often been performed purely on the high language
level, i.e. w.r.t. an operational semantics for the functional language. Usually, the soundness proof is then
performed by induction on the syntax or the typing rules (subject-reduction), possibly aided by substitution
lemmas. In the context of MOBIUS however, such a syntactic proof is unsatisfactory, for two reasons:

1. it results in a way to certify the behaviour of transmitted bytecode only if the compilation from
the functional language into bytecode is trusted or certified. In the case of intensional properties
such as memory consumption, a soundness result for the compilation function would have to include
a (formalised/trusted) proof that the allocation annotations in the high-level type system correctly
describe the memory allocations performed by the JVM

26

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

JiKCl = (C[l 7→ const i], l + 1)

Juop u xKCl = (C[l 7→ load x, l + 1 7→ unop u], l + 2)

Jbop o x yKCl = (C[l 7→ load x, l + 1 7→ load y, l + 2 7→ binop o], l + 3)

JNilKCl = (C[l 7→ const Null], l + 1)

JCons(x, y)KCl = (C

l 7→ load y, l + 1 7→ load x, l + 2 7→ new LIST,
l + 3 7→ store t, l + 4 7→ load t,
l + 5 7→ putfield LIST HD, l + 6 7→ load t,
l + 7 7→ putfield LIST TL, l + 8 7→ load t

 , l + 9)

Jm(x)KCl = (C[l 7→ load x, l + 1 7→ Invokestatic m], l + 2)

Jprim pKCl = let (C1, l1) = JpKCl in (C1[l1 7→ Return], l1 + 1)

Jlet x = p in eKCl = let (C1, l1) = JpKCl , (C2, l2) = (C1[l1 7→ store x], l1 + 1)

in JeKC2

l2

Jif x then e1 else e2KCl = let (CE , l2) = Je2KCl+2, (CT , l1) = Je1KCE

l2
in (CT [l 7→ load x, l + 1 7→ If0 l2], l1)

u

v
case x of

Nil⇒ e1

| Cons(x, y) ⇒ e2

}

~

C

l

= let (CC , lN) = Je2KCl+9, (CN , l1) = Je1KCC

lN
in

(CN

l 7→ load x, l + 1 7→ unop (λ v. v = Nullref),
l + 2 7→ If0 lN , l + 3 7→ Load x,
l + 4 7→ Getfield LIST HD, l + 5 7→ Store h,
l + 6 7→ Load x, l + 7 7→ Getfield LIST TL,
l + 8 7→ Store t

 , l1)

Figure 3.2: Translation into bytecode

2. depending on the style of operational semantics (big-step evaluation relation vs. small-step reductions),
high-level soundness results often do not apply to non-terminating executions, even if these are covered
by intermediate auxiliary lemmas or stronger proof invariants.

For these reasons, we argue that in the context of the MOBIUS project, purely syntactic soundness results are
insufficient. The proof as presented above avoids the definition of an operational semantics at the functional
language level, but contains a formalised translation. In previous work [17] we have explored a further
alternative which avoids the formalisation of the compilation function J.K. In this approach, interpretations
of high-level typing judgements are directly derived in the program logic for code segments that correspond
to the high-level expression formers. This derived-proof-rules-approach is closely related to the approach
presented in the present document: it replaces the formulation of the low-level type system as a set of
inductive proof rules by a set of derived lemmas whose justifications are identical to the soundenss proofs
of the low-level typing rules. Thus, no formal relationship between the two language levels needs to be
established – in fact, no type judgements need to be represented explicitly in the theorem prover, as the
specialised proof rules only operate on their interpretations. As was demonstrated in [17], this alternative
approach may be applied for more complex type systems that involve sharing constraints and memory reuse,
provided that the interpretations are sufficiently strong. The omission of the high-level operational model
and the language translation from the trusted code base represents an improvement w.r.t. formalisation
effort and manageability of the TCB. Compared to the abstract interpretation approach presented in [23],
our approach avoids the calculation of the control flow graph, the (admittedly reusable) representation of
the abstract-interpretation framework, and the inference mechanism from the TCB.

27

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

3.1.2 General heap analysis for object-oriented programs

Building on earlier work on heap space inference for functional programs developed within MRG ([84])
Hofmann and Jost [47] have developed a framework for heap space analysis of imperative, class-based OOP
which encompasses a number of design patterns and subsumes [?] and Section 3.1.1 above. In contrast
to those works, however, the inference problem for [47] has not been studied yet and is likely to be very
complicated in the general case. Future work will therefore aim at identifying tractable subsystems which
will guide the development of further more general heap space analyses for objects within MOBIUS.

3.2 Access permissions in Midlets

Beyond the computational resources of memory space and CPU time, MOBIUS Deliverable 1.1 [66] identifies
a number of other resources worth statically bounding on connected mobile devices, e.g., mobile phones.
Among these resources are “billable events” like initiating a phone call or sending a text message. That is,
unlike for the computational resources the cost of these external resources is not defined via a computational
cost model where each instruction costs, and where the total cost of a program execution does not depend
much on the cost of a single instruction execution. Rather, the cost of external resources is defined by
external, non-computational entities, e.g., the business model of the phone operator, and the cost of a
program execution may well strongly depend on the cost of few or even a single instruction execution.

In order to access external resources, a MIDlet has to call the respective MIDP API methods. The
current MIDP security model protects each resource access by user interaction as all API methods accessing
a resource must pop up a confirmation screen, which makes MIDlets soft targets for social engineering
attacks (see [66] paragraph 3.3.1). Reducing the number of user interactions (as advocated in the resource
scenarios in subsection 5.2 of [66]) would reduce the social engineering threat but does not comply with the
current MIDP security architecture.

INRIA develops an enhanced security model which improves on the current MIDP architecture. (A
paper based on this work was published at the ESORICS’06 conference [21].) The important features of
this enhanced security model are:

• the possibility for applications to request multiple permissions in advance;

• a static enforcement of the security model.

Because the proposed model does not require security screens to pop-up before each resource access, it
reduces the need for user-interactions: it is more flexible and user-friendly. However, ensuring that programs
do not abuse resources is not as straightforward as it is for MIDP where a permission request immediately
matches a resource access. In our novel setting, this property is established by static analysis. Precisely,
it enforces that a program will never attempt to access a resource for which it does not have permission.
Hence, our enhanced model comes without extra runtime checks. This is a crucial advantage for devices
with reduced computing capabilities.

In section 3.3, UEDIN tackles the same problem of certifying that programs do not abuse resources.
Their approach is based on extending MIDP with resource managers (a.k.a. permission objects) which
store the available resources at run time, decoupling resource access from interactive confirmation. UEDIN
has developed a Java API for resource managers, which enables run-time checking of correct resource usage.
This is supplemented by a type system (based on a Hoare logic) to statically certify that these run-time
checks never fail.

3.2.1 Permission model

Central to our design is a rich model of resource permissions which, for a specific type of resource, relate a
set of resources to a set of enabled actions with a multiplicity stating how many times the permission can
be used. Permissions are updated by the following operations:

28

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

• consumption (removal) of a specific permission from a collection of permissions;

• update of a collection of permissions with a newly granted permission.

Formal definitions can be found in Figure 3.3

Mult
4
= (N ∪ {error ,∞},≤)

Permrt
4
= (P(Resrt)× P(Actrt)) ∪ {error}

Perm
4
=

∏
rt∈ResType

Permrt ×Mult

consume(p′rt)(ρ) =

{
ρ[rt 7→ (p,m− 1)] if p′ vrt p ∧ ρ(rt) = (p,m)
ρ[rt 7→ (error ,m− 1)] otherwise

grant(prt,m)(ρ) = ρ[rt 7→ (p,m)]

Figure 3.3: Permission model and operations

3.2.2 Secure programs

In MIDP, resource accesses are identified by API calls – typically a native one – and protected by the
consumption of relevant permissions. In our model, secure programs, those which do not abuse resources,
will only access resources if they have been granted the permission beforehand. Hence, secure programs
exhibit execution traces for which permission consumption will never yield an error. (At consumption time,
errors occur if there is no sufficient permission or if the resource multiplicity is zero).

Definition 3.2.1 (Safe trace) A partial execution trace tr is safe if for all prefixes tr′ ∈ prefix (tr), the
permission p ∈ Perm held after running tr′ is not an error (¬Error(p)).

3.2.3 Abstract program model

We have formally studied this security model on a control-flow graph model of programs. This model
abstracts away any intra-procedural instruction except consume and grant operations but models method
calls and exception handling. As a result, sound models of midlets can be constructed using standard class
and exception analyses1. Formally, a control-flow graph is a 7-tuple

G = (NO ,EX ,KD ,TG ,CG ,EG , n0)

where:

• NO is the set of nodes of the graph;

• EX is the set of exceptions;

• KD : NO → {grant(p,m), consume(p), call, return, throw(ex)}, associates a kind to each node,
indicating which instruction the node represents;

• TG ⊆ NO ×NO is the set of intra-procedural edges;

1Dynamic class loading is not supported by midlets.

29

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

• CG ⊆ NO ×NO is the set of inter-procedural edges, which can capture dynamic method calls;

• EG ⊆ EX×NO×NO is the set of intra-procedural exception edges that will be followed if an exception
is raised at that node;

• n0 is the entry point of the graph.

In the following, given n, n′ ∈ NO and ex ∈ EX , we will use the notations n
TG→ n′ for (n, n′) ∈ TG , n

CG→ n′

for (n, n′) ∈ CG and n
ex→ n′ for (ex, n, n′) ∈ EG .

Control flow graphs are equipped with a small-step operational semantics. The semantics state is a triple
(Stack ,Exception?,Perm). Semantics rules are given Figure 3.4.

KD(n) = grant(p,m) n
TG→ n′

n:s, ε, ρ� n′:s, ε, grant(p,m)(ρ)

KD(n) = consume(p) n
TG→ n′

n:s, ε, ρ� n′:s, ε, consume(p)(ρ)

KD(n) = call n
CG→ m

n:s, ε, ρ� m:n:s, ε, ρ

KD(r) = return n
TG→ n′

r:n:s, ε, ρ� n′:s, ε, ρ

KD(n) = throw(ex) n
ex→ h

n:s, ε, ρ� h:s, ε, ρ

KD(n) = throw(ex) ∀h, n ex9 h

n:s, ε, ρ� n:s, ex, ρ

∀h, n ex9 h

t:n:s, ex, ρ� n:s, ex, ρ

n
ex→ h

t:n:s, ex, ρ� h:s, ε, ρ

Figure 3.4: Small-step operational semantics

3.2.4 Static enforcement of secure permission usage

For this graph model of programs, a constraint-based analysis computes a safe (under)-approximation,
denoted Pn, of the permissions that are guaranteed to be available at program point n. Because the analysis
is inter-procedural, summary functions, denoted R, are used to model the effect on permissions of method
calls. A representative set of constraint rules are presented Figure 3.5.

Pn0 v pinit
KD(n) = grant(p,m) n

TG→ n′

Pn′ v grant(p,m)(Pn)

KD(n) = consume(p) n
TG→ n′

Pn′ v consume(p)(Pn)

KD(n) = call n
CG→ m n

TG→ n′

Pn′ v Rm(Pn)

KD(n) = grant(p,m) n
TG→ n′

Ren v grant(p,m);Ren′

KD(n) = consume(p) n
TG→ n′

Ren v consume(p);Ren′

KD(n) = return

Rn v λρ.ρ
KD(n) = call n

CG→ m n
TG→ n′

Ren v Rm;Ren′

Figure 3.5: Permission constraints

As established by Theorem 3.2.2, the analysis detects all the program that do not comply with the
resource access policy.

30

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Theorem 3.2.2 (Soundness) Given a graph G, if we have ¬Error(Pn) for all node n then all the partial
traces of G are safe.

Least solutions to the constraints can be computed by a combination of iterative and symbolic constraint
solving. Hence, an effective resource analysis checker can be constructed from Theorem 3.2.2.

3.2.5 Toward a PCC resource checker for midlets

Previous works [4, 20] have shown that PCC architectures can be built upon the abstract interpretation
framework. The methodology is applicable to the static analysis described above. The next paragraphs
details the milestones leading to a resource checker proved correct w.r.t. the Bicolano semantics of Java
bytecode [74].

• Permissions operations i.e., grant and consume have to be given a meaning at bytecode level. In the
design we consider, a Permission.grant method is part of the Trusted Computing Base. This method
takes as argument a permission; pops-up a security screen asking the user to grant the permission
and either returns normally (upon acceptance) or throws a security exception. Because we enforce
statically the absence of illegal resource accesses, the consume operation is not bound to an API call
but annotates (native) API calls depending on the permissions they require to run.

• To construct a (possibly implicit) graph model of a bytecode program, auxiliary static analyses are
needed. As stated in subsection 3.2.3, class and exception analyses can be used to build the control-
flow graph of the program. To obtain the permission argument of grant nodes, we also need a data-flow
analysis tracking down permissions values.

• On the proof side, we already have a Coq proof of Theorem 3.2.2 for our graph model of programs. We
are confident it adapts easily to the full Bicolano formalisation. Indeed, if our graph model abstracts
away intra-procedural instructions, its handling of method calls and exceptions is closed enough to the
genuine Java bytecode semantics.

• To get an effective resource access checker, it remains to obtain an effective procedure for the premises
of Theorem 3.2.2. This requires to provide algorithms for the constraint operators used by the analysis
(see Figure 3.5). This is not always a trivial matter. For instance, to allow computability, summary
functions must be encoded into concrete data-structures.

In a PCC setting, the code provider would send as program certificate an untrusted result of the analysis.
The resource checker would check the certificate by verifying that all the constraints imposed by the analysis
(see Figure 3.5) are satisfied. If so, it would conclude by Theorem 3.2.2 that the midlet is safe to run.

3.3 Explicit Accounting of External Resources

Abuse of external resources (like sending text messages) is a major concern on mobile devices, see MOBIUS
Deliverable 1.1 [66] and the introduction to section 3.2. UEDIN develops a type system for bounding the
usage of external resources. (A technical report [58] on this work is in preparation.)

This section introduces resource managers as the key device for bounding external resource usage. First,
we sketch a resource manager API in Java which enables run-time checking of external resource usage. Then,
a type system (based on a Hoare logic) is presented, statically certifying that these run-time checks never
fail. Instead of developing the type system for the full Java language, we develop this initial version for a
simpler language, an imperative procedural language without objects, heap and exceptions. Still, language
and type system are expressive enough to type non-trivial programs.

31

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

3.3.1 Resource Managers in Java

We have developed an API for accounting of external resources, which may be integrated into MIDP. The
API introduces special objects, called resource managers, which encapsulate multisets of resources that a
MIDlet may legally use (according to the user’s approval) and which are passed as arguments into the MIDP
methods that actually use the resources. These MIDP methods, e. g., the one to send one text message, are
instrumented to check the resource manager for permission first. The resource manager API consists of the
following three classes.

Resource is an abstract class modelling a resource that resource managers may control; actual resources are
subclasses. Since resources are merely names, the only public methods of this class admit comparing
two instances for equality and printing an instance to a string. Subclasses which come with constructors
must obey the contract that instances constructed by the same arguments be indistinguishable by the
equality method.

Multiset is a final class holding a multiset (i. e., a bag) of resources. This class provides the standard
constructors for multisets, including union, intersection and sum of two multisets, plus methods to
query multisets, including an emptiness test. The class is final to avoid being tampered by subclassing.

ResourceManager is a final class (to avoid being tampered by subclassing) encapsulating a multiset of
resources. All public methods are synchronised to avoid races in case different threads access the same
resource manager. The public methods are divided into those that are to be called by the MIDlet
(the constructor, enable(), and clear()) and those that are to be called by the instrumented MIDP
methods (use()).

ResourceManager() is a constructor creating an empty resource manager.

Multiset enable(Multiset r) adds a sub-multiset r’ of r to this resource manager and returns the
complement of r’. The resource manager has to be empty when this method is called, otherwise it
will throw an exception. The decision which sub-multiset r’ to add is taken by a black-box policy,
e. g., by the user who is ticking the resources in a pop-up dialogue. The MIDlet should check the
returned multiset to learn which requested resources it is not allowed to use. In particular, if the
returned multiset is empty then use of all requested resources has been approved.

void clear() empties this resource manager, removing all the resources it holds. In a sense, clear()
is the inverse of enable().

void use(Multiset r) checks whether this resource manager holds a super-multiset of r, and if so
subtracts r from this manager’s multiset, otherwise throws an exception.

We illustrate the use of resource managers by an example application. The code snipped below sends a
text message (stored in msg) to a group of addresses (stored in grp). To simplify the presentation, we use
simplified versions of the actual MIDP classes.

ResourceManager mgr = new ResourceManager();

Multiset r = new Multiset();

for (address in grp) {

r.add(new MessageResource(address.get_mobile()), 1);

}

if (mgr.enable(r).is_empty()) {

for (address in grp) {

msg.send_rm(mgr, address.get_mobile());

}

}

mgr.clear();

32

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

The above code first builds up a multiset of resources r by iterating over the group of addresses and for each
address, extracting the mobile phone number, converting it into resource by constructing a MessageResource

object, and adding one occurrence of the resource to the multiset r. Here, MessageResource is a subclass
of Resource, modelling the resource of sending one text message to the phone number supplied in the
constructor. Next, the code enables the resource manager mgr to use the multiset r. This will pop up
a confirmation screen where the user can approve or deny the planned resource usage. Only if the user
approves of all messages to be sent, i. e., if enable() returns an empty multiset, the code proceeds to the
actual send loop. The send loop again iterates over the group of addresses, extracting for each address the
mobile phone number and sending the message using the instrumented send method send_rm(). In the end,
clear() is called to destroy any left-over resources so as to prevent later unintended use.

The code for the instrumented send method send_rm() is shown below. It constructs a multiset con-
taining a single occurrence of the resource corresponding to the phone number num. Then it calls the use()

method of the resource manager to check whether it may really send the message. If this call succeeds then
as a side effect the resource is deduced from the manager. Finally, the standard MIDP send() method is
called. Note the explicit synchronisation on mgr which is necessary to avoid races in case another thread
could access the same resource manager.

void send_rm(ResourceManager mgr; String num) {

Multiset r = new Multiset(new MessageResource(num), 1);

synchronized (mgr) {

mgr.use(r);

send(num);

}

}

3.3.2 Syntax and Semantics of a Language for Resource Managers

This subsection introduces a simple procedural programming language with built-in constructs for handling
resource managers. Note that this language can be translated to a fragment of Java (using static methods
only) in a straightforward way.

Syntax. A program is a collection of procedures, where each procedure consists of a name, declaration of
input and output parameters, declaration of local variables and a statement.

Statements are composed by conditionals and sequencing from primitive statements like assignments
y := e of expression e to variable y, or procedure calls p(x1, . . . , xm | y1, . . . , yn), where the variables xi and
yj are the actual input and output parameters, respectively, of procedure p. The language does not provide
loop constructs, iteration is done by recursion like in GRAIL [8].

Expressions are built from constants, variables and operators according to their data types. Besides the
types of Booleans and integers (with the usual operators), the language features

• extensible array types (with the usual query and update operators),

• a type of (names of) resources (which can only be compared for equality),

• a type of multisets of resources (with the usual operator, including the multiset sum ⊕), and

• a type of resource managers (with no operators at all).

Since there are no operators on resource managers, the language provides three built-in procedures to access
them.

• clear(|m′) creates an empty manager m′.

33

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

• enable(r,m | r′,m′) tries to top up an empty manager m with the multiset of resources r (e. g., by
asking the user to confirm). It returns the new manager m′ holding the granted multiset of resources
and the multiset r′ of resources that have not been granted, i. e., the multisets in m′ and r′ sum up to
r. Triggers a run-time error if m is not empty.

• use(r,m |m′) deduces the multiset of resources r from the manager m and returns the new manager
m′. Triggers a run-time error if m does not hold enough resources.

The language imposes three syntactic restrictions on programs.

• Expression evaluation occurs only in assignments. I. e., conditions in if-statements and input param-
eters in procedure calls must be variables. This restriction simplifies the operational semantics since
expression evaluation can fail only in assignments.

• All statements are in SSA form, i. e., each variable is defined only once. Note that this implies the
absence of input or output aliasing in procedure calls p(x1, . . . , xm | y1, . . . , yn), i. e., the variables
xi and yj are all different. This restriction simplifies the effect type system in subsection 3.3.3, for
assignments behave like let bindings in a functional language (e. g., GRAIL [8]).

• All resource managers are linear, i. e., used at most once. This restriction is motivated by the nature
of resource managers, which are stateful objects. As the language does not feature objects, each state
of a resource manager has to be realised by its own variable. The linearity restriction enforces that a
we cannot re-use a previously used state, e. g., we cannot deduce resources r from m twice by calling
use(r,m |m′) and use(r,m |m′′).

Logical semantics of expressions. In section 3.3.3, we will introduce a type system that ascribes
preconditions and effects to statements and procedures. Preconditions and effects are logical formulae or
constraints, so we need to define a constraint language that admits reasonable assertions about statements
and procedures.

We translate expressions into terms of a many-sorted first-order constraint language with equality (de-
noted by ≈). This technique is standard in program verification (e. g., for generating verification conditions),
so we describe it only cursorily here.

The translation straightforwardly maps the constants and operators of expressions to the logical constants
and operators of the corresponding theories. Therefore, the constraint language must host the theories of
the Booleans, integer arithmetic, arrays, resource constants, and multisets of resource constants. Resource
managers are translated into the theory of multisets, so on the level of constraints we identify a resource
manager with the multiset of resources it holds.

Terms in the constraint language are total (i. e., defined for all values of their free variables) whereas
expressions can be partial (e. g., accessing an array at a negative index is not defined). Therefore, we actually
translate an expression e into a pair 〈φe, te〉 consisting of a formula φe and a term te. The term te is the
semantics of e in case e is defined, and the formula φe characterises when e is defined.

We introduce notation for valuations of free variables in the constraints. Given a valuation α, a variable
x and a value a′ (compatible with the sort of x), by x@ α we denote the value a which α assigns to x, and
by α[x 7→ a′] we denote for the valuation α′ which assigns a′ to x and y @ α to all variables y 6= x. Given a
term t and a valuation α, we denote the evaluation of t under α by t@ α. We write α |= φ if the valuation
α makes the formula φ true, and we write |= φ if φ is valid.

Operational semantics of statements. We present a big-step operational semantics of our programming
language. The semantics judgement takes the form Π,Γ ` s . β β′, where Π is a program, Γ is a variable
environment for the variables occurring in the statement s, and β and β′ are the pre- resp. post-states of

34

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Big-step semantics of statements Π,Γ ` s . β β′

(OS-⊥)
Π,Θ,Γ ` s .⊥ ⊥

(OS-skip)
Π,Θ,Γ ` skip . α α

(OS-assign-⊥)
α 6|= φe

Π,Γ ` y := e . α ⊥
(OS-assign)

α |= φe α′ = α[y 7→ te @ α]

Π,Γ ` y := e . α α′

(OS-call)

Π(p) = p(x1 : τ1, . . . , xm : τm | y1 : σ1, . . . , yn : σn){z1 : κ1, . . . , zl : κl; s}
αp is p-state with x1 @ αp = u1 @ α, . . . , xm @ αp = um @ α

Π,Γp ` s . αp β′p β′ = α[v1 7→ y1 @ β′p] . . . [vn 7→ yn @ β′p]

Π,Γ ` p(u1, . . . , um | v1, . . . , vn) . α β′

(OS-q-⊥)

Π(q) = q(x1 : τ1, . . . , xm : τm | y1 : σ1, . . . , yn : σn)
αq is q-state with x1 @ αq = u1 @ α, . . . , xm @ αq = um @ α αq 6|= Φq

Π,Γ ` q(u1, . . . , um | v1, . . . , vn) . α ⊥

(OS-q)

Π(q) = q(x1 : τ1, . . . , xm : τm | y1 : σ1, . . . , yn : σn)
αq is q-state with x1 @ αq = u1 @ α, . . . , xm @ αq = um @ α αq |= Φq

αq |= Ψq α′ = α[v1 7→ y1 @ αq] . . . [vn 7→ yn @ αq]

Π,Γ ` q(u1, . . . , um | v1, . . . , vn) . α α′

Preconditions Φq and effects Ψq of built-ins Π(q)

Π(q) Φq Ψq

clear(| m′ : mgr) true m′ ≈ ∅
use(r : mres, m : mgr | m′ : mgr) r⊆m m≈m′ ⊕ r

enable(r : mres, m : mgr | r′ : mres, m′ : mgr) m≈ ∅ r≈ r′ ⊕m′

Figure 3.6: Operational semantics.

the execution of s. We write

Π(p) = p(x1 : τ1, . . . , xm : τm | y1 : σ1, . . . , yn : σn){z1 : κ1, . . . , zl : κl; s}
and Π(q) = q(x1 : τ1, . . . , xm : τm | y1 : σ1, . . . , yn : σn)

to expose the declarations of input parameters xi, output parameters yj , local variables zk and body s
of the procedure p or the built-in q in Π. We write Γp resp. Γq for the variable environment (mapping
input, output and local variables to their declared types) associated with these procedure resp. built-in
declarations. Given a variable environment Γ, a Γ-state (or state if Γ is understood) is either the error state
⊥ or a valuation α supplying values for all variables declared in Γ. For procedures p and built-ins q, the
terms p-state and q-state mean Γp-state and Γq-state, respectively. We denote states by the letters α and
β, with the convention that a state denoted by α cannot be the error state.

Figure 3.6 displays the rules2 defining the big-step semantics. Most of the rules are quite standard,
safe for the rule schemas (OS-q) and (OS-q-⊥) dealing with the built-ins q = clear,use, enable. Rule
(OS-q) executes a call to the built-in q by creating a local state αq, copying the values of the input variables
to the input parameters in αq, checking the precondition Φq, checking the effect Ψq, and copying the
values of the output parameters in αq back to the output variables. In other words, calling a built-in
q(u1, . . . , um | v1, . . . , vn) means choosing values for its output parameters y1, . . . , yn such that the effect is

2The standard rules for sequencing and conditionals have been omitted.

35

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

satisfied. The choice may be non-deterministic, e. g., in the case of enable there are indeed many values
for r′ for m′ such that their sum yields r. Rule (OS-q-⊥), which is deterministic, covers the case when the
precondition of the built-in q fails to hold.

Monotonicity of resource usage. To justify our modelling of stateful resource manager objects as
variables subject to linearity restrictions, we show Theorem 3.3.1 stating that the sum of resources held in
all resource managers in the system is going to decrease in any execution which does not call enable. To
formally express this statement, we define the sum of resources in the system before and after the execution
of a statement s. Let Γ be a variable environment for statement s and let β and β′ be Γ-states (with the
intention that β is the pre-state of an execution of s and β′ is the post-state). By presΓ(β), we denote the
sum of resources over all resource managers in β except those that will be defined in s (since these may have
bogus values in the pre-state β). By postsΓ(β′), we denote the sum of resources over all resource managers
in β′ except those that have been used in s (since their values are inaccessible in the post-state β′).

Theorem 3.3.1 Let Π be a program, let Γ a variable environment for a statement s, and let β and β′ be
Γ-states. If ∆OS is a derivation of Π,Γ ` s .β β′ which does not call enable, i. e., ∆OS does not use rule
(OS-enable), then presΓ(β) ⊇ postsΓ(β′).

Informally, this theorem assures us that resource managers can only hold resources that have previously
been approved by enable, i. e., the user or a black-box policy. However, it does not guarantee that the
resources held in managers will be sufficient so that no run-time errors can occur when calling use.

3.3.3 Effect Types

Run-time errors occur because some precondition fails to hold, either the definedness condition of an expres-
sion in an assignment, see rule (OS-assign-⊥), or a precondition of a built-in, see rules (OS-enable-⊥) and
(OS-use-⊥). Certifying the absence of run-time errors thus calls for a program logic (e. g., a Hoare logic) or
a type system that can track preconditions. In this subsection, we present such a type system for inferring
preconditions and effects of statements.

Types and typing judgement. We use x̄, ȳ and z̄ as abbreviations for sequences of variables, e. g., x̄
stands for x1, . . . , xm. Sequences can be concatenated by comma. We view these sequences as sets rather
than as lists, i. e., their order does not matter and there are no duplicate variable occurrences.

Given two sequences of variables x̄ and ȳ and two formulae Φ and Ψ, we call Φ〈x̄〉 → Ψ〈x̄, ȳ〉 an effect
type if {x̄} ∩ {ȳ} = ∅, free(Φ) ⊆ {x̄}, and free(Ψ) ⊆ {x̄, ȳ}. We call Φ and Ψ precondition and effect, and
we call x̄ and ȳ input and output variables, respectively.

Let Π be a program. In order to type procedure calls, we need access to an effect type of the callee.
Therefore, we introduce effect environments Θ, which map the procedures and built-ins in Π to effect types.

Let Π be a program and Θ and effect environment. Let Γ be a variable environment for a statement s,
and let Φ〈x̄〉 → Ψ〈x̄, ȳ〉 be an effect type. The effect typing judgement Π,Θ,Γ ` s : Φ〈x̄〉 → Ψ〈x̄, ȳ〉 may be
interpreted informally in the following ways.

1. During every (terminating) execution of s whose initial state satisfies the precondition Φ, the precon-
ditions of all procedures and built-ins called will be satisfied.

2. For every terminating execution of s whose initial state satisfies the precondition Φ, the terminal state
will satisfy the effect Ψ. Note that the values of the input variables in the terminal state are the same
as in the initial state, thanks to s being in SSA form.

36

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Typing of statement effects Π,Θ,Γ ` s : Φ〈x̄〉 → Ψ〈x̄, ȳ〉

(T-precond)

|= ∀x̄(Φ̂⇒ Φ)
Π,Θ,Γ ` s : Φ〈x̄〉 → Ψ〈x̄, ȳ〉
Π,Θ,Γ ` s : Φ̂〈x̄〉 → Ψ〈x̄, ȳ〉

(T-effect)

|= ∀x̄∀ȳ(Φ ∧ Ψ⇒ Ψ̂)
Π,Θ,Γ ` s : Φ〈x̄〉 → Ψ〈x̄, ȳ〉
Π,Θ,Γ ` s : Φ〈x̄〉 → Ψ̂〈x̄, ȳ〉

(T-intro)
Π,Θ,Γ ` s : Φ〈x̄〉 → Ψ〈x̄, ȳ〉 z /∈ def (s)

Π,Θ,Γ ` s : Φ〈x̄, z〉 → Ψ〈x̄, z, ȳ〉
(T-elim)

Π,Θ,Γ ` s : Φ〈x̄〉 → Ψ〈x̄, ȳ, z〉
Π,Θ,Γ ` s : Φ〈x̄〉 → ∃zΨ〈x̄, ȳ〉

(T-skip)
Π,Θ,Γ ` skip : true〈〉 → true〈〉

(T-assign)
{x̄} = free(te)

Π,Θ,Γ ` y := e : φe〈x̄〉 → y ≈ te〈x̄, y〉

(T-call)

Π(p) = p(x1 : τ1, . . . , xm : τm | y1 : σ1, . . . , yn : σn)[{z1 : κ1, . . . , zl : κl; s}]
Θ(p) = Φ〈x1, . . . , xm〉 → Ψ〈x1, . . . , xm, y1, . . . , yn〉

Π,Θ,Γ ` p(x′1, . . . , x′m | y′1, . . . , y′n) : Φ′〈x′1, . . . , x′m〉 → Ψ′〈x′1, . . . , x′m, y′1, . . . , y′n〉

(T-seq)
Π,Θ,Γ ` s1 : Φ〈x̄〉 → Ψ1〈x̄, ȳ〉 Π,Θ,Γ ` s2 : Φ ∧ Ψ1〈x̄, ȳ〉 → Ψ2〈x̄, ȳ, z̄〉

Π,Θ,Γ ` s1 ; s2 : Φ〈x̄〉 → Ψ1 ∧ Ψ2〈x̄, ȳ, z̄〉

(T-if)
Π,Θ,Γ ` s1 : z ∧ Φ〈x̄〉 → Ψ〈x̄, ȳ〉 Π,Θ,Γ ` s2 : ¬z ∧ Φ〈x̄〉 → Ψ〈x̄, ȳ〉

Π,Θ,Γ ` if z then s1 else s2 : Φ〈x̄〉 → Ψ〈x̄, ȳ〉

Typing of procedure and built-in effects Π,Θ ` p

(T-proc)

Π(p) = p(x1 : τ1, . . . , xm : τm | y1 : σ1, . . . , yn : σn){z1 : κ1, . . . , zl : κl; s}
Π,Θ,Γp ` s : Θ(p)

Π,Θ ` p

(T-builtin)

Π(q) = q(x1 : τ1, . . . , xm : τm | y1 : σ1, . . . , yn : σn)
Θ(q) = Φq〈x1, . . . , xm〉 → Ψq〈x1, . . . , xm, y1, . . . , yn〉

Π,Θ ` q

Typing of effect environments Π ` Θ

(T-prog)

Π = p1(. . .)[{ . . . }] . . . pn(. . .)[{ . . . }]
Θ(p1) = Φ1〈. . .〉 → Ψ1〈. . .〉 . . . Θ(pn) = Φn〈. . .〉 → Ψn〈. . .〉

Π,Θ ` p1 . . . Π,Θ ` pn
Π ` Θ

Figure 3.7: Typing rules for effect types.

37

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Typing rules. Figure 3.7 displays the typing rules for effect types. Note that these rules assume well-
formedness of the effect types occurring in premises and conclusion, which may impose additional restrictions.
For instance, well-formedness of the conclusion of rule (T-intro) imposes that the newly introduced input
variable z does not occur among the output variables ȳ.

The typing rules for statement effects fall into three groups. First, the logical rules (T-precond) and
(T-effect) allow to strengthen the precondition or weaken the effect, respectively. Second, the variable rules
(T-intro) and (T-elim) allow to introduce a new input variable or eliminate an output variable, respectively.
Note that (T-intro) must make sure that the newly introduced input variable z is not being defined by the
statement s (i. e., z neither occurs on the left-hand side of an assignment nor as an output parameter of
a procedure call), hence the premise z /∈ def (s). Finally, each statement constructor has its rule. Rules
(T-skip), (T-seq) and (T-if) are self-explanatory (but recall that z in (T-if) is a Boolean variable and
note that the restrictions on effect types force z to occur among the input variables x̄). Rule (T-assign)
synthesises an effect type for an assignment using the translation of expressions e into pairs of formulae
φe and terms te. Rule (T-call) looks up the effect type Θ(p) = Φ〈x1, . . . , xm〉 → Ψ〈x1, . . . , xm, y1, . . . , yn〉
of the callee p (which could be a procedure or a built-in) and converts it to the effect type for the call
p(x′1, . . . , x

′
m | y′1, . . . , y′n) by substituting the actual input and output parameters x′i and y′j for the formal

parameters xi and yj in precondition Φ and effect Ψ.

To justify the effect types assumed by the environment Θ, we have to prove the judgement Π ` Θ. Rule
(T-prog) does this by proving Π,Θ ` p for every procedure or built-in p in the program Π. In turn, the
judgement Π,Θ ` p means that the environment’s assumption Θ(p) about the effect type of a procedure or
built-in p is correct. This is proven by rule (T-proc) if p is a procedure (by checking the body of p against
the conjectured effect type), and by rule (T-builtin) if p is a builtin (by constructing the effect type from
the operational semantics, see figure 3.6).

Type soundness. Theorem 3.3.2 below states that for a statement s of effect type Φ〈x1, . . . , xm〉 →
Ψ〈x1, . . . , xm, y1, . . . , yn〉, if a terminating execution of s is starting in a non-error state β satisfying the
precondition Φ then (1) the final state β′ is not the error state, (2) the input variables xi have preserved
their values, and (3) the final state satisfies the effect Ψ. Mostly, (1) is important to us as it means that
typable statements are safe from run-time errors (as long as the initial state satisfies the precondition), in
particular safe from lack-of-resources errors raised by rule (OS-use-⊥). (3) associates the effect Ψ with
a Hoare-style postcondition, however, note that both output and input variables (which by (2) have kept
their initial values) may occur in Ψ, so Ψ may specify a input-output relation (or effect). (2) really is a
consequence of the statement s being in SSA form. Note that SSA form simplifies the handling of effects,
as it saves the introduction of ghost variables for storing input values.

Theorem 3.3.2 Let Π be a program, let Θ be an effect environment, let Γ a variable environment for a
statement s, let Φ〈x1, . . . , xm〉 → Ψ〈x1, . . . , xm, y1, . . . , yn〉 be an effect type, and let β and β′ be Γ-states. If

1. Π ` Θ,

2. Π,Θ,Γ ` s : Φ〈x1, . . . , xm〉 → Ψ〈x1, . . . , xm, y1, . . . , yn〉,

3. Π,Γ ` s . β β′,

4. β 6= ⊥, and

5. β |= Φ

then

1. β′ 6= ⊥,

2. for all i, xi @ β = xi @ β′, and

38

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

3. β′ |= Ψ.

The type soundness theorem attributes the quality of being safe from run-time errors only to terminating
executions. This is due to the big-step operational semantics, which ignores non-terminating executions.
However, it is not difficult to define a compatible small-step semantics and prove that non-terminating
executions cannot raise run-time errors (as raising an error would quickly terminate the execution).

3.3.4 Related Work

Nanevski et al. [71] describe a type theory which contains a type for Hoare triples and typing rules for
reasoning with Hoare triples. However, they do not consider resources but instead focus on reasoning about
heap-manipulating programs and higher-order functions.

Similar to our approach, Chander et al. [24] uses a regime of reserving resources before their actual use.
They require the programmer (or program optimiser) to annotate the program with primitives acquire

and consume, loop invariants and function pre- and postconditions. To statically check that the program
does not consume more resources than acquired, they generate verification conditions and feed them to a
theorem prover. Their approach also admits a policy deciding at run-time whether a request to acquire
resources should succeed. However, programs cannot recover from failure to acquire resources. In contrast,
our system admits a program to determine to which extent a request for resources has been successful, and
to react accordingly. Also, our system can track an unbounded and input-dependent number of different
resources, whereas [24] only deals with one fixed resource.

3.3.5 Future Work

Integration of our type system with the MOBIUS logic [67] will be done in the style of the MRG project. This
requires translating our effect type judgements Θ,Π,Γ ` s : Φ〈x̄〉 → Ψ〈x̄, ȳ〉 into MOBIUS logic judgements
of the form G,Q ` {A}pc{B}(I). Thereby, the translation will map effect environment Θ to proof context
G, precondition Φ to precondition A and effect Ψ to postcondition B. The MOBIUS logic assumes that a
byte code program is implicitly given (as a mapping from labels to instructions), so we will also require a
translation of the program Π into byte code. Note that our type system does not deal with local assertions,
so the local annotation table Q will be empty. Also, our system provides no guarantees for non-terminating
computations, so the invariant I will be true. Using the translation, we will map effect type derivations
into derivations of the MOBIUS logic, where the effect type rules will be mimicked by corresponding derived
rules in the logic.

Work on this type system will be continued in Task 2.4. Besides extending the system to cover a larger
fragment of Java we will work on the automation of type checking and type inference. Work on type checking
will already commence in Task 2.3. Since type checking involves proving validity of first-order formulae (rules
T-precond and T-effect), the focus will be on the application of state-of-the-art theorem proving technology,
as is also used to check verification conditions Workpackage 4. Note that the type system has been developed
with theorem proving support in mind; the theories involved (integers, multisets, arrays) are supported (more
or less) by most modern automated SMT provers.

Our type system presupposes type annotations for all procedures. To relieve the annotation burden on
the programmer, we will investigate (necessarily incomplete) approaches to type inference. Here, INRIA’s
static analysis (see Section 3.2) will be helpful. At least in the case of non-recursive procedures, static
analysis should gather enough information for synthesising effect types. To deal with recursion, we will
investigate how to approximate the effects of recursive calls, e.g. by computing procedure summaries.

3.4 Execution Time Estimation

Execution time has been identified as one of the resource-oriented properties of programs which are funda-
mental and meaningful in real MIDP applications for MOBIUS (Deliverable 1.1 [66], Resource and Infor-
mation Flow Security Requirements). Execution times obviously depend in practice on the sizes of certain

39

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

inputs or their values. In this section we present a method which is aimed at statically inferring functions that
yield upper- and lower-bounds on actual (i.e., platform-dependent) execution times for procedures. These
functions take as input the sizes or value ranges of the input data to the procedure. The method builds on
previous work on inferring similar functions providing upper- and lower-bounds on the number of execution
steps performed by procedures (based again on the sizes or value ranges of input) [31, 30, 54, 32, 46]. This
method is based heavily on the use of abstract interpretation. As mentioned before, previous work [4, 20, 45]
has shown that PCC architectures can be built upon the abstract interpretation framework (ACC). The
proposed method is directly relevant to the ACC approach and can be used in particular for resource
consumption certification of mobile code.

3.4.1 Overview of the Approach

Our approach essentially extends the previously developed compile-time analysis for upper and lower bounds
on number of execution steps: similar platform-independent cost functions are first inferred, but these
functions are now parameterized by certain constants, each of them related to the actual execution cost on
each platform of a certain operation or class of operations that the compiler translates the code to. These
operations may be intermediate canonical code, operations at the RTL level, bytecode instructions, etc.
For each execution platform, the value of such constants is determined experimentally once and for all by
running a set of synthetic benchmarks and measuring their running times. These parameters essentially
calibrate a cost model which, from then on, is able to compute statically execution time bound functions
for procedures and to predict with a significant degree of accuracy the execution times of such procedures
in the given platform.

We have implemented our approach within the CiaoPP system, which can analyze and generate ACC-
based certificates for different programming languages, including Java (source code), functional, and (con-
straint) logic programing languages. We expect to extend the system to deal with Java bytecode in the next
period. In the CiaoPP system, assertions can be added to the program describing desired bounds on the
efficiency of the program as a specification which the system will try to verify or falsify. The cost function
(or complexity order) in the specification is compared with the upper- or lower-bound cost functions inferred
by analysis. In this context, upper bounds are used to prove that upper-bound cost specifications are met
(i.e., when the upper-bound computed by analysis is lower or equal than the upper-bound stated by the
user in the specification). Lower bounds are used conversely for disproving upper bounds on resource usage,
e.g., proving that a program will use more resources that those stated in the specification or safety policy.
This is why we are also interested in lower bounds.

We have studied a number of cost models, involving different sets of constants in order to explore exper-
imentally their precision and to see which models produce the most precise results, i.e., which parameters
model and predict best the actual execution times of procedures. In doing this we have taken into account
the trade-off between simplicity of the cost models (which implies efficiency of the cost analysis and also
simpler profiling) and the precision of their results. With this aim, we have started with a simple model
and explored several possible refinements.

3.4.2 Platform-Dependent Static Cost Analysis

Since the work done by a call to a recursive procedure often depends on the “size” of its input, such
work cannot in general be statically estimated in any reasonable way without knowledge of (or bounds on)
the actual input data sizes. Thus, our basic approach is as follows: given a call p, an expression Φp(n)
is computed that a) is relatively simple to evaluate, and b) it approximates Timep(n), where Timep(n)
denotes the cost (in time units) of computing p for an input of size n. Various measures are used for the
“size” of an input, such as list-length, term-size, term-depth, integer-value, etc. The idea is that Φp(n) is
determined at compile time. It is then evaluated at run-time, when the size of the input is known, yielding
an estimate of the cost of the call. In the following we will refer to the compile-time computed expressions
Φp(n) as cost functions. Types, modes, and size measures are first automatically inferred by other (abstract

40

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

interpretation-based) analyzers which are part of CiaoPP and then used in the size and cost analysis.

Platform-Independent Static Cost Analysis

As mentioned before, our static cost analysis approach is based on that of [31, 30] (for estimation of upper
bounds on execution steps) and further extended in [32] (for lower bounds). In these approaches the cost
of a procedure definition (generally taken as a number of execution steps) can be bounded by the cost of
the basic operations in the body of the procedure (including the parameter passing cost), combined with
bounds on the cost of each of the procedure calls in the body. For simplicity, the discussion that follows is
focused on the estimation of upper bounds. We refer the reader to [32] for details on lower-bounds analysis.
Consider a procedure definition p given as “H {L1, ..., Lm}” where Li is either a procedure call or a basic
operation of the language (which we will refer to as “builtins”). We assume that the source language has
been desugared so that the program is made up of a number of flat procedure definitions, and loops are
converted to tail recursions. Also, conditionals and case statements are expressed as alternative procedure
definitions (clauses) of a given procedure (i.e., in Horn clause style).

Our model deals both with deterministic languages (such as Java) and non-deterministic languages in
which procedure calls can return several solutions, and the number of times a procedure call will be executed
depends on the number of solutions that the procedure calls preceding it can generate. Assume that n is a
vector such that each element corresponds to the size of an input argument to procedure definition p and
that each ni, i = 1 . . .m, is a vector such that each element corresponds to the size of an input argument to
procedure call Li , τ is the cost of the basic operations in the body of the procedure (including the parameter
passing cost), and SolsLj is the number of solutions procedure call Lj can generate. Then, an upper bound
on the cost of procedure definition p (assuming all solutions are required), Costp(n), can be expressed as:

Costp(n) ≤ τ +
m∑
i=1

(
∏
j≺i

SolsLj (nj))CostLi (ni), (3.1)

Here we use j ≺ i to denote that Lj precedes Li in the procedure definition.

In order to further simplify the discussion that follows, and given that in the MOBIUS applications we
are dealing with a deterministic language (Java or Java bytecode), we restrict ourselves to the simple case
where each procedure call is determinate, i.e., produces at most one solution. In this case, equation (3.1)
simplifies to:

Costp(n) ≤ τ +
m∑
i=1

CostLi (ni). (3.2)

(However, it is important to note that our implementation is not limited to deterministic programs: our
system handles non determinism, i.e., presence of several solutions for a given call.)

A difference equation is set up for each recursive procedure definition, whose solution (using as boundary
conditions the cost of non-recursive procedure definitions) is a function that yields the cost of a procedure
definition. The cost of cases where multiple definitions occur (as in conditionals and case statements) is
computed from the cost of each of its branches. If mutual exclusion of the branches can be established the
cost of the block can be bounded by the maximum of the costs of mutually exclusive clusters of branches. In
languages where procedures can produce multiple solutions the number of solutions generated by a procedure
that will be demanded is generally not known in advance. In these cases a conservative upper bound on the
computational cost of a procedure can be obtained by assuming that all solutions are needed.

As mentioned before, previous analyses were primarily aimed at estimating execution steps. However,
the basic metric is open and can be tailored to alternative metrics as the unit of cost in the analysis, so
that instead of the number of steps, for example, the number of low-level instructions executed could be
counted. In the rest of this section we explore this issue and study how to extended the cost analysis in
order to infer cost functions using more refined parametric cost models, which in turn will allow achieving
accurate execution time bound analysis.

41

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Proposed Platform-Dependent Cost Analysis Models

Since the cost metric which we want to use in our approach is execution time, we take τ (in expression 3.2)
to include the time taken by parameter passing, the basic operations in the body of the procedure, and the
cost involved in setting up the body procedure calls for execution. In the following, we will refer to τ as the
procedure local cost function, which takes all these costs into account. We will consider different values for τ ,
each of them yielding a different cost model. These cost models make use of a vector of platform-dependent
constants, together with a vector of platform-independent metrics, each one corresponding to a particular
low-level operation related to program execution. Examples of such low-level operations considered by the
cost models may be passing a parameter to a procedure or returning it, pushing and popping frames to and
from the stack, creating new data structures on the heap, creating choice-points, etc. Thus, we assume that
τ is a function parameterized by the cost model, so that:

τ(Ω) = time(Ω) (3.3)

where time(Ω) is a function that gives the time associated with all these costs for the cost model named Ω.
We study a family of cost models such that time(Ω) is a function defined as follows:

time(Ω) = time(ω1) + · · ·+ time(ωv), v > 0 (3.4)

where each time(ωi) provides that part of the execution time which depends on the metric ωi. We assume
that:

time(ωi) = Kωi × I(ωi) (3.5)

where Kωi is a platform-dependent constant, and I(ωi) is a platform-independent cost function.

Since time(Ω) is a linear combination of platform-independent cost functions, we can write equation (3.4)
as:

time(Ω) = KΩ • I(Ω) (3.6)

where KΩ is a vector of platform-dependent constants, I(Ω) is a vector of platform-independent cost func-
tions, and • is the dot product. Accordingly, we generalize the definition of equation (3.2) introducing this
cost function τ as a parameter:

Costp(τ, n) ≤ τ +
m∑
i=1

CostLi (ni). (3.7)

Using equations 3.3–3.6, we have:

Costp(time(Ω), n) = KΩ • Costp(I(Ω), n) (3.8)

where KΩ, I(Ω) and Costp(I(Ω), n) are vectors of the form:

KΩ = (Kω1 , . . . ,Kωv),

I(Ω) = (I(ωi), . . . , I(ωv)), and

Costp(I(Ω), n) = (Costp(I(ω1), n), . . . , Costp(I(ωv), n))

A particular definition of I(Ω) yields a cost model. We have tried several cost models, by using different
vectors I(Ω) constructed by choosing different I(ωi) cost functions. Equation (3.8) gives the basis for
computing values for constants Kωi via profiling (as explained in Section 3.4.4). Also, it provides a way to
obtain the cost of a procedure expressed in a platform-dependent cost metric from another cost expressed
in a platform-independent cost metric.

42

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

3.4.3 Dealing with the Builtin and External Operations in the Language

We assume that there is a cost function (expressed via trust assertions [46]) for each builtin operation in the
language and for each procedure whose code is not available to the analyzer (procedures in binary libraries,
calls to other languages, etc.). In some cases, this cost function will be given by a constant value, and in
others by a function that depends on properties of the (input) arguments of the procedure.

Going into more detail, we assume that each builtin contributes with a new component to the execution
time as expressed in Equation (3.4), that is, our cost model will have a new component time(ωi) for each
builtin. Let �/n be an arithmetic operator (an example of such a language builtin). The execution time
due to the total number of times that such operator is evaluated is given by:

time(�/n) = K�/n × I(�/n)

where K�/n is a platform-dependent constant, and I(�/n) is a platform-independent cost function. K�/n
approximates the cost (in units of time) of evaluating the arithmetic operator �/n. I(�/n) could be the
number of times that the arithmetic operator is evaluated. Alternatively, it can be a cost function defined
as:

I(�/n) =
∑
a∈S

EvCost(�/n, a)

where S is the set of arithmetic expressions appearing in the procedure definition body which will be
evaluated and EvCost(�/n, a) represents the cost corresponding to the operator �/n in the evaluation of
the arithmetic term a, i.e.:

EvCost(�/n,A) =

0 if A is a constant

or a variable

1 +
n∑
i=1

EvCost(�/n,Ai) if A = �(A1, ..., An)

m∑
i=1

EvCost(�/n,Ai) if A 6= �(A1, ..., An)

∧ A = �̂(A1, ..., Am)

for some operator �̂/m

For simplicity, we assume that the cost of evaluating the arithmetic term t to which a variable appearing
in A will be bound at execution time is zero (i.e., we ignore the cost of evaluating t). This is a good
approximation if in most cases t is a number and thus no evaluation is needed for it. However, a more
refined cost model could assume that this cost is a function on the size of t.

Note that this model ignores the possible optimizations that the compiler might perform. We can take
into account those performed by source-to-source transformation by placing our analyses in the last stage
of the front-end, but at some point the language the compiler works with would be different enough as to
require different considerations in the cost model.

However, experimental results show that our simplified cost model gives a good approximation of the exe-
cution times for arithmetic builtin procedures. With these assumptions, equation (3.8) (in Section 3.4.2) also
holds for programs that perform calls to builtin procedures, say, for example, a builtin b/n, by introducing
b/n and �/n as new cost components of Ω.

A similar approach can be used for other (non-arithmetic) builtins b/n using the formula:

time(b/n) = Kb/n × I(b/n)

43

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

3.4.4 Calibrating Constants via Profiling

In order to compute values for the platform-dependent constants which appear in the different cost models
proposed in Section 3.4.2, our calibration schema takes advantage of the relationship between the platform-
dependent and -independent cost metrics expressed in Equation (3.8). In this sense, the calibration of the
constants appearing in KΩ is performed by solving systems of linear equations (in which such constants are
treated as variables).

Based on this expression, the calibration procedure consists of:

1. Using a selected set of calibration programs which aim at isolating specific aspects that affect execution
time of programs in general. For these calibration programs it holds that Costp(I(ωi), n) is known for
all 1 ≤ i ≤ v. This can be done by using any of the following methods:

• The analyzers integrated in the CiaoPP system infer the exact cost function, i.e.:

Costp
l(I(ωi), n) = Costp

u(I(ωi), n) = Costp(I(ωi), n)

where Costp
l(I(ωi), n) and Costp

u(I(ωi), are functions that yield lower and upper bounds on the
cost of procedure p respectively,

• Costp(I(ωi), n) is computed by a profiler tool, or

• Costp(I(ωi), n) is supplied by the user together with the code of program p (i.e., the cost function
is not the result from any automatic analysis but rather p is well known and its cost function can
be supplied in a trust assertion).

2. For each benchmark p in this set, automatically generating a significant amount m of input data for
it. This can be achieved by associating with each calibration program a data generation rule.

3. For each generated input data dj , computing a pair (Cpj , Tpj), 1 ≤ j ≤ m, where:

• Tpj is the j-th observed execution time of program p with this generated input data.

• Cpj = Costp(I(Ω), nj), where nj is the size of the j-th input data dj .

4. Using the set of pairs (Cpj , Tpj) for setting up the equation:

Cpj •KΩ = Tpj (3.9)

where KΩ is considered a vector of variables.

5. Setting up the (overdetermined) system of equations composed by putting together all the equa-
tions (3.9) corresponding to all the calibration programs.

6. Solving the above system of equations using the least square method (see, e.g., [90]). A solution to
this system gives values to the vector KΩ and hence, to the constants Kωi which are the elements
composing it.

7. Calculating the constants for builtins and arithmetic operators by performing repeated tests in which
only the builtin being tested is called, accumulating the time, and dividing the accumulated time by
the number of times the repeated test has been performed.

44

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

3.4.5 Assessment of the Calibration of Constants

We have assessed both the constant calibration process and the prediction of execution times using a number
of cost models in two different platforms:

• “intel” platform: Dell Optiplex, Pentium 4 (Hyper threading), 2GHz, 512MB RAM memory, Fedora
Core 4 operating System with Kernel 2.6.

• “ppc” platform: Apple iMac, PowerPC G4 (1.1) 1.5GHz, 1GB RAM memory, with Mac OS X 10.4.5
Tiger.

In section 3.4.4 we presented equation 3.9, and we mentioned that it can be solved using the least squares
method. We used the householder algorithm, which consists in decomposing the matrix C = {Cpj}, which
has m rows and n columns into the product of two matrices Q and U (denoted • or without any symbol)
such that C = Q•U , where Q is an orthonormal matrix (i.e., QT •Q = I, the m×m identity matrix) and U
an upper triangular m× n matrix. Then, multiplying both sides of the equation 3.9 by QT and simplifying
we can get:

U •K = QT • T = B

where, for clarity, we denote K = KΩ, T = Tpj and QT • T = B. We can take advantage of the structure of
U and define V as the first n rows of U , n being the number of columns of C and b the first n rows of B,
then K can be estimated solving the following upper triangular system, where K̂ stands for the estimate
for K:

V • K̂ = QT • T = b

Since this method is being used to find an approximate solution, we define the residual of the system as
the value

R = T − CK̂

Let

RSS = R •R

be the residual square sum, and let

MRSS =
RSS

m− n
be the mean of residual square sum, where m and n are the number of rows and columns of the matrix C
respectively, and finally let

S =
√
MRSS

be the estimation of the model standard error, S. In order to experimentally evaluate which models better
approximate the observed time in practice, we have compared the values of MRSS (or S) for several
proposed models. Table 3.1 shows the estimated values for the vector K using a number of calibration
programs as well as the standard error of the model, sorted from the best to the worst model. For example,
the first row in the table shows the model that has as components step, nargs, instruct, outstruct, inptr,
outptr for the intel platform. It has a standard error of 6.2475 µs and the values for each of the constants
are 21.27, 9.96, 10.30, 8.23, 6.46, and 5.69 nanoseconds, respectively.

Note that the estimation of K is done just once per platform. In the case of the intel platform it took
15.62 seconds and in ppc 17.84 seconds, repeating the experiment 250 times for each program.

45

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Plat. Model S (µs) KΩ

intel step nargs instruct outstruct inptr outptr 6.2475 (21.27, 9.96, 10.30, 8.23, 6.46, 5.69)
step instruct outstruct inptr outptr 9.3715 (26.56, 10.81, 8.60, 6.17, 6.39)
step instruct outstruct outptr 13.7277 (27.95, 11.09, 8.77, 7.40)
step 68.3088 108.90

ppc step nargs instruct outstruct inptr outptr 4.7167 (41.06, 5.21, 16.85, 15.14, 9.58, 9.92)
step instruct outstruct inptr outptr 5.9676 (43.83, 17.12, 15.33, 9.43, 10.29)
step instruct outstruct outptr 16.4511 (45.95, 17.55, 15.59, 11.82)
step 116.0289 183.83

Table 3.1: Global values for vector constants in several cost models (in nanoseconds), sorted by S, the
standard error of the model.

Platform Model Error (%)

intel step nargs instruct outstruct inptr outptr 53.17
step instruct outstruct inptr outptr 31.06
step instruct outstruct outptr 21.48
step 58.45

ppc step nargs instruct outstruct inptr outptr 18.72
step instruct outstruct inptr outptr 14.66
step instruct outstruct outptr 19.44
step 43.04

Table 3.2: Global comparative of the accuracy of cost models.

3.4.6 Assessment of the Prediction of Execution Times

We have tested the implementation of the proposed cost models in order to assess how well they predict
the execution time of other programs (not used in the calibration process) statically, without performing
any runtime profiling with them. We have performed experiments with a large number of modes. We show
results for the three most accurate cost models (according to a global accuracy comparison that will be
presented later) plus the step model, which has special interest as we will also see later. More details about
the experimental results can be found in [63, 64].

Table 3.2 compares the overall accuracy of the four cost models mentioned previously, for the two
considered platforms. The last column shows the global error and it is an indicator of the amount of
deviation of the execution times estimated by each cost model with respect to the observed values. As
global error we take the square mean of the errors in each example being considered. By considering both
platforms in combination we can conclude that the more accurate cost model is the one consisting of steps,
instruct, outstruct, inptr, and outptr. This cost model has an overall error of 14.66 % in platform “PPC”
and 31.06 % in “Intel”. In “Intel” (obviously a more challenging platform) the model consisting of steps,
instruct, outstruct, and outptr appears to be the best. This coincides with our intuition that taking into
account a comparatively large number of lower-level operations should improve accuracy. However, such
components should contribute significantly to the model in order to avoid noise introduction. It is also
interesting to see that including nargs in the cost model does not further improve accuracy, as expected,
since nargs is not independent from the four components instruct, outstruct, inptr, outptr. In fact, including
this component results in a less precise model in both platforms, due to the noise introduced in the model.
Also, the cost model step deserves special mention, since it is the simplest one and, at least for the given
examples, the error is smaller than we expected and better than more complex cost models not shown in
the tables.

Overall we believe that the results are very encouraging in the sense that our combined framework
predicts with an acceptable degree of accuracy the execution times of programs and paves the way for even

46

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

more accurate analyses by including additional parameters. We believe this is an encouraging result, since
using a one-time profiling for estimating execution times of other, unrelated programs is clearly a challenging
goal.

3.4.7 Related Work

As mentioned before, [31, 30] presented a method for automatically inferring functions which capture an
upper bound on the number of execution steps that a procedure will execute as a function of the size of its
input data. In [54, 53] the method of [31, 53] was fully automated in the context of a practical compiler
and in [32, 53] a similar approach was applied in order to also obtain lower bounds. Our work extends
these approaches from the inference of number of execution steps. We introduce models parametrized by an
arbitrary number of constants or functions bounding the cost of basic operations, proposing a method for
adjusting the constants via calibration programs, and showing how the approach can be used for inferring
execution time.

Worst case execution time (WCET) estimation have been studied for imperative languages and for
different application domains. Thiele and Wilhelm [87] described threats to time-predictability of safety-
critical embedded systems which have to satisfy hard real-time constraints and proposed design principles
that support time predictability for such systems. In [92, 91] the principles of their Timing-Analysis
method, which uses Abstract Interpretation to predict the system’s behavior on the underlying processors
components and Integer Linear Programming to determine a worst-case path through the program. Berg
et al. [15] introduce a set of design principles that aim to make processor architectures amenable to static
timing analysis. Bel-Hadj-Aissa et al. [3, 2], described the main issues when computing WCET on very
constrained devices in terms of memory and time, and proposed an scheme to compute WCET in the
CAMILLE operating system for smart cards. Eisinger et al. [36] presented an automated timing anomaly
identification approach. They also validated the method by applying it to a simplified microprocessor using
a commercial model checking tool.

However these methods do not infer cost functions of input data sizes but rather absolute maximum
execution times. To this end, each loop has to be hand annotated indicating the maximum number of
iterations that it will execute. In contrast in our approach this is inferred as a function of input data
metrics.

In the particular context of Java, Bate et al. [14] proposed a framework for providing a portable (i.e.
hardware and language independent) WCET analysis for the Java platform. It is achieved by separating
the WCET analysis process in three separated stages and by analyzing the Java Byte Code, not the high
level source code. The three stages are: a Java virtual machine platform-dependent (low-level) analysis,
a software dependent (high-level) analysis and an on-line integration step. However, this approach again
requires that the code has to include annotations on the worst case behavior of its constructs (i.e. maximum
loop bounds) in order for the code to be analyzable. Bernat et. al. [19] addressed two issues to take under
consideration when analyzing Java Byte Code: how to extract data and control flow information from Java
Byte Code programs and how to provide a compiler/language independent mechanism to introduce WCET
annotations in the source code.

47

Chapter 4

Alias Control Types

4.1 Universe Type System

Alias characterisations simplify reasoning about programs [34]: they enable modular verification, facilitate
thread synchronisation, and allow programmers to exchange internal representations of data structures.
Ownership types [26, 25] and Universe types [69] are mechanisms for characterising aliasing in object
oriented programming languages. They organise the heap into a hierarchical structure of nested non-
overlapping contexts where every object is contained in one such context. Each context is characterised by
an object, which is said to own all the objects contained directly in that context.

Example 1 Figure 4.1 shows one possible hierarchical organisation of eight objects located at addresses 1 to
8. Each rounded box indicates the address and class of an object, whereas the adjoining dotted lines forming
a box denote the context (ownership) that object characterises. For instance, the topmost round box denotes
an object at address 1 of class D, the round box beneath it denotes an object at address 2 of class C, etc.
Moreover, the dotted lines originating from the topmost round box denote that the object at address 1 owns
the object at address 2. Similarly, the dotted box (context) of the object at address 2 denotes that this object
owns the three objects at addresses 3, 4 and 5.

Figure 4.1: Ownership Hierarchical Structure

In the Universe Type System [69, 34, 52], a context hierarchy such as the one in Figure 4.1 is induced
by extending types with Universe annotations, which range over rep, peer and any. A field typed with a
Universe modifier rep denotes that the object referenced by it must be within the context of the current
object; a field typed with a Universe modifier peer denotes that the object referenced by it must be within

48

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

the context that also contains the current object; a field typed with a Universe modifier any is agnostic
about the context containing the object referenced by the field.

Example 2 The following is an example class definition in the Universe Type System.

class A {
rep B br;
peer B bp;
any B ba;

}

Class A contains three fields of class B, but each field has a different Universe modifier. Field br has
modifier rep which means it can only point to an object in the context of the current object; field bp has
modifier peer which means it can only point to an object that is a peer of the current object; field ba has
modifier any which means it can point to any object of class B in the Universe hierarchy. Thus, if this class
definition referred to the object at address 3 in Figure 4.1, then the field br could only point to the objects at
addresses 6 and 7, the field bp could only point to the objects at addresses 4 and 5 and field ba could point
to any object in the hierarchy. We here note how Universe contexts characterise aliasing but do not restrict
it. More specifically, the field ba is allowed to cross into the context of the object at address 4 so as to point
to the object at address 8.

So far, we have concentrated on the following three areas:

Universe Java The formalisation and proof of soundness of a minimal object oriented language with
Universe Types.

Generic Universe Java The extension of Universe Java to Generic Java.

Concurrent Universe Java The use of Universe Types to administer race conditions and atomicity in a
concurrent version of Universe Java.

The full reports on these tasks containing complete formalisations, examples and proofs will appear shortly
at [27, 33, 28].

4.2 UJ - Universe Java

We introduce Universe Types into a subset of the Java programming language and obtain what we call
Universe Java, or simply UJ [27]. For the purposes of this discussion, we limit ourselves to the basic
constructs of Java such as field access, field update and method invocation.

Preliminaries We assume a set of class names c, c1, c2, ... ∈ C, a subclass relation on class names c ≤ c
and a set of addresses ι, ι1, ι2 ∈ A. We also assume the variables u, u1, u2, . . . which range over Universe
annotations U = {rep, peer, any}. We sometimes refer to the set of extended Universes EU = U ∪ {this}.
Static types ts ∈ Ts are written as u c, where u is the Universe annotation and c is the class name. On the
other hand, dynamic types td ∈ Td are written as ι c where ι is the address of the owner and c is the name
of the class of the object at ι.

In UJ, executions need to hold the additional owner information for every object. Thus, the heap h
would be the partial function

h : A ⇀ Td × FM (4.1)

where the dynamic type Td holds the additional owner information and fm ∈ FM are partial functions
mapping field names f ∈ F to addresses

fm: F ⇀ A (4.2)

49

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Objects in a heap, denoted by the address where they are located, are thus assigned dynamic types; we
defined the following judgement

h(ι) = td, fm

h ` ι : td

Figure 4.2: A Typical Heap with a Universes Hierarchical Structure

Example 3 Assuming that our program defines the class names A,B and C, then in heap h1, represented
graphically in Figure 4.2 we would have

h1(3) =

owner︷︸︸︷
2 A︸ ︷︷ ︸

dynamic type

,

field map︷ ︸︸ ︷
{br 7→ 7, bp 7→ 5, ba 7→ 8}

We also use the judgement

h1 ` 3 : 2 A

to assert that the dynamic type to the object residing at address 3 in heap h1 is 2 A.

View Dependent Static Types A central aspect of UJ is that static types depend on the point of view
of the address from where they are accessed. This is formalised by the judgement

h, ι ` ι′ : ts (4.3)

meaning that from ι in heap h, the address ι′ is viewed to have type ts. The definition for this judgement
is based on a function ↑h,ι (−) which lifts a dynamic type to a static type, relative to the current view
denoted by the tuple (h, ι). In essence, this function converts the owner information ι′ in the dynamic type
to Universe modifiers u, according to the view (h, ι). This function is defined as:

↑(h,ι) (ι′ c)
def
=

rep c if ι′ = ι
peer c if h ` ι : (ι′, c′) for some class c′

any c otherwise
(4.4)

With the above function we can thus define our view dependent static type judgement using these two rules

h ` ι′ : td
h, ι ` ι′ : ↑(h,ι) (td)

h, ι ` ι′ : u c c ≤ c′
h, ι ` ι′ : u c′
h, ι ` ι′ : any c′

Example 4 For the heap h1 of Figure 4.2 we can deduce the following static types from the point of view
of the object at address 3:

h1, 3 ` 4 : peer B

50

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

u

u′

u B u′ peer rep any

this peer rep any

peer peer any any

rep rep any any

any any any any

u

u′

u I u′ peer rep any

this peer rep any

peer peer any any

rep any peer any

any any any any

Figure 4.3: The Universe composition and decomposition operators

that is, the object at address 4 is a peer object (to the object at address 3) of class B. Similarly, we deduce
that

h1, 3 ` 7 : rep B and h1, 3 ` 8 : any B

Assuming another class E such that B ≤ E, we can also weaken the former two judgements as:

h1, 3 ` 7 : any E h1, 3 ` 8 : any E

Based on the definition of view dependent static types, we can state what it means for a heap h to be
well-formed in UJ, denoted as |= h. Intuitively, a heap is well-formed if the field values of every object in
the heap respect (are a subtype of) the field type declared for the class of that object.

Definition 4.2.1 (Well Formed Heap)

|= h
def
=

∀ι ∈ dom(h). if h(ι) = ((ι′ c), fm)

and class c has field f with type ts
then h, ι ` fm(f) : ts

4.2.1 Types, and Type Soundness

The typing rules of UJ, omitted from this document, make use of Universe modifier composition (B) and
decomposition (I) operations with the following signatures:

B: EU× U→ U

I: EU× U→ U

The table on the left hand side of Figure 4.3 defines the operation B, which “composes” two viewpoints,
in the sense that if some object considers a second object to be at at u, and, if the second object considers
a third object to be at u′, then the first object considers the third object to be at u B u′. This is expressed
by the following lemma, where we use h, ι ` ι′ : u as a shorthand for h, ι ` ι′ : u c for some c:

Lemma 2 (Universe Modifier Composition) h, ι ` ι′ : u, h, ι′ ` ι′′ : u′ =⇒ h, ι ` ι′′ : u B u′.

On the other hand, the decomposition operator I, defined on the right hand side of figure 4.3, is, in
some sense, the opposite of B. Namely, u I u′ returns a universe modifier u′′ such that u B u′′ = u′ if it
exists and is unique (formally, if u I u′ = u′′ then u B u′′ = u′ and u′′ 6= any or for all u′′′: u B u′′′ = u′

implies u′′′ = u′′).
The operation I “decomposes” viewpoints, in the sense that if some object considers a second object to

be at u, and the first object considers a third object to be at u′, then the second object considers the third
object to be u I u′. This is expressed by the following lemma:

Lemma 3 (Universe Modifier Decomposition) h, ι ` ι′ : u, h, ι ` ι′′ : u′ =⇒ h, ι′ ` ι′′ : u I u′.

Example 5 In the heap h1 of Figure 4.2, the following judgements α, β, γ and δ hold:
(α) h1, 2 ` 3 : rep (β) h1, 3 ` 5 : peer (γ) h1, 2 ` 5 : rep (δ) h1, 3 ` 5 : peer

Judgment (γ) also follows from (α) and (β) and Lemma 2; judgement (δ) also follows from (α) and (β)
and Lemma 3.

51

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Typing has the format

Γ ` e : ts

where Γ is the standard typing context assigning types to this and method parameters. The type rules are
shown in detail in [27]; here we only show the type rules for field reading and field assignment

(fld-acc)

Γ ` e : u c
class c has a field f of type u′ c′

Γ ` e.f : u B u′ c′

(fld-ass)

Γ ` e : u c
class c has a field f of type u′ c′

Γ ` e′ : u′ c′
Γ ` e.f = e′ : u I u′ c′

Rule (fld-acc) is justified by lemma 2, while rule (fld-ass) is justified by lemma 3.

Execution is described in terms of large-step semantics of the form

e, s, h ι, h′

where s is a stack mapping the identifier this and method parameters to addresses. We define well-formed
stacks, denoted as Γ, h ` s, to mean that the objects mapped to by the identifiers in the stack correspond
to the types assigned to those identifiers in Γ. We then prove that the execution of a well-typed expression
e with respect to a well formed heap and stack preserves both the type of the expression and the well-
formedness of the heap.

Theorem 4.2.2 (Type Soundness for UJ) For any h, s, Γ, e, ts :

|= h, Γ, h ` s, Γ ` e : ts, e, s, h ι, h′ =⇒ |= h′, h′, s(this) ` ι : ts.

4.2.2 Encapsulation

In Universe Types, encapsulation is interpreted to be the owner-as-modifier property, meaning that the
fields of an object can only be modified through method calls made on the owner of that object. This
restriction however does not apply to field access, which can be performed by circumventing the owner.

To guarantee this encapsulation property in UJ, we define a more restrictive type system,

Γ `enc e : ts

which typechecks the expression e if e observes the owner as modifier restriction, and if Γ ` e : ts (i. e., if it
typechecks in the previous type system).

To be able to demonstrate that type safety implies encapsulation, we extend our operational semantics
for UJ to keep track of the receivers of any methods called during execution. This is reflected in the new
format of the operational semantics,

e, s, h
µ
 v, h′

where µ is a set of addresses {ι1, . . . , ιn} ⊂ A. When a well-typed expression reduces to some value, after
having invoked methods on the objects contained in µ, the owners of any objects whose fields were modified
during execution must be µ. This is stated in the following Theorem.

Theorem 4.2.3 (Encapsulation for UJ) For all h, s, Γ, e, µ, ts such that |= h, and Γ, h ` s, Γ ` e : ts
and e, s, h

µ
 ι, h′

h(ι).f is defined, and h(ι).f 6= h′(ι).f =⇒ ∃ι′′ ∈ µ,with h ` ι : ι′′ .

52

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

4.2.3 Universe Types and the Bicolano Logic

We extend the Bicolano Logic [74] to accommodate the additional heap structure introduced by universes, in
a style similar to [51]. In particular, we specify an additional function on heaps called owner with signature

Parameter owner : t -> Location -> option Owner.

where Owner is defined as:

Inductive Owner : Set :=

| Ownr: Location -> Owner

| World : Owner

The function owner extends heaps to hold owner information for any existing location: owner(h,l) returns
the owner of the object at location l in heap h, if l exists in h, and None, otherwise. Owners are defined
through the datatype Owner above, which is either another location, Ownr l, or the topmost owner, World.
We also extend the signature of the heap operation new to

Parameter new : t -> Program -> LocationType -> Owner -> option(Location * t)

so that it requires an additional parameter of type Owner when creating a fresh location, which determines
the owner of the fresh location. The extended signature of new entails cosmetic adaptations to existing
invariants of this operation; one instance would be

Parameter new_fresh_location :

forall (h:t) (p:Program) (lt:LocationType) (o:Owner) (loc:Location) (h’:t),

new h p lt o = Some (loc1 ,h’) -> typeof h loc1 = None.

The redefined new operation also requires two new invariants. The first invariant states that if a location is
created successfully, then its owner is the one specified.

Parameter new_fresh_location_owner :

forall (h:t) (p:Program) (lt:LocationType) (o:Owner) (loc:Location) (h’:t),

new h p lt o = Some (loc ,h’) -> onwer h’ loc = o.

The second invariant states that a fresh location in a heap h owned by a location l can only be created if l
already exists in h.

Parameter new_fresh_location_owner_exists :

forall (h:t) (p:Program) (lt:LocationType) (loc, loc’:Location) (h’:t),

new h p lt Ownr(loc) = Some (loc’ ,h’) -> typeof h loc <> None.

Finally, we specify invariants ensuring that the owner of an existing location does not change as a result of
modifications to the heap. We thus need to ensure that the heap operations update and new do not alter
the owner function:

Parameter new_onwer_old :

forall (h:t) (p:Program) (lt:LocationType) (o:Owner) (loc loc’:Location) (h’:t),

new h p lt o = Some (loc,h’) -> loc <> loc’ -> onwer h’ loc’ = onwer h loc’.

Parameter owner_update_same :

forall (h:t) (loc:Location) (am:AddressingMode) (v:value),

owner (update h am v) loc = owner h loc.

53

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Figure 4.4: Heap Examples in Generic Universe Java

4.3 GUJ - Generic Universe Java

We extend Universe Java to handle generics, which now form part of the official release of Java 1.5 [49, 42],
and refer to this extension as Generic Universe Java (GUJ) [33]. In Generic Java, classes have parameters
which can be bound by types: since in Universe Java, types are made up of a Universe modifier and a class,
GUJ class parameters in generic class definitions are bound by Universe modifiers and classes.

Example 6 Consider the class definitions with generic Universe modifiers below. The class parameter S
in both the generic classes List < S > and Node < S > is bound by the type any Object.

class List <S extends any Object> { rep Node<S> hd;}

class Node <S extends any Object> {
peer Node<S> nxt;
S cnt; }

class Student {. . . }

In class A defined below, we instantiate the class parameter S of List < S > (and, as a consequence,
the type parameter S of Node < S > as well) by the type rep Student. This allows heaps with ownership
structure such as the one on the left hand side of Figure 4.4, where objects of class Student stored in the list
are owned by the same owner of the list.

class A { rep List<rep Student> z . . . }

In class B defined below, we instantiate the class parameter of List < S > with the type peer Student,
which gives us heaps where any objects of class Student stored in the list are peers of the owner of the list;
the right hand side diagram of Figure 4.4 depicts one such case of these heaps.

class B { rep List<peer Student> z . . . }

Formalisation To accommodate generics, we extend the structure of static types ts ∈ Ts and dynamic
types td ∈ Td to

ts ::= u c σ

td ::= ι c ρ

54

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

where σ and ρ are substitutions from type variables to static types and dynamic types respectively.

σ ∈ Sub ::= Var⇀ Ts

ρ ∈ DSub ::= Var⇀ Td

We retain the former definition of field maps (4.2) and heaps (4.1) from Section 4.2. Nevertheless, we note
that, with our reformulation of dynamic types Td, the heap now keeps additional information regarding type
variable substitution during executions.

h : A ⇀ Td × FM

Example 7 The type rep List < rep Student >, used in Example 6, is represented by the static type triple

rep︸︷︷︸
u

List︸︷︷︸
c

{S 7→ repStudent ∅}︸ ︷︷ ︸
σ

Then, in the leftmost heap of Figure 4.4, the dynamic type

1︸︷︷︸
ι

List︸︷︷︸
c

{S 7→ 1Student ∅}︸ ︷︷ ︸
ρ

can be assigned to an object referenced by a field with the static type above.

Similar to Section 4.2, we also have a judgement assigning static types to addresses with respect to a
particular view h, ι ` ι′ : ts, based on a function ↑h,ι (−) lifting dynamic types to static types relative to the
view (h, ι). Since types in GUJ now contain type variable substitutions, we overload ↑h,ι (−) so that it lifts

• dynamic types Td to static types Ts (as before),

• substitutions from type variables to dynamic types DSub to substitutions from type variables to static
types Sub.

Thus, the function has the respective two signatures

↑ : H ×A× Td → Ts (from Dynamic types to Static types)
H ×A× DSub → Sub (from Var⇀DSub to Var⇀Sub)

and is defined through the the mutually recursive definitions

↑h,ι (ρ)
def
= {S 7→↑h,ι (td) | S ∈ dom(ρ) and td = ρ(S)}

↑h,ι (ι′, c, ρ)
def
=

rep c ↑h,ι (ρ) if ι′ = ι
peer c ↑h,ι (ρ) if h ` ι : ι′ c′ for some class c′

any c ↑h,ι (ρ) otherwise

As a result, the view dependent static type judgement for GUJ is defined using the rules

h ` ι′ : td
h, ι ` ι′ : ↑(h,ι) (td)

h, ι ` ι′ : u c ρ c ≤ c′
h, ι ` ι′ : u c′ ρ
h, ι ` ι′ : any c′ ρ

Example 8 With h3 we refer to the leftmost heap in Figure 4.4. Then, the following judgements, assigning
addresses to dynamic types,

h3 ` 3 : 1 List {S 7→ 1 Student ∅}
h3 ` 4 : 3 Node {S 7→ 1 Student ∅}
h3 ` 7 : 1 Student ∅

55

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

hold. Using the above judgements, and the definition of the view dependent static judgments, we obtain

h3, 3 ` 4 : rep Node {S 7→ peer Student ∅}
h3, 3 ` 7 : peer Student ∅

Despite the reformulation of types in GUJ, which now also hold class parameter substitutions, our
judgements still allow us to inherit Definition 4.2.1 for well formed heaps, i. e., |= h. We also inherit the
notion of a well formed stack s, denoted as Γ, h ` s. This permits us to state, in standard fashion, the main
theorem for our formalisation of GUJ.

Theorem 4.3.1 (Type Soundness for GUJ) For any h, s, Γ, e, ts :

|= h, Γ, h ` s, Γ ` e : ts, e, s, h ι, h′ =⇒ |= h′, h′, s(this) ` ι : ts.

4.4 UJ and Concurrency

The Universe ownership relation in UJ provides a natural way to characterise non-overlapping nested groups
of objects in a heap. We therefore exploit this structure in a Java with multiple concurrent threads [28] to
guarantee certain properties during execution, namely

• the prevention of data races.

• the atomicity of execution of atomic blocks of code.

Ownership and Locking Based on previous work [39, ?] we explore the use of locking groups of objects
so as to gain exclusive access to such objects and thus avoid interference from other threads of execution.
By simply locking a particular object in a well-formed heap in UJ, a thread would gain exclusive access
to all of the objects in the representation of that object (it however would not give exclusive access to the
owner itself).

Figure 4.5: Using the Universes Hierarchical Heap Structure for Locking

Example 9 Consider the class definitions with Universe modifiers below. If we execute method m1() on
object 3 in the leftmost runtime heap depicted in Figure 4.5, then locking this would lock all the objects
owned by the object 3; this is represented by the shaded area. Since the local variable br1 is tagged as rep

and the local field next in class B is tagged as peer, we can statically infer that this single lock suffices to
guarantee that there will be no data races interfering with the objects accesses during the iteration in method
m1() and that every execution of this method is atomic.

class B { peer B next;}
class A {

rep B br; peer B bp; any B ba;

void m1(){

56

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

rep B br1 = br;
lock (this){

while (br1){
br1 = br1.next;} } }

void m2(){
peer B bp1 = bp;
lock (bp1.owner){

while (bp1){
bp1 = bp1.next;} } }

void m3(){
any B ba1 = ba;
while (ba1){

lock (ba1.owner){
ba1 = ba1.next;} } }

Similarly for method m2(), locking bp1.owner would lock all the objects in the representation of the object of
class C at address 3, that is the objects at addresses 3, 4 and 5 (refer to middle heap in Figure 4.5). Similar
to the previous method, since the local field we iterate on in method m2() has modifier peer (and the local
field next in class B is tagged as peer), we can statically infer that this single lock is sufficient to guarantee
no data races and also guarantee atomicity during the iteration of the method.

Unfortunately, similar conclusions can not be statically determined for the iteration in method m3() since
there are heap instances where the locking procedure in m3() does not suffice to guarantee atomicity. For
instance, if we execute m3() on the leftmost and middle heap diagram in Figure 4.5, we happen to obtain
no data races as well as atomicity. However, for the rightmost heap depicted in Figure 4.5, the execution of
m3() would result in three successive lockings of different objects, that guarantees the absence of data races
but does not guarantee atomicity.

Type Systems for Races and Atomicity The type system of Section 4.2 is extended so that when we
typecheck an expression

Γ `race e : t

we can statically guarantee that e locks objects appropriately so as to ensure that there are no data races
when e executes in parallel with other expressions. This can be formalised as the following theorem, where
 now denotes small step reductions from threads (sets of expressions) to threads.

Theorem 4.4.1 (Data Race Soundness) For any heap h, expressions e1, . . . , en, any i, j ∈ {1, ...,m} if
|= h, and ∀i=1..n : Γ `race ei : ti then

e1, . . . , en, h
∗ e′1, . . . , e

′
m, h

′, e′i contains ι.f, e′j contains ι.f =⇒ i = j.

We also extend the type system for UJ to guarantee atomicity of execution for an expression e. Exploiting
the local reasoning allowed by Universe Types, we devise typing rules so as to typecheck an expression as

Γ `atom e : t

This would then give us a static guarantee that whenever e executes in parallel with other expressions,
it locks objects appropriately so that any execution interleaving with other threads would still yield the
same result as if e was executed atomically (without interleaving). This property can be formalised as the
following Theorem.

57

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

Theorem 4.4.2 (Atomicity Soundness) For any well formed heap |= h, if Γ `atom e : t, and if Γ ` ei : ti
for all i ∈ {1, ..., n}, then

e, e1, . . . , en, h
? v, e′1, . . . , e

′
m, h

′ =⇒ ∃e′′1, ..., e′′k, h′′, h′′′.

e, e1, . . . , en, h ? e, e′′1, . . . , e

′′
k, h
′′

e, h′′ ? v, h′′′

e′′1, . . . , e
′′
k, h
′′′ ? e′1, . . . , e

′
m, h

′

4.5 Future Work

We plan to extend our type systems to larger fragments of Java, including constructs such as exceptions
and exception handling. More importantly however, we plan to adapt the type system to the bytecode
translation of the Java code directly. This will permit the use of universes for the verification of mobile
bytecode in a Proof-Carrying-Code architecture such as the one proposed by Mobius.

4.6 Related Work

The closest work to Universe Types and UJ, adopting the owner-as-modifier principle is perhaps [57].
Through what they call Effective Ownership Types, they approach the problem of representation exposure
by restricting side effects rather than aliasing. Similar to the Universe modifier any, objects allow non-
mutating accesses of their fields through side effect free methods calls on other objects. Subsequently, [56]
takes this work one step further, breaking the owner-as-modifier property by separating the properties of
object accessibility and reference capability, allowing more refined static constraints. They use context
variance mechanisms to abstract over object ownership while extending methods and fields types with
accessibility parameters, permitting mutations up to those accessibility levels. [55], which predates the
above, attempts to offer more flexibility than the single-owner restriction dictated by ownership types by
defining a class-based region-parametric type system which assigns objects to regions organised as a directed
acyclic graph. The partial ordering of regions imposes constraints on region reachability and reference cycles
are limited to objects belonging to the same region. In contrast to work in [57, 56] the main aim of this
work is to guarantee reference acyclicity rather than encapsulation.

Generic Ownership [75] relates closely to GUJ in that it provides an abstraction that adds ownership on
top of genericity. Through examples, they argue that the additional ownership information fits smoothly in
a language with type genericity and is not too taxing in terms of additional annotation. They also provide
an implementation, integrating Generic Ownership into Java and call it OGJ.

The STARS programming model [6] use packages, gate classes and scoped classes in Real-Time Java to
partition the heap into distinct logical blocks of memory called scoped memory. Such a partitioning enables
static checks for controlled sharing of references in multithreading and memory management. Elsewhere,
[65] employ the dominator relationship and ownership structures to great effect to analyse the shapes of
large heaps in real-world applications and generate meaningful summaries of such heaps.

58

Chapter 5

Conclusion

In this deliverable we have described program analyses for a security, resource consumption and access, and
alias control. In view of the remit of MOBIUS, it is important that these formalisms can be related to the
mobile code format JVML, and the verification structure developed for bytecode in WP3 (see deliverable
D3.1). This connection can be achieved in various ways:

• by a formulation of the analysis on the level of bytecode, as has been carried out for the information
flow type system. In this case, the connection to the formalised bytecode verification infrastructure is
most naturally achieved by formalising the soundness proof w.r.t. the Bicolano operational semantics.

• by a a formulation for bytecode program phrases, as carried out in the section on heap space analysis.
Complementing a possible verification in Bicolano, we have presented a formalised soundness proof
with respect to the MOBIUS bytecode logic.

• as a set of derived assertions in the sense of MRG for bytecode phrases where the granularity of the
rules is determined by the compilation strategy and a formulation of the analysis at a higher language
level. Although neither the compilation of the program nor the translation of the typing derivations
needs to be formalised, this approach is difficult to adapt to arbitrary bytecode as it makes use of
the bytecode structure afforded by the compilation from high-level code. For example, no null pointer
exceptions can occur in the getfield operations resulting from the compilation of a pattern match. For
a more complex example consider [17], where linearity conditions at the high level ensure the absence
of aliasing at the low-level.

• by an implementation of the analysis (with or without inference) in the theorem prover, including
selected parts of the analysis framework (e.g. properties of fixed points and lattices in the case of
abstract interpretation). Our work on using abstract interpretation to certify constant bounds on
heap consumption [23] is an example of this approach.

Common to these four approaches is the formalisation of the soundness property afforded by each type system
with respect to Bicolano and/or the MOBIUS base logic. This has been achieved already or can readily be
extracted from the hand-written soundness proof for all the type systems presented in this deliverable. Work
in the next nine months will then involve translation of typing derivations into proofs about Bicolano. In
many cases the type systems address Bytecode directly (secure information flow, constant heap usage, type
system for access permission), and representations in the MOBIUS tool suite (Bicolano, MOBIUS base logic)
have been completed or are planned to be completed within the next months.

As discussed in Section 3.3.5, the integration of the type system for resource managers with the Bi-
colano/base logic infrastructure will take the form of derived judgements, and will include work towards
type inference.

The type system for input-dependent heap space from Section 3.1.2 will need to be refined and downsized
to fit the requirements of MOBIUS. This will be explored in Task 2.4 (advanced resource type systems). We
anticipate that a potential formalisation will take the form of derived assertions.

59

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

The static analysis of Section 3.4 will be improved in precision by developing lower-level models and
applying the approach to Java bytecode. The techniques will be generalized in Task 2.4 to infer upper and
lower bound functions on parametrized resource descriptions. This will allow taking into account different
classes of advanced resources with a common tool base and guaranteeing for example that mobile code will
not exceed different kinds of resource bounds when running on a given device.

In the remaining time of this task, we will thus seek to further develop the link to the verification
infrastructure for selected systems described in the present deliverable, and to develop further analyses as
described in DIP2. The result of this work will be reported in the final deliverable for the present task
(deliverable 2.4), the deliverables relating to certificate generation (WP4), and be an integral component of
the software infrastructure developed in Task 2.6 and WP4.

60

Bibliography

[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency. In Principles of
Programming Languages, pages 147–160. ACM Press, 1999.

[2] N. Bel Hadj Aissa, C. Rippertand D. Deville, and G. Grimaud. A distributed WCET computation
scheme for smart card operating systems. In Workshop on Worst Case Execution Time Analysis,
Catania, Sicily, Italy, 2004.

[3] N. Bel Hadj Aissa, C. Rippert, and G. Grimaud. Distributing the WCET computation for embedded
operating systems. In Real-Time Systems Symposium, Lisbone, Portugal, 2004.

[4] E. Albert, G. Puebla, and M. V. Hermenegildo. Abstraction-carrying code. In F. and A. Voronkov,
editors, Logic for Programming Artificial Intelligence and Reasoning, number 3452 in Lecture Notes in
Computer Science, pages 380–397. Springer-Verlag, 2005.

[5] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-oriented programs.
In G. Morrisett and S. Peyton Jones, editors, Principles of Programming Languages, pages 91–102.
ACM, 2006.

[6] Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble, Jan Vitek, and Tian Zhao. Scoped types and
aspects for real-time Java. In European Conference on Object-Oriented Programming, pages 124–147,
2006.

[7] A. W. Appel. Modern Compiler Implementation in ML. Cambridge University Press, 1998.

[8] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic for resource
verification. In Theorem Proving in Higher-Order Logics, volume 3223 of Lecture Notes in Computer
Science, pages 34–49, Berlin, September 2004. Springer-Verlag.

[9] A. Banerjee and D. Naumann. Stack-based access control for secure information flow. Journal of
Functional Programming, 15:131–177, March 2005. Special Issue on Language-Based Security.

[10] G. Barthe, A. Basu, and T. Rezk. Security types preserving compilation. In B. Steffen and G. Levi,
editors, Verification, Model Checking and Abstract Interpretation, number 2934 in Lecture Notes in
Computer Science, pages 2–15. Springer-Verlag, 2004.

[11] G. Barthe, D. Naumann, and T. Rezk. Deriving an information flow checker and certifying compiler
for Java. In Symposium on Security and Privacy. IEEE Press, 2006.

[12] G. Barthe, D. Pichardie, and T. Rezk. Non-interference for low level languages. Technical report,
INRIA, 2006.

[13] G. Barthe and T. Rezk. Non-interference for a JVM-like language. In M. Fähndrich, editor, Types in
Language Design and Implementation, pages 103–112. ACM Press, 2005.

[14] I. Bate, G. Bernat, and P. Puschner. Java virtual-machine support for portable worst-case execution-
time analysis. In IEEE Symposium on Object-oriented Real-time distributed Computing, April 2002.

61

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

[15] C. Berg, J. Engblom, and R. Wilhelm. Requirements for and design of a processor with predictable
timing. In Lothar Thiele and Reinhard Wilhelm, editors, Workshop on Design of Systems with Pre-
dictable Behaviour, volume 03471 of Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany,
2004.

[16] M. Berger. Towards Abstractions for Distributed Systems. PhD thesis, Imperial College, Dept. of
Computing, 2002.

[17] L. Beringer, Martin Hofmann, Alberto Momigliano, and Olha Shkaravska. Automatic certification of
heap consumption. In Logic for Programming Artificial Intelligence and Reasoning, volume 3452, pages
347–362. Springer-Verlag, 2005.

[18] C. Bernardeschi and N. De Francesco. Combining Abstract Interpretation and Model Checking for
analysing Security Properties of Java Bytecode. In A. Cortesi, editor, Verification, Model Checking
and Abstract Interpretation, volume 2294 of Lecture Notes in Computer Science, pages 1–15. Springer-
Verlag, 2002.

[19] G. Bernat, A. Burns, and A. Wellings. Portable worst-case execution time analysis using java byte
code, 2000.

[20] F. Besson, T. Jensen, and D. Pichardie. A PCC architecture based on certified abstract interpretation.
In Emerging Applications of Abstract Interpretation. Elsevier, 2006.

[21] Fréderic Besson, Guillaume Dufay, and Thomas Jensen. A formal model of access control for mobile
interactive devices. In ESORICS 2006 [38].

[22] P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Checking Secure Interactions of
Smart Card Applets: Extended version. Journal of Computer Security, 10:369–398, 2002.

[23] D. Cachera, Thomas P. Jensen, D. Pichardie, and G. Schneider. Certified memory usage analysis. In
Formal Methods Europe, pages 91–106, 2005.

[24] A. Chander, D. Espinosa, N. Islam, P. Lee, and G. C. Necula. Enforcing resource bounds via static
verification of dynamic checks. In European Symposium on Programming, Lecture Notes in Computer
Science, pages 311–325. Springer-Verlag, 2005.

[25] D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and effect.
In ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, pages
292–310. ACM Press, 2002.

[26] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications, volume 33:10 of
ACM SIGPLAN Notices, pages 48–64, New York, October 1998. ACM Press.

[27] D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza, and P. Müller. UJ: Type soundness for
universe types. To appear at http://slurp.doc.ic.ac.uk/pubs.html#uj06.

[28] D. Cunningham, S. Drossopoulou, and S. Eisenbach. CUJ: Universe types for race safety. In 1st
Workshop on Verification and Analysis of Multi-threaded Java-like Programs (VAMP’2007), 2007.

[29] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of secure information
flow. In D. Hutter and M. Ullmann, editors, Security in Pervasive Computing, volume 3450 of Lecture
Notes in Computer Science, pages 193–209. Springer-Verlag, 2005.

[30] S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM Transactions on Programming
Languages and Systems, 15(5):826–875, November 1993.

62

http://slurp.doc.ic.ac.uk/pubs.html#uj06

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

[31] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task granularity analysis in logic programs. In
Programming Languages Design and Implementation, pages 174–188. ACM Press, June 1990.

[32] S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower bound cost estimation for logic
programs. In Logic Programming Symposium, pages 291–305. MIT Press, Cambridge, MA, October
1997.

[33] W. Dietl, S. Drossopoulou, and P. Müller. GUJ: Generic universe types. Preliminary version available
from http://www.sct.ethz.ch/publications/index.html.

[34] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology,
4(8):5–32, October 2005.

[35] G. Dufay, A. P. Felty, and S. Matwin. Privacy-sensitive information flow with JML. In R. Nieuwenhuis,
editor, Conference on Automated Deduction, volume 3632 of Lecture Notes in Computer Science, pages
116–130. Springer-Verlag, 2005.

[36] J. Eisinger, I. Polian, B. Becker, A. Metzner, S. Thesing, and R. Wilhelm. Automatic identification
of timing anomalies for cycle-accurate worst-case execution time analysis. In Workshop on Design &
Diagnostics of Electronic Circuits & Systems, pages 15–20. IEEE Press, 2006.

[37] Programming Languages and Systems: Proceedings of the 15th European Symposium on Programming,
ESOP 2006, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 27–28, 2006, volume 3924 of Lecture Notes in Computer Science.
Springer-Verlag, 2006.

[38] Computer Security — ESORICS 2006, Proceedings of the 11th European Symposium on Research in
Computer Security, Hamburg, Germany, September 18–20, 2006, number 4189 in Lecture Notes in
Computer Science. Springer-Verlag, 2006.

[39] C. Flanagan and M. Abadi. Types for safe locking. In European Symposium on Programming, pages
91–108, 1999.

[40] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continuations. In
Programming Languages Design and Implementation, pages 237–247, 1993.

[41] S. Genaim and F. Spoto. Information flow analysis for Java bytecode. In R. Cousot, editor, Verification,
Model Checking and Abstract Interpretation, volume 3385 of Lecture Notes in Computer Science, pages
346–362. Springer-Verlag, January 2005.

[42] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, third edition. The Java
Series. Addison-Wesley, 2005.

[43] C. Hammer, J. Krinke, and G. Snelting. Information flow control for java based on path conditions in
dependence graphs. In Symposium on Secure Software Engineering. IEEE Press, 2006.

[44] N. Heintze and J. Riecke. The SLam calculus: programming with secrecy and integrity. In Principles
of Programming Languages, pages 365–377. ACM Press, 1998.

[45] M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Abstraction carrying code and resource-
awareness. In Principle and Practice of Declarative Programming. ACM Press, July 2005.

[46] Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-Garćıa. Integrated
program debugging, verification, and optimization using abstract interpretation (and the Ciao system
preprocessor). Science of Computer Programming, 58(1-2):115–140, October 2005.

[47] M. Hofmann and S. Jost. Type-based amortised heap-space analysis. In ESOP 2006 [37], pages 22–37.

63

http://www.sct.ethz.ch/publications/index.html

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

[48] K. Honda and N. Yoshida. A uniform type structure for secure information flow. In Principles of
Programming Languages, pages 81–92. ACM Press, 2002.

[49] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ.
In ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, volume
34(10), pages 132–146, 1999.

[50] B. Köpf and H. Mantel. Eliminating Implicit Information Leaks by Transformational Typing and
Unification. In T. Dimitrakos, F. M. elli, P. Y. A. Ryan, and S. Schneider, editors, Workshop on
Formal Aspects in Security and Trust, Lecture Notes in Computer Science, pages 47–62, Newcastle,
UK, July 2006. Springer-Verlag.

[51] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky, editor, European
Conference on Object-Oriented Programming, volume 3086 of Lecture Notes in Computer Science, pages
491–516. Springer-Verlag, 2004. Available from www.sct.inf.ethz.ch/publications/index.html.

[52] K. Rustan M. Leino and Peter Müller. A verification methodology for model fields. In ESOP 2006
[37], pages 115–130.

[53] P. López-Garćıa. Non-failure Analysis and Granularity Control in Parallel Execution of Logic Programs.
PhD thesis, Universidad Politécnica de Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del
Monte, Madrid-Spain, June 2000.

[54] P. López-Garćıa, M. Hermenegildo, and S. K. Debray. A methodology for granularity based control of
parallelism in logic programs. Journal of Symbolic Computation, 22:715–734, 1996.

[55] Y. Lu and J. Potter. A type system for reachability and acyclicity. In A. P. Black, editor, European
Conference on Object-Oriented Programming, volume 3586 of Lecture Notes in Computer Science, pages
479–503. Springer-Verlag, 2005.

[56] Yi Lu and J. Potter. On ownership and accessibility. In European Conference on Object-Oriented
Programming, pages 99–123, 2006.

[57] Yi Lu and J. Potter. Protecting representation with effect encapsulation. In Principles of Programming
Languages, pages 359–371, 2006.

[58] P. Maier, D. Aspinall, and I. Stark. Explicit accounting of resources using resource managers. Technical
Report EDI-INF-RR-0859, The University of Edinburgh, October 2006.

[59] H. Mantel and D. Sands. Controlled Declassification based on Intransitive Noninterference. In Asian
Programming Languages and Systems Symposium, LNCS 3303, pages 129–145, Taipei, Taiwan, Novem-
ber 2004. Springer-Verlag.

[60] H. Mantel, H. Sudbrock, and T. Krauß er. Combining different proof techniques for verifying information
flow security. In G. Puebla, editor, Logic-based Program Synthesis and Transformation, volume Raporta
di Ricerca CS-2006-5, Università Ca’ Foscari Di Venezia, Venice, Italy, July 12–14 2006.

[61] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certification of Java/JavaCard
programs annotated with JML annotations. Journal of Logic and Algebraic Programming, 58:89–106,
2004.

[62] R. Medel, A. B. Compagnoni, and E. Bonelli. A typed assembly language for non-interference. In Italian
Conference on Theoretical Computer Science, volume 3701 of Lecture Notes in Computer Science, pages
360–374. Springer-Verlag, 2005.

64

www.sct.inf.ethz.ch/publications/index.html

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

[63] E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo. Towards execution time es-
timation for logic programs via static analysis and profiling. In Workshop on Logic Programming
Environments, page 16, August 2006.

[64] E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo. Using combined static anal-
ysis and profiling for logic program execution time estimation. In International Conference on Logic
Programming, number 4079 in Lecture Notes in Computer Science. Springer-Verlag, August 2006.

[65] N. Mitchell. The runtime structure of object ownership. In European Conference on Object-Oriented
Programming, pages 74–98, 2006.

[66] MOBIUS Consortium. Deliverable 1.1: Resource and information flow security requirements, 2006.
Available online from http://mobius.inria.fr.

[67] MOBIUS Consortium. Deliverable 3.1: Bytecode specification language and program logic, 2006. Avail-
able online from http://mobius.inria.fr.

[68] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly language. ACM
Transactions on Programming Languages and Systems, 21(3):527–568, November 1999.

[69] P. Müller. Modular Specification and Verification of Object-Oriented Programs. PhD thesis, FernUni-
versität Hagen, 2001.

[70] A. C. Myers. JFlow: Practical mostly-static information flow control. In Principles of Programming
Languages, pages 228–241. ACM Press, 1999. Ongoing development at http://www.cs.cornell.edu/
jif/.

[71] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare type theory. In
International Conference on Functional Programming, pages 62–73. ACM Press, 2006.

[72] D. Naumann. Verifying a secure information flow analyzer. In J. Hurd and T. Melham, editors,
Theorem Proving in Higher-Order Logics, volume 3603 of Lecture Notes in Computer Science, pages
211–226. Springer-Verlag, 2005. Preliminary version appears as Report CS-2004-10, Stevens Institute
of Technology, 2003.

[73] David A. Naumann. From coupling relations to mated invariants for checking information flow. In
ESORICS 2006 [38], pages 279–296.

[74] D. Pichardie. Bicolano – Byte Code Language in Coq. http://mobius.inria.fr/bicolano. Summary
appears in [67], 2006.

[75] A. Potanin, J. Noble, D. Clarke, and Robert Biddle. Generic ownership for generic java. In ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications, New York, NY,
USA, 2006. ACM Press.

[76] V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcliff. A new foundation for control-
dependence and slicing for modern program structures. In Mooly Sagiv, editor, European Symposium
on Programming, pages 77–93, 2005.

[77] A. Reinhard. Analyse nebenläufiger programme unter intransitiven sicherheitspolitiken. Master’s thesis,
RWTH Aachen, May 2006.

[78] A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler. In Computer
Security Foundations Workshop, pages 177–189. IEEE Press, 2006.

65

http://mobius.inria.fr
http://mobius.inria.fr
http://www.cs.cornell.edu/jif/
http://www.cs.cornell.edu/jif/
http://mobius.inria.fr/bicolano

MOBIUS Deliverable D2.1. Intermediate Report on Type Systems

[79] A. Sabelfeld. Confidentiality for multithreaded programs via bisimulation. In Andrei Ershov Interna-
tional Conference on Perspectives of System Informatics, volume 2890 of Lecture Notes in Computer
Science, pages 260–273. Springer-Verlag, 2003.

[80] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed programs. In Static
Analysis Symposium, volume 2477 of Lecture Notes in Computer Science, pages 376–394. Springer-
Verlag, 2002.

[81] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on Selected Areas
in Communication, 21:5–19, 2003.

[82] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In Computer
Security Foundations Workshop, pages 200–215. IEEE Press, 2000.

[83] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Computer Security Foun-
dations Workshop, pages 255–269. IEEE Press, 2005.

[84] D. Sannella and M. Hofmann. Mobile resource guarantees. EU Project IST-2001-33149, 2002–2005.
http://groups.inf.ed.ac.uk/mrg/.

[85] G. Smith and D. Volpano. Secure Information Flow in a Multi-threaded Imperative Language. In
Principles of Programming Languages, pages 355–364, 1998.

[86] Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-based information flow inference
for an object-oriented language. In R. Giacobazzi, editor, Static Analysis Symposium, volume 3148 of
Lecture Notes in Computer Science, pages 84–99. Springer-Verlag, 2004.

[87] L. Thiele and R. Wilhelm. Design for time-predictability. In Workshop on Design of Systems with Pre-
dictable Behaviour, volume 03471 of Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany,
2004.

[88] D. Volpano and G. Smith. A type-based approach to program security. In M. Bidoit and M. Dauchet,
editors, Theory and Practice of Software Development, volume 1214 of Lecture Notes in Computer
Science, pages 607–621. Springer-Verlag, 1997.

[89] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. In Computer Security
Foundations Workshop, pages 34–43, Rockport, Massachusetts, June 1998. IEEE Press.

[90] D. Wackerly, W. Mendenhall, and R. Scheaffer. Mathematical Statistics With Applications 5th Edition.
P W S Publishers, 1995.

[91] R. Wilhelm. Formal analysis of processor timing models. In S. Graf and L. Mounier, editors, SPIN
Workshop, volume 2989 of Lecture Notes in Computer Science, pages 1–4. Springer-Verlag, 2004.

[92] R. Wilhelm. Timing analysis and timing predictability. In F. S. de Boer, M. M. Bonsangue, S. Graf,
and W. P. de Roever, editors, Formal Methods for Components and Objects, volume 3657 of Lecture
Notes in Computer Science, pages 317–323. Springer-Verlag, 2004.

[93] Dachuan Yu and Nayeem Islam. A typed assembly language for confidentiality. In ESOP 2006 [37],
pages 162–179.

[94] S. Zdancewic and A. C. Myers. Secure information flow via linear continuations. Higher-Order and
Symbolic Computation, 15(2–3):209–234, September 2002.

[95] S. Zdancewic and A. C. Myers. Observational determinism for concurrent program security. In Computer
Security Foundations Workshop, pages 29–43, Pacific Grove, California, USA, June 2003. IEEE Press.

66

	1 Introduction
	2 Types for Information Flow Security
	2.1 Security policy
	2.2 Type system
	2.2.1 Extra security annotations
	2.2.2 Typing judgment and typing rules
	2.2.3 Typable programs
	2.2.4 Typable example

	2.3 Non interference theorem
	2.3.1 Memory model
	2.3.2 Indistinguishability
	2.3.3 Formal definition of non-interference
	2.3.4 Type system soundness

	2.4 Related work
	2.4.1 Typed assembly languages
	2.4.2 Higher-order low-level languages
	2.4.3 JVM
	2.4.4 Java
	2.4.5 Logical analysis of non-interference for Java
	2.4.6 Concurrency
	2.4.7 Declassification

	2.5 Foreseen improvements
	2.5.1 Multi-threading
	2.5.2 Distributedness and fault tolerance
	2.5.3 Bounded memory, arrays and subroutines
	2.5.4 Declassification

	3 Types for Basic Resource Policies
	3.1 Analysis of heap space consumption
	3.1.1 Type system for constant heap space
	3.1.2 General heap analysis for object-oriented programs

	3.2 Access permissions in Midlets
	3.2.1 Permission model
	3.2.2 Secure programs
	3.2.3 Abstract program model
	3.2.4 Static enforcement of secure permission usage
	3.2.5 Toward a PCC resource checker for midlets

	3.3 Explicit Accounting of External Resources
	3.3.1 Resource Managers in Java
	3.3.2 Syntax and Semantics of a Language for Resource Managers
	3.3.3 Effect Types
	3.3.4 Related Work
	3.3.5 Future Work

	3.4 Execution Time Estimation
	3.4.1 Overview of the Approach
	3.4.2 Platform-Dependent Static Cost Analysis
	3.4.3 Dealing with the Builtin and External Operations in the Language
	3.4.4 Calibrating Constants via Profiling
	3.4.5 Assessment of the Calibration of Constants
	3.4.6 Assessment of the Prediction of Execution Times
	3.4.7 Related Work

	4 Alias Control Types
	4.1 Universe Type System
	4.2 UJ - Universe Java
	4.2.1 Types, and Type Soundness
	4.2.2 Encapsulation
	4.2.3 Universe Types and the Bicolano Logic

	4.3 GUJ - Generic Universe Java
	4.4 UJ and Concurrency
	4.5 Future Work
	4.6 Related Work

	5 Conclusion

