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Executive Summary

This is Deliverable 2.6 of MOBIUS, an integrated project (FP6-015905) in the European Community Sixth
Framework Programme. Full information about MOBIUS is available online at the project website http:
//mobius.inria.fr.

This deliverable reports on initial progress on type systems and static analyses for advanced resource policies
and analysis (Task 2.4). The deliverable consists of copies of 13 publications that have appeared elsewhere
and includes contributions from all MOBIUS partners involved in Task 2.4, namely INRIA, LMU, UEDIN,
and UPM. The results reported here build on previous work in Task 2.3.

• Chapter 1 is a brief introduction outlining the space of type systems and program analyses covered by
Task 2.4.

• Chapter 2 presents INRIA’s implementation of an inter-procedural relational analysis for Java bytecode
that can compute invariants used in the generation of resource certificates.

• Chapter 3 reports on LMU’s prototype implementation of a type system for amortised heap-space
analysis, and LMU’s development of a generic resource extension to the MOBIUS Base Logic. The
extended logic serves as a target for translating type derivations into base logic proofs, as demonstrated
by interpretations of type systems for constant heap space and for block booking resources.

• Chapter 4 presents UEDIN’s approach to block booking: explicit accounting using resource managers.
Resource safety is then enforced either dynamically by run-time monitoring, or statically by a type
system.

• Chapter 5 summarises UPM’s efforts in order to improve the generic framework for cost analysis of
Java bytecode (cf. Deliverable 2.3) in several directions: Estimating the usage of specific resources,
solving recurrence equations generated by automatic cost analysis, developing cost analysis generic in
the concept of resource, and developing new analyses of heap structures in Java bytecode programs.

• Appendix A1 collates the 13 publications that constitute this deliverable.

This report reflects only the views of the authors and the European Community is not liable for any use
that may be made of the information contained therein.

1Save paper: Avoid printing the appendix (200+ pages).
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Chapter 1

Introduction

This deliverable reports on initial progress on type systems and static analyses for advanced resource policies
and analysis (Task 2.4). The deliverable consists of copies of 13 publications (collated in the appendix for
convenience) that have appeared elsewhere and includes contributions from all MOBIUS partners involved
in Task 2.4, namely INRIA, LMU, UEDIN, and UPM, cf. following chapters for details.

On mobile phones certain resources, like sending text messages, must be controlled tightly. As an example
scenario take bulk messaging where the user wants to send a text message to a number of recipients. Because
of the cost of sending text messages, the user must authorise each message explicitly. Java MIDP 2.0
implements this requirement by insisting on each message being authorised individually just before it is
sent, thus bombarding the user with confirmation screens. A better way to fulfil this requirement would
be collective authorisation of all messages in one go, also known as block booking. However, this requires
tracking the flow of authorised resources from the points of authorisation to the points of use, to ensure that
no more messages are sent than authorised.

The type systems and program analyses presented in this deliverable guarantee adherence to resource-
related properties of mobile code, like soundness of block booking, for instance. Type systems are an
enabling technology for the MOBIUS Proof-Carrying Code (PCC) architecture because they are intuitive,
automatic and scalable. Hence improvements of program coverage and language coverage as well as of
flexibility and scalability, as they are presented in this deliverable, are important steps to build the MOBIUS
PCC-architecture.

The following chapters describe various type systems and program analyses for controlling resources,
notably execution time, heap space, and access to external resources. The results reported here build on
previous work (Task 2.3) in various ways.

• Chapter 2 presents INRIA’s implementation of an inter-procedural relational analysis for Java bytecode
that can compute invariants used in the generation of resource certificates (e. g., for applications using
block booking).

• Chapter 3 reports on LMU’s prototype implementation of a type system for amortised heap-space
analysis, and LMU’s development of a generic resource extension to the MOBIUS Base Logic. The
extended logic serves as a target for translating type derivations into base logic proofs, as demonstrated
by interpretations of type systems for constant heap space and for block booking resources.

• Chapter 4 presents UEDIN’s approach to block booking: explicit accounting using resource managers.
Resource safety is then enforced either dynamically by run-time monitoring, or statically by a type
system.

• Chapter 5 summarises UPM’s efforts in order to improve the generic framework for cost analysis of
Java bytecode (cf. Deliverable 2.3) in several directions: Estimating the usage of specific resources,
solving recurrence equations generated by automatic cost analysis, developing cost analysis generic in
the concept of resource, and developing new analyses of heap structures in Java bytecode programs.
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Chapter 2

Polyhedral Analysis of Java Bytecode for
Certificate Generation

In this deliverable, INRIA reports on the following publication.

[1] F. Besson, T. Jensen, D. Pichardie, and T. Turpin. Result certification for relational program analysis.
Research Report 6333, IRISA, September 2007.

The publication documents the implementation of a relational (polyhedral) analysis for Java bytecode that
can compute invariants used in the generation of resource certificates.

INRIA [1] has developed a relational (polyhedral-based) static analysis for Java bytecode that is capable
of automatically computing invariants of the relations between program variables. By introducing variables
that represent the amount of resources available (cf. the resource model for Java MIDP resources developed
in the project), such an analysis can be used to prove that a program uses its resources correctly in the
sense that it does not use more resources than it has been granted. The following code fragment illustrates
this with an instance of the block booking idiom. In this example, the computed invariant relation between
the length of the array addr, the (global) variable sms holding the number of (permissions to send) SMSs
granted to the application and the iterator i combine to prove that the number of available SMSs will never
fall below zero.

public static void main(String [] addr) {
int N = 0; // Number of winners
String [] aux = new String[addr.length]; // Array with winners at the start, losers at the end

for (int i = 0; i < addr.length; i++) // Fill the array of winners and losers
if ( competitor i is a winner )

{ aux[N] = addr[i]; N++; }
else

{ aux[addr.length−1−(i−N)] = addr[i]; }

grant(addr.length+N); // Allocate 2 messages to send to winners, 1 for losers
// Side effect: sms=addr.length+N;

// Send the messages themselves
//@ maintaining addr.length ≤ sms + i ≤ addr.length + N ∧ i ≤ addr.length ≤ sms + 2i − N
for (int i=0; i < addr.length; i++)

if (i<N)
sendSMS(2,aux[i]); // Side effect: sms=sms−2;

else
sendSMS(1,aux[i]); // Side effect: sms=sms−1;

}
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To infer such invariants, the analysis takes as input Java bytecode and infers for each bytecode instruction
a relation between global variables, the parameters to a method, local variables and the numeric values
stored on the stack. This relation is represented by elements of the abstract state underlying the analysis.
Rather than fixing a particular abstract domain from the outset, we have specified the bytecode analysis with
respect to an abstract numeric relational interface made up of a few central operations such as upper bounds,
variable renaming and projection. These operations can then be instantiated with standard relational
abstract domains such as polyhedra and octagons.

The bytecode analysis is defined by specifying for each bytecode an abstract transfer function which maps
abstract states to abstract states. There are several issues that had to be addressed in order to extend basic
polyhedral analyses of imperative programs to an analysis of the stack-based, object-oriented, procedural
Java bytecode:

• The operand stack of Java bytecode can be costly to model fully in a relational analysis. We enrich
the abstract domain to include symbolic expressions that represent the content of a stack element in
terms of program variables. This de-compilation of the stack also allows to extend the analysis to
handle more specific entities such as eg. array length.

• The analysis currently employs a simple model of the heap of objects in which objects are abstracted
to their type and their fields are ignored. The only exception to this are arrays where the size (but
still not the content) is represented.

• The analysis is inter-procedural. It handles recursion and computes for each method a set of pre- and
post-conditions that represent invariants at the start and end of method execution, respectively.

The correctness of the analysis specification has been proved using a standard approach based on abstract
interpretation using Galois connections to formalise the link between elements of the abstract domain and
set of program states. A distinctive feature of the proof is that it has been conducted inside the Coq proof
assistant, providing a machine-checkable proof of semantic correctness.

An actual solution to the flow equation defining the analysis of a bytecode program can be computed
by combining the analyser with an implementation of a relational domain such as Polka or PPL. We have
developed an implementation that uses the Polka polyhedral library and which gives satisfactory analysis
precision and time for small to medium-sized benchmarks.

The invariants computed by the relational analysis can serve as the basis for generating compact certifi-
cates for use in a proof carrying code scenario based on static analysis. The invariants often provide more
information than strictly necessary for proving that a program respects a given security policy. There is
hence room for pruning such invariants in order to obtain compressed certificates of code correctness.

The analysis specification can be re-used to build a certificate checker for Java bytecode that can be
used in a PCC scenario where bytecode comes equipped with resource certificates. Such a checker has been
developed and installed on a mobile device as part of Work Package 4.
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Chapter 3

(Amortised) Heap Space Consumption,
and Numeric Correspondence Assertions

In this deliverable, LMU reports on the following publications.

[1] L. Beringer, M. Hofmann, and M. Pavlova. Certification using the Mobius base logic. In Formal Methods
for Components and Objects: Revised Lectures from the 6th International Symposium FMCO 2007,
Lecture Notes in Computer Science. Springer-Verlag, 2008. To appear.

[2] M. Hofmann and D. Rodriguez. Implementing a type system for amortised heap-space analysis. 2008.

Implementing a type system for amortised heap-space analysis (paper [2]) The prediction of
resource consumption in programs has gained interest in the last years. It is important for a number of areas,
notably embedded systems and safety critical systems. Different approaches to achieve bounded resource
consumption have been analysed. One of them, based on an amortised complexity analysis, has been studied
by Hofmann and Jost for a Java-like language called RAJA.

The present paper describes an automated type-checking algorithm for a modified version of RAJA which
we call RAJA+. Moreover we prove that the type checking algorithm we present is sound and complete
with respect to the declarative type system of RAJA+. This proves the decidability of the system.

On the other side, we have implemented the type checking algorithm as well as a parser and an interpreter
for RAJA+ programs in Ocaml. This prototype implementation supports further investigation in this area.

Certification using the Mobius Base Logic (paper [1]) This paper describes a core component of
MOBIUS’ Trusted Code Base, the MOBIUS base logic. This program logic facilitates the transmission of
certificates that are generated using logic- and type-based techniques and is formally justified w.r.t. the
Bicolano operational model of the JVM. The paper motivates major design decisions, presents core proof
rules, describes an extension for verifying intensional code properties, and considers applications concerning
security policies for resource consumption and resource access.

Of particular relevance for the present deliverable are Section 4 and 5 of the named publication. In
Section 4, a type system is presented that guarantees constant bound on heap space. In contrast to the
type system discussed above, the system is phrased on bytecode, and has been formally justified with
respect to the Bicolano operational semantics. Section 5 presents a solution to the block booking challenge,
namely a bytecode-level type system for numeric correspondence assertions, where the authorisation request
operation is parametric in a variable, such that the number of authorisations that are requested may depend
dynamically on other data.
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Chapter 4

Safety Guarantees from Explicit
Resource Management

In this deliverable, UEDIN reports on the following publications.

[1] D. Aspinall, P. Maier, and I. Stark. Monitoring external resources in Java MIDP. Electronic Notes in
Theoretical Computer Science, 197(1):17–30, 2008.

[2] D. Aspinall, P. Maier, and I. Stark. Safety guarantees from explicit resource management. In For-
mal Methods for Components and Objects: Revised Lectures from the 6th International Symposium
FMCO 2007, Lecture Notes in Computer Science. Springer-Verlag, 2008. To appear.

The publications focus on the compile- and run-time guarantees, e. g., static and dynamic soundness of block
booking, cf. Chapter 1, of our approach to the explicit (i. e., manifest in code) management of resources
such as text messages.

In [1], we present a Java library for MIDP devices which tracks and controls at run-time the use of
potentially costly resources, such as sending text messages. The library supports block booking of resources
while maintaining the security guarantee that attempted resource abuse is trapped. Tracking of resources is
done by resource managers, special objects encapsulating multisets of authorised resources. This allows for
fine-grained tracking; for instance, we are able to track not just the total number of text messages sent by an
application, but the number of messages sent to each individual recipient. To reduce the run-time overhead
of tracking multisets, resource managers can easily be erased without altering an application’s behaviour if
that application is dynamically resource safe, i. e., cannot be caught abusing resources. Additionally, the
library introduces a flexible notion of policy for deciding which resources to grant.

The resource manager library for trapping attempts to abuse resources at run-time can be viewed as a
language-based mechanism enforcing resource safety at run-time. In [2], we complement this with a type
system for proving that a given program (in a functional language with resource managers) does not attempt
to abuse resources. The type system derives logical constraints (in a generic logical constraint language)
approximating the effects of evaluating program expressions. Typability of functions in the effect type
system induces a notion of static resource safety, and in particular implies dynamic resource safety. As a
consequence, resource managers can always be erased from well typed programs.

The decidability of type checking in the above type system rests on the decidability of satisfiability in
the underlying constraint language. As examples like the bulk messaging application reveal, meaningful
types require a constraint language able to express properties of multisets (to model resource managers) and
container data structures (like vectors and dictionaries). We are currently investigating decidable fragments
of such expressive constraint languages.
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Chapter 5

Cost Analysis

In this deliverable, UPM reports on the following publications.

[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination analysis of Java
bytecode. In International Conference on Formal Methods for Open Object-based Distributed Systems,
Lecture Notes in Computer Science 5051, pages 2–18. Springer-Verlag, 2008.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic inference of upper bounds for recurrence
relations in cost analysis. In Static Analysis Symposium, Lecture Notes in Computer Science 5079, pages
221–237. Springer-Verlag, 2008.

[3] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap space analysis of Java bytecode. In International
Symposium on Memory Management, pages 105–116. ACM Press, 2007.

[4] S. Genaim and F. Spoto. Constancy analysis. In M. Huisman, editor, 10th Workshop on Formal
Techniques for Java-like Programs, July 2008.

[5] M. Marron, M. V. Hermenegildo, D. Kapur, and D. Stefanovic. Efficient context-sensitive shape analysis
with graph based heap models. In Compiler Construction, Lecture Notes in Computer Science, volume
4959, pages 245–259. Springer-Verlag, 2008.

[6] M. Méndez-Lojo and M. V. Hermenegildo. Precise set sharing analysis for Java-style programs. In
Verification, Model Checking and Abstract Interpretation, Lecture Notes in Computer Science, volume
4905, pages 172–187. Springer-Verlag, 2008.

[7] E. Mera, P. López-García, M. Carro, and M. Hermenegildo. Towards execution time estimation in
abstract machine-based languages. In Principle and Practice of Declarative Programming, pages 174–
184. ACM Press, 2008.

[8] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Customizable resource usage analysis for Java byte-
code. Technical Report UNM TR-CS-2008-02 - CLIP1/2008.0, University of New Mexico, January 2008.

The above publications summarise the effort done by UPM in order to improve the generic framework
for cost analysis of Java bytecode, that have been reported in the previous year, in several directions:
(1) applying it to estimate the usage of specific resources; (2) developing a practical solver for recurrence
equations generated by automatic cost analysis; (3) developing a cost analysis that is generic in the concept
of resource at the user level, and (4) developing new analyses for inferring properties of heap structures in
Java bytecode programs, which are used to improve the precision of cost analysis.

As regards (1), we have developed a heap consumption analysis for Java bytecode [3], which is based on
the generic framework for cost analysis that has been reported last year (Deliverable D2.3). The analysis
generates heap space cost relations which define at compile-time the heap consumption of a program as
a function of its input data size. These relations can be used to obtain upper bounds on the heap space
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allocated during the execution of the different methods. In addition, we have described a possible refinement
of the analysis, by relying on escape analysis, in order to take into account the heap space that can be
safely deallocated by the garbage collector upon exit from a corresponding method. We have reported a
prototype implementation and its application for the inference of heap usage proportional to the data size
including constant, polynomial and exponential heap consumption. We have also presented a framework for
estimating upper and lower bounds on the execution times of logic programs, which works at the level of
the corresponding bytecode-based abstract machine [7]. This framework is based on a program independent
profiling stage which calculates constants or functions bounding the execution time of each abstract machine
instruction. In addition, we have continued the study of the connection between termination and cost
analysis [1], and developed a framework for termination analysis for Java bytecode programs which makes
extensive use of the components of the cost analysis framework. Given a bytecode program, our approach
produces a constraint logic program, whose termination entails termination of the bytecode program. This
allows applying the large body of work in termination of constraint logic programs to termination of Java
bytecode. A prototype analyser has been described and initial experiments were reported in [1].

As regards (2), in a more general direction, in [2], we have studied the features of recurrence relations
generated by automatic cost analysis and explained why existing computer algebra systems are not appropri-
ate for automatically obtaining closed form solutions nor upper bounds of them. Then, we have presented
and implemented a practical framework for the fully automatic generation of reasonably accurate upper
bounds of recurrence relations originating from cost analysis of a wide range of programs. The approach is
based on programming language techniques such as the inference of ranking functions and loop invariants
and on partial evaluation.

As regards (3), we have developed, implemented, and benchmarked a cost analysis for Java bytecode [8]
that is generic in the concept of resource at the user level. An assertion language allows users to define
application-dependent notions of resources such as bytes sent or received by an application, number of
files left open, number of SMSs sent or received, number of accesses to a database, money spent, energy
consumption, etc. This language is also used to define the resource consumption of some relevant elementary
or library operations. From these definitions our analysis derives in an automated way functions which return
an upper bound on the usage that the whole program (and individual blocks) make of that resource for any
given set of input data sizes. We have also implemented and studied this analysis experimentally on an
interesting set of user-defined resources.

As regards (4), we have developed several analyses for inferring properties of heap structures in the
context of Java bytecode. This includes an analysis for inferring possible sharing between heap structures
[6], an analysis for approximating the shape of heap structures [5], and an analysis for inferring immutability
of heap structures [4]. These analyses are extensively used in the cost analysis framework developed at UPM.
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Abstract: We define a generic relational program analysis for an imperative,
stack-oriented byte code language with procedures, arrays and global variables
and instantiate it with an abstract domain of polyhedra. The analysis has
automatic inference of loop invariants and method pre-/post-conditions, and ef-
ficient checking of analysis results by a simple checker. Invariants, which can be
large, can be specialized for proving a safety policy using an automatic pruning
technique which reduces their size. The result of the analysis can be checked
efficiently by annotating the program with parts of the invariant together with
certificates of polyhedral inclusions, which allow to avoid certain complex poly-
hedral computation such as the convex hull of two polyhedra. Small, easily
checkable inclusion certificates are obtained using Farkas lemma for proving the
absence of solutions to systems of linear inequalities. The resulting checker is
sufficiently simple to be entirely certified within the Coq proof assistant.
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Certification de résultat pour l’analyse de

programme relationnelle

Résumé : Nous proposons une analyse générique de programme relationnelle
pour un langage de bytecode impératif avec pile d’opérande, procédures, ta-
bleaux et variables globales. Cette analyse est instanciée avec un domaine
abstrait de polyèdres. Elle propose une inférence automatique d’invariants de
boucle et de préconditions/postconditions de procédures, ainsi qu’une vérification
efficace du résultat de l’analyse par un vérificateur simple. Les invariants, qui
peuvent être grands, peuvent être spécialisés pour prouver une propriété de
sûreté en utilisant une technique automatique de compression de taille de cer-
tificat. Le résultat de l’analyse peut être vérifié efficacement en annotant le
programme avec une partie des invariants et quelques certificats d’inclusion
de polyèdre, qui permettent d’éviter certaines calculs polyédriques complexes
comme le calcul de l’enveloppe convexe de deux polyèdres. Nous obtenons des
certificats d’inclusion petits et facilement vérifiables grâce au lemme de Farkas
pour prouver l’absence de solution dans un système d’inégalités linéaires. Le
vérificateur ainsi obtenu est suffisamment simple pour être entièrement certifié
avec l’assistant à la preuve Coq.

Mots-clés : Analyse statique, interprétation abstraite, bytecode Java, Coq
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Result certification for relational program analysis 3

1 Introduction

Logic-based, static program verification, be it in form of abstract interpretation,
symbolic model checking or interactive proving of programs, is used in a number
of ways to improve the confidence in safety-critical systems and for protecting
host machines from malicious code, as e.g., done by the Java byte code verifier.
As applications and the program logics grow in complexity, an automated tech-
nique for verifying program invariants based on a program logics should ideally
meet all of the following three requirements:

� Automatic Inference: the complexity of both programs and the underlying
logic can quickly make it burdensome to conduct program proofs manu-
ally. Automatic inference of program properties is necessary to obtain a
technique that scales.

� Result certification: when inference is available, it often relies on advanced
deductive methods for inferring an invariant whose size and complexity
make it difficult to ascertain its validity manually. Efficient checking of
the result of the inference or of any proposed invariant in general becomes
important.

� Small Trusted Computing Base (TCB): the result checker becomes the
cornerstone of the reliability of the verification framework. In order to
reduce the part of the code base that needs to be trusted without proof,
the checker should be kept sufficiently simple and small in order to be able
to verify the checking algorithmics mechanically.

Program verification based on general Hoare-style program logics may follow
the Verification Condition Generator (VCGen) approach of e.g., Extended Static
Checking by Flanagan, Leino et al. [14] or use expressive type systems such
as the dependent type systems of Xi and Pfenning [27] for proving properties
of programs. The approaches based on VCGens are generally complete for
partial correctness and will produce a set of verification conditions which, when
satisfied, will allow to conclude that a given program property holds in the
logic. Verification conditions often fall into fragments of logic that require them
to be proved by dedicated decision procedures or theorem provers. VCGens
and the type-based approaches are primarily concerned with invariant checking
and discard part of the inference problem by relying on loop invariants and pre-
post-condition of methods to be provided by the programmer. In terms of small
TCB, the VCGens remain complex software which are hard to prove correct
in extenso. The machine-checked formalizations e.g., by Nipkow, Wildmoser
et al. [25, 26] show that this is indeed possible to certify an entire VCGen
inside a proof assistant but also that this remains a major software certification
challenge.

Another strand of program verification is based on abstract interpretation.
Abstract interpretation is an automatic technique for inferring program prop-
erties in the form of fixpoints of monotone data flow functions. As a theory
of proving programs it has strong semantic foundations. At the same time it
should be noted that the algorithmics of the domains underlying the more ad-
vanced analyses such as polyhedral analysis (initially described by Cousot and
Halbwachs [13]) is highly non-trivial. Checking an invariant is in theory sim-
ple as it only requires one more iteration to check that a property is indeed a
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4 Besson, Jensen, Pichardie & Turpin

fixpoint but, as said, this computation does in certain cases rely on non-trivial
algorithmics that forms part of what must be trusted. In previous work [9, 21],
some of the authors formalised the theory of abstract interpretation inside the
proof assistant Coq and extracted Caml implementations of a variety of pro-
gram analyses. This Certified Abstract Interpretation approach represents a
systematic way of reducing the TCB of static analyzers and fulfills the three
requirements listed above. However, a fully mechanised correctness proofs of
more advanced program analysers such as an optimised, polyhedral-based anal-
ysis would require an enormous effort in terms of program certification.

The purpose of this paper is to demonstrate that by focusing on certifying
the result of the analysis rather than the analysis itself, it is possible to develop
a verification framework for advanced program properties that satisfies all of the
three desired properties and, at the same time, requires a significantly smaller
effort in order to be proved correct. This idea was previously used by Wildmoser
et al [24] who use the result of an untrusted interval analysis in a VCGen for
byte code and by Leroy [17] in his certification of a compiler back-end where
he, rather than certifying the complex graph-coloring algorithms for register
allocation, proves the correctness of a checker that verifies a given coloring re-
turned by an untrusted graph-coloring algorithms. Here, we generalise this idea
by developing a relational analysis framework together with a certified checker.
The basic observation is that an abstract interpretation can be decomposed into
an abstract domain of properties, a generic program logic for reasoning about
these properties and a fixpoint engine for solving recursive equations over the
abstract domains. The inference does not need to use certified abstract domain
operations and fixpoint engines, and the checking of invariants does not need
to use a fixpoint engine at all. We take advantage of this to design a checker
that re-uses the program logic but replaces the more complex domain operations
with simpler ones, at the expense of providing some extra information in the
certificate accompanying a program.

2 Overview

In the first part of this paper, we will develop a fully relational, interprocedural
analyser which automatically infers an invariant for each control point in the
program, a pre-condition that must hold at the point of calling a procedure
and a post-condition that is guaranteed to hold when the procedure returns.
Relational analyses are useful for finding loop invariants needed for proving
program safety, e.g. when verifying the resource usage of programs or verifying
safety properties related to safe memory access such as checking that all array
accesses are within bounds. We will take Safe Array Access as an example
safety policy and illustrate our approach with the Binary Search example given
in Fig. 1, showing how the analysis will prove that the instruction that accesses
the array vec with index mid will not index out of bounds.

We have annotated the code of Binary Search with the invariants that have
been inferred automatically. Invariants refer to values of local and global vari-
ables and can also refer to the length of an array. For example, the invariant (I3)
asserts among other properties that when entering the while loop, the relation
0 ≤ low < high < |vec| is satisfied. Similarly, the post-condition ensures that
the result is a valid index into the array being searched, or −1, indicating that
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// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I3) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I4) key0 = key∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0| ∧ low+ high− 1 ≤ 2 · mid ≤
low + high

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I5) key0 = key ∧ |vec0| = |vec| ∧ −2 + 3 · low ≤ 2 · high + mid ∧ −1 + 2 · low ≤
high + 2 · mid ∧ −1 + low ≤ mid ≤ 1 + high ∧ high ≤ low + mid ∧ 1 + high ≤ 2 · low + mid ∧
1 + low + mid ≤ |vec0|+ high ∧ 2 ≤ |vec0| ∧ 2 + high + mid ≤ |vec0|+ low

}
// (I6) key0 = key ∧ |vec0| = |vec| ∧ low − 1 ≤ high ≤ low ∧ 0 ≤ low ∧ high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

Figure 1: Binary search

the element was not found. In addition, the analysis introduces a 0-indexed
variable (such as e.g. key0 in the example) for each parameter (and also for the
global variables, of which there are none in the example) in order to refer to its
value when entering the procedure. The effect of this is that the invariant on
exit of the program defines a relation between the input and the output of the
procedure, thus yielding a summary relation for the procedure.

2.1 Compressing invariants

Abstract interpretations may give you more information than you need for prov-
ing a particular property. In the case of the Binary Search example, if we are
only interested in proving the validity of array accesses, there are a number of
relations between variables in the invariants that can be forgotten. Reducing
the number of constraints and the number of variables under consideration can
lead to a significant gain in execution time when it comes to checking a pro-
posed invariant. For example, pruning the invariants in Fig. 1 with respect to
this property yields the simpler invariant shown in Fig. 2:

Notice that the inferred loop invariant I ′3 is close to what a specifying pro-
grammer of Binary Search might have come up with, but here produced auto-
matically. We explain pruning of procedures in Section 7.

2.2 Analysing a stack-based language

Polyhedral analysis of While languages is well understood but we want our
framework to be able to analyse byte code programs and not only source code.
We could in theory avoid the problem by transforming the program into three-
address code and treat each stack location as a local variable but this trans-
formation is expensive from an algorithmic point of view, as it increases the
number of times that the relation has to be updated. Instead, we achieve the
effect of this transformation by defining an analysis for stack-oriented byte code
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// PRE: True
static int bsearch(int key, int[] vec) {

// (I′
1
) |vec0| = |vec| ∧ 0 ≤ |vec0|

int low = 0, high = vec.length - 1;
// (I′

2
) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|

while (0 < high-low) {
// (I′3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|

int mid = (low + high) / 2;
// (I′4) |vec| − |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧
// 2 · high − 2 · mid− 1 ≥ 0 ∧ |vec0| − high − 1 ≥ 0

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I′
5
) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|

}
// (I′6) 0 ≤ |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

Figure 2: Binary search after invariant pruning

that combines relational abstract interpretation with symbolic execution, fol-
lowing an idea previously used for analysing Java byte code by Xi and Xia
[28] and Wildmoser et al [24]. This technique abstracts the environment of lo-
cal variables by a relation (e.g., a polyhedron) and replace the operand stack
with a stack of symbolic expressions used to “decompile” the operations on the
operand stack. For example, the comparison of variables low and high will be
compiled to the byte codes below, which are analysed in a state consisting of
the relation I2 as defined in Fig. 1 and an abstract stack that evolves as values
are pushed onto the stack.

[] I2

7 : ipush 0 0 I2

8 : iload high high :: 0 I2

9 : iload low low :: high :: 0 I2

10 : isub (high−low) :: 0 I2

11 : if icmpge 56 [] I3

Before the comparison in instruction 11, the stack top contains the expression
high−low, reflecting that in the real execution the stack top at this point will
contain the value of this expression. When we learn from the test that the
expression high>low evaluates to true in the state immediately following the
comparison (and only then), we update the relation accordingly to obtain in-
variant I3. Similarly, we have to update the relation when assigning a new value
to a variable. For example, the instruction that assigns (high+low)/2 to mid is
compiled and analysed as shown below. Again, the relation I3 is only updated
when the assignment to mid is done, to yield relation I4.
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[] I3

14 : iload low low I3

15 : iload high high :: low I3

16 : iadd (high+low) I3

17 : ipush 2 2 :: (high+low) I3

18 : idiv ((high+low)/2) I3

19 : istore mid [] I4

More generally, with the abstract stack of expressions, only the comparisons and
assignment to variables require updating the relation. In a polyhedron-based
analysis this is a substantial saving.

2.3 Result checking with certificates

Checking an invariant obtained by computing a post-fixpoint of an abstract
interpretation is in theory simple as it only requires one more iteration to check
that it is indeed a post-fixpoint. In addition, only invariants at certain program
points such as loop headers are required for re-building an entire invariant in one
iteration. Lightweight Bytecode Verification by Rose [22] and the more general
Abstraction-Carrying Code by Albert, Puebla and Hermenegildo [1] exploit this
to construct efficient checkers for invariant-based program certificates. For the
code in Fig. 2, only I ′2 is required.

The inference of invariants using our relational analysis uses an iterative fix-
point solver over an abstract domain of polyhedra and is in principle amenable
to the same technique. However, despite efficient implementations of basic poly-
hedral operations, the algorithmic complexity of operations such a computing
the least upper bound (i.e. the convex hull) of two polyhedra remains high, and
certifying them in a proof assistant would be a major undertaking.

Instead, we propose an enriched certificate format which has the virtue of
being simpler to check, at the cost of sending more information than in basic
fixpoint reconstruction. We exploit that, for the checker, the only important
property of the convex hull operators is that it produces an upper bound of two
polyhedra and therefore can be replaced by inclusion checks with respect to an
upper bound that is proposed by the certificates. Upper bounds are computed
at join points so in Fig. 2 we would also supply I ′5.

Safety checks also reduces to inclusions of polyhedra as verifying the array
access vec[mid] amounts to ensuring that I ′4 implies 0 ≤ mid < |vec|. By
simple propositional reasoning, this reduces to proving that the linear systems
of constraints −mid− 1 ≥ 0∧ I ′4 and mid− |vec| ≥ 0∧ I ′4 have no solution. Due
to a result by Farkas, such problems can be checked efficiently using certificates
by a simple matrix computation. The key insight is that unsolvability follows
from the existence of a positive combination of the constraints which yield a
strict negative constant. This would lead to a contradiction because the sum
and product of positive quantities cannot be strictly negative. The certificate is
therefore a vector which records the coefficients of the positive combination. For
example, the certificate [2;2;0;0;1;2] proves that the constraints mid−|vec| ≥
0 ∧ I ′4 are unsatisfiable, as the expression

2 · (mid− |vec|) + 2 · (|vec| − |vec0|) + 0 · · · ·+ 0 · · · ·+
1 · (2 · high− 2 · mid− 1) + 2 · (|vec0| − high− 1)
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8 Besson, Jensen, Pichardie & Turpin

evaluates to −2. We explain these certificates in detail in Section 8.

2.4 Certified certificate checkers

The result checking technique explained above already drastically reduces the
TCB of the analysis result which only rely on the result checker. To further
reduce the TCB, we have machine-checked the result checker of our analysis in
the Coq proof assistant. The main components of the formalisation are

1. a predicate Safe:program→Prop which models the safe programs with re-
spects to the the semantics described in Section 4,

2. a function checker:program→certificate→bool, which checks the safety
of a program using a certificate containing a (partial) result of an analysis
and some inclusion certificates,

3. a machine checked proof establishing the correctness of the checker:

Theorem checker_correct :
∀ p cert, checker p cert = true → Safe p.

The Trusted Computed Base is hence reduced to the Coq type checker and the
formal definition of program safety.

Once the certified result checker is verified (by the Coq type checker) and
installed by the code consumer, two scenarios can be envisaged to verify the
safety of programs sent by producers. In the first one, the consumer may use an
efficient Ocaml version of the checker, extracted from the Coq version thanks
to the Coq extraction mechanism. The other alternative is related to proof by
reflection. For each program p and certificate cert the consumer may build a
foundational Coq proof of Safe p. To do so he only has to check in Coq the
term checker_correct p cert refl_eqtrue where refl_eqtrue denotes a proof
of true=true. It is the role of the Coq reduction engine to verify during type
checking if true=true is equivalent to checker p cert = true by running the
checker inside Coq. In this way we combine two desirable features which are
often difficult to reconcile in state-of-the art Proof Carrying Code: foundational
proofs and small certificates.

3 Notations

Let A and B be sets. If A and B are disjoint then A + B is the disjoint sum of
A and B. We write A⊥ the set A + {⊥}. For f ∈ A → B⊥, dom(f) = {a ∈ A |
f(x) 6= ⊥}. Let f ∈ A → B, f [x 7→ v] is the function identical to f everywhere
except for x for which it returns v. The notation [x1 7→ v1; . . . ; xn → vn] stands
for a function f of domain {x1, . . . , xn} such that f(xi) = vi. A∗ is the set of
lists of elements of A. We write [] for the empty list and a0 :: . . . :: an−1 is a
list l of length n (|l| = n) whose head (resp. tail) is a0 (resp. an−1). l[i] is the
i-th element of l. We write ai the list that is the repetition of a, i times. Let
V , W be totally ordered sets. For x ∈ V , ιV (x) is the index of x in set V and
ι−1
V is the inverse function. We abuse notations and identify A|V | with V → A
i.e., given a finite ordered set, V = {x1, . . . , xn} such that x1 < . . . < xn, we
identify the finite mapping [x1 7→ v1, . . . xn 7→ vn] with the n-tuple (v1, . . . , vn).
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We will write AV to denote both A|V | and V → A. Let ρ ∈ AV and V ′ ⊆ V ,
ρ|V ′ ∈ AV ′

is the restriction of e over the variables of V ′ such that for all x ∈ V ′,
ρ|V ′(x) = e(x). Given V and W disjoint set of variables, ρ1 ∈ AV and e2 ∈ AW ,
we write ρ1 ⊕ ρ2 ∈ AV +W for the finite mapping such that (ρ1 ⊕ ρ2)|V = ρ1

and (ρ1 ⊕ ρ2)|W = ρ2. Let W and W ′ ordered sets of same cardinality. If

ρ ∈ AV +W , then ρW→W ′ ∈ AV +W ′

is obtained by renaming the variables of
W to the variables in W ′. Formally, we have ρW→W ′ (x) = ρ(x) if x ∈ V and
ρW→W ′(x) = ρ(ι−1

W (ιW ′ (x))) if x ∈ W ′. To make the distinction clear between
syntactic expressions and values, syntactic expressions are bracketed (

x
·
y
). For

example, we write x1 + ey a syntactic expression built by applying the + operator
to the constant 1 and the syntactic expression e.

4 A byte code language and its semantics

We use a simple stack-based byte code language to illustrate our ideas. Features
include integers, dynamically created (unidimensional) array of integers, static
methods (procedures) and static fields (global variables).

Programs are lists of methods and a method consists of a name, a number
of arguments and a list of instructions. In the following, f ranges over the set S
of static field names, r ranges over the set R = {r0, . . . , r|R|} of local variables
and id ranges over the set MethId of method names. Moreover, i and n range
over N or Z depending on the context and p is used for control points.

P ∈ Prog = Meth∗

m ∈ Meth = Sig × Code
Sig = MethId× N

c ∈ Code = Instr∗

instr ∈ Instr
instr ::= Nop | Ipush n | Iinc r n where n ∈ Z

Pop | Dup | Ineg | Iadd | Isub | Imult | Idiv
Load r | Store r
Getstatic f | Putstatic f
Newarray | Arraylength | Iaload | Iastore
Goto p | If icmp cond p

where cond ∈ {=, 6=, <,≤}
Invoke sig where sig ∈ Sig
Iinput | Return

The instruction set has operators for integer arithmetic and for manipulating
local variable, static fields and an operand stack. Instructions on arrays permit
to create, obtain the size of, access and update arrays. The flow of control can
be modified unconditionally (with Goto), and conditionally with the family of
conditional instructions If icmp cond which compare the top elements of the
run-time stack and branch according to the outcome. Input of data is modelled
with the instruction Iinput . The inter-procedural layer of the language contains
an instruction Invoke for invoking a method and an instruction Return which
transfers control to the calling method, and, at the same time returns the top
of the operand stack as result by pushing it onto the operand stack of the caller
(see the operational semantics below).
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10 Besson, Jensen, Pichardie & Turpin

A program state is composed of a frame stack, the value of static fields and
a heap of arrays and has the form <(m, p, s, l)∗, g, h>. Each frame is a triple
composed of a method m, a control point p to be executed next, an operand
stack s local to a frame and l a partial mapping from local variables to values.
The global heap h is used for storing allocated arrays and is modelled as a
partial function from memory locations to arrays. A special error state Error
models the run-time error arising from indexing an array outside its bounds.

ref ∈ Location
v ∈ Val = Z + Location
s ∈ Stack = Val∗

l ∈ LocVar = R → Val
a ∈ Array = Z∗

h ∈ Heap = Location → Array⊥
g ∈ Static = S → Val

Frame = Meth × N× Stack × LocVar
State = Frame∗ × Static ×Heap

+ {Error}

The byte code language is given an operational semantics via a transition
relation → between states. Some of the rules of the definition of → are shown
in Fig. 3. In the semantics, for a method m = ((id, n), c), we write m[p] for c[p].
Note that the language is untyped: registers and fields may (and will) point
successively to values of different types during execution. Instructions that re-
quire arguments with a certain type get stuck in case of error. Also, the number
of registers |R| is the same for all methods. Unused registers and uninitialised
fields have the value 0. Finally, we only consider states <st, g, h> such that
every location appearing in st, g is in dom(h), which is clearly preserved by the
semantics in Fig. 3.

5 Relational analysis of byte code

In this section, we describe a generic, relational analysis for byte code, parame-
terised with respect to a numeric relational domain used to abstract the values
of the local and global variables of the program.

5.1 Symbolic analysis of the stack

Rather than treating each stack location as a new local variable and include this
variable in the numeric abstraction describing the state, we integrate a symbolic
de-compilation into the analysis that abstracts a stack location by a symbolic
expression describing how the value at that stack location is computed from the
values of the local variables. The operand stack is hence abstracted by a stack
of symbolic expressions which represents relation between operands, static fields
and local variables.

The following definition of expressions and guards has two purposes: they
form the basis of the abstract domain for stacks (Expr only), which is specific to
stack-based byte code, and they serve as the interface with the numeric relational
domain, which is parametric. Note that those two aspects of the analysis are
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s, l, g, h
Ipush n
−→ n :: s, l, g, h n2 :: n1 :: s, l, g, h

Iadd
−→ n1 + n2 :: s, l, g, h

l(r) = n

s, l, g, h
Iinc r i
−→ s, l[r 7→ n + i], g, h s, l, g, h

Load r
−→ l(r) :: s, l, g, h

v :: s, l, g, h
Store r
−→ s, l[r 7→ v], g, h s, l, g, h

Getstatic f
−→ g(f) :: s, l, g, h

h(ref ) = ⊥ n ≥ 0

n :: s, l, g, h
Newarray
−→ ref :: s, l, g, h[ref 7→ 0n]

h(ref ) = a 0 ≤ i < |a|

i :: ref :: s, l, g, h
Iaload
−→ a[i] :: s, l, g, h

h(ref ) = a ¬ 0 ≤ i < |a|

i :: ref :: s, l, g, h
Iaload
−→ Error

m[p] = instr s, l, g, h
instr
−→ s′, l′, g′, h′

<(m, p, s, l) :: st, g, h> →P <(m, p + 1, s′, l′) :: st, g′, h′>

m[p] = If icmp cond p’ n1 cond n2

<(m, p, n2 :: n1 :: s, l) :: st, g, h> →P <(m, p′, s, l) :: st, g, h>

m[p] = If icmp cond p’ ¬ n1 cond n2

<(m, p,n2 :: n1 :: s, l) :: st, g, h> →P <(m, p + 1, s, l) :: st, g, h>

m[p] = Invoke (mn,n) m′ = ((mn, n), c) ∈ P

<(m, p, (vn−1 :: . . . :: v0 :: s), l) :: st, g, h> →P

<m′, 0, [], [r0 7→ v0; . . . ; rn−1 7→ vn−1; rn 7→ 0; . . . ; r|R| 7→ 0] :: (m, p, s, l) :: st, g, h>

m[p] = Return

<(m, p, v :: s, l) :: (m′ , p′, s′, l′) :: st, g, h> →P <(m′, p′+1, v :: s′, l′) :: st, g, h>

Figure 3: Operational semantics of the byte code language

completely independent apart from that.

ExprV 3 e ::= n | x | ? | e � e x ∈ V, � ∈ {+,−,×, /}
GuardV 3 t ::= e on e on∈ {=, 6=, <,≤, >,≥}

The expression ? represents an unknown value and is responsible for the non-
deterministic evaluation of expressions. Analyses will use this expression to
model interactive inputs and abstract away numeric quantities not in the scope
of the analysis. For instance, our analysis will not keep track of values stored
in arrays.

The semantics JeKρ and JtKρ of expressions and guards with respect to an
environment ρ ∈ V → Z are given below.

JnKρ = {n} JxKρ = {ρ(x)} J?Kρ = Z

Je1�e2Kρ = {n1 � n2 | n1 ∈ Je1K, n2 ∈ Je2K}
Je1one2Kρ ⇐⇒ ∃ n1 ∈ Je1Kρ, n2 ∈ Je2Kρ n1 on n2

Note that this is not the whole concretisation function for symbolic expressions,
which is described later (see Fig. 4).

Symbolic stacks Concrete operand stacks are abstracted by lists of symbolic
expressions. To deal correctly with values which are returned after a method
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12 Besson, Jensen, Pichardie & Turpin

call we use auxiliary variables in a given set A, so the symbolic abstract domain
for stacks is Expr∗R+S+A.

5.2 Numeric relational domain specification

Apart from symbolic expressions stacks, the byte code analysis is specified with
respect to an abstract numeric relational interface (defined below) that can
be instantiated with standard relational abstract domains. We thus assume a
domain D parameterised over a (finite) totally ordered set of variables V .

Language independent operators An abstract element is mapped to a
set of environments in ZV by the concretisation function γ : DV → P(ZV ).
To manage sets of variables, D is equipped with a projection operator ∃V ′ :
DV +V ′ → DV , an extension operator EV ′ : DV → DV +V ′ and a renaming
operator ·W→W ′ : DV +W → DV +W ′ .The abstract domain is also equipped
with a partial order v ⊆ DV × DV and meet and upper bound operators
u,t : DV × DV → DV . These components are language-independent.

Language dependent operators The abstract assignment of an expression
e ∈ ExprV to a variable x ∈ V is modelled by the operator Jx := eK] : DV → DV .
A guard t ∈ GuardV may be abstracted by two operators assume](t), ensure](t) :
Dv : the assume] operator computes an over-approximation of the guard, while
ensure] computes an under-approximation.

Definition 5.1 states formally the requirements over the operators of abstract
domain DV .

Definition 5.1. An abstract domain D is a family of sets DV with:

� a concretisation function γ : DV → P(ZV ),

� a decidable ordering relation v ⊆ DV × DV such that

d v d′ ⇒ γ(d) ⊆ γ(d′),

� a projection ∃V ′ : DV +V ′ → DV , an extension EV ′ : DV → DV +V ′ and a
renaming ·W→W ′ : DV +W → DV +W ′ operators such that:

γ(∃V ′(d)) = {ρ|V | ρ ∈ γ(d)}

γ(EV ′(d)) = {ρ | ρ|V ∈ γ(d)}

γ(dW→W ′ ) = {ρW→W ′ | ρ ∈ γ(d)} ,

� a meet operator u : DV × DV → DV such that

γ(d u d′) = γ(d) ∩ γ(d′),

� an upper bound operator t : DV × DV → DV such that

γ(d t d′) ⊇ γ(d) ∪ γ(d′),
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� an abstract assignment operator Jx := eK] : DV → DV s.t.

γ(Jx := eK]
(d)) ⊇ {ρ[x 7→ v] | ρ ∈ γ(d) ∧ v ∈ JeKρ},

� assume], ensure] : GuardV → DV such that

γ(ensure](t)) ⊆ {ρ | JtKρ} ⊆ γ(assume](t)).

With the operator assume# of the numerical domain we define the abstract
test JtK] : DV → DV of a guard t ∈ GuardV by:

Jeone′K](l]) = assume](eone′) u l] if on∈ {=, <,≤, >,≥}
Je6=e′K](l]) = (assume](e′<e) u l]) t (assume](e<e′) u l])

The specific rule for 6= is necessary to ensure a good precision with convex
polyhedra.

5.3 Analysis specification

The byte code analysis is defined by specifying for each byte code an abstract
transfer function which maps abstract states to abstract states (for non-jumping
intraprocedural instruction at least). The abstract states are pairs of the form
(s], l]) where l] is a relation between local, global and auxiliary variables and s]

is an abstract stack whose elements are symbolic expressions built from these
variables. More precisely, the analysis manipulates the following sets of vari-
ables:

R: set of local variables r0, . . . , r|L|−1 of methods,

R0: set of old local variables rold
0 , . . . , rold

|P |−1 of methods, representing their
initial values t the beginning of method execution,

S: set of static fields f0, . . . , f|S|−1 of the program

S0: set of old static fields fold
0 , . . . , fold

|S|−1 of the program used to model values
of static fields at the beginning of method execution

A: set of auxiliary variable aux 0, . . . , aux |A|−1 used to keep track of results
of methods in the symbolic operand stack

Moreover, we use a “primed” version X ′ of the variable set X for renaming
purposes. For each method the analysis computes a signature Pre → Post
whose meaning is

if the method is called with in a context where its arguments and
the static fields satisfy the property Pre then if the method returns,
then its result, its arguments, and the initial and final values of static
fields satisfy the property Post .

Preconditions are actually chosen by over-approximating the context in which
each method may actually be invoked. Additionally the analysis computes at
each control point of each method a local invariant between the current (R)
and initial (R0) values of local variables, the current (S) and initial (S0) values
of static fields, and some auxiliary variables (A) which are used temporarily to
remember results of method calls which are still on the stack
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14 Besson, Jensen, Pichardie & Turpin

instr Finstr

Nop (s], l]) → (s], l])
Ipush n (s], l]) →

`

n :: s], l]
´

Pop (e :: s], l]) →
`

s], l]
´

Dup (e :: s], l]) →
`

e :: e :: s], l]
´

Iadd (e2 :: e1 :: s], l]) →
`

xe2 + e1y :: s], l]
´

Isub (e2 :: e1 :: s], l]) →
`

xe2 − e1y :: s], l]
´

Imult (e2 :: e1 :: s], l]) →
`

xe2 × e1y :: s], l]
´

Idiv (e2 :: e1 :: s], l]) →
`

xe2/e1y :: s], l]
´

Ineg (e :: s], l]) →
`

x0− ey :: s], l]
´

Iinput (s], l]) → (? :: s], l])
Load r (s], l]) →

`

xry :: s], l]
´

Store r (e :: s], l]) →
`

s][?/r], Jr := eK](l])
´

Getstatic f (s], l]) →
`

xfy :: s], l]
´

Putstatic f (e :: s], l]) →
`

s][?/f ], Jf := eK](l])
´

Iinc r n (s], l]) →
`

s][xr − ny/r], Jr := r + nK](l])
´

Newarray (e :: s], l]) →
`

e :: s], l]
´

Arraylength (e :: s], l]) →
`

e :: s], l]
´

Iaload (e2 :: e1 :: s], l]) →
`

? :: s], l]
´

Iastore (e3 :: e2 :: e1 :: s], l]) →
`

s], l]
´

m[p] = instr 6∈ {Goto p’, If icmp cond p’, Invoke sig,Return}

Finstr(Loc(m, p)) v Loc(m, p + 1)
m[p] = Goto p

Loc(m, p) v Loc(m, p)

m[p] = If icmp cond p’ Loc(m, p) = (e2 :: e1 :: s], l])
`

s], Je1 cond e2K](l])
´

v Loc(m, p′)
m[p] = If icmp cond p’ Loc(m, p) = (e2 :: e1 :: s], l])

“

s], Je1 cond e2K](l])
”

v Loc(m, p + 1)

m[p] = Invoke (mn,n) ((m’,n),c’) ∈ P Loc(m, p) = (en−1 :: · · · :: e0 :: s], l])
“

∃R+S0+A

“dn−1

i=0
assume](ei = rold

i ) u ∃R0
(l])

””

S→S0

v Pre((mn , n), c′)

m[p] = Invoke sig (sig,c’) ∈ P Loc(m, p) = (en−1 :: · · · :: e0 :: s], l])
0

B

B

@

xaux jy :: s][?/aux j ],

∃S′+{res}Jaux j := resK

0

@

l]
S→S′

u ∃R0

„ dn−1

i=0
assume](ei = rold

i )S→S′

u Post(sig , c′)S0→S′

«

1

A

1

C

C

A

v Loc(m, p + 1)

where p is the index of the j−th Invoke in m
m[p] = Return Loc(m, p) = (e :: s], l])

∃R+A(Jres := eK](l])) v Post(m)
(m, n, c) ∈ P

d|S|−1

i=0
assume](fi = fold

i )
dn−1

i=0
assume](rold

i = ri) u Pre(m) v Loc(m, 0)
((main, 0), c) ∈ P

> v Pre((main, 0), c)

Figure 4: Relational byte code analysis with stack de-compilation

Definition 5.2 (Abstract domain). The abstract value for a program P is de-
scribed by an element (Pre,Post ,Loc) of the lattice

State# = Meth → DR0+S0

× Meth → DR0+S0+S+{res}

× Meth × N →
(

ExprR+S+A
? × DR0+S0+R+S+A

)

⊥

The analysis is specified as a solution of a constraint (inequation) sys-
tem associated to each program. The constraint system is formally defined
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Result certification for relational program analysis 15

in Fig 4. Note that extensions are left implicit. For non-jumping intraproce-
dural instructions, the constraint is defined via a transfer function in Expr ? ×
DR0+S0+R+S+A → (Expr?×DR0+S0+R+S+A)⊥. We (ab)use notation and write
(e :: s], l]) →

(

e :: e :: s], l]
)

for the function that maps a state of the form

(e :: s], l]) to the resulting state
(

e :: e :: s], l]
)

and other states to ⊥. The anal-
ysis maintains a symbolic version of the operand stack and most of the transfer
functions are defined as symbolic executions. The transfer functions for the
stack operations Nop, Pop and Dup mimic the semantics of those operations so
e.g., Dup will duplicate the expression on top of the (abstract) operand stack
and hence is abstracted by the function (e :: s], l]) →

(

e :: e :: s], l]
)

. The ab-
straction of the instruction Load r for fetching the value of local variable r just
pushes the expression xry onto the abstract stack (rather than projecting an ab-
stract value of r from the relation describing the local variables). Similarly, the
abstraction of the addition operation Iadd pops the two topmost expressions e1

and e2 from the abstract stack and replaces them with the symbolic expression

x
e2 + e1y.

The transfer function for the Store r operation updates the abstract envi-
ronment of local variables with the constraint that r is now equal to the value
given by the expression e on top of the abstract stack top. Formally, this is
done using the operation Jx := eK] provided by the interface of the relational
domain. By the same token, all occurrences of the sub-expression

x
x
y

in the
abstract stack become invalid, as r now (potentially) has changed value, and
are replaced by the “don’t know” expression x?y. The analysis abstracts arrays
references by the length of the referenced array, so the transfer functions for
Newarray(which takes the length as argument and returns a reference to the
created array) becomes the identity function. Similarly for Arraylength .

For all non-jumping instructions, we generate a constraint saying that the
state following the instruction should include the result of applying the transfer
function of the instruction to the state preceding the instruction. For the con-
ditional If icmp cond p’, we use the abstract tests provided by the relational
domain to take the outcome of the test into account, so e.g., at program point
p′ we know that the condition cond holds between the two top elements of the
stack. If these are given by expressions e1 and e2 then we know that the sym-
bolic expression xe1 cond e2y evaluates to true in the current environment. The
expression Je1 cond e2K](l]) in the rule for conditionals updates the environment
of local variables (l] to take this information into account. A similar constraint
is generated for the program point p + 1 using this time the negation cond of
the condition cond.

The analysis of method calls is the most complicated part. The complications
partly arise because we have several kinds of variables (static fields, local and
auxiliary variables) whose different scope must be catered for. The analysis
gives rise to two constraints: one that relates the state before the call to the
pre-condition of the method and one that registers the impact of the call on the
state immediately following the call site.

When invoking a method m′ from method m, we compute an abstract state
that holds before starting executing m′ and which constrains the Pre(m′) com-
ponent of the abstract element describing m′. This state registers that the n
topmost expressions e1, . . . , en on the abstract stack corresponds to the actual
arguments that will be bound to the local variables of the callee m′, by inject-
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16 Besson, Jensen, Pichardie & Turpin

ing the constraints ei = rold
i into the relational domain and adding them to the

current state as given by l]. Care must be exercised not to confound the pa-
rameters R0 of the caller with the parameters of the callee, hence the projecting
out of R0 before joining the constraints. Furthermore, the local variables R,
the initial values of static fields S0 and the auxiliary variables A of method m
have a different meaning in the context of method m′ and are removed from the
abstract state at the start of m′ too. Finally, the current value of static fields S
in m at the point of the method call becomes the initial value of the static fields
when analysing m′, hence the renaming of S into S0. The entire start state for
m′ is thus described by the expression

(

∃R+S0+A

(

l

i

assume](ei = rold
i ) u ∃R0(l

])

))

S→S0

The second rule for Invoke describes the impact of the method call on its
successor state. We use an auxiliary variable aux j (chosen to be free in s#) to
name the result of a method call which is pushed onto the stack. This variable
is constrained to be equal to the variable res which receives the value returned
by m′. The rest of the left-hand side expression of the constraint

l]S→S′ u ∃R0

(

l

i

assume](ei = rold
i )S→S′ u Post(m′)S0→S′

)

serves to link the post-condition Post(m′) of the method with the state l] of
the call site. These are linked via the local variables xi constrained to be equal
to the argument expressions ei and via the global static fields S. Again, some
renaming and hiding of variables is required: e.g., the initial values of the static
fields in m′, referred to by S0, correspond to the values of the static fields before
the call in the state l] and in the expressions ei, referred to by S. The renamings
S0 → S′ and S → S′, respectively, ensures that these values are identified.

Two rules are used to initiate the analysis of a method (constraint on
Loc(m, 0)) and of the entire program (constraint on Pre((main, n), c)). To ini-
tialise the analysis of a method m, the precondition Pre(m) is conjoined with
the constraints linking the variable fold

i to the current value of the static field fi

and linking the parameters rold
i with the local variables ri, in accordance with

how parameters are handled in e.g. Java byte code. The analysis of the main
method starts in the completely unconstrained state >.

5.4 Inference

The constraint system presented in the previous section can be turned into a
post-fixpoint problem by standard techniques. Consequently, the solutions of
the system can be characterised as the set of post-fixpoints {x | F ](x) v x}
of a suitable monotone operator F ] ∈ State] → State] operating on the global
abstract domain State] of the analysis. Assuming that State] is a complete
lattice1 we know that the least solution lfpF ] of this problem exists and can
be over-approximated by any post-fixpoint of F ]. Computing such a post-
fixpoint is the role of chaotic iterations [12] which operate on the equation

1For the polyhedra abstract domain this assumption is too strong but we can relax it by
considering a complete lattice containing State] and all its upper bounds [13].
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Result certification for relational program analysis 17

system associated with the constraint system and choose a suitable iteration
strategy [8]. Iteration is sped up by using widening on well-chosen control
points. Neither the iteration strategy nor the widening operators belong to the
TCB since the validity of the result can be checked with a post-fixpoint test.

5.5 Safety checks

Once the analysis has inferred correct invariants, this information is used to
check if they enforce the suitable safety policy. In a context of array bound
checking we must check that each array access is within the bounds of the
array. As a consequence, for each occurence of an instruction Iaload or Iastore
at a program point (m, pc), we test if the local invariant Loc(m, pc) computed
by the analysis ensures a safe array access.

Definition 5.3 (Abstract safety checks). We say a set of local invariant Loc ∈
(N → (Expr? × DP+S0+L+S+A)⊥) verifies all safety checks of a program if and
only if

∀m ∈ P, pc ∈ N,
m[p] = Iaload ⇒

Loc(m, pc) = (e2 :: e1 :: s], l]) ⇒
l] v ensure](

x
0 ≤ e2y) ∧ l] v ensure](

x
e2 < e1y)

∧
m[p] = Iastore ⇒

Loc(m, pc) = (e3 :: e2 :: e1 :: s], l]) ⇒
l] v ensure](

x
0 ≤ e2y) ∧ l] v ensure](

x
e2 < e1y)

5.6 Soundness of the analysis

Fig. 5 gives the concretisation functions for the abstract domains. The auxiliary
abstraction function β maps everything to an integer, abstracting arrays by
their length. γexpr defines concretisation of a symbolic expression with respect
to an environment. γPre maps pre-conditions to sets of calling contexts, γPost

maps post-conditions to relations between calling contexts and return contexts,
and γLoc maps local invariants to relations between calling contexts and local
program states. Note that concretisations contain only states such that all
locations that are being referenced are defined in the heap.

Definition 5.4 (Reachable states). For a method m in a program P , a heap
h, a static heap g, a set of local variables l, a frame stack st, the set JP Km

h,g,l,st

of reachable state from an execution of m starting in an initial configuration
(h, g, l, st) is defined by

JP Km
h,g,l,st =

{

s | <(m, 0, [], l′) :: st, g, h>
≥st
−−→

∗

P s

}

where
≥st
−−→

∗

P is the reflexive transitive closure of →P restricted to states who
have a form < . . . :: (m, . . .) :: st, . . . >.

The purpose of
≥st
−−→

∗

P is to collect only the states in between the start and
the end of the execution of a particular stack frame.
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18 Besson, Jensen, Pichardie & Turpin

βV : Heap × (V → Val) → (V → Z⊥)
(h, z) 7→ λx. z(x) if z(x) ∈ Z

|h(z(x))| if z(x) ∈ dom(h)

γ
expr

h,g,l,a
: ExprR+S+A → P(Val), h ∈ Heap, g ∈ Static, l ∈ LocVar

and a ∈ Val → Z

e 7→ JeKβR+S+A(h,l⊕g⊕a)

∪
n

ref ∈ dom(h)
˛

˛

˛ |h(ref )| ∈ JeKβR+S+A(h,l⊕g⊕a)

o

γPre : DR0+S0 → P(Static × Heap × LocVar)
pre 7→

˘

(g0, h0, l0) | βR0+S0 (h0, l0 ⊕ g0) ∈ γ(pre)
¯

γPost : DR0+S0+S+{res} → P((Static × Heap × LocVar)× (Static × Heap × Val))

post 7→



((g0, h0, l0), (g, h, v)) |
βS0+R0+S+{res}(h0, g0 ⊕ l0 ⊕ g ⊕ [res 7→ v]) ∈ γ(post)

ff

γLoc :
Expr?

× DR0+S0+R+S+A
→ P

„

(Static × Heap × LocVar)
× (Static × Heap × Stack × LocVar)

«

(e1 :: · · · :: en, loc) 7→

8

<

:

((g0, h0, l0), (g, h, v1 :: · · · :: vn, l)) |
∃a ∈ A → Z, ∀i ∈ J1, nK, vi ∈ γ

expr

h,g,l,a
(ei) ∧

βS0+R0+S+R+A(h0, g0 ⊕ l0 ⊕ g ⊕ l ⊕ a) ∈ γ(loc)

9

=

;

Figure 5: Concretisation functions

Definition 5.5 (Safe method). A method m in a program P is said to be safe
wrt. a precondition Pre ⊆ Heap×Static×LocVar if for all stack frames st and
all (h, g, l) ∈ Pre, Error 6∈ JP Km

h,g,l,st.

Theorem 5.6 (Correctness).
Let P be a program and (Pre ,Post ,Loc) a solution of the constraint system

associated with P . If Loc satisfies all safety checks then every method m in P
is safe wrt. to Pre(m). In particular,

<(((main, n), c), 0, [], λr.0) :: [], λf.0, λref .⊥ > 6→P Error

Proof. The proof is divided into two parts. We first prove that each reachable
intermediate state at a point (m, p) satisfies the property γLoc(Loc(m, p)), that
each method m is called in a context satisfying γPre(Pre(m)) and that its return
value (if it exists) satisfies γPost (Loc(m)). In the second part we prove that if a
state at some point (m, p) satisfies γLoc(Loc(m, p)) as well as the abstract safety
check associated with this point, then no error happens in the next semantic
step. To deal with the steps corresponding to procedure calls, the proof makes
use of an intermediate big-step operational semantics. Details are omitted for
lack of space.

6 Polyhedral analysis

We now instantiate the relational analysis framework using linear relations in the
form of convex polyhedra. Polyhedral program analysis has a well-established
theory [13] with several implementations [4, 15]. Here, we recall the basics of
this theory.

Definition 6.1. Convex polyhedra of dimension n (Pn ⊆ Qn) are (convex)
subsets of Qn that can be expressed as a finite intersection of half-planes of Qn.
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s1

s2

s3

r1

r2

Figure 6: Dual representation of polyhedra

Polyhedra can be represented as sets of linear constraints. It is desirable
to keep these sets in normal form i.e., without redundant constraints. For this
purpose, polyhedra libraries maintain a dual representation of polyhedra based
on generators in which a convex polyhedron is the convex hull of a (finite) set of
vertices, rays and lines. Vertices, rays and lines are respectively extremal points,
infinite directions and bi-directional infinite directions of the polyhedron. Fig. 6
shows a a polyhedron with four constraints whose dual representation is made
of three vertices (s1,s2,s3) and two rays (r1,r2).

The efficiency of the algorithm that maintains the normal form of the double
description is of crucial importance. For this task, state-of-the-art polyhedral
libraries [4, 15] use Chernikova’s algorithm [11]. In the worst case, the num-
ber of generators is exponential in the number of constraints (and vice-versa)
but, in practise, the double description offers a good performance. To alleviate
further the cost of normalising polyhedra, these libraries switch lazily from one
representation to the other.

Polyhedral cannot directly handle expressions that fall outside the linear
fragment. It would be sound but unsatisfactory to abstract those expressions
towards an arbitrary value i.e., the ? expression. More information can be
retained by linearising expressions [19]. For instance, the precise analysis of
Binary Search (Fig. 1) requires a precise model of euclidean divisions. Given
an integer constant n, the guard y = x/n is abstracted by the linear guards
0 ≤ x − n · y < n. Multiplications can also be linearised by using the range of
variables.

We now briefly explain how polyhedral algorithms implement the abstract
numeric relational domain specified in Definition 5.1. To be implemented effi-
ciently, the double description of polyhedra is needed, using Chernikova’s algo-
rithm to reconstruct the coherence of the double representation.

The convex polyhedron can directly be cast into an abstract numeric domain
by mapping variables of the domain to dimensions of the polyhedron. Hence,
we get DV = P|V | and the concretisation:

γ(P ) = {ρ ∈ ZV | ρ ∈ P ∩ ZV }

Renaming of variables consists in applying a permutation to the dimensions
of polyhedron. The extension operation which add new variables consists in
inserting new unconstrained dimensions at the relevant indexes.
Projections can be efficiently performed on the generator description of poly-
hedra in linear time. Each generator is projected by erasing the now irrelevant
dimensions.
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20 Besson, Jensen, Pichardie & Turpin

Intersections are computed by taking the union of the constraints of each
polyhedron.
The convex hull, i.e., least upper bound, is computed by taking the union of
the generators of both polyhedra.
An assignment Jx := eK] is modelled by the linear transformation (if e is
linear) that keeps all the variables unchanged except x which is mapped to e.
The transformation is applied to the generators.
Inclusion tests are using both representation at once. Checking the contain-
ment of two polyhedra (P v Q) amounts to verifying that the generators of P
satisfy the constraints of Q.
Widening operators are used by the fixpoint iterator to ensure convergence.
For convex polyhedra, there exist various widening operators [13, 3].
Assume and ensure operators are responsible for interpreting guards of the
target language. If the guard t is linear, a polyhedron is built from it and no
abstraction takes place. Otherwise, t has to be linearised. In the worst case,
universal (resp. empty) polyhedra can be used as sound (though very imprecise)
fallbacks.

7 Fixpoint pruning

The result of the polyhedral byte code analysis will be a fixpoint of the transfer
functions, representing an invariant of the program under analysis. This invari-
ant will often contain more information than necessary for proving a particular
safety policy such as absence of indexing outside array bounds. In the follow-
ing we show how to prune an invariant with respect to a given safety policy,
resulting in an invariant that is smaller and cheaper to verify.

7.1 Witnesses and pruning

We have applied the technique described in [7] for pruning constraint-based
invariants, with some adaptations allowing to handle our interprocedural poly-
hedral analysis on byte code better. First we recall the definition of witnesses
for this particular analysis.

Definition 7.1. A witness for a program P is a solution (Pre, Post, Loc) to
the constraint system associated with P that satisfies the safety checks of P (see
Definition 5.3).

We use this as the basis for building certificates, relying on the fact that if
there exists a witness for P then P is safe (see Theorem 5.6). Part of the witness
is sent to the checker in the constraint representation only (see Section 6), so we
aim at extracting a weaker witness with fewer linear constraints than the one
produced by the inference algorithm of Section 5.4 (if the analysis is accurate
enough for the program). Pruning leaves the symbolic expression stacks of the
witness unchanged because the checker recomputes them (and hence nothing is
transmitted about this part).

It is easy to see that there is generally no unique weakest witness nor a unique
witness with the minimum number of constraints (because the analysis is not
distributive). Also, the idea of starting from the safety requirements to compute
backward a witness that satisfies them cannot achieve the same precision as a
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prune(w) :=
let w′ = ∅
while w′ is not a witness do

choose a constraint C and k ∈ w′
|dep(C) s.t. w′, {k} 6` C

(or a check C such that w′ 6` C)
choose x ⊆ (w \ w′)|dep(C) such that w′ ∪ x, {k} ` C

(respectively, w′ ∪ x ` C)
w′ := w′ ∪ x

done
return w′

Figure 7: Witness pruning algorithm

forward analysis, because intuitively it would have to guess the invariants that
a forward analysis naturally discovers. For these reasons we use a technique
of pruning that removes as many linear constraints as possible from a given
witness.

7.2 Abstract algorithm

We use a variation of the greedy heuristic presented in [7]. In the following we
identify polyhedra with sets of constraints. We use

Var = {prem | m ∈ P} ∪ {postm | m ∈ P}
∪ {locm,p | m ∈ P, m = ((mn, n), c), p < |c|}

to denote the set of unknowns of the constraint system associated with P . For
an abstract element x = (Pre, Post, Loc) we define the set of linear constraints
of x:

x =
⋃

m∈P

{(locm,p, k) | Loc(m, p) = (s#, l#), k ∈ l#}
∪ {(prem, k) | k ∈ Pre(m)}
∪ {(postm, k) | k ∈ Post(m)}

For V ⊆ Var we define x|V = {(var, k) ∈ x | var ∈ V } and x|V is defined
accordingly.

Recall that the constraint system for P is a set of constraints of the form
F (x) v x|{v} where v ∈ Var . For a constraint c we note x, y ` C if F (x) v y|{v}
(we can do so since the expression stacks are fixed) and x ` C for x, x ` C.
We will overload the notation and write also x ` C if x satisfies the safety
check C. Then, for every such constraint C, we define a set dep(C) ⊆ Var that
represents the dependencies of this constraint, in the sense that if x, y ` C then
x|dep(C), y ` C. The definition of dep is straightforward. For example, if C
is the constraint Finstr(Loc(m, p)) v Loc(m, p + 1) corresponding to an non-
jumping intraprocedural instruction (see the first part of Fig. 4), then dep(C) =
{locm,p}. For the constraint . . . v Loc(m, p + 1) of an Invoke sig instruction,
dep(C) = {locm,p, post(sig,c)} where (sig, c) ∈ P .

The pruning algorithm is shown in Fig. 7. The main issue in this non-
deterministic algorithm is the choice of the subset x: we obviously want a
minimal one in the sense of set inclusion (achievable in reasonable time by
monotonicity), but it is not unique.

RR n
�

6333

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

36



22 Besson, Jensen, Pichardie & Turpin

7.3 Efficient pruning for polyhedral byte code analysis

Our strategy is to take a minimal such x that almost minimizes a cost function
taking into account the number of linear constraints, the number of non-null
coefficients in them, and, for Invoke , the number of post constraints (as opposed
to loc). This allows us to obtain a witness with simpler invariants and signatures.
The heuristic blindly applies the definition of ` while labelling (part of) the
search space. The dependency function dep helps by reducing the number of
linear constraints to be considered at each step.

Finally, we face a problem specific to the polyhedra domain when pruning an
invariant: in order to keep things small, the polyhedra are usually represented
in a minimal form in which the relation between a set of dimensions does not
necessarily appear as a dedicated linear constraint, but often as a consequence
of several other relations. For example, the constraint x ≤ z is implicit in
x ≤ y ≤ z. For the purpose of finding a small invariant, we may benefit from
being able to include such constraints. Our solution is to add some implicit
constraints to the invariant before pruning it. More precisely, for a polyhedron
in DV , we add all the projections ∃V \V ′ (see Section 6) where V ′ is a subset of V
of cardinality at most n. For the maximal number n of dimensions in the implicit
constraints to be generated, ∞ seems too costly for non-trivial programs, and
unnecessary. It turns out that 3 is enough for all of our examples, which is not
surprising because very few correctness proofs actually rely on linear invariants
involving more than three variables.

8 Result checking of polyhedral analysis

A result checker for abstract interpretation based static analysis can be reduced
to an (optimised) fixpoint checker [1], with the downside that the abstract do-
mains are still part of the TCB. Formally certifying optimised polyhedral li-
braries [4, 15] is feasible but would require an enormous certification effort.
Instead, we propose a lightweight verifier of polyhedral analyses using a result
checking methodology which has two advantages: i) the TCB is small, and
ii) the checking time is optimised.

8.1 The polyhedral domain revisited

Chernikova’s algorithm is at the origin of the computational complexity of con-
vex polyhedra operations, so a first approach would be to design a result checker
for Chernikova’s algorithm i.e., a normal form checker. This has the inconve-
nience that most of the polyhedral operations would be annotated with their
result together with a certificate attesting that it is in normal form. Instead,
we develop a checker which only uses the constraint representation of polyhedra
and which never need to normalise. Moreover, projections are not computed but
delayed using a set of extra existential variables. More precisely, our polyhedra
are represented by a list of linear expression over two disjoint sets of variables
V and E. Variables in v ∈ V are genuine variables while e ∈ E are (existential)
variables that represent dimensions which have been projected out.

Definition 8.1. Let V and E be disjoint sets of variables.

PV = Lin∗V +E
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where

LinV +E = {
x
c1 × x1 + · · ·+ cn × xny | ci ∈ Z ∧ xi ∈ V + E}.

Given es ∈ PV , the concretisation function is defined by

γV (es) = {ρ|V | ∀k ∈ es, Jk ≥ 0Kρ}

In the following, we show how to implement the polyhedral operations using
(only) polyhedra in constraint form.
Renaming simply consists in applying the renaming to the expressions within
the polyhedron. Because the existential variables belong to a disjoint set, no
capture can occur. In addition, for this encoding, extension is a no-op because
unused variables have no impact on the internal representation.

es ∈ PV ⇒ ∀W ⊇ V, es ∈ PW

Using Fourier-Motzkin elimination (see e.g.), [23], projections can be com-
puted directly over the constraint representation of polyhedra However, in the
worst case, the number of constraints grows exponentially in the number of
variables to project. To solve this problem, we delay the projection and sim-
ply register them as existentially quantified. This is done by renaming these
variables to fresh variables.
To compute intersections, care must be taken not to mix up the existential
variables. To avoid capture, existentially variables are renamed to variables
that are fresh for both polyhedra. Thereafter, the intersection is implemented
by taking the union of the expressions.
To implement the assume and ensure operators, the involved expressions are
first linearised and the obtained linear inequality is put into the form e ≥ 0
which now belongs to the set Lin defined above.
For convex polyhedra, assignment is efficiently implemented as an atomic op-
eration. However, it can be expressed in terms of the previous operators: given
x′ a fresh variable, an assignment can be defined as follows.

Jx := eK](P ) =
(

∃{x}
(

P u assume](x′ = e)
))

{x′}→{x}

It is this latter definition that we use.
Widening operators are only used during the fixpoint iteration, and are not
needed at checking time.
Convex Hull is the typical operation that is straightforward to implement
using the generator representation of polyhedra. Using a relaxation technique,
it is possible to express the convex hull as the projection of a polyhedron of
higher dimension [2] but since this requires to compute projections this does
not scale. Even with our delaying of projections, the size of the polyhedron
doubles. Instead of computing a convex hull, we follow the result certification
methodology and provide a certificate polyhedron that is the result of the convex
hull computation. Furthermore, our result checker need not check that the result
is exactly the convex hull but only that it is an upper bound by doing a double
inclusion test.

isUpperBound(P, Q,UB) ≡ P v UB ∧Q v UB

To implement inclusion tests, we push the result certification methodology
further and use inclusion certificates. The form of certificates and their genera-
tion are described below.
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8.2 Result certification for polyhedral inclusion

Farkas lemma (Lemma 8.2) is a theorem of linear programming (see for instance
[23]) which gives a notion of emptiness certificate for polyhedra. In this part, we
show how this result can be i) lifted to obtain an inclusion checker; ii) extended
further to deal with existential variables. Our inclusion checker vcheck takes as
input a pair of polyhedra (P, Q) and an inclusion certificate. It will only return
true if the certificate allows to conclude that P is indeed included in Q (P v Q).

Lemma 8.2 (Farkas Lemma). Let A ∈ Qm×n and b ∈ Qn. The following
statements are equivalent:

� For all x ∈ Qn, ¬(A · x ≥ b)

� There exists ic ∈ Qm satisfying At · ic = 0̄ and bt · ic > 0.

The soundness (⇐) of certificates is the easy part and is all that is needed in
the machine-checked proof. It follows that the existence of a certificate ensures
the infeasibility of the linear constraints and therefore that the polyhedron made
of these constraints is empty.

Thus, an inclusion certificate ic is a vector of Qm and checking a certificate
consists of 1) computing a matrix-vector product (At · ic) 2) verifying that the
result is a null vector; 3) computing a scalar product (bt · ic); and 4) verifying
that the result is strictly positive. All in all, the certificate checker runs in
quadratic-time in terms of arithmetic operations.

Certificates generation can be recast as a linear programming problem that
can be efficiently solved by either the Simplex or interior point methods. The
set of certificates is characterised by the convex polyhedron

Cert =
{

ic
∣

∣ic ≥ 0̄ ∧ bt · ic > 0 ∧ At · ic = 0̄
}

As a result, finding an extremal certificate amounts to solving a linear optimi-
sation problem. For instance, the solution of the linear program min{ct · 1̄ | c ∈
Cert} minimises the sum of the coefficients of the certificate. In theory, such a
minimisation might not yield a compact certificate because the optimisation is
done over the rationals – there are very small rationals that require many bits.
However, in practise, the technique is sufficiently efficient.

From emptiness to inclusion Lemma 8.3 states that in the absence of ex-
istential variables an inclusion check amounts to emptiness checks.

Lemma 8.3. Given P, P ′ ∈ PV +E, we have

∀e′ ∈ P ′, γV +E(−e′−1 :: P ) = ∅

if and only if
γV +E(P ) ⊆ γV +E(P ′).

Proof. By construction, polyhedra in PV +E do not have existential variables.
Hence, we have γV +E(P ′) =

⋂

e′∈P ′ γV +E(e′::[]). Moreover, the complement of
a linear constraint e′ ≥ 0 is −e′ − 1 ≥ 0. These facts allow to reduce inclusion
to a set of emptiness tests.
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Lemma 8.4 states that to do an inclusion test, it is sound to drop existential
variables.

Lemma 8.4. Let P and P ′ be polyhedra in constraint form.

γV +E(P ) ⊆ γV +E(P ′) ⇒ γV (P ) ⊆ γV (P ′)

Proof. The Lemma follows from the definition of γ and the fact that the restric-
tion operator on environments is monotone.

Together, Lemma 8.3 and Lemma 8.4 allow the design of a sound result
checker for inclusion tests of form P ⊆ P ′. In general, the checker is incomplete
but this only shows up in cases where P ′ has existential variables. However,
inclusions only need to be certified when P ′ is a polyhedron computed by the
analyser and such a P ′ does not contain existential variables, so the inclusion
checker is always used in a context where it is complete.

9 Implementation and Experiments

The relational byte code analysis has been implemented in Caml and instanti-
ated with the efficient NewPolka polyhedral library [15] as its relational abstract
domain. As the language presented in Section 4 is compatible with Java byte
code, we analyse programs that are compiled from genuine Java programs. The
result checker for polyhedral analysis described in Section 8 has been imple-
mented in the Coq proof assistant.

The analyser computes a solution to the constraint system generated from
a program and passes it on to the fixpoint pruning algorithm. From the com-
pressed invariants, loop headers and join points are extracted and the inclusion
certificates required by the checker are produced using the Simplex algorithm. A
binary form of loop headers, join point invariants and their inclusion certificates
constitute the final program certificate.

In Fig 8, we give a table of some of the benchmarks used by Xi to demonstrate
the dependent type system for Xanadu [27]. HeapSort and QuickSort are partic-
ularly good illustrations of the capacities of our analysis for analysing automat-
ically programs mixing recursive procedures and loops. The programs and the
analysis results can be found at http://www.irisa.fr/lande/polycert.html.

.class certificates checking time
Program before after before after
BSearch 515 22 12 0.005 0.007
BubbleSort 528 15 14 0.0005 0.0003
HeapSort 858 72 32 0.053 0.025
QuickSort 833 87 44 0.54 0.25

Figure 8: Class files in bytes, certificates in number of constraints, time in
seconds

The two checking times in the last column give the checking time with and
without fixpoint pruning Three things are worth noticing. First, invariants
that had to be produced manually for the Xanadu examples are now inferred
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automatically. Second, the checking time is small, especially given that the
checker is extracted from its Coq specification and thus is a purely functional
implementation of a polyhedral domain. Third, pruning can halve the number
of constraints to verify. This reduction can sometimes but not always produce
a similar reduction in checking time. The benchmarks are relatively modest in
size and it is well known that full-blown polyhedral analyses have scalability
problems. Our analyser will not avoid this but can be instantiated with simpler
relational domains such as e.g., octagons, without having to change the checker.

10 Related work

A number of relational abstract domains (octagons [18], convex polyhedra [13],
polynomial equalities [20]) have been proposed with various trade-offs between
precision and efficiency, and intra-procedural relational abstract interpretation
for high-level imperative languages is by now a mature analysis technique. How-
ever, to the best of our knowledge the present work is the first extension of this
to an inter-procedural analysis for byte code. Dependent type systems for Java-
style byte code for removing array bounds checks have been proposed by Xi
and Xia [28]. The analysis of the stack uses singleton types to track the values
of stack elements, achieving the same as our symbolic stack expressions. The
analysis is intra-procedural and does not consider methods (they are added in
a later work [27] which also adds a richer set of types). The type checking relies
on loop invariants. We have run our analysis on the example Xanadu programs
given by Xi and have been able to infer the invariants necessary for verifying
safe array access automatically.

The area of certified program verifiers has been an active field recently.
Wildmoser, Nipkow et al. [25] were the first to develop a fully certified VCGen
within Isabelle/HOL for verifying arithmetic overflow in Java byte code. The
certification of abstract interpreters has been developed by Cachera, Pichardie
et al. [9, 21]. for a variety of analyses including class analysis of Java byte
code and interval analysis. Lee et al. [16] have certified the type analysis of a
language close to Standard ML in LF and Leroy [17] has certified some of the
data flow analyses of a compiler back-end. Leroy also observes that for certain,
more involved analyses such as the register allocation, it is simpler and sufficient
to certify a checker of the result than the analysis itself. The same idea is used by
Wildmoser et al. [24] who certifies a VCGen that uses untrusted interval analysis
for producing invariants and that relies on Isabelle/HOL decision procedures to
check the verification conditions generated with the help of these invariants.
Their technique for analysing byte code is close to ours in that they also use
symbolic expressions to analyse the operand stack and the main contribution of
the work reported here with respect to theirs is to develop this result checking
approach for a fully relational analysis.

The idea of removing useless parts from an invariant was developed inde-
pendently by Besson et al. [7] and by Yang et al. [29] who call it abstract value
slicing. Both works deal with intra-procedural invariants and both are based on
a dependency computation that selects, for every constraint F (X) v Y of the
constraint system of P and every subset of an abstract state Y , a sufficient subset
of X that satisfies the constraint. The two methods differ in the way that this
choice is done but both have been shown viable for intra-procedural pruning of
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relational invariants. The present work is an extension of the principles under-
lying the non-deterministic algorithm in [7] to handle the pre-/post-conditions
arising from the interprocedural analysis. Finally, it should be noted that the
fixpoint compression is orthogonal to and compatible with the optimisation of
iteration strategies for fixpoint checking underlying Lightweight Bytecode Veri-
fication [22] and the more general abstraction-carrying code [1, 6]. Our checker
combines both techniques.

11 Conclusions and future work

This paper demonstrates the feasibility of an interprocedural relational analysis
which automatically infers polyhedral loop invariants and pre-/post-condition
for programs in an imperative byte code language. The machine-generated in-
variants can be pruned wrt. a particular safety policy to yield compact program
certificates. To simplify the checking of these certificates, we have devised a re-
sult checker for polyhedra which uses inclusion certificates (issued from a result
due to Farkas) instead of computing convex hulls of polyhedra at join points.
This checker is much simpler to prove correct mechanically than the polyhedral
analyser and provides a means of building a foundational proof carrying code
that can make use of industrial strength relational program analysis.

Future work concerns extensions to incorporate richer domains of proper-
ties such as disjunctive completion of polyhedra or non-linear (polynomial) in-
variants. The certificate format and the result checker can accommodate the
disjunctive completions, the inclusion certificates from Section 8.2 can be gener-
alised to deal with non-linear inequalities as well [5]. However, the analyses for
inferring such properties are in their infancy. On a language level, the challenge
is to extend the analysis to cover the object oriented aspects of Java byte code.
The inclusion of static fields and arrays in our framework provides a first step in
that direction but a full extension would notably require an additional analysis
to keep track of aliases between objects.

A promising domain of application for our relational analysis technique is
to verify the dynamic allocation and consumption of resources and in particu-
lar to ensure statically that a program always acquires a necessary amount of
resources before consuming them. The approach of Chander et al. [10] relies
on the programmer to provide loop invariants and pre- and post-conditions for
methods in order to link program variables to the amount of resources available
and perform powerful transformations such as hoisting resource allocations out
of loops. Our inter-procedural byte code analyser could infer the necessary in-
variants and pre-/post-conditions and in the same vein provide the checker for
integrating this into a mobile code resource certification scheme.
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Abstract. This paper describes a core component of Mobius’ Trusted
Code Base, the Mobius base logic. This program logic facilitates the
transmission of certificates that are generated using logic- and type-based
techniques and is formally justified w.r.t. the Bicolano operational model
of the JVM. The paper motivates major design decisions, presents core
proof rules, describes an extension for verifying intensional code proper-
ties, and considers applications concerning security policies for resource
consumption and resource access.

1 Introduction: Role of the logic in Mobius

The goal of the Mobius project consists of the development of proof-carrying
code (PCC) technology for the certification of resource-related and information-
security-related program properties [16]. According to the PCC paradigm, code
consumers are invited to specify conditions (“policies”) which they require trans-
mitted code to satisfy before they are willing to execute such code. Providers of
programs then complement their code with formal evidence demonstrating that
the program adheres to such policies. Finally, the recipient validates that the
obtained evidence (“certificate”) indeed applies to the transmitted program and
is appropriate for the policy in question before executing the code.

One of the cornerstones of a PCC architecture is the trusted computing base
(TCB), i.e. the collection of notions and tools in whose correctness the recipi-
ent implicitly trusts. Typically, the TCB consists of a formal model of program
execution, plus parsing and transformation programs that translate policies and
certificates into statements over these program executions. The Mobius architec-
ture applies a variant of the foundational PCC approach [2] where large extents
of the TCB are represented in a theorem prover, for the following reasons.

– Formalising a (e.g. operational) semantics of transmitted programs in a the-
orem prover provides a precise definition of the model of program execution,
making explicit the underlying assumptions regarding arithmetic and logic

– The meaning of policies may be made precise by giving formal interpretations
in terms of the operational model

– Theorem provers offer various means to define formal notions of certificates,
ranging from proof scripts formulated in the user interface language (includ-
ing tactics) of the theorem prover to terms in the prover’s internal represen-
tation language for proofs (e.g. lambda-terms).
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In particular, the third item allows one to employ a variety of certificate notions
in a uniform framework, and to explore their suitability for different certifi-
cate generation techniques or families of policies. In contrast to earlier PCC
systems which targeted mostly type- and memory-safety [27, 2], policies and
specifications in Mobius are more expressive, ranging from (upper) bounds on
resource consumption, via access regulations for external resources and security
specifications limiting the flow of information to lightweight functional speci-
fications [16]. Thus, the Mobius TCB is required to support program analysis
frameworks such as type systems and abstract interpretation, but also logical
reasoning techniques.

Information Flow 
Type Systems

Resource Type 
System

JML 
Specifications

Logic-based Verification 
Tools (FreeBoogie, VCgens)

Other Program 
Analyses

The Mobius 
Base Logic

Bicolano

Fig. 1. Core components of the MOBIUS TCB

Figure 1 depicts the components of the Mobius TCB and their relations. The
base of the TCB is formed by a formalised operational model of the Java Virtual
Machine, Bicolano [30], which will be briefly described in the next section. Its
purpose is to define the meaning of JVML programs unambiguously and to serve
as the foundation on which the PCC framework is built. In order to abstract
from inessential details, a program logic is defined on top of Bicolano. This pro-
vides support for commonly used verification patterns such as the verification of
loops. Motivated by verification idioms used in higher-level formalisms such as
type systems, the JML specification language, and verification condition genera-
tors, the logic complements partial-correctness style specifications by two further
assertion forms: local annotations are attached to individual program points and
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are guaranteed to hold whenever the annotated program point is visited during
a program execution. Strong invariants assert that a particular property will
continue to hold for all future states during the execution of a method, includ-
ing states inside inner method invocations. The precise interpretation of these
assertion forms, and a selection of proof rules will be described in Section 3.

We also present an extension of the program logic that supports reasoning
about the effects of computations. The extended logic arises uniformly from a
corresponding generic extension of the operational semantics. Using different
instantiations of this framework one may obtain domain-specific logics for rea-
soning about access to external resources, trace properties, or the consumption
of resources. Polices for such domains are difficult if not impossible to express
purely in terms of relations between initial and final states. The extension is
horizontal in the sense of Czarnik and Schubert [20] as it is conservative over
the non-extended (“base”) architecture.

The glue between the components is provided by the theorem prover Coq,
i.e. many of the soundness proofs have been formalised. The encoding of the pro-
gram logics follow the approach advocated by Kleymann and Nipkow [25, 29] by
employing a shallow embedding of formulae. Assertions may thus be arbitrary
Coq-definable predicates over states. Although the logic admits the encoding of
a variety of program analyses and specification constructs, it should be noted
that the architecture does not mandate that all analyses be justified with respect
to this logic. Indeed, some type systems for information flow, for example, are
most naturally expressed directly in terms of the operational semantics, as al-
ready the definition of information flow security is a statement over two program
executions. In neither case do we need to construct proofs for concrete programs
by hand which would be a daunting task in all but the simplest examples. Such
proofs are always obtained from a successful run of a type system or program
analysis by an automatic translation into the Mobius infrastructure. Examples
of this method are given in Sections 4 and 5.2.

Outline We give a high-level summary of the operational model Bicolano [30],
restricted to a subset of instructions relevant for the present paper, in Section
2. In Section 3 we present the program logic. Section 4 contains an example of a
type-based verification and shows how a bytecode-level type system guaranteeing
a constant upper bound on the number of heap allocations may be encoded in
the logic. The extended program logic is outlined in Section 5, together with an
application concerning a type system for numeric correspondence assertions [34].
We first discuss some related work.

1.1 Related work

The basic design decisions for the base logic were presented in [8], and the reader
is referred to loc.cit. for a more in-depth motivation of the chosen format of as-
sertions and rules. In that paper, we also presented a type-system for constant
heap space consumption for a functional intermediate language, such that typing
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derivations could be translated into program logic derivations over an appropri-
ately restricted judgement form. In contrast, the type system given in the present
paper works directly on bytecode and hence eliminates the language translation
from the formalised TCB.

The first proposal for a program logic for bytecode we are aware of is the
one by Quigley [31]. In order to justify a rule for while loops, Quigley introduces
various auxiliary notions for relating initial states to intermediate states of an
execution sequence, and for relating states that behave similarly but apply to
different classes. Bannwart and Müller [4] present a logic where assertions ap-
ply at intermediate states and are interpreted as preconditions of the assertions
decorating the successor instructions. However, the occurrence of these local
specifications in positive and negative positions in this interpretation precludes
the possibility of introducing a rule of consequence. Indeed, our proposed rule
format arose originally from an attempt to extend Bannwart and Müller’s logic
with a rule of consequence and machinery for allowing assertions to mention ini-
tial states. Strong invariants were introduced by the Key project [6] for reasoning
about transactional safety of Java Card applications using dynamic logics [7].

Regarding formal encodings of type systems into program logics, Hähnle et
al. [23], and Beringer and Hofmann [9] consider the task of representing infor-
mation flow type systems in program logics, while the MRG project focused on
a formalising a complex type system for input-dependent heap space usage [10].

Certified abstract interpretation [11] complements the type-based certificate
generation route considered in the present paper. Similar to the relationship
between Necula-Lee-style PCC [27] and foundational PCC by Appel et al. [2],
certified abstract interpretation may be seen as a foundational counterpart to
Albert et al.’s Abstraction-carrying code [1]. Bypassing the program logic, the
approach chosen in [11] justifies the program analysis directly with respect to
the operational semantics. A generic framework for certifying program analyses
based on abstract interpretation is presented by Chang et al. [14]. The possibility
to view abstract interpretation frameworks as inference engines for invariants and
other assertions in program logics in general was already advocated in one of the
classic papers by Cousot & Cousot in [18].

Nipkow et al.’s VeryPCC project [33] explores an alternative foundational ap-
proach by formally proving the soundness of verification condition generators. In
particular, [32] presents generic soundness and completeness proofs for VCGens,
together with an instantiation of the framework to a safety policy preventing
arithmetic overflows. Generic PCC architectures have recently been developed
by Necula et al. [15] and the FLINT group [22].

2 Bicolano

Syntax and States We consider an arbitrary but fixed bytecode program P that
assigns to each method identifier M a method implementation mapping instruc-
tion labels l to instructions. We use the notation M(l) to denote the instruction
at program point l in M , and initM , sucM (l), and parM to denote the initial
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label of M , the successor label of l in M , and the list of formal parameters of
M , respectively. While the Bicolano formalisation supports the full sequential
fragment of the JVML, this paper treats the simplified language given by the
basic instructions

basic(M, l) ≡ M(l) ∈

 load x, store x, dup, pop, push z,
unop u, binop o, new c, athrow,
getfield c f, putfield c f, getstatic c f, putstatic c f


and additionally conditional and unconditional jumps ifz l and goto l, static and
virtual method invocations invokestatic M and invokevirtual M , and vreturn.

Values and states The domain V of values is ranged over by v, w, . . . and com-
prises constants (integers z and Null), and addresses a, . . . ∈ A. States are built
from operand stacks, stores, and heaps

O ∈ O = V list S ∈ S = X ⇀fin V h ∈ H = A ⇀fin C × (F ⇀fin V)

where X , C and F are the domains of variables, class names, and field names,
respectively. In addition to local states comprising operand stacks, stores, and
heaps,

s, r ∈ Σ = O × S ×H,

we consider initial states Σ0 and terminal states T

s0 ∈ Σ0 = S ×H t ∈ T ::= NormState(h, v) + ExcnState(h, a)

These capture states which occur at the beginning and the end of a frame’s exe-
cution. Terminal states t are tagged according to whether the return value repre-
sents a pointer to an unhandled exception object (constructor ExcnState(., .)) or
an ordinary return value (constructor NormState(., .)). For s0 = (S, h) we write
state(s0) = ([ ], S, h) for the local state that extends s0 with an empty operand
stack. For parM = [x1, . . . , xn] and O = [v1, . . . , vn] we write parM 7→ O for
[xi 7→ vi]i=1,...,n. We write heap(s) to access the heap component of a state s,
and similarly for initial and terminal states. Finally, lv(.) denotes the local vari-
able component of a state and getClass(h, a) extracts the dynamic class of the
object at location a in heap h.

Operational judgements Bicolano defines a variety of small-step and big-step
judgements, with compatibility proofs where appropriate. For the purpose of
the present paper, the following simplified setup suffices3 (cf. Figure 2):

Non-exceptional steps The judgement `M l, s ⇒norm l′, r describes the (non-
exceptional) execution of a single instruction, where l′ is the label of the
next instruction (given by sucM (l) or jump targets). The rules are largely
standard, so we only give a rule for the invocation of static methods, Invs-
Norm.

3 The formalisation separates the small-step judgements for method invocations from
the execution of basic instructions and jumps, and then defines a single recursive
judgement combining the two. See [30] for the formal details.
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Exceptional steps The judgement `M l, s ⇒excn h, a describes exceptional
small steps where the execution of the instruction at program point M, l in
state s results in the creation of a fresh exception object, located at address
a in the heap h. In the case of method invocations, a single exceptional step
is also observed by the callee if the invoked method raised an exception that
could not be locally handled (cf. rule InvsExcn).

Small step judgements Non-exceptional and handled exceptional small steps
are combined to the small step judgement `M l, s ⇒ l′, r using the two rules
NormStep and ExcnStep. The reflexive transitive closure of this relation
is denoted by `M l, s ⇒∗ l′, r

Big-step judgements The judgement form `M l, s ⇓ t captures the execu-
tion of method M from the instruction at label l onwards, until the end of
the method. This relation is defined by the three rules Comp, Vret and
Uncaught.

Deep step judgements The judgement `M l, s ⇑ r is defined similarly to
the big-step judgement, by the rules D-Refl, D-Trans D-Invs, and D-
Uncaught. This judgement associates states across invocation boundaries,
i.e. r may occur in a subframe of the method M . This is achieved by rule D-
Invs which associates a call state of a (static) method with states reachable
from the initial state of the callee. A similar rule for virtual methods is
omitted from this presentation.

Small and big-step judgements are mutually recursive due to the occurrence of
a big-step judgement in hypotheses of the rules for method invocations on the
one hand and rule Comp on the other.

3 Base logic

This section outlines the non-resource-extended program logic.

3.1 Phrase-oriented assertions and judgements

The structure of assertions and judgements of the logic are governed by the
requirement to enable the interpretation of type systems as well as the rep-
resentation of core idioms of JML. High-level type systems typically associate
types (in contexts) to program phrases. Compiling a well-formed program phrase
into bytecode yields a code segment that is the postfix of a JVM method, i.e. all
program points without control flow successors contain return instructions. Con-
sequently, judgements in the logic associate assertions to a program label which
represents the execution of the current method invocation from the current point
(i.e. a state applicable at the program point) onwards. In case of method termi-
nation, a partial-correctness assertion (post-condition) applies that relates this
current state to the return state. As the guarantee given by type soundness re-
sults often extends to infinite computations (e.g. type safety, i.e. absence of type
errors), judgements furthermore include assertions that apply to non-terminating
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InvsNorm

M(l) = invokestatic M ′

`M′ initM′ , ([ ], parM′ 7→ O, h) ⇓ NormState(k, v)

`M l, (O@O′, S, h) ⇒norm sucM (l), (v :: O′, S, k)

InvsExcn

M(l) = invokestatic M ′

`M′ initM′ , ([ ], parM′ 7→ O, h) ⇓ ExcnState(k, a)

`M l, (O@O′, S, h) ⇒excn k, a

NormStep
`M l, s ⇒norm l′, r

`M l, s ⇒ l′, r
ExcnStep

`M l, (O, S, h) ⇒excn k, a
getClass(k, a) = e Handler(M, l, e) = l′

`M l, (O, S, h) ⇒ l′, ([a], S, k)

Comp
`M l, s ⇒ l′, s′ `M l′, s′ ⇓ t

`M l, s ⇓ t
Vret

M(l) = vreturn

`M l, (v :: O, S, h) ⇓ NormState(h, v)

Uncaught
`M l, s ⇒excn h, a getClass(h, a) = e Handler(M, l, e) = ∅

`M l, s ⇓ ExcnState(h, a)

D-Refl`M l, s ⇑ s
D-Trans

`M l, s ⇒ l′, s′ `M l′, s′ ⇑ s′′

`M l, s ⇑ s′′

D-Invs
M(l) = invokestatic M ′ `M′ initM′ , ([ ], parM′ 7→ O, h) ⇑ s

`M l, (O@O′, S, h) ⇑ s

D-Uncaught
`M l, s ⇒excn h, a getClass(h, a) = e Handler(M, l, e) = ∅

`M l, s ⇑ ([a], ∅, h)

Fig. 2. Bicolano: selected judgements and operational rules

computations. These strong invariants relate the state valid at the subject la-
bel to each future state in the current method invocation. This interpretation
includes states in subframes, i.e. in method invocations that are triggered in the
phrase represented by the subject label.

Infinite computations are also covered by the interpretation of local anno-
tations in JML, i.e. assertions occurring at arbitrary program points which are
to be satisfied whenever the program point is visited. The logic distinguishes
these explicitly given annotation from strong invariants as the former ones are
not necessarily present at all program points. A further specification idiom of
JML that has a direct impact on the form of assertions is \old which refers to
the initial state of a method invocation and may appear in post-conditions, local
annotations, and strong invariants.

Formulae that are shared between postconditions, local annotations, and
strong invariant, and additionally only concern the relationship between the sub-
ject state and the initial state of the method may be captured in pre-conditions.

Thus, the judgement of the logic are of the form G ` {A}M, l {B} (I) where
M, l denotes a program point (composed of a method identifier and an instruc-
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tion label), and the assertions forms are as follows, where B denotes the set of
booleans.

Assertions A ∈ Assn = Σ0 ×Σ → B occur as preconditions A and local
annotations Q, and relate the current state to the initial state of the current
frame.

Postconditions B ∈ Post = Σ0 ×Σ × T → B relate the current state to the
initial and final state of a (terminating) execution of the current frame.

Invariants I ∈ Inv = Σ0 ×Σ ×Σ → B relate the initial state of the current
method, the current state, and any future state of the current frame or a
subframe of it.

The component G of a judgement represents a proof context and is represented
as an association of specification triples (A,B, I) ∈ Assn×Post×Inv to program
points.

The behaviour of methods is described using three assertion forms.

Method preconditions R ∈ MethPre = Σ0 → B are interpreted hypothet-
ically, i.e. their satisfaction implies that of the method postconditions and
invariants but is not directly enforced to hold at all invocation points.

Method postconditions T ∈ MethSpec = Σ0 × T → B constrain the be-
haviour of terminating method executions and thus relate only initial and
final states.

Method invariants Φ ∈ MethInv = Σ0 ×Σ → B constrain the behaviour of
terminating and non-terminating method executions by relating the initial
state of a method frame to any state that occurs during its execution.

A program specification is given by a method specification table M that asso-
ciates to each method a method specification S = (R, T, Φ), a proof context G,
and a table Q of local annotations Q ∈ Assn. From now on, let M denote some
arbitrary but fixed specification table satisfying dom M = dom P .

3.2 Assertion transformers

In order to notationally simplify the presentation of the proof rules, we define
operators that relate assertions occurring in judgements of adjacent instructions.
The following operators apply to the non-exceptional single-step execution of
basic instructions.

Pre(M, l, l′, A)(s0, r) = ∃ s. `M l, s ⇒norm l′, r ∧A(s0, s)
Post(M, l, l′, B)(s0, r, t) = ∀ s. `M l, s ⇒norm l′, r → B(s0, s, t)

Inv(M, l, l′, I)(s0, r, t) = ∀ s. `M l, s ⇒norm l′, r → I(s0, s, t)

These operators resemble WP-operators, but are separately defined for pre-
conditions, post-conditions, and invariants.
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Exceptional behaviour of basic instructions is captured by the operators

Preexcn(M, l, e, A)(s0, r) = ∃ s h a. `M l, s ⇒excn h, a ∧ getClass(h, a) = e ∧
r = ([a], lv(s), h) ∧A(s0, s)

Postexcn(M, l, e, B)(s0, r, t) = ∀ s h a. `M l, s ⇒excn h, a → getClass(h, a) = e →
r = ([a], lv(s), h) → B(s0, s, t)

Invexcn(M, l, e, I)(s0, r, t) = ∀ s h a. `M l, s ⇒excn h, a → getClass(h, a) = e →
r = ([a], lv(s), h) → I(s0, s, t)

In the case of method invocations, we replace the reference to the operational
judgement by a reference to the method specifications, and include the construc-
tion and destruction of a frame. For example, the operators for non-exceptional
execution of static methods are

Presinv(R, T, A, [x1, . . . , xn])(s0, s) =
∃ O S h k v vi. (R([xi 7→ vi]ni=1, h) → T (([xi 7→ vi]ni=1, h), (k, v))) ∧

s = (v :: O,S, k) ∧A(s0, ([v1, . . . , vn]@O,S, h))
Postsinv(R, T, B, [x1, . . . , xn])(s0, r, t) =
∀ O S k k v vi. (R([xi 7→ vi]ni=1, h) → T (([xi 7→ vi]ni=1, h), (k, v))) →

r = (v :: O,S, k) → B(s0, ([v1, . . . , vn]@O,S, h), t)
Invsinv(R, T, I, [x1, . . . , xn])(s0, s, r) =
∀ O S k k v vi. (R([xi 7→ vi]ni=1, h) → T (([xi 7→ vi]ni=1, h), (k, v))) →

s = (v :: O,S, k) → I(s0, ([v1, . . . , vn]@O,S, h), r)

The exceptional operators for static methods cover exceptions that are raised
during the execution of the invoked method but not handled locally. Due to
space limitations we omit the operators for exceptional (null-pointer exceptions
w.r.t. the invoking object) and non-exceptional behaviour of virtual methods.

3.3 Selected proof rules

An addition to influencing the types of assertions, type systems also motivate the
use of a certain form of judgements and proof rules. Indeed, one of the advantages
of type systems is their compositionality i.e. the fact that statements regarding
a program phrase are composed from the statements referring to the constituent
phrases, as in the following typical proof rule for a language of expressions

` e1 : int ` e2 : int
` e1 + e2 : int

.

Transferring this scheme to bytecode leads to a rule format where hypothetical
judgements refer to the control flow successors of the phrase in the judgement’s
conclusion. In addition to supporting syntax-directed reasoning, this orienta-
tion renders the explicit construction of a control flow graph unnecessary, as no
control flow predecessor information is required to perform a proof.

Figure 3 presents selected proof rules. These are motivated as follows.
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Instr

basic(M, l) SC 1 SC 2 l′′ = sucM (l)
G ` {Pre(M, l, l′′, A)}M, l′ {Post(M, l, l′′, B)} (Inv(M, l, l′′, I))

∀ l′ e. Handler(M, l, e) = l′ →
G ` {Preexcn(M, l, e, A)}M, l′ {Postexcn(M, l, e, B)} (Invexcn(M, l, e, I))
∀ s0 s h a. (∀ e. getClass(h, a) = e → Handler(M, l, e) = ∅) →

`M l, s ⇒excn h, a → A(s0, s) → B(s0, s, (h, a))

G ` {A}M, l {B} (I)

Goto

M(l) = Goto l′ SC 1 SC 2

G ` {Pre(M, l, l′, A)}M, l′ {Post(M, l, l′, B)} (Inv(M, l, l′, I))

G ` {A}M, l {B} (I)

If0

M(l) = ifz l′ SC 1 SC 2 l′′ = sucM (l)
G ` {Pre(M, l, l′, A)}M, l′ {Post(M, l, l′, B)} (Inv(M, l, l′, I))

G ` {Pre(M, l, l′′, A)}M, sucM (l) {Post(M, l, l′′, B)} (Inv(M, l, l′′, I))

G ` {A}M, l {B} (I)

InvS

M(l) = invokestatic M ′ M(M ′) = (R, T, Φ) SC 1 SC 2

∀ s0 O S h O′ r vi. (R(parM′ 7→ O, h) → Φ((parM′ 7→ O, h), r)) →
A(s0, (O@O′, S, h)) → I(s0, (O@O′, S, h), r)

A1 = Presinv(R, T, A, parM′) B1 = Postsinv(R, T, B, parM′)
G ` {A1}M, sucM (l) {B1} (Invsinv(R, T, I, parM′))

∀ l′ e. Handler(M, l, e) = l′ →
G ` {Preexcn

sinv (R, T, A, e, parM′)} M, l′ {Postexcnsinv (R, T, B, e, parM′)}
(Invexcn

sinv (R, T, I, e, parM′))
∀ s0 O S h O′ k a. (R(parM′ 7→ O, h) → Φ((parM′ 7→ O, h), (k, a))) →

(∀ e. getClass(k, a) = e → Handler(M, l, e) = ∅) →
A(s0, (O@O′, S, h)) → B(s0, (O@O′, S, h), (k, a))

G ` {A}M, l {B} (I)

Ret

M(l) = vreturn SC 1 SC 2

∀ s0 v O S h. A(s0, (v :: O, S, h)) → B(s0, (v :: O, S, h), (h, v))

G ` {A}M, l {B} (I)

Conseq

G ` {A′} ` {B′} (I ′) ∀ s0 s. A(s0, s) → A′(s0, s)
∀ s0 s t. B′(s0, s, t) → B(s0, s, t) ∀ s0 s r. I ′(s0, s, r) → I(s0, s, r)

G ` {A} ` {B} (I)

Ax

G(`) = (A, B, I) ∀ s0 s. A(s0, s) → I(s0, s, s)
∀Q. Q(`) = Q → (∀ s0 s. A(s0, s) → Q(s0, s))

G ` {A} ` {B} (I)

Fig. 3. Program logic: selected syntax-directed rules
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Rule INSTR describes the behaviour of basic instructions. The hypothetical
judgement for the successor instruction involves assertions that are related to
the assertions in the conclusion by the transformers for normal termination. A
further hypothesis captures exceptions that are handled locally, i.e. those ex-
ceptions e to which the exception handler of the current method associates a
handling instruction (predicate Handler(M, l, e) = l′). Exceptions that are not
handled locally result in abrupt termination of the method. Consequently, these
exceptions are modelled in a side condition that involves the method postcondi-
tion rather than a further judgemental hypothesis.

Finally, the side conditions SC 1 and SC 2 ensure that the invariant I and the
local annotation Q (if existing) are satisfied in any state reaching label l.

SC 1 = ∀ s0 s. A(s0, s) → I(s0, s, s)
SC 2 = ∀Q. Q(M, l) = Q → (∀ s0 s. A(s0, s) → Q(s0, s))

In particular, SC 2 requires us to prove any annotation that is associated with
label l. Satisfaction of I in later states, and satisfaction of local annotations Q′

of later program points are guaranteed by the judgement for sucM (l).
The rules for conditional and unconditional jumps include a hypotheses for

the control flow successors, and the same side conditions for local annotations
and invariants as rule Instr. No further hypotheses or side conditions regarding
exceptional behaviour are required as these instructions do not raise exceptions.
These rules also account for the verification of loops which on the level of byte-
code are rendered as jumps. Loop invariants can be inserted as postconditions
B at their program point. Rule Ax allows one to use such invariants whereas
according to Definition 1 they must be established once in order for a verification
to be valid.

In rule InvS, the invariant of the callee, namely Φ (more precisely: the sat-
isfaction of Φ whenever the initial state of the callee satisfies the precondition
R), and the local precondition A may be exploited to establish the invariant I.
This ensures that I will be satisfied by all states that arise during the execution
of M ′, as these states will always conform to Φ. The callee’s post-condition T
is used to construct the assertions that occur in the judgement for the succes-
sor instruction l′. Both conditions reflect the transfer of the method arguments
and return values between the caller and the callee. This protocol is repeated in
the hypothesis and the side condition for the exceptional cases which otherwise
follow the pattern mentioned in the description of the rule Instr.

A similar rule for virtual methods is omitted. The rule for method returns,
Ret, ties the precondition A to the post-condition B w.r.t. the terminal state
that is constructed using the topmost value of the operand stack.

Finally, the logical rules Conseq and Ax arise from the standard rules by
adding suitable side conditions for strong invariants and local assertions.

3.4 Behavioural subtyping and verified programs

We say that method specification (R, T, Φ) implies (R′, T ′, Φ′) if
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– for all s0 and t, R(s0) → T (s0, t) implies R′(s0) → T ′(s0, t) , and
– for all s0 and s, R(s0) → Φ(s0, s) implies R′(s0) → Φ′(s0, s)

Furthermore, we say that M satisfies behavioural subtyping for P if whenever
P contains an instruction invokevirtual M ′ with M(M ′) = (S ′,G′,Q′), and M
overrides M ′, then there are S, G and Q with M(M) = (S,G,Q) such that S
implies S ′. Finally, we call a derivation G ` {A}M, l {B} (I) progressive if it
contains at least one application of a non-logical rule.

Definition 1. P is verified with respect to M, notation M ` P , if

– M satisfies behavioural subtyping for P , and
– for all M , M(M) = (S,G,Q), and S = (R, T, Φ)

• a progressive derivation G ` {A}M, l {B} (I) exists for any l, A, B, and
I with G(M, l) = (A,B, I), and

• a progressive derivation G ` {A}M, initM {B} (I) exists for

A(s0, s) ≡ s = state(s0) ∧R(s0)
B(s0, s, t) ≡ s = state(s0) → T (s0, t)
I(s0, s, r) ≡ s = state(s0) → Φ(s0, r).

As the reader may have noticed, behavioural subtyping only affects method spec-
ifications but not the proof contexts G or annotation tables Q. Technically, the
reason for this is that no constraints on these components are required in order to
prove the logic sound. Pragmatically, we argue that proof contexts and local an-
notations tables of overriding methods indeed should not be related to contexts
and annotation tables of their overridden counterparts, as both kinds of tables
expose the internal structure of method implementations. In particular, entries
in proof contexts and annotation tables are formulated w.r.t. specific program
points, which would be difficult to interprete outside the method boundary or
indeed across different (overriding) implementations of a method.

The distinction between progressive and non-progressive derivations prevents
attempts to justify a proof context or method specification table simply by ap-
plying the axiom rule to all entries. In program logics for high-level languages,
the corresponding effect is silently achieved by the unfolding of the method body
in the rule for method invocations [29]. As our judgemental form does not permit
such an unfolding, the auxiliary notion of progressive derivations is introduced.
In our formalisation, the separation between progressive and other derivations
is achieved by the introduction of a second judgement form, as described in [8].

3.5 Interpretation and soundness

Definition 2. The triple (Q, B, I) is valid at (M, l) for (s0, s) if

– for all r, if `M l, s ⇓ t then B(s0, s, t)
– for all l′ and r, if `M l, s ⇒∗ l′, r and Q(l′) = Q, then Q(s0, r), and
– for all r, if `M l, s ⇑ r then I(s0, s, r).
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Note that the second clause applies to annotations Q associated with arbi-
trary labels l′ in method M that will be visited during the execution of M from
(l, s) onwards. Although these annotations are interpreted without recourse to
the state s, the proof of Q(s0, r) may exploit the precondition A(s0, s).

The soundness result is then as follows.

Theorem 1. For M ` P let M(M) = (S,G,Q), G ` {A}M, l {B} (I) be a
progressive derivation, and A(s0, s). Then (Q, B, I) is valid at (M, l) for (s0, s).

In particular, this theorem implies that for M ` P all method specifica-
tions in M are honoured by their method implementations. The proof of this
result may be performed in two ways. Following the approach of Kleymann and
Nipkow [25, 29, 3], one would first prove that the derivability of a judgement en-
tails its validity, under the hypothesis that contextual judgements have already
been validated. For this task, the standard technique involves the introduction
of relativised notions of validity that restrict the interpretation of judgements to
operational judgements of bounded height. Then, the hypothesis on contextual
judgements is eliminated using structural properties of the relativised validity.
An alternative to this approach has been developed by Benjamin Gregoire in
the course of the formalisation of the present logic. It consists of (i) defining a
family of syntax-directed judgements (one judgement form for each instruction
form, inlining the rule of consequence), (ii) proving that property M ` P implies
that the last step in a derivation of G ` {A}M, l {B} (I) can be replaced by an
application of the syntax-directed judgement corresponding to the instruction at
M, l (in particular, an application of the axiom rule is replaced by the derivation
for the corresponding code blocks from G), and (iii) proving the main claim of
Theorem 1 by treating the three parts of Definition 2 separately, each one by
induction over the respective operational judgement.

4 Type-based verification

In this section we present a type system that ensures a constant bound on the
heap consumption of bytecode programs. The type system is formally justified
by a soundness proof with respect to the MOBIUS base logic, and may serve as
the target formalism for type-transforming compilers.

The requirement imposed on programs is similar to that of the analysis pre-
sented by Cachera et al. in [13] in that recursive program structures are denied
the facility to allocate memory. However, our analysis is presented as a type
system while the analysis presented in [13] is phrased as an abstract interpre-
tation. In addition, Cachera et al.’s approach involves the formalisation of the
calculation of the program representation (control flow graph) and of the infer-
ence algorithm (fixed point iteration) in the theorem prover. In contrast, our
presentation separates the algorithmic issues (type inference and checking) from
semantic issues (the property expressed or guaranteed) as is typical for a type-
based formulation. Depending on the verification infrastructure available at the
code consumer side, the PCC certificate may either consist of (a digest of) the
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typing derivation or an expansion of the interpretation of the typing judgements
into the MOBIUS logic. The latter approach was employed in our earlier work
[10] and consists of understanding typing judgements as derived proof rules in
the program logic and using syntax-directed proof tactics to apply the rules in
an automatic fashion. In contrast to [10], however, the interpretation given in
the present section extends to non-terminating computations, albeit for a far
simpler type system.

The present section extends the work presented in [8] as the type system is
now phrased for bytecode rather than an intermediate functional language and
includes the treatment of exceptions and virtual methods.

Bytecode-level type system The type system consists of judgements of the form
`Σ,Λ ` : n, expressing that the segment of bytecode whose initial instruction is
located at ` is guaranteed not to allocate more than n memory cells. Here, `
denotes a program point M, l while signatures Σ and Λ assign types (natural
numbers n) to identifiers of methods and bytecode instructions (in particular,
when those are part of a loop), respectively.

C-New
n ≥ 1 M(l) = New C `Σ,Λ M, sucM (l) : n− 1

`Σ,Λ M, l : n

C-Instr

n ≥ 1 basic(M, l) ¬M(l) = New C `Σ,Λ M, sucM (l) : n
∀ l′ e. Handler(M, l, e) = l′ →`Σ,Λ M, l′ : n− 1

`Σ,Λ M, l : n

C-If
n ≥ 0 M(l) = ifz l′ `Σ,Λ M, l′ : n `Σ,Λ M, sucM (l) : n

`Σ,Λ M, l : n

C-Invoke

M(l) ∈ {invokestatic M ′, invokevirtual M ′} Σ(M ′) = k
n ≥ 1 k ≥ 0 `Σ,Λ M, sucM (l) : n

∀ l′ e. Handler(M, l, e) = l′ →`Σ,Λ M, l′ : n− 1

`Σ,Λ M, l : n + k

C-Ret
M(l) = vreturn

`Σ,Λ M, l : 0
C-Sub

`Σ,Λ ` : n n ≤ k

`Σ,Λ ` : k
C-Assum

Λ(`) = n

`Σ,Λ ` : n

Fig. 4. Type system for constant heap space

The rules are presented in Figure 4. The first rule, C-New, asserts that the
memory consumption of a code fragment whose first instruction is new C is the
increment of the remaining code. Rule C-Instr applies to all basic instructions
(in the case of goto l′ we take sucM (l) to be l′), except for new C – the predicate
basic(m, l) is defined as in Section 3.3. The memory effect of these instructions
is zero, as is the case for return instructions, conditionals, and (static) method
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invocations in the case of normal termination. For exceptional termination, the
allocation of a fresh exception object is accounted for by decrementing the type
for the code continuation by one unit. The rule C-Assum allows for using the
annotation attached to the instruction if it matches the type of the instruction.

A typing derivation `Σ,Λ ` : k is called progressive if it does not solely contain
applications of rules C-Sub and C-Assum. Furthermore, we call P well-typed for
Σ, notation `Σ P , if for all M and n with Σ(M) = n there is a local specification
table Λ such that a progressive derivation `Σ,Λ M, initM : n exists, and for all
` with Λ(`) = k we have a progressive derivation `Σ,Λ ` : k.

Type checking and inference The tasks of checking and automatically finding
(inference) of typing derivations are not our main concern here. Nevertheless,
we discuss briefly how this can be achieved.

For this simple type system checking a given typing derivation amounts to
verifying the inequations that arise as side conditions. Furthermore, given Σ,Λ
a corresponding typing derivation can be reconstructed by applying the typing
rules in a syntax-directed fashion. In order to construct Σ,Λ as well (type in-
ference) one writes down a “skeleton derivation” with indeterminates instead of
actual numeric values and then solves the arising system of linear inequalities.
Alternatively, one can proceed by counting allocation statements along paths
and loops in the control-flow graph.

Our main interest here is, however, the use of existing type derivations how-
ever obtained in order to mechanically construct proofs in the program logic.
This will be described now.

Interpretation of the type system The interpretation for the above type system
is now obtained by defining for each number n a triple JnK = (A,B, I) consisting
of a precondition A, a postcondition B, and an invariant I, as follows.

JnK ≡

λ (s0, s). True,
λ (s0, s, t). |heap(t)| ≤ |heap(s)|+ n,
λ (s0, s, r). |heap(r)| ≤ |heap(s)|+ n


Here, |h| denotes the size of heap h and heap(s) extracts the heap component

of a state. We specialise the main judgement form of the bytecode logic to

G ` ` {n} ≡ let (A,B, I) = JnK in G ` {A} ` {B} (I).

By the soundness of the MOBIUS logic, the derivability of a judgement G ` ` {n}
guarantees that executing the code located at ` will not allocate more that n
items, in terminating (postcondition B) and non-terminating (invariant I) cases,
provided that M ` P holds. For (A,B, I) = JnK we also define the method
specification

Spec n ≡ (λ s0. True, λ (s0, t). B(s0, state(s0), t), λ (s0, s). I(s0, state(s0), s)),

and for a given Λ we define GΛ pointwise by GΛ(`) = JΛ(`)K.
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Finally, we say that M satisfies Σ, notation M |= Σ, if for all methods M ,
M(M) = (Spec n,GΛ, ∅) holds precisely if Σ(M) = n, where Λ is the context as-
sociated with M in `Σ P . Thus, method specification table M contains for each
method the precondition, postcondition and invariant from Σ, the (complete)
context determined from Λ, and the empty local annotation table Q.

We can now prove the soundness of the typing rules with respect to this inter-
pretation. By induction on the typing rules, we first show that the interpretation
of a typing judgement is derivable in the logic.

Proposition 1. For M |= Σ let M be provided in M with some annotation
table Λ such that `Σ,Λ M, l : n is progressive. Then GΛ ` M, l {n}.

From this, one may obtain the following, showing that well-typed programs
satisfy the verified-program property:

Theorem 2. Let M |= Σ and `Σ P , and let M satisfy behavioural subtyping
for P . Then M ` P .

Discussion In order to improve the precision of the analysis, a possibility is
to combine the type system with a null-pointer analysis. For this, we would
specialise the proof rules for instructions which might throw a null-pointer ex-
ception. At program points for which the analysis guarantees absence of such
exceptions, we may then use a specialised typing rule. For example, a suitable
rule for the field access operation is the following.

C-Getfld1
getField(m, l) refNotNull(m, l) `Σ,Λ m, sucm(l) : n

`Σ,Λ m, l : n

Program points for which the analysis is unable to discharge the side condition
refNotNull(m, l) would be dealt with using the standard rule. Similarly, instruc-
tions that are guaranteed not to throw runtime exceptions (like load x, store x,
dup) may be typed using the optimised rule

C-noRTE
`Σ,Λ m, sucm(l) : n noExceptionInstr(m, l)

`Σ,Λ m, l : n

We expect that justifying these specialised rules using the program logic would
not pose major problems, while the formal integration with other program anal-
yses (such as the null-pointer analysis) is a topic for future research.

5 Resource-extended program logic

In this section we give a brief overview of an extension of the MOBIUS base
logic as described in Section 3 for dealing with resources in a generic way. The
extension addresses the following shortcoming of the basic logic:
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Resource consumption Specific resources that we would like to reason about
include instruction counters, heap allocation, and frame stack height. A
well-known technique for modelling these resources is code instrumentation,
i.e. the introduction of (real or ghost) variables and instructions manipulat-
ing these. However, code instrumentation appears inappropriate for a PCC
environment, as it does not provide an end-to-end guarantee that can be un-
derstood without reference to the program at hand. In particular, the over-
all satisfaction of a resource property using code instrumentation requires
an analysis of the annotated program, i.e. a proof that the instrumenta-
tion variables are introduced and manipulated correctly. Furthermore, the
interaction between additional variables of different domains, and between
auxiliary variables and proper program variables is difficult to reason about.

Execution traces Here, the goal is to reason about properties concerning a
full terminating or non-terminating execution of a program, for example
by imposing that an execution satisfies a formula expressed in temporal
logics or a policy given in terms of a security automaton. Such specifications
may concern the entire execution history, i.e. be defined over a sequence of
(intermediate) Bicolano states, and are thus not expressible in the MOBIUS
base logic.

Ghost variables are heavily used in JML, both for resource-accounting pur-
poses as well as functional specifications, but are not directly expressible in
the base logic.

In this section we extend the base logic by a generic resource-accounting mech-
anism that may be instantiated to the above tasks. In addition to the work
reported here, we have also performed an analysis of the usage made of ghost
variables in JML, and have developed interpretations of ghost variables in na-
tive and resource-extended program logics [24]. In particular, loc.cit. contains a
formalised proof demonstrating how resource counting using ghost variables in
native logics may be effectively eliminated, by translating each proof derivation
into a derivation in the resource-extended logic.

5.1 Semantic modelling of generic resources

In order to avoid the pitfalls of code instrumentation discussed above, a semantic
modelling of resource consumption was chosen. The logic is defined over an
extended operational semantics, the judgements of which are formulated over
the same components as the standard Bicolano operational semantics, plus a
further resource-accounting component [20]. The additional component is of the
a priori unspecified type ACT, and occurs as a further component in initial, final,
and intermediate states. In addition, we introduce transfer functions that update
the content of this component according to the other state components, including
the program counter. The operational semantics of the extended framework is
then obtained by embedding each non-extended judgement form in a judgement
form over extended states and invoking the appropriate transfer functions on
the resource component. While these definitions of the operational semantics
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are carried out once and for all, the implementation of the transfer functions
themselves is programmable. Thus, realisations of the framework for particular
resources may be obtained by instantiating the ACT to some specific type and
implementing the transfer functions as appropriate. The program logic remains
conceptually untouched, i.e. it is structurally defined as the logic from Section 3,
but the definitions of assertion transformers and rules, and the soundness proof,
are adapted to extended states and modified operational judgements.

In comparison to admitting the definition of ad-hoc extensions to the program
logic, we argue that the chosen approach is better suited to the PCC applications,
as the consumer has a single point of reference where to specify his policy, namely
the implementation of the transfer functions.

5.2 Application: block-booking

As an application of the resource-extended program logic, we consider a scenario
where an application repeatedly sends some data across a network provided that
each such operation is sanctioned by an interaction with the user. In order to
avoid authorisation requests for individual send operations, a high-level language
might contain a primitive auth(n) that asks the user to authorise n messages in
one interaction. A reasonable resource policy for the code consumer then is to
require that no send operation be carried out without authorisation, and that
at each point of the execution, the acquired authorisations suffice for servicing
the remaining send operations. (For simplicity, we assume that refusal by the
user to sanction an authorisation request simply blocks or leads to immediate
non-termination without any observable effect.)

We note that as in the case of the logic loop constructs from the high-level
language are mapped to conditional and unconditional jumps that must be typed
using the corresponding rules.

We now outline a bytecode-level type and effect system for this task, for
a sublanguage of scalar (integer) values and unary static methods. Effects τ
are rely-guarantee pairs (m,n) of natural numbers: a code fragment with this
effect satisfies the above policy whenever executed in a state with at least m
unused authorisations, with at least n unused authorisations being left over upon
termination. The number of authorisations that are additionally acquired, and
possibly used, during the execution are unconstrained. Types C,D, . . . are sets
of integers constraining the values stored in variables or operand stack positions.
Judgements take the form ∆, η, Ξ `Σ,Λ ` : C, τ , with the following components:

– the abstract store ∆ maps local variables to types
– the abstract operand stack η is represented as a list of types
– Ξ is an equivalence relation relation ranging over identifiers ρ from dom ∆∪

dom η where dom η is taken to be the set {0, . . . , |η| − 1}. The role of Ξ is
to capture equalities between values on the operand stack and the store.

– instruction labels ` = (M, l) indicate the current program point, as before
– the type C describes the return type
– the effect τ captures the pre-post-behaviour of the subject phrase with re-

spect to authorisation and send events
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– the proof context Λ associates sets of tuples (∆, η, Ξ,C, τ) to labels l (im-
plicitly understood with respect to method M).

– the method signature table Σ maps method names to type signatures of the

form ∀i∈I. Ci
(mi,ni)−−−−−→ Di. Limiting our attention to static methods with

a single parameter, such a poly-variant signature indicates that for each i

in some (unspecified) index set I, the method is of type Ci
(mi,ni)−−−−−→ Di,

i.e. takes arguments satisfying constraint Ci to return values satisfying Di

with (latent) effect (mi, ni).

In addition to ignoring virtual methods (and consequently avoiding the need for
a condition enforcing behavioural subtyping of method specifications), we also
ignore exceptions. Finally, while our example program contains simple objects
we do not give proof rules for object construction or field access. We argue that
this impoverished fragment of the JVML suffices for demonstrating the concept
of certificate generation for effects, and leave an extension to larger language
fragments as future work.

For an arbitrary relation R, we let Eq(R) denote its reflexive, transitive and
symmetric closure. We also define the operations Ξ − ρ, Ξ + ρ and Ξ[ρ := ρ′]
on equivalence relation Ξ and identifiers ρ and ρ′, as follows.

Ξ − ρ ≡ Ξ \ {(ρ1, ρ2) | ρ = ρ1 ∨ ρ = ρ2}
Ξ + ρ ≡ Ξ ∪ {(ρ, ρ)}

Ξ[ρ := ρ′] ≡ Eq((Ξ − ρ) ∪ {(ρ, ρ′)})

The interpretation of position ρ in a pair (O,S) is given by JxK(O,S) = S(x)
and JnK(O,S) = O(n). The interpretation of a triple ∆, η, Ξ in a pair (O,S) is
given by the formula

J∆, η, ΞK(O,S) =


dom ∆ ⊆ dom S ∧ |η| = |O| ∧
∀x ∈ dom ∆. S(x) ∈ ∆(x) ∧
∀i < |η|. O(i) ∈ η(i) ∧
∀(ρ, ρ′) ∈ Ξ. JρK(O,S) = Jρ′K(O,S)

With the help of these operations, the type system is now defined by the rules
given in Figure 5. Due to the formulation at the bytecode level, the authorisation
primitive does not have a parameter but obtains its argument from the operand
stack.

The rule for conditionals, E-If, exploits the outcome of the branch condition
by updating the types of all variables associated with the top operand stack
position in Ξ. This limited form of copy propagation will be made use of in the
verification of an example program below.

In the rule of consequence, E-Sub, subtyping on types is denoted by C <:
D and given by subset inclusion, and is extended to abstract stores (notation
∆ <: ∆′) and abstract operand stacks (notation η <: η′) in a pointwise fashion.
Sub-effecting is given by the reflexive closure of the rule

k ≥ m + d l ≤ n + d

(m,n) <: (k, l)
.
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E-Send
M(l) = send ∆, η, Ξ `Σ,Λ M, sucM (l) : D, (m− 1, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-Auth

M(l) = auth ∀i ∈ C. i ≥ k
∆, η, Ξ − |η| `Σ,Λ M, sucM (l) : D, (m + k, n)

∆, C :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-Goto
M(l) = goto l′ ∆, η, Ξ `Σ,Λ M, l′ : D, (m, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-If

M(l) = ifz l′ Ξ ′ = Ξ − |η|
∆1 = ∆[x 7→ ∆(x) ∩ (Z \ {0})](|η|,x)∈Ξ

η1 = η[i 7→ η(i) ∩ (Z \ {0})](|η|,i)∈Ξ ∧ 0≤i<|η|
∆2 = ∆[x 7→ ∆(x) ∩ {0}](|η|,x)∈Ξ

η2 = η[i 7→ η(i) ∩ {0}](|η|,i)∈Ξ ∧ 0≤i<|η|
∆1, η1, Ξ

′ `Σ,Λ M, sucM (l) : (m, n) ∆2, η2, Ξ
′ `Σ,Λ M, l′ : D, (m, n)

∆, C :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-Store

M(l) = store x Ξ ′ = (Ξ[x := |η|])− |η|
∆[x 7→ C], η, Ξ ′ `Σ,Λ M, sucM (l) : D, (m, n)

∆, C :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-Load

M(l) = load x Ξ ′ = Ξ[|η| := x]
∆, ∆(x) :: η, Ξ ′ `Σ,Λ M, sucM (l) : D, (m, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-Push
M(l) = push c ∆, {c} :: η, Ξ + |η| `Σ,Λ M, sucM (l) : D, (m, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-Binop

M(l) = binop ⊕ C = {z|z = x ⊕ y, x ∈ C1, y ∈ C2}
∆, C :: η, ((Ξ − |η|)− (|η|+ 1)) + |η| `Σ,Λ M, sucM (l) : D, (m, n)

∆, C1 :: C2 :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-InvS

M(l) = invokestatic M ′ Σ(M ′) = ∀i∈I. Ci
τi−→ Di k ∈ I

Ξ ′ = (Ξ − |η|) + |η| ∆, Dk :: η, Ξ ′ `Σ,Λ M, sucM (l) : D, (nk, n)

∆, Ck :: η, Ξ `Σ,Λ M, l : D, (mk, n)

E-Vret
M(l) = vreturn

∆, D, Ξ `Σ,Λ M, l : D, (0, 0)
E-Ax

(∆, η, Ξ, D, τ) ∈ Λ(l)

∆, η, Ξ `Σ,Λ M, l : D, τ

E-Sub

∆′, η′, Ξ ′ `Σ,Λ ` : C, τ ′

∆ <: ∆′ η <: η′

C <: D τ ′ <: τ Ξ ′ ⊆ Ξ

∆, η, Ξ `Σ,Λ ` : D, τ
E-Univ

∀ O S. J∆, η, ΞK(O,S) = False

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

Fig. 5. Type and effect system for block-booking
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The final rule, E-Univ, allows us to associate an arbitrary effect and result
type to a code segment under the condition that the constraints ∆, η, Ξ on the
initial state are unsatisfiable. The main use of this rule is in cases where branch
conditions render one branch dead code.

In order to prove the soundness of the type system in the extended program
logic, we instantiate the parameter ACT to the type of finite words over the set
{send}∪{auth(z) | z ≥ 0} and implement the transfer functions such that each
execution of the primitives send and auth results in appending the appropriate
action to the trace - in case of authorisation events, the number z is obtained
by inspecting the topmost value of the operand stack.

We interpret a judgement ∆, η, Ξ `Σ,Λ M, l : D, (m,n) as the logic statement

JΛKM ` {λ s0. True}M, l {J(∆, η, Ξ,m, n,D)K} (J(∆, η, Ξ,m)K),

with the following components. The postcondition J(∆, η, Ξ,m, n,D)K is

λ (s0, (O,S, h,X), (h, v, Y )). J∆, η, ΞK(O,S) →
(∃Z. v ∈ D ∧ Y = XZ ∧ |Z|auth + m ≥ |Z|send + n).

For any terminating execution starting in an initial store and operand stack
conforming to the abstractions ∆ and η, and respecting the equivalence relation
Ξ, this property guarantees that the return value satisfies D. Furthermore, the
sub-traces for authorisation and send events (obtained by projecting from the
trace Z of all events encountered during the execution of the phrase) satisfy the
inequality interpreting the effect.

A similar explanation holds for the definition of the invariant J(∆, η, Ξ,m)K,

λ (s0, (O,S, h,X), (O′, S′, h′, X ′)). J∆, η, ΞK(O,S) →
(∃Z. X ′ = XZ ∧ |Z|auth + m ≥ |Z|send).

The local proof context JΛKM is given by

[(M, l) 7→ (True, J(∆, η, Ξ,m, n,D)K, J(∆, η, Ξ,m)K)]Λ(l)=(∆,η,Ξ,D,(m,n)),

i.e. by translating the entries of Λ pointwise. Finally, each specification entry

Σ(M) = ∀i∈I. Ci
(mi,ni)−−−−−→ Di results in an entry M(M) = (R, T, Φ) in the

bytecode logic specification table, where

R(s0) = True
T ((S, h,X), (h, v, Y )) = ∀i ∈ I.S(arg) ∈ Ci →

(∃ Z. v ∈ Di ∧ Y = XZ ∧
|Z|auth + mi ≥ |Z|send + ni)

Φ((S, h,X), (O,S′, h′, X ′)) = ∀i ∈ I.S(arg) ∈ Ci →
(∃ Z. X ′ = XZ ∧ |Z|auth + mi ≥ |Z|send)

where arg is the formal parameter. Based on this interpretation, certificate gener-
ation may now be obtained by deriving the typing rules from the program logic
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and introducing appropriate notions of progressive derivations and well-typed
programs (in the absence of virtual methods: without a behavioural subtyping
condition), in a similar way as in Section 4. The formalisation of this is left as
future research.

5.3 Example

We assume two builtin integer-valued functions size_string yielding the num-
ber of SMS messages required to send a given string, and size_book which gives
the size of an address book. Figure 6 presents Java-style pseudocode for sending
a given string to all addresses of a given address book after requiring the neces-
sary permissions. The program first computes the total number of SMS messages

public interface Parameters {

int p=...; //some constant >= 0

}

class BlockBooking {

static void send () {...};

static void auth (int p) {...};

void block_send(Java.lang.String s, addrbook b) {

int n = size_string(s);

int m = size_book(b);

int nb_sms = n * m;

int j = 0;

int sent = 0;

while (nb_sms - sent > 0) {

if j > 0 {

//current authorisations suffice

send();

sent = sent + 1;

j = j - 1

} else {

//acquire p new authorisations

auth (Parameters.p);

j = Parameters.p;

}

}

return 0;

}

}

Fig. 6. Program for sending a message using authorisation chunks of size p

and then sends the messages where authorisations are acquired in blocks of size
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p, for arbitrary fixed p ≥ 0. The primitives for sending and authorising messages
are modelled as additional (static) methods.

Figure 7 shows the bytecode for method block_send, which comprises six
basic blocks. In order to verify that this method does not send more messages

0 aload 1 //variable s

1 invokestatic sizestring

4 istore 3 //variable n

5 aload 2 // variable b

6 invokestatic sizebook

9 istore 4 //variable m

11 iload 3

12 iload 4

14 imul

15 istore 5 //variable nbms

17 iconst 0

18 istore 6 //variable j

20 iconst 0

21 istore 7 //variable sent

23 iload 5

25 iload 7

27 isub

28 ifle 64

31 iload 6

33 ifle 54

36 invokestatic send

39 iload 7

41 iconst 1

42 iadd

43 istore 7

45 iload 6

47 iconst 1

48 isub

49 istore 6

51 goto 23

54 iconst 3 // parameter p

55 invokestatic auth

58 iconst 3

59 istore 6

61 goto 23

64 iconst 0

65 ireturn

Fig. 7. Bytecode for method BlockBooking.block send.

than authorised, we derive the typing

[s 7→ C, b 7→ D], [ ], ∅ `Σ,Λ block send, 0 : {0}, (0, 0)

where C and D are arbitrary and

Σ ≡ [sizestring 7→ {(C, 0, 0,Z)}, sizebook 7→ {(D, 0, 0,Z)}]
Λ ≡ [23 7→ {specd | 0 ≤ d}]

specd ≡ (∆d, [ ], Ξd, {0}, (d, 0))
∆d ≡ [n 7→ Z,m 7→ Z, nbsms 7→ Z, j 7→ {d}, sent 7→ Z≥0]
Ξd ≡ {(n, n), (m,m), (nbsms, nbsms), (j, j), (sent, sent)}.

The proof context Λ contains a single entry, namely a polyvariant loop invari-
ant for instruction 23. The invariant contains one entry for each 0 ≤ d, where
the index specifies precisely the content of variable j and links this value to
the pre-effect. The equivalence relation relevant at this program point contains
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merely the reflexive entries for all (integer) variables. The verification of the
above judgement applies the rules syntax-directedly for instructions 0, . . . , 21,
and then applies the axiom rule for label 23, guarded by an application of rule
E-Sub.

The overall verification complements the verification of the above judgement
with a justification of the context Λ, by providing a progressive derivation for
the loop invariant. Again, this verification proceeds syntax-directedly through
the loop, terminating in (subtyping-protected) applications of the rule E-Ax.
At the point where method send is invoked (instruction label 36) a case-split is
performed on the condition d = 0. If this condition holds, a vacuous statement is
obtained as the invocation occurs in the branch j > 0, and our invariant ensures
that j contains the value d. The vacuity is detected as the entry for j in ∆
is ∅ at that point: the load instruction at label 36 inserts (0, j) into Ξ, hence
the type associated with j in the fall-through-hypothesis of the branch at label
33 (in particular: at label 36) is {d} ∩ (Z \ {0}) = ∅ where the term {d} was
propagated unmodified to instruction 36 from instruction 23. Consequently, the
case d = 0 may be immediately discharged by an invocation of rule E-Univ. The
case d > 0 admits the application of the proof rule E-Send, and the remainder
of the branch is again proven in a syntax-directed fashion.

Type checking and inference Again, we briefly discuss these issues for this sys-
tem. The type system is generic in that types may be arbitrary sets of integers.
In order to support effective typechecking and inference one must of course re-
strict these sets themselves and also the sets of types that arise in annotations
and method specifications. A popular and for our intended application sufficient
way consists of restricting types to convex polyhedra specified by a system of
linear inequalities and to confine sets of types to those arising by intersecting a
fixed convex polyhedron with a hyperplane specified by one or more additional
parameters. Notice that the types in our running example are all of this form.

When we make this restriction (formally by applying the subtyping rule
immediately after each rule to bring the types back into the polyhedral format)
then type checking amounts to checking inclusion of convex polyhedra which can
be efficiently performed by linear programming. Furthermore, Farkas’ Lemma
also furnishes short, efficiently computable, and efficiently checkable certificates
[21, 28]. Indeed, since any convex polyhedron is the intersection of hyperplanes,
deciding containment of convex polyhedra reduces to deciding whether a convex
polyhedron H = {x | Ax ≤ b} is contained in a hyperplane of the form P =
{x | cT x ≤ d}. This, however, is the case iff max{cT x | x ∈ H} ≤ d; a linear
programming problem. Now, the latter inequality can be certified by providing
a vector r ≥ 0 (componentwise) such that rT A = cT and rT b ≤ d. For then,
whenever x ∈ H, i.e., Ax ≤ b then cT x = rT Ax ≤ rT b ≤ d. Farkas’ lemmas
asserts that such a vector r exists whenever max{cT x | x ∈ H} ≤ d. Given its
existence we can efficiently compute it by minimising yT b subject to yT A = cT

and y ≥ 0.
Regarding automatic type inference as opposed to type checking one has to

find unknown convex polyhedra specified by fixpoint equations. Besson et al. [12]
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report that this can be done by iteration using widening heuristics from [19]. The
range and efficiency remains, however, unexplored in loc. cit. In our particular
application we expect constraints to be sufficiently simple so that these heuristics
or those proposed in [26] will be successful. Inference of the equivalence relations
Ξ can be achieved by employing standard copy-propagation techniques known
from compiler constructions.

6 Discussion

We have described the use of the Mobius base logic as a unified backend for both
program analyses and type systems. The Mobius base logic has been formally
proved sound with respect to the Bicolano formalisation of the JVM. Compared
to direct soundness proofs of type systems and analyses with respect to Bicolano
the use of the Mobius base logic as an intermediary offers two distinctive advan-
tages. First, the soundness proof of the Mobius base logic already does much of
the work that is common to soundness proofs, in particular inducting on steps in
the operational semantics and stack height. The Mobius logic is more transpar-
ent and allows for proof by invariant and recursion. Secondly, the standardised
format of assertions in the Mobius base logic makes it easier to compare results
of different type systems and analyses and also to assess whether the asserted
property coincides with the intuitively desired property.

The resource extension to both Bicolano and the Mobius base logic allows
for direct specification and certification of resource-related intensional properties
without having to go through indirect observations such as values of ordinary
program variables that are externally known to reflect some resource behaviour.
This is particularly important in the PCC scenario where providers and users of
specifications and certificates do not coincide and might have different objectives.

Similarly, the strong invariants enhance the expressive power of the Mo-
bius base logic compared to standard Hoare logics in that resource behaviour of
nonterminating programs is appropriately accounted for. In this way, the usual
strong guarantees of type systems and program analyses may be adequately
reflected in the logic.

We have demonstrated this use of the Mobius base logic on one of the Mobius
case studies: a block-booking scheme whose deployment could avoid the inflation
of permission requests that lead to social vulnerabilities.
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Implementing a type system for amortised

heap-space analysis

Martin Hofmann Dulma Rodriguez

September 11, 2008

1 Introduction

The prediction of resource consumption in programs has gained interest in the
last years. It is important for a number of areas, notably embedded systems
and safety critical systems. Different approaches to achieve bounded resource
consumption has been analyzed. One of them is the use of sized types as ini-
tially proposed by Hughes and Pareto [HP99]. Another approach, based on an
amortized complexity analysis, has been studied by Hofmann and Jost for a
functional language in [HJ03] and for a Java-like language in [HJ06].

Their analysis in [HJ06] is based on a Java-like class-based object-oriented
language without garbage collection, but with explicit deallocation in the style
of C’s free(). Such programs may be evaluated by maintaining a set of free
memory units, the freelist. Upon object creation a number of heap units required
to store the object is taken from the freelist provided it contains enough units;
each deallocated heap unit is returned to the freelist. An attempt to create
a new object with an insufficient freelist causes unsuccessful abortion of the
program.

The goal is to predict a bound to the initial size that the freelist must have
so that a given program may be executed without causing unsuccessful abortion
due to penury of memory. They have achieved this using an amortized analysis.
The idea is to assign objects a potential. Any object creation must be paid
for from the potential in scope and the potential of the initial configuration
furnishes an upper bound on the total heap consumption.

While type inference and automated type checking has already been devel-
oped for the functional language within the EmBounded Project ([HDF+05],
[HBH+07]), most of the properties of the type system for the Java-like language
(called Resource Aware JAva – RAJA) are still unknown.

Now we describe automated type-checking for a modified version of RAJA
which we call RAJA+. Moreover we prove that the type checking algorithm we
present is sound and complete with respect to the declarative type system of
RAJA+. This proves the decidability of the system.

On the other side, we have implemented the type checking algorithm as well
as a parser and an interpreter for RAJA+ programs in Ocaml. This prototype
implementation supports further investigation in this area.

Contents. The following section describes briefly the systems RAJA and
RAJA+ explaining the background. In Section 3 we formulate the algorithmic
typing rules and verify the soundness (Section 3.1) and completeness (Section

1
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3.2). Then, decidability of the system follows and is proved in Section 3.3. In
Section 4 we describe some interesting features of the Ocaml implementation of
the type checker like the implementation of coinductive definitions (Section 4.1)
and we show examples of code in Section 4.2. Finally, we discuss future and
related work in the conclusions.

2 The language RAJA

2.1 Views and potential

We aim at assigning objects a potential so that any object creation must be
paid for from the potential in scope and the potential of the initial configura-
tion furnishes an upper bound on the total heap consumption. For an interesting
analysis we should be able to assign objects of the same class different poten-
tials. Thus, we need more refined types than classes to assign potential to. We
introduce the views. A view on an object shall determine its contribution to the
potential. A refined type then consists of a class C and a view r and is written
Cr.

The meaning of views is given by three maps ♦ defining potentials, A defining
views of attributes, and M defining refined method types. More precisely,

1. ♦ : Class × View → Q+ assigns each class its potential according to the
employed view.

2. A : Class × View × Field → View × View determines the refined types of
the fields. A different view may apply according to whether a field is read
from (get-view) or written to (set-view).

3. M : Class × View × Method → P(Views of Arguments → Effect ×
View of Result) assigns refined types and effects to methods. The effect is
a pair of numbers representing the potential consumed before and released
after method invocation.

The overall potential of a runtime configuration is the (possibly infinite) sum
over all access paths in scope that lead to an actual object.

2.2 Extending FJEU to RAJA

Our formal model of Java, FJEU, is an extension of Featherweight Java (FJ)
[IPW99] with attribute update, conditional and explicit deallocation. It is thus
similar to Flatt et al. Classic Java [FKF98].

An FJEU program C is a partial finite map from class names to class defini-
tions, which we also refer to as class table. Each class table C implies a subtyping
relation <: among the class names in the standard way by inheritance.

Each class consists of an optional super-class, a set of attributes (or fields)
with their types, and a set of methods with their types and bodies. A method
body is an expression in let normal form (nested expressions flattened out using
a sequence of let-definitions). Classes have only one implicit constructor that
initializes all attributes to a nil-value.

2
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We now extend FJEU to an annotated version, RAJA, (Resource Aware
JAva) as announced in the Introduction. A RAJA program is an an-
notation of an FJEU class table C in the form of a sextuple R =
(C ,V ,♦(·) ,Aget(· , ·) ,Aset(· , ·) ,M(· , ·)) specified as follows:

1. V is a possibly infinite set of views. For each class C ∈ dom(C ) and for
each view r ∈ V the pair Cr is called a RAJA class. We refer to RAJA
classes also as (refined) types.

2. ♦(·) assigns to each RAJA class Cr a number ♦(Cr) ∈ D, where D = R ∪
∞. This number will be used to define the potential of a heap configuration
under a given static RAJA typing.

3. Aget(· , ·) and Aset(· , ·) assign to each RAJA class Cr and attribute a ∈ A(C)
two views q = Aget(Cr, a) and s = Aset(Cr, a). The intention is that if
D = C.a is the FJEU type of attribute a in C then the RAJA type Dq

will be the type of an access to a, whereas the (intendedly stronger) type
Ds must be used when updating a. The stronger typing is needed since
an update will possibly affect several aliases.

4. M(· , ·) assigns to each RAJA class Cr and method m ∈ M(C) having
method type E1, . . . , Ej → E0 a j-ary polymorphic RAJA method type
M(Cr,m).

A j-ary polymorphic RAJA method type is a (possibly empty or infinite)
set of j-ary monomorphic RAJA method types. A j-ary monomorphic
RAJA method type consists of j + 1 views and two numbers p, q ∈ D,

written r1, . . . , rj
p/q
−→r0.

The idea is that if m (of FJEU-type E1, . . . , Ej → E0) has (among oth-

ers) the monomorphic RAJA method type r1, . . . , rj
p/q
−→r0 then it may be

called with arguments v1 : Er1

1 , . . . , vj : E
rj

j , whose associated potential
will be consumed, as well as an additional potential of p. Upon successful
completion the return value will be of type Er0

0 hence carry an accord-
ing potential. In addition to this a potential of another q units will be
returned.

We sometimes write Er1

1 , . . . , E
rj

j
p/q
−→Er0

0 to denote an FJEU method type
combined with a corresponding monomorphic RAJA method type.

Potential. The definition of potential of a runtime configuration involves the
following concepts which we explain informally here. We write ⌊⌊⌊(v : r).~p⌋⌋⌋statσ

for the view on the object reached from v (of view r) via access path ~p when
accessed in this way. We write Φσ(v : r) for the potentials of the data structures
reachable from v in the heap σ, when viewed through r. For example, Φσ(v : r) =
∑

~p ♦(Ds), where D is the dynamic type of the record reached from v in σ via ~p,

whereas s = ⌊⌊⌊(v : r).~p⌋⌋⌋statσ . The overall potential of a runtime configuration is
the (possibly infinite) sum over all access paths in scope that lead to an actual
object.

We will now define when such a RAJA-annotation of an FJEU class table
is indeed valid; in particular this will require that each method body is typable
with each of the monomorphic RAJA method types given in the annotation.

3
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2.2.1 RAJA Subtyping Relation

We use in this paper a definition of subtyping that differs slightly from the
definition in [HJ06]. There, a preorder on views is defined, and combined with
the usual subtyping of classes based on inheritance to build subtyping of refined
types:

Compat(<:, C,D, r, s) ⇐⇒

♦(Cr) ≥ ♦(Ds) (2.1)

∀a ∈ A(D) .Aget(Cr, a) <: Aget(Ds, a) (2.2)

∀a ∈ A(D) .Aset(Ds, a) <: Aset(Cr, a) (2.3)

∀m ∈ M(D) .∀β ∈ M(Ds,m) .∃α ∈ M(Cr,m) . α <: β (2.4)

where we extend <: to monomorphic RAJA method types as follows:

if α = r1, . . . , rj
p/q
−→r0 and β = s1, . . . , sj

t/u
−→s0 then α <: β is defined

as p ≤ t and q ≥ u and r0 <: s0 and si <: ri for i = 1, . . . j.

The subtyping relation r ⊑ s between views is now defined as the
largest relation ⊑ such that

r ⊑ s =⇒ Compat(⊑, C, C, r, s) for all C

We extend subtyping to RAJA-classes by

Cr <: Ds ⇐⇒ C <: D and r ⊑ s (2.5)

We define a preorder by coinduction on refined types directly. Our definition
is more general and permits to type more examples. We have not yet extended
the rigorous proof of soundness to this version but do not foresee major obstacles.

Definition 2.1 (Subtyping of RAJA types) We define a preorder <: on
RAJA types as the largest relation (Cr <: Ds) such that if (Cr <: Ds) then:

♦(Cr) ≥ ♦(Ds) (2.6)

∀a ∈ A(D) . C.aAget(Cr,a) <: D.aAget(Ds,a) (2.7)

∀a ∈ A(D) . D.aAset(Ds,a) <: C.aAset(Cr,a) (2.8)

∀m ∈ M(D) .∀β ∈ M(Ds,m) .∃α ∈ M(Cr,m) . (C.m)α <: (C.m)β (2.9)

where we extend <: to monomorphic RAJA method types as follows:

Definition 2.2 (Subtyping of RAJA methods) If C.m = E1, . . . , Ej →

E0, α = r1, . . . , rj
p/q
−→r0 and β = s1, . . . , sj

t/u
−→s0 then (C.m)α <: (C.m)β is

defined as p ≤ t and q ≥ u and Er0

0 <: Es0

0 and Esi

i <: Eri

i for i = 1, . . . j.

If Γ and Θ are contexts we write Γ <: Θ if ∀x ∈ Θ .Γx <: Θx.

4
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2.2.2 Sharing Relation

The following definition is important for correctly using variables more than
once. If a variable is to be used more than once, e.g., as an argument to a
method, then the different occurrences must be given different types which are
chosen such that the individual potentials assigned to each occurrence add up
to the total potential available. For example if we have x : Cr we can use the
variable x with the types Cs1 and Cs2 if .(r |s1, s2 ) holds.

Definition 2.3 (Sharing Relation) We define the sharing relation between a
single view r and a multiset of views D written .(r |D ) 1 as the largest relation
., such that if .(r |D ) then for all C ∈ C :

♦(Cr) ≥
∑

s∈D

♦(Cs) (2.10)

∀s ∈ D . r ⊑ s (2.11)

∀a ∈ dom(A(C)) ..
(

Aget(Cr, a)
∣

∣Aget
(

CD, a
))

(2.12)

where Aget
(

CD, a
)

= {Aget(Cs, a) | s ∈ D}. When D = {s1, . . . , si} is a finite
multiset, we also write .(r |s1, . . . , si ) for .(r |D ).

2.2.3 Typing RAJA

We now give the formal definition of the RAJA-typing judgement. See Figure
1. The type system allows us to derive assertions of the form Γ

n
n′ e : Cr where

e is an expression or program phrase, C is a Java class, r is a view (so Cr is a
refined type). Γ maps variables occurring in e to refined types; we often write Γx

instead of Γ(x). Finally n, n′ are nonnegative numbers. The meaning of such a
judgement is as follows. If e terminates successfully in some environment η and
heap σ with unbounded memory resources available then it will also terminate
successfully with a bounded freelist of size at least n plus the potential ascribed
to η, σ with respect to the typings in Γ. Furthermore, the freelist size upon
termination will be at least n′ plus the potential of the result with respect to
the view r.

The typing rules are standard. The most interesting ones are (♦Share) and
(♦Waste). First we notice that they are not syntax directed, thus, they need
to be eliminated when it comes to implement the system in the next section.

The uses of (♦Waste) are twofold: on the one hand, it deals with subtyping,
and on the other hand, it allows to change the effects in the typing derivation
if some conditions are fulfilled.

The purpose of the (♦Share) rule is to ensure that a variable can be used
twice without duplication of potential. Imagine we want to check that an ex-
pression e has the type Cr in the context Γ, x :Ds, and we know that the variable
x appears twice in e, i.e. we have Γ, x :Ds n

n′ e[x/y, x/z] : Cr. This is allowed
if there are views q1 and q2 with .(s |q1, q2 ). The important point here is that
the rule gives no information about how to find those views q1 and q2. This is
another important aspect of the implementation of the type system that we will
discuss in the next section.

1Similar to the definition of subtyping on RAJA types it is possible to define sharing on
RAJA types too rather than views, eg. .(Cr |Cs1 , Cs2 ). We would need to extend the
soundness proof to this version, which remains under investigation.
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RAJA Typing Γ
n
n′ e : Cr

∅
♦(Cr) + Size (C)

0 new C : Cr
(♦New)

x :Cr 0
♦(Cr) + Size (C) free(x) : Er

(♦Free)

C <: E

x :Er 0
0 (C)x : Cr

(♦Cast)
∅

0
0 null : Cr

(♦Null)
x :Cr 0

0 x : Cr
(♦V ar)

s = Aget(Cr, a) D = C.a

x :Cr 0
0 x.a : Ds

(♦Access)
Aset(Cr, a) = s C.a = D

x :Cr, y :Ds 0
0 x.a<-y : Cr

(♦Update)

Γ1
n
n′ e1 : Ds Γ2, x :Ds n′

n′′ e2 : Cr

Γ1,Γ2
n
n′′ let x = e1 in e2 : Cr

(♦Let)

(

Eq1

1 , . . . , E
qj

j
n/n′

−−→Eq0

0

)

∈ M(Cr,m)

x :Cr, y1 :Eq1

1 , . . . , yj :E
qj

j
n
n′ x.m(y1, . . . , yj) : Eq0

0

(♦Invocation)

x ∈ Γ Γ
n
n′ e1 : Cr Γ

n
n′ e2 : Cr

Γ
n
n′ if x instanceof E then e1 else e2 : Cr

(♦Conditional)

.(s |q1, q2 ) Γ, y :Dq1 , z :Dq2
n
n′ e : Cr

Γ, x :Ds n
n′ e[x/y, x/z] : Cr

(♦Share)

n ≥ u n + u′ ≥ n′ + u Θ
u
u′ e : Ds Γ <: Θ Ds <: Cr

Γ
n
n′ e : Cr

(♦Waste)

RAJA Method Typing ⊢ m : α ok

m ∈ M(C) α = Er1

1 , . . . , E
rj

j
n/n′

−−→Er0

0 ∈ M(Cr,m) .(r |q, s )

this :Cq, x1 :Er1

1 , . . . , xj :E
rj

j

n + ♦(Cs)

n′ Mbody(C,m) : Er0

0

⊢ m : α ok

Figure 1: Typing RAJA
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Definition 2.4 (Well-typed RAJA-program) A RAJA-program R =
(C ,V ,♦(·) ,Aget(· , ·) ,Aset(· , ·) ,M(·, ·)) is well-typed if for all C ∈ C and r ∈ V

the following conditions are satisfied:

1. S(C) = D ⇒ Cr <: Dr

2. ∀a ∈ A(C) .Aset(Cr, a) ⊑ Aget(Cr, a)

3. ∀m ∈ M(C) .∀α ∈ M(Cr,m) . ⊢ m : α ok

Next, we define the judgement ⊢ m : α ok where m is the name of a method
in a RAJA class Cr, and α is a RAJA type for this method. It means that α
is a valid RAJA type for m if the method body of m can be typed with the
arguments, return type and effects as specified in α. There is another interesting
point here: in order to use the potential of this we put it in the context with a
modified type. For example, if we have this : Cr and ♦(Cr) = 1, if we can find
two views such that .(r |q, s ) with ♦(Cq) = 0 and ♦(Cs) = 1, then we put this

in the context with type this : Cq and we can use the potential 1 of Cs when
typing the method body. Again, the rule gives no information about how to
find the views q and s.

2.2.4 Main Result

This is the final corollary of [HJ06] which is a direct consequence of the main
result and it is in this form that they intend to use it.

Corollary 2.5 Suppose that C is an FJEU program containing (in Java nota-
tion) a class List of singly-linked lists with boolean entries, a class C containing
a method void C.main(List args), and arbitrary other classes and methods.

Suppose furthermore, that there exists a RAJA-annotation of this program
containing a view a where ♦(Lista) = k ∈ N and Aget(Lista, next) = a then
evaluating C.main(args) in a heap where args points to a linked list of length l
requires at most kl memory cells.

2.3 Extending RAJA to RAJA+

Now we present a small modification of the system RAJA. Recall the rule
(♦Share) and that it contains no information about how to find the views
q1 and q2 to share with. There are two possibilities of implementing this rule:
either we find a way to infer the views or we annotate the variables with them.
The last option permits to implement the (♦Share) rule in an easy way because
the only task of the type checker is to check that the given sharing is correct.
We have chosen this variant for the implementation because it is still not clear
how the inference of these intermediate views would work. This falls under type
inference as opposed to typechecking and is not studied here.

A RAJA+ program is a RAJA program where all variable occurrences are
annotated with a view. The typing rules are modified in the obvious way. For
example we have the rule (♦+Access):

s = Aget(Cr, a) D = C.a

x :Cr 0
0 xr.a : Ds

(♦+Access)
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or the rule (♦+Share):

.(s |q1, q2 ) Γ, y :Dq1 , z :Dq2
n
n′ e : Cr

Γ, x :Ds n
n′ e[xq1/yq1 , xq2/zq2 ] : Cr

(♦+Share)

In our syntax the method copy of lists found in [HJ06] looks then (simplified)
like this:

List<b>,0 copy(0) {

let Cons<b> res = new Cons in

let List<a> next = [this as c].next in

let List<b> nres = [next as a].copy() in

[res as b].next <- [nres as b] in

return [res as b];

}

3 Algorithmic Typing of RAJA+ Programs

Now the question is how we actually typecheck RAJA+ programs. We need
to implement the RAJA+ typing rules, in order to decide Γ

n
n′ e : Cr. As

pointed out before, there are problematic rules in the system that cannot be
implemented directly because they are not syntax directed. These are (♦+Share)
and (♦+Waste).

The main idea of the implementation is thus to eliminate them and to inte-
grate them in the other syntax directed rules. This way we get a deterministic
algorithm. Moreover we will prove that the eliminated rules are still admissible
in the algorithmic system, proving this way the correctness of the algorithm.

Recall that the effects of the rule (♦+Waste) are twofold: on the one hand,
it deals with subtyping, and on the other hand, it allows to change the effects.
Instead of using (♦+Waste), we will integrate subtyping in every rule. Moreover,
we will see n as another input of every rule, and n′ as an output. For example
in the rule (♦+New) we have

∅
♦(Cr) + Size (C)

0 new C : Cr
(♦+New)

♦(Cr) + Size (C) is in this case the amount of free units that are needed in
order to create a new object of type Cr. In the algorithmic rule ( ⊢New) we
have

n ≥ ♦(Dr) + Size (D) Dr <: Cr

∅
n

n − (♦(Dr) + Size (D)) new D ⇇ Cr
(⊢New)

First, notice the integration of subtyping in the rule. Second, the amount
of free units n only needs to be greater or equal to ♦(Dr) + Size (D) so that it
is possible to create an object of type Dr. The output n′ is then n− (♦(Dr) +
Size (D)). If the given expression is not a subtype of the given type or needs
more than n heap units for its evaluation the algorithm will fail.
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The purpose of the (♦+Share) rule is to ensure that a variable can be used
twice without duplication of potential. We suppose here w.l.o.g. that a variable
can appear twice only in a let expression or in an if expression. This means
that we do not allow expressions like x.m(y, y). This is not really a restriction
to the system, because we can just define a copy of the variable y with let z =
y in x.m(y, z) which is allowed again.

In the Ocaml implementation we do allow such expressions like x.m(y, y).
We show the algorithmic rules here with that restriction because it makes them
easier to read and understand, i.e. only the algorithmic rules ( ⊢ Let) and
(⊢Conditional) deal with variable sharing.

Recall that in RAJA+ all variable occurrences are annotated with a view.
The idea of the algorithmic sharing is to collect the annotations of a vari-
able, and then to check if the given sharing is correct. For example in
x : Ds, y : Cr n

n′ let z = yr1 in xs.m(yr2 , zr1) we have to check .(r |r1, r2 ).
In if expressions though we cannot collect both branches. Imagine the follow-
ing expression: x :Ds, y :Cr n

n′ if x instanceof C then yr else yr. The variable
y is used only once, either in the then branch or in the else branch, thus, there
is no duplication of potential. Thus, it would be too restrictive to reject this
expression because probably .(r |r, r ) does not hold. The solution is to check
the two branches separately: .(r |r ) and .(r |r ) which is trivial.

To resume, during the typechecking process we need to collect views in order
to check the sharing, but we cannot use a simple list to collect the views. We
need a data type that is flexible enough to specify if we are in a let or in an
if expression. We introduce algorithmic views, syntactic expressions based on
views.

α ::= s |α + α |α ∨ α

Moreover, we impose the distributive laws:

1. α + (β ∨ γ) = (α + β) ∨ (α + γ)

2. α ∨ (β + γ) = (α ∨ β) + (α ∨ γ)

For this reason we assume in the following that algorithmic views are in
normal form (s11 + . . . + s1i) ∨ . . . ∨ (sn1 + . . . + snj). Now we extend the
definition of sharing to algorithmic views in normal form.

.(r |(s11 + . . . + s1i) ∨ . . . ∨ (sn1 + . . . + snj) ) iff

.(r |(s11, . . . , s1i) ) and . . . and .(r |(sn1, . . . , snj) )

Going back to our examples, in the let case we need to check .(r |r1 + r2 )
which is then equivalent to .(r |r1, r2 ) while in the if case we check .(r |r ∨ r ),
i.e. .(r |r ) and .(r |r ).

Lemma 3.1 Let s, q, r be views and α1 and α2 algorithmic views. Then:

1. If .(s |α1 + α2 ) then .(s |α1 ) and .(s |α2 ).

2. If .(s |q, r ), .(q |α1 ) and .(r |α2 ) then .(s |α1 + α2 ).

3. .(s |α1 ∨ α2 ) iff .(s |α1 ) and .(s |α2 ).
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We are now ready to define the judgement ΓΨ n
n′ e ⇇ Cr inductively by the

rules in Figure 2, where Γ, n, e and Cr are inputs and Ψ and n′ are outputs. Γ
is an FJEU context, i.e. a map from variable names to FJEU types. Ψ is a map
from variable names to algorithmic views. The notation ΓΨ means that for every
variable x ∈ Γ if Γx = C and Ψx = α then ΓΨ

x = Cα. We use also the notation
ΓΨ1+Ψ2 for meaning that if ΓΨ1

x = Cα1 and ΓΨ2
x = Cα2 then ΓΨ1+Ψ2

x = Cα1+α2 .
The meaning of ΓΨ1∨Ψ2 is similar. In the following we also write ΓD, where Γ
is an FJEU context and D is a map from variable names to views to denote a
RAJA+ context. In summary, we define the function typecheck(Γ, e, Cr, n) by:

typecheck(Γ, e, Cr, n) =

{

(Ψ, n′) if ΓΨ n
n′ e ⇇ Cr

fail otherwise

Next, we define the algorithmic judgement ⊢a m : α ok based on algorithmic
typing. Similar to ⊢ m : α ok, it means that α is a valid RAJA+ type for m if the
method body of m can be typed with the arguments, return type and effects
as specified in α. For every argument type Eri

i , the typechecking algorithm
returns an algorithmic view βi, and it should hold .(ri |βi ). Moreover, u′ is also
an output of the typechecking algorithm, and it should be greater or equal than
the n′ specified in α.

In the following we show that the algorithmic typing system we just defined
is correct w.r.t. the declarative typing system of RAJA+:

1. Sound: If ΓΨ n
n′ e ⇇ Cr and for all x ∈ Ψ with Ψx = α one has .(s |α )

then ΓD n
n′ e : Cr, where Dx = s.

2. Complete: If ΓD n
n′ e : Cr and u ≥ n then for all x ∈ D with Dx = s

there is an α with .(s |α ) and ΓΨ u
u′ e ⇇ Cr for some u′ ≥ n′, where

Ψx = α.

3.1 Verification of Soundness

Lemma 3.2 (Soundness of algorithmic RAJA+ typing)
If ΓΨ n

n′ e ⇇ Cr and for all x ∈ Ψ with Ψx = α there is a view s with .(s |α )
then ΓD n

n′ e : Cr, where Dx = s.

Proof. By induction on algorithmic typing derivations, using the (♦+Waste)
rule in most cases, and Lemma 3.1 in the cases (⊢Let) and (⊢Conditional).

2

Lemma 3.3 (Soundness of algorithmic RAJA+ method typing) Given
a RAJA+ class C, a view r, a method m ∈ M(C) and a RAJA+ method type
α ∈ M(Cr,m), if ⊢a m : α ok then ⊢ m : α ok.

Proof. Let α = Er1

1 , . . . , E
rj

j
n/n′

−−→Er0

0 and .(r |q, s ), .(q |β ),
.(r1 |β1 ) . . . .(rj |βj ). We have

this :Cβ , x1 :Eβ1

1 , . . . , xj :E
βj

j
n + ♦(Cs)

u Mbody(C,m) ⇇ Er0

0

and u ≥ n′ and we show

this :Cq, x1 :Er1

1 , . . . , xj :E
rj

j

n + ♦(Cs)

n′ Mbody(C,m) : Er0

0
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Algorithmic RAJA+ Typing ΓΨ n
n′ e ⇇ Cr

n ≥ ♦(Dr) + Size (D) Dr <: Cr

∅
n

n − (♦(Dr) + Size (D)) new D ⇇ Cr
(⊢New)

Eq <: Cr

x :Eq n
n xq ⇇ Cr

(⊢V ar)

x :Cq n
n + ♦(Cq) + Size (C) free (xq) ⇇ Er

(⊢Free)

D <: E (or E <: D) Dq <: Cr

x :Eq n
n (D)xq ⇇ Cr

(⊢Cast)
∅

n
n null ⇇ Cr

(⊢Null)

Aget(Cr, a) = q C.a = E Eq <: Ds

x :Cr n
n xr.a ⇇ Ds

(⊢Access)

Aset(Eq, a) = s E.a = D F p <: Ds Eq <: Cr

x :Eq, y :F p n
n xq.a← yp ⇇ Cr

(⊢Update)

(

Eq1

1 , . . . , E
qj

j
p/p′

−−→Eq0

0

)

∈M(Ds,m) n ≥ p ∀i . F ti

i <: Eqi

i Eq0

0 <: Cr

x :Ds, y1 :F t1
1 , . . . , yj :F

tj

j
n

p′ + n − p xs.m (yt1
1 , . . . , y

tj

j ) ⇇ Cr
(⊢Invocation)

ΓΨ1

1 ,∆Ψ′

3
n
n′ e1 ⇇ Ds ΓΨ2

2 ,∆Ψ′′

3 , x :Dα n′

n′′ e2 ⇇ Cr .(s |α )

ΓΨ1

1 ,ΓΨ2

2 ,∆Ψ′

3+Ψ′′

3
n
n′′ let x = e1 in e2 ⇇ Cr

(⊢Let)

ΓΨ1

1 ,∆Ψ′

3
n
n′ e1 ⇇ Cr ΓΨ2

2 ,∆Ψ′′

3
n
n′′ e2 ⇇ Cr

x :Ds,ΓΨ1

1 ,ΓΨ2

2 ,∆Ψ′

3∨Ψ′′

3
n

min( n′, n′′) if xs instanceof E then e1 else e2 ⇇ Cr
(⊢Conditional)

Algorithmic RAJA+ Method Typing ⊢a m : α ok

m ∈ M(C) α = Er1

1 , . . . , E
rj

j
n/n′

−−→Er0

0 ∈ M(Cr,m)

.(r |q, s ) .(q |β ) .(r1 |β1 ) . . . .(rj |βj )

this :Cβ , x1 :Eβ1

1 , . . . , xj :E
βj

j

n + ♦(Cs)

u′ Mbody(C,m) ⇇ Er0

0 u′ ≥ n′

⊢a m : α ok

Figure 2: Algorithmic RAJA+ Typing
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We have by soundness of algorithmic typing (Lemma 3.2)

this :Cq, x1 :Er1

1 , . . . , xj :E
rj

j
n + ♦(Cs)

u Mbody(C,m) : Er0

0 u ≥ n′

this :Cq, x1 :Er1

1 , . . . , xj :E
rj

j

n + ♦(Cs)

n′ Mbody(C,m) : Er0

0

(♦+Waste)

2

3.2 Verification of Completeness

The completeness proof is a bit more complicated than the soundness proof. The
reason for this is that we have eliminated the rules (♦+Share) and (♦+Waste)
from the declarative system and we have to show that typing derivations that
use these rules are still admissible in the algorithmic system. We need to prove
the admissibility of these rules in extra lemmas.

First we prove the following lemma (Waste), which states the admissibility
of the (♦+Waste) rule in the algorithmic system. Here is interesting to remark
that the algorithmic views returned by the algorithm remain the same if we
change the return type and the context, because they are calculated based on
the views annotations of the expression.

Lemma 3.4 (Waste) If ΘΨ n
n′ e ⇇ Ds and u ≥ n and there is a Γ <: Θ and

Ds <: Cr then ΓΨ u
u′ e ⇇ Cr for some u′ ≥ n′ + u− n.

Proof. By induction on algorithmic typing derivations. 2

The next lemma states the admissibility of sharing in the algorithmic system.

Lemma 3.5 (Share) Let ΓΨ, y : Dα1 , z : Dα2
n
n′ e ⇇ Cr and let s, q1, q2 be

views with .(s |q1, q2 ),.(q1 |α1 ),.(q2 |α2 ). Then ΓΨ, x : Dα n
n′ e[x/y, x/z] ⇇

Cr for some α with .(s |α ).

Proof. By induction on algorithmic typing derivations, using Lemma 3.1. 2

Lemma 3.6 (Completeness of algorithmic RAJA+ typing)
If ΓD n

n′ e : Cr and u ≥ n then for all x ∈ D with Dx = s there is an α with
.(s |α ) and ΓΨ u

u′ e ⇇ Cr for some u′ ≥ n′, where Ψx = α.

Proof. By induction on typing derivations.

Case (♦+Let), (♦+Conditional) With the induction hypothesis, using Lemma
3.1.

Case (♦+Share) Using Lemma 3.5.

Case (♦+Waste) We have

ΘD m
m′ e : Ds n ≥ m n + m′ ≥ n′ + m ΓE <: ΘD Ds <: Cr

ΓE
n
n′ e : Cr

(♦+Waste)

We can apply the induction hypothesis and obtain a Ψ with ΘΨ m
m′′ e ⇇

Ds for some m′′ ≥ m′. By Lemma 3.4 we have ΓΨ u
u′′ e ⇇ Cr and
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u′′ ≥ m′′ + u − m. Our goal is to show u′′ ≥ n′, so let us put all our
information together:

u′′ ≥ m′′ + u−m (3.1)

m′′ ≥ m′ (3.2)

u ≥ n ≥ m (3.3)

n + m′ ≥ n′ + m (3.4)

We can derive:

from 3.2 and 3.4 we get m′′ ≥ m′ ≥ n′ + m− n (3.5)

from 3.1, 3.3 and 3.5 we get u′′ ≥ (n′ + m− n) + u−m (3.6)

3.6 simplifies to u′′ ≥ n′ + u− n (3.7)

And since u ≥ n by assumption, u− n ≥ 0, thus, u′′ ≥ n′.
2

Lemma 3.7 (Completeness of algorithmic RAJA+ method typing)
Given a RAJA+class C, a view r, a method m ∈ M(C) and a RAJA+method
type α ∈ M(Cr,m), if ⊢ m : α ok then ⊢a m : α ok.

Proof. Let α = Er1

1 , . . . , E
rj

j
n/n′

−−→Er0

0 and .(r |q, s ). We have

this :Cq, x1 :Er1

1 , . . . , xj :E
rj

j

n + ♦(Cs)

n′ Mbody(C,m) : Er0

0

and we show that there are algorithmic views α, β1, . . . , βj with .(q |α ),
.(r1 |β1 ), . . ., .(rj |βj ) and

this :Cα, x1 :Eβ1

1 , . . . , xj :E
βj

j

n + ♦(Cs)

u′ Mbody(C,m) ⇇ Er0

0

for some u′ ≥ n′, and it follows by Lemma 3.6. 2

3.3 Decidability of RAJA+ typing

Lemma 3.8 (Decidability of algorithmic RAJA+ typing)
ΓΨ n

n′ e ⇇ Cr is decidable.

Proof. The function typecheck(Γ, e, Cr, n) defined before decides the judgement
evidently. It is possible to define such a function because the rules are deter-
ministic and syntax-directed. 2

Lemma 3.9 Given a RAJA+class C, a view r, a method m ∈ M(C) and a
RAJA+method type α ∈ M(Cr,m), ⊢ m : α ok is decidable.

Proof. By Lemma 3.3 and Lemma 3.7 together we have that ⊢ m : α ok is
equivalent to ⊢a m : α ok, and ⊢a m : α ok is decidable because this :Cβ , x1 :

Eβ1

1 , . . . , xj :E
βj

j
n + ♦(Cs)

u Mbody(C,m) ⇇ Er0

0 is decidable by Lemma 3.8. 2
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Theorem 3.10 (Decidability of RAJA+ typing) Given a RAJA+-
Program R, it is decidable if it is well-typed.

Proof. We have to show that the three conditions to check are decidable. Con-
ditions 1. and 2. involve subtyping which is clearly decidable. Details about its
implementation are found below. ∀α ∈ M(Cr,m) . ⊢ m : α ok is decidable by
Lemma 3.9. 2

4 Ocaml Implementation

In the last section we have presented a type checking algorithm for RAJA+

programs and proved its correctness. This algorithm has been implemented in
Ocaml. In this section we show some interesting aspects of the implementation.

Our tool include not only the typechecker, but also a parser and an inter-
preter for RAJA+ programs. The interpreter is based on the runtime semantics
of the system, which are standard. This way we have a complete environment
for experimenting with RAJA+ programs.

4.1 Implementation of Coinductive Definitions

One interesting aspect of the implementation is the way we implemented the
coinductive definitions of subtyping and sharing. They have been implemented
with an algorithm for computing greatest fixpoints, defined and proved correct
in [Pie02, Ch. 21], which works for coinductive definitions that fall into a specific
scheme, i.e. a goal is supported by a set of subgoals in a deterministic way. The
idea of the algorithm is to maintain a list of assumptions. Every goal is kept in
this list, unless some condition is not fulfilled. Afterwards the algorithm is called
with all the subgoals. If a given subgoal is an element of the list of assumptions
(which means it has been a goal before) then it is assumed to be already in the
coinductive defined relation. The soundness of the algorithm is not trivial, but
it has been proved.

The definition of subtyping of RAJA types (Definition 2.1) does not fall
completely into this scheme unfortunately, because the condition (2.9) contains
an existential quantifier. Thus, we do not have a set of subgoals, but a boolean
combination of subgoals. This is a more general scheme and we aim at finding
an extension of the algorithm that deals with it.

In the meantime we regard subtyping of RAJA method types (Definition
2.2) as another coinductive definition, mutual with subtyping of RAJA types.
This way we do not get any subgoals from (2.9) but we regard it as one of the
ground conditions. The implementation uses mutual recursive functions.

4.2 Examples

We have successfully implemented the examples of RAJA+ code found in [HJ06],
i.e. copy of lists and doubly linked lists as well as more interesting algorithms
like mergesort. In the following we show some examples of code and explain the
syntax. This is a fragment of the copy example.
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views a, b, c, d, n, e

class List implements a, b, c, d, n {

...

}

class Cons extends List implements a, b, c, d, n {

a: pot = 1;

b: pot = 0;

c: pot = 0;

d: pot = 1;

n: pot = 0;

a: List<a, a> next;

b: List<b, b> next;

c: List<a, a> next;

d: List<n, a> next;

n: List<n, a> next;

a as <c, d> : List<b>,0 copy(0) {

let Cons<b> res = new Cons in

let List<a> next = [this as c].next in

let List<b> nres = [next as a].copy() in

[res as b].next <- [nres as b] in

return [res as b];

}

}

class Main implements e {

e: pot = 0;

e as <e,e> : List<b>,m : main(m + 2*k + 1) {

\\create a list of type List<a> l of length k

return l.copy();

}

}

The construction ”Cons inherits List implements a, b, . . .”means that the class
Cons inherits from the class List as in Java, and the class is refined with the
already defined views a, b, etc. For every view then it is necessary to define a
potential with the construction “a : pot = 1;” . This means ♦(Consa) = 1.

For every field we need to define a get and a set view with

“d : List<n, a> next;” which means Aget
(

Consd, next
)

= n, Aset
(

Consd, next
)

=

a. Refined types ( like Consa) are written with the syntax Cons<a>. The con-
struction “a as <c, d> : List<b>, 0 copy(0) ” means .(a |c, d ) as in the rule
for typing a method body, and the refined type of the method copy in Consa is

M(Consa, copy) = . 0/0
−→Listb. The construction [this as c] means the annotation

of the variable “this” with the view “c”.
In this prototype implementation we do not allow runtime arguments to the

program for reasons of simplicity. Instead, we have to define a main method
that will be executed without any arguments. That means that the arguments
have to be defined inside of this method.

15
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In the case of the copy example, we define in the main method a list of the
desired length and create a copy of it by calling the respective method. Since the
potential of a list of type List<a> is 1, for each node we create we need two units
of potential: one for the actual object creation, and one for the potential that
will be spend afterwards when copying the list. This explains why we need 2∗k
units for a list of length k. We need another unit for creating a nil node, whose
potential is 0. Thus, our program will run successfully with a freelist of 2∗k +1
units or more. If the freelist contains m more units, they will remain free after
program execution. Any correct instantiation of this scheme will be accepted
by the typechecker.2 Then, it will predict an upper bound of the freelist size
needed by the program. In this case it will be 2 ∗ k + 1, i.e. prediction and
actual cost will coincide. But in other cases, like if we create such a list and we
do not call the copy method, the actual cost will be k + 1 and the prediction
will still be 2 ∗ k + 1, an upper bound of the actual cost.

5 Conclusions

We have provided a type checking algorithm for RAJA+ programs and we have
proved its correctness. This shows decidability of the typing system. Moreover,
we have presented a prototype implementation in Ocaml based on this algo-
rithm. The implementation has been successfully tested with code examples
like a method for copying lists, sorting algorithms, etc.

This implementation is based on the RAJA typing system that has been
described and proved sound in [HJ06]. However, we believe that this system
can be improved. For instance, the subtyping definition we present here allows
to type more programs than the one in [HJ06]. Similarly, extending the sharing
definition to RAJA types will allow more flexible typing rules. We want to
extend the proof of soundness to these new features in the future.

Moreover, as discussed in the last section, we aim at finding an extension of
the algorithm for implementing coinductive definitions that fits in the scheme
needed for the definition of subtyping of RAJA types, i.e. when we have a
boolean combination of subgoals. On the other hand, inference of views and
annotations remains under investigation.
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Abstract

We present a Java library for mobile phones which tracks and controls at runtime the use of potentially costly resources,
such as premium rate text messages. This improves on the existing framework (MIDP — the Mobile Information Device
Profile [6]), where for example every text message must be authorised explicitly by the user as it is sent. Our resource
management library supports richer protocols, like advance reservation and bulk messaging, while maintaining the security
guarantee that attempted resource abuse is trapped.

Keywords: Runtime Monitoring, Resource Control, Java MIDP, Security.

1 Introduction

Modern mobile phones are powerful computers. Their primary task, providing mobile
wireless telephone services, is comparatively losing importance as they are being used for
a range of other applications, from personal information managers to web browsers, from
media players to games. Most of these applications access the network 2 , either because it
is integral to their functionality (e. g. web browsers, online games), or because networking
is adding desired features (e. g. playing streaming media or synchronising diaries).

The cost of the standard computational resources, like execution time or memory space,
is determined solely by the computational device (i. e. the hardware of the mobile phone)
itself. The cost of network access, however, is determined by external entities, e. g. the
business model of the phone operator, which is why we classify network access as an
external resource. Moreover, it is a resource the spending of which users generally would
like to control tightly because it costs them money. The last point actually goes double:
If network access is maliciously exploited it could be very expensive, but even if it is not
exploited, users care about each 10p 3 , i. e. they want to know the exact cost beforehand.

In MIDP [6], the current standard framework for Java applications on mobile phones,
monitoring external resources, like communication via text message, is left to the user, as

1 Email: pmaier@inf.ed.ac.uk
2 Refers to the operator’s mobile phone network; access to other networks (like the Internet) is routed through this one.
3 The standard cost of sending a text message in the United Kingdom.
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send to +44 444 1234567

enable(multiset)

Fig. 1. Transaction sending 3 text messages; in MIDP 2.0 (left) and with explicit resource management (right).

illustrated by the flowchart on the left hand side of Figure 1. For each of the three messages,
the application pauses to ask the user for authorisation before sending. This one-shot autho-
risation is clearly prohibitive for applications wishing to send many messages because users
will get annoyed by the many pop-up screens, which malicious applications may exploit
to trick users into authorising messages to premium rate numbers. Such social engineering
attacks [12] have been reported in the wild [14]. Yet, even if an application sends only few
messages, one-shot authorisation can lead to undesirable results, like transactions aborted
midway by an exception because the user stops authorising messages (see the left hand side
of Figure 1).

We propose explicit accounting and monitoring of external resources to better protect
the user from accidental or malicious resource abuse. Our approach revolves around re-
source manager objects, which keep an account of which external resources an application
is granted to use and how often. The right hand side of Figure 1 illustrates this on the mes-
saging example. Before sending messages, the application computes a multiset of phone
numbers encoding how many messages it will send to which recipients. In a single authori-
sation dialogue the user then gets to decide how many messages the applications may send
to whom. This information (a submultiset of the multiset of requested numbers) is stored
in a resource manager. The application only proceeds if all the requested numbers have ac-
tually been granted, in which case it calls instrumented methods for sending the messages,
taking an extra resource manager argument, which monitors the resources being spent (and
would abort the application if it was overspending).

Explicit resource management has additional benefits besides runtime monitoring. It
forces the application to determine early on how many resources to request. It provides a
clear user interface by centralising the choice of which of the requested resource to grant
into a single dialogue. Plus, it enables the application to react flexibly to the amount of re-
sources it has been granted, i. e. the application can choose whether it is feasible to continue
with the resources granted or whether it has to abort because of insufficient resources.

The rest of this paper is structured as follows. Section 2 gathers some facts about
MIDP which are relevant to us. Section 3 introduces the resource management library,

2
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which Section 4 extends by adding policies. Section 5 describes the security properties that
library guarantees and outlines a deployment scenario. Section 6 discusses related work,
and Section 7 concludes.

2 Background: The MIDP Security Model

The Mobile Information Device Profile (MIDP, current version 2.0 [6]) is the current stan-
dard framework for Java applets (also called MIDlets) on networked mobile devices. MIDP
builds upon the Connected Limited Device Configuration (CLDC, current version 1.1 [7]).
Together, CLDC and MIDP, which are part of the Java Micro Edition Platform (Java ME),
define a set of APIs for programming small devices like phones and PDAs. With security
in mind, they restrict Java in several ways. In particular, reflection and custom class load-
ing are not supported; all of a MIDlet’s classes must be loaded from a single JAR using
the standard CLDC class loader, which renders possible to statically check the MIDlet’s
classes for certain properties (see Section 5.4).

As of MIDP 2.0, access to sensitive APIs and functions (e. g. for sending text mes-
sages) is regulated by a permission-based security model. MIDlets are bound to protection
domains based on whether and by whom they are signed (where a signature expresses the
signer’s trust in the MIDlet but does not provide any guarantees about the code itself). Each
protection domain holds a set of permissions, each of which is either flagged as Allowed or
User. The former grants unconditional access whereas the latter requires access to be au-
thorised by the user. How often this authorisation has to be obtained depends on whether a
User permission is flagged as Blanket, Session or OneShot; the latter requires authorisation
for every single access.

According to the MIDP specification, only MIDlets signed by the device manufac-
turer or the network operator may obtain unconditional access to cost-sensitive functions
(e. g. for sending text messages). The protection domains for other MIDlets must insist on
OneShot authorisation for access to these functions. As a consequence, MIDlets wishing
to use messaging more than just occasionally are faced with the choice of either having
to be signed by the operator (or manufacturer) or having to annoy their users with lots of
authorisation screens.

3 Basic Resource Management API

This section presents an API for monitoring the use of external resources. The API intro-
duces special objects, called resource managers, which encapsulate multisets of resources
that a MIDlet may legally use (according to the user’s approval) and which are passed as ar-
guments into instrumented MIDP methods that actually use the resources. These methods,
e. g. the method for sending text messages, check the resource manager before consuming
the resources. If the required resources are not present, the instrumented methods abort the
MIDlet with a runtime error.

3.1 Resource Managers

Figure 2 shows a class diagram of resource management package. The core of the API is
the final class ResManager, which encapsulates a multiset of resources and whose meth-

3
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Resource

+ contains(ResMultiset) : boolean
+ clear()

+ subtract(ResMultiset)

+ isEmpty() : boolean

+ split(ResMultiset) : ResMultiset
+ intersect(ResMultiset)

+ add(ResMultiset)
+ remove(Resource, int)
+ insert(Resource, int)

+ union(ResMultiset)

ResMultiset

+ enable(ResMultiset)

+ join(ResManager)

+ assertEmpty()
+ assertAtLeast(ResMultiset)

+ clear()

+ split(ResMultiset) : ResManager

ResManager
java.lang.Error

ResManagerError
MsgResource

<<throw>>

1 0..1**

Fig. 2. UML class diagram of the basic resource management API. All terminal (w. r. t. generalisation) classes are final.

ods are explained below. The final class ResMultiset provides modifiable multisets
of resources, with the usual operations on multisets, including multiset intersection, sum
and inclusion. Internally, multisets are realised by hash tables, mapping resources to mul-
tiplicities (which may be infinite). Every ResMultiset object encapsulates its mutable
state, so that it cannot be changed other than by calling its public methods. The abstract
class Resource serves as an abstract type for resources; actual resources (e. g. the class
MsgResource representing the permission to send one text message to a given phone
number) must be final subclasses. Being used as keys in hash tables, resources must abide
by the following contract: They must be immutable objects, and resources constructed from
the same arguments must be indistinguishable by the equals method.

The class ResManager encapsulates a multiset of resources via a private field rs of
type ResMultiset. All public methods are synchronised to avoid races in case different
threads access the same resource manager. The table below lists the methods with a JML-
style 4 semantics, where the symbols ⊆, ] and ∩ stand for multiset inclusion, sum and
intersection, respectively.

requires ensures modifies
ResManager() true this.rs = ∅ this.rs
void enable(ResMultiset req) true this.rs ] req = \old(this.rs) ] \old(req) ∧ this.rs, req

req ⊆ \old(req)
void clear() true this.rs = ∅ this.rs
void join(ResManager mgr) true this.rs = \old(this.rs) ] \old(mgr.rs) ∧ this.rs, mgr.rs

mgr.rs = ∅
ResManager split(ResMultiset bound) true \fresh(\result) ∧ this.rs

\result.rs = \old(this.rs) ∩ bound ∧
\result.rs ] this.rs = \old(this.rs)

void assertEmpty() this.rs = ∅ true \nothing
void assertAtLeast(ResMultiset bound) bound ⊆ this.rs true \nothing

The enable method takes a multiset req of requested resources and lets the user decide
(in a pop-up dialogue) how many of these resources to add to the manager’s multiset rs. As
a side effect, enable modifies its argument req; upon return from enable, the MIDlet
should check req to learn which of the requested resources it is being denied; in particular,
if req is empty then all of the requested resources have been granted.

The methods clear, split and join provide some control over the contents of a
resource manager, by consuming all its resources, transferring some resources to a new

4 The \operators generally bear the same meaning as in JML [11], except that \old(e) refers to the pre-state of expression
e in the pre-state of the heap.

4
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void sendBulk(MessageConnection conn,
Message msg,
PhonebookEntry[] grp)

{
ResMultiset rs = new ResMultiset();
for (int i=0; i < grp.length; i++) {
String num = grp[i].getMobileNum();
rs.insert(new MsgResource(num), 1);

}

ResManager mgr = new ResManager();
mgr.enable(rs);

if (rs.isEmpty()) {
for (int i=0; i < grp.length; i++) {
String num = grp[i].getMobileNum();
msg.setAddress(num);
conn.send(mgr, msg);

}
mgr.assertEmpty();

}
else mgr.clear();

}

public void send(ResManager mgr, Message msg)
throws IOException, InterruptedIOException
{
synchorized (msg) {
String num = msg.getAddress();
ResMultiset rs = new ResMultiset();
rs.insert(new MsgResource(num), 1);

ResManager local_mgr = mgr.split(rs);
local_mgr.assertAtLeast(rs);

try {
send(msg);
local_mgr.clear(); local_mgr = null;

} catch (InterruptedIOException e) {
local_mgr.clear(); local_mgr = null;
throw e;

} catch (IOException e) {
mgr.join(local_mgr); local_mgr = null;
throw e;

}
}

}

Fig. 3. Bulk messaging example, left: MIDlet code, right: instrumented MIDP method.

manager, or joining the resources in two managers, respectively. Thanks to split and
join, the MIDlet may keep resource managers thread local, avoiding contention over
shared managers.

The assertion methods check whether their preconditions hold. If so they behave
like no-ops, otherwise they throw an instance of ResManagerError. The latter case
must be seen as a violation of the MIDlet’s own logic (much like failing an assertion),
and the MIDlet should not be allowed attempts at repairing the situation (by catching
the error), which is why ResManagerError extends java.lang.Error rather than
java.lang.Exception.

3.2 Example: Bulk Messaging MIDlet

We illustrate the use of resource managers by an example application built on top of the
Wireless Messaging API (WMA, current version 2.0 [8]), a bulk messaging MIDlet, which
lets the user send a text message to a group of recipients from his phone book. Figure 3 (left
column) shows the MIDlet’s method that actually sends the message. The method takes
an (already open) message connection, a message and a group of recipients (represented
as array of phone book entries). First, the MIDlet builds up a multiset of resources rs
by iterating over the group of recipients and for each one, extracting the mobile phone
number, converting it into a resource by constructing an instance of MsgResource, and
adding one occurrence of that instance to the multiset. Next, the MIDlet creates an empty
resource manager mgr and enables it to use the resources in the multiset rs. This will pop
up a confirmation dialogue box where the user can approve or deny the planned resource
usage, modifying rs as a side effect. Only if the user approves of all messages to be sent,
i. e. if enable returns its argument rs empty, does the code proceed to the actual send
loop. The send loop again iterates over the group of recipients, extracting for each one the
mobile phone number, setting the address field of the message and sending the message
using the instrumented send method, see below. After the loop, assertEmpty checks
that the resource manager mgr is really empty, i. e. all enabled resources have been used.
(Instead of checking, the manager could have been cleared explicitly, like in the else branch,
to prevent unintended later use of left-over resources.)

5
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3.3 Instrumented Methods

Resources are consumed by specific methods, e. g. in the case of messaging by the method
send(Message) declared in the WMA interface MessageConnection. To moni-
tor whether these methods consume only resources that have been granted, we wrap them
with instrumentation code checking whether a given resource manager holds the required
resources. These instrumented methods are declared in sub-packages of the resource man-
agement package.

To instrument messaging, we have to augment MIDP and WMA in three places. We
supplement the WMA interface MessageConnection with a new wrapper method
send(ResManager,Message), provide a class which implements this extended in-
terface, and revise the MIDP method Connector.open to return the new class.

The code for the wrapper method is shown on the right-hand side of Figure 3. It ex-
tracts the phone number num from the message and constructs a multiset rs containing
a single occurrence of the resource corresponding to num. Then it splits the resources in
rs off from the resource manager mgr and stores them in the new local resource manager
local_mgr, which is checked for containing at least the resources in rs. If this check
fails a ResManagerError will be thrown, aborting the calling MIDlet; if the check suc-
ceeds we know that local_mgr holds exactly the resources in rs. Finally, the message
is actually sent by calling the uninstrumented send method. 5 Clearing local_mgr and
nulling the reference afterwards is not strictly necessary but considered good practise; it
signals that the resources in the local manager are now used up and that the manager itself
is ready to be reclaimed by garbage collection.

In case of a send failure, the event that actually spends the resources (i. e. delivering
the text message to the operator’s network) may or may not have happened yet. We assume
that an IOException is thrown before actually sending the message (e. g. because the
connection to the operator’s network is down), so the resources are not yet consumed, and
the handler can return them to the caller (by joining the local manager to mgr) before
propagating the exception. However, if an InterruptedIOException is raised, we
do not know whether the send event has already happened, so we assume that the resources
are already spent. In this case, the handler consumes the resources (by clearing the local
manager) before propagating the exception.

Note that the instrumented send method method must synchronise on msg, which is
accessed twice, but there is no need to synchronise on mgr (for there are no data depen-
dencies between the first and second access) or on this (for it is accessed only once).

3.4 Runtime Overhead

Monitoring of external resources does cause some runtime overhead. In terms of execution
time, the overhead is negligible, as very little time is spent on the instrumentation com-
pared to what is spent on actually consuming the resource (e. g. transmitting a message).
Due to the hash table based implementation of multisets, all operations on resource man-
agers take (at most) linear time w. r. t. to the size of the multisets involved. In fact, the
overhead of the instrumented send method in Figure 3 is constant because the argument of
assertAtLeast is a singleton multiset.

5 Depending on the MIDlet’s protection domain, the uninstrumented send method may again ask the user to authorise
sending the message; Section 5.4 addresses this shortfall.
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MsgUserPolicy

+ getPolicy(MIDlet) : MsgUserPolicy + getPolicy() : MsgPhonebookPolicy

MsgPhonebookPolicy

+ getPolicy() : MsgNationalPolicy

MsgNationalPolicy

~ decide(ResMultiset) : ResMultiset

Policy

+ join(ResManager)

+ assertEmpty()
+ assertAtLeast(ResMultiset)

+ clear()

+ split(ResMultiset) : ResManager

ResManager

+ enable(Policy, ResMultiset)
<<call>>

Fig. 4. UML class diagram of policy extension of resource management API. All terminal classes are final.

In terms of memory, the overhead may be more severe, particularly on small devices,
because of the memory requirements of the hash tables. Additionally, resource monitoring
puts a higher strain on garbage collection because the instrumentation code temporarily al-
locates resources, multisets and managers. If runtime checking is not necessary or desired,
it can be switched off by “erasing” resource managers (see Section 5.2), which reduces the
memory overhead significantly.

3.5 Extensibility

By design, the resource management API is extensible. Monitoring new resources (e. g.
the number of bytes sent over a TCP/IP connection, or the space available in the persistent
record store) simply amounts to adding new resource types plus adding the appropriate in-
strumentation. New resource types are added by extending the abstract class Resource
with final subclasses, which abide by the contract on resources. Instrumented methods,
which monitor the new resources before calling the corresponding uninstrumented meth-
ods, are added to sub-packages of the resource management package.

4 Extending the API with Flexible Policies

So far, the enable method involves the user, who is selecting to-be-added resources in a
pop-up dialogue. That is, the user is acting as a policy oracle deciding which resources to
grant and which to deny. In this section, we extend the API to include more flexible policy
oracles, not just the user.

4.1 Changes to the API

Figure 4 shows the class diagram of the extension. It adds an abstract class Policy pro-
viding an abstract, package private method decide for deciding which resources to grant
and which to deny. The table below shows the formal, non-deterministic semantics of
decide; granted resources are returned in a new multiset, denied resources are returned
via the modified argument.

requires ensures modifies
ResMultiset decide(ResMultiset req) true \fresh(\result) ∧ \old(req) = req ] \result req

Actual policies must be final subclasses of Policy and must provide a package private
implementation of decide. The latter requirement ensures that decide can be called by
the resource management library only, not directly by MIDlets themselves. For a MIDlet
to gain access to policies, each subclass of Policy provides a static getPolicy method

7
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which hands out the requested policy (i. e. an instance of the respective class) or null if
the calling MIDlet is not authorised to use the requested policy.

MIDlets can only pass policies as arguments to other methods, in particular to the
enable method of class ResManager, which consults its policy argument as an ora-
cle to decide which resources to grant and which to deny, and which interprets a null
argument as the deny-all policy, see the implementation below. Note that enable defers
synchronisation on this as long as possible (i. e. until accessing the manager’s encapsu-
lated multiset rs) to avoid locking the manager during a call to decide, which may block
for a long time (e. g. if the policy consults the user).

public void enable(Policy p, ResMultiset req) {
if (p == null) return;
synchronized (req) {
ResMultiset granted = p.decide(req);
synchronized (this) { rs.add(granted); }

}
}

4.2 Use of Policies in MIDlets

The basic resource management API knew only one implicit policy: ask the user. Yet,
typically each resource type has its own policy or policies. The policies for MsgResource
include a MsgUserPolicy, which behaves like the implicit policy of the basic API,
asking the user how many messages to send to which phone numbers. To use this policy,
the call mgr.enable(rs) in the bulk messaging MIDlet (Figure 3) must be replaced by
mgr.enable(MsgUserPolicy.getPolicy(this), rs). 6

There could be other policies for MsgResource, e. g. a MsgNationalPolicy,
which grants only messages to national phone numbers. This policy could be combined
with MsgUserPolicy by chaining calls to enable as in the following code snippet.

mgr.enable(MsgNationalPolicy.getPolicy(), rs);
mgr.enable(MsgUserPolicy.getPolicy(this), rs);

The first call enables all requested messages to national numbers, without asking the user.
The second call asks the user to authorise the messages to the remaining (international)
numbers. In the end, rs contains only those international numbers that the user has denied.

Another interesting policy for messaging could be a MsgPhonebookPolicy, which
automatically grants all messages to numbers in the user’s phone book. If the bulk mes-
saging MIDlet used this policy, the user would not have to confirm anything. In return, the
MIDlet could maliciously send more messages than the user intended, but only to phone
numbers in the user’s phone book, not to premium rate numbers (unless the MIDlet was
allowed to modify the phone book).

4.3 Extensibility

By design of the API, adding new policies simply amounts to extending the abstract class
Policywith final subclasses, which abide by the contract on policies: No public fields and
methods (in particular, decide must be package private) except the static getPolicy
methods, and the implementation of decide must agree with the formal semantics as
shown in the table in Section 4.1.

6 MsgUserPolicy.getPolicy requires an argument of type MIDlet so that the policy can access the MIDlet’s screen.
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5 Security Properties of Explicit Resource Management

This section informally summarises and motivates the security guarantees provided by the
resource management API and a trusted library implementing it.

5.1 No Abuse of Resources

Property 1 MIDlets using the resource management API cannot consume more resources
than granted; any attempt to do so will result in the MIDlet being aborted before the abuse
happens.

The property holds for two reasons.

(i) Before performing any actions, the instrumented methods, e. g. the send method
from Section 3.3, check their ResManager argument for the required resources and
throw a ResManagerError (which will abort the MIDlet) if there aren’t enough. If
there are enough resources, the instrumentation deduces the required amount from the
resource manager, even if the underlying uninstrumented method throws an exception.

(ii) The implementation of the resource management API ensures that policies cannot be
bypassed. Resources may be moved back and forth between managers by the methods
split and join, but there is no way to sneak new resources into the managers other
than by calling enable, in which case a policy gets to decide which resources to
grant and which to deny. Furthermore, the implementation confines the multiset held
by a manager, i. e. it ensures that there are no pointers from outside a manager into its
mutable state, hence a manager’s multiset cannot be modified from the outside.

Of course, the above argument assumes that the MIDlet does not bypass or subvert the
resource management library itself; see Section 5.4 on how to ensure this.

5.2 Erasure

Tracking the use of resources with resource managers does induce some overhead, mainly
in terms of the memory required for storing the multisets. On small devices, one might
want to avoid this overhead if a MIDlet is known to be resource safe, i. e. if it cannot ever
throw a ResManagerError. In this case, resource managers can be “erased”.

Erasure cannot be performed as a simple source code transformation removing all oc-
currences of resource managers from a MIDlet, for two reasons. First, MIDlets must be
able to access resource managers in order to call the enable method, even after erasure,
to let a policy decide which resources to grant. Second, resource managers may appear in
conditions like (mgr1 == mgr2), from where they cannot be removed unless the condi-
tion can be evaluated statically. What can be done, however, is a “soft” erasure, which keeps
the managers themselves in place but erases their multisets, resulting in very lightweight
erased resource managers.

Soft erasure can be achieved by retaining the public interface of class ResManager
but replacing its implementation with a stateless dummy implementation. More precisely,
erasure removes the private field rs (storing the manager’s multiset), which turns all public
methods into no-ops, except for split and enable. The latter still calls the policy and
reports the denied resources back to the MIDlet, whereas the former creates a fresh (erased)
manager.

9
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Property 2 If a MIDlet is resource safe then erasing the resource managers does not
change its observable behaviour.

The property holds because by design of the resource management API, the value of a
resource manager can only affect the values of other resource managers; it cannot affect
the values of other types.

Note that an optimiser can eliminate all of the calls on erased resource managers, ex-
cept calls to enable, by inlining. As a result, resource managers may become unused and
can be optimised away. In fact, a clever optimiser could optimise away the entire instru-
mentation code from the instrumented send method in Figure 3, leaving just the call of
the uninstrumented method.

5.3 Information Flow Security

It may seem as if resource managers could infringe information flow security. Is it not
possible that sensitive data (e. g. phone numbers from the address book) leaks from a
manager while it is passed from method to method? We argue that at least for resource safe
MIDlets, this is not the case.

Property 3 If a MIDlet is resource safe then its resource managers do not leak information.

This is a corollary of Property 2. If a MIDlet is resource safe, the resource managers can be
erased without changing the MIDlet’s observable behaviour. Yet, erased resource managers
are stateless, so they cannot leak information. Hence, no leakage is observable.

5.4 Secure Deployment

As mentioned in Section 5.1, the security guarantees do not only depend on the correctness
of the resource management library itself but also on the MIDlet correctly using the API
(i. e. not bypassing or subverting the library).

Property 4 Correct use of the resource management API can be checked statically by in-
specting the MIDlet’s JAR only.

The property holds due to the restrictions imposed by CLDC and MIDP (see Section 2),
which imply that all of the MIDlet’s classes are statically known (since all classes must be
loaded from a single JAR) and the signature of each method call is statically known (since
reflection is not supported). Thus, the following properties of the MIDlet’s class files can
be statically checked.

• The MIDlet does not bypass the instrumentation. More precisely, if the MIDlet allocates
a particular resource type (e. g. MsgResource) then it does not call uninstrumented
methods for consuming resources of that type (e. g. the method send(Message) de-
clared in the WMA interface MessageConnection).

• The MIDlet does not suppress failing assertions. More precisely, it does not catch
ResManagerError or any of its superclasses.

• The MIDlet does not pass policies of its own to the enable method. More precisely,
none of the MIDlet’s classes extend the abstract class Policy.

• The MIDlet does not subvert the implementation of resource multisets by adding re-

10
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source types of its own. 7 More precisely, none of the MIDlet’s classes extend the ab-
stract class Resource.

• The MIDlet does not exploit non-public methods (e. g. decide) of the resource man-
agement library. More precisely, none of the MIDlet’s classes are declared to be part of
the packages that constitute the resource management library.

The correctness of the resource management library itself cannot be checked easily, hence
the library (including the instrumented methods) has to be trusted. Yet, as MIDP does not
support the download of trusted libraries, MIDlets using the resource management API
have to provide the library as part of their own JAR. To establish trust in the library, a
trustworthy third party (e. g. the network operator) should vouch for it by signing the
MIDlet. In detail, the deployment process should comprise the following steps.

(i) In the MIDlet’s JAR, the signer replaces the untrusted resource management library
with its own trusted implementation.

(ii) The signer checks for correct use of the resource management API by checking the
above properties.

(iii) The signer signs and deploys the MIDlet (possibly after it passed other checks, too).

The signer may choose to erase resource managers by replacing the resource management
library with the library for erased managers (see Section 5.2) if there is additional confi-
dence in the MIDlet’s resource safety (where this confidence may have been gained by type
checking, extended static checking, interactive verification or extensive testing). Of course,
Property 1 is not guaranteed by the library for erased managers.

There is a reason, why MIDlets should be signed by the network operator (or device
manufacturer) rather than just by any trusted third party. For otherwise, the MIDP speci-
fication (see Section 2) demands that the uninstrumented methods which are called by the
instrumented ones do still pop-up authorisation screens, despite the fact that the user (or
the policy) has already approved all of the resources held by resource managers.

As an alternative deployment scenario, the resource management library could be in-
tegrated into future versions of MIDP. In this case, the MIDP class loader would have to
check for correct use of the API, rendering unnecessary the requirement that MIDlets be
signed by the network operator.

6 Related Work

Runtime monitoring to increase software reliability is at the heart of the Java language [4]
with its mandatory runtime checking of array bounds and null pointer dereferences. Several
frameworks have been proposed for enhancing Java with runtime monitoring of resource
consumption, for example JRes [3], J-Seal [1] and J-RAF [10]. Real-time Java (RTSJ [5])
provides resource monitoring as part of its support for real-time applications. These frame-
works monitor specific resources (CPU, memory, network bandwidth, threads), relying on
instrumentation of either the JVM (for CPU time), low level system classes (for memory
and network bandwidth) and the bytecode itself (for memory and instruction counting).
Where our resource management API is designed to enforce security, these frameworks

7 The hash table based implementation of multisets may fail to function correctly if resources are added that breach the
contract that Java imposes on the equals and hashCode methods.
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were developed to support resource aware applications, which can adapt their behaviour in
response to resource fluctuation, for example by trading precision for time (by returning an
imprecise result to meet a deadline), or time for memory (by caching less to reduce memory
consumption).

Runtime monitoring can be used to check whether a program meets a safety property
specified in a propositional temporal logic. Tools like JPaX [9] compile a specification into
a finite automaton which runs in parallel with the program, observing its behaviour. This
kind of temporal specification can express resource protocols like authorise-before-use but
is not expressive enough to capture protocols that involve counting potentially unbounded
resources.

Schneider [13] advocates a similar use of (not necessarily finite) automata for enforcing
security policies at runtime. [15] extends this by allowing an application to query the
policy for compliance with a planned sequence of actions. Thus, the application can react
gracefully to the policy’s decisions; our resource managers provide a similar policy query
feature through the enable method.

7 Conclusion

We have designed a Java library for tracking and monitoring the use of external resources
on MIDP mobile phones (e. g. sending text messages). The library improves the flexibility
of runtime monitoring in MIDP (which previously was in the hands of the user), providing
a clear user interface and flexible policies while maintaining the security guarantee that any
attempt to abuse resources will be trapped.

Our technical contribution is an API for fine-grained accounting of external resources,
where fine-grained accounting is achieved by resource managers tracking not just a fixed
set of resources but an input-dependent unbounded set (e. g. phone numbers from the user’s
address book). The API is extensible, admitting to add new resource types and new poli-
cies by extending the class hierarchy. Moreover, we have outlined how a trusted library
implementing the API can be deployed to MIDP phones as part of a potentially malicious
application in such a way that the application cannot subvert the security guarantee (turn-
ing the application into a less malicious one). Finally, resource monitoring can be switched
off by “erasing” resource managers, which reduces the overhead without changing the ob-
servable behaviour of resource safe applications (and we are working on a type system for
certifying resource safety [2, chapter 3.3]).
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Abstract. We present a language and a program analysis that certifies the safe
use of flexible resource management idioms, in particular advance reservation
or “block booking” of costly resources. This builds on previous work with
resource managers that carry out runtime safety checks, by showing how to
assist these with compile-time checks. We give a small ANF-style language
with explicit resource managers, and introduce a type and effect system that
captures their runtime behaviour. In this setting, we identify a notion of dynamic
safety for running code, and show that dynamically safe code may be executed
without runtime checks. We show a similar static safety property for type-safe
code, and prove that static safety implies dynamic safety. The consequence is
that typechecked code can be executed without runtime instrumentation, and is
guaranteed to make only appropriate use of resources.

1 Introduction

Safe management of resources is a crucial aspect of software correctness. Bad resource
management impacts reliability and security. The more expensive a resource or the
more complex its usage pattern, the more important is good management. For example,
a media player could crash badly, leaving the hardware in a messy state, if its mem-
ory management was governed by the overly optimistic assumption that every request
for memory will succeed. Malware on a mobile phone can defraud an unaware user
by maliciously sending text messages to premium rate numbers, if there is no effec-
tive management of network access [12]. On current mobile platforms such as Java
MIDP 2.0, management of network access is commonly left to the user, but users can
easily be deceived by social engineering attacks.

Unfortunately, current programming languages do not provide special mechanisms
for resource management. Therefore, programmers can only hope that their applications
are resource safe, or use necessarily imprecise analyses to try to show this. For
example, there are type systems that over-approximate (hopefully tightly) the memory
requirements of an application [6], and static analyses that over-approximate the number
of text messages being sent by an application [7].

These approaches may fail if a dynamic set of resources must be managed, as with
bulk messaging where the user wants to send a text message to a number of recipients
selected from an address book. Because of the cost of sending text messages, the user
must authorise each recipient (i. e., their phone number) explicitly. This could happen
individually, just before each message is being sent, or collectively, before sending the
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first message. Collective authorisation, or block booking of resources, is preferable but
requires detailed resource management, keeping track of the (multi-)set of authorised
resources – in this case the permitted phone numbers.

In this paper, we present a language-based mechanism that provides programmers
with a safe way to control complex resource usage patterns using a notion of resource
manager. Figure 1 shows the code of a bulk messaging application using resource
managers in our intermediate-level functional programming language. The language
and functions used will be explained in full detail in Section 2; for now, we just give
an outline of operation. The function send bulk calls send msgs to send the message
msg to the phone numbers stored in the array nums. Along with these two arguments
send msgs takes a resource manager m’ which encapsulates the resources that have been
authorised (during the call to enable) to send the messages. For each phone number in
nums, send msgs calls the wrapper function send msg, passing along a resource manager.
Prior to calling the primitive send function prim send msg, the wrapper checks (using
assertAtLeast) whether its input manager m contains the resource required to send a
message to num; if the resource is not present, the program will abort with a runtime
error, otherwise send msg removes the resource from the manager (using split), and
returns the modified manager as m’.

The bulk messaging application is (dynamically) resource safe by construction, as
the resource managers will trap attempts to abuse resources. The resource manager
abstraction works in tandem with a static analysis, so that programs which can be
proved resource safe statically can be treated more efficiently at runtime by removing
the dynamic accounting code. In Section 3.2, we prove resource safety statically for the
bulk messaging application.

Our contribution is two-fold. In Section 2, we develop a functional programming
language for coding complex resource idioms, such as block booking resources in
the bulk messaging application. The language is essentially a first-order functional
language in administrative normal form (ANF) [10] with a novel type system serving
two purposes. First, the type system names input and output parameters of functions
and avoids shadowing of previously bound names, thus admitting to view functions as
relations (expressed by logical formulae) between their input and output parameters.
Second, the language includes a special, linear type for resource managers, where
linearity serves as a means of introducing stateful objects into an otherwise pure
functional language. Resource managers track what resources a program is allowed
to use, and the operational semantics causes the program to go wrong (i. e., abort with
a runtime error) as soon as it attempts to abuse resources. This induces a notion of
dynamic resource safety, which holds if a program never attempts to abuse resources. In
this case, accounting is not necessary. As our first result, we show that erasing resource
managers does not alter the semantics of dynamically resource safe programs.

Decisions about which resources programs may use are typically guided by resource
policies. From the point of view of a program, a policy is simply an oracle determining
what resources to grant; and we abstract this as a non-deterministic operation on
resource managers. This covers many concrete policy mechanisms, both static (e. g.,
Java-style policy files) or dynamic (e. g., user interaction); see [3] for more on the
interaction of resource managers and policies.
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send bulk ::
λ let (r) = res from nums (nums) in

let (m) = init () in
let (m’,r’) = enable (m,r) in
let (n) = size (r’) in
if n then let () = consume (m’) in

ret ()
else let (m”) = send msgs (msg,nums,m’) in

let (m’”) = assertEmpty (m”) in
let () = consume (m’”) in
ret () :

(msg:str, nums:str[]) → ()

res from nums ::
λ let (i) = length (nums) in

let (r) = empty () in
let (r’) = res from nums’ (nums,r,i) in
ret (r’) :

(nums:str[]) → (r’:res{})

res from nums’ ::
λ if i then let (i’) = sub (i,1) in

let (num) = read (nums,i’) in
let (c) = fromstr (num) in
let (r c) = single (c,1) in
let (r”) = sum (r, r c) in
let (r’) = res from nums’ (nums,r”,i’) in
ret (r’)

else let (r’) = id (r) in
ret (r’) :

(nums:str[], r:res{}, i:int) → (r’:res{})

send msgs ::
λ let (i) = length (nums) in

let (m’) = send msgs’ (msg,nums,m,i) in
ret (m’) :

(msg:str, nums:str[], m:mgr) → (m’:mgr)

send msgs’ ::
λ if i then let (i’) = sub (i,1) in

let (num) = read (nums,i’) in
let (m”) = send msg (msg,num,m) in
let (m’) = send msgs’ (msg,nums,m”,i’) in
ret (m’)

else let (m’) = id (m) in
ret (m’) :

(msg:str, nums:str[], m:mgr, i:int) → (m’:mgr)

send msg ::
λ let (c) = fromstr (num) in

let (r) = single (c,1) in
let (m’,m r) = split (m,r) in
let (m r’) = assertAtLeast (m r,r) in
let () = prim send msg (msg,num) in
let () = consume (m r’) in
ret (m’) :

(msg:str, num:str, m:mgr) → (m’:mgr)

prim send msg ::
λ . . . :
(msg:str, num:str) → ()

Fig. 1. Bulk messaging application.

In Section 3 we present our second contribution, an effect type system for deriving
relational approximations of functions. These approximations are expressed as pairs of
constraints in a first-order logic, specifying a pre- and postcondition (or rather, state
transforming action) of a given function, similar to Hoare type theory [11]; note that
the use of logical formulae as effects is the rationale behind choosing a programming
language where functions have named input and output parameters. Typability of
functions in the effect type system induces a notion of static resource safety. As our
second result, we prove a soundness theorem stating that static implies dynamic resource
safety. As a corollary, we show that resource managers can always be erased from
statically resource safe programs. Proofs have been omitted due to lack of space.

2 A Programming Language for Resource Management

We introduce a simple programming language with built-in constructs for handling
resource managers. The language is essentially a simply-typed first-order functional
language in ANF [10], with the additional features that functions take and return tuples
of values, function types name input and output arguments, scoping avoids shadowing,
and the type of resource managers enforces a linearity restriction on its values. The first
three of these features are related to giving the language a relational appeal: for the
purpose of specifying and reasoning logically, functions ought to be viewed as relations
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〈fundecl〉 ::= 〈prodtype〉 → 〈prodtype〉 (built-in function)
| λ〈exp〉 : 〈prodtype〉 → 〈prodtype〉 (λ-abstraction)

〈exp〉 ::= if 〈val〉 then 〈exp〉 else 〈exp〉 (conditional)
| let (〈var〉,. . .,〈var〉) = 〈fun〉 (〈val〉,. . .,〈val〉) in 〈exp〉 (function call)
| ret (〈var〉,. . .,〈var〉) (return)

〈val〉 ::= 〈const〉 | 〈var〉
〈prodtype〉 ::= (〈var〉:〈type〉,. . .,〈var〉:〈type〉)

〈type〉 ::= 〈datatype〉 | mgr

〈datatype〉 ::= unit | int | str | res | res{} | 〈datatype〉[]

Fig. 2. BNF grammar.

between input and output parameters. The fourth feature is a means of introducing state
into a functional language.

The choice for such a language has been inspired by Grail [2], another first-order
functional language in ANF. Moreover, Appel [1] argues that ANF, the intermediate
language used by many compilers for functional languages, and SSA, the intermediate
representation used by most compilers for imperative languages, are essentially the same
thing. Therefore, our language should capture the essence of first-order programming
languages, whether functional or imperative.

2.1 Syntax and Static Semantics

Grammar. Figure 2 shows the grammar of the programming language. The nontermi-
nals 〈fun〉, 〈var〉 and 〈const〉 represent functions, variables and constants, respectively.
A program Π is a partial function from 〈fun〉 to 〈fundecl〉, i. e., Π maps functions to
function declarations, which are either type declarations for built-in functions or λ-
abstractions (with type annotations serving as variable binders). We use the notation
Π(f) = [λ . . . ]σ → σ′ if we are only interested in the type of f , regardless whether f
is built-in or a λ-abstraction. By dom(Π), we denote the domain of Π . We denote the
restriction of Π to the built-in functions by Π0, i. e., Π(f) is a λ-abstraction if and only
if f ∈ dom(Π) \ dom(Π0). We assume that Π0 declares exactly the functions that are
shown in Figure 4.

The grammar of expressions e ∈ 〈exp〉 and values v ∈ 〈val〉 is quite standard for
a first-order functional language in ANF. Throughout, functions operate on tuples of
values, which is reflected by the syntax for function call and return. The sets of free
and bound (by the let-construct) variables of an expression e, denoted by free(e) and
bound(e) respectively, are defined in the usual way.

Datatypes τ ∈ 〈datatype〉 comprise the unit type, integers, strings, resources,
multisets of resources, and arrays. A type τ ∈ 〈type〉 is either a datatype or the
special type of resource managers, denoted mgr. See Section 2.2 for the interpretations
of types. A tuple (x1:τ1,. . .,xn:τn) ∈ 〈prodtype〉 is a product type if the variables
x1, . . . , xn are pairwise distinct. Product types appear to associate types to variables,
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but they really associate variables and types to positions in tuples. A pair of product
types of the form (x1:τ1,. . .,xm:τm) → (x′1:τ

′
1,. . .,x

′
n:τ ′n) forms a function type if the

variable sets {x1, . . . , xm} and {x′1, . . . , x′n} are disjoint. We call the product types to
the left and right of the arrow argument type and return type, respectively. As an example
consider the type of the function send msg from Figure 1. It states that send msg takes
two strings and a resource manager and returns a resource manager, while at the same
time binding the names of the formal input parameters msg, num and m and announcing
that the formal output parameter will be m’.

Static typing. A type environment Γ is a functional association list of type declarations
of the form x:τ , where x is a variable and τ a type. Being functional implies that
whenever Γ contains two type declarations x:τ and x:τ ′ we must have τ = τ ′.
Therefore, Γ can be seen as a partial function mapping variables to types. By dom(Γ ),
we denote the domain of this partial function, and for x ∈ dom(Γ ), we may write Γ (x)
for the unique type which Γ associates to x. We write type environments as comma-
separated lists, the empty list being denoted by ∅. The restriction Γ |X of Γ to a set of
variablesX , is defined in the usual way and induces a partial order� type environments,
where Γ ′ � Γ iff Γ ′|dom(Γ ) = Γ .

We call a type environment Γ = x1:τ1, . . . , xn:τn linear if the variables x1, . . . , xn

are pairwise distinct. Note that such a linear type environment Γ may be viewed as
a product type σ = (x1:τ1,. . .,xn:τn), and vice versa. Occasionally, we will write
Π(f) = [λ . . . ]Γ → ∆ to emphasise that argument and return types of the function f
are to be viewed as linear type environments.

Figure 3 shows the typing rules for the programming language. The judgement
C;Γ ` v : τ expresses that the value v has type τ in type environment Γ and context
C, where a context is a set of variables (generally the set of variables occurring in
some super-expression of v). Note that (T-const) restricts program constants to the unit
value, integers and strings, which are the interpretations of the types unit, int and str,
respectively (see Section 2.2). All other types are abstract in the sense that their values
can only be accessed through built-in functions.

The judgement C;Γ `Π e : σ means that the expression e has product type σ in
type environment Γ , context C and program Π . If the program is understood we may
write C;Γ ` e : σ. There are three things worth noting about expression typing. First,
although the type system is linear, weakening and contraction are available to all types
but mgr, rendering mgr the sole linear type of the language. Second, the side condition
of (T-let) ensures that let-bound variables do not shadow any variables in the context
(which is generally a superset of the set of variables occurring in the let-expression).
Third, the rule (T-ret) matches the variables in the return expression to the variables in
the product type, thus enforcing that an expression uniformly uses the same variables
to return its results (even though these return variables may be let-bound in different
branches of the expression). Note that (T-ret) is the only rule to exploit type information
about variables. Finally, the judgement Γ ` e : σ (or Γ `Π e : σ if we want to stress the
program Π) means that e has product type σ in a linear type environment Γ .

The judgement Π ` f states that f is a well-typed λ-abstraction in program Π .
Note that the syntax of λ-abstractions does not appear to bind variables, yet it does
bind the variables hidden in the argument type. Note also that the restriction on function
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Typing of values C;Γ ` v : τ

(T-var)
C;x:τ ` x : τ

if x ∈ C (T-const)
C; ∅ ` d : τ

if

d ∈ τ ∧
τ ∈ {unit, int, str}

Typing of expressions C;Γ ` e : σ

(T-weak)
C;Γ ` e : σ

C;Γ, x:τ ` e : σ
if


x ∈ C ∧
τ 6= mgr

(T-contr)
C;Γ, x:τ, x:τ ` e : σ

C;Γ, x:τ ` e : σ
if τ 6= mgr

(T-if)
C;Γ ` v : int C;Γ ′ ` e1 : σ C;Γ ′ ` e2 : σ

C;Γ, Γ ′ ` if v then e1 else e2 : σ
(T-xch)

C;Γ, Γ ′ ` e : σ

C;Γ ′, Γ ` e : σ

(T-ret)
C;Γ1 ` x1 : τ1 . . . C;Γn ` xn : τn

C;Γ1, . . . , Γn ` ret (x1,. . .,xn) : (x1:τ1,. . .,xn:τn)

(T-let)

Π(f) = [λ . . . ](z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n)

C;Γ1 ` v1 : τ1 . . . C;Γn ` vm : τm

C ∪ {x′1, . . . , x′n};Γ ′, x′1:τ
′
1, . . . , x

′
n:τ ′n ` e′ : σ′′

C;Γ1, . . . , Γm, Γ ′ ` let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′ : σ′′ if (∗)

where (∗)

x′1, . . . , x

′
n pairwise distinct ∧

x′1, . . . , x
′
n /∈ C ∪ dom(Γ ′)

Typing of expressions Γ ` e : σ

(T-lin)
dom(Γ );Γ ` e : σ

Γ ` e : σ
if Γ linear

Well-typedness of λ-abstractions Π ` f

(T-lam)

Π(f) = λe : (x1:τ1,. . .,xm:τm) → σ′

x1:τ1, . . . , xm:τm ` e : σ′

Π ` f

Fig. 3. Typing rules (for a fixed program Π).

types means that the return variables of the body of a λ-abstraction must be disjoint
from its argument variables. Finally, we call a program Π well-typed if Π ` f for all
f ∈ dom(Π) \ dom(Π0).

Lemma 1. Let e be an expression (referring to an implicit program Π), Γ a type
environment and σ a product type.

1. If Γ ` e : σ then free(e) ⊆ dom(Γ ) and bound(e) ∩ dom(Γ ) = ∅.
2. If Γ ` e : σ and X ⊇ free(e) then Γ |X ` e : σ.

2.2 Interpretation of Types and Effects of Built-in Functions

Constraints. To provide a formal semantics for the built-in functions, we introduce
a many-sorted first-order language L with equality. Sorts of L are the datatypes of
the programming language (note that this excludes the type mgr). Formulae of L are
formed from atomic formulae using the usual Boolean connectives ¬, ∧, ∨, ⇒ and ⇔
(in decreasing order of precedence), and the quantifiers ∀x:τ and ∃x:τ , where x ∈ 〈var〉

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

108



is a variable and τ ∈ 〈datatype〉 a sort. Atomic formulae are the Boolean constants
> and ⊥, or are constructed from terms using the binary equality predicate ≈ (which
is available for all sorts), the binary inequality predicate ≤ on sort int or the binary
inclusion predicate ⊆ on sort res{}. Terms are constructed from variables in 〈var〉 and
the term constructors, which are introduced below, alongside associating the sorts to
specific interpretations.

Sort unit is interpreted by the one-element set {?}. Its only constant is ?. There are
no function symbols.

Sort int is interpreted by the integers with infinity. Constants are the integers plus ∞.
Function symbols are the usual − : int → int and +, ·, /,% : int × int → int
(where / and % denote integer division and remainder, respectively).

Sort str is interpreted by the set of strings (over some fixed but unspecified alphabet).
Constants are all strings. The only function symbol is ++ : str × str → str
(concatenation).

Sort res is interpreted by an arbitrary infinite set (whose elements are termed re-
sources). There are no constants, and fromstr : str → res, an embedding of
strings into resources, is the only one function symbol.

Sort res{} is interpreted by multisets of resources. It features the constant ∅ (empty
multiset) and the function symbols ∩,∪,] : res{}×res{} → res{} (intersection,
union and sum of multisets, respectively), | | : res{} → int (size of a multiset),
count : res{}× res → int (counting the multiplicity of a resource in a multiset)
and { : } : res × int → res{} (constructing a “singleton” multiset containing a
given resource with a given multiplicity and nothing else).

Sort τ [] is interpreted by integer-indexed arrays of elements of sort τ , where an integer-
indexed array is a function from an initial segment of the natural numbers to τ .
This sort features the constant null (array of length 0) and the function symbols
len : τ [] → int (length of an array), [ ] : τ []× int → τ (reading at a given index)
and [ := ] : τ []× int× τ → τ [] (updating a given index with a given value). Note
that the values of a[i] and a[i:=v] are generally unspecified if the index i is out of
bounds (i. e., i<0 or i≥ len(a)). As an exception, for i = len(a), the array a[i:=v]
properly extends a, i. e., len(a[i:=v]) = len(a) + 1. This models vectors that can
grow in size.

Treating the type mgr as an alias for the sort res{}, type environments can be seen as
associating sorts to variables. Given a type environment Γ and constraint φ ∈ L, we
write Γ ` φ if φ is well-sorted w. r. t. Γ ; note that this entails free(φ) ⊆ dom(Γ ), where
free(φ) is the set of free variables in φ.

Substitutions. A substitution µ maps variables x ∈ 〈var〉 to values µ(x) ∈ 〈val〉
(which are variables again or constants, not arbitrary terms). We denote the domain
of a substitution µ by dom(µ). Given a type environment Γ , we write Γµ for the type
environment that arises from substituting the variables in Γ according to µ. This is
defined recursively: ∅µ = ∅ and (Γ, x:τ)µ equals Γµ, x:τ if x /∈ dom(µ), or Γµ, µ(x):τ
if µ(x) ∈ 〈var〉, or Γµ if µ(x) ∈ 〈const〉. Note that Γµ need not be linear even if
Γ is. Given a formula φ such that Γ ` φ, we write φµ for the formula obtained by
substituting the free variables of φ according to µ, avoiding capture. Note that Γ ` φ
implies Γµ ` φµ.

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

109



Valuations. Let Γ be a type environment. A Γ -valuation αmaps variables x ∈ dom(Γ )
to elements α(x) in the interpretation of the sort Γ (x); we call α a valuation if we
do not care about the particular type environment Γ . We denote the domain of α by
dom(α). Note that dom(α) ⊆ dom(Γ ) but not necessarily dom(α) = dom(Γ ); we
call α a maximal Γ -valuation if dom(α) = dom(Γ ). Given a Γ -valuation α and a set
of variables X , we denote the restriction of α to X by α|X ; note that dom(α|X) =
dom(α) ∩X . Restriction induces a partial order � on Γ -valuations, where α′ � α iff
α′|dom(α) = α. Given n pairwise distinct variables xi ∈ dom(Γ ) and corresponding
elements di in the interpretation of Γ (xi), we write α{x1 7→ d1, . . . , xn 7→ dn} for the
Γ -valuation α′ that maps the xi to di and all other x ∈ dom(α) to α(x). In the special
case dom(α) = ∅, we may drop α and simply write {x1 7→ d1, . . . , xn 7→ dn}.

Entailment. Let φ, ψ ∈ L be constraints such that Γ ` φ and Γ ` ψ. Given a Γ -
valuation α with free(φ) ⊆ dom(α), we write α |= φ if α satisfies φ. We write |= φ
if α |= φ for all Γ -valuations α with free(φ) ⊆ dom(α), and we write φ |= ψ if
α |= φ implies α |= ψ for all Γ -valuations α with free(φ) ∪ free(ψ) ⊆ dom(α).
Entailment induces a theory T = {φ | free(φ) = ∅ ∧ > |= φ}, with respect to which
entailment can be reduced to unsatisfiability. Note that unsatisfiability w. r. t. T is not
even semi-decidable as T contains Peano arithmetic. Thus for reasoning purposes, we
will generally approximate T by weaker theories.

Effects. Let f be a built-in function with Π(f) = Γ → ∆ (viewing argument and
return types of f as type environments Γ and ∆, respectively.) An effect for f is a pair
of constraints φ and ψ such that Γ ` φ and Γ,∆ ` ψ. (Note that Γ → ∆ being a
function type implies dom(Γ ) ∩ dom(∆) = ∅, hence Γ,∆ is a type environment.) We
write φ→ ψ to denote such an effect, and we call φ its precondition and ψ its action.

An effect environment maps the built-in functions f ∈ dom(Π0) to effects for f .
Figure 4 displays the effect environment Θ0, providing an axiomatic, relational seman-
tics for all f ∈ dom(Π0). This semantics ties most built-in functions to corresponding
logical operators in a straightforward way; note the non-trivial preconditions for divi-
sion, reading and writing arrays, and constructing singleton multisets. The effects of
functions operating on resource managers warrant some explanation.

init returns an empty manager m′.
enable non-deterministically adds some sub-multiset of r to manager m, returning

the result in manager m′; the complement of the added multiset is returned in r′.
In an implementation [3] the multiset to be added to m would be chosen by some
policy, perhaps involving security profiles or user input; we use non-determinism
to abstractly model such policy mechanisms.

split splits the multiset held by manager m and distributes it to the managers m′
1 and

m′
2 such that m′

2 gets the largest possible sub-multiset of r.
join adds the multisets held by managers m1 and m2, returning their sum in m′.
consume is an explicit destructor for manager m and all its resources; the linear type

system means that calls to consume are necessary even ifm is known to be empty.
assertEmpty acts as identity on managers, but subject to the precondition that m is

empty; it will be treated specially by the programming language semantics.
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f Π0(f) Θ0(f)

idτ (x:τ) → (x′:τ) >→ x′ ≈ x

eqτ (x1:τ ,x2:τ) → (i′:int) >→ i′ ≈ 1 ∧ x1 ≈ x2 ∨ i′ ≈ 0 ∧ x1 6≈ x2

add >→ i′ ≈ i1 + i2

sub >→ i′ ≈ i1 + (−i2)

mul (i1:int,i2:int) → (i′:int) >→ i′ ≈ i1 · i2

div i2 6≈ 0→ i′ ≈ i1 / i2

mod i2 6≈ 0→ i′ ≈ i1 % i2

leq >→ i′ ≈ 1 ∧ i1 ≤ i2 ∨ i′ ≈ 0 ∧ i1 � i2

conc (w1:str,w2:str) → (w′:str) >→ w′ ≈ w1 ++ w2

fromstr (w:str) → (c′:res) >→ c′ ≈ fromstr(w)

nullτ () → (a′:τ []) >→ a′ ≈ null

lengthτ (a:τ []) → (i′:int) >→ i′ ≈ len(a)

readτ (a:τ [],i:int) → (x′:τ) 0≤ i ∧ i < len(a)→ x′ ≈ a[i]

writeτ (a:τ [],i:int,x:τ) → (a′:τ []) 0≤ i ∧ i≤ len(a)→ a′ ≈ a[i:=x]

empty () → (r′:res{}) >→ r′ ≈ ∅
single (c:res,i:int) → (r′:res{}) i≥ 0→ r′ ≈ {c:i}
inter >→ r′ ≈ r1 ∩ r2

union (r1:res{},r2:res{}) → (r′:res{}) >→ r′ ≈ r1 ∪ r2

sum >→ r′ ≈ r1 ] r2

size (r:res{}) → (i′:int) >→ i′ ≈ |r|
count (r:res{},c:res) → (i′:int) >→ i′ ≈ count(r, c)

include (r1:res{},r2:res{}) → (i′:int) >→ i′ ≈ 1 ∧ r1 ⊆ r2 ∨ i′ ≈ 0 ∧ r1 * r2

init () → (m′:mgr) >→m′ ≈ ∅
enable (m:mgr,r:res{}) → (m′:mgr,r′:res{}) >→ r′ ⊆ r ∧ m ] r ≈m′ ] r′

split (m:mgr,r:res{}) → (m′
1:mgr,m′

2:mgr) >→m′
2 ≈m ∩ r ∧ m≈m′

1 ]m′
2

join (m1:mgr,m2:mgr) → (m′:mgr) >→m′ ≈m1 ]m2

consume (m:mgr) → () >→>
assertEmpty (m:mgr) → (m′:mgr) m≈ ∅→m′ ≈m

assertAtLeast (m:mgr,r:res{}) → (m′:mgr) r ⊆m→m′ ≈m

Fig. 4. Types and effects of built-in functions. The subscripts τ indicate families of
functions indexed by τ ∈ 〈datatype〉, except for idτ , which is indexed by τ ∈ 〈type〉.

assertAtLeast acts as identity on managers, but subject to the precondition that the
manager m contains the multiset r; will be treated specially by the programming
language semantics.

To facilitate the presentation of programming language semantics, we capture the logical
semantics of effects directly in terms of valuations. Given a built-in function f with
Π0(f) = Γ → ∆ and Θ0(f) = φ→ ψ, we define Eff Π0

Θ0
(f) to be the set of maximal

(Γ,∆)-valuations such that α ∈ Eff Π0
Θ0

(f) if and only if α |= φ ∧ ψ.

2.3 Small-step Reduction Semantics

We present a stack-based reduction semantics (which is essentially a continuation
semantics) for our programming language. We will show that reduction preserves the
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resources stored in resource managers, thanks to linearity. Throughout this section, let
Π be a fixed well-typed program.

Stacks. We call a tuple 〈x1, . . . , xn|α, e〉 a frame if x1, . . . , xn is a list of pairwise
distinct variables, α is a valuation and e is an expression such that

– dom(α) ∩ {x1, . . . , xn} = ∅ and
– dom(α) ⊆ free(e) ⊆ dom(α) ∪ {x1, . . . , xn}.

The roles of e (redex) and α (providing values for the free variables of e) should be
clear. The xi are only present if the frame is suspended waiting for a function to return
in which case the xi act as slots for the return values. A pre-stack is either  or ε or
F :: S, where F is a frame and S is a pre-stack. (Pre-stacks essentially correspond to
continuations in an abstract machine interpreting λ-terms in ANF [10].) A stack (or Π-
stack if we want to emphasise the programΠ) is a pre-stack of the form  or 〈|α, e〉 ::S.
We call  the error stack. A stack of the form 〈|α, ret (x1,. . .,xn)〉::ε is called terminal.
If F :: S is a stack then F is its top frame.

Reduction. Figure 5 presents the rules generating the reduction relation Π on stacks.
We denote the reflexive-transitive closure of Π by ∗

Π . As usual Π may be omitted
if it is understood. Note that reduction performs an eager garbage collection in that it
deallocates unused variables immediately by restricting the valuation α in the post stack
to the free variables of the expression e.

Reduction is deterministic, except for calls to the built-in function enable.

Proposition 2. For all stacks S0 there is at most one stack S1 such that S0  S1,
unless S0 is of the form 〈|α, let (m′,r′) = enable (m,r) in e〉 :: S′0.

Typed stacks. Reduction is untyped since type information is not needed at runtime.
However, various properties of reduction are best stated if the type of variables is
known. Therefore, we annotate stacks with type environments and conservatively extend
reduction to typed stacks.

Given a frame 〈x1, . . . , xn|α, e〉, we call 〈x1, . . . , xn|α, e〉Γ a typed frame if Γ is a
linear type environment such that

– dom(Γ ) = dom(α) ∪ {x1, . . . , xn},
– α is a Γ -valuation, and
– Γ ` e : σ for some product type σ.

A typed pre-stack is  , or ε, or F ::εwhere F is a typed frame, orF ::F ′ :: S′ where S′ is a
typed pre-stack and F = 〈x1, . . . , xm|α, e〉Γ and F ′ = 〈x′1, . . . , x′n|α′, e′〉Γ

′
are typed

frames such that Γ ` e : (z′1:Γ
′(x′1),. . .,z

′
n:Γ ′(x′n)) for some variables z′1, . . . , z

′
n.

A typed stack is typed pre-stack of the form  or 〈|α, e〉Γ :: S. Given a typed frame
F = 〈x1, . . . , xn|α, e〉Γ , we denote its underlying frame 〈x1, . . . , xn|α, e〉 by F \. We
extend this notation to typed (pre-)stacks, writing S\ for the (pre-)stack underlying the
typed (pre-)stack S.

The following proposition shows that reduction does not break the invariants
maintained by typed stacks.
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(R-ret)
α′′ = α′{x′1 7→ α(x1), . . . , x

′
n 7→ α(xn)}

〈|α, ret (x1,. . .,xn)〉 :: 〈x′1, . . . , x′n|α′, e′〉 :: S  〈|α′′|free(e′), e′〉 :: S

(R-lettl
1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′

α′ = {z1 7→ α(v1), . . . , zm 7→ α(vm)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in ret (x′1,. . .,x

′
n)〉 :: S 〈|α′|free(e), e〉 :: S

(R-let1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ e′ 6= ret (x′1,. . .,x
′
n)

α′ = {z1 7→ α(v1), . . . , zm 7→ α(vm)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′〉 :: S

 〈|α′|free(e), e〉 :: 〈x′1, . . . , x′n|α|free(e′), e′〉 :: S

(R-let2)

Π0(f) = (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n)

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} α′
f ∈ Eff Π0

Θ0
(f) α′

f � αf

α′ = α{x′1 7→ α′
f (z′1), . . . , x

′
n 7→ α′

f (z′n)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′〉 :: S  〈|α′|free(e′), e′〉 :: S

(R-let 2 )

Π0(f) = (z1:τ1,. . .,zm:τm) → σ′ f ∈ {assertEmpty,assertAtLeast}
αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} ∀α′

f ∈ Eff Π0
Θ0

(f) : α′
f � αf

〈|α, let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′〉 :: S   

(R-if1)
α(v) 6= 0

〈|α, if v then e1 else e2〉 :: S  〈|α|free(e1), e1〉 :: S

(R-if2)
α(v) = 0

〈|α, if v then e1 else e2〉 :: S  〈|α|free(e2), e2〉 :: S

Fig. 5. Small-step reduction relation  (for a fixed program Π). Application of
valuations α extends to values v ∈ 〈val〉 in the natural way, i. e., α(v) = v if v is a
constant.

Proposition 3. Let Ŝ0 be a typed stack and S1 a stack. If Ŝ\
0  S1 then there is a typed

stack Ŝ1 such that Ŝ\
1 = S1.

The proposition justifies the view of reduction on typed stacks as a conservative
extension of the reduction relation defined in Figure 5, where reduction on typed stacks
is defined by Ŝ0  Π Ŝ1 if and only if Ŝ\

0  Π Ŝ\
1; as usual Π may be omitted if it is

understood.
We call a stack S0 stuck if there is no stack S1 such that S0  S1, and S0 is

neither terminal nor the error stack. Our next result shows that reduction on typed
stacks will get stuck only at calls to built-in functions (other than assertEmpty and
assertAtLeast), and only if the preconditions of these calls fail. As the effects listed
in Figure 4 reveal, reduction will get stuck only upon attempts to divide by 0, access
arrays out of bounds or construct singleton multisets with negative multiplicity.
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Proposition 4. Let Ŝ be a typed stack. If Ŝ\ is stuck then it is of the form

〈|α, let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′〉 :: S′ ,

f ∈ dom(Π0) \ {assertEmpty,assertAtLeast}, and there is no α′f ∈ Eff Π0
Θ0

(f)
such that α′f � αf , where αf is defined as in rule (R-let2).

Preservation of resources. Given a typed frame F = 〈x1, . . . , xn|α, e〉Γ , we define the
multiset res(F ) of resources in F by res(F ) =

⊎
{α(x) | x ∈ dom(α), Γ (x) = mgr}.

We extend res to typed non-error stacks by defining res(ε) = ∅ and res(F :: S) =
res(F )] res(S). Proposition 5 states resource preservation: The sum of all resources in
the system remains unchanged by reduction, unless the built-in functions enable and
consume are called. The former admits increasing (but not decreasing) the resources,
whereas the latter behaves the other way round. Obviously, resource preservation de-
pends on the linearity restriction on type mgr, otherwise resources could be duplicated
by re-using managers.

Proposition 5. Let S0 and S1 be typed stacks such that S0  S1 6=  .

1. If S0 is of the form 〈|α, let (m′,r′) = enable (m,r) in e〉Γ :: S′0 then res(S0) ⊆
res(S1).

2. If S0 is of the form 〈|α, let () = consume (m) in e〉Γ :: S′0 then res(S0) ⊇
res(S1).

3. In all other cases, res(S0) = res(S1).

2.4 Erasing Resource Managers

According to the reduction semantics, a call to assertEmpty or assertAtLeast
either does nothing1 or goes wrong, and calling one of these two tests is the only way
to go wrong. Hence, if we know that a program cannot go wrong (and Section 3 will
present a type system for proving just that) then we can erase all calls to these built-ins
(or rather, replace them by true no-ops) and obtain an equivalent program.

In fact, we can do more than that. Once the assertion built-ins are gone, it is
even possible to remove the resource managers themselves. By the design of the
programming language (in particular, the choice of built-in operations on resource
managers) the contents of resource managers cannot influence the values of variables
of any other type. Informally, this justifies replacing the resource managers themselves
by variables of type unit whenever we know that a program cannot go wrong. Erasing
resource managers also means that the built-in functions acting on managers can be
replaced by simpler ones on unit: all of which are no-ops, except for enable itself.2

The remainder of the section formalises this intuition.
Figure 6 shows the necessary program transformations to erase resource managers.

Most fundamentally, erasure maps the manager type mgr to the unit type unit.
1 Due to the linearity restriction on resource managers these functions must copy the input

manager to an output manager; a true no-op would violate resource preservation.
2 We do keep the calls in place, so that erasure preserves the structure of programs; this simplifies

reasoning, and does not preclude optimising away no-op calls at a later stage.
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Erasure τ◦ of types τ
τ◦ = unit if τ = mgr
τ◦ = τ otherwise

Erasure σ◦ of product types σ
(x1:τ1,. . .,xn:τn)◦ = (x1:τ

◦
1 ,. . .,xn:τ◦n)

Erasure Γ ◦ of type environments Γ
∅◦ = ∅

(Γ, x:τ)◦ = Γ ◦, x:τ◦

Erasure Π◦ of programs Π
dom(Π◦) = dom(Π)

Π◦(f) = λe : σ◦ → σ′◦ if Π(f) = λe : σ → σ′

Π◦(f) = σ◦ → σ′◦ if Π(f) = σ → σ′

Erasure Θ◦
0 of effect environment Θ0

dom(Θ◦
0) = dom(Θ0)

Θ◦
0(enable) = >→ r′ ⊆ r

Θ◦
0(f) = >→> if


f ∈ {init, split, join, consume} ∪

{assertEmpty,assertAtLeast}
Θ◦

0(f) = Θ0(f) otherwise

Erasure α◦ of Γ -valuations α
dom(α◦) = dom(α)

α◦(x) = ? if Γ (x) = mgr
α◦(x) = α(x) otherwise

Erasure S◦ of typed stacks S
 ◦ =  ε◦ = ε (〈x1, . . . , xn|α, e〉Γ :: S)◦ = 〈x1, . . . , xn|α◦, e〉Γ

◦
:: S◦

Fig. 6. Erasure of resource managers.

Erasure on types determines erasure on product types, type environments, programs
and valuations (where erasure uniformly maps the values of mgr-variables to ?, the
only value of type unit), which in turn determines erasure on typed stacks. As outlined
above, erasure on effect environments trivialises the effect of resource manager built-
ins, except enable, and preserves the effects of all built-ins not operating on managers.
The effect of enable after erasure is to non-deterministically choose a sub-multiset of
r and return its complement in r′. This reflects the fact that calls to enable provide
points of interaction for the policy (e. g., the user) to decide how many resources the
system is granted. Erasing resource managers does not mean that policy decisions are
fixed, it just removes the managers’ book keeping about those decisions.

Lemma 6. Let Π be a well-typed program and S a typed Π-stack. Then Π◦ is a well-
typed program and S◦ a typed Π◦-stack.

Erasure makes trivial the effects of assertEmpty and assertAtLeast, and in
particular, replaces their precondition by >. Thus a program cannot go wrong after
erasure, as rule (R-let 2 ) will never apply.
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Proposition 7. Let Π be a well-typed program and S a Π◦-stack S. Then S 6 ∗
Π◦  .

The next result states that the small-step reduction relation  Π of a program Π is
almost bisimulation equivalent to the reduction relation  Π◦ of its erasure. In fact,
it shows that the relation R = {〈S, S◦〉 | S is a Π-stack} would be a bisimulation if
 Π could not reduce stacks to the error stack  . Put differently, if Π cannot go wrong
then  Π and  Π◦ are bisimulation equivalent. The proof of this theorem is by case
analysis on the reduction relation Π of the unerased program. As a corollary, we get
that reachability in the erased program is essentially the same as reachability in the
unerased one, provided that the unerased program cannot go wrong.

Theorem 8. Let Π be a well-typed program and Ŝ0 a typed Π-stack with Ŝ0 6 Π  .

1. For all typed Π-stacks Ŝ1, if Ŝ0  Π Ŝ1 then Ŝ◦0  Π◦ Ŝ◦1 .
2. For all typed Π◦-stacks S1, if Ŝ◦0  Π◦ S1 then there is a typed Π-stack Ŝ1 such

that Ŝ0  Π Ŝ1 and Ŝ◦1 = S1.

Corollary 9. LetΠ be a well-typed program and S0 a typedΠ-stack. If S0 6 ∗
Π  then

{S◦ | S0  ∗
Π S} = {S | S◦0  ∗

Π◦ S}.

What distinguishes erasure of resource managers from other erasure results (e. g.,
type erasure during compilation, Java generics erasure) is that here, erasure does not
completely remove a language construct. Instead, it removes the book keeping but
retains the semantically important bit that deals with dynamic policy decisions.

2.5 Big-step Relational Semantics

The reduction semantics presented in Section 2.3 is good for showing preservation
properties, like the preservation of resources. However, it does not easily yield a
relational view on functions, relating input and output parameters. This is achieved
by a relational semantics, which we will prove equivalent to the reduction semantics.
Contrary to the reduction semantics, which was originally untyped and had type
environments added conservatively, the relational semantics will be typed from the start.
(Types do not hurt here, as the relational semantics is not geared towards execution.)

Throughout this section, we assume that Π is a well-typed program. A state β is
either the error state  or a normal state 〈Γ ;α〉, where Γ is a linear type environment
and α a maximal Γ -valuation. Given an expression e, a normal state 〈Γ ;α〉 and a state
β′, we define the judgement e, 〈Γ ;α〉 ⇓Π β′ (or e, 〈Γ ;α〉 ⇓ β′ if Π is understood)
by the rules in Figure 7 if dom(Γ ) ∩ bound(e) = ∅ and there are Γe and σ such that
Γ � Γe and Γe ` e : σ. The intended meaning of e, 〈Γ ;α〉 ⇓ β′ is that evaluating
expression e in state 〈Γ ;α〉 may terminate and result in state β′.

The reduction semantics deallocates variables once they become unused (an eager
garbage collection, so to say), which is essential for the linear variables as otherwise
resource preservation would not hold. However, the intermediate values of variables are
thus lost. In contrast, the relational semantics names and records all intermediate values,
even the linear ones, as e, 〈Γ ;α〉 ⇓ 〈Γ ′;α′〉 implies Γ ′ � Γ and α′ � α.

By definition, violations of resource safety manifest themselves in reductions
ending in the error stack, and hence reductions which diverge or get stuck cannot
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Evaluation of expressions e, 〈Γ ;α〉 ⇓ β′

(E-ret)
ret (x1,. . .,xn), 〈Γ ;α〉 ⇓ 〈Γ ;α〉

(E-let1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n) Γf = z1:τ1, . . . , zm:τm

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} e, 〈Γf ;αf 〉 ⇓ 〈Γ ′
f ;α′

f 〉
Γ ′ = Γ, x′1:τ

′
1, . . . , x

′
n:τ ′n α′ = α{x′1 7→ α′

f (z′1), . . . , x
′
n 7→ α′

f (z′n)}
e′, 〈Γ ′;α′〉 ⇓ β′′

let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ β′′

(E-let 1 )

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ Γf = z1:τ1, . . . , zm:τm

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} e, 〈Γf ;αf 〉 ⇓  
let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓  

(E-let2)

Π(f) = (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n)

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} α′
f ∈ Eff Π0

Θ0
(f) α′

f � αf

Γ ′ = Γ, x′1:τ
′
1, . . . , x

′
n:τ ′n α′ = α{x′1 7→ α′

f (z′1), . . . , x
′
n 7→ α′

f (z′n)}
e′, 〈Γ ′;α′〉 ⇓ β′′

let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ β′′

(E-let 2 )

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ f ∈ {assertEmpty,assertAtLeast}
αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} ∀α′

f ∈ Eff Π0
Θ0

(f) : α′
f � αf

let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓  

(E-if1)
e1, 〈Γ ;α〉 ⇓ β′

if v then e1 else e2, 〈Γ ;α〉 ⇓ β′ if α(v) 6= 0

(E-if2)
e2, 〈Γ ;α〉 ⇓ β′

if v then e1 else e2, 〈Γ ;α〉 ⇓ β′ if α(v) = 0

Fig. 7. Big-step evaluation relation (for a fixed program Π).

violate resource safety. Therefore, resource safety is not affected by the fact that the
relational semantics ignores such reductions. Under this proviso, Proposition 10 shows
the equivalence of reduction and relational semantics.

Proposition 10. Let 〈Γ ;α〉 and 〈Γ ′;α′〉 be states. Let e be an expression such that
dom(Γ ) = free(e) and Γ ` e : σ for some product type σ. Then

1. e, 〈Γ ;α〉 ⇓  if and only if 〈|α, e〉Γ :: ε ∗  , and
2. e, 〈Γ ;α〉 ⇓ 〈Γ ′;α′〉 if and only if there is a typed stack 〈|α′′, ret (x1,. . .,xn)〉Γ ′′

::ε
such that 〈|α, e〉Γ :: ε ∗ 〈|α′′, ret (x1,. . .,xn)〉Γ ′′

:: ε and Γ ′ � Γ ′′ and α′ � α′′.

3 Effect Type System

In this section, we will develop a type system to statically guarantee dynamic resource
safety, i. e., the absence of reductions to the error stack  . We will do so by annotating
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functions with effects and then extending the notion of effect to a judgement on
expressions, which we will define by a simple set of typing rules.

3.1 Effect Type System

We extend the notion of effect φ→ ψ from built-in functions to λ-abstractions. To be
precise, φ→ψ is an effect for f if Γ ` φ and Γ,∆ ` ψ, whereΠ(f) = [λ . . . ]Γ → ∆,
regardless of whether f is built-in or a λ-abstraction. In line with this extension, an
effect environment Θ maps all functions f ∈ dom(Π) to effects Θ(f) for f .

In order to derive the effects of λ-abstractions, we generalise effects to effect types
for expressions and develop a type system for inductively constructing such effect types.
Effects relate input and output parameters of functions by logical formulae. Likewise,
effect types shall relate input and output parameters of expressions. Here, the input
parameters of an expression are its free variables; the output parameters are those
variables that are not free yet but will become free during reduction, i. e., the (let-)bound
variables. Formally, an effect type Γ ;φ→∆;ψ is a pair of constraints φ and ψ together
with a pair of type environments Γ and ∆ such that dom(Γ )∩dom(∆) = ∅ and Γ ` φ
and Γ,∆ ` ψ. We call φ and ψ precondition and action, and Γ and ∆ input and output
(parameters), respectively. Given an expression e, we say that an effect type Γ ;φ→∆;ψ
is an effect type for e if dom(Γ ) ∩ bound(e) = ∅.

We say that an effect type Γ ;φ→∆;ψ is stronger than an effect type Γ ′;φ′→∆′;ψ′,
denoted by Γ ;φ→ ∆;ψ ⊇ Γ ′;φ′ → ∆′;ψ′, if φ′ |= φ and (φ′ ∧ ψ) |= ψ′, i. e., the
stronger effect type Γ ;φ→ ∆;ψ has a weaker precondition but stronger action. The
stronger-than relation ⊇ is a quasi-order, i. e., reflexive and transitive, and induces an
equivalence relation on effect types, the as-strong-as relation, which we denote by ≡.
Note that for every effect type Γ ;φ→∆;ψ is as strong as an effect type Γ ′;φ→∆′;ψ
with linear type environments Γ ′ and ∆′.

Figure 8 presents the typing rules for deriving effect types. There, the judgement
Θ `Π e : Γ ;φ→∆;ψ states that expression e has effect type Γ ;φ → ∆;ψ in the
context of program Π and effect environment Θ. If Π is understood, we may omit it
and write Θ ` e : Γ ;φ→∆;ψ instead. The judgement Π,Θ ` f means that the effect
type ascribed to a λ-abstraction f by Θ and Π is consistent with the effect type derived
for the body of f . We say that Θ is an admissible effect environment for a program Π
if Π,Θ ` f for all λ-abstractions f ∈ dom(Π) \ dom(Π0).

Lemma 11. Let e be an expression, Θ an effect environment (referring to an implicit
program Π) and Γ ;φ→∆;ψ an effect type. If Θ ` e : Γ ;φ→∆;ψ then Γ ;φ→∆;ψ
is an effect type for e.

Theorem 12 states soundness of effect typing w. r. t. the big-step relational semantics.
The proof is by double induction on the derivation of relational semantics judgements
over the derivation of effect type judgements. As a corollary, we get that reduction
starting from a state that satisfies the precondition can’t go wrong, hence resource
managers can be erased. In fact, the untyped reductions in the erased program match
exactly the typed reductions in the original program.
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Typing of expression effects Θ ` e : Γ ;φ→∆;ψ

(ET-weak)
Θ ` e : Γ ;φ→∆;ψ

Θ ` e : Γ ′;φ′ →∆′;ψ′ if


dom(Γ ′) ∩ bound(e) = ∅ ∧
Γ ;φ→∆;ψ ⊇ Γ ′;φ′ →∆′;ψ′

(ET-ret)
Θ ` ret (x1,. . .,xn) : ∅;>→ ∅;>

(ET-if)
Θ ` e1 : Γ ; v 6≈ 0 ∧ φ→∆;ψ Θ ` e2 : Γ ; v ≈ 0 ∧ φ→∆;ψ

Θ ` if v then e1 else e2 : Γ ;φ→∆;ψ

(ET-let)

Π(f) = [λ . . . ]Γ → ∆ Γ = z1:τ1, . . . , zm:τm ∆ = z′1:τ
′
1, . . . , z

′
n:τ ′n

Θ(f) = φ→ ψ µ = {z1 7→ v1, . . . , zm 7→ vm, z
′
1 7→ x′1, . . . , z

′
n 7→ x′n}

Θ ` e′ : Γ ′, ∆′;φ′ ∧ ψ′ →∆′′;ψ′′

Θ ` let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′ : Γ ′;φ′ →∆′, ∆′′;ψ′ ∧ ψ′′ if (∗)

where (∗)


dom(Γ ′) ∩ {x′1, . . . , x′n} = ∅ ∧
Γµ;φµ→∆µ;ψµ ⊇ Γ ′;φ′ →∆′;ψ′

Well-typedness of λ-abstraction effects Π,Θ ` f

(ET-lam)
Π(f) = λe : Γ → ∆ Θ(f) = φ→ ψ Θ ` e : Γ ;φ→∆;ψ

Π,Θ ` f

Fig. 8. Typing rules for effect types (for a fixed program Π).

Theorem 12. Let Θ be an admissible effect environment for a well-typed program Π .
Let e be an expression and Γ ;φ→∆;ψ an effect type such that Θ ` e : Γ ;φ→∆;ψ.
Let 〈Γ ;α〉 and β′ be states such that e, 〈Γ ;α〉 ⇓ β′ (which implies Γe ` e : σ for some
Γe, σ). If α |= φ then β′ = 〈Γ ′;α′〉 for some Γ ′ and α′ such that α′ |= φ ∧ ψ. (In
particular, if α |= φ then β′ 6=  .)

Corollary 13. Let Θ be an admissible effect environment for a well-typed program Π .
Let e be an expression and Γ ;φ→∆;ψ an effect type such thatΘ `Π e : Γ ;φ→∆;ψ.
Let α be a maximal Γ -valuation, and let Ŝ0 = 〈|α|free(e), e〉Γ |free(e) :: ε be a typed
Π-stack (which implies Γ |free(e) `Π e : σ for some σ). If α |= φ then

1. Ŝ0 6 ∗
Π  and

2. for all (untyped) Π◦-stacks S, Ŝ◦\0  
∗
Π◦ S if and only if there is a typed Π-stack

Ŝ such that Ŝ0  ∗
Π Ŝ and Ŝ◦\ = S. (In particular, Ŝ◦\0 6 ∗

Π◦  .)

3.2 Example: Bulk Messaging Application

To illustrate the use of the effect type system, we revisit the example from Figure 1. The
interesting bits of code are in the functions send bulk and send msg.

The function send bulk first builds up a multiset of resources r by converting the
strings representing phone numbers in nums into resources. Next it attempts to authorise
the use of all resources by having enable add r to an empty resource manager m. If this
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f Θ(f)

send bulk >→>
res from nums >→ r≈ bagof (mapfromstr (nums))

res from nums’
0 ≤ i ≤ len(nums) ∧ r’≈ bagof (mapfromstr (subarray(nums, i, len(nums))))

→ r≈ bagof (mapfromstr (nums))

send msgs bagof (mapfromstr (nums)) ⊆ m→ m≈ m’ ] bagof (mapfromstr (nums))

send msgs’
0 ≤ i ≤ len(nums) ∧ bagof (mapfromstr (subarray(nums, 0, i))) ⊆ m

→ m≈ m’ ] bagof (mapfromstr (subarray(nums, 0, i)))

send msg count(m, fromstr(num)) ≥ 1→ m≈ m’ ] {|fromstr(num):1|}
prim send msg >→>

∀a : len(mapfromstr (a))≈ len(a)

∀a∀i : 0≤ i < len(a) ⇒ mapfromstr (a)[i]≈ fromstr(a[i])

∀a∀j∀k : 0≤ j ≤ k ≤ len(a) ⇒ len(subarray(a, j, k)) = k + (−j)

∀a∀j∀k∀i : 0≤ j ≤ k ≤ len(a) ∧ 0≤ i < len(subarray(a, j, k)) ⇒ subarray(a, j, k)[i] = a[j + i]

∀a : |bagof (a)| ≈ len(a)

∀a : len(a)≈ 1 ⇒ bagof (a)≈ {a[0]:1}
∀a∀k : 0≤ k ≤ len(a) ⇒ bagof (a)≈ bagof (subarray(a, 0, k)) ] bagof (subarray(a, k, len(a)))

Fig. 9. Bulk messaging application: admissible effect environment Θ and axiomatisa-
tion of theory extension; for the sake of readability sort information is suppressed in the
axioms.

fails, i. e., the multiset r’ returned by enable is of non-zero size, send bulk terminates
(after destroying m’ and whatever resources it holds).3 If authorising all resources
succeeds, send bulk calls send msgs to actually send the messages while checking that the
manager m’ contains the required resources. After that, send bulk checks that send msgs

has used up all resources by asserting that the returned manager m” is empty; failing
this assertion will trigger a runtime error. Finally, send bulk explicitly destroys the empty
manager m’” and terminates.

The function send msg sends one message, checking whether the resource manager
m holds the resource required. It does so by converting the string num into a singleton
multiset of resources r. Then it splits the manager m into m’ and m r, so that m r contains
at most the resources in r. Next, send msg asserts that m r contains at least r; failing
this assertion will trigger a runtime error. Succeeding the assertion, send msg calls the
primitive send function, destroys the now used resource by consuming m r’, and returns
the remaining resources in the manager m’.

The bulk messaging example is statically resource safe, as witnessed by the admis-
sible effect environment displayed in Figure 9. Of particular interest is the effect>→>
ascribed to the main function send bulk. This least informative effect expresses nothing
about the function itself but implies the absence of runtime errors via Corollary 13.

The effects require an extension of the theory T (see Section 2.2) by three new
functions, axiomatised in Figure 9. The function map maps an array of strings to an

3 A more sophisticated version of the application could deal more gracefully with enable
granting only part of the requested resources. This would require more complex code to inspect
the multisets r and r’ (but not the resource manager m’).
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array of resources, subarray takes an array and cuts out the sub-array between two
given indices, and bagof converts an array of resources to a multiset (containing the
same elements with the same multiplicity). Note that the axiomatisation of bagof is not
complete4 but sufficient for our purposes.

Effect type checking, e. g., for checking admissibility of the effect environment Θ
from Figure 9, requires checking the side condition of the weakening rule (ET-weak),
which involves checking logical entailment w. r. t. to an extension of the theory T . Due
to the high undecidability of T , we actually check entailment w. r. t. (an extension of)
an approximation of T ; in particular, we approximate multiplication and division by
uninterpreted functions. For the bulk messaging example, we used an SMT solver [4]
that can handle linear integer arithmetic and arrays. We added axioms for multisets and
the axioms in Figure 9. Due to an incomplete quantifier instantiation heuristic, we had
to instantiate a number of these axioms by hand, yet eventually, the solver was able to
prove all the entailments required by the weakening rules.

Even though arising from a single example, we believe that the extension of the
theories of multisets and arrays with the functions subarray and bagof is quite generic
and could prove useful in many cases.

4 Conclusion

We have presented a programming language with support for complex resource man-
agement, close to the standard SSA/ANF forms of compiler intermediate languages [1].
By construction, programs are dynamically resource safe in that any attempts to abuse
resources are trapped. We have extended the language with an effect type system which
guarantees the for well-typed programs no such attempts occur: we have static resource
safety. In addition, for such programs the bookkeeping required by dynamic resource
management can be erased.

Related Work. Many tools and methods have been proposed to assist with resource
management at runtime, e.g., in Java, the JRes [9] and J-Seal [8] frameworks. Generally,
these aim to enable programs to react to fluctuations of resources caused by an
unpredictable environment. Our aim, however is to track the flow of resources through
the program, where the environment can influence the availability of resources only
at well-understood points of interaction with the program and with clear availability
policies. This offers the chance for more precise resource control whose behaviour can
be predicted statically.

This paper builds on previous work [3] with a Java library implementing resource
managers and focusing on the dynamic aspects of resource management policies. This
Java library supports essentially the same operations on resource managers as our
functional language, except that state is realised by destructive updates instead of linear
types. While [3] does not provide a static analysis to prove static resource safety, it does
outline how dynamic accounting could be erased if static resource safety were provable.
Our work here shows one way to do just that.

4 A complete axiomatisation of bagof is possible in the full first-order theory of multisets and
arrays but it is much more complicated and unusable in practise.
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Our approach is in line with a general trend of providing the programmer with
language-based mechanisms for security and additional static analyses (often using type
systems) which use these mechanisms. This combination provides a desirable graceful
degradation: if static analysis succeeds in proving certain properties, then the program
may be optimised without affecting security. Yet, even if the analyses fail the language
based mechanisms will enforce the security properties at runtime.

The context of our work is the MOBIUS project [5] on proof-carrying code (PCC)
for mobile devices. Our effect type system is very simple and in principle well-suited
for a PCC setting where checkers themselves are resource bounded. However, the
weakening rule relies on checking logical entailment in a first-order theory, which is
undecidable in general. Therefore, a certificate for PCC need not only provide a type
derivation tree but also proofs (in some proof system) for the entailment checks in the
weakening rule. The development of a suitable such proof system is a topic for further
research, as is the investigation of decidable fragments of relevant first-order theories.
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Abstract. Termination analysis has received considerable attention,
traditionally in the context of declarative programming, and recently
also for imperative languages. In existing approaches, termination is per-
formed on source programs. However, there are many situations, includ-
ing mobile code, where only the compiled code is available. In this work
we present an automatic termination analysis for sequential Java Byte-
code programs. Such analysis presents all of the challenges of analyzing
a low-level language as well as those introduced by object-oriented lan-
guages. Interestingly, given a bytecode program, we produce a constraint
logic program, CLP, whose termination entails termination of the byte-
code program. This allows applying the large body of work in termination
of CLP programs to termination of Java bytecode. A prototype analyzer
is described and initial experimentation is reported.

1 Introduction

It has been known since the pre-computer era that it is not possible to write a
program which correctly decides, in all cases, if another program will terminate.
However, termination analysis tools strive to find proofs of termination for as
wide a class of (terminating) programs as possible. Automated techniques are
typically based on analyses which track size information, such as the value of
numeric data or array indexes, or the size of data structures. This information is
used for specifying a ranking function which strictly decreases on a well-founded
domain on each computation step, thus guaranteeing termination.

In the last two decades, a variety of sophisticated termination analysis tools
have been developed, primarily for less-widely used programming languages.
These include analyzers for term rewrite systems [15], and logic and functional
languages [18,10,17]. Termination-proving techniques are also emerging in the
imperative paradigm [6,11,15], even for dealing with large industrial code [11].

Static analysis of Java ByteCode (JBC for short) has received considerable
attention lately [25,23,24,22,1]. The present paper presents a static analysis for
sequential JBC which is, to the best of our knowledge, the first approach to
proving termination. Bytecode is a low-level representation of a program, de-
signed to be executed by a virtual machine rather than by dedicated hardware.
As such, it is usually higher level than actual machine code, and independent of
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Termination Analysis of Java Bytecode 3

the specific hardware. This, together with its security features, makes JBC [19]
the chosen language for many mobile code applications. In this context, anal-
ysis of JBC programs may enable performing a certain degree of static (i.e.,
before execution) verification on program components obtained from untrusted
providers. Proof-Carrying Code [20] is a promising approach in this area: mo-
bile code is equipped with certain verifiable evidence which allows deployers to
independently verify properties of interest about the code. Termination analysis
is also important since the verification of functional program properties is often
split into separately proving partial correctness and termination.

Object-oriented languages in general, and their low-level (bytecode) counter-
parts in particular, present new challenges to termination analyzers: (1) loops
originate from different sources, such as conditional and unconditional jumps,
method calls, or even exceptions; (2) size measures must consider primitive
types, user defined objects, and arrays; and (3) tracking data is more difficult,
as data can be stored in variables, operand stack elements or heap locations.

Analyzing JBC is a necessity in many situations, including mobile code, where
the user only has access to compiled code. Furthermore, it can be argued that
analyzing low-level programs can have several advantages over analyzing their
high-level (Java) counterparts. One advantage is that low-level languages typi-
cally remain stable, as their high-level counterparts continue to evolve — ana-
lyzers for bytecode programs need not be enhanced each time a new language
construct is introduced. Another advantage is that analyzing low-level code nar-
rows the gap between what is verified and what is actually executed. This is
relevant, for example, in safety critical applications.

In this paper we take a semantic-based approach to termination analysis,
based on two steps. The first step transforms the bytecode into a rule-based
program where all loops and all variables are represented uniformly, and which is
semantically equivalent to the bytecode. This rule-based representation is based
on previous work [1] in cost analysis, and is presented in Sec. 2. In the second step
(Sec. 3), we adapt directly to the rule-based program standard techniques which
usually prove termination of high-level languages. Sec. 4 reports on our prototype
implementation and validates it by proving termination of a series of object-
oriented benchmarks, containing recursion, nested loops and data structures
such as trees and arrays. Conclusions and related work are presented in Sec. 5.

2 Java Bytecode and Its Rule-Based Representation

We consider a subset of the Java Virtual Machine (JVM) language which han-
dles integers and object creation and manipulation (by accessing fields and call-
ing methods). For simplicity, exceptions, arrays, interfaces, and primitive types
besides integers are omitted. Yet, these features can be easily handled within our
setting: all of them are implemented in our prototype and included in benchmarks
in Table 1. A full description of the JVM [19] is out of the scope of this paper.

A sequential JBC program consists of a set of class files, one for each class,
partially ordered with respect to the subclass relation �. A class file contains
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information about its name, the class it extends, and the fields and methods it
defines. Each method has a unique signature m from which we can obtain the
class, denoted class(m), where the method is defined, the name of the method,
and its signature. When it is clear from the context, we ignore the class and the
types parts of the signature. The bytecode associated with m is a sequence of
bytecode instructions 〈pc1:b1, . . . , pcn:bn〉, where each bi is a bytecode instruc-
tion, and pci is its address. The local variables of a method are denoted by
〈l0, . . . , ln−1〉, of which the first k≤n are the formal parameters, and l0 corre-
sponds to the this reference (unlike Java, in JBC, the this reference is explicit).
Similarly, each field f has a unique signature, from which we can obtain its name
and the name of the class it belongs to. The bytecode instructions we consider
include:

bcInst ::= istore v | astore v | iload v | aload v | iconst i | aconst null
| iadd | isub | iinc v n | imul | idiv
| if φ pc | goto pc | ireturn | areturn
| new c | invokevirtual m | invokespecial m | getfield f | putfield f

where c is a class, φ is a comparison condition on numbers (ne, le, icmpgt)
or references (null, nonnull), v is a local variable, i is an integer, and pc is an
instruction address. Briefly, instructions are: (row 1) stack operations referring
to constants and local variables; (row 2) arithmetic operations; (row 3) jumps
and method return; and (row 4) object-oriented instructions. All instructions
in row 3, together with invokevirtual, are branching (the others are sequential).
For simplicity, we will assume all methods to return a value. Fig. 1 depicts the
bytecode for the iterative method fact , where indexes 0, . . . , 3 stands for local
variables this , n, ft and i respectively. next(pc) is the address immediately after
the program counter pc. As instructions have different sizes, addresses do not
always increase by one (e.g., next(6)=9).

We assume an operational semantics which is a subset of the JVM specifica-
tion [19]. The execution environment of a bytecode program consists of a heap h
and a stack A of activation records. Each activation record contains a program
counter, a local operand stack, and local variables. The heap contains all objects
(and arrays) allocated in the memory. Each method invocation generates a new
activation record according to its signature. Different activation records do not
share information, but may contain references to the same object in the heap.

2.1 From Bytecode to Control Flow Graphs

The JVM language is unstructured. It allows conditional and unconditional
jumps as well as other implicit sources of branching, such as virtual method
invocation and exception throwing. The notion of a Control Flow Graph (CFG
for short) is a well-known instrument which facilitates reasoning about programs
in unstructured languages. A CFG is similar to the older notion of a flow chart,
but CFGs include a concept of “call to” and “return from”. Methods in the byte-
code program are represented as CFGs, and calls from one method to another
correspond to calls between these graphs. In order to build CFGs, the first step
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int fact(int);
0 : iconst 1

1 : istore 2
2 : iconst 1
3 : istore 3
4 : iload 3

5 : iload 1
6 : if icmpgt 19
9 : iload 2

10 : iload 3
11 : imul
12 : istore 2
13 : iinc 3, 1
16 : goto 4
19 : iload 2

20 : ireturn

int fact(int n){
int ft=1;
for (int i=1; i<=n; i++) ft=ft*i;
return ft;

}

20 : ireturn 6 : if icmpgt 19

i > n

fact2

4 : iload 3
5 : iload 119 : iload 2

fact4

class DoSum 0 : iconst 1
1 : istore 2
2 : iconst 1
3 : istore 3 fact3

9 : iload 2
10 : iload 3

12 : istore 2
13 : iinc 3, 1
16 : goto 4

i ≤ n

fact1

11 : imul

Fig. 1. A JBC method (left) with its corresponding source (center) and its CFG (right)

is to partition a sequence of bytecode instructions into a set of maximal sub-
sequences, or basic blocks, of instructions which execute sequentially, i.e., with-
out branching nor jumping. Given a bytecode instruction pc:b, we say that pc′:b′

is a predecessor of pc:bc if one of the following conditions holds: (1) b′=goto pc,
(2) b′=if φ pc, (3) next(pc′)=pc.

Definition 1 (partition to basic blocks). Given a method m and its se-
quence of bytecode instructions 〈pc1:b1, . . . , pcn:bn〉, a partition into basic blocks
m1, . . . , mk takes the form

pci1 :bi1 , . . . , pcf1 :bf1
︸ ︷︷ ︸

m1

, pci2 :bi2 . . . , pcf2 :bf2
︸ ︷︷ ︸

m2

, . . . pcik
:bik

. . . , pcfk
:bfk

︸ ︷︷ ︸

mk

where i1=1, fk=n and

1. the number of basic blocks (i.e. k) is minimal;
2. in each basic block mj, only the instruction bfj can be branching; and
3. in each basic block mj, only the instruction bij can have more than one

predecessor.

A partition to basic blocks can be obtained as follows: the first sequence m1
starts at pc1 and ends at pcf1=min(pce1

, pcs1
), where pce1

is the address of
the first branching instruction after pc1, and pcs1

is the first address after pc1
s.t. the instruction at address next(pcs1

) has more than one predecessor. The
sequence m2 is computed similarly starting at pci2=next(pcf1

), etc. Note that
this partition can be computed in two passes: the first computes the predecessors,
and the second defines the beginning and end of each sub-sequence.
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Example 1. The JBC fact method on the left of Fig. 1 is partitioned into four
basic blocks. The initial addresses (pcix

) of these blocks are shown within boxes.
Each block is labeled by fact id where id is a unique block identifier. A directed
edge indicates a control flow from the last instruction in the source node to the
first instruction in the destination node. Edges may be labeled by a guard which
states conditions under which the edge may be traversed during execution. �

In invokevirtual, due to dynamic dispatching, the actual method to be called may
not be known at compile time. To facilitate termination analysis, we capture this
information and introduce it explicitly in the CFG. This is done by adding new
blocks, the implicit basic blocks, containing calls to actual methods which might
be called at runtime. Moreover, access to these blocks is guarded by mutually
exclusive conditions on the runtime class of the calling object.

Definition 2 (implicit basic block). Let m be a method which contains an
instruction of the form pc:b, where b=invokevirtual m′. Let M be a superset
of the methods (signatures) that might actually be called at runtime when ex-
ecuting pc:b. The implicit basic block for m′′∈M is mpc:c, where c=class(m ′′)
if class(m ′′)�class(m ′), otherwise c=class(m ′). The block includes the single
special instruction invoke(m′). The guard of mpc:c is mg

pc:c=instanceof(n, c, D),
where D={class(m ′′) | m ′′∈M , class(m ′′)≺c}, and n is the arity of m′.

It can be seen that m is used to denote both methods and blocks in order to make
them globally unique. The above condition instanceof(n, c, D) states that the
(n+1)th stack element (from the top) is an instance of class c and not an instance
of any class in D. Computing the set M in the above definition can be statically
done by considering the class hierarchy and the method signature, which is
clearly a safe approximation of the set of the actual methods that might be called
at runtime when executing b. However, in some cases this might result in a much
larger set than the actual one, which in turn affects the precision and performance
of the corresponding static analysis. In such cases, class analysis [25] is usually
applied to reduce this set as it gives information about the possible runtime
classes of the object whose method is being called. Note that the instruction
invoke(m′) does not appear in the original bytecode, but it is instrumental to
define our rule-based representation in Sec. 2.2. For example, consider the CFG
in Fig. 2, which corresponds to the recursive method doSum and calls fact . This
CFG contains two implicit blocks labeled doSum11:DoSum and doSum19:DoSum .

The following definition formalizes the notion of a CFG for a method. Al-
though the invokespecial bytecode instruction always corresponds to only one
possible method call which can be identified from the symbolic method reference,
in order to simplify the presentation, we treat it as invokevirtual, and associate
it to a single implicit basic block with the true guard. Note that every bytecode
instruction belongs to exactly one basic block. By BlockId(pc, m)=i we denote
the fact that the instruction pc in m belongs to block mi. In addition, for a given
invokevirtual instruction pc:b in a method m, we use Mm

pc and Gm
pc to denote the

set of its implicit basic blocks and their corresponding guards respectively.
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int doSum(List x);
0 : aload 1
1 : ifnonnull 6
4 : iconst 0
5 : ireturn
6 : aload 0
7 : aload 1
8 : getfield List.data
11 : invokevirtual fact
14 : aload 0
15 : aload 1
16 : getfield List.next
19 : invokevirtual doSum
22 : iadd
23 : ireturn

1 : ifnonnull 6

doSum1 class DoSum

x �= null

6 : aload 0

doSum3

x=null

doSum2

4 : iconst 0
5 : ireturn

0 : aload 1

7 : aload 1
8 : getfield List.data
11 : invokevirtual fact

14 : aload 0
15 : aload 1
16 : getfield List.next
19 : invokevirtual doSum

22 : iadd
23 : ireturn

(1) doSum11:DoSum

doSum4

(2) doSum19:DoSum

doSum5

invoke(doSum)

invoke(fact)

instanceof(1, DoSum, {})
instanceof(1, DoSum, {})

(G1)
(G2)

int doSum(List x) {
if (x==null) return 0;
else return fact(x.data)+ doSum(x.next);

}

Fig. 2. The Control Flow Graph of the doSum example

Definition 3 (CFG). The control flow graph for a method m is a graph G =
〈N , E〉. Nodes N consist of:

(a) basic blocks m1, . . . , mk of m; and
(b) implicit basic blocks corresponding to calls to methods.

Edges in E take the form 〈mi → mj , conditionij〉 where mi and mj are, resp.,
the source and destination node, and conditionij is the Boolean condition la-
beling this transition. The set of edges is constructed, by considering each node
mi∈N which corresponds to a (non-implicit) basic block, whose last instruction
is denoted as pc:b, as follows:

1. if b=goto pc′ and j=BlockId(pc′, m) then we add 〈mi → mj , true〉 to E;
2. if b=if φ pc′, j=BlockId (pc′, m) and i′=BlockId(next(pc), m) then we add

both 〈mi → mj , φ〉 and 〈mi → mi′ ,¬φ〉 to E;
3. if b∈{invokevirtual m′, invokespecial m′}, and i′=BlockId(next(pc), m) then,

for all d∈Mm
pc and its corresponding gm

pc:d∈Gm
pc, we add 〈mi → mpc:d, g

m
pc:d〉

and 〈mpc:d → mi′ , true〉 to E;
4. otherwise, if j=BlockId(next(pc), m) then we add 〈mi → mj , true〉 to E.
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For conciseness, when a branching instruction b involving implicit blocks leads to
a single successor block, we include the corresponding invoke instruction within
the basic block b belongs to. For instance, consider that the classes DoSum
and List are not extended by any other class. In this case, the branching in-
structions 11 and 19 have a single continuation. Their associated implicit blocks
marked with (1) and (2) in Fig. 2 are, thus, just included within the basic block
doSum3. G1 and G2 at the bottom indicate the guards which should label the
edge.

2.2 Rule-Based Representation

The CFG, while having advantages, is not optimal for our purposes. Therefore,
we introduce a Rule-Based Representation (RBR) on which we demonstrate our
approach to termination analysis. This RBR is based on a recursive representa-
tion presented in previous work [1], where it has been used for cost analysis.

The main advantages of the RBR are that: (1) all iterative constructs (loops)
fit in the same setting, independently of whether they originate from recursive
calls or iterative loops (conditional and unconditional jumps); and (2) all vari-
ables in the local scope of the method a block corresponds to (formal parameters,
local variables, and stack values) are represented uniformly as explicit arguments.
This is possible as in JBC the height of the operand stack at each program point
is statically known. We prefer to use this rule-based representation, rather than
other existing ones (e.g., BoogiePL [13] or those in Soot [26]), as in a simple
post-processing phase we can eliminate almost all stack variables, which results,
as we will see in Sec. 3.1, in a more efficient analysis.

A Rule-Based Program (RBP for short) defines a set of procedures, each of them
defined by one or more rules. As we will see later, each block in the CFG gen-
erates one or two procedures. Each rule has the form head(x̄ , ȳ):=guard , instr ,
cont where head is the name of the procedure the rule belongs to, x̄ and ȳ indi-
cate sequences 〈x1, . . . , xn〉, n>0 (resp. 〈y1, . . . , yk〉, k>0) of input (resp. output)
arguments, guard is of the form guard(φ), where φ is a Boolean condition on the
variables in x̄, instr is a sequence of (decorated) bytecode instructions, and cont
indicates a possible call to another procedure representing the continuation of this
procedure. In principle, x̄ includes the method’s local variables and the stack el-
ements at the beginning of the block. In most cases, ȳ only needs to store the re-
turn value of the method, which we denote by r. For simplicity, guards of the form
guard(true) are omitted. When a procedure p is defined by means of several rules,
the corresponding guards must cover all cases and be pairwise exclusive.

Decorating Bytecode Instructions. In order to make all arguments explicit, each
bytecode instruction in instr is decorated explicitly with the (local and stack)
variables it operates on. We denote by t=stack height(pc, m) the height of the
stack immediately before the program point pc in a method m. Function dec in
the following table shows how to decorate some selected instructions, where n is
the number of arguments of m.
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pc:b dec(b)
iconst i iconst(i, st+1)
istore v istore(st, �v)
iload v iload (lv, st+1)
new c new(c, st+1)
ireturn ireturn(st, r)

pc:b dec(b)
iadd iadd(st−1, st, st−1)
invoke(m) m(〈st−n, . . . , st〉, 〈st−n〉)
getfield f getfield(f, st, st)
putfield f putfield(f, st−1, st, st−1)
guard(icmpgt) guard(icmpgt(st−1, st))

Guards are translated according to the bytecode instruction they come from.
Note that branching instructions do not need to appear in the RBR, since
their effect is already captured by the branching at the RBR level and since
invoke instructions are replaced by calls to the entry rule of the corresponding
method.

Definition 4 (RBR). Let m be a method with l0, . . ., ln−1 local variables, of
which l0, . . . , lk−1 are the formal parameters together with the this reference l0
(k ≤ n), and let 〈N , E〉 be its CFG. The rule-based representation of 〈N , E〉 is
rules(〈N , E〉) = entry(〈N , E〉)

⋃

mp∈N translate(mp, 〈N , E〉), with:

entry(〈N , E〉)=
{m(〈�0, . . . , �k−1〉, 〈r〉):=init local vars(〈lk, . . . , ln−1〉),m1 (〈�0, . . . , �n−1〉, 〈r〉)}

where the call init local vars initializes the local variables of the method, and

translate(mp, 〈N , E〉) =
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

{mp(〈l̄, s0, . . . , spi−1〉, 〈r〉):=TBC p
m.} � ∃〈mp �→ , 〉∈E

{mp(〈l̄, s0, . . . , spi−1〉, 〈r〉):=TBC p
m, mc

p(〈l̄, s0, . . . , spo−1〉, 〈r〉).}
⋃

{mc
p(〈l̄, s0, . . . , spo−1〉, 〈r〉):=g,mq(〈l̄, s0, . . . , sqi−1〉, 〈r〉).

| 〈mp → mq, φq〉 ∈ E ∧ g=dec(φq)}
otherwise

In the above formula, pi (resp., po) denotes the height of the operand stack of m
at the entry (resp., exit) of mp. Also, qi is the height of the stack at the entry
of mq, and TBC p

m is the decorated bytecode for mp. We use “ ” to indicate that
the value at the corresponding position is not relevant.

The function translate(mp, 〈N , E〉) is defined by cases. The first case is applied
when mp is a sink node with no out-edges. Otherwise, the second rule introduces
an additional procedure mc

p (c is for continuation), which is defined by as many
rules as there are out-edges for mp. These rules capture the different alterna-
tives which execution can follow from mp. We will unfold calls to mc

p whenever
it is deterministic (mp has a single out-edge). This results in mp calling mq

directly.

Example 2. The RBR of the CFG in Fig. 1 consists of the following rules where
local variables have the same name as in the source code and o is the this
object:
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fact(〈o, n〉, 〈r〉) := init local vars(〈ft, i〉), fact1 (〈o, n, ft, i〉, 〈r〉).
fact1 (〈o, n, ft, i〉, 〈r〉) := iconst(1, s0), istore(s0, ft), iconst(1, s0),

istore(s0, i), fact2 (〈o, n, ft, i〉, 〈r〉).
fact2 (〈o, n, ft, i〉, 〈r〉) := iload(i, s0), iload(n, s1),

fact c
2(〈o, n, ft, i, s0, s1〉, 〈r〉).

fact c
2(〈o, n, ft, i, s0, s1〉, 〈r〉) := guard(icmpgt(s0, s1)), fact4 (〈o, n, ft, i〉, 〈r〉).

fact c
2(〈o, n, ft, i, s0, s1〉, 〈r〉) := guard(icmple(s0, s1)), fact3 (〈o, n, ft, i〉, 〈r〉).

fact3 (〈o, n, ft, i〉, 〈r〉) := iload(ft, s0), iload(i, s1), imul(s0, s1, s0),
istore(s0, ft), iinc(i, 1), fact2 (〈o, n, ft, i〉, 〈r〉).

fact4 (〈o, n, ft, i〉, 〈r〉) := iload(ft, s0), ireturn(s0, r).

The first rule corresponds to the entry. Block fact4 is a sink block. Blocks fact1
and fact3 have a single out-edge and we have unfolded the continuation. Finally,
block fact2 has two out-edges and needs the procedure factc

2. The RBR from the
CFG of doSum in Fig. 2 is (doSum3 merges several blocks with one out-edge):

doSum (〈o, x〉, 〈r〉) := init local vars(〈〉), doSum1 (〈o, x〉, 〈r〉).
doSum1(〈o, x〉, 〈r〉) := aload(x, s0), doSumc

1(〈o, x, s0〉, 〈r〉).
doSumc

1(〈o, x, s0〉, 〈r〉) := guard(nonnull(s0)), doSum3 (〈o, x〉, 〈r〉).
doSumc

1(〈o, x, s0〉, 〈r〉) := guard(null(s0)), doSum2 (〈o, x〉, 〈r〉).
doSum2(〈o, x〉, 〈r〉) := iconst(0, s0), ireturn(s0, r).
doSum3(〈o, x〉, 〈r〉) := aload(o, s0), aload(x, s1), getfield(List.data, s1, s1),

fact(〈s0, s1〉, 〈s0〉), aload(o, s1), aload(x, s2),
getfield(List.next, s2, s2), doSum(〈s1, s2〉, 〈s1〉),
iadd(s0, s1, s0), ireturn(s0, r).

We can see that a call to a different method, fact , occurs in doSum3. This shows
that our RBR allows simultaneously handling the two CFGs in our example. �

Rule-based Programs vs JBC Programs. Given a JBC program P , Pr denotes
the RBP obtained from P . Note that, it is trivial to define an interpreter (or ab-
stract machine) which can execute any Pr and obtain the same return value and
termination behaviour as a JVM does for P . RBPs, in spite of their declarative
appearance, are in fact imperative programs. As in the JVM, an interpreter for
RBPs needs, in addition to a stack for activation records, a global heap. These
activation records differ from those in the JVM in that the operand stack is no
longer needed (as stack elements are explicit) and in that the scope of variables
is no longer associated to methods but rather to rules. In RBPs all rules are
treated uniformly, regardless of the method they originate from, so that method
borders are somewhat blurred. As in the JVM, call-by-value is used for passing
arguments in calls.

3 Proving Termination

This section describes how to prove termination of a JBC program given its
RBR. The approach consists of two steps. In the first, we abstract the RBR rules
by replacing all program data by their corresponding size, and replacing calls
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corresponding to bytecode instructions by size constraints on the values their
variables can take. This step results in a Constraint Logic Program (CLP) [16]
over integers, where, for any bytecode trace t, there exists a CLP trace t′ whose
states are abstractions of t states. In particular, every infinite (non terminating)
bytecode trace has a corresponding infinite CLP trace, so that termination of the
CLP program implies termination of the bytecode program. Note that, unlike in
bytecode traces which are always deterministic, the execution of a CLP program
can be non-deterministic, due to the precision loss inherent to the abstraction.

In the second step, we apply techniques for proving termination of CLP pro-
grams [9], which consist of: (1) analyzing the rules for each method to infer input-
output size relations between the method input and output variables; (2) using
the input-output size relations for the methods in the program, we infer a set of
abstract direct calls-to pairs which describe, in terms of size-change, all possible
calls from one procedure to another; and (3) given this set of abstract direct
calls-to pairs, we compute a set of all possible calls-to pairs (direct and indi-
rect), describing all transitions from one procedure to another. Then we focus
on the pairs which describe loops, and try to identify ranking functions which
guarantee the termination of each loop and thus of the original program.

3.1 Abstracting the Rules

As mentioned above, rule abstraction replaces data by the size of data, and
focuses on relations between data size. For integers, their size is just their in-
teger value [12]. For references, we take their size to be their path-length [24],
i.e., the length of the maximal path reachable from the reference. Then, bytecode
instructions are replaced by constraints on sizes taking into account a Static Sin-
gle Assignment (SSA) transformation. SSA is needed because variables in CLP
programs cannot be assigned more than one value. For example, an instruction
iadd(s0, s1, s0) will be abstracted to s′0=s1+s0 where s′0 refers to the value of s0
after executing the instruction. Also, the bytecode getfield(f, s0, s0) is abstracted
to s0>s′0 if it can be determined that s0 (before executing the instruction) does
not reference a cyclic data-structure, since the length of the longest-path reach-
able from s0 is larger than the length of the longest path reachable from s′0.

bytecode b abstract bytecode bα ρi+1

iload(lv, sj) s′

j=ρi(lv) ρi[sj �→s′

j ]
iadd(sj , sj+1, sj) s′

j=ρi(sj)+ρi(sj+1) ρi[sj �→s′

j ]
guard(icmpgt(sj , sj+1)) ρi(sj)>ρi(sj+1) ρi

getfield(f, sj , sj) if f is of ref. type: ρi(sj)>s′

j if sj is not cyclic ρi[sj �→ s′

j ]
otherwise ρi(sj) ≥ s′

j . If f is not of ref. type: true

putfield(f, sj , sj+1) if sj and sj+1 do not share, s′

k≤ρi(sk)+ρi(sj+1) ρi[sk �→ s′

k]
s.t f is of ref. type for any sk that shares with sj , otherwise true.

To implement the SSA transformation we maintain a mapping ρ of variable
names (as they appear in the rule) to new variable names (constraint vari-
ables). Such a mapping is referred to as a renaming. We let ρ[x 	→ y] denote the
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modification of the renaming ρ such that it maps x to the new variable y. We
denote by ρ[x̄ 	→ ȳ] the mapping of each element in x̄ to a corresponding one
in ȳ.

Definition 5 (abstract compilation). Let r ≡ p(x, y) := b1, . . . , bn be a rule.
Let ρi be a renaming associated with the point before each bi and let ρ1 be the
identity renaming (on the variables in the rule). The abstraction of r is denoted
r

α and takes the form p(x, y′) := bα
1 , . . . , bα

n where bα
i are computed iteratively

from left to right as follows:

1. if bi is a bytecode instruction or a guard, then bα
i and ρi+1 are obtained from

a predefined lookup table similar to the one above.
2. if bi is a call to a procedure q(w, z), then the abstraction bα

i is q(w′, z′) where
each w′k∈w′ is ρi(wk), variables z′ are fresh, and ρi+1=ρi[z 	→ z′, u 	→ u′]
where u′ are also fresh variables and u is the set of all variables in w which
reference data-structures that can be modified when executing q and those
that share (i.e., might have common regions in the heap) with them.

3. at the end we define each y′i ∈ y′ to be the constrained variable ρn+1(yi).

In addition, all reference variables are (implicitly) assumed to be non-negative.

Note that in point 2 above, the set of variables such that the data-structures
they point to may be modified during the execution of q can be approximated by
applying constancy analysis [14], which aims at detecting the method arguments
that remain constant during execution, and sharing analysis [23] which aims at
detecting reference variables that might have common regions on the heap. Also,
the non-cyclicity condition required for the abstraction of getfield can be verified
by non-cyclicity analysis [22]. In what follows, for simplicity, we assume that
abstract rules are normalized to the form p(x, y) := ϕ, p1(x1, y1), . . . , pj(xj , yj)
where ϕ is the conjunction of the (linear) size constraints introduced in the
abstraction and each pi(xi, yi) is a call to a procedure (i.e., block or method).

Example 3. Recall the following rule from Ex. 2 (on the left) and its abstraction
(on the right) where the renamings are indicated as comments.

fact3 (〈o, n, ft, i〉, 〈r〉) :=
iload(ft, s0),
iload(i, s1),
imul(s0, s1, s0),
istore(s0, ft),
iinc(i, 1),
fact2 (〈o, n, ft, i〉, 〈r〉).

fact3 (〈o, n, ft, i〉, 〈r′〉) := % ρ1 = id
s′0 = ft, % ρ2 = ρ1[s0 	→ s′0]
s′1 = i, % ρ3 = ρ2[s1 	→ s′1]
true, % ρ4 = ρ3[s0 	→ s′′0 ]
ft′ = s′′0 , % ρ5 = ρ4[ft 	→ ft′]
i′ = i + 1, % ρ6 = ρ5[i 	→ i′]
fact2 (〈o, n, ft′, i′〉, 〈r′〉). % ρ7 = ρ6[r 	→ r′]

Note that imul is abstracted to true, since it imposes a non-linear constraint. �

3.2 Input Output Size-Relations

We consider the abstract rules obtained in the previous step to infer an abstrac-
tion (w.r.t. size) of the input-output relation of the program blocks. Concretely,
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we infer input-output size relations of the form p(x, y) ← ϕ, where ϕ is a con-
straint describing the relation between the sizes of the input x and the output
y upon exit from p. This information is needed since output of one call may
be input to another call. E.g., consider the following contrived abstract rule
p(〈x〉, 〈r〉):={x>0,x>z}, q(〈z〉, 〈y〉), p(〈y〉, 〈r〉). To prove termination, it is cru-
cial to know the relation between x in the head and y in the recursive call to p.
This requires knowledge about the input-output size relations for q(〈z〉, 〈y〉). As-
suming this to be q(〈z〉, 〈y〉) ← z>y, we can infer x>y. Since abstract programs
are CLP programs, inferring relations can rely on standard techniques [4].

Computing an approximation of input-output size relation requires a global
fixpoint. In practice, we can often take a trivial over-approximation where for all
rules there is no information, namely, p(x, y) ← true. This can prove termination
of many programs, and results in a more efficient implementation. It is not
enough in cases as the above abstract rule, which however, in our experience,
often does not occur in imperative programs.

3.3 Call-to Pairs

Consider again the abstract rule from Ex. 3 which (ignoring the output variable)
is of the form fact3 (x̄) := ϕ, fact2 (z̄). It means that whenever execution reaches
a call to fact3 (x̄) there will be a subsequent call to fact2 (z̄) and the constraint ϕ
holds. In general, subsequent calls may arise also from rules which are not binary.
Given an abstract rule of the form p0 := ϕ, p1, . . . , pn, a call to p0 may lead to
a call to pi, 1≤i≤n. Given the input-output size relations for the individual
calls p1, . . . , pi−1, we can characterize the constraint for a transition between the
subsequent calls p0 and pi by adding these relations to ϕ. We denote a pair of
such subsequent calls by 〈p0(x) � pi(y), ϕi〉 and call it a calls-to pair.

Definition 6 (direct calls-to pairs). Given a set of abstract rules A and its
input-output size relations IA, the direct calls-to pairs induced by A and IA are:

CA =

⎧

⎨

⎩

〈p(x) � pi(xi), ψ〉

∣

∣

∣

∣

∣

∣

p(x, y) := ϕ, p1(x1, y1), . . . , pj(xj, yj)∈A,
i∈{1, . . . , j}, ∀0<k<i. pk(xk, yk) ← ϕk∈IA
ψ = ∃̄x ∪ xi.ϕ ∧ ϕ1 ∧ . . . ∧ ϕi−1

⎫

⎬

⎭

where ∃̄v means eliminating all variables but v from the corresponding constraint.

Example 4. Consider the rule for doSum in Ex. 2: note that input-output rela-
tions for fact and doSum are true. Direct calls-to pairs for those rules are:

〈doSum(o, x) � doSum1(o′, x′), {x′=x, o′=o}〉
〈doSum1(o, x) � doSumc

1(o′, x′, s0), {x′=x, o′=o, s0=x}〉
〈doSumc

1(o, x, s0) � doSum3(o′, x′), {x′=x, o′=o, s0>0}〉
〈doSumc

1(o, x.s0) � doSum2(o′, x′), {x′=x, o′=o, s0=0}〉
〈doSum3(o, x) � fact(s′0, s

′′
1), {s′0=o}〉

〈doSum3(o, x) � doSum(s′′′1 , s′′2), {s′′′1 =o, x>s′′2}〉

In the last rule, s′′2 corresponds to x.next, so that we have the constraint x>s′′2 .
It can be seen that since the list is not cyclic and does not share with other

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

134



14 E. Albert et al.

variables, size analysis finds the above decreasing of its size x>s′′2 . Note also
that all variables corresponding to references are assumed to be non-negative.
Similarly, we can obtain direct calls-to pairs for the rule of fact. �

It should be clear that the set of direct calls-to pairs relations CA is also a binary
CLP program that we can execute from a given goal. A key feature of this binary
program is that if an infinite trace can be generated using the abstract program
described in Sec. 3.1, then an infinite trace can be generated using this binary
CLP program [10]. Therefore, absence of such infinite traces (i.e., termination) in
the binary program CA implies absence of infinite traces in the abstract bytecode
program, as well as in the original bytecode program.

Theorem 1 (Soundness). Let P be a JBC program and CA the set of direct
calls-to pairs computed from P . If there exists a non-terminating trace in P then
there exists a non-terminating derivation in CA.

Intuitively, the result follows from the following points. By construction, the
RBP captures all possibly non-terminating traces in the original program. By
the correctness of size analysis, we have that, given a trace in the RBP, there
exists an equivalent one in CA, among possibly others. Therefore, termination
in CA entails termination in the JBC program.

3.4 Proving Termination of the Binary Program CA

Several automatic termination tools and methods for proving termination of
such binary constraint programs exists [9,10,17]. They are based on the idea of
first computing all possible calls-to pair from the direct ones, and then finding a
ranking function for each recursive calls-to pairs, which is sufficient for proving
termination. Computing all possible calls-to pairs, usually called the transitive
closure C∗

A, can be done by starting from the set of direct calls-to pairs CA, and
iteratively adding to it all possible compositions of its elements until a fixed-point
is reached. Composing two calls-to pairs 〈p(x) � q(y), ϕ1〉 and 〈q(w) � r(z), ϕ2〉
returns the new calls-to pair 〈p(x) � r(z), ∃̄x̄ ∪ z̄.ϕ1 ∧ ϕ2 ∧ (ȳ = w̄)〉.
Example 5. Applying the transitive closure on the direct calls-to pairs of Ex. 4,
we obtain, among many others, the following calls-to pairs. Note that x (resp.
i) strictly decreases (resp. increases) at each iteration of its corresponding loop:

〈doSum(o, x) � doSum(o′, x′), {o′=o, x>x′, x≥0}〉
〈fact2(o, n, ft , i) � fact2(o

′, n′, ft ′, i′), {o′=o, n′=n, i′>i, i≥1, n≥i′−1}〉 �

As already mentioned, in order to prove termination, we focus on loops in
C∗
A. Loops are the recursive entities of the form 〈p(x) � p(y), ϕ〉 which indicate

that a call to a program point p with values x̄ eventually leads to a call to the
same program point with values ȳ and that ϕ holds between x and y. For each
loop, we seek a ranking function f over a well-founded domain such that ϕ |=
f(x)>f(y). As shown in [9,10], finding a ranking function for every recursive
calls-to pair implies termination. Computing such functions can be done, for
instance, as described in [21]. As an example, for the loops in Ex. 5 we get the
following ranking functions: f1(o, x)=x and f2(o, n, ft , i)=n−i+1.
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3.5 Improving Termination Analysis by Extracting Nested Loops

In proving termination of JBC programs, one important question is whether we
can prove termination at the JBC level for a class of programs which is compa-
rable to the class of Java source programs for which termination can be proved
using similar technology. As can be seen in Sec. 4, directly obtaining the RBR
of a bytecode program is non-optimal, in the sense that proving termination on
it may be more complicated than on the source program. This happens because,
while in source code it is easy to reason about a nested loop independently of
the outer loop, loops are not directly visible when control flow is unstructured.
Loop extraction is useful for our purposes since nested loops can be dealt with
one at a time. As a result, finding a ranking function is easier, and computing
the closure can be done locally in the strongly connected components. This can
be crucial in proving the termination of programs with nested loops.

To improve the accuracy of our analysis, we include a component which can
detect and extract loops from CFGs. Due to space limitations, we do not describe
how to perform this step here (more details in work about decompilation [2],
where loop extraction has received considerable attention). Very briefly, when a
loop is extracted, a new CFG is created. As a result, a method can be converted
into several CFGs. These ideas fit very nicely within our RBR, since calls to
loops are handled much in the same way as calls to other methods.

4 Experimental Results

Our prototype implementation is based on the size analysis component of [1]
and extends it with the additional components needed to prove termination. The
analyzer can also output the set of direct call-pairs, which allows using existing
termination analyzers based on similar ideas [10,17]. The system is implemented
in Ciao Prolog, and uses the Parma Polyhedra Library (PPL) [3].

Table 1 shows the execution times of the different steps involved in prov-
ing the termination of JBC programs, computed as the arithmetic mean of five
runs. Experiments have been performed on an Intel 1.86 GHz Pentium M with
1 GB of RAM, running Linux on a 2.6.17 kernel. The table shows a range of
benchmarks for which our system can prove termination, and which are meant
to illustrate different features. We show classical recursive programs such as
Hanoi, Fibonacci, MergeList and Power. Iterative programs DivByTwo and Con-
cat contain a single loop, while Sum, MatMult and BubbleSort are implemented
with nested loops. We also include programs written in object-oriented style,
like Polynomial, Incr, Scoreboard, and Delete. The remaining benchmarks use
data structures: arrays (ArrayReverse, MatMultVector, and Search); linked lists
(Delete and ListReverse); and binary trees (BST).

Columns CFG, RBR, Size, TC, RF, Total1 contain the running times (in
ms) required for the CFG (including loop extraction), the RBR, the size analysis
(including input-output relations), the transitive closure, the ranking functions
and the total time, respectively. Times are high, as the implementation has been
developed to check if our approach is feasible, but is still preliminary. The most
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Table 1. Measured time (in ms) of the different phases of proving termination

Benchmark CFG RBR Size TC RF Total1 Termin Total2 Ratio
Polynomial 138 12 260 1453 26 1890 yes 2111 1.12
DivByTwo 52 4 168 234 4 462 yes 538 1.17
EvenDigits 59 7 383 1565 17 2030 yes 2210 1.09
Factorial 43 3 46 268 3 363 yes 353 0.97
ArrayReverse 58 5 208 339 24 635 yes 834 1.32
Concat 65 8 660 943 38 1715 yes 3815 2.23
Incr 35 12 854 4723 28 5652 yes 6590 1.17
ListReverse 21 5 141 310 5 481 yes 515 1.07
MergeList 107 23 130 5184 21 5464 yes 5505 1.01
Power 14 3 72 357 9 454 yes 459 1.01
Cons 25 7 65 1318 10 1424 yes 1494 1.05
ListInter 136 22 585 9769 49 10560 yes 27968 2.65
SelectOrd 154 16 1298 4076 48 5592 no 25721 4.60
DoSum 57 10 64 923 6 1060 yes 1069 1.01
Delete 121 14 54 2418 1 2608 yes 33662 12.91
MatMult 240 11 2411 4646 294 7602 no 32212 4.24
MatMultVector 254 15 2563 8744 242 11817 no 34688 2.94
Hanoi 39 5 172 979 3 1198 no 1198 1.00
Fibonacci 23 3 90 290 5 411 yes 401 0.98
BST 68 12 97 4643 18 4838 yes 4901 1.01
BubbleSort 152 12 1125 4366 83 5738 no 14526 2.53
Search 65 11 307 756 11 1150 yes 1430 1.24
Sum 64 7 480 1758 35 2343 no 5610 2.39
FactSumList 65 12 80 961 5 1123 yes 1306 1.16
Scoreboard 268 23 1597 4393 81 6362 no 32999 5.19

expensive steps are the size analysis and the transitive closure, since they require
global analysis. Last three columns show the benefits of loop extraction. Termin
tells if termination can be proven (using polyhedra) without extraction. In seven
cases, termination is only proven if loop extraction is performed. Total2 shows
the total time required to check termination without loop extraction. Ratio
compares Total2 with Total1 (Total2/Total1), showing that, in addition to
improving precision, loop extraction is beneficial for efficiency, since Ratio ≥ 1
in most cases, and can be as high as 12.91 in Delete. Note that termination of
these programs may be proved without loop extraction by using other domains
such as monotonicity constraints [7]. However, we argue that loop extraction is
beneficial as it facilitates reasoning on the loops separately. Also, if it fails to
prove termination, it reports the possibly non-terminating loops.

5 Conclusions and Related Work

We have presented a termination analysis for (sequential) JBC which is, to
the best of our knowledge, the first approach in this direction. This analysis
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successfully deals with the challenges related to the low-level nature of JBC,
and adapts standard techniques used, in other settings, in decompilation and
termination analysis. Also, we believe that many of the ideas presented in this
paper are also applicable to termination analysis of low-level languages in gen-
eral, and not only JBC. We have used the notion of path-length to measure the
size of data structures on the heap. However, our approach is parametric on the
abstract domain used to measure the size. As future work, we plan to implement
non-cyclicity analysis [22], constancy analysis [14], and sharing analysis [23], and
to enrich the transitive closure components with monotonicity constraints [7].
Unlike polyhedra, monotonicity constraints can handle disjunctive information
which is often crucial for proving termination. In [5], a termination analysis for
C programs, based on binary relations similar to ours, is proposed. It uses sep-
aration logic to approximate the heap structure, which in turn allows handling
termination of programs manipulating cyclic data structures. We believe that,
for programs whose termination does not depend on cyclic data-structures, both
approaches deal with the same class of programs. However, ours might be more
efficient, as it is based on a simpler abstract domains (a detailed comparison
is planned for future work). Recently, a novel termination approach has been
suggested [8]. It is based on cyclic proofs and separation logic, and can even
handle complicated examples as the reversal of panhandle data-structures. It is
not clear to us how practical this approach is.
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Abstract. The classical approach to automatic cost analysis consists of
two phases. Given a program and some measure of cost, we first pro-
duce recurrence relations (RRs) which capture the cost of our program
in terms of the size of its input data. Second, we convert such RRs into
closed form (i.e., without recurrences). Whereas the first phase has re-
ceived considerable attention, with a number of cost analyses available
for a variety of programming languages, the second phase has received
comparatively little attention. In this paper we first study the features
of RRs generated by automatic cost analysis and discuss why existing
computer algebra systems are not appropriate for automatically obtain-
ing closed form solutions nor upper bounds of them. Then we present,
to our knowledge, the first practical framework for the fully automatic
generation of reasonably accurate upper bounds of RRs originating from
cost analysis of a wide range of programs. It is based on the inference of
ranking functions and loop invariants and on partial evaluation.

1 Introduction

The aim of cost analysis is to obtain static information about the execution cost
of programs w.r.t. some cost measure. Cost analysis has a large application field,
which includes resource certification [11,4,16,9], whereby code consumers can
reject code which is not guaranteed to run within the resources available. The
resources considered include processor cycles, memory usage, or billable events,
e.g., the number of text messages or bytes sent on a mobile network.

A well-known approach to automatic cost analysis, which dates back to the
seminal work of [25], consists of two phases. In the first phase, given a program
and some cost measure, we produce a set of equations which captures the cost of
our program in terms of the size of its input data. Such equations are generated
by converting the iteration constructs of the program (loops and recursion) into
recurrences and by inferring size relations which approximate how the size of
arguments varies. This set of equations can be regarded as recurrence relations
(RRs for short). Equivalently, it can be regarded as time bound programs [22].
The aim of the second phase is to obtain a non-recursive representation of the
equations, known as closed form. In most cases, it is not possible to find an exact
solution and the closed form corresponds to an upper bound.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 221–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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There are a number of cost analyses available which are based on this ap-
proach and which can handle a range of programming languages, including
functional [7,18,22,23,24,25], logic [12,20], and imperative [1,3]. While in all such
analyses the first phase is studied in detail, the second phase has received com-
paratively less attention. Basically, there are three different approaches for the
second phase. One approach, which is conceptually linked viewing equations as
time bound programs, was proposed in [18] and advocated in [22]. It is based on
existing source-to-source transformations which convert recursive programs into
non-recursive ones. The second approach consists in building restricted recur-
rence solvers using standard mathematical techniques, as in [12,25]. The third
approach consists in relying on existing computer algebra systems (CASs for
short) such as MathematicaR©, MAXIMA, MAPLE, etc., as in [3,7,23,24].

The problem with the three approaches above is that they assume a rather
limited form of equations which does not cover the essential features of equa-
tions actually generated by automatic cost analysis. In the rest of the paper,
we will concentrate on viewing equations as recurrence relations and will use
the term Cost Relation (CR for short) to refer to the relations produced by
automatic cost analysis. In our own experience with [3], we have detected that
existing CASs are, in most cases, not capable of handling CRs. We argue that
automatically converting CRs into the format accepted by CASs is unfeasible.
Furthermore, even in those cases where CASs can be used, the solutions ob-
tained are so complicated that they become useless for most practical purposes.
An altogether different approach to cost analysis is based on type systems with
resource annotations which does not use equations. Thus, it does not need to
obtain closed forms, but it is typically restricted to linear bounds [16]. The need
for improved mechanisms for obtaining upper bounds was already pointed out in
Hickey and Cohen [14]. A relevant work in this direction is PURRS [5], which has
been the first system to provide, in a fully automatic way, non-asymptotic upper
and lower bounds for a wide class of recurrences. Unfortunately, and unlike our
proposal, it also requires CRs to be deterministic. Marion et. al. [19,8] use a
kind of polynomial ranking functions, but the approach is limited to polynomial
bounds and can only handle a rather restricted form of CRs.

We believe that the lack of automatic tools for the above second phase is a
major reason for the diminished use of automatic cost analysis. In this paper we
study the features of CRs and discuss why existing CASs are not appropriate
for automatically bounding them. Furthermore, we present, to our knowledge,
the first practical framework for the fully automatic inference of reasonably
accurate upper bounds for CRs originating from a wide range of programs. To do
this, we apply semantic-based transformation and analysis techniques, including
inference of ranking functions, loop invariants and the use of partial evaluation.

1.1 Motivating Example

Example 1. Consider the Java code in Fig. 1. It uses a class List for (non sorted)
linked lists of integers. Method del receives an input list without repetitions l,

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

141



Automatic Inference of Upper Bounds for Recurrence Relations 223

void del(List l, int p, int a[], int la, int b[], int lb){
while (l!=null) {

if (l.data<p) {
la=rm vec(l.data, a, la);

} else {
lb=rm vec(l.data, b, lb);

}
l=l.next;

}
}
int rm vec(int e, int a[], int la){

int i=0;
while (i<la && a[i]<e) i++;
for (int j=i; j<la−1; j++) a[j]=a[j+1];
return la−1;

}

(1) Del(l, a, la, b, lb)=1+C (l, a, la, b, lb)
{b≥lb, lb≥0 ,a≥la, la≥0 , l≥0}

(2) C (l, a, la, b, lb)=2 {a≥la, b≥lb, b≥0 , a≥0 , l=0}
(3) C (l, a, la, b, lb)=

25+D(a, la, 0 )+E(la, j)+C (l′, a, la−1 , b, lb)
{a≥0 ,a≥la, b≥lb, j≥0 , b≥0 , l>l′, l>0}

(4) C (l, a, la, b, lb)=
24+D(b, lb, 0 )+E(lb, j)+C (l′, a, la, b, lb−1 )
{b≥0 , b≥lb, a≥la, j≥0 , a≥0 , l>l′, l>0}

(5) D(a, la, i)=3 {i≥la, a≥la, i≥0}
(6) D(a, la, i)=8 {i<la, a≥la, i≥0}
(7) D(a, la, i)=10+D(a, la, i+1 ) {i<la, a≥la, i≥0}
(8) E(la, j)=5 {j≥la−1 , j≥0}
(9) E(la, j)=15+E(la, j+1 ) {j<la−1 , j≥0}

Fig. 1. Java Code and the Result of Cost Analysis

an integer value p (the pivot), two sorted arrays of integers a and b, and two
integers la and lb which indicate, respectively, the number of positions occupied
in a and b. The array a (resp. b) is expected to contain values which are smaller
than the pivot p (resp. greater or equal). Under the assumption that all values
in l are contained in either a or b, the method del removes all values in l from
the corresponding arrays. The auxiliary method rm vec removes a given value e
from an array a of length la and returns its new length, la−1.

We have applied the cost analysis in [3] on this program in order to approx-
imate the cost of executing the method del in terms of the number of executed
bytecode instructions. For this, we first compile the program to bytecode and
then analyze the resulting bytecode. Fig. 1 (right) presents the results of analy-
sis, after performing partial evaluation, as we will explain in Sec. 6, and inlining
equality constraints (e.g., inlining equality lb′=lb−1 is done by replacing the
occurrences of lb′ by lb−1). In the analysis results, the data structures in the
program are abstracted to their sizes: l represents the maximal path-length [15]
of the corresponding dynamic structure, which in this case corresponds to the
length of the list, a and b are the lengths of the corresponding arrays, and la and
lb are the integer values of the corresponding variables. There are nine equations
which define the relation Del, which corresponds to the cost of the method del,
and three auxiliary recursive relations, C, D, and E. Each of them corresponds
to a loop (C: while loop in del; D: while loop in rm vec; and E: for loop in rm vec).
Each equation is annotated with a set of constraints which capture size relations
between the values of variables in the left hand side (lhs) and those in the right
hand side (rhs). In addition, size relations may contain applicability conditions
(i.e., guards) by providing constraints which only affect variables in the lhs. Let
us explain the equations for D . Eqs. (5) and (6) are base cases which corre-
spond to the exits from the loop when i≥la and a[i]≥e, respectively. Note that
the condition a[i]≥e does not appear in the size relation of Eq. (6) nor (7). This
is because the array a has been abstracted to its length. Thus, the value in a[i]
is no longer observable. For our cost measure , we count 3 bytecode instructions
in Eq. (5) and 8 in Eq. (6). The cost of executing an iteration of the loop is
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captured by Eq. (7), where the condition i<la must be satisfied and variable i
is increased by one at each recursive call. �

1.2 Cost Relations vs. Recurrence Relations

CRs differ from standard RRs in the following ways:

(a) Non-determinism. In contrast to RRs, CRs are possibly non-deterministic:
equations for the same relation are not required to be mutually exclusive. Even if
the programming language is deterministic, size abstractions introduce a loss of
precision: some guards which make the original program deterministic may not
be observable when using the size of arguments instead of their actual values. In
Ex. 1, this happens between Eqs. (3) and (4) and also between (6) and (7).
(b) Inexact size relations. CRs may have size relations which contain constraints
(not equalities). When dealing with realistic programming languages which con-
tain non-linear data structures, such as trees, it is often the case that size analysis
does not produce exact results. E.g., analysis may infer that the size of a data
structure strictly decreases from one iteration to another, but it may be unable
to provide the precise reduction. This happens in Ex. 1 in Eqs. (3) and (4).
(c) Multiple arguments. CRs usually depend on several arguments that may
increase (variable i in Eq. (7)) or decrease (variable l in Eq. (2)) at each iteration.
In fact, the number of times that a relation is executed can be a combination of
several of its arguments. E.g., relation E is executed la−j−1 times.

Point (a) was detected already in [25], where an explicit when operator is added
to the RR language to introduce non-determinism, but no complete method for
handling it is provided. Point (b) is another source of non-determinism. As a
result, CRs do not define functions, but rather relations. Given a relation C
and input values v, there may exist multiple results for C(v). Sometimes it is
possible to automatically convert relations with several arguments into relations
with only one. However, in contrast to our approach, it is restricted to very
simple cases such as when the CR only count constant cost expressions.

Existing methods for solving RRs are insufficient to bound CRs since they
do not cover points (a), (b), and (c) above. On the other hand, CASs can solve
complex recurrences (e.g., coefficients to function calls can be polynomials) which
our framework cannot handle. However, this additional power is not needed in
cost analysis, since such recurrences do not occur as the result of cost analysis.

An obvious way of obtaining upper bounds in non-deterministic CRs would
be to introduce a maximization operator. Unfortunately, such operator is not
supported by existing CAS. Adding it is far from trivial, since computing the
maximum when the equations are not mutually exclusive requires taking into
account multiple possibilities, which results in a highly combinatorial problem.
Another possibility is to convert CRs into RRs. For this, we need to remove
equations from CRs as well as sometimes to replace inexact size relations by
exact ones while preserving the worst-case solution. However, this is not possible
in general. E.g., in Fig. 1, the maximum cost is obtained when the execution
interleaves Eqs. (3) and (4), and therefore we cannot remove either of them.
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2 Cost Relations: Evaluation and Upper Bounds

Let us introduce some notation. We use x, y, z, possibly subscripted, to denote
variables which range over integers (Z), v, w denote integer values, a, b natural
numbers (N) and q rational numbers (Q). We denote by Q

+ (resp. R
+) the set of

non-negative rational (resp. real) numbers. We use t to denote a sequence of en-
tities t1, . . ., tn, for some n>0. We sometimes apply set operations on sequences.
Given x, an assignment for x is a sequence v (denoted by [x/v]). Given any entity
t, t[x/v] stands for the result of replacing in t each occurrence of xi by vi. We use
vars(t) to refer to the set of variables occurring in t. A linear expression has the
form q0+q1x1+ · · ·+qnxn. A linear constraint has the form l1 op l2 where l1 and
l2 are linear expressions and op ∈ {=,≤, <, >,≥}. A size relation ϕ is a set of
linear constraints (interpreted as a conjunction). The operator ∃̄x.ϕ eliminates
from ϕ all variables except for x. We write ϕ1 |= ϕ2 to indicate that ϕ1 implies
ϕ2. The following definition presents our notion of basic cost expression.

Definition 1 (basic cost expression). Basic cost expressions are of the form:
exp::=a|nat(l)|exp+exp|exp∗exp|expa|loga(exp)|aexp|max(S)|expa |exp−a,where
a≥1, l is a linear expression, S is a non empty set of cost expressions, nat:Z→Q

+

is defined as nat(v)= max({v, 0}), and exp satisfies that for any assignment v for
vars(exp) we have that exp[vars(exp)/v] ∈ R

+.

Basic cost expressions are symbolic expressions which indicate the resources we
accumulate and are the non-recursive building blocks for defining cost relations.
They enjoy two crucial properties: (1) by definition, they are always evaluated
to non negative values; (2) replacing a sub-expression nat(l) by nat(l’) such that
l′≥l, results in an upper bound of the original expression.

A cost relation C of arity n is a subset of Z
n ∗ R

+. This means that for a
single tuple v of integers there can be multiple solutions in C(v). We use C
and D to refer to cost relations. Cost analysis of a program usually produces
multiple, interconnected, cost relations. We refer to such sets of cost relations as
cost relation systems (CRSs for short), which we formally define below.

Definition 2 (Cost Relation System). A cost relation system S is a set of
equations of the form 〈C(x)=exp+

∑k
i=0 Di(yi), ϕ〉 with k≥0, where C and all

Di are cost relations, all variables x and yi are distinct variables; exp is a basic
cost expression; and ϕ is a size relation between x̄ and x̄∪vars(exp)∪ȳi.

In contrast to standard definitions of RRs, the variables which occur in the rhs
of the equations in CRSs do not need to be related to those in the lhs by equality
constraints. Other constraints such as ≤ and < can also be used. We denote by
rel(S) the set of cost relations which are defined in S. Also, def (S, C) denotes
the subset of the equations in S whose lhs is of the form C(x). W.l.o.g. we
assume that all equations in def (S, C) have the same variable names in the lhs.
We assume that any CRS S is self-contained in the sense that all cost relations
which appear in the rhs of an equation in S must be in rel(S).
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(9) E(2,1) 5

(8) E(2,0) 15

(5) D(10,2,2)

(7) D(10,2,1) 10

3

(5) D(20,2,2) 3

(7) D(20,2,1) 10

10(7) D(20,2,0)

5(9) E(2,1)

(8) E(2,0) 15

24(4) C(2,10,1,20,2)

(2) C(0,10,0,20,1) 25(9) E(1,0)

(5) D(10,1,1) 3

(7) D(10,1,0) 10

(3) C(1,10,1,20,1) 25

(6) D(20,2,0) 8 (8) E(2,1) 5 (2) C(0,10,1,20,2) 2

(4) C(3,10,2,20,2) 24

1(1) Del(3,10,2,20,2)1

(3) C(3,10,2,20,2) 25

(1) Del(3,10,2,20,2)

(7) D(10,2,0) 10

Fig. 2. Two Evaluation Trees for Del(3, 10, 2, 20, 2)

We now provide a semantics for CRSs. Given a CRS S, a call is of the form
C(v), where C∈rel(S) and v are integer values. Calls are evaluated in two phases.
In the first phase, we build an evaluation tree for the call. In the second phase we
obtain a value in R

+ by adding up the constants which appear in the nodes of the
evaluation tree. We make evaluation trees explicit since, as discussed below, our
approximation techniques are based on reasoning about the number of nodes and
the values in the nodes in such evaluation trees. Evaluation trees are obtained by
repeatedly expanding nodes which contain calls to relations. Each expansion is
performed w.r.t an appropriate instantiation of a rhs of an applicable equation.
If all leaves in the tree contain basic cost expressions then there is no node left
to expand and the process terminates. We will represent evaluation trees using
nested terms of the form node(Call,Local Cost ,Children), where Local Cost is a
constant in R

+ and Children is a sequence of evaluation trees.

Definition 3 (evaluation tree). Given a CRS S and a call C(v), a tree node
(C(v), e, 〈T1, . . . , Tk〉) is an evaluation tree for C(v) in S, denoted Tree(C(v), S)
if: 1) there is a renamed apart equation 〈C(x)=exp+

∑k
i=0 Di(yi), ϕ〉 ∈ S s.t.

ϕ′ is satisfiable in Z, with ϕ′=ϕ[x/v], and 2) there exist assignments w, vi for
vars(exp), yi respectively s.t. ϕ′[vars(exp)/w, yi/vi] is satisfiable in Z, and 3)
e=exp[vars(exp)/w], Ti is an evaluation tree Tree(Di(vi),S) with i = 0, . . . , k.

In step 1 we look for an equation E which is applicable for solving C(v). Note
that there may be several equations which are applicable. In step 2 we look
for assignments for the variables in the rhs of E which satisfy the size rela-
tions associated to E . This a non-deterministic step as there may be (infinitely
many) different assignments which satisfy all size relations. Finally, in step 3 we
apply the assignment to exp and continue recursively evaluating the calls. We
use Trees(C(v),S) to denote the set of all evaluation trees for C(v). We define
Answers(C(v),S)={Sum(T ) | T∈Trees(C(v),S)}, where Sum(T ) traverses all
nodes in T and computes the sum of the cost expressions in them.

Example 2. Fig. 2 shows two possible evaluation trees for Del(3, 10, 2, 20, 2).
The tree on the left has maximal cost, whereas the one on the right has minimal
cost. A node in either tree contains a call (left box) and its local cost (right box)
and it is linked by arrows to its children. We annotate calls with a number in
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(2)C (l, a, la, b, lb)= 2
{a≥la, b≥lb, b≥0 , a≥0 , l=0}

(3)C (l, a, la, b, lb)=

38+15*nat(la-j-1)+10*nat(la) +C (l′, a, la−1 , b, lb)

{a≥0 , a≥la, b≥lb, j≥0 , b≥0 , l>l′, l>0}
(4)C (l, a, la, b, lb)=

37+15*nat(lb-j-1)+10*nat(lb) +C (l′, a, la, b, lb−1 )

{b≥0 , b≥lb, a≥la, j≥0 ,a≥0 , l>l′, l>0}

(3) C(3,10,2,20,2)
         38+15*nat(2−0−1)+
         10*nat(2)=73

(4) C(2,10,1,20,2)         37+15*nat(2−0−1)+
         10*nat(2)=72

(3) C(1,10,1,20,1)         38+15*nat(1−0−1)+
         10*nat(1)=48

(2) C(0,10,0,20,1) 2

Fig. 3. Self-Contained CR for relation C and a corresponding evaluation tree

parenthesis to indicate the equation which was selected for evaluating such call.
Note that, in the recursive call to C in Eqs. (3) and (4), we are allowed to pick
any value l′ s.t. l′<l. In the tree on the left we always assign l′=l−1. This is what
happens in actual executions of the program. In the tree on the right we assign
l′=l−3 in the recursive call to C. The latter results in a minimal approximation,
however, it does not correspond to any actual execution. This is a side effect of
using safe approximations in static analysis: information is correct in the sense
that at least one of the evaluation trees must correspond to the actual cost, but
there may be other trees with different cost. In fact, there are an infinite number
of evaluation trees for our example call, as step 2 can provide an infinite number
of assignments to variable j which are compatible with the constraint j≥0 in
Eqs. (3) and (4). This shows that approaches like [13] based on evaluation of
CRSs are not of general applicability. Nevertheless, it is possible to find an upper
bound for this call since though the number of trees is infinite, infinitely many
of them produce equivalent results. �

2.1 Closed Form Upper Bounds for Cost Relations

Let C be a relation over Z
n∗R

+. A function U :Zn→R
+ is an upper bound of C iff

∀v∈Z
n, ∀a∈Answers(C(v),S), U(v)≥a. We use C+ to refer to an upper bound of

C. A function f :Zn→R
+ is in closed form if it is defined as f(x)=exp, with exp a

basic cost expression s.t. vars(exp)⊆x. An important feature of CRSs, inherited
from RRs, is their compositionality, which allows computing upper bounds of
CRSs by concentrating on one relation at a time. I.e., given a cost equation
for C(x) which calls D(y), we can replace the call to D(y) by D+(y). The
resulting relation is trivially an upper bound of the original one. E.g., suppose
that we have the following upper bounds: E+(la, j)=5+15∗nat(la−j−1) and
D+(a, la, i)=8+10∗nat(la−i). Replacing the calls to D and E in equations (3)
and (4) by D+ and E+ results in the CRS shown in Fig. 3.

The compositionality principle only results in an effective mechanism if all
recursions are direct (i.e., all cycles are of length one). In that case we can start
by computing upper bounds for cost relations which do not depend on any other
relations, which we refer to as standalone cost relations and continue by replacing
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the computed upper bounds on the equations which call such relations. In the
following, we formalize our method by assuming standalone cost relations and
in Sec. 6 we provide a mechanism for obtaining direct recursion automatically.

Existing approaches to compute upper bounds and asymptotic complexity of
RRs, usually applied by hand, are based on reasoning about evaluation trees
in terms of their size, depth, number of nodes, etc. They typically consider two
categories of nodes: (1) internal nodes, which correspond to applying recursive
equations, and (2) leaves of the tree(s), which correspond to the application of a
base (non-recursive) case. The central idea then is to count (or obtain an upper
bound on) the number of leaves and the number of internal nodes in the tree
separately and then multiply each of these by an upper bound on the cost of the
base case and of a recursive step, respectively. For instance, in the evaluation
tree in Fig. 3 for the standalone cost relation C, there are three internal nodes
and one leaf. The values in the internal nodes, once performed the evaluation
of the expressions are 73, 72, and 48, therefore 73 is the worst case. In the case
of leaves, the only value is 2. Therefore, the tightest upper bound we can find
using this approximation is 3×73+1∗2=221 ≥ 73+72+48+2=193.

We now extend the approximation scheme mentioned above in order to con-
sider all possible evaluation trees which may exist for a call. In the following,
we use |S| to denote the cardinality of a set S. Also, given an evaluation tree
T , leaf (T ) denotes the set of leaves of T (i.e., those without children) and
internal(T ) denotes the set of internal nodes (all nodes but the leaves) of T .

Proposition 1 (node-count upper bound). Let C be a cost relation and let
C+(x) = internal+(x) ∗ costr+(x)+ leaf +(x) ∗costnr+(x), where internal+(x),
costr+(x), leaf +(x) and costnr+(x) are closed form functions defined on Z

n→R
+.

Then, C+ is an upper bound of C if for all v∈Z
n and for all T∈Trees(C(v),S), it

holds: (1) internal+(v) ≥ |internal(T )| and leaf +(v) ≥ |leaf (T )|; (2) costr+(v)
is an upper bound of {e | node( , e, )∈internal(T )} and (3) costnr+(v) is an upper
bound of {e | node( , e, )∈leaf (T )}.

3 Upper Bounds on the Number of Nodes

In this section we present an automatic mechanism to obtain safe internal+(x)
and leaf +(x) functions which are valid for any assignment for x. The basic idea
is to first obtain upper bounds b and h+(x) on, respectively, the branching factor
and height (the distance from the root to the deepest leaf) of all corresponding
evaluation trees, and then use the number of internal nodes and leaves of a
complete tree with such branching factor and height as an upper bound. Then,

leaf +(x) = bh+(x) internal+(x) =

{
h+(x) b=1

bh+(x)−1
b−1 b≥2

For a cost relation C, the branching factor b in any evaluation tree for a
call C(v) is limited by the maximum number of recursive calls which occur in a
single equation for C. We now propose a way to compute an upper bound for
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the height, h+. Given an evaluation tree T∈Trees(C(v),S) for a cost relation C,
consecutive nodes in any branch of T represent consecutive recursive calls which
occur during the evaluation of C(v). Therefore, bounding the height of a tree
may be reduced to bounding consecutive recursive calls. The notion of loop in a
cost relation, which we introduce below, is used to model consecutive calls.

Definition 4. Let E=〈C(x)=exp+
∑k

i=1 C(yi), ϕ〉 be an equation for a cost re-
lation C. Then, Loops(E)={〈C(x)→C(ȳi), ϕ′〉 | ϕ′=∃̄x̄∪ȳi.ϕ, i=1· · ·k} is the set
of loops induced by E. Similarly, Loops(C) = ∪E∈def (S,C)Loops(E).

Example 3. Eqs. (3) and (4) in Fig. 3 induce the following two loops:

(3)〈C (l ,a, la, b, lb)→C (l ′, a, la ′, b, lb),ϕ′
1={a≥0, a≥la, b≥lb, b≥0, l>l′, l>0, la′=la−1}〉

(4)〈C (l ,a, la, b, lb)→C (l ′, a, la, b, lb′),ϕ′
2={b≥0, b≥lb, a≥la, a≥0, l>l′, l>0, lb′=lb−1}〉

Bounding the number of consecutive recursive calls is extensively used in the con-
text of termination analysis. It is usually done by proving that there is a function
f from the loop’s arguments to a well-founded partial order which decreases in
any two consecutive calls and which guarantees the absence of infinite traces,
and thus termination. These functions are usually called ranking functions. We
propose to use the ranking function to generate a h+ function. In practice, we
use [21] to generate functions which are defined as follows: a function f :Zn →Z is
a ranking function for a loop 〈C(x̄)→C(ȳ), ϕ〉 if ϕ|=f(x̄)>f(ȳ) and ϕ|=f(x̄)≥0.

Example 4. The function fC(l , a, la, b, lb)=l is a ranking function for C in the
cost relation in Fig. 3. Note that ϕ′1 and ϕ′2 in the above loops of C contain
the constraints {l>l′, l>0} which is enough to guarantee that fC is decreas-
ing and well-founded. The height of the evaluation tree for C(3, 10, 2, 20, 2) is
precisely predicted by fC(3, 10, 2, 20, 2)=3. Ranking functions may involve sev-
eral arguments, e.g., fD(a, la, i)=la−i is a ranking function for 〈D(a, la, i) →
D(a, la, i ′), {i ′=i+1 , i<la, a≥la, i≥0}〉 which comes from Eq. (7). �

Observe that the use of global ranking functions allows bounding the number
of iterations of possibly non-deterministic CRSs with multiple arguments (see
Sec. 1.2). In order to be able to define h+ in terms of the ranking function, one
thing to fix is that the ranking function might return a negative value when is
applied to values which correspond to base cases (leaves of the tree). Therefore,
we define h+(x)=nat(fC(x)). Function nat guarantees that negative values are
lifted to 0 and, therefore, they provide a correct approximation for the height of
evaluation trees with a single node. Even though the ranking function provides
an upper bound for the height of the corresponding trees, in some cases we can
further refine it and obtain a tighter upper bound. For example, if the difference
between the value of the ranking function in each two consecutive calls is larger
than a constant δ>1, then �nat(fC(x̄)

δ )� is a tighter upper bound. A more inter-
esting case, if each loop 〈C(x)→C(y), ϕ〉 ∈ Loops(C) satisfies ϕ|=fC(x)≥k∗fC(y)
where k>1, then the height of the tree is bounded by �logk(nat(fC(v)+1))�.
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4 Estimating the Cost Per Node

Consider the evaluation tree in Fig. 3. Note that all expressions in the nodes are
instances of the expressions which appear in the corresponding equations. Thus,
computing costr+(x) and costnr+(x) can be done by first finding an upper bound
of such expressions and then combining them through a max operator. We first
compute invariants for the values that the expression variables can take w.r.t.
the initial values, and use them to derive upper bounds for such expressions.

4.1 Invariants

Computing an invariant (in terms of linear constraints) that holds in all calling
contexts (contexts for short) to a relation C between the arguments at the initial
call and at each call during the evaluation can be done by using Loops(C). Intu-
itively, if we know that a linear constraint ψ holds between the arguments of the
initial call C(x0) and those of a recursive call C(x), denoted 〈C(x0)�C(x), ψ〉,
and we have a loop 〈C(x)→C(y), ϕ〉∈Loops(C), then we can apply the loop one
more step and get the new calling context 〈C(x0)�C(y), ∃̄x0∪y.ψ∧ϕ〉.

Definition 5 (loop invariants). For a relation C, let T be an operator defined:

T (X) =
{

〈C(x0)�C(y), ψ′〉
∣
∣
∣
∣
〈C(x0)�C(x), ψ〉∈X, 〈C(x)→C(y), ϕ〉∈Loops(C),
ψ′=∃̄x0∪y.ψ∧ϕ

}

which derives a set of contexts, from a given context X, by applying all loops, then
the loop invariants I is lfp∪i≥0T i(I0) where I0 = {〈C(x0)�C(x), {x0=x}〉}.

Example 5. Let us compute I for the loops in Sec. 3. The initial context is
I1=〈C (x̄0 )�C (x̄), {l=l0 , a=a0 , la=la0 , b=b0 , lb=lb0}〉 where x̄0=〈l0, a0, la0, b0, lb0〉
and x̄=〈l, a, la, b, lb〉. In the first iteration we compute T 0({I1}) which by defi-
nition is {I1}. In the second iteration we compute T 1({I1}) which results in

I2=〈C (x̄0 )�C (x̄), {l<l0 , a=a0 , la=la0−1 , b=b0 , lb=lb0 , l0>0}〉
I3=〈C (x̄0 )�C (x̄), {l<l0 , a=a0 , la=la0 , b=b0 , lb=lb0−1 , l0>0}〉

where I2 and I3 correspond to applying respectively the first loop and second
loops on I1. The underlined constraints are the modifications due to the appli-
cation of the loop. Note that in I2 the variable la0 decreases by one, and in I3
lb0 decreases by one. The third iteration T 2({I1}), i.e. T ({I2, I3}), results in

I4=〈C (x̄0 )�C (x̄), {l<l0 , a=a0 , la=la0−2 , b=b0 , lb=lb0 , l0>0}〉
I5=〈C (x̄0 )�C (x̄), {l<l0 , a=a0 , la=la0−1 , b=b0 , lb=lb0−1 , l0>0}〉
I6=〈C (x̄0 )�C (x̄), {l<l0 , a=a0 , la=la0 , b=b0 , lb=lb0−2 , l0>0}〉
I7=〈C (x̄0 )�C (x̄),{l<l0 , a=a0 , la=la0−1 , b=b0 , lb=lb0−1 , l0>0}〉

where I4 and I5 originate from applying the loops to I2, and I6 and I7 from
applying the loops to I3. The modifications on the constraints reflect that, when
applying a loop, either we decrease la or lb. After three iterations, the invariant
I includes I1 · · · I7. More iterations will add more contexts that further modify
the value of la or lb. Therefore, the invariant I grows indefinitely in this case. �
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In practice, we approximate I using abstract interpretation over, for instance, the
domain of convex polyhedra [10], whereby we obtain the invariant Ψ=〈C(x0) �

C(x), {l≤l0 , a=a0 , la≤la0 , b=b0 , lb≤lb0 }〉.

4.2 Upper Bounds on Cost Expressions

Once invariants are available, finding upper bounds of cost expressions can be
done by maximizing their nat parts independently. This is possible due to the
monotonicity property of cost expressions. Consider, for example, the expres-
sion nat(la−j−1) which appears in equation (3) of Fig. 3. We want to infer an
upper bound of the values that it can be evaluated to in terms of the input
values 〈l0, a0, la0, b0, lb0〉. We have inferred, in Sec. 4.1, that whenever we call
C the invariant Ψ holds, from which we can see that the maximum value that
la can take is la0. In addition, from the local size relations ϕ of equation (3)
we know that j≥0. Since la−j−1 takes its maximal value when la is maximal
and j is minimal, the expression la0−1 is an upper bound for la−j−1 . This can
be done automatically using linear constraints tools [6]. Given a cost equation
〈C(x)=exp+

∑k
i=0 C(yi), ϕ〉 and an invariant 〈C(x0)�C(x), Ψ〉, the function

below computes an upper bound for exp by maximizing its nat components.

1: function ub exp(exp,x0,ϕ,Ψ)
2: mexp=exp
3: for all nat(f)∈exp do
4: Ψ ′=∃̄x0, r.(ϕ∧Ψ∧(r=f)) // r is a fresh variable
5: if ∃f ′ s.t. vars(f ′)⊆x0 and Ψ ′|=r≤f ′ then mexp=mexp[nat(f)/nat(f ′)]
6: else return ∞
7: return mexp

This function computes an upper bound f ′ for each expression f which occurs
inside a nat operator and then replaces in exp all such f expressions with their
corresponding upper bounds (line 5). If it cannot find an upper bound, the
method returns ∞ (line 6). The ub exp function is complete in the sense that if
Ψ and ϕ imply that there is an upper bound for a given nat(f), then we can find
one by syntactically looking on Ψ ′ (line 4).

Example 6. Applying ub exp to exp3 and exp4 of Eqs. (3) and (4) in Fig. 3 w.r.t.
the invariant we have computed in Sec. 4.1 results in mexp3=38+15∗nat(la0−1 )
+10∗nat(la0 ) and mexp4=37+15∗nat(lb0−1 ) + 10∗nat(lb0 ). �

Theorem 1. Let S=S1∪S2 be a cost relation where S1 and S2 are respec-
tively the sets of non-recursive and recursive equations for C, and let I=〈C(x0)
�C(x), Ψ〉 be a loop invariant for C; Ei={ub exp(exp, x0, ϕ, Ψ) | 〈C(x) = exp+
∑k

j=0 C(yj), ϕ〉∈Si}; costnr+(x0)=max(E1) and costr+(x0)=max(E2). Then
for any call C(v) and for all T ∈ Trees(C(v),S): (1) ∀node( , e, )∈internal(T )
we have costr+(v)≥e; and (2) ∀node( , e, )∈leaf (T ) we have costnr+(v)≥e.

Example 7. At this point we have all the pieces in order to compute an upper
bound for the CRS depicted in Fig. 1 as described in Prop. 1. We start by
computing upper bounds for E and D as they are cost relations:
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Ranking Function costnr+ costr+ Upper Bound
E(la0, j0) nat(la0−j0−1 ) 5 15 5+15∗nat(la0−j0−1)

D(a0, la0, i0) nat(la0−i0 ) 8 10 8+10∗nat(la0−i0)

These upper bounds can then be substituted in the equations (3) and (4) which
results in the cost relation for C depicted in Fig. 3. We have already computed
a ranking function for C in Ex. 4 and costnr+ and costr+ in Ex. 6, which
are then combined into C+(l0, a0, la0, b0, lb0)=2+nat(l0)∗max({mexp3, mexp4}).
Reasoning similarly, for Del we get the upper bound shown in Table 1. �

5 Improving Accuracy in Divide and Conquer Programs

For some CRSs, we can obtain a more accurate upper bound by approximating
the cost of levels instead of approximating the cost of nodes, as indicated by
Prop. 1. Given an evaluation tree T , we denote by Sum Level(T, i) the sum of
the values of all nodes in T which are at depth i, i.e., at distance i from the root.

Proposition 2 (level-count upper bound). Let C be a cost relation and let
C+ be a function defined as: C+(x)=l+(x) ∗costl+(x), where l+(x) and costl+(x)
are closed form functions defined on Z

n→R
+. Then, C+ is an upper bound of C

if for all v∈Z
n and T∈Trees(C(v),S), it holds: (1) l+(v) ≥ depth(T ) + 1; and

(2) ∀i∈{0, . . . , depth(T )} we have that costl+(v) ≥ Sum Level(T, i).

The function l+ can simply be defined as l+(x)=nat(fC(x))+1 (see Sec. 3).
Finding an accurate costl+ function is not easy in general, which makes Prop. 2
not as widely applicable as Prop. 1. However, evaluation trees for divide and
conquer programs satisfy that Sum Level(T, k)≥Sum Level(T, k+1), i.e., the cost
per level does not increase from one level to another. In that case, we can take the
cost of the root node as an upper bound of costl+(x). A sufficient condition for a
cost relation falling into the divide and conquer class is that each cost expression
that is contributed by an equation is greater than or equal to the sum of the
cost expressions contributed by the corresponding immediate recursive calls.
This check is implemented in our prototype using [6].

Consider a CRS with the two equations 〈C(n)=0, {n≤ 0}〉 and 〈C(n) =
nat(n)+C(n1)+C(n2), ϕ〉 where ϕ={n>0, n1+n2+1≤n, n≥2∗n1, n ≥2∗n2, n1≥0,
n2≥0}. It corresponds to a divide and conquer problem such as merge-sort. In
order to prove that Sum Level does not increase, it is enough to check that,
in the second equation, n is greater than or equal to the sum of the expres-
sions that immediately result from the calls C(n1) and C(n2), which are n1 and
n2 respectively. This can be done by simply checking that ϕ|=n≥n1+n2. Then,
costl+(x)=max{0, nat(x)}=nat(x). Thus, given that l+(x)=�log2(nat(x)+1)�+1,
we obtain the upper bound nat(x)∗(�log2(nat(x)+1)�+1). Note that by using the
node-count approach we would obtain nat(x)∗(2nat(x)−1) as upper bound.

6 Direct Recursion Using Partial Evaluation

Automatically generated CRSs often contain recursions which are not direct,
i.e., cycles involve more than one function. E.g., the actual CRS obtained for
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the program in Fig. 1 by the analysis in [3] differs from that shown in the right
hand side of Fig. 1 in that, instead of Eqs. (8) and (9), the “for” loop results in:

(8’) E (la, j )=5+F (la, j , j ′, la ′) {j ′=j , la ′=la−1 , j ′≥0}
(9’) F (la, j , j ′, la ′)=H (j ′, la ′) {j ′≥la ′}
(10) F (la, j , j ′, la ′)=G(la, j , j ′, la ′) {j ′<la ′}
(11) H (j ′, la ′)=0 {}
(12) G(la, j , j ′, la ′)=10+E (la, j+1 ) {j<la−1 , j≥0 , la−la ′=1 , j ′=j}

Now, E captures the cost of the loop condition “j<la−1” (5 cost units) plus the
cost of its continuation, captured by F . Eq. (9’) corresponds to the exit of the
loop (it calls H , Eq. (11), which has 0 cost). Eq. (10) captures the cost of one
iteration by calling G, Eq. (12), which accumulates 10 units and returns to E.

In this section we present an automatic transformation of CRSs into directly
recursive form. The transformation is based on partial evaluation (PE) [17] and
it is performed by replacing calls to intermediate relations by their definitions
using unfolding. The first step in the transformation is to find a binding time
classification (or BTC for short) which declares which relations are residual, i.e.,
they have to remain in the CRS. The remaining relations are considered unfold-
able, i.e., they are eliminated. For computing BTCs, we associate to each CRS S
a call graph, denoted G(S), which is the directed graph obtained from S by tak-
ing rel(S) as the set of nodes and by including an arc (C, D) iff D appears in the
rhs of an equation for C. The following definition provides sufficient conditions
on a BTC which guarantee that we obtain a directly recursive CRS.

Definition 6. Let G(S) be the call graph of S and let SCC be its strongly con-
nected components. A BTC btc for S is directly recursive if for all S∈SCC the
following conditions hold: (1) if s1, s2∈S and s1, s2∈btc, then s1=s2; and (2) if
S has a cycle, then there exists s∈S such that s∈btc.

Condition 1 ensures that all recursions in the transformed CRS are direct, as
there is only one residual relation per SCC. Condition 2 guarantees that the
unfolding process terminates, as there is a residual relation per cycle. A directly
recursive BTC for the above example is btc={E}. In our implementation we only
include in the BTC the covering point (i.e., a node which is part of all cycles) of
SCCs which contain cycles, but no node is included for SCCs without cycles. This
way of computing BTCs, in addition to ensuring direct recursion, also eliminates
all relations which are not part of cycles (such as H in our example).

We now define unfolding in the context of CRSs. Such unfolding is guided by
a BTC and at each step it combines both cost expressions and size relations.

Definition 7 (unfolding). Given a CRS S, a call C(x0) s.t. C∈rel(S), a size
relation ϕx0 over x0, and a BTC btc for S, a pair 〈E, ϕ〉 is an unfolding for
C(x0) and ϕx0 in S w.r.t. btc, denoted Unfold(〈C(x0), ϕx0〉,S, btc)�〈E, ϕ〉, if
either of the following conditions hold:
(res) C∈btc∧ϕ�=true∧〈E, ϕ〉=〈C(x0), ϕx0〉;
(unf) (C �∈btc∨ϕ=true)∧〈E, ϕ〉= 〈(exp+e1 + . . . + ek), ϕ′

∧

i=1..k

ϕi〉

where 〈C(x)=exp+
∑k

i=1 Di(yi), ϕC〉 is a renamed apart equation in S s.t. ϕ′ =
ϕx0∧ϕC [x/x0] is satisfiable in Z and ∀1≤i≤k Unfold(〈Di(yi), ϕ′〉,S, btc)�〈ei, ϕi〉.
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The first case, (res), is required for termination. When we call a relation C which
is marked as residual, we simply return the initial call C(x0) and size relation
ϕx0 , as long as the current size relation ϕx0 is not the initial one (true). The
latter condition is added in order to force the initial unfolding step for relations
marked as residual. In all subsequent calls to Unfold different from the initial
one, the size relation is different from true. The second case (unf) corresponds
to continuing the unfolding process. Note that step 1 is non-deterministic, since
often cost relations contain several equations. Since expressions are transitively
unfolded, step 2 may also provide multiple solutions. Also, if the final size relation
ϕ is unsatisfiable, we simply do not regard 〈E, ϕ〉 as a valid unfolding.

Example 8. Given the initial call 〈E(la, j), true〉, we obtain an unfolding by per-
forming the following steps, denoted by e

� where e is the selected equation:
〈E (la, j ), true〉(8

′)
� 〈5+F (la, j , j ′, la ′), {j ′=j , la ′=la−1 , j ′≥0}〉(10)�

〈5+G(la, j , j ′, la ′), {j ′=j , la ′=la−1 , j ′≥0 , j ′<la ′}〉(12)� 〈15+E (la, j ′′), {j<la−1 , j≥0}〉
The call E(la, j ′′) is not further unfolded as E belongs to btc and ϕ�=true. �

From each result of unfolding we can build a residual equation. Given the unfold-
ing Unfold(〈C(x0), ϕx0〉,S, btc)�〈E, ϕ〉 its corresponding residual equation is
〈C(x0)=E, ϕ〉. As customary in PE, a partial evaluation of C is obtained by col-
lecting all residual equations for the call 〈C(x0), true〉. The PE of 〈E(la, j), true〉
results in Eqs. (8) and (9) of Fig. 1. Eq. (9) is obtained from the unfolding steps
depicted in Ex. 8 and Eq. (8) from unfolding w.r.t. Eqs. (8’), (9’), and (11).

Correctness of PE ensures that the solutions of CRSs are preserved. Regarding
completeness, we can obtain direct recursion if all SCCs in the call graph have
covering point(s). Importantly, structured loops (for, while, etc.) and recursive
patterns found in most programs result in CRSs that satisfy this property. In
addition, before applying PE, we check that the CRS terminates [2] with respect
to the initial query, otherwise we might compromise non-termination and thus
lead to incorrect upper bounds. We believe this check is not required when CRSs
are generated from imperative programs.

7 Experiments in Cost Analysis of Java Bytecode

A prototype implementation in Ciao Prolog, which uses PPL [6] for manipulating
linear constraints, is available at http://www.cliplab.org/Systems/PUBS. We
have performed a series of experiments which are shown in Table 1. We have used
CRSs automatically generated by the cost analyzer of Java bytecode described
in [3] using two cost measures: heap consumption for those marked with “∗”, and
the number of executed bytecode instructions for the rest. The benchmarks are
presented in increasing complexity order and grouped by asymptotic class. Those
marked with M were solved using MathematicaR© by [3] but after significant
human intervention. The marks a, b and c after the name indicate, respectively,
if the CRS is non-deterministic, has inexact size relations and multiple arguments
(Sec. 1.2). Column #eq shows the number of equations before PE (in brackets
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Table 1. Experiments on Cost Analysis of Java Bytecode

Benchmark #eq T #c
eq Tpe Tub Rat. Upper Bound

Polynomial∗ abc 23 (3) 13 346 (70) 174 649 2.4 216
DivByTwo ab 9 (3) 3 323 (68) 166 596 2.4 8log2(nat(2x−1)+1)+14

FactorialM 8 (2) 4 314 (66) 165 590 2.4 9nat(x)+4
ArrayRevM a 9 (3) 4 305 (64) 165 579 2.4 14nat(x)+12
ConcatM ac 14 (5) 13 296 (62) 158 538 2.4 11nat(x)+11nat(y)+25
IncrM ac 28 (5) 29 282 (58) 155 490 2.3 19nat(x+1)+9
ListRevM abc 9 (3) 4 254 (54) 144 415 2.2 13nat(x)+8
MergeList abc 21 (4) 18 245 (52) 138 406 2.2 29nat(x+y)+26
Power 8 (2) 3 223 (48) 125 371 2.2 10nat(x)+4
Cons∗ ab 22 (2) 6 214 (46) 123 359 2.3 22nat(x−1)+24
EvenDigits abc 18 (5) 9 191 (44) 115 322 2.3 nat(x)(8log2(nat(2x−3)+1)+24)+9nat(x)+9
ListInter abc 37 (9) 59 173 (40) 110 298 2.4 nat(x)(10nat(y)+43)+21
SelectOrd ac 19 (6) 27 136 (32) 86 198 2.1 nat(x−2)(17nat(x−2)+34)+9
FactSum a 17 (5) 8 117 (27) 76 173 2.1 nat(x+1)(9nat(x)+16)+6
Delete abc 33 (9) 125 100 (23) 71 165 2.4 3+nat(l)max(38+15nat(la−1)+10nat(la),

37+15nat(lb−1)+10nat(lb))
MatMultM ac 19 (7) 23 67 (15) 27 40 1.0 nat(y)(nat(x)(27nat(x))+10)+17

Hanoi 9 (2) 4 48 (8) 23 17 0.8 20(2nat(x))-17
FibonacciM 8 (2) 5 39 (6) 20 13 0.8 18(2nat(x−1))-13
BST∗ ab 31 (4) 26 31 (4) 19 7 0.9 96(2nat(x))-49

after PE). Note that PE greatly reduces #eq in all benchmarks. Column T shows
the total runtime in milliseconds. The experiments have been performed on an
Intel Core 2 Duo 1.86GHz with 2GB of RAM, running Linux.

The next four columns aim at demonstrating the scalability of our approach.
To do so, we connect the CRSs for the different benchmarks by introducing a
call from each CRS to the one appearing immediately below it in the table. Such
call is always introduced in a recursive equation. Column #c

eq shows the number
of equations we want to solve in each case (in brackets after PE). Reading this
column bottom-up, we can see that BST has the same number of equations as
the original one and that, progressively, each benchmark adds its own number
of equations to #c

eq. Thus, in the first row we have a CRS with all the equations
connected, i.e., we compute an upper bound of CRS with at least 19 nested loops
and 346 equations. The total runtime is split into Tpe and Tub, where Tpe is
the time of PE and it shows that even though PE is a global transformation,
its time efficiency is linear with the number of equations. Our system solves 346
equations in 823ms. Column Rat. shows the total time per equation. The ra-
tio is small for benchmarks with few equations, and for reasonably large CRSs
(from Delete upwards) it almost has no variation (2.1–2.4 ms/eq). The small
increase is due to the fact that the equations count more complex expressions
as we connect more benchmarks. This demonstrates that our approach is totally
scalable, even if the implementation is preliminary. The upper bound expres-
sions get considerably large when the benchmarks are composed together. We
are currently implementing standard techniques for simplification of arithmetic
expressions.

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

154



236 E. Albert et al.

Acknowledgments. This work was funded in part by the Information Society
Technologies program of the European Commission, Future and Emerging Tech-
nologies under the IST-15905 MOBIUS project, by the Spanish Ministry of Ed-
ucation (MEC) under the TIN-2005-09207 MERIT project, and the Madrid Re-
gional Government under the S-0505/TIC/0407 PROMESAS project. S. Genaim
was supported by a Juan de la Cierva Fellowship awarded by MEC.

References

1. Adachi, A., Kasai, T., Moriya, E.: A theoretical study of the time analysis of
programs. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 201–207. Springer,
Heidelberg (1979)

2. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termina-
tion Analysis of Java Bytecode. In: Proc. of FMOODS. LNCS, Springer, Heidelberg
(to appear, 2008)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, Springer,
Heidelberg (2007)

4. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile Resource
Guarantees for Smart Devices. In: Barthe, G., Burdy, L., Huisman, M., Lanet,
J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, Springer, Heidelberg
(2005)

5. Bagnara, R., Pescetti, A., Zaccagnini, A., Zaffanella, E.: PURRS: Towards com-
puter algebra support for fully automatic worst-case complexity analysis. Technical
report, arXiv:cs/0512056 (2005), http://arxiv.org/

6. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhe-
dra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, Springer, Heidelberg (2002)

7. Benzinger, R.: Automated higher-order complexity analysis. In: TCS, vol. 318(1-2)
(2004)

8. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: Quasi-interpretations and small space
bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, Springer, Heidelberg (2005)

9. Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.: Enforcing resource
bounds via static verification of dynamic checks. In: Sagiv, M. (ed.) ESOP 2005.
LNCS, vol. 3444, Springer, Heidelberg (2005)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL (1978)

11. Crary, K., Weirich, S.: Resource bound certification. In: POPL (2000)
12. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. TOPLAS 15(5) (1993)
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Abstract
This article presents a heap space analysis for (sequential)
Java bytecode. The analysis generates heap space cost re-
lations which define at compile-time the heap consumption
of a program as a function of its data size. These relations
can be used to obtain upper bounds on the heap space allo-
cated during the execution of the different methods. In addi-
tion, we describe how to refine the cost relations, by relying
on escape analysis, in order to take into account the heap
space that can be safely deallocated by the garbage collector
upon exit from a corresponding method. These refined cost
relations are then used to infer upper bounds on the active
heap space upon methods return. Example applications for
the analysis consider inference of constant heap usage and
heap usage proportional to the data size (including polyno-
mial and exponential heap consumption). Our prototype im-
plementation is reported and demonstrated by means of a se-
ries of examples which illustrate how the analysis naturally
encompasses standard data-structures like lists, trees and ar-
rays with several dimensions written in object-oriented pro-
gramming style.

Categories and Subject Descriptors F3.2 [Logics and
Meaning of Programs]: Program Analysis; F2.9 [Analy-
sis of Algorithms and Problem Complexity]: General; D3.2
[Programming Languages]

General Terms Languages, Theory, Verification, Reliabil-
ity

Keywords Heap Space Analysis, Heap Consumption, Low-
level Languages, Java Bytecode

1. Introduction
Heap space analysis aims at inferring bounds on the heap
space consumption of programs. Heap analysis is more typi-
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cally formulated at the source level (see, e.g., [24, 17, 25, 19]
in the context of functional programming and [18, 13] for
high-level imperative programming languages). However,
there are situations where one has only access to compiled
code and not to the source code. An example of this is
mobile code, where the code consumer receives code to
be executed. In this context, Java bytecode [20] is widely
used, mainly due to its security features and the fact that
it is platform-independent. Automatic heap space analysis
has interesting applications in this context. For instance, re-
source bound certification [14, 4, 5, 16, 12] proposes the use
of safety properties involving cost requirements, i.e., that the
untrusted code adheres to specific bounds on the resource
consumption. Also, heap bounds are useful on embedded
systems, e.g., smart cards in which memory is limited and
cannot easily be recovered. A general framework for the
cost analysis of sequential Java bytecode has been proposed
in [2]. Such analysis statically generates cost relations which
define the cost of a program as a function of its input data
size. The cost relations are expressed by means of recursive
equations generated by abstracting the recursive structure of
the program and by inferring size relations between argu-
ments. Cost relations are parametric w.r.t. a cost model, i.e.,
the cost unit associated to the bytecode b appears as an ab-
stract value Tb within the equations.

This article develops a novel application of the cost anal-
ysis framework of [2] to infer bounds on the heap space
consumption of sequential Java bytecode programs. In a
first step, we develop a cost model that defines the cost of
memory allocation instructions (e.g., new and newarray) in
terms of the number of heap (memory) units it consumes.
E.g., the cost of creating a new object is the number of heap
units allocated to that object. The remaining bytecode in-
structions do not add any cost. With this cost model, we
generate heap space cost relations which are then used to
infer upper bounds on the heap space usage of the differ-
ent methods. These upper bounds provide information on
the maximal heap space required for executing each method
in the program. In a second step, we refine this cost model
to consider the effect of garbage collection. This is done by
relying on escape analysis [15, 8] to identify those mem-
ory allocation instructions which create objects that will be
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garbage collected upon exit from the corresponding method.
With this information available, we can generate heap space
cost relations which contain annotations for the heap space
that will be garbage collected. The annotated cost relations
in turn are used to infer upper bounds on the active heap
space upon exit from methods, i.e., the heap space consumed
and that might not be garbage collected upon exit.

A distinguishing feature of the approach presented in this
article w.r.t. previous type-based approaches (e.g., [5, 17])
is that it is not restricted to linear bounds since the gener-
ated cost relations can in principle capture any complexity
class. Moreover, in many cases, the relations can be simpli-
fied to a closed form solution from which one can glean im-
mediate information about the expected consumption of the
code to be run. The approach has been assessed by means
of a prototype implementation, which originates from the
one of [3]. It should be noted that the examples in [3] are
simple imperative algorithms which did not make use of
the heap, since they were aimed at demonstrating that tradi-
tional complexity schemata can be handled by the cost anal-
ysis of [2]. In contrast, we demonstrate our heap analysis
by means of a series of example applications written in an
object-oriented style which make intensive use of the heap
and which present novel features like heap consumption that
depends on the class fields, multiple inheritance, virtual in-
vocation, etc. These examples allow us to illustrate the most
salient features of our analysis: inference of constant heap
usage, heap usage proportional to input size, support of stan-
dard data-structures like lists, trees, arrays, etc. To the best of
our knowledge, this is the first analysis able to infer arbitrary
heap usage bounds for Java bytecode.

The rest of the paper is structured as follows: Sec. 2
presents an example that illustrates the ideas behind the anal-
ysis. Sec. 3 briefly describes the Java bytecode language.
Sec. 4 defines a cost model for heap consumption and de-
scribes the analysis framework. Sec. 5 demonstrates the dif-
ferent features of the analysis by means of examples. In
Sec.6, we extend our cost model to consider the effect of
garbage collection. Sec. 7 reports on a prototype implemen-
tation and some experimental results. Finally, Sec. 8 con-
cludes and discusses the related work.

2. Worked Example
Consider the Java classes and their corresponding (struc-
tured) Java bytecode depicted in Fig. 1 which define a
linked-list data structure in an object-oriented style, as it
appears in [18]. The class Cons is used for data nodes and
the class Nil plays the role of null to indicate the end of a
list. Both classes define a copy function which is used to
clone the corresponding object. In the case of Nil the copy
method just returns this since it is the last element of the list,
and in the case of Cons it clones the current object and its
successors recursively (by calling the copy method of next).
The rest of this section describes the different steps applied

by the analyzer to approximate the heap consumption of the
program depicted in Fig. 1. Note that the Java program is
provided here just for clarity, the analyzer works directly on
the bytecode which is obtained, for example, by compiling
the Java program.

Step I: In the first step, the analyzer recovers the struc-
ture of the Java bytecode program by building a control
flow graph (CFG) for its methods. The CFG consists of ba-
sic blocks which contain a sequence of non-branching byte-
code instructions, these blocks are connected by edges that
describe the possible flows that originate from the branch-
ing instructions like conditional jumps, exceptions, virtual
method invocation, etc. In Fig. 1, the CFG of the method
Nil.copy consists of the single block BlockNil

0 and the CFG
of the method Cons.copy consists of the rest of the blocks.
BlockCons

0 corresponds to the bytecode of Cons.copy up to
the recursive method call this.next.copy(). Then, depending
on the type of the object stored in this.next the execution is
transferred to either Nil.copy or Cons.copy. This is expressed
by the (guarded) branching to BlockCons

1 and BlockCons
2 .

In both cases, the control returns to BlockCons
3 which corre-

sponds to the rest of the statements.

Step II: In the second step, the analyzer builds an interme-
diate representation for the CFG and uses it to infer infor-
mation about the changes in the sizes of the different data-
structures (or in the values of integer variables) when the
control passes from one part of the program (e.g., a block
or a method) to another part. For example, this step infers
that when Nil.copy or Cons.copy are called recursively, the
length of the list decreases by one. This information is es-
sential for defining the heap consumption of one part of the
program in terms of the heap consumption of other parts.

Step III: In the third step, the intermediate representation
and the size information are used together with the cost
model for heap consumption to generate a set of cost rela-
tions which describe the heap consumption behaviour of the
program. The following equations are the ones we get for the
example in Fig. 1:

Heap Space Cost Equations Size relations

CNil
copy(a) = 0 {a=1}

CCons
copy (a) = C0(a)

C0(a) = size(Cons) + CC0(a, b) {a≥1, b≥0, a=b+1}

CC0(a, b) =


C1(a, b)
C2(a, b)

b̂ ∈ Nil

b̂ ∈ Cons

C1(a, b) = CNil
copy(b) + C3(a) {a=1}

C2(a, b) = CCons
copy (b) + C3(a) {a≥2}

C3(a) = 0

Each of these equations corresponds to a method entry, block
or branching in the CFG. An equation is composed by the
left hand side which indicates the block or the method it
represents, and the right hand side which defines its heap
consumption behaviour. In addition, size relations might be
attached to describe how the data size changes when using
another equation.
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abstract class List {
abstract List copy();

}
class Nil extends List {

List copy() {
return this;

}
}
class Cons extends List {

int elem;
List next;
List copy(){

Cons aux = new Cons();
aux.elem = this.elem;
aux.next = this.next.copy();
return aux;

}
}

guard(instanceof(Nil))

3:  dup

8:  aload_1

9:  aload_0

16: aload_1

17: aload_0

resolve_virtual(List,copy)

1: areturn

Nil:copy

Block

Block

Block

Cons

Cons

Nil

0

0: aload_0

Cons:copy

0:  new Cons

Block
1

Cons

0

3

7:  astore_1

4:  invoke Cons.<init>

10: getfield Cons.elem

13: putfield Cons.elem

18: getfield Cons.next

21: invoke Nil.copy

24: putfield Cons.next

27: aload_1

28: areturn

guard(instanceof(Cons))

21: invoke Cons:copy

Cons

2
Block

Figure 1. Java source code and CFG bytecode of example

The equation CNil
copy(a) defines the heap consumption

of Nil.copy in terms of (the size of) its first argument a
which corresponds to its this reference variable (in Java byte-
code the this reference variable is the first argument of the
method). In this case the heap consumption is zero since
the method does not allocate any heap space. The equation
CCons

copy (a) defines the heap consumption of Cons.copy as the
heap consumption of BlockCons

0 using the corresponding
equation C0, which in turn defines the heap consumption as
the amount of heap units allocated by the new bytecode in-
structions, namely size(Cons), plus the heap consumption
of its successors which is defined by the equation CC0. All
other instructions in BlockCons

0 contribute zero to the heap
consumption. Note that in C0, the variable b corresponds to
this.next of Cons.copy and that the size analysis is able to
infer the relation a=b+1 (i.e., the list a is longer than b by
one). The equation CC0 corresponds to the heap consump-
tion of the branches at the end of BlockCons

0 , depending on
the type of b (denoted as b̂) it is equal to the heap consump-
tion of BlockCons

1 or BlockCons
2 which are respectively de-

fined by the equations C1 and C2. The equation C1 defines
the heap consumption of BlockCons

1 as the heap consump-
tion of Nil.copy (since it is called in BlockCons

1 ) plus the
heap consumption of BlockCons

3 (using the equation C3).
Similarly C2 defines the heap consumption of BlockCons

2 in
terms of the heap consumption of Cons.copy. The equation
C3 defines the heap consumption of BlockCons

3 to be zero
since it does not allocate any heap space.

Step IV: In the fourth step, we can simplify the equations
and try to obtain an upper bound in closed form for the
cost relation by applying the method described in [1]. In
particular, assuming that size(Cons) equals 8 (4 bytes for
the integer field data and 4 bytes for the reference field next),
we obtain the following simplified equations:

Equation Size relations
CNil

copy(a) = 0 {a=1}
CCons

copy (a) = 8 {a=2}
CCons

copy (a) = 8 + CCons
copy (b) {a≥3, b≥1, a=b+1}

and then obtain an upper bound in closed form CCons
copy (a) =

8 ∗ (a− 1).
The main focus of this paper is on the generation of heap

space cost relations, as illustrated in Step III. Steps I and II
are done as it is proposed in [2] and Step IV as it is described
in [1] and hence we will not give many details on how they
are performed in this paper.

3. The Java Bytecode Language
Java bytecode [20] is a low-level object-oriented program-
ming language with unstructured control and an operand
stack to hold intermediate computational results. Moreover,
objects are stored in dynamic memory: the heap. A Java
bytecode program consists of a set of class files, one for each
class or interface. A class file contains information about its
name c ∈ Class Name , the class it extends, the interfaces it
implements, and the fields and methods it defines. In partic-
ular, for each method, the class file contains: a method sig-
nature which consists of its name and its type; its bytecode
bcm = 〈pc0:b0, . . . , pcnm

:bnm〉, where each bi is a bytecode
instruction and pci is its address; and the method’s excep-
tions table. In this work we consider a subset of the JVM [20]
language which is able to handle operations on integers and
references, object creation and manipulation (by accessing
fields and calling methods), arrays of primitive and reference
types, and exceptions (either generated by abnormal execu-
tion or explicitly thrown by the program). For simplicity, we
omit static fields and initializers and primitive types different
from integers. Such features could be handled by making the
underlying abstract interpretation support them by assuming
the worst case approximation for them. Thus, our bytecode
instruction set (bcInst) is:

bcInst ::=
push x | istore v | astore v | iload v | aload v | iconst a
| iadd | isub | imul | idiv | if� pc | goto pc | ireturn | areturn
| return | new Class Name |
| newarray int | anewarray Class Name | iaload | aaload
| iastore | aastore | athrow | dup
| invokevirtual/invokespecial Class Name.Meth Sig
| getfield/putfield Class Name.Field Sig
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where � is a comparison operator (ne,le, icmpgt, etc.), v a
local variable, a an integer, pc an instruction address, and x
an integer or the special value null.

4. The Heap Space Analysis Framework
Cost analysis of a low-level object-oriented language such
as Java bytecode is complicated mainly due to its unstruc-
tured control flow (e.g., the use of goto statements rather
than recursive structures), its object-oriented features (e.g.,
virtual method invocation) and its stack-based model. The
recent work of [2] develops a generic framework for the au-
tomatic cost analysis of Java bytecode programs. Essentially,
the complications of dealing with a low-level language are
handled in this framework by abstracting the recursive struc-
ture of the program and by inferring size relations between
arguments. As we have seen in Sect. 2, this analysis frame-
work is based on transforming the Java bytecode program
to an intermediate representation which fits inside the same
setting all possible forms of loops. Then, using this inter-
mediate representation, the analysis infers information about
the change in the sizes of the relevant data structures as the
program goes through its loops (Steps I and II). Finally, this
information is used to set up a cost relation which defines the
cost of the program in terms of the sizes of the corresponding
data structures.

In this section, we present a novel application of this
generic cost analysis framework to infer bounds on the heap
space consumption of sequential Java bytecode programs.
So far, this framework has been only used in [3] to infer the
complexity of some classical algorithms while in this paper
our purpose is completely different: we aim at computing
bounds on the heap usage for programs written in object-
oriented programming style which make intensive use of
the heap. In Sect. 4.1 and Sect. 4.2, we briefly present the
notions of recursive representation and calls-to size-relation
in a rather informal style. Then, we introduce our cost model
for heap consumption and our notion of heap space cost
relation in Sect. 4.3.

4.1 Recursive Representation
Cost relations can be elegantly expressed as systems of re-
cursive equations. In order to automatically generate them,
we need to capture the iterative behaviour of the program
by means of recursion. One way of achieving this is by
computing the CFG of the program. Also, advanced fea-
tures like virtual invocation and exceptions are simply dealt
as additional nodes in the graph. To analyze the bytecode,
its CFG can be represented by using some auxiliary recur-
sive representation (see, e.g., [2]). In this approach, a byte-
code is transformed into a set of guarded rules of the form
〈head ← guard, body〉 where the guard states the applica-
bility conditions for the rule. Rules are obtained from blocks
in the CFG and guards indicate the conditions under which
each block is executed. As it is customary in determinis-

tic imperative languages, guards provide mutually exclusive
conditions because paths from a block are always exclusive
(i.e., alternative) choices.

DEFINITION 4.1 (rec. representation). Consider a block p
in a CFG, which contains a sequence of bytecode instruc-
tions B guarded by the condition Gb and whose successor
blocks are q1, · · · , qn. The recursive representation of p is:

p(l̄, s̄, r)← Gp, B, (q1(l̄, s̄′, r); · · · ; qn(l̄, s̄′, r))

where:

• l̄ is a tuple of variables which corresponds to the method’s
local variables,
• s̄ and s̄′ are tuples of variables which respectively cor-

respond to the active stack elements at the block’s entry
and exit,
• r is a single variable which corresponds to the method’s

return value (omitted if there is not return value),
• Gp and B are obtained from the block’s guard and byte-

code instructions by adding the local variables and stack
elements on which they operate as explicit arguments.

We denote by calls(B) the set of method invocation instruc-
tions within B and by bytecode(B) the other instructions. 2

The formal translation of bytecode instructions in B to calls
within the recursive rules is presented in [2]. In this transla-
tion, it is interesting to note that the stack positions are visi-
ble in the rules by explicitly defining them as local variables.
This intermediate representation is convenient for analysis as
in one pass we can eliminate almost all stack variables which
results in a more efficient analysis.

EXAMPLE 4.2. The rules that correspond to the blocks
BlockCons

0 , BlockCons
1 and BlockCons

2 in Fig. 1 are:

copyCons0 (this, aux, r)←
new(Cons, s0), dup(s0, s1), Cons.<init>(s1),
astore(s0, aux

′), aload(aux′, s′0), aload(this, s
′
1),

getfield(Cons.elem, s′1, s
′′
1 ),

putfield(Cons.elem, s′0, s
′′
1 ),

aload(aux′, s′′0 ), aload(this, s′′′1 ),
getfield(Cons.next, s′′′′1 ),
(copyCons1 (this, aux′, s′′0 , s′′′′1 , r) ;

copyCons2 (this, aux′, s′′0 , s′′′′1 , r)).

copyCons1 (this, aux, s0, s1, r)←
guard(instanceof(s1, Nil)),
Nil.copy(s1, s

′
1),

copyCons3 (this, aux, s0, s
′
1, r).

copyCons2 (this, aux, s0, s1, r)←
guard(instanceof(s1, Cons)),
Cons.copy(s1, s

′
1),

copyCons3 (this, aux, s0, s
′
1, r).

The rule copyCons0 is not guarded and has two continuation
blocks, while the other rules are guarded by the type of

108

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

160



the object of s1 (the top of the stack) and have only one
successor. The bytecode instructions were transformed to
include explicitly the stacks elements and the local variables
on which they operate, moreover, all variables are in single
static assignment form. Note that calls to methods take the
same form as calls to blocks, which makes all different forms
of loops to fit in the same setting. 2

4.2 Size Analysis
A size analysis is then performed on the recursive represen-
tation in order to infer the calls-to size-relations between the
variables in the head of the rule and the variables used in
the calls (to rules) which occur in the body for each program
rule. Derivation of constraints is a standard abstract inter-
pretation over a constraints domain such as Polyhedra [2, 3].
Such relations are essential for defining the cost of one block
in terms of the cost of its successors. The analysis is done
by abstracting the bytecode instructions into the linear con-
straints they impose on their arguments, and then computing
a fixpoint that collects calls-to relations.

DEFINITION 4.3 (calls-to size-relations). Consider the rule
in Def. 4.1, its calls-to size-relations are triples of the form

〈p(x̄), p′(z̄), ϕ〉 where p′(z̄) ∈ calls(B) ∪ q1(ȳ) ∪ . . . ∪ qn(ȳ)

The size-relation ϕ is given as a conjunction of linear con-
straints. The tuples of variables x̄, ȳ and z̄ correspond to the
variables of the corresponding block. 2

In Java bytecode, we consider three cases within size re-
lations: for integer variables, size-relations are constraints
on the possible values of variables; for reference variables,
they are constraints on the length of the longest reachable
paths [21], and for arrays they are constraints on the length of
the array. Note that using the path-length notion cyclic struc-
tures are not handled since to guarantee soundness the corre-
sponding references are abstracted to “unknown-length” and
therefore cost that depends on them cannot be inferred.

EXAMPLE 4.4. The calls-to-size relation for the first rule in
Ex. 4.2 is formed by the triples:

〈copyCons0 (this, aux), copyCons1 (this, aux′, s′′0 , s′′′′1 , r), ϕ〉
〈copyCons0 (this, aux), copyCons2 (this, aux′, s′′0 , s′′′′1 , r), ϕ〉

where ϕ includes, among others, the constraint this=s′′′′1 +1
which states that the list that this points to is longer
by one than the list that s′′′′1 points to (s′′′′1 corresponds
to this.next). The meaning of the above relations is ex-
plained in Section 2. Note that the call to the constructor
Cons.<init> is ignored for simplicity. 2

4.3 Heap Space Cost Relations
In order to define our heap space cost analysis, we start by
defining a cost model which defines the cost of memory
allocation instructions (e.g., new, newarray and anewarray)
as the the number of heap (memory) units they consume.
The remaining bytecode instructions do not add any cost.

DEFINITION 4.5 (cost model for heap space). We define a
cost model Mheap which takes a bytecode instruction bc
and returns a positive expression as follows:

Mheap(bc)=


size(Class) if bc=new(Class, )

SPrimType ∗ L if bc=newarray(PrimType,L, )

Sref ∗ L if bc=anewarray(Class,L, )

0 otherwise

where SPrimType and Sref denote, respectively, the heap con-
sumption of primitive types and references. Function size is
defined as follows:

size(O) =


X

F∈Class.field

size(type(F )) if O=Class

SPrimType if O is a primitive type
Sref if O is a reference type

where the type of a field in a Class (i.e., Class.field) can
be either primitive or reference. 2

In Java bytecode, types are classified into primitive (its
size is represented by SPrimType in our model) and reference
types (Sref). In a particular assessment, one has to set the
concrete values for SPrimType and Sref of the JVM imple-
mentation.

For each rule in the recursive representation of the pro-
gram and its corresponding size relation, the analysis gener-
ates the cost equations which define the heap consumption of
executing the block (or possibly a method call) by relying on
the above cost model. A heap space cost relation is defined
as the set of cost equations for each block of the bytecode
(or rule in the recursive representation).

DEFINITION 4.6 (heap space cost relation). Consider a rule
R of the form p(x̄)← Gp, B, (q1(ȳ); · · · ; qn(ȳ)) and let the
linear constraints ϕ be a conjunction of all call-to size-
relations within the rule. The heap space cost equations for
R are generated as follows:

Cp(x̄) =
X

b∈bytecode(B)

Mheap(b) +
X

r(z̄)∈calls(B)

+Cr(z) + Cp cont(ȳ) ϕ

Cp cont(ȳ) = Cq1(ȳ) Gq1

. . .
Cp cont(ȳ) = Cqn(ȳ) Gqn

where Gqi is the guard of qi. The heap space cost relation
associated to the recursive representation of a method is
defined as the set of cost equations for its blocks. 2

When the rule has multiple continuations, it is trans-
formed into several equations. We specify the cost of each
continuation in a separate equation because the guards for
determining the alternative path qi that the execution will
take (with i = 1, . . . , n) are only known at the end of the
execution of the bytecode B; thus, they cannot be evaluated
before B is executed. The guards appear also decorating the
equations. In the implementation, when a rule has only one
continuation, it gives rise to a single equation which contains
the size relation ϕ as an attachment.
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Java source code
abstract class Data{

abstract public Data copy();
}
class Polynomial extends Data{

private int deg;
private int[] coefs;
public Polynomial() {

coefs = new int[11];}
public Data copy() {

Polynomial aux = new Polynomial();
aux.deg = deg;
for (int i=0;i<=deg && i<=10;i++)

aux.coefs[i] = coefs[i];
return aux;}}

class Vector3D extends Data{
private int x;
private int y;
private int z;
public Vector3D(int x,int y,int z) {

this.x = x;
this.y = y;
this.z = z;}

public Data copy() {
return new Vector3D(x,y,z);
}
}

class Results{
Data[] rs;
public Results() {

rs = new Data[25];
}

public Results copy() {
Results aux = new Results();
for (int i = 0;i < 25;i++)

aux.rs[i] = rs[i].copy();
return aux;}}

Heap space cost equations
Equation Guard Size rels.

Ccopy(a) = Sref + 25∗Sref + C0(a, 0)
C0(a, i) = Sint + Sref| {z }

size(Polyn)

+11∗Sint + C0(a, j) 〈â.rs[i] ∈ Polyn〉 {i<25, j = i+1}

C0(a, i) = 3∗Sint| {z }
size(V ect3D)

+C0(a, j) 〈â.rs[i] ∈ V ect3D〉 {i<25, j = i+1}

C0(a, i) = 0 {i>=25}

Figure 2. Constant heap space example

EXAMPLE 4.7. The heap space cost equations generated
for the rule copyCons

0 of Ex. 4.2 and the size relation of
Ex. 4.4 are (see Sect. 2):

CCons
0 (this, aux)=size(Cons) + CCCons

0

(this, aux′, s′′0 , s′′′′1 ){this=s′′′′1 +1, . . .}

CCCons
0 (this, aux′, s′′0 , s′′′′1 ) =(

CCons
1 (this, aux′, s′′0 , s′′′′1 )

CCons
2 (this, aux′, s′′0 , s′′′′1 )

ŝ′′′′1 ∈ Nil

ŝ′′′′1 ∈ Cons

The cost of BlockCons
0 is captured by CCons

0 , among all
bytecode instructions in BlockCons

0 , we count only the
creation of the object of class Cons. The continuation of
BlockCons

0 is captured in the relation CCCons
0 , where de-

pending on the type of the object s′′′′1 , we choose between
two mutually exclusive equations CCons

1 or CCons
2 . 2

In addition, the analyzer performs a slicing step, which aims
at removing variables that do not affect the cost. And also
tries to simplify the equations as much as possible by ap-
plying unfolding steps. These steps lead to simpler cost re-
lations. Due to lack of space, during the rest of the paper
we will apply them without giving details on how they were
performed.

5. Example Applications of Heap Space
Analysis

In this section, we show the most salient features of our heap
space analysis by means of a series of examples. All exam-
ples are written in object-oriented style and make intensive
use of the heap. We intend to illustrate how our analysis
is able to deal with standard data-structures like lists, trees
and arrays with several dimensions as well as with multi-
ple inheritance, class fields, virtual invocation, etc. We show
examples which present heap usage which depends propor-
tionally to the data size, namely in some cases it depends on
class fields while in another one on the input arguments. An
interesting point is that heap consumption is, in the differ-
ent examples, constant, linear, polynomial or exponentially
proportional to the data sizes.

For each example, we show the Java source code and
its heap space cost relation. Each relation consists of three
parts: the equations, the guards and the size relations. The
applicability conditions of each equation are defined by the
guards and the size relations. Guards usually provide non-
numeric conditions while size relations provide conditions
on the sizes of the corresponding variables. In addition, size
relations describe how the data changes when the control
moves from one to another part of the program. Since our
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Java source code

abstract class List{
abstract public List copy();
}
class Nil extends List{

public List copy() {
return this;

}

class Cons extends List
private Data elem;
private List next;
public List copy() {

Cons aux = new Cons();
aux.elem = this.elem.copy();
aux.next = this.next.copy();
return aux;}

Heap space cost equations
Equation Guard Size rels.

Ccopy(a) =

size(Cons)z }| {
2∗Sref +

this.elem.copy()z }| {
Sint + Sref + 11∗Sint

fi
â.elem ∈ Polyn∧
â.next ∈ Nil

fl
{a = 2}

Ccopy(a) = 2∗Sref + Sint + Sref

+11∗Sint + Ccopy(b)

fi
â.elem ∈ Polyn∧
â.next ∈ Cons

fl 
a≥3, b≥2
a>b

ff
Ccopy(a) = 2∗Sref| {z }

size(Cons)

+ 3∗Sint| {z }
this.elem.copy()

fi
â.elem ∈ V ect3D∧
â.next ∈ Nil

fl
{a = 2}

Ccopy(a) = 2∗Sref + 3∗Sint + Ccopy(b)

fi
â.elem ∈ V ect3D∧
â.next ∈ Cons

fl 
a≥3, b≥2
a>b

ff

Figure 3. Generic list example

system only deals with integer primitive types, we use the
cost model presented in Sect. 4.3 with the constants Sint

and Sref to denote the basic sizes for integers and reference
types, respectively. Also note that we provide the Java source
code instead of the bytecode just for clarity and space limi-
tations. The analyzer works directly on the bytecode which
can be found in the appendix.

5.1 Constant Heap Space Usage
In the first example we consider a method with constant
heap space usage, i.e., its heap consumption does not de-
pend on any input argument. Fig. 2 shows both the source
code and the heap space cost equations generated by the
analyzer. The program implements a data hierarchy which
will be used throughout the section. It consists of an abstract
class, Data and two subclasses, Polynomial and Vector3D.
The class Polynomial defines a polynomial expression of de-
gree up to 10 with integer coefficients, the coefficients are
stored in the array field coefs and the degree in the integer
field deg. Its copy method returns a deep copy of the corre-
sponding polynomial by creating a new array of 11 integers
and copying the first deg+1 original coefficients. The class
Vector3D represents an integer vector with 3 dimensions.
The class Results stores 25 objects of type Data, which in
execution time will be Polynomial or Vector3D objects. Its
copy method produces a deep copy of the whole structure
where each of the 25 elements is copied by its correspond-
ing copy method (hence dynamically resolved).

The cost equations generated by the analyzer for the
method Results.copy are shown in Fig. 2 (at the bottom left).
The first equation Ccopy(a) defines the heap consumption
of the method in terms of its first argument a which corre-

sponds to the abstraction of its this reference variable (i.e.,
its size). It counts the heap space allocated for the creation of
an object of type Results, namely Sref ; the space allocated
by its constructor, namely 25∗Sref ; and the space allocated
when executing the loop. The heap space allocated by the
loop is captured by C0 and it depends on the type of the
object at the current position of the array (which is spec-
ified in the guards by checking the class of â.rs[i]) such
that the call to its corresponding copy method contributes
Sint + Sref+11∗Sint if it is an instance of Polynomial and
3∗Sint if it is an instance of Vector3D.

As already mentioned, a further issue is how to automat-
ically infer closed form solutions (i.e., without recurrences)
from the generated cost relations. In our examples, we can
directly apply the method of [1] to compute an upper bound
in closed form. However, we will not go into details of this
process as it is not a concern of this paper and we will sim-
ply show the asymptotic complexity that can be directly ob-
tained from such upper bounds. We can observe from the
equations that the asymptotic complexity is O(1), as equa-
tion Ccopy is a constant plus C0, and C0 is called a constant
number of times (in this case 25 times). By assuming that
Sint = 4 and Sref = 4, we can obtain the following upper
bound Ccopy = 4 + 25 ∗ 4 + 25 ∗ 52 = 1404.

5.2 Bounds Proportional to the Input Data Size
For the second example, we consider a generic data structure
of type List. Both the source code and the heap space cost
equations obtained by our analyzer are depicted in Fig. 3.
The list is implemented taking advantage of the polymor-
phism as in the style of the example in Sect. 1, but in this
case the elements of the list are objects extending from Data
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Java source code
class Score{

private int gt1, gt2;
public Score() {

gt1 = 0;
gt2 = 0;
}

class Scoreboard{
private Score[][][] scores;

public Scoreboard(int a,int b) {
scores = new Score[a][][];
for (int i = 1;i <= a;i++) {

scores[i-1] = new Score[i][];
for (int j = 0;j < (i-1);j++) {

scores[i-1][j] = new Score[b];
for (int k = 0;k < b;k++)

scores[i-1][j][k] = new Score();}}}}
Heap space cost equations

Equation Guard Size rels.

C<init>(a, b) = a∗Sref + C1(a, b, 1)
C1(a, b, i) = i∗Sref + C2(b, i, 0) + C1(a, b, d) {i≤a, d = i+1}
C1(a, b, i) = 0 {i > a}
C2(b, i, j) = b∗Sref + C3(b, 0) + C2(b, i, d) {j <(i−1), d = j+1}
C2(b, i, j) = 0 {j ≥ (i−1)}
C3(b, k) = 2∗Sint + C3(b, c) {k<b, c = k+1}
C3(b, k) = 0 {k ≥ b}

Figure 4. Multi-dimensional arrays example

(see the classes in Fig. 2) rather than integer primitive types.
The List.copy method returns a deep copy of the list which,
in addition to copying the whole list structure, it copies each
element by using the corresponding Data.copy method (re-
solved at execution time).

At the bottom of Fig. 3, we show the heap space cost
equations our analyzer generates for the method List.copy
of class Cons. The equation Ccopy(a) defines the heap con-
sumption of the whole method in terms of its first argument a
which represents the size of its this reference variable. There
are four equations for Ccopy , two of them (the second and
the fourth one) are recursive and correspond to the case in
which the rest of the list is not empty, i.e., â.next ∈ Cons.
Note that, in such recursive equations, the size analysis is
able to infer the constraint a > b, thus ensuring that re-
cursive calls are made with a strictly decreasing value. The
other two equations are constant and correspond to the base
case (i.e. the rest of the list is empty). This is abstracted in
the size relations with the constraint a = 2. Note that the
heap usage depends on whether we invoke the copy method
of a Polynomial or a Vector3D object. By considering the
worst cases for all equations, we can infer the upper bound
Ccopy(a)≤(5∗Sref +15∗Sint)∗a ≡ O(a) which describes
a heap consumption linear in a, the size of the list.

5.3 Multi-Dimensional Arrays
Let us consider the example in Fig. 4. The class Scoreboard
is instrumental to show how our heap space analysis deals
with complex multi-dimensional array creation. The class
has a 3-dimensional array field. The constructor takes two
integers a and b and creates an array such that: the first
dimension is a; the second dimension ranges from 1 to a;
and the third dimension is b. Each array entry scores[i][j][k]
stores an object of type Score.

At the bottom of Fig. 4 we can see the heap space cost
equations generated by the analyzer for the constructor of
class Scoreboard. The equation C<init>(a, b) represents the
heap space consumption of the constructor where a and b
correspond to the size of its input parameters. It counts the
heap consumed by constructing the first array dimension,
a∗Sref , plus the heap consumption when executing the out-
ermost loop which is represented by the call C1(a, b, 1). The
heap consumption modeled by C1 includes the amount of
heap allocated for the second array dimension in each itera-
tion, i∗Sref , and the consumption of executing the middle
loop which is represented by the call C2(b, i, 0). Note that
size analysis infers that within C1, the value of i increases
by 1 at each iteration (d=i+1) until it converges to a (i≤a).
The equation C2 defines the heap consumption of the mid-
dle loop, which includes the heap allocated for the third ar-
ray dimension, b∗Sref , plus the consumption of executing
the innermost loop which is represented by the call C3(b, 0).
Finally, C3 models the heap space required for creating
b−k Score objects by the innermost loop. In this case, we
can infer the upper bound C<init>(a, b) ≤ (((2∗Sint∗b) +
b∗Sref )∗a + a∗Sref )∗a + a∗Sref ≡ O(b∗a2).

5.4 Complex Data Structures
For the last example, let us consider a more complex tree-
like data structure which is depicted in Fig. 5. The class
MultiBST implements a binary search tree data structure
where each node has an object of type List (from Fig. 3) and
two successors of type MultiBST which correspond to the
right and left branches of the tree. The constructor method
creates an empty tree whose data field is initialized to an
empty list, i.e., an instance of class Nil. The copy method
performs a deep copy of the whole tree by relying on the
copy method of class List.
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Java source code
class BST {

private List data;
private MultiBST lc;
private MultiBST rc;
public MultiBST() {

data = new Nil();
lc = null; rc = null; }

public MultiBST copy() {
MultiBST aux = new MultiBST();
aux.data = data.copy();
if (l==null) aux.lc=null; else aux.lc=lc.copy();
if (r==null) aux.rc=null; else aux.rc=rc.copy();
return aux;}}

Heap space cost equations
Equation Guard Size rels.

C(a) = 3∗Sref + D(d) 〈â.lc = null, â.rc = null〉 {a>0, a>d}
C(a) = 3∗Sref + D(d) + C(l) 〈â.lc 6= null, â.rc = null〉 {a>0, a>d, a>l}
C(a) = 3∗Sref + D(d) + C(r) 〈â.lc = null, â.rc 6= null〉 {a>0, a>d, a>r}
C(a) = 3∗Sref + D(d) + C(l) + C(r) 〈â.lc 6= null, â.rc 6= null〉 {a>0, a>d, a>l, a>r}

Figure 5. Multi binary search tree example

The heap space cost equations generated by the analyzer
for the method MultiBST.copy are depicted in Fig. 5 (at the
bottom). The equations defining C(a) represent the heap
space usage of the whole method in terms of the parameter
a, which corresponds to the maximal path-length in the tree.
There are four cases which correspond to the different pos-
sible values for the left and right branches (equal or different
from null). Consider for example the last equation: 3 ∗ Sref

is the heap allocated by the new instruction; D(d) is the
heap consumption for copying an object of type List which
corresponds to Ccopy from Fig. 3; C(l) and C(r) corre-
spond to the heap consumption of copying the left and right
branches respectively. From the cost relation, we infer the
upper bound C(a)≤(3∗Sref+D(a))∗2a where D(a) corre-
sponds to the cost of copying the data field (see Sec. 5.2).

6. Active Heap Space with Garbage
Collection

One of the safety principles in the Java language is ensured
by the use of a garbage collector which avoids errors by the
programmer related to deallocation of objects from the heap.
The aim of this section is to furnish the heap usage cost
relations with safe annotations which mark the heap space
that will be deallocated by the garbage collector upon exit
from the corresponding method. The annotations are then
used to infer heap space upper bounds for methods upon exit.

In order to generate such annotations, we rely on the use
of escape analysis (see, e.g., [8, 15]). Essentially, we as-
sume that the heap allocation instructions new, newarray
and anewarray have been respectively transformed by new
instructions new gc, newarray gc and anewarray gc as
long as it is guaranteed that the lifetime of the correspond-
ing allocated heap space does not exceed the instruction’s
static scope. In this case, the heap space can be safely deal-
located upon exit from the corresponding method. This pre-
processing transformation can be done in a straightforward
way by using the information inferred by escape analysis. In

the following, we refer by transformed bytecode instructions
to the above transformation performed on the heap alloca-
tion instructions. Also, we use gc(H) to denote that the heap
space H will safely be garbage collected upon exit from the
corresponding method (according to escape analysis) and
ngc(H) to denote that it might not be garbage collected.

DEFINITION 6.1. We define a cost model for heap space
with garbage collection which takes a transformed bytecode
instruction bc and returns a positive symbolic expression as:

Mgc
heap(bc)=



ngc(size(Class)) if bc=new(Class, )
gc(size(Class)) if bc=new gc(Class, )

ngc(SPrimType ∗ L) if bc=newarray(PrimType,L, )
gc(SPrimType ∗ L) if bc=newarray gc(PrimType,L, )

ngc(Sref ∗ L) if bc=anewarray(Class,L, )
gc(Sref ∗ L) if bc=anewarray gc(Class,L, )

0 otherwise

where SPrimType, Sref and size() are as in Def. 4.5. 2

The above cost model returns a symbolic positive expres-
sion which contains the annotations gc and ngc as described
above. Therefore, when generating the heap space cost rela-
tions as described in Def. 4.6 w.r.t.Mgc

heap, the cost relations
will be of the following form:

C(x̄) = gc(Hgc) + ngc(Hngc) +
∑

Cr(z) ϕ

where we assume that all symbolic expressions wrapped
by gc (resp. by ngc) are grouped together within each cost
equation and denote the total heap space Hgc that will be
garbage collected (resp. Hngc which might not be) after the
application of such equation.

EXAMPLE 6.2. Suppose we add the following methods
abstract List map(Func o); // List
List map(Func o) { return this; } // Nil
List map(Func o) { // Cons

List tail = this.next.map(o);
Cons head = new Cons();
head.next = tail;
head.elem = o.f(new Integer(this.elem));
return head;

}
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respectively to the classes List, Nil and Cons which are
depicted in Fig. 1. The method map clones the corresponding
list structure, but the value of the field elem in the clone is
the result of applying the method o.f on the corresponding
value in the cloned list. Note that the method o.f, takes as
input an object of type Integer, therefore this.elem (which
is of type int) is first converted to Integer by creating a
temporary corresponding Integer object. For simplicity, we
do not give a specific definition for Func, but we assume that
its method f (which is called using o.f) does not allocate
any heap space and that it returns a value of type int. Using
escape analysis, the creation of the temporary Integer object
can be annotated as local to map, therefore we replace the
corresponding new instruction by new gc. Assuming that the
size of an Integer object is 4 bytes, and using the cost model
of Def. 6.1, we obtain the following cost equations:

Equation Size relations
CNil

map(a) =0 {a=1}
CCons

map (a)=gc(4)+ngc(8) {a=2}
CCons

map (a)=gc(4)+ngc(8)+CCons
map (b){a≥3, b≥1, a=b+1}

The symbolic expression gc(4) in the above equations corre-
sponds to the heap space allocated for the temporary Integer
object which can be garbage collected upon exit from map,
and ngc(8) corresponds to the heap space allocated for the
Cons object. As before, a corresponds to the size of the this
reference variable (i.e., the list length) and b to this.next. 2

Using the refined cost relations we can infer different
information about the heap space usage depending on the
interpretation given to the gc and ngc annotations. Let us
first consider the following definitions:

∀ H , gc(H) = 0 and ngc(H) = H (1)

where we do not count the heap space that will be deal-
located upon exit from the corresponding method. By ap-
plying Eq. (1) to a cost relation Cm of a method m, we
can infer an upper bound Ugc

m of the active heap space
upon the exit from m, i.e., the heap space consumed by m
which might not be deallocated upon exit. In this setting,
for the cost relations of Ex. 6.2 we infer the closed form
Ugc

map ≡ CCons
map (a) = 8 ∗ (a − 1). It is important to note

that, in general, such upper bound does not ensure that the
heap space required for executing m does not exceed Ugc

m ,
i.e., it is not an upper bound of the heap usage during the
execution of m but rather only after its execution. Actually,
in this simple example, we can observe already that during
the execution of the method map, if all objects are heap al-
located, we need more than 8 ∗ (a − 1) heap units (as the
objects of type Integer will be heap allocated and they are
not accounted in the upper bound). However, one of the ap-
plications of escape analysis is to determine which objects
can be stack allocated instead of heap allocated in order to
avoid invoking the garbage collector which is time consum-
ing [8]. For instance, in the above example, the objects of

type Integer can be safely stack allocated. When this stack
allocation optimization is performed, then Ugc

m is indeed an
upper bound for the heap space required to execute m.

In order to infer upper bounds for the heap space required
during the execution of m, we define gc and ngc as follows:

∀ H , gc(H) = H and ngc(H) = H (2)

In this case, we obtain the same cost relations as in Def. 4.6
which correspond to the worst case heap usage in which we
do not discount any deallocation by the garbage collector.
In this setting, for the cost relation of Ex. 6.2 we infer the
closed form Umap(a) ≡ CCons

map (a) = 12 ∗ (a− 1).
Analysis for finding upper bounds on the memory high-

watermark cannot be directly done using cost relations as
introducing decrements in the equations requires computing
lower bounds. As a further issue, the active heap space
upper bound, Ugc

m , can be used to improve the accuracy of
the upper bound on the heap space required for executing
a sequence of method calls. For example, an upper bound
of the heap space required for executing a method m1 and
upon its return immediately executing a method m2 can be
approximated by max(Um1 , U

gc
m1

+ Um2) which is more
precise than taking Um1 + Um2 as it takes into account
that after executing m1 we can apply garbage collection and
only then executing m2. This idea is the basis for a post-
processing that could be done on the program in order to
obtain more accurate upper bounds on the heap usage at a
program point level. This is a subject of ongoing research.

7. Experiments
In order to assess the practicality of our heap space analy-
sis, we have implemented a prototype inter-procedural an-
alyzer in Ciao [10] as an extension of the one in [3]. We
still have not incorporated an escape analysis in our imple-
mentation and hence the upper bounds inferred correspond
to those generated using Eq. (2) of Sect. 6. The experiments
have been performed on an Intel P4 Xeon 2 GHz with 4 GB
of RAM, running GNU Linux FC-2, 2.6.9. Table 1 shows
the run-times of the different phases of the heap space anal-
ysis process. The name of the main class to be analyzed is
given in the first column, Benchmark, and its size (the sum
of all its class file sizes) in KBytes is given in the second
column, Size. Columns 3-6 shows the runtime of the differ-
ent phases in milliseconds, they are computed as the arith-
metic mean of five runs: RR is the time for obtaining the
recursive representation (building CFG, eliminating stack el-
ements, etc., as outlined in Sec. 4.1); Size An. is the time for
the abstract-interpretation based size analysis for computing
size relations; Cost is the time taken for building the heap
space cost relations for the different blocks and representing
them in a simplified form; and Total shows the total times
of the whole analysis process. In the last column, Complex-
ity, we depict the asymptotic complexity of the (worst-case)
heap space cost obtained from the cost relations.
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Benchmark Size RR Size An. Cost Total Complexity
ListInt 0.86 24 53 7 83 O(n) n ≡ list length
Results 1.31 83 275 15 374 O(1) –
BSTInt 0.48 37 113 5 156 O(2n) n ≡ tree depth
List 1.79 71 207 16 293 O(n) n ≡ list length
Queue 1.93 219 570 24 813 O(n) n ≡ queue length
Stack 1.38 89 643 17 749 O(n) n ≡ stack length
BST 1.43 97 238 14 349 O(2n) n ≡ tree depth
Scoreboard 0.65 280 1539 12 1830 O(a2∗b) {a, b} ≡ input args.
MultiBST 2.35 166 510 34 709 O(n∗2n) n ≡ tree depth

Table 1. Measured time (in ms) of the different phases of cost analysis

Regarding the benchmarks we have used, on one hand,
we have benchmarks implementing some classic data struc-
tures using an object-oriented programming style, which
expose the analyzer’s ability in handling such classical data
structures as well as sophisticated object-oriented program-
ming features. In particular, ListInt, List, Queue, Stack,
BSTInt, BST and MultiBST implement respectively integer
and generic lists, generic queues, generic stacks, integer and
generic binary search trees which allow data repetitions.
On the other hand, we have some benchmarks which expose
more particular issues of heap space analysis, such as Results
which has constant heap space usage and Scoreboard which
presents a multidimensional arrays creation. For all bench-
marks, we have analyzed the corresponding copy method
which performs a deep copy of the corresponding structure.

We can observe in the table that computing size relations
is the most expensive step as it requires a global analysis of
the program, whereas RR and Cost basically involve a single
pass on the code. Our prototype implementation supports the
full instructions set of sequential Java bytecode, however, it
is still preliminary, and there is plenty of room for optimiza-
tion, mainly in the size analysis phase, which in addition as-
sumes the absence of cyclic data structures, which can be
verified using the non-cyclicity analysis [23].

8. Conclusions and Related Work
We have presented an automatic analysis of heap usage for
Java bytecode, based on generating at compile-time cost re-
lations which define the heap space consumption of an in-
put bytecode program. By means of a series of examples
which allocate lists, trees, trees of lists, arrays, etc. in the
heap, we have shown that our analysis is able to infer non-
trivial bounds for them (including polynomial and exponen-
tial complexities). We believe that the experiments we have
presented show that our analysis improves the state of the
practice in heap space analysis of Java bytecode.

Related work in heap space analysis includes advanced
techniques developed in functional programming, mainly
based on type systems with resource annotations (see,
e.g., [24, 17, 25, 19]) and, hence, they are quite different
technically to ours. But heap space analysis is compara-

tively less developed for low-level languages such as Java
bytecode. A notable exception is the work in [11], where
a memory consumption analysis is presented. In contrast
to ours, their aim is to verify that the program executes in
bounded memory by simply checking that the program does
not create new objects inside loops, but they do not infer
bounds as our analysis does. Moreover, it is straightforward
to check that new objects are not created inside loops from
our cost relations. Another related work includes research
in the MRG project [5, 7], which focuses on building a
proof-carrying code [22] architecture for ensuring that byte-
code programs are free from run-time violations of resource
bounds. The analysis is developed for a functional language
which then compiles to a (subset of) Java bytecode and it
is restricted to linear bounds. In [6] the Bytecode Specifica-
tion Language is used to annotate Java bytecode programs
with memory consumption behaviour and policies, and then
verification tools are used to verify those policies.

For Java-like languages, the work of [18] presents a type
system for heap analysis without garbage collection, it is
developed at the level of the source code and based on
amortised analysis (hence it is technically quite different to
our work) and, unlike us, they do not present an inference
method for heap consumption. On the other hand, the work
of [9] deals also with Java source code, it is able to infer
polynomial complexity though it does not handle recursion.

Some works consider explicit deallocation of objects by
decreasing the cost by the size of the deallocated object (see,
e.g., [18, 17]). This approach is interesting when one wants
to observe the heap consumption at certain program points.
However, it cannot be directly incorporated in our cost re-
lations because they are intended to provide a global upper
bound of a method’s execution. Naturally, it should happen
that allocated objects are correctly deallocated and hence our
cost relations would provide zero as (global) upper bound.
Other work which considers cost with garbage collection
is [24]. Unlike ours, it is developed for pure functional pro-
grams where the garbage collection behaviour is easier to
predict as programs do not have assignments.

In the future, we want to extend our work in several direc-
tions. On the practical side, we want to incorporate an escape
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analysis to transform the bytecode as outlined in Sect. 6. Re-
garding scalability, it is a question of performance vs. preci-
sion trade-off and depends much on the underlying abstract
domain used by the size analysis. We believe our analysis
would scale without sacrificing precision if an efficient do-
main like octagons is used together with [1]. On the theoret-
ical side, we plan to adapt our analysis to infer upper bounds
on the heap usage at given program points in the presence of
garbage collection. We also would like to develop an analy-
sis which infers upper bounds on the call stack usage.
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Abstract. A reference variable x is constant in a piece of code C if the
execution of C does not modify the heap structure reachable from x.
This information lets us infer purity of method arguments, an important
ingredient during the analysis of programs dealing with dynamically al-
located data structures. We define here an abstract domain expressing
constancy as an abstract interpretation of concrete denotations. Then
we define the induced abstract denotational semantics for Java-like pro-
grams and show how constancy information improves the precision of
existing static analyses such as sharing, cyclicity and path-length.

1 Introduction

A major difference between pure functional/logic programming and imperative
programming is that the latter uses destructive updates. That is, data structures
are mutable: they are built and later modified. This can be both recognized as
a superiority of imperative programming, since it allows one to write faster and
simpler code, and as a drawback, since if two variables share a data structure
then a destructive update to the data reachable from one variable may affect the
data reachable from the other. This often leads to subtle programming bugs.

It is hence important to control what a method invocation modifies. Some
methods do not modify the data structures reachable from their parameters.
Others only modify those reachable from some but not all parameters. Namely,
some parameters are constant or read-only, others may be modified. If all pa-
rameters of a method are constant, the method is pure [10]. Knowledge about
purity is important since pure methods can be invoked in any order, which lets
compilers apply aggressive optimizations; pure methods can be used in program
assertions [7]; they can be skipped during many static analyses or more precisely
approximated than other methods. This results in more efficient and more pre-
cise analyses. For instance, sharing analysis [11] can safely assume that sharing
is not introduced during the execution of a pure method. In general, all static
analyses tracking properties of the heap benefit from information about purity.

For these reasons, software specification has found ways of expressing purity
of methods and constant parameters. The notable example is the Java Modeling
Language [7], which uses the assignable clause to specify those heap positions
that might be mutated during the execution of a method. Those clauses are
manually provided and used by many static analyzers, such as ESC/Java [6]
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and ChAsE [4]. However, those tools do not verify the correctness of the user-
provided assignable clauses, or use potentially incorrect verification techniques.
A formally correct verification technique is defined in [14], but has never been
implemented. In [10] a formally correct analysis for purity is presented, it is
based on a preliminary points-to and escape analysis, and an implementation
exists and has been applied to some small size examples. In [8] a correct and
precise algorithm for statically inferring the reference immutability qualifiers of
the Javari language has been presented. The algorithm has been implemented
in the Javarifier tool.

In this paper, we investigate an alternative technique aiming at determining
which parameters of a method are constant. We use abstract interpretation [5]
and perform a static analysis over the reduced product of the sharing domain
in [11] (the sharing component) and a new abstract domain expressing the set
of variables bound to data structures mutated during the execution of a piece
of code (the purity component). The use of reduced product is justified since
the sharing component helps the purity component during a destructive update,
by identifying which variables share the updated data structure and hence lose
their purity; conversely, the sharing component uses the purity component during
method calls, since only variables sharing with non-pure parameters of a method
m can be made to share during the execution of m.

Our technique is sometimes less precise than [10], since it does not use the
field names (i.e., we do not keep information on which field has been updated,
but rather that a field has been updated). However, it is implemented in a com-
pletely flow-sensitive and context-sensitive fashion, which improves its precision.
Moreover, it is expressed in terms of Boolean formulas implemented through bi-
nary decision diagrams, resulting in fast analyses scaling to quite big programs.
Our contributions are hence: (1) a definition of the reduced product of sharing
and purity; (2) its application to large programs; (3) a comparison of the preci-
sion of sharing analysis alone with that of sharing analysis in reduced product
with purity; and (4) an evaluation of the extra precision induced by the pu-
rity information during static analyses tracking properties of the heap, namely,
possible cyclicity of data structures [9] and path-length of data structures [13].

The paper is organized as follows: Section 2 defines the syntax and semantics
of a simple Object-Oriented language; Section 3 develops our constancy analysis
for that language; Section 4 provides an experimental evaluation.

2 Our Simple Object-Oriented Language

This section presents syntax and denotational semantics of a simple Object-
Oriented language that we use through the paper. Its commands are normalized
versions of corresponding Java commands: the language supports reference and
integer types; in method calls, only syntactically distinct variables can be actual
parameters, which is a form of normalization and does not prevent them from
being bound to shared data-structures at run-time; in assignments, the left hand
side is either a variable or the field of a variable; Boolean conditions are kept
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generic, they are conditions that are evaluated to either true or false; iterative
constructs, such as the while loop, are not supported since they can be imple-
mented through recursion. These assumptions are only for the sake of clear and
simple presentation and can be relaxed without affecting subsequent results. A
program has a set of variables V (including out and this) and a finite poset of
classes K. The commands of the language are

com ::= v := c | v := w | v := new κ | v := w + z | v := w.f | v.f := w |
v := v0.m(v1, . . . , vn) | if e then com1 else com2 | com1 ;com2

v, w, z, v0, v1, . . . , vn ∈ V are distinct variables, c ∈ Z ∪ {null}, κ ∈ K and e
is a Boolean expression. The signature of a method κ.m(t1, . . . , tp):t refers to a
method called m expecting p parameters of type t1, . . . , tp ∈ K ∪ {int}, respec-
tively, returning a value of type t and defined in class κ with a statement

t m(w1:t1, . . . , wn:tn) with {wn+1:tn+1, . . . , wn+m:tn+m} is com,

where w1, . . . , wn, wn+1, . . . , wn+m ∈ V are distinct, not in {out , this} and have
type t1, . . . , tn, tn+1, . . . , tn+m ∈ K∪{int}, respectively. Variables w1, . . . , wn are
the formal parameters of the method and wn+1, . . . , wn+m are its local variables.
The method also uses a variable out of type t to store its return value. For
a given method signature m = κ.m(t1, . . . , tp) : t, we define mb = com, mi =
{this, w1, . . . , wn}, mo = {out}, ml = {wn+1, . . . , wn+m} and ms = mi∪mo∪ml.
Classes might declare fields of type t ∈ K ∪ {int}.

We use a denotational semantics, hence compositional, in the style of [15].
However, we use a more complex notion of state, which assumes an infinite set of
locations. Basically, a state is a pair which consists of a frame and a heap, where
a frame maps variables to values and a heap maps locations to objects. Note
that since we assume a denotational semantics, a state has a single frame, rather
than an activation stack of frames as it is required in operational semantics.
We let L denote an infinite set of locations, and let V denotes the set of values
Z∪L∪ {null}. A frame over a finite set of variables V is a mapping that maps
each variable in V into a value from V; a heap is a partial map from L into
objects. An object is a pair that consists of its class tag κ and a frame that maps
its fields (identifiers) into values from V; we say that it belongs to class κ or has
class κ. Given a class κ, we assume that newobj(κ) return a new object where
its fields are initialized to 0 or depending on their types. If φ is a frame and
v ∈ V , then φ(v) is the value of variable v. If µ is a heap and ` ∈ L, then µ(`)
is the object bound in µ to `. If o is an object, then o.tag denotes its class and
o.φ denotes its frame; if f is a field of o, then sometimes we use o.f to refer to
(or set) its value instead of going through its frame.

Definition 1 (computional state). Let V denotes the set of variables in scope
at a given program point p. The set of possible states at p is

ΣV =

〈φ, µ〉
∣∣∣∣∣∣
1. φ is a frame over V and µ is a heap
2. rng(φ) ∩ L ⊆ dom(µ)
3. ∀` ∈ dom(µ). rng(µ(`).φ) ∩ L ⊆ dom(µ)
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Conditions 2 and 3 guarantee the absence of dangling pointers. Given σ =
〈φ, µ〉 ∈ ΣV , we use φσ and µσ to refer to its frame and heap respectively. ut

Now we define the notion of Denotations which are the input/output semantics
of a piece of code. Basically they are mappings from states to states which
describe how the input state is changed when the corresponding code is executed.
Interpretations are a special case of denotations which provide a denotation for
each method in terms of its input and output variables.

Definition 2. A denotation δ from V to V ′ is a partial function from ΣV to
ΣV ′ . We often refer to δ(σ) = σ′ as (σ, σ′) ∈ δ. The set of denotations from V
to V ′ is ∆(V ,V ′). An interpretation ι maps methods to denotations and is such
that ι(m) ∈ ∆(mi,mi ∪mo) for each method m = κ.m(t1, . . . , tp) : t in the given
program. The set of all possible interpretations is written as I. ut

The denotational semantics associates a denotation to each command of the
language. Let V denotes a set of variables. Let ι ∈ I. We define the denotation
for commands CιV J K : com 7→ ∆(V ,V ), as their input/output behaviour:

CιV Jv:=cK= {(σ, σ[φσ(v) 7→ c]) | σ ∈ ΣV }
CιV Jv:=wK= {(σ, σ[φσ(v) 7→ φσ(w)]) | σ ∈ ΣV }

CιV Jv:=new κK= {(σ, σ[µσ(`) 7→ newobj(κ)]) | σ ∈ ΣV , ` 6∈ dom(µσ)}
CιV Jv:=w + zK= {(σ, σ[φσ(v) 7→ φσ(w) + φσ(z)]) | σ ∈ ΣV }
CιV Jv:=w.fK= {(σ, σ[φσ(v) 7→ µσφσ(w).f ]) | σ ∈ ΣV , φσ(w) 6= null}
CιV Jv.f :=wK= {(σ, σ[µσφσ(v).f 7→ φσ(w)]) | σ ∈ ΣV , φσ(v) 6= null}

CιV
s
if e then com1

else com2

{
=
{(σ, σ′) ∈ CιV Jcom1K | σ |= e ≈ true}∪
{(σ, σ′) ∈ CιV Jcom2K | σ |= e ≈ false}

CιV Jcom1; com2K= {(σ, σ′′) | (σ, σ′) ∈ CιV Jcom1K ∧ (σ′, σ′′) ∈ CιV Jcom2K}

The denotation for a method call CιV Jv:=v0.m(v1, . . . , vp)K should consider the
denotation ι(m) (where m is the called method) and extend it to fit in the calling
scope and update the variable v. Assume the method signature is m(t1, . . . , tp):t,
and that we have a lookup procedure L that, for any given σ ∈ ΣV , fetches the
actual method that is called depending on the run-time class of v0. Then the
method call denotation is defined as follows:(σ, 〈φσ[v 7→ φ′′σ(out)], µ′′σ〉)

∥∥∥∥∥∥∥∥
1. σ ∈ ΣV , φσ(v0) ∈ dom(µσ);
2. m = L(v0, σ, m(t1, . . . , tp):t);
3. (σ′, σ′′) ∈ ι(m);
4. µσ ≡ µ′σ,∀0≤i≤p. φσ(vi) = φ′σ(wi)


The concrete denotational semantics of a program is the least fixpoint of the
following transformer of interpretations [3].

Definition 3 (Denotational semantics). The denotational semantics of a
program P is defined as

⋃
i≥0

T iP (ι0) , i.e. the least fixed point of TP where TP is:
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TP (ι) =

(m,X)

∥∥∥∥∥∥
1. m ∈ P
2. σ ∈ Σms ,∀v ∈ ml. φσ(v) = 0 or φσ(v) = null
3. X = {(σ|mi , σ′|mi∪mo) | (σ, σ′) ∈ Cιms

q
mb

y
}


and ι0 = {(m, ∅) | m ∈ P} and ∀ι1, ι2 ∈ I the union ι1 ∪ ι2 is defined as
{(m,X1 ∪X2) | m ∈ P, (m,X1) ∈ ι1, (m,X2) ∈ ι2} ut

3 Constancy Analysis

We want to design an analysis to infer definite information about constant data
structures. This can be done by tracking data structures that are not modified
(definite information), or by tracking data structures that might be modified
(may information). We follow the latter approach as we believe it easier. In
addition, we want to analyze methods in a context independent way, and later
adapt the result to any calling context.

Example 1. Consider the following method:

A m(x:A, y:A) with {} is y:=y.next; x.next:=y; out:=y;

The only command that might modify the heap structure is “x.next:=y”. Note
that “y:=y.next” does not affect the heap structure but rather changes the
heap location stored in y. This method might be called in different contexts
where the actual parameters: (1) do not have any common data structure; or
(2) have a common data structure. In the first case, “x.next:=y” might modify
only the data structure pointed by the first argument. In the second case, it
might modify a common data structure for x and y, and therefore we say that
both arguments might be modified. We describe this behaviour by the Boolean
formula x̌ ∧ (y̌ ↔ x̌·y), which is interpreted as: (1) in any calling context, the
data structure the first argument points to when the method is called might be
modified by the method (expressed by x̌); and (2) the data structure that the
second argument points to when the method is called, might be modified by
the method (expressed by y̌) iff x and y might share a data structure when the
method is called (expressed by x̌·y).

ut

We define now the set of reachable heap locations from a given reference
variable, which we need to define the notion of constant heap structure.

Definition 4 (reachable heap locations). Let µ be a heap. The set of lo-
cations reachable from ` ∈ dom(µ) is L(µ, `) = ∪{Li(µ, `) | i ≥ 0} where
L0(µ, `) = rng(µ(`).φ) ∩ L and Li+1(µ, `) = ∪{rng(µ(`′)) ∩ L | `′ ∈ Li(µ, `)}.
The set of reachable heap locations from v in σ ∈ ΣV , denoted LV (σ, v), is
{φσ(v)} ∪ L(µσ, φσ(v)) if φσ(v) ∈ dom(µσ); and the empty set otherwise. ut
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Definition 5 (constant reference variable). A reference variables v ∈ V is
constant with respect to a denotation δ, denoted c(v, δ), iff for any (σ1, σ2) ∈ δ all
locations in LV (σ1, v) are constant with across δ, namely ∀` ∈ LV (σ1, v), µσ1(`)
and µσ2(`) have the same class tag and agree on their reference field values. ut

The definition above considers modifications of fields of reference type only. The
reason for concentrating on reference fields is that we have developed this analysis
for a specific need which requires tracking updates only in the shape of the data
structure (see Section 4). Tracking updates of integer fields can simply done
by modifying the above definition to consider those updates. In what follows,
a modification of a variable stands for a modification of the shape of the heap
structure reachable from that variable.

Definition 6 (common heap location). x, y ∈ V have a common heap loca-
tion (share) in a state σ ∈ ΣV if and only if LV (σ, x) ∩ LV (σ, y) 6= ∅ ut

We define now an abstract domain which captures a set of variables that might
be modified by a concrete denotation.

Definition 7 (update abstract domain). The update abstract domain UV
is a partial order 〈℘(V ),⊆〉. Its concretization function γV :UV → ∆(V ,V ′) is
defined as γV (X) = {δ | ∀v ∈ V. ¬c(v, δ)→ (v ∈ X)}. ut

As we have seen in Example 1, information about possible sharing between
variables is important for a precise constancy analysis. There are many ways for
inferring such information. Here, we use the pair-sharing domain [11]. Moreover,
constancy information improves the precision of method calls in pair sharing
analysis. This is because the execution of a method m can introduce sharing
between non-constant parameters only. Hence we design an analysis over the
(reduced) product of the update domain UV and of the pair-sharing domain SHV ,
denoted by SH×UV . Informally, the pair sharing domain abstracts an element
s ∈ ℘(ΣV ) to a set sh of symmetric pairs of the form (x, y) where x, y ∈ V . If
(x, y) ∈ sh then x and y might share in s, and if (x, y) 6∈ sh then they cannot
share, so that if (x, x) 6∈ sh then x must be null in s. In what follows, instead
of saying might share we simply say share.

Figure 1 defines abstract denotations for our simple language over SH×UV .
They are Boolean functions corresponding to the elements of SH×UV . For a
piece of code C, the Boolean variables:

– x̌·y and x̂·y indicate if x and y share before and after executing C, respec-
tively. Since pair sharing is symmetric, x̌·y and ˇy·x are equivalent Boolean
variables; and

– x̌ and x̂ indicate if x is modified with respect to its value before and after C
(by the program execution), respectively.

Each abstract denotation is defined in terms of a Boolean function ϕ∧ψ, where ϕ
propagates (forward) sharing information and ψ propagates (backwards) update
information. In what follows we explain the meaning of each abstract denotation:
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AιV Jv:=nullK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ ϕ1

−ϕ1 = (∧{¬x̂·v | x ∈ V })
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=wK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ ϕ1 ∧ ϕ2

−ϕ1 = ∧{x̂·v ↔ ˇx·w | x ∈ V \{v}}
−ϕ2 = ˇw·w ↔ v̂·v
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=new κK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ v̂·v ∧ ϕ1

−ϕ1 = (∧{¬x̂·v | x ∈ V \ {v}})
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=w.fK = AιV Jv:=wK
AιV Jv.f :=wK = ϕ ∧ ψ

−ϕ = ∧{x̂·y ↔ x̌·y ∨ ( ˇx·w ∧ y̌·v) | x, y ∈ V }
−ψ = {x̌↔ ˇv·x ∨ x̂ | x ∈ V }

AιV Jif e . . .K = AιV Jc1K ∨ AιV Jc2K
AιV Jc1; c2K = AιV Jc1K ◦ AιV Jc2K

AιV Jv:=v0.m(v1, . . . , vp)K = φ ∧ ϕ ∧ ψ
φm = ∨{ι(m) | m might be called }
φ = φm[si 7→ vi, out 7→ v, this 7→ v0]
ϕ = ∧{x̂·y ↔ x̌·y ∨ ϕ1 | x, y ∈ V \{v0, . . . , vp}}
ϕ1 = ∨{( ˇx·vi ∧ ˇy·vj ∧ ˆvi·vj ∧ (v̌i ∨ v̌j)) | i, j ∈ {0, . . . , p}}
ψ = ψ1 ∧ (v̌ ↔ ψ3 ∨ ψ2(v))
ψ1 = ∧{x̌↔ x̂ ∨ ψ2(x) | x ∈ V \{v, v0, . . . , vp}}
ψ2(x) = ∨{( ˇx·vi ∧ v̌i) | i ∈ {0, . . . , p}}
ψ3 = {x̌·y ∧ ŷ | y ∈ V \{v}}

Fig. 1. Abstract Denotations over SH×UV

– AιV Jv:=nullK: (SH) sharing between x, y ∈ V \{v} is preserved (Idsh(V \{v}));
and nothing can share with v after C (ϕ1). (U) x ∈ V \{v} is modified before
C iff it is modified after C, and v is modified before C iff it shares with some
y before C and y is modified after C.

– AιV Jv:=wK: (SH) sharing between x, y ∈ V \{v} is preserved (Idsh(V \{v}));
since v becomes an alias for w then v can share with x ∈ V \{v} after C iff
x shares with w before C (ϕ1); and v can share with itself after C (i.e., not
null) iff w shares with itself before C (ϕ2). (U) the same as for “v:=null”.

– AιV Jv:=new κK: the same as AιV Jv:=nullK except that v shares with itself
after executing the statement.

– AιV Jv:=w.fK: the same as AιV Jv:=wK since the analysis is field insensitive.
– AιV Jv.f :=wK: (SH) x, y ∈ V share after C iff before C, they shared or x

shared with w and y with v; (U) x ∈ V is modified before C, iff it shares
with v before C or x is modified after C.

– AιV Jif e . . .K: combines the branches through logical or.
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– AιV Jc1; c2K: combines AιV Jc1K and AιV Jc2K. This is simply done by matching
the output variables of the first denotation with the input variables of the
second denotation.

– AιV Jv:=v0.m(v1, . . . , vp)K: (1) First we fetch the abstract denotations of all
methods that might be called, and we combine them through logical or into
φm; (2) Assuming that the method denotations use si 6= vi for the i-th formal
parameter, we rename all sharing information by changing each si into vi
and out into v. We get φ. (3) We add sharing information for variables which
are not in V \{v, v0, . . . , vp}. The sharing component ϕ states that x and y
might share after the call iff they shared before (i.e. x̌·y) or they shared with
arguments vi and vj where vi and vj share after the call, and either vi or vj
has been modified (expressed by ϕ1); (4) We add the constancy information
which states that x ∈ V \{v} is modified before iff it is modified after, or
if it shares with a variable that is modified by the method. For v it is a
bit different since we exclude the case that if v is modified after then it is
modified before, since we possibly assign to it a new reference.

The abstract denotation for a method:

t m(w1:t1, . . . , wn:tn) with wn+1:tn+1, . . . , wn+m:tn+m is com,

is then defined as φm = ∃V ′. AιV JcomK ∧ ϕ1 ∧ ϕ2 where:

– S = {s1, . . . , sn} such that S ∩ms = ∅, and V = ms ∪ S
– ϕ1 = {¬x̌·y | x ∈ ml ∪ {out}, y ∈ ms}
– ϕ2 = { ˇsi·x↔ ˇwi·x | 1 ≤ i ≤ n, x ∈ mi}
– V ′ = {x̌·y, x̂·y, x̌, x̂ | x 6∈ S ∪ {this, out}, y ∈ V } ∪ { ˇout}

The idea is that we: (1) extend ml to V in order to include shallow variable
si for each method argument wi; (2) compute AιV JcomK; (3) add ϕ1 which in-
dicates that local variables are initialized to null; (4) add ϕ2 which creates
the connection between the shallow variables and the actual parameters; (5)
eliminate all local information by removing the Boolean variables V ′. The ab-
stract denotational semantics can be then defined similar to the concrete one in
Definition 3, where the initial method summaries are false ans summaries are
combined (during the fixpoint iterations) using the logical or ∨.

Example 2. Applying the above abstract semantics to the method defined in
Example 1 results in a Boolean formula whose constancy component is ( ˇthis↔

ˆthis) ∧ x̌ ∧ (y̌ ↔ (x̌·y ∨ ŷ)). For simplicity we ignore the part of φm that talks
about sharing.

4 Experiments

We show here some experiments with our domain for sharing and constancy
analysis. They have been performed with the Julia analyzer [12] on a Linux
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Program M
Sharing Non-Cyclicity

T P T P

JLex 446 1595 (2324) 34.30% (34.84%) 506 (415) 34.03% (35.21%)

JavaCup 933 5707 (6486) 22.24% (23.76%) 853 (953) 59.23% (76.13%)

Kitten 2131 20976 (27824) 17.90% (19.11%) 2538 (3177) 36.34% (41.13%)

jEdit 3206 47408 (49356) 21.12% (21.28%) 4969 (5963) 43.49% (47.50%)

Julia 4028 79199 (129562) 9.71% (10.25%) 8014 (12018) 33.40% (38.17%)

Fig. 2. The effect of the purity component on Sharing and Non-Cyclicity. (M) number
of methods; (T) run-time in milliseconds excluding preprocessing; (P) precision.

machine based on a 64 bits dual core AMD Opteron processor 280 running
at 2.4Ghz, with 2 gigabytes of RAM and 1 megabyte of cache, by using Sun
Java Development Kit version 1.5. All programs have been analyzed including
all library methods that they use inside the java.lang.* and java.util.*
hierarchies.

Figure 2 compares sharing analysis alone with sharing analysis in reduced
product with constancy (Section 3), and its effect on non-cyclicity analysis [9].
In each column, numbers in parentheses correspond to the analysis using the
reduced product. For each program, it reports the number of methods analyzed,
including the libraries, and time and precision of the corresponding analysis
with and without constancy. For sharing, the precision is the amount of pairs of
variables of reference type that are proved not to share at the program points
preceding the update of an instance field, the update of an array element or
a method call. This is sensible since there is where sharing analysis is used
by subsequent analyses. That figure suggests that the constancy component
slightly improves the precision of sharing analysis. However, the importance
of constancy is shown when we consider its effects on a static analysis that
uses constancy information. This is the case of non-cyclicity analysis, which
finds variables bound to non-cyclical data structures [9]. Figure 2 shows that
the computation of cyclicity analysis after a simple sharing analysis leads to
less precise results than the same computation after a sharing and constancy
analysis. Here, precision is the number of field accesses that read the field of a
non-cyclical object. This is sensible since there is where non-cyclicity is typically
used.

The importance of constancy analysis becomes more apparent when it sup-
ports a static analysis that uses constancy, sharing and cyclicity information.
This is the case of path-length [13]. It approximates the length of the maximal
path of pointers one can follow from each variable. This information is the basis
of a termination [1] and resource bound analyses [2] for programs dealing with
dynamic data structures. Figure 3 shows the effects of constancy on path-length
and termination analysis (available in [12]) of a set of small programs that do
not use libraries except for java.lang.Object. Times are in milliseconds and
precision is the number of methods proved to terminate. Constancy information
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Program M T P

Init 10 102 (140) 8 (8)

List 11 624 (512) 6 (11)

Diff 5 6668 (9040) 5 (5)

Hanoi 7 548 (868) 7 (7)

BTree 7 306 (415) 6 (7)

BSTree 10 234 (273) 9 (10)

Virtual 11 357 (418) 10 (11)

ListInt 11 767 (507) 6 (11)

Program M T P

Nested 4 324 (447) 4 (4)

Double 5 270 (268) 5 (5)

FactSum 6 169 (178) 6 (6)

Sharing 7 309 (501) 6 (7)

Factorial 5 102 (196) 5 (5)

Ackermann 5 1308 (1732) 5 (5)

BubbleSort 5 871 (951) 5 (5)

FactSumList 8 278 (703) 7 (8)

Fig. 3. The effect of the purity information on Termination analysis. (M) number of
methods; (T) run-time in milliseconds excluding preprocessing; (P) precision.

results in proving that all terminating methods terminate (only 2 methods of
Init are not proved to terminate: they actually diverge). Without constancy
information, many terminating methods are not proved to terminate.

These experiments suggest that constancy information contributes to the
precision of sharing, cyclicity, path-length and hence termination analysis. Com-
puting constancy information with sharing requires more time than computing
sharing alone (Figure 2). Performing other analyses by using the constancy in-
formation increases the times further (Figures 2 and 3). Nevertheless, this is
justified by the extra precision of the results.
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Abstract. The performance of heap analysis techniques has a significant impact
on their utility in an optimizing compiler. Most shape analysis techniques perform
interprocedural dataflow analysis in a context-sensitive manner, which can result
in analyzing each procedure body many times (causing significant increases in
runtime even if the analysis results are memoized). To improve the effectiveness
of memoization (and thus speed up the analysis) project/extend operations are
used to remove portions of the heap model that cannot be affected by the called
procedure (effectively reducing the number of different contexts that a proce-
dure needs to be analyzed with). This paper introduces project/extend operations
that are capable of accurately modeling properties that are important when an-
alyzing non-trivial programs (sharing, nullity information, destructive recursive
functions, and composite data structures). The techniques we introduce are able
to handle these features while significantly improving the effectiveness of mem-
oizing analysis results (and thus improving analysis performance). Using a range
of well known benchmarks (many of which have not been successfully analyzed
using other existing shape analysis methods) we demonstrate that our approach
results in significant improvements in both accuracy and efficiency over a base-
line analysis.

1 Introduction

Recent work on shape analysis techniques [25,28,1,14,15,9,8] has resulted in a number
of techniques that are capable of accurately representing the properties (connectivity,
interference, and shape) that are needed for a range of optimization and parallelization
applications. However, the computational cost of performing these analyses has limited
their applicability. A significant component of the analysis runtime is due to the need to
perform a context-sensitive interprocedural analysis, where each procedure body may
be analyzed multiple times (once for each different calling context).

The practice of using a memo-table to avoid recomputing analysis results and the use
of a project operation to remove portions of the heap that cannot affect or be affected by
the called procedure are standard techniques for minimizing the number of times each
function needs to be analyzed during interprocedural dataflow analysis [2,17,16,19]. The
two major goals of the project operation are improving the effectiveness of memoizing
analysis results by removing portions of the heap that could cause spurious inequalities

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 245–259, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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between calling contexts and preventing the loss of precision that occurs when recursive
procedures use a summary representation for multiple out-of-scope references (e.g. local
reference variables with the same name but that exist in different call frames).

The project operation for heap models and the utility of locality axioms have been
analyzed in a number of papers [22,21,7,12,4]. These techniques use variations on the
notion of a frame rule as presented in [11,20] and identify a number of features of the
project operation that are of particular importance for interprocedural analysis using
heap domains. A major distinction is made between the projection operation in cutpoint-
free cases, where there are no pointers that cross from a section of the heap that is
unreachable from the procedure arguments into a section of the heap that is reachable
from the procedure arguments, and cases where such pointers may exist.

This paper presents a method for using cutpoints to support interprocedural heap
analysis. We then use the technique to quickly analyze (10’s of seconds) programs that
are larger (by a factor of 2-4) and more varied (in terms of data structures and algo-
rithms) than any other analysis technique to date. Our first contribution is the reformu-
lation of the project/extend operations in [21] so that they can be used in a graph based
(as opposed to an access path based) heap model which allows us to use a very com-
pact and efficient representation of heap connectivity. Our second contribution is the
extension of the original approach to handle two classes of programatic events that are
critical to analyzing real world programs, analyzing programs that involve non-trivial
sharing and composite data structures [1,15] and propagating nullity test information
from callee to caller scope. Finally we use the results of the heap analysis to drive the
parallelization of a range of benchmarks (several of which have not been successfully
analyzed/parallelized using shape information) achieving an average parallel speedup
of 1.69 on a dual-core machine.

2 Example Code

To develop intuition about the mechanism and purpose of project/extend operations
we look at a simple function (Figure 1) that illustrates the basic functioning of the
project/extend operations and the propagation of nullity information from the callee to
the caller scope. Our lists are made of objects of type LNode, each LNode object has
two fields, a nx field which refers to the next element in the list and a field f which
stores a boolean.

LNode LInit(LNode l)
if(l == null)

return;

tin = l.nx;
LInit(tin);
l.f = true;

Fig. 1. Recursive List Initialize
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Accurately analyzing the initialization method (LInit) requires the analysis to propa-
gate information inferred about cutpoints in the callee scope back into the caller scope.
If the analysis is unable to use the l == null test in the callee scope to infer that
l.nx is null in the caller scope then the analysis will not be able to infer that after
the method returns the argument list is either null or must have the true value in all
the f fields.

3 Heap Model

We model the concrete heap as a labeled, directed multi-graph (V,E) where each vertex
v ∈V is an object in the store or a variable in the environment, and each labeled directed
edge e ∈ E represents a pointer between objects or a reference from a variable to an
object. Each edge is given a label that is an identifier from the program, an edge (a,b) ∈
E labeled with p, we use the notation a

p−→ b to indicate that a points to the object b via
the field name (or identifier) p.

A region of memory ℜ is a subset of the objects in memory, with all the pointers that
connect these objects and all the cross-region pointers that start or end at an object in
this region. Formally, let C ⊆V be a subset of objects, and let Pi = {p | ∃a,b ∈C,a

p−→ b}
and Pc = {p | ∃a ∈C,x �∈C,a

p−→ x∨x
p−→ a} be respectively the set of internal and cross-

region pointers for C. Then a region is the tuple (C,Pi,Pc). For a region ℜ = (C,Pi,Pc)
and objects a,b ∈ C, we say a and b are connected in ℜ if they are in the same weakly-
connected component of the graph (C,Pi). Objects a and b are disjoint in ℜ if they are
in different weakly-connected components of the graph.

3.1 Abstract Heap Model

The underlying abstract heap domain is a graph where each node represents a region
of the heap or a variable and each edge represents a set of pointers or a variable target.
The nodes and edges are augmented with additional instrumentation predicates. The
abstract domain evaluates the predicates using a 3-valued semantics: predicates are ei-
ther definitely true, definitely false, or unknown [25]. Our analysis tracks the following
set of instrumentation predicates. Our choice of predicates is influenced by common
predicates tracked in previous papers on shape analysis [5,24,28,20].

Types. For each type t in the program, there is an instrumentation predicate (also written
t) that is true at a concrete heap node if any concrete object represented by the node may
have type t.

Linearity. Each abstract node has a linearity that represents whether it represents at
most one concrete node (linearity 1) or any set of 0 or more concrete nodes (written #).

Abstract Layout. To track the connectivity and shape of the region a node abstracts, the
analysis uses abstract layout predicates Singleton, List, Tree, MultiPath, or Cycle. The
Singleton predicate states that there are no pointers between any of the objects repre-
sented by an abstract node. The List predicate is similar to the inductive List predicate
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in separation logic [20]. The other predicates correspond to the definitions for Trees,
Dags, and Cycles in the literature, for the formal definitions see [14].

Interference. The heap model uses two properties to track the potential that two refer-
ences can reach the same memory location in the region that a node represents.

The first property is for references that are represented by different edges in the heap
model. Given the concretization function γ and two edges e1,e2 that are incoming edges
to the node n, the predicate that defines inConnected in the abstract domain is: e1,e2 are
inConnected with respect to n if it is possible that ∃r1 ∈ γ(e1)∧∃r2 ∈ γ(e2)∧∃a,b ∈
γ(n) s.t. (r1 refers to a)∧ (r2 refers to b)∧ (a, b connected). For improved precision
we also track may and must aliasing (e1,e2 are inConnected and a = b) between the
references the edges abstract (must aliasing is only meaningful if the edge represents
a single references, see [15] for an approach that generalizes must-aliasing to sets of
references).

The second property is for the case where the references are represented by the same
edge. To model this the interfere property is introduced. An edge e represents interfering
references if there may exist references r1,r2 ∈ γ(e) such that the objects that r1,r2

refer to are connected/aliased. A three-element lattice, np < ip < ap, np for edges with
all non-interfering references and ip for potentially interfering references and ap for
potentially aliasing references, is used to represent the interference property.

The Heap Graph. Each node in the graph either represents a region of the heap or a
variable. The variable nodes are labeled with the variable that they represent. Nodes
representing the concrete heap regions contain a record that tracks the types of the
concrete objects that the node represents (types), the number of objects (either 1 or #)
that may be in the region (count), and the abstract layout of a node (layout). Each node
also tracks the connectivity relation between pairs of incoming edges. A binary relation
connR is used to track the inConnected relation. Although the connectivity relation is
a property of the nodes, for readability in the figures we associate the information with
the edges. Thus, each node is represented as a record of the form [types layout
count].

As in the case of the nodes, each edge contains a record that tracks additional in-
formation about the edge. The offset component indicates the offsets (labels) of the
references that are abstracted by the edge. The number of references that the edge may
represent is tracked with the maxCut property. The interfere property tracks the possi-
bility that the edge represents references that interfere. Finally, we have a field connto
which is a list of all the other edges/variables that the edge may be connected to accord-
ing to the connR relation (we add a (!) for the edges in the list that represent references
which may alias and a (∼) if the edges represent single references that must alias). To
simplify the figures if the connto field is empty we omit it entirely from the record in
the figure. Since the variable edges always represent single references and the offset
label is implicitly the name of the variable the record simply contains the connR infor-
mation or is omitted entirely if the connR relation is empty. To simplify the discussion
of the examples each edge also has a unique label. The pointer edges in the figures are
represented as records {label offset maxCut interfere connto}.
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The abstract heap domain is restricted via a normal form [14,15]. The normal form
ensures that the heap graph remains finite, and that equality comparisons are efficient.
The local data flow analysis is performed using a Hoare (Partially Disjunctive) Power
Domain [13,26] over these graphs. Interprocedural analysis is performed in a context-
sensitive manner and the procedure analysis results are memoized. At each call/return
site the portion of the heap graphs passed to the call are joined into a single graph. The
design of the join operation is such that, in general, information lost in the join can be
recovered when needed later in the program. The decision to perform joins at call sites
(programs tend to have uniform expectations of the portion of the heap passed to and
returned from calls) and to perform the join only on the portion of the heap passed to the
called method results in very little loss of precision while ensuring the abstract model
remains compact.

Abstract Call Stack. Our concrete model for the call stack is a function Sm : (LV×N) 
→
O, where LV is the set of local variable names and N represents the depth in the call
sequence (main is at depth 1) and O is the set of all live objects. Thus, the pair (v,4)
refers to the value of the variable v in the scope of the 4th call frame.

To represent the concrete call stack we introduce stack variables which represent the
values of local variables on the stack (for a variation on this approach see [22]). In our
extension each stack variable summarizes all the possible targets (in a given graph) for
a given variable name on the stack. Given a variable name v and a heap graph G we
define a variable name v’ for use in the abstract domain (we will select a better naming
scheme in Section 4) where: v’ is the abstraction of all the variables in the call stack,
∃i ∈ N, node n ∈ G, object on s.t. on ∈ γ(n)∧Sm(v, i) = on.

By associating the set of stack locations that are abstracted with the set of tar-
gets in a given abstract heap graph, we can naturally partition the stack variables
along with the heap graphs. Since each stack variable is associated with only the val-
ues on the stack that point into a region of the heap represented by the given heap
graph, it is straightforward to partition and join them when partitioning the heap
graphs.

Thus, during the local analysis the heap graph represents the portion of the pro-
gram heap that is visible from the local variables and is augmented with some num-
ber of stack variables and cutpoint variables which relate variable values and the heap
in the caller scope to the portions of the heap reachable from callee scope local
variables.

For efficiency and in order to ensure analysis termination the naming scheme we
choose will result in situations where multiple cutpoint (or stack) edges are given the
same name. This may result in some amount of information loss (particularly with re-
spect to reachability and aliasing). To minimize the loss that occurs we introduce an
instrumentation domain for the stack/cutpoint variable edges, nameColl = {pdj, pua,
pa}. Where pdj indicates a cutpoint/stack name representing (a single edge) or edges
where the edges do not represent any pairwise connected references, pua indicates a
name representing multiple edges where there are no pairwise aliases, while pa is the
indicates the name represents edges that they may have pairwise aliasing. Thus, the cut-
point variable edges are represented with records {maxCut interfere connto
nameColl} (stack variables are not used in this example).
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4 Stack Variables, Cutpoint Labels

When performing the project operation in heaps with cutpoints we need to name the
stack variables as well as the cutpoint edges. We use a simple technique for the stack
variables: given a variable name v defined in the caller function fcaller we use the
name $fcaller*v to represent this variable in the callee scope. This naming scheme
can create false dependencies on the local scope names unless the variable information
is normalized during the comparisons of entries in the memo-table.

Naming edges that cross the cutpoints is more complex since we need to balance the
accuracy of the analysis with the potential of introducing spurious differences resulting
from isomorphic (or nearly so) cutpoint edges being given different names. For the
renaming of the cutpoint edges we assume that special names for the arguments to the
function have been introduced. The first pointer parameter is referred to by the special
variable name p1 and the ith pointer argument is referred to by the variable pi.

Figure 2(c) shows a recursive call to LInit where the special argument name p1
has been added to represent the value of the first argument to the function. In this figure
the edge e1 is a cutpoint edge since it starts in the portion of the heap that is unreachable
from the argument variables and ends in a portion of the heap that is reachable from the
argument variables (this differs slightly from the definition for cutpoints in [21] but
allows us to handle edges uniformly).

For each cutpoint edge we generate a pair of names: one is used in the unreachable
section of the heap graph and one in the reachable section, which allows an abstract heap
model to represent both incoming and outgoing cutpoint edges that are isomorphic and
exist in the same abstract heap component without loss of precision.

If we are adding a cutpoint for the method call fcaller and the edge e, which is a
cutpoint, starting at n and ending at n′, and has edge label fe. We can find the shortest
path (f1 . . . fk) from any of the pi variables to n′ (using lexographic comparison on
the path names to break ties). Using the pi argument variable and the path (f1 . . . fk)
we derive the cutpoint basename = fcaller*pi*f1*. . .*fk*fe We compute a
pair of static names (unreachN, reachN) where unreachN = $basename- and reachN
= $basename+. In Figure 2(d) the cutpoint name $p1+ (for brevity we simply label
the cutpoint with the pi variable) is used to represent the endpoint of the cutpoint edge
in the reachable component of the heap and $p1- to track a dummy node associated
with the cutpoint edge in the unreachable component of the heap.

5 Example

The example program, Figure 1, recursively initializes the f fields in a linked list to the
value true. Figure 2(a) shows the abstract heap model at the entry of the first call to
the procedure (for simplicity we ignore any caller scope variables).

In Figure 2(a), variable l refers to a node that represents LNode objects (types =
{LNode}, abbreviated to LN), that represents a region with no internal connections
(Layout = S), which contains a single object (count = 1), and where all the incoming
edges represent disjoint pointers (the connto lists on the edges are omitted). In this
figure we also have that the elements in the list have unknown truth values in the f
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(a) Heap at Initial Call (b) After tin = l.nx (c) Cross Edge 1st Call

(d) Split Cross Edge 1st Call (e) Into 1st Recursive Call (f) Cross Edge 2nd Call

(g) Split Cross Edge 2nd Call (h) Fix Point / Base Return (i) Merge 2nd Call Return

(j) Patched Cross Edges (k) Merge 1st Call Return (l) Return 1st Recursive Call

Fig. 2. Recursive Calls

fields (f=?). There is a single edge out of this node representing pointers stored in
the nx field of the object represented by the node. This edge represents a single pointer
(maxCut = 1) and all the pointers are non-interfering (interfere = np). Finally, this edge
refers to a node that also represents LNode objects but may represent many of these
objects (count = #) and, since the Layout value is List, we know that the objects may be
connected in a list-like shape. Since there is a single incoming edge and it represents a
single pointer, we can safely assume that this edge refers to the head of the list structure.

Figure 2(b) shows the abstract heap model just after executing the statement tin =
l.nx. Since we know that e1 refers to the head element of the list from Figure 2(a) we
replaced the single List-shaped node with a node representing the unique head element
and a node representing the tail of the list. Since the head element is unique we set the
count of this new node to 1. Additionally, the only possible layout for a node of count 1
is Singleton. Finally, if a node represents a single object then all the outgoing field edges
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can each represent a single pointer. Thus, we set the outgoing edge to have a maxCut =
1. Also note that after the load the analysis has determined that tin and e1 must alias
(indicated by the ∼e1 and ∼tin entries in the connectivity lists).

Figure 2(c) shows the state of the abstract heap at the entry of the project procedure.
The special name p1 has been added to represent the value of the first pointer argument
to the function and we have added a dotted line to indicate the reachable and unreachable
portions of the heap. Note that the edge e1 is a cutpoint edge according to our definition.

The result of the project operation is shown in Figure 2(d). The e1 edge, which was
a cutpoint edge for the call, has been remapped to a dummy node and the static cutpoint
names $p1- and $p1+ (for brevity we omit the procedure name and edge labels from
the static names) have been introduced at the dummy node and at the target of this edge
in the reachable section. Since this cutpoint edge only represents the single cutpoint
edge generated in this call frame nameColl = pdj. Also note that the analysis has
determined that the formal parameter p1 must alias the cutpoint edge $p1+.

Figure 2(e) shows the resulting abstract heap that is passed into the callee scope for
analysis. Since all the local variables in the caller scope either did not refer to nodes in
the callee reachable section or are dead after the call return we do not have to give them
stack names and can remove them entirely from the heap model. Figure 2(f) shows the
abstract heap at the entry to the project function for the second recursive call. Again
we have a cutpoint edge e2. Note that the reachable cutpoint label, $p1+ introduced in
the previous call is now in the unreachable portion of the heap, thus ($p1+) does not
conflict with the unreachable name added in this call ($p1-). The result of the project
operation is shown in Figure 2(g).

Figure 2(h) shows the eventual fixpoint approximation (above the dotted line) of
the analysis of this function and also the base case return value (below the dotted line).
Notice in the base case return value we were able to determine that the test l == null
implies that l must be null and since we preserved must alias information through the
cutpoint introduction we can infer that l must alias $p1+, which implies the cutpoint
edge ($p1+) must also be null. Thus, the analysis can infer that on return the cutpoint
edge is either null or is non-null and refers to some list in which all the f fields have
been set to true (f=t in the figure).

In Figure 2(i) we show how the fixpoint approximation for the reachable section
of the heap is recombined with the unreachable section of the heap using the extend
operation. After the recombination we get the abstract heap model shown in Figure 2(j).
In Figure 2(i) we have unioned the graphs and are ready to patch up the cutpoint cross
edge information. The static name $p1+ in the reachable portion of the heap has been
used to compute the associated unreachable name ($p1-). Then the algorithm identifies
the edge associated with the dummy node referred to by $p1- (e2) and remapped this
edge to end at the target of $p1+ (tin has been nullified since it is dead).

Figure 2(k) shows the extend operation at the return from the first recursive call
which is similar to the situation in the second recursive call. The resulting abstract heap
is shown in Figure 2(l) which can be joined with the result of the base case test and then
completes the analysis of the method. As desired, the analysis has determined that the
recursive list initialize procedure preserves the list shape of the argument list and that
all of the f fields in the list have been set to true (f=t in the figures).
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6 Project and Extend Algorithms

Project. We assume that before the projectHeap function is invoked all of the special
argument variable names have been added to the heap model. This allows projectHeap
(Algorithm 1 below) to easily compute the section of the heap model that is reachable
in the callee procedure and then compute the set of nodes that comprise the unreachable
portion of the heap model.

Algorithm 1. projectHeap
input : h: the heap model to be partitioned
output: hr, hu: the reachable and unreachable partitions, snu, ncs: the static names used and

newly created
reachNodes ← set of nodes reachable from args;
unreachNodes ← set of nodes unreachable from args;
crossEdges ← set of edges that start in unreachNodes and end in reachNodes;
snu ← /0;
ncs ← /0;
foreach edge e in crossEdges do

(sn, isnew) ← procCrossEdge(h, e, reachNodes);
snu.add(sn);
if isnew then ncs.add(sn);

hu ← subgraph of h on the nodes unreachNodes ∪ {dummy nodes from procCrossEdge};
hr ← subgraph of h on the nodes reachNodes;
return (hr, hu, snu, ncs);

For each edge that crosses from the unreachable section into the reachable section
we add a pair of static names to represent the edge (Algorithm 2). Since the heap model
stores a number of domain properties in each edge, we create a dummy node and remap
the edge to end at this node. Then, the unreachN static name is set to refer to this dummy
node. In the reachable portion of the heap graph we simply set the reachN static name
to refer to the target of the cross edge.

When adding the reachN static name to the reachable section of the heap graph the
name may or may not already be present in the heap graph. If the name is not present
then we add it to the static name map and for later use we note that this is the call where
the name is introduced. Otherwise a name collision has occurred and we must mark
the edges representing the possible cutpoints appropriately (for simplicity we mark all
the edges). If there may be aliasing we note that the cutpoints from different frames
may have aliasing targets (pa) and similarly if the new cutpoint edge may be connected
with an existing cutpoint edge we mark them as being pairwise connected (pua). The
functions makeEdgeForUnreachCutpoint and makeEdgeForReachCutpoint are used to
produce edges to represent the cutpoint (based on the static name and the cutpoint edge
properties) in the unreachable and reachable portions of the heap.

Once all of the cutpoint edges have been replaced by the required static names, the
heap can be transformed into the unreachable version (where all the nodes in the reach-
able section and all the variables/static names that only refer to reachable nodes have
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been removed) and the reachable version (where the nodes in the unreachable section
and the associated names have been removed).

Algorithm 2. procCrossEdge
input : h: the heap, e: the cross edge, reachNodes: set of reachable nodes
output: rsn: the name used, isnew: true if rsn a new name
ne ← the node e ends at;
ni ← new dummy node;
(ursn, rsn) ← genStaticNamePairForEdge(h, e);
eu ← makeEdgeForUnreachCutpoint(e, ursn);
set endpoint of eu to ni;
add eu as an edge for ursn;
er ← makeEdgeForReachCutpoint(e, rsn);
set endpoint of er to ne;
remap the endpoint of e to ni;
if the name rsn exists and has edges pointing to a node in reachNodes then

rsnes ← {e′|e′ is an edge for the cutpoint var rsn};
add er as an edge for rsn;
if er is inConnected with an edge in rsnes then set edges in rsnes and er to pua;
if er may alias with an edge in rsnes then set edges in rsnes and er to pa;
return (rsn, false);

else
add the name rsn to h;
add er as an edge for rsn;
return (rsn, true);

Extend. After the call return we need to rejoin the unreachable portion of the heap that
we extracted before the procedure call entry with the result we obtained from analyzing
the callee procedure. This is done by looking at each of the static names that was used
to represent a cutpoint edge and reconnecting as required. Then, each of the newly
introduced cutpoint names can be removed from the heap model. The pseudo-code to
do this is shown in Algorithm 3.

This algorithm merges all edges with the same reachable cutpoint name so that there
is at most one target edge for a given cutpoint name in the reachable heap hr (this sim-
plifies the algorithm and is in our experience is quite accurate). The algorithm then pairs
up the two cutpoint names and remaps the edge we saved in the unreachable section to
the target node in the reachable section subject to a number of tests to propagate sharing
information (the nullity information is propagated due to the fact that the dummy node
and all incoming edges are always removed but the foreach loop on the targets of ursn
does not execute since the target set is empty). The er.nameColl = pua test is true if this
edge represents sets of pointers that do not have pairwise aliases. Thus, we mark the
newly remapped edge and er as pairwise unaliased. Similarly, the er.nameColl = pdj
test is true if this edge represents cutpoint/stack edges that are pairwise disjoint. Thus,
we mark the newly remapped edge and er as pairwise disjoint.
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Algorithm 3. extendHeap
input : hr, hu: the reachable and unreachable partitions, snu, ncs: the static names used and

newly created
output: h: the joined heap model
h ← new heap();
h.heapGraph ← mergeGraphs(hr .heapGraph, hu.heapGraph);
foreach static name sn in snu do

ursn ← reachNameToUnreachName(sn);
nr ← the target of sn in hr.nameMap;
foreach node nu that is a target of ursn in hu.nameMap do

er ← the single incoming edge to nu;
remap er to end at the target of nr ;
er .interfere = er.interfere � nr .interfere;
if er.nameColl = pua then set er and nr as unaliased;
if er.nameColl = pdj then set er and nr as disjoint;

hu.removeNodeAllEdges(target of ursn);
hu.unmapStaticName(ursn);
if sn in ncs then hr .unmapStaticName(sn);

h.nameMap ← mergeNameMaps(hr .nameMap, hu.nameMap);
return h

The major components of this algorithm are the separation of the mergeGraphs ac-
tion from the mergeNameMaps action and the elimination of the static cutpoint edge
names that were introduced for this call.

The mergeGraphs function computes the union of the graph structures that represent
the abstract heap objects, while the mergeNameMaps function computes the union of
the name maps (which are maps from the stack/variable/cutpoint names to the nodes in
the graph structure that represent them). This separation allows the algorithm to nullify
the names created for this call which prevents the propagation of unneeded cutpoint
edge targets to the caller scope. The function unmapStaticName is used to eliminate a
given static name from the abstract heap model name map.

Example Name Collision. The introduction of the nameColl domain minimizes the pre-
cision loss that occurs when a cutpoint or stack variable name collision occurs. Figure 3
shows an example of such a situation. In this figure we show part of a heap where the
edges e2 and e3 are both cutpoint edges and they do not represent any pairwise aliasing
pointers (no ! in the connTo lists) although they each represent sets of pointers that may
alias, interfere = ap.

In this example our naming scheme will result in e2 and e3 being represented with
the same cutpoint name. However, our method will mark this cutpoint edge as nameColl
= pua (Figure 3(b)). This means that on return the extend algorithm will set the edges
that are mapped to this cutpoint as being pairwise unaliased (Figure 3(c)) as desired.
Thus, even though there was a name collision for the cutpoints we avoided (in this case
completely) the loss of sharing information about the heap.
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(a) Colliding Names (b) To Same Cutpoint (c) PUA on Return

Fig. 3. Name Collision

7 Experimental Results

The proposed approach has been implemented and the effectiveness and efficiency of
the analysis have been evaluated on the source code for programs from a variation of the
Jolden [3,18] suite and several programs from SPEC JVM98 [27] (raytrace, modified
to be single threaded, db and compress). The analysis algorithm is written in C++ and
was compiled using MSVC 8.0. The parallelization benchmarks were run using the Sun
1.6 JVM. All runs are from our 2.8 GHz PentiumD machine with 1 GB of RAM.

We ran the analysis with the project/extend operations enabled (the Project column)
and disabled (the No-Project column) and recorded the analysis time, the average num-
ber of times a method needed to be analyzed, and used the resulting shape information to
parallelize the programs, shown in Figure 4. The results indicate that the project/extend
operations have a significant impact on the performance of the analysis, reducing the
number of contexts that each function needs to be analyzed in (on average reducing the
number of contexts by a factor of 4.3) which results in a substantial decrease in analysis
times (by a factor of 18.4). As expected this reduction becomes more pronounced as
the size and complexity of the benchmarks increases, in the case of raytrace the anal-
ysis time without the project/extend operation is impractically large (772.6 seconds)
but when we use the project/extend operations the analysis time is reduced to 35.11
seconds.

We used the shape information from the analysis to drive the parallelization of the
benchmarks by using multiple threads in loops and calls, resulting in the speedup
columns in Figure 4. Given the shape information produced by the analysis it is straight
forward to compute what parts of the heap are read and written by a loop body or method
call and thus which loops and calls can be executed in parallel (in raytrace we treated
the memoization of intersect computations as spurious dependencies). Once the anal-
ysis identified locations that could be parallelized we inserted calls to a simple thread
pool (since our current work is focused on the analysis this is done by hand but can
be fully automated [6,23,10]). In 8 of 9 benchmarks that are suitable for shape driven
parallelization (compress, db and mst do not have any data structure operations that are
amenable to shape driven parallelization) we achieve a promising speedup, averaging a
factor of 1.69 over the benchmarks.

Our experimental results show that the information provided by the analysis can be
effectively used (in conjunction with existing techniques) to drive the parallelization of
programs. To the best of our knowledge this analysis is the only shape analysis that
is able to provide the information required to perform shape driven parallelization for
five of these benchmarks (em3d, health, voronoi, bh and raytrace). Given the speed with

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

191



Efficient Context-Sensitive Shape Analysis 257

Benchmark Info No-Project Project
Benchmark Stmt Method Time Avg Cont. Speedup Time Avg Cont. Speedup
bisort 260 13 0.86s 10.6 1.00 0.28s 1.9 1.72
em3d 333 13 0.12s 2.5 1.75 0.08s 1.8 1.75
mst 457 22 0.06s 3.2 NA 0.04s 3.0 NA
tsp 510 13 1.51s 22.4 1.84 0.17s 7.0 1.84
perimeter 621 36 54.57s 105.9 1.00 2.97s 50.2 1.00
health 643 16 3.24s 12.9 1.00 2.26s 4.2 1.76
voronoi 981 63 20.89s 61.4 1.00 2.67s 37.2 1.68
power 1352 29 5.71s 26.8 1.93 0.17s 1.3 1.93
bh 1616 51 8.64s 32.8 1.75 2.68s 7.3 1.75
compress 1102 41 0.29s 2.9 NA 0.18s 2.2 NA
db 1214 30 0.94s 3.7 NA 0.68s 2.8 NA
raytrace 3705 173 772.60s 293.1 1.00 35.11s 15.6 1.76
Overall 12794 523 869.43s 48.2 1.36 47.29s 11.2 1.69

Fig. 4. The Stmt and Method columns list the number of statements and methods for each bench-
mark. The columns for the No-Project and Project variations of the analysis list: the analysis time
in seconds, the average number of times each method was analyzed and parallel speedup achieved
on a 2 core 2.8 GHz PentiumD processor.

which the analysis is able to produce the information needed for the parallelization
and the consistent parallel speedup that is obtained in the benchmarks (1.69 over all
of the benchmarks and 1.77 if we exclude the benchmark mst), we find the results
encouraging.

Of particular interest is the raytrace benchmark. This program is 2-4 times larger than
any benchmarks used in the related work, builds and traverses several heap structures
that have significant sharing between components. It also makes heavy use of virtual
methods and recursion. This benchmark presents significant challenges in terms of the
complexity and size of the program as well as in terms of the range of heap structures
that need to be represented in order to accurately and efficiently analyze the program.
Our analysis is able to manage all of these aspects and is able to produce a precise
model of the heap (allowing us to obtain a speedup of 1.76 using heap based paralleliza-
tion techniques). Further, the analysis is able to produce this result while maintaining a
tractable analysis runtime.

8 Conclusion

We presented and benchmarked project/extend operations for a store-based heap model
that is capable of precisely representing a range of shape, connectivity and sharing prop-
erties. The project and extend operations we introduced are designed to minimize the
analysis time by reducing the number of unique calling contexts for each function and to
minimize the imprecision introduced by the collisions that occur between stack/cutpoint
names.

Our experimental results using the project/extend operations are very positive. The
analysis was able to efficiently analyze benchmarks that build and manipulate a variety

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

192



258 M. Marron et al.

of data structures. Our benchmark set includes a number of kernels that were originally
designed as challenge problems for automatic parallelization (the Jolden suite) and sev-
eral benchmarks from the SPEC JVM98 suite (including a single threaded version of
raytrace). Our experimental results demonstrate that the project/extend operations are
effective in minimizing the number of contexts that need to be analyzed (on average a
factor of 4.3 reduction), improving analysis accuracy (seen as improved parallelization
results, in 4 out of 12 benchmarks) and substantially reducing the analysis runtime (by
a factor of nearly 20). Our heap analysis was also able to provide sufficient information
to successfully parallelize the majority of benchmarks we examined, including several
that cannot be successfully analyzed/parallelized using other proposed shape analysis
methods.
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Abstract. Finding useful sharing information between instances in obj-
ect-oriented programs has recently been the focus of much research.
The applications of such static analysis are multiple: by knowing which
variables definitely do not share in memory we can apply conventional
compiler optimizations, find coarse-grained parallelism opportunities, or,
more importantly, verify certain correctness aspects of programs even
in the absence of annotations. In this paper we introduce a framework
for deriving precise sharing information based on abstract interpreta-
tion for a Java-like language. Our analysis achieves precision in various
ways, including supporting multivariance, which allows separating differ-
ent contexts. We propose a combined Set Sharing + Nullity + Classes
domain which captures which instances do not share and which ones are
definitively null, and which uses the classes to refine the static informa-
tion when inheritance is present. The use of a set sharing abstraction
allows a more precise representation of the existing sharings and is cru-
cial in achieving precision during interprocedural analysis. Carrying the
domains in a combined way facilitates the interaction among them in the
presence of multivariance in the analysis. We show through examples and
experimentally that both the set sharing part of the domain as well as
the combined domain provide more accurate information than previous
work based on pair sharing domains, at reasonable cost.

1 Introduction

The technique of Abstract Interpretation [8] has allowed the development of so-
phisticated program analyses which are at the same time provably correct and
practical. The semantic approximations produced by such analyses have been
traditionally applied to high- and low-level optimizations during program compi-
lation, including program transformations. More recently, promising applications
of such semantic approximations have been demonstrated in the more general
context of program development, such as verification and static debugging.

Sharing analysis [14,20,26] aims to detect which variables do not share in
memory, i.e., do not point (transitively) to the same location. It can be viewed
as an abstraction of the graph-based representations of memory used by certain
classes of alias analyses (see, e.g., [31,5,13,15]). Obtaining a safe (over-) approx-
imation of which instances might share allows parallelizing segments of code,

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 172–187, 2008.
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improving garbage collection, reordering execution, etc. Also, sharing informa-
tion can improve the precision of other analyses.

Nullity analysis is aimed at keeping track of null variables. This allows for
example verifying properties such as the absence of null-pointer exceptions at
compile time. In addition, by combining sharing and null information it is pos-
sible to obtain more precise descriptions of the state of the heap.

In type-safe, object-oriented languages class analysis [1,3,10,22], (sometimes
called type analysis) focuses on determining, in the presence of polymorphic calls,
which particular implementation of a given method will be executed at run-
time, i.e., what is the specific class of the called object in the hierarchy. Multiple
compilation optimizations benefit from having precise class descriptions: inlining,
dead code elimination, etc. In addition, class information may allow analyzing
only a subset of the classes in the hierarchy, which may result in additional
precision.

We propose a novel analysis which infers in a combined way set sharing, nul-
lity, and class information for a subset of Java that takes into account most of its
important features: inheritance, polymorphism, visibility of methods, etc. The
analysis is multivariant, based on the algorithm of [21], which allows separating
different contexts, thus increasing precision. The additional precision obtained
from context sensitivity has been shown to be important in practice in the anal-
ysis of object-oriented programs [30].

The objective of using a reduced cardinal product [9] of these three abstract
domains is to achieve a good balance between precision and performance, since
the information tracked by each component helps refine that of the others. While
in principle these three analyses could be run separately, because they interact
(we provide some examples of this), this would result in a loss of precision or
require an expensive iteration over the different analyses until an overall fix-
point is reached [6,9]. In addition note that since our analysis is multivariant,
and given the different nature of the properties being tracked, performing anal-
yses separately may result in different sets of abstract values (contexts) for each
analysis for each program point. This makes it difficult to relate which abstract
value of a given analysis corresponds to a given abstract value of another anal-
ysis at a given point. At the other end of things, we prefer for clarity and
simplicity reasons to develop directly this three-component domain and the op-
erations on it, rather than resorting to the development of a more unified domain
through (semi-)automatic (but complex) techniques [6,7]. The final objectives of
our analysis include verification, static debugging, and optimization.

The closest related work is that of [26] which develops a pair-sharing [27]
analysis for object-oriented languages and, in particular, Java. Our description
of the (set-)sharing part of our domain is in fact based on their elegant for-
malization. The fundamental difference is that we track set sharing instead of
pair sharing, which provides increased accuracy in many situations and can
be more appropriate for certain applications, such as detecting independence for
program parallelization. Also, our domain and abstract semantics track addition-
ally nullity and classes in a combined fashion which, as we have argued above, is
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prog ::= class decl∗

class decl ::= class k1 [extends k2] decl∗ meth decl∗

meth decl ::= vbty (tret|void) meth decl∗ com
vbty ::= public | private
com ::= v = expr | v.f = expr

| decl | skip
| return expr | com;com
| if v (== |! =) (null|w) com else com

decl ::= v:t
var lit ::= v | a
expr ::= null | new k | v.f | v.m(v1, . . . vn) | var lit

Fig. 1. Grammar for the language

particularly useful in the presence of multivariance. In addition, we deal directly
with a larger set of object features such as inheritance and visibility. Finally, we
have implemented our domains (as well as the pair sharing domain of [26]), in-
tegrated them in our multivariant analysis and verification framework [17], and
benchmarked the system. Our experimental results are encouraging in the sense
that they seem to support that our contributions improve the analysis precision
at reasonable cost.

In [23,24], the authors use a distinctness domain in the context of an abstract
interpretation framework that resembles our sharing domain: if two variables
point to different abstract locations, they do not share at the concrete level.
Their approach is closer to shape analysis [25] than to sharing analysis, which
can be inferred from the former. Although information retrieved in this way
is generally more precise, it is also more computationally demanding and the
abstract operations are more difficult to design. We also support some language
constructs (e.g., visibility of methods) and provide detailed experimental results,
which are not provided in their work.

Most recent work [28,18,30] has focused on context-sensitive approaches to
the points-to problem for Java. These solutions are quite scalable, but flow-
insensitive and overly conservative. Therefore, a verification tool based on the
results of those algorithms may raise spurious warnings. In our case, we are able
to express sharing information in a safe manner, as invariants that all program
executions verify at the given program point.

2 Standard Semantics

The source language used is defined as a subset of Java which includes most of its
object-oriented (inheritance, polymorphism, object creation) and specific (e.g.,
access control) features, but at the same time simplifies the syntax, and does
not deal with interfaces, concurrency, packages, and static methods or variables.
Although we support primitive types in our semantics and implementation, they
will be omitted from the paper for simplicity.
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class Element {
int value;
Element next;}

class Vector {
Element first;

public void add(Element el) {
Vector v = new Vector();
el.next = null;
v.first = el;
append(v);

}
}

public void append(Vector v) {

if (this != v) {
Element e = first;
if (e == null)

first = v.first;
else {

while (e.next != null)
e = e.next;

e.next = v.first;
}

}
}

Fig. 2. Vector example

The rules for the grammar of this language are listed in Fig. 1. The skip
statement, not present in the Java standard specification [11], has the expected
semantics. Fig. 2 shows an example program in the supported language, an
alternative implementation for the java.util.Vector class of the JDK in which
vectors are represented as linked lists. Space constraints prevent us from showing
the full code here,1 although the figure does include the relevant parts.

2.1 Basic Notation

We first introduce some notation and auxiliary functions used in the rest of the
paper. By �→ we refer to total functions; for partial ones we use →. The powerset
of a set s is P(s); P+(s) is an abbreviation for P(s) \ {∅}. The dom function
returns all the elements for which a function is defined; for the codomain we
will use rng. A substitution f [k1 �→ v1, . . . , kn, �→ vn] is equivalent to f(k1) =
v1, . . . , f(kn) = vn. We will overload the operator for lists so that f [K �→ V ]
assigns f(ki) = vi, i = 1, . . . , m, assuming |K| = |V | = m. By f |−S we denote
removing S from dom(f). Conversely, f |S restricts dom(f) to S. For tuples
(f1, . . . , fm)|S = (f1|S , . . . , fm|S). Renaming in the set s of every variable in S

by the one in the same position in T (|S| = |T |) is written as s|TS . This operator
can also be applied for renaming single variables. We denote by B the set of
Booleans.

2.2 Program State and Sharing

With M we designate the set of all method names defined in the program. For
the set of distinct identifiers (variables and fields) we use V . We assume that V
also includes the elements this (instance where the current method is executed),

1 Full source code for the example can be found in
http://www.clip.dia.fi.upm.es/∼mario
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and res (for the return value of the method). In the same way, K represents
the program-defined classes. We do not allow import declarations but assume
as member of K the predefined class Object.

K forms a lattice implied by a subclass relation ↓: K → P(K) such that if
t2 ∈ ↓t1 then t2 ≤K t1. The semantics of the language implies ↓Object = K.
Given def : K × M �→ B, that determines whether a particular class provides
its own implementation for a method, the Boolean function redef : K × K ×
M �→ B checks if a class k1 redefines a method existing in the ancestor k2:
redef(k1, k2, m) = true iff ∃k s.t. def(k, m), k1 ≤K k<K k2.

Static types are accessed by means of a function π : V �→ K that maps variables
to their declared types. The purpose of an environment π is twofold: it indicates
the set of variables accessible at a given program point and stores their declared
types. Additionally, we will use the auxiliary functions F (k) (which maps the
fields of k ∈ K to their declared type), and typeπ(expr), which maps expressions
to types, according to π.

The description of the memory state is based on the formalization in [26,12].
We define a frame as any element of Frπ = {φ | φ ∈ dom(π) �→ Loc ∪ {null}},
where Loc = I

+ is the set of memory locations. A frame represents the first level
of indirection and maps variable names to locations except if they are null. The
set of all objects is Obj =

{
k � φ | k ∈ K, φ ∈ FrF (k)

}
. Locations and objects

are linked together through the memory Mem = {μ | μ ∈ Loc �→ Obj}. A new
object of class k is created as new(k) = k � φ where φ(f) = null ∀f ∈ F (k).
The object pointed to by v in the frame φ and memory μ can be retrieved via
the partial function obj(φ�μ, v) = μ(φ(v)). A valid heap configuration (concrete
state φ � μ) is any element of Σπ = {(φ � μ) | φ ∈ Frπ, μ ∈ Mem}. We will
sometimes refer to a pair (φ � μ) with δ.

The set of locations Rπ(φ � μ, v) reachable from v ∈ dom(π) in the particular
state φ � μ ∈ Σπ is calculated as Rπ(φ � μ, v) = ∪

{
Ri

π(φ � μ, v)
∣
∣ i ≥ 0

}
, the

base case being R0
π(φ � μ, v) = {(φ(v))|Loc} and the inductive one Ri+1

π (φ �
μ, v) = ∪

{
rng(μ(l).φ))|Loc | l ∈ Ri

π(φ � μ, v)
}
. Reachability is the basis of two

fundamental concepts: sharing and nullity. Distinct variables V = {v1, . . . , vn}
share in the actual memory configuration δ if there is at least one common
location in their reachability sets, i.e., shareπ(δ, V ) is true iff ∩n

i=1Rπ(δ, vi) = ∅.
A variable v ∈ dom(π) is null in state δ if Rπ(δ, v) = ∅. Nullity is checked by
means of nilπ : Σπ×dom(π) �→ B, defined as nilπ(φ�μ, v) = true iff φ(v) = null.

The run-time type of a variable in scope is returned by ψπ : Σπ×dom(π) �→ K,
which associates variables with their dynamic type, based on the information
contained in the heap state: ψπ(δ, v) = obj(δ, v).k if nilπ(δ, v) and ψπ(δ, v) =
π(v) otherwise. In a type-safe language like Java runtime types are congruent
with declared types, i.e., ψπ(δ, v) ≤K π(v) ∀v ∈ dom(π), ∀δ ∈ Σπ. Therefore,
a correct approximation of ψπ can always be derived from π. Note that at the
same program point we might have different run-time type states ψ1

π and ψ2
π

depending on the particular program path executed, but the static type state is
unique.
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Denotational (compositional) semantics of sequential Java has been the sub-
ject of previous work (e.g., [2]). In our case we define a simpler version of
that semantics for the subset defined in Sect. 2, described as transformations
in the frame-memory state. The descriptions are similar to [26]. Expression
functions EI

π�� : expr �→ (Σπ �→ Σπ′) define the meaning of Java expres-
sions, augmenting the actual scope π′ = π[res �→ typeπ(exp)] with the tem-
poral variable res. Command functions CI

π�� : com �→ (Σπ �→ Σπ) do the
same for commands; semantics of a method m defined in class k is returned
by the function I(k.m) : Σinput(k.m) → Σoutput(k.m). The definition of the re-
spective environments, given a declaration in class k as tret m(this : k, p1 :
t1 . . . pn : tn) com, is input(k.m) = {this �→ k, p1 �→ t1, . . . , pn �→ tn} and
output(k.m) = input(k.m)[out �→ tret].

Example 1. Assume that, in Figure 2, after entering in the method add of the
class Vector we have an initial state (φ0 � μ0) s.t. loc1 = φ0(el) = null. After
executing Vector v = new Vector() the state is (φ1 � μ1), with φ1(v) = loc2,
and μ1(loc2).φ(first) = null. The field assignment el.next = null results in
(φ2 � μ2), verifying μ2(loc1).φ(next) = null. In the third line, v.first = el
links loc1 and loc2 since now μ3(loc2).φ(first) = loc1. Now v and el share,
since their reachability sets intersect at least in {loc1}. Finally, assume that
append attaches v to the end of the current instance this resulting in a memory
layout (φ4 � μ4). Given loc3 = obj((φ4 � μ4)(this)).φ(first), it should hold that
μ4(. . . μ4(loc3).φ(next) . . .).φ(next) = loc2. Now this shares with v and therefore
with el, because loc1 is reachable from loc2.

3 Abstract Semantics

An abstract state σ ∈ Dπ in an environment π approximates the sharing, nullity,
and run-time type characteristics (as described in Sect. 2.2) of set of concrete
states in Σπ. Every abstract state combines three abstractions: a sharing set
sh ∈ DSπ, a nullity set nl ∈ DN π, and a type member τ ∈ DT π, i.e., Dπ =
DSπ × DN π × DT π.

The sharing abstract domain DSπ ={{v1, . . . , vn} | {v1, . . . , vn} ∈ P(dom(π)),
∩n

i=1Cπ(vi) = ∅} is constrained by a class reachability function which retrieves
those classes that are reachable from a particular variable: Cπ(v) = ∪{Ci

π(v) | i ≥
0}, given C0

π(v) =↓π(v) and Ci+1
π (v) = ∪{rng(F (k)) |k ∈ Ci

π(v)}. By using class
reachability, we avoid including in the sharing domain sets of variables which
cannot share in practice because of the language semantics. The partial order
≤DSπ

is set inclusion.
We define several operators over sharing sets, standard in the sharing litera-

ture [14,19]. The binary union � : DSπ × DSπ �→ DSπ, calculated as S1 �
S2 = {Sh1 ∪ Sh2 | Sh1 ∈ S1, Sh2 ∈ S2} and the closure under union ∗ : DSπ �→
DSπ operators, defined as S∗ = {∪SSh | SSh ∈ P+(S)}; we later filter their re-
sults using class reachability. The relevant sharing with respect to v is shv =
{s ∈ sh | v ∈ s}, which we overloaded for sets. Similarly, sh−v ={s ∈ sh | v /∈ s}.
The projection sh|V is equivalent to {S | S = S′ ∩ V, S′ ∈ sh}.
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SEI
π�null�(sh, nl, τ ) = (sh, nl′, τ ′)
nl′ = nl[res �→ null]
τ ′ = τ [res �→ ↓object]

SEI
π�new k�(sh, nl, τ ) = (sh′, nl′, τ ′)
sh′ = sh ∪ {{res}}
nl′ = nl[res �→ nnull]
τ ′ = τ [res �→ {κ}]

SEI
π�v�(sh, nl, τ ) = (sh′, nl′, τ ′)
sh′ = ({{res}} � shv) ∪ sh−v

nl′ = nl[res �→ nl(v)]
τ ′ = τ [res �→ τ (v)]

SEI
π�v.f�(sh, nl, τ ) =

{
⊥ if nl(v) = null
(sh′, nl′, τ ′) otherwise

sh′ = sh−v ∪
⋃

{P+(s|−v ∪ {res}) � {{v}} | s ∈ shv}
nl′ = nl[res �→ unk, v �→ nnull]
τ ′ = τ [res �→↓ F (π(v)(f))]

SEI
π�v.m(v1, . . . , vn)�(sh, nl, τ ) =

{
⊥ if nl(v) = null
σ′ otherwise

σ′ = SEI
π�call(v, m(v1, . . . , vn))�(sh, nl′, τ )

nl′ = nl[v �→ nnull]

Fig. 3. Abstract semantics for the expressions

The nullity domain is DN π = P(dom(π) �→ NV), where NV = {null, nnull,
unk}. The order ≤NV of the nullity values (null ≤NV unk, nnull ≤NV unk)
induces a partial order in DN π s.t. nl1 ≤DNπ

nl2 if nl1(v) ≤NV nl2(v) ∀v ∈
dom(π). Finally, the domain of types maps variables to sets of types congruent
with π: DT π= {(v, {t1, . . . , tn}) ∈ dom(π) �→ P(K) | {t1, . . . , tn} ⊆↓π(v)}.

We assume the standard framework of abstract interpretation as defined in [8]
in terms of Galois insertions. The concretization function γπ : Dπ �→ P(Σπ) is
γπ(sh, nl, τ) = {δ ∈ Σπ | ∀V ⊆ dom(π), shareπ(δ, V ) and �W, V ⊂ W ⊆ dom(π)
s.t. shareπ(δ, W ) ⇒ V ∈ sh, and Rπ(δ, v) = ∅ if nl(v) = null, and Rπ(δ, v) =
∅ if nl(v) = nnull, and ψπ(δ, v) ∈ τ(v) , ∀v ∈ dom(π)}.

The abstract semantics of expressions and commands is listed in Figs. 3 and
4. They correctly approximate the standard semantics, as proved in [16]. As
their concrete counterparts, they take an expression or command and map an
input state σ ∈ Dπ to an output state σ′ ∈ Dσ

π′ where π = π
′
in commands and

π
′
= π[res �→ typeπ(expr)] in expression expr. The semantics of a method call

is explained in Sect. 3.1. The use of set sharing (rather than pair sharing) in the
semantics prevents possible losses of precision, as shown in Example 2.

Example 2. In the add method (Fig. 2), assume that σ = ({{this, el} , {v}},
{this/nnull, el/nnull, v/nnull}) right before evaluating el in the third line (we
skip type information for simplicity). The expression el binds to res the location
of el, i.e., forces el and res to share. Since nl(el) = null the new sharing is sh′ =
({{res}}�shel)∪sh−el = ({{res}}�{{this, el}})∪{{v}} = {{res, this, el} , {v}}.
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SCI
π�v=expr�σ = ((sh′|−v)|vres, nl′|vres, τ

′′ |−res)
τ

′′
= τ ′[v �→ (τ ′(v) ∩ τ ′(res))]

(sh′, nl′, τ ′) = SEI
π�expr�σ

SCI
π�v.f=expr�σ = (sh

′′
, nl

′′
, τ ′)|−res

sh
′′

=

⎧
⎨

⎩

⊥ if nl′(v) = null
sh′ if nl′(res) = null
shy ∪ sh′

−{v,res} otherwise
nl

′′
= nl′[v �→ nnull]

shy = (
⋃

{P(s|−v ∪ {res}) � {{v}} | s ∈ sh′
v} ∪⋃

{P(s|−res ∪ {v}) � {{res}} | s ∈ sh′
res})∗

(sh′, nl′, τ ′) = SEI
π�expr�σ

SCI
π� if v==null com1

else com2

�σ =

⎧
⎨

⎩

σ′
1 if nl(v) = null

σ′
2 if nl(v) = nnull

σ1 
 σ2 if nl(v) = unk

σ′
i = SCI

π�comi�σ
σ1 = SCI

π�com1�(sh|−v, nl[v �→ null], τ [v �→↓π(v)])
σ2 = SCI

π�com2�(sh, nl[v �→ nnull], τ )

SCI
π� if v==w com1

else com2

�(sh, nl, τ ) =

⎧
⎨

⎩

σ′
1 if nl(v) = nl(w) = null

σ′
2 if sh|{v,w} = ∅

σ′
1 
 σ′

2 otherwise
σ′

i = SCI
π�comi�(sh, nl, τ )

SCI
π�com1;com2�σ = SCI

π�com2�(SCI
π�com1�σ)

Fig. 4. Abstract semantics for the commands

In the case of pair-sharing, the transfer function [26] for the same initial state
sh = {{this, el} , {v, v}} returns sh′p = {{res, el}, {res, this} , {this, el} , {v, v}},
which translated to set sharing results in sh′′ = {{res, el}, {res, this} , {res, this,
el}, {this, el} , {v}}, a less precise representation (in terms of ≤DSπ) than sh′.

Example 3. Our multivariant analysis keeps two different call contexts for the
append method in the Vector class (Fig. 2). Their different sharing informa-
tion shows how sharing can improve nullity results. The first context corre-
sponds to external calls (invocation from other classes), because of the public
visibility of the method: σ1 = ({{this} , {this, v} , {v}}, {this/nnull, v/unk} ,
{this/ {vector} , v/ {vector}}). The second corresponds to an internal (within
the class) call, for which the analysis infers that this and v do not share:
σ2 = ({{this} , {v}}, {this/nnull, v/unk} , {this/ {vector} , v/ {vector}}). In-
side append, we avoid creating a circular list by checking that this = v. Only
then is the last element of this linked to the first one of v. We use com to rep-
resent the series of commands Element e = first; if (e==null)...else..
and bdy for the whole body of the method. Independently of whether the in-
put state is σ1 or σ2 our analysis infers that SCI

π�com�σ1 = SCI
π�com�σ2 =

({{this, v}}, {this/nnull, v/nnull}, {this/ {vector} , v/ {vector}}) = σ3. How-
ever, the more precise sharing information in σ2 results in a more precise analysis
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Algorithm 1. Extend operation
input : state before the call σ, result of analyzing the call σλ

and actual parameters A
output: resulting state σf

if σλ = ⊥ then
σf = ⊥

else
let σ = (sh, nl, τ ), and σλ = (shλ, nlλ, τλ), and AR = A ∪ {res}

star = (shA ∪ {{res}})∗

shext = {s | s ∈ star, s|AR ∈ shλ}
shf = shext ∪ sh−A

nlf = nl[res �→ nlλ(res)]
τf = τ [res �→ τλ(res)]
σf = (shf , nlf , τf )

end

of bdy, because of the guard (this!=v). In the case of the external calls,
SCI

π�bdy�σ1= SCI
π�com�σ1 � SCI

π�skip�σ1= σ1 �σ3 = σ1. When the entry state
is σ2, the semantics at the same program point is SCI

π�bdy�σ2= SCI
π�com�σ2

= σ3 < σ1. So while the internal call requires v = null to terminate, we cannot
infer the final nullity of that parameter in a public invocation, which might finish
even if v is null.

3.1 Method Calls

The semantics of the expression call(v, m(v1, . . . , vn)) in state σ = (sh, nl, τ) is
calculated by implementing the top-down methodology described in [21]. We will
assume that the formal parameters follow the naming convention F in all the im-
plementations of the method; let A = {v, v1, . . . , vn} and F = dom(input(k.m))
be ordered lists. We first calculate the projection σp = σ|A and an entry state
σy = σp|FA. The abstract execution of the call takes place only in the set of classes
K = τ(v), resulting in an exit state σx =

⊔
{SCI

π�k′.m�σy |k′ = lookup(k, m), k ∈
K}, where lookup returns the body of k’s implementation of m, which can be
defined in k or inherited from one of its ancestors. The abstract execution of
the method in a subset K ⊆ ↓π(v) increases analysis precision and is the ul-
timate purpose of tracking run-time types in our abstraction. We now remove
the local variables σb = σx|F∪{out} and rename back to the scope of the caller:
σλ = σb|A∪{res}

F∪{out}; the final state σf is calculated as σf = extend(σ, σλ, A). The
extend : Dπ × Dπ × P(dom(π)) �→ Dπ function is described in Algorithm 1.

In Java references to objects are passed by value in a method call. Therefore,
they cannot be modified. However, the call might introduce new sharing between
actual parameters through assignments to their fields, given that the formal
parameters they correspond to have not been reassigned. We keep the original
information by copying all the formal parameters at the beginning of each call,
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as suggested in [23]. Those copies cannot be modified during the execution of
the call, so a meaningful correspondence can be established between A and F .

We can do better by realizing that analysis might refine the information about
the actual parameters within a method and propagating the new values discov-
ered back to σf . For example, in a method foo(Vector v){if v!=null skip
else throw null}, it is clear that we can only finish normally if nlx(v) = nnull,
but in the actual semantics we do not change the nullity value for the corre-
sponding argument in the call, which can only be more imprecise. Note that the
example is different from foo(Vector v){v = new Vector}, which also finishes
with nlx(v) = nnull. The distinction over whether new attributes are preserved
or not relies on keeping track of those variables which have been assigned inside
the method, and then applying the propagation only for the unset variables.

Example 4. Assume an extra snippet of code in the Vector class of the form if
(v2!=null) v1.append(v2) else com, which is analyzed in state σ = ({{v1} ,
{v2}}, {v1/nnull, v2/nnull}, {v1/ {vector} , v2/ {vector}}). Since we have nul-
lity information, it is possible to identify the block com as dead code. In con-
trast, sharing-only analyses can only tell if a variable is definitely null, but never
if it is definitely non-null. The call is analyzed as follows. Let A = {v1, v2}
and F = {this, v}, then σp = σ|A = σ and the entry state σy is σ|FA =
({{this} , {v}} , {this/nnull, v/nnull} , {this/ {vector} , v/ {vector}}). The only
class where append can be executed is Vector and results (see Example 3) in an
exit state for the formal parameters and the return variable σb = ({{this, v}} ,
{this/nnull, v/nnull, out/null}, {this/ {vector} , v/ {vector} , out/ {void}}),
which is further renamed to the scope of the caller obtaining σλ = ({{v1, v2}} ,
{v1/ nnull, v2/nnull, res/null}, {v1/ {vector} , v2/ {vector} , res/ {void}}).
Since the method returns a void type we can treat res as a primitive (null)
variable so σf = extend(σ, σλ, {v1, v2}) = ({{v1, v2}} , {v1/nnull, v2/nnull, res/
null}, {v1/ {vector} , v2/ {vector} , res/{void}}).
Example 5. The extend operation used during interprocedural analysis is a point
where there can be significant loss of precision and where set sharing shows its
strengths. For simplicity, we will describe the example only for the sharing com-
ponent; nullity and type information updates are trivial. Assume a scenario
where a call to append(v1,v2) in sharing state sh = {{v0, v1} , {v1} , {v2}} re-
sults in shλ = {{v1, v2}}. Let A and AR be the sets {v1, v2} and {v1, v2, res}
respectively. The extend operation proceeds as follows: first we calculate star
as (shA ∪ {{res}})∗ = (sh ∪ {{res}})∗ = ({{v0, v1} , {v1} , {v2} , {res}})∗ =
{{v0, v1} , {v0, v1, v2} , {v0, v1, v2, res} , {v0, v1, res} , {v1} , {v1, v2} , {v1, v2, res} ,
{v1, res} , {v2} , {v2, res} , {res}}, from which we delete those elements whose
projection over AR is not included in shλ, obtaining shext = {{v0, v1, v2} ,
{v1, v2}}. The resulting sharing component is the union of that shext with
sh−A = ∅, so shf1 = shext = {{v0, v1, v2} , {v1, v2}}.

When the same sh and shλ are represented in their pair sharing versions
shp = {{v0, v1} , {vo, v0} , {v1, v1} , {v2, v2}} and shp

λ = {{v1, v2} , {v1, v1} , {v2,
v2}}, the extend operation in [26] introduces spurious sharings in shf because of
the lower precision of the pair-sharing representation. In this case, shp

f2 = (sh ∪
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shp
λ)∗A = {{v0, v1} , {v0, v2} , {v1, v2} , {v0, v0} , {v1, v1} , {v2, v1}}. This informa-

tion, expressed in terms of set sharing, results in shf2 = {{v0, v1} , {v0, v2} , {v0,
v1, v2}, {v1, v2} , {v0} , {v1} , {v2}}, which is much less precise that shf1.

4 Experimental Results

In our analyzer the abstract semantics presented in the previous section is evalu-
ated by a highly optimized fixpoint algorithm, based on that of [21]. The algorithm
traverses the program dependency graph, dynamically computing the strongly-
connected components and keeping detailed dependencies on which parts of the
graph need to be recomputed when some abstract value changes during the anal-
ysis of iterative code (loops and recursions). This reduces the number of steps and
iterations required to reach the fixpoint, which is specially important since the al-
gorithm implements multivariance, i.e., it keeps different abstract values at each
program point for every calling context, and it computes (a superset of) all the
calling contexts that occur in the program. The dependencies kept also allow re-
lating these values along execution paths (this is particularly useful for example
during error diagnosis or for program specialization).

We now provide some precision and cost results obtained from the imple-
mentation in the framework described in [17] of our set-sharing, nullity, and
class (SSNlTau) analysis. In order to be able to provide a comparison with the
closest previous work, we also implemented the pair sharing (PS) analysis pro-
posed in [26]. We have extended the operations described in [26], enabling them
to handle some additional cases required by our benchmark programs such as
primitive variables, visibility of methods, etc. Also, to allow direct comparison,
we implemented a version of our SSNlTau analysis, which is referred to simply
as SS, that tracks set sharing using only declared type information and does not
utilize the (non-)nullity component. In order to study the influence of tracking
run-time types we have implemented a version of our analysis with set sharing
and (non-)nullity, but again using only the static types, which we will refer to
as SSNl. In these versions without dynamic type inference only declared types
can affect τ and thus the dynamic typing information that can be propagated
from initializations, assignments, or correspondence between arguments and for-
mal parameters on method calls is not used. Note however that the version that
includes tracking of dynamic typing can of course only improve analysis results
in the presence of polymorphism in the program: the results should be identical
(except perhaps for the analysis time) in the rest of the cases. The polymorphic
programs are marked with an asterisk in the tables.

The benchmarks used have been adapted from previous literature on either
abstract interpretation for Java or points-to analysis [26,24,23,29]. We added
two different versions of the Vector example of Fig. 2. Our experimental results
are summarized in Tables 5, 6, and 7.

The first column (#tp) in Tables 5 and 6 shows the total number of program
points (commands or expressions) for each program. Column #rp then pro-
vides, for each analysis, the total number of reachable program points, i.e., the
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PS SS
#tp #rp #up #σ t #rp #up #σ t %Δt

dyndisp (*) 71 68 3 114 30 68 3 114 29 -2
clone 41 38 3 42 52 38 3 50 81 55
dfs 102 98 4 103 68 98 4 108 68 0
passau (*) 167 164 3 296 97 164 3 304 120 23
qsort 185 142 43 182 125 142 43 204 165 32
integerqsort 191 148 43 159 110 148 43 197 122 10
pollet01 (*) 154 126 28 276 196 126 28 423 256 30
zipvector (*) 272 269 3 513 388 269 3 712 1029 164
cleanness (*) 314 277 37 360 233 277 37 385 504 116

overall 1497 1330 167 2045 1299 1330 167 2497 2374 82.75

Fig. 5. Analysis times, number of program points, and number of abstract states

SSNl SSNlTau
#tp #rp #up #σ t %Δt #rp #up #σ t %Δt

dyndisp (*) 71 61 10 103 53 77 61 10 77 20 -33
clone 41 31 10 34 100 92 31 10 34 90 74
dfs 102 91 11 91 129 89 91 11 91 181 166
passau (*) 167 157 10 288 117 18 157 10 270 114 17
qsort 185 142 43 196 283 125 142 43 196 275 119
integerqsort 191 148 43 202 228 107 148 43 202 356 224
pollet01 (*) 154 119 35 364 388 98 98 56 296 264 35
zipvector (*) 272 269 3 791 530 36 245 27 676 921 136
cleanness (*) 314 276 38 383 276 38 266 48 385 413 77

overall 1497 1294 203 2452 2104 61.97 1239 258 2227 2634 102.77

Fig. 6. Analysis times, number of program points, and number of abstract states

number of program points that the analysis explores, while #up represents the
(#tp − #rp) points that are not analyzed because the analysis determines that
they are unreachable. It can be observed that tracking (non-)nullity (Nl) reduces
the number of reachable program points (and increases conversely the number
of unreachable points) because certain parts of the code can be discarded as
dead code (and not analyzed) when variables are known to be non-null. Track-
ing dynamic types (Tau) also reduces the number of reachable points, but, as
expected, only for (some of) the programs that are polymorphic. This is due
to the fact that the class analysis allows considering fewer implementations of
methods, but obviously only in the presence of polymorphism.

Since our framework is multivariant and thus tracks many different contexts at
each program point, at the end of analysis there may be more than one abstract
state associated with each program point. Thus, the number of abstract states
inferred is typically larger than the number of reachable program points. Column
#σ provides the total number of these abstract states inferred by the analysis.
The level of multivariance is the ratio #σ/#rp. It can be observed that the simple
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PS SS
#sh %sh #sh %sh

dyndisp (*) 640 60.37 435 73.07
clone 174 53.10 151 60.16
dfs 1573 96.46 1109 97.51
passau (*) 5828 94.56 3492 96.74
qsort 1481 67.41 1082 76.34
integerqsort 2413 66.47 1874 75.65
pollet01 (*) 793 89.81 1043 91.81
zipvector (*) 6161 68.71 5064 80.28
cleanness (*) 1300 63.63 1189 70.61

overall 20363 73.39 15439 80.24

Fig. 7. Sharing precision results

set sharing analysis (SS) creates more abstract states for the same number of
reachable points. In general, such a larger number for #σ tends to indicate more
precise results (as we will see later). On the other hand, the fact that addition
of Nl and Tau reduces the number of reachable program points interacts with
precision to obtain the final #σ value, so that while there may be an increase in
the number of abstract states because of increased precision, on the other hand
there may be a decrease because more program points are detected as dead code
by the analysis. Thus, the #σ values for SSNl and SSNlTau in some cases
actually decrease with respect to those of PS and SS.

The t column in Tables 5 and 6 provides the running times for the different
analyses, in milliseconds, on a Pentium M 1.73Ghz, 1Gb of RAM, running Fedora
Core 4.0, and averaging several runs after eliminating the best and worst values.
The %Δt columns show the percentage variation in the analysis time with respect
to the reference pair-sharing (PS) analysis, calculated as Δdom%t = 100∗(tdom−
tPS)/tPS . The more complex analyses tend to take longer times, while in any
case remaining reasonable. However, sometimes more complex analyses actually
take less time, again because the increased precision and the ensuing dead code
detection reduces the amount of program that must be analyzed.

Table 7 shows precision results in terms of sharing, concentrating on the SP
and SS domains, which allow direct comparison. A more usage-oriented way of
measuring precision would be to study the effect of the increased precision in
an application that is known to be sensitive to sharing information, such as, for
example, program parallelization [4]. On the other hand this also complicates
matters in the sense that then many other factors come into play (such as, for
example, the level of intrinsic parallelism in the benchmarks and the paralleliza-
tion algorithms) so that it is then also harder to observe the precision of the
analysis itself. Such a client-level comparison is beyond the scope of this paper,
and we concentrate here instead on measuring sharing precision directly.

Following [6], and in order to be able to compare precision directly in terms
of sharing, column #sh provides the sum over all abstract states in all reachable
program points of the cardinality of the sharing sets calculated by the analysis.
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For the case of pair sharing, we converted the pairs into their equivalent set
representation (as in [6]) for comparison. Since the results are always correct,
a smaller number of sharing sets indicates more precision (recall that � is the
power set). This is of course assuming σ is constant, which as we have seen is not
the case for all of our analyses. On the other hand, if we compare PS and SS,
we see that SS has consistently more abstract states than PS and consistently
lower numbers of sharing sets, and the trend is thus clear that it indeed brings
in more precision. The only apparent exception is pollet01 but we can see that
the number of sharing sets is similar for a significantly larger number of abstract
states.

An arguably better metric for measuring the relative precision of sharing is
the ratio %Max = 100∗ (1−#sh/(2#vo −1)) which gives #sh as a percentage of
its maximum possible value, where #vo is the total number of object variables
in all the states. The results are given in column %sh. In this metric 0% means
all abstract states are � (i.e., contain no useful information) and 100% means all
variables in all abstract states are detected not to share. Thus, larger values in
this column indicate more precision, since analysis has been able to infer smaller
sharing sets. This relative measure shows an average improvement of 7% for SS
over PS.

5 Conclusions

We have proposed an analysis based on abstract interpretation for deriving pre-
cise sharing information for a Java-like language. Our analysis is multivariant,
which allows separating different contexts, and combines Set Sharing, Nullity,
and Classes: the domain captures which instances definitely do not share or are
definitively null, and uses the classes to refine the static information when in-
heritance is present. We have implemented the analysis, as well as previously
proposed analyses based on Pair Sharing, and obtained encouraging results: for
all the examples the set sharing domains (even without combining with Nullity
or Classes) offer more precision than the pair sharing counterparts while the
increase in analysis times appears reasonable. In fact the additional precision
(also when combined with nullity and classes) brings in some cases analysis time
reductions. This seems to support that our contributions bring more precision
at reasonable cost.

Acknowledgments

The authors would like to thank Samir Genaim for many useful comments to
previous drafts of this document. Manuel Hermenegildo and Mario Méndez-Lojo
are supported in part by the Prince of Asturias Chair in Information Science and
Technology at UNM. This work was also funded in part by the Information So-
ciety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS project, by the Spanish Ministry of

MOBIUS Deliverable D2.6 Preliminary Report on Advanced Resource Policies

208



186 M. Méndez-Lojo and M.V. Hermenegildo

Education under the TIN-2005-09207 MERIT project, and the Madrid Regional
Government under the PROMESAS project.

References

1. Agesen, O.: The cartesian product algorithm: Simple and precise type inference of
parametric polymorphism. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp.
2–26. Springer, Heidelberg (1995)

2. Alves-Foss, J. (ed.): Formal Syntax and Semantics of Java. LNCS, vol. 1523.
Springer, Heidelberg (1999)

3. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
Proc. of OOPSLA 1996, SIGPLAN Notices, October 1996, vol. 31(10), pp. 324–341
(1996)
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Abstract
Abstract machines provide a certain separation between platform-
dependent and platform-independent concerns in compilation.
Many of the differences between architectures are encapsulated in
the specific abstract machine implementation and the bytecode is
left largely architecture independent. Taking advantage of this fact,
we present a framework for estimating upper and lower bounds on
the execution times of logic programs running on a bytecode-based
abstract machine. Our approach includes a one-time, program-
independent profiling stage which calculates constants or functions
bounding the execution time of each abstract machine instruction.
Then, a compile-time cost estimation phase, using the instruction
timing information, infers expressions giving platform-dependent
upper and lower bounds on actual execution time as functions of
input data sizes for each program. Working at the abstract machine
level makes it possible to take into account low-level issues in
new architectures and platforms by just reexecuting the calibration
stage instead of having to tailor the analysis for each architec-
ture and platform. Applications of such predicted execution times
include debugging/verification of time properties, certification of
time properties in mobile code, granularity control in parallel/dis-
tributed computing, and resource-oriented specialization.

Categories and Subject Descriptors D.4.8 [Performance]: Mod-
eling and prediction;
F.3.2 [Semantics of Programming Languages]: Program analysis;
D.1.6 [Programming Techniques]: Logic programming

General Terms Languages, performance

Keywords Execution Time Estimation, Cost Analysis, Profiling,
Resource Awareness, Cost Models, Logic Programming.
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1. Introduction
Cost analysis has been studied for several declarative languages (7;
16; 11; 13). In logic programming previous work has focused on
inferring upper (12; 11) or lower (13; 8) bounds on the cost of
programs, where such bounds are functions on the size (or values)
of input data. This approach captures well the fact that program
execution cost in general depends on input data sizes. On the other
hand the results of these analyses are given in terms of execution
steps. While this measure has the advantage of being platform
independent, it is not straightforward to translate such steps into
execution time.

Estimation of worst case execution times (WCET) has received
significant attention in the context of high-level imperative pro-
gramming languages (24). In (18; 6) a portable WCET analysis
for Java is proposed. However, the WCET approach only provides
absolute upper bounds on execution time (i.e., bounds that do not
depend on program input arguments) and often requires annotating
loops manually.

Our objective is to infer automatically more precise bounds on
execution times that are in general functions that depend on input
data sizes. In (19) a static analysis was proposed in order to in-
fer such platform-dependent time bounds in logic programs. This
approach is based on a high-level analysis of certain syntactic char-
acteristics of the program clause text (sizes of terms in heads, sizes
of terms in bodies, number of arguments, etc.). Although promising
experimental results were obtained, the predicted execution times
were not very precise. In this paper we propose a new analysis
which, in order to improve the accuracy of the time predictions,
on one hand takes into account lower level factors and on the other
makes the model richer by directly taking into account the inher-
ently variable cost of certain low-level operations.

Regarding the choice of this lower level, rather than trying for
example to model directly the characteristics of the physical pro-
cessor, as in WCET, and given that most popular logic program-
ming implementations are based on variations of the Warren ab-
stract machine (WAM) (23; 1), we chose to model cost at the
level of abstract machine instructions. Abstract machines have been
used as a basic implementation technique in several programming
paradigms (functional, logic, imperative, and object-oriented) (14)
with the advantage that they provide an intermediate layer that sep-
arates to a certain extent the many low-level details of real (hard-
ware) machines from the higher-level language, while at the same
time making compilation easier. This property can be used to facil-
itate the design of our framework.

Within this setting, we present a new framework for the static
estimation of execution times of programs. The basic ideas in our
approach follow:
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1. Measure the execution time of each of the instructions in a
lower-level LB (bytecode) language (or approximate it with a
function if it depends on the value of an argument) in some
specific abstract machine implementation when executed on a
given processor / O.S.

2. Make the information regarding instruction execution time
available to the timing analyzer. This is, in our proposal, done
by means of cost assertions (written in a suitable assertion
language) which are stored in a module accessible to the com-
piler/analyzer.

3. Given a concrete program P written in the source languageLH ,
compile it into LB and record the relationship between P and
its compiled counterpart.

4. Automatically analyze program P , taking into account the in-
struction execution time (determined in item 1 above) to infer a
cost function CP . This function is an expression which returns
(bounds on) the actual execution time of P for different input
data sizes for the given platform.

Points (1) and (2) are performed in a one-time profiling phase,
independent from program P , while the rest are performed once
for each P in the static (compile-time) cost analysis phase. We
would like to point out that, in general, the basic ideas underlying
our work can be applied to any language LH as long as (i) cost
estimation can be derived for programs written in LH , (ii) the
translation of LH to some other (usually lower-level) language LB

is accessible, and (iii) the execution time of the instructions in LB

can be timed accurately enough. We will, however, focus herein on
logic languages, so that we assumeLH to be a Prolog-like language
and LB some variant of the WAM bytecode.

The proposed framework has been implemented as part of the
CiaoPP (17) system in such a way that any abstract machine prop-
erly instrumented can be analyzed. To the best of our knowledge,
this is the first attempt at providing a timing analysis producing
upper- and lower-bound time functions based on the cost of lower-
level machine instructions.

2. Mappings Between Program Segments and
Bytecodes

Let OpSet = {b1, b2, . . . , bn} be the set of instructions of the ab-
stract machine under consideration. We assume that each instruc-
tion is defined by a numeric identifier and its arity, i.e., bi ≡ fi/ni,
where fi is the identifier and ni the arity. Each program is compiled
into a sequence of expressions of the form f(a1, a2, . . . , an) where
f is the instruction name and the ai’s are its arguments. For con-
ciseness, we will use Ii to refer to such expressions. The sequences
of expressions into which a program is compiled are generally en-
coded using bytecodes. In the following we will often refer to se-
quences of abstract machine instructions or sequences of bytecodes
simply as “bytecodes.”

Let C be a clause H :- L1, . . . , Lm. Let E(C) be a function that
returns the sequence of bytecodes resulting from the compilation
of clause C:

E(C) =< I1, I2, . . . , Ip >

Let E(C, H) be a function that maps the clause head H to the
sequence of bytecodes in E(C) starting from the beginning up to
the first call/execute instruction or to the end of the sequence
E(C) if there are no more call/execute instructions (i.e., to the
end of the bytecode sequence resulting from the compilation of
clause C). LetE(C, Li) be the function that maps literal Li of clause
C to the sequence of bytecodes in E(C) which start at the call
bytecode instruction corresponding to this literal and up to the next
call/execute instruction or to the end of the sequence E(C) if

append([], X, X).
append/3/1: try me else append/3/2

allocate
get constant([],A0)

E(C1, H
1) get variable(V0,A1)

get value(V0,A2)
deallocate
proceed

append([X|Xs], Y, [X|Zs]) :-
append/3/2: trust me

allocate
get variable(V0,A0)
set variable(V1)
set variable(V2)
set variable(V3)
get list(V1,V3)
set variable(V4)
unify variable(V2,V4)
unify variable(V0,V3)

E(C2, H
2) set variable(V5,A1)

get variable(V6,A2)
set variable(V7)
set variable(V8)
get list(V1,V8)
set variable(V9)
unify variable(V7,V9)
unify variable(V6,V8)
put value(V2,A0)
put value(V5,A1)
put value(V7,A2)
deallocate

append(Xs, Y, Zs).

E(C2, L
2
1) execute append/3

Table 1. Sequences of bytecodes assigned to clause heads and
body literals of the clauses C1 and C2 of predicate append by the
functions E(C, H) and E(C, L).

there are no more call/execute instructions. If ] represents the
concatenation of sequences of bytecodes, then:

E(C) = E(C, H)
]

(

m]
i=1

E(C, Li))

Note that functions E(C, H) and E(C, Li) do not necessarily
return the bytecodes that one would normally associate to the clause
head H and literal Li respectively. Instead, the definition of those
functions associates the instructions corresponding to argument
preparation for a given call with the (success of the) previous
call (or head). This is to cater for the fact that, in the context of
backtracking, the WAM argument preparation occurs only one time
per call to a literal, even if such call is retried more times before
failing definitively. As a result, the cost of argument preparation
for a given call/execute instruction needs to be associated with
the previous literal to that call/execute, in order not to count it
every time the call is retried.

Table 1 shows how predicate append/3 is compiled into byte-
codes, and identifies the result of calling the E(C, H) and E(C, Li)
functions for each clause head and body literal. H1 represents the
head of the first clause (C1), and H2 and L21 the head of the second
(recursive) clause (C2) and the first literal in such clause body (the
only body literal).
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3. Modeling the Execution Time of Instructions
We define a function t(I) (the timing model), which takes a byte-
code instruction I and returns another function which estimates the
execution time for it depending on the input data sizes of the byte-
code. This is similar to the approach described in (5), where, how-
ever, t(I) was a constant.

In many cases we can assume that the time to execute a bytecode
is constant. However there are some instructions for which this does
not hold because their definitions involve loops. In many of these
cases the timing model consists of an initial constant time t0 plus
another additional constant time titer to cater for the cost of each
iteration, and a simple linear model can be used: t0 + n × titer .
Consider for example the unify void n instruction, which pushes
n new unbound cells on the heap (1), and whose execution time is a
linear function on n. In some other cases instructions have different
execution times depending on the (fixed) values a given argument
can take from some finite set. In such cases, execution time is an
arbitrary function on the argument. Specific constants are assigned
for each possible argument value by means of profiling (Section 5).

Since the cost of a given instruction is different when it succeeds
and when it fails, we will have two costs for each instruction that
can fail: one for the success case and another for the failure case. Fi-
nally, and besides lower-level factors such as cache behavior, there
are some additional variable factors (such as, e.g., the length of
dereferencing chains) which may affect execution times. These fac-
tors are in principle not impossible to cater for via a combination
of static and dynamic analysis, but, given the additional complica-
tion involved, we will ignore them herein and explore what kind of
precision of timing prediction can be achieved with this first level
of approximation.

Another factor that we are not taking into account at this mo-
ment is garbage collection (GC). GC makes programs run slower,
which, at profiling time, increases the (estimated) cost of every
instruction. Therefore, turning it off at profile time (which gives
a smaller estimation of instruction cost) is safe when finding out
lower bounds: if the program whose execution time is to be pre-
dicted is run with GC turned on, then it would run slower w.r.t. an
execution with GC turned off (as it was when profiling), and the
estimated bounds will still be lower bounds, albeit more conserva-
tive. An inverse reasoning applies to upper bounds, and the tech-
nique herein presented is equally valid. However, for the sake of
simplicity, we have taken all the measurements (both for profiling
and executions to be predicted) with GC disconnected.

4. Static Cost Analysis
We now present the compile-time component of our combined
framework: the static cost analysis. This analysis has been imple-
mented and integrated in CiaoPP (17).

4.1 Overview of the Approach
Since the work done by a call to a recursive procedure often de-
pends on the “size” of its input, knowing this size is a prerequisite
to statically estimate such work. Our basic approach is as follows:
given a call p, an expression Φp(n) is statically computed that (i)
is relatively simple to evaluate, and (ii) it approximates Timep(n),
where Timep(n) denotes the cost (in time units) of computing p
for an input of size n on a given platform. Various measures are
used for the “size” of an input, such as list-length, term-size, term-
depth, integer-value, etc. It is then evaluated at run-time, when the
size of the input is known, yielding (upper or lower) bounds on the
execution time required by the computation of the call on a given
platform. In the following we will refer to the compile-time com-
puted expressions Φp(n) as cost functions.

Certain program information (such as, for example, input/out-
put modes and size metrics for predicate arguments) is first au-
tomatically inferred by other analyzers which are part of CiaoPP
and then provided as input to the size and cost analysis. The tech-
niques involved in inferring this information are beyond the scope
of this paper —see, e.g., (17) and its references for some exam-
ples. Based on this information, our analysis first finds bounds on
the size of input arguments to the calls in the body of the predicate
being analyzed, relative to the sizes of the input arguments to this
predicate, using the inferred metrics. The size of an output argu-
ment in a predicate call depends in general on the size of the input
arguments in that call. For this reason, for each output argument
we infer an expression which yields its size as a function of the
input data sizes. To this end, and using the input-output argument
information, data dependency graphs (namely the argument depen-
dency graph and the literal dependency graph) are used to set up
difference equations whose solution yields size relationships be-
tween input and output arguments of predicate calls. The argument
dependency graph is a directed acyclic graph used to represent the
data dependency between argument positions in a clause body (and
between them and those in the clause head). The literal dependency
graph is constructed from the argument dependency graph (group-
ing nodes) and represents the data dependencies between literals.

The information regarding argument sizes is then used to set up
another set of difference equations whose solution provides bound
functions on predicate calls (execution time). Both the size and cost
difference equations must be solved by a difference equation solver.
Although the operation of such solvers is beyond the scope of the
paper, our implementation does provide a table-based solver which
covers a reasonable set of difference equations such as first-order
and higher-order linear difference equations in one variable with
constant and polynomial coefficients,1 divide and conquer differ-
ence equations, etc. In addition, the system allows the use of ex-
ternal solvers (such as, e.g., Purrs (4), Mathematica, Matlab, etc.)
and is currently being extended to interface with other interesting
solvers that have been recently developed (2). Note also that, since
we are computing upper/lower bounds, it suffices to compute up-
per/lower bounds on the solution of a set of difference equations,
rather than an exact solution. This allows obtaining an approximate
closed form when the exact solution is not possible.

4.2 Estimating the Execution Time of Clauses and Predicates
Our cost analysis approach is based on that developed in (12; 11)
(for estimation of upper bounds on resolution steps) and further
extended in (13) (for lower bounds). More recently, in (19) the
analysis was extended to work with vectors of cost components,
with each component considering a known aspect that affects the
total cost of the program. In these approaches the cost of a clause
can be bounded by the cost of head unification together with the
cost of each of its body literals. For simplicity, the discussion that
follows is focused on the estimation of upper bounds. We refer the
reader to (13) for details on lower-bounds cost analysis.

Consider a predicate defined by r clauses C1 , . . . , Cr . We take
into account that a given clause Ck will be tried only if clauses
C1 , . . . , Ck−1 fail to yield a solution. Consider clause Ck defined as
Hk :- Lk

1 , . . . , L
k
m . Because of backtracking, the number of times a

literal will be executed depends on the number of solutions of the
previous literals. Assume that n is a vector such that each element
corresponds to the size of an input argument to clause Ck and that
each ni, i = 1 . . .m, is a vector such that each element corresponds
to the size of an input argument to literal Lk

i . Assume also that
τ(Hk , n) is the execution time needed to resolve the head Hk of

1 Note that it is always possible to reduce a system of linear difference
equations to a single linear difference equation in one variable.
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the clause Ck with the literal being solved, SolsLkj is the number of

solutions literal Lk
j can generate, and β(Lk

i , ni) the time needed to
prepare the call to literal Lk

i in the body of the clause Ck . Because
of space constraints, we refer the reader to (11; 13) for details about
the algorithms used to estimate the number of solutions that a literal
can generate, and the sizes of input arguments. Then, an upper
bound CostCk (n) on the cost of clause Ck (assuming all solutions
are required) can be expressed as:

CostCk (n) ≤ τ(Hk , n)+
mP

i=1

(
Q
j≺i

SolsLkj
(nj))(β(Lk

i , ni) + CostLki
(ni))

Here we use j ≺ i to denote that Lk
j precedes Lk

i in the literal
dependency graph for the clause Ck (described in Section 4.1). We
have that:

τ(Hk , n) = δk (n) +
X

I∈E(Ck ,Hk )

t(I)(n)

where δk (n) denotes the execution time necessary to determine
that clauses C1 , . . . , Ck−1 will not yield a solution and that Ck

must be tried: the function δk obviously takes into account the
type and cost of the indexing scheme being used in the underlying
implementation. Also:

β(Lk
i , ni) =

X
I∈E(C,Lki )

t(I)(ni), i = 1, · · · ,m

with E(C, Lk
i ) and t(I) defined as in Sections 2 and 3 respectively.

A difference equation is set up for each recursive clause, whose
solution (using as boundary conditions the execution times of non-
recursive clauses) is a function that yields the execution time of a
clause. The execution time of a predicate is then computed from
the execution time of its defining clauses. Since the number of
solutions which will be required from a predicate is generally not
known in advance, a conservative upper bound on the execution
time of a predicate can be obtained by assuming that all solutions
are needed, and, thus, all clauses are executed and the execution
time of the predicate will be the sum of the execution times of
its defining clauses. When the clauses of a predicate are mutually
exclusive, a more precise estimation of the execution time of such
a deterministic predicate can be obtained as the maximum of the
execution times of the clauses it is composed of.

Note that our approach allows defining via assertions the execu-
tion time of external predicates, which can then be used for mod-
ular composition. This includes also predicates for which the code
is not available or which are even written in a programming lan-
guage that is not supported by the analyzer. In addition, assertions
also allow describing by hand the execution time of any predicate
for which the automatic analysis infers a value that is not accurate
enough, and this can be used to prevent inaccuracies in the auto-
matic inference from propagating. The description of the assertion
language used is out of the scope of this paper, and we refer the
reader to (21) for details.

5. Estimating Instruction Execution Times via
Profiling

In this section we will see how data regarding the expected execu-
tion time of each instruction in the abstract machine (Section 3) can
be accurately measured in a realistic environment.

5.1 Instruction Profiling
Profiling aims at calculating a function t(I) for each bytecode in-
struction I . An approach is to instrument the WAM implementa-
tion so that time measures are taken and recorded at appropriate

while (op != END) { /∗ WAM emulation loop ∗/
...
record profile info (op); /∗ op is the current bytecode ∗/

switch(op) {
...

}
...

op = get next op();
}

Figure 1. A simple WAM emulation loop instrumented.

points in the execution (18). In practice, a number of issues have
to be taken into account in order to obtain accurate enough mea-
surements. These include the selection of the places where the in-
strumentation code will be inserted, how to minimize the effects of
such instrumentation on the execution (not only execution time but
also, e.g., cache behavior), and how to work around the complex in-
struction scheduling performed by modern processors, which may
lead to large variance in the results, especially since we aim at mea-
suring very small fragments of code.

A first approximation is to add profiling-related calls in desig-
nated parts of the bytecode interpreter main loop. Figure 1 shows
a piece of code illustrating this. The record profile info(op)
operation records the start time for the bytecode op. The end time is
processed when the next opcode is fetched. The data for each byte-
code is maintained in memory during execution (and in raw form
in order to impact execution as little as possible) and later saved to
an external file.

A benchmark-based analysis is also proposed in (18), which
describes how the instrumented code can be reused effectively on
various platforms without modifying it, and how the execution time
of a specific set of bytecodes can be measured.

However, the methods mentioned above have drawbacks. For
example, the first one (instrumenting the main loop) depends on
the existence of very precise, non-intrusive, low-overhead timing
operations which, unfortunately, are not always available in all plat-
forms. Portable O.S. calls, besides having a typically high associ-
ated overhead, are in general not accurate enough for our purposes.
Even if a very fast timing operation is available (which is not the
case in platforms such as mobile and embedded devices), its intro-
duction may affect the behavior of the machine being analyzed if
the abstract machine loop is very optimized. For example, if the
new code changes register and variable allocation, program behav-
ior will be affected in unforeseen ways.

We will, however, use an instrumented loop like that of Figure 1
to count the number of bytecodes executed in a calibration step.

5.2 Measuring Time Accurately
In order to do portable time measurements in platforms where high
resolution timing is difficult or impossible to achieve, workarounds
have to be used. The approach that we have followed is based on
using synthetic benchmarks which on purpose repeatedly execute
the instructions under estimation for a large enough time, and
later divide the total execution time by the number of times the
instructions were executed. A complication in this process is that
it is in general not possible to run a single instruction repeatedly
within the abstract machine, since the resulting sequence would not
be legal and may “break” the abstract machine, run out of memory,
etc. In general, more complex sequences of instructions must be
constructed and repeated instead.

Therefore, the approach we have followed involves designing
a set of legal programs which cover all the bytecode instructions,
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Programs Instructions Trace
c1 5 :- c1 5 0. 00 : execute 01 00 : execute 01
c1 5 0 :- c1 5 1. 01 : execute 02 01 : execute 02
c1 5 1 :- c1 5 2. 02 : execute 03 02 : execute 03
c1 5 2 :- c1 5 3. 03 : execute 04 03 : execute 04
c1 5 3 :- c1 5 4. 04 : execute 05 04 : execute 05
c1 5 4 :- c1 5 5. 05 : execute 06 05 : execute 06
c1 5 5. 06 : proceed 06 : proceed
c1 0 :- c1 0 0. 01 : execute 02 01 : execute 02
c1 0 0. 02 : proceed 02 : proceed

Table 2. Programs used in order to get the execution time of the
execute instruction.

relate the execution time of these programs with the individual
instruction execution times with a system of equations, and solving
such a system.

5.3 Getting Instruction Execution Time
We now discuss how to set up calibration programs in order to get
the cost of bytecodes. In this section, and in order to simplify the
discussion, we deal with those bytecodes whose execution time
is bound by a constant. In the following section we extend our
technique to manage instructions whose execution time is unbound.

Let Ci, i = 0, 1, . . . , n be a set of synthetic calibration pro-
grams, each of them returning the execution time of a block of code.
Each Ci, which we will refer to as calibrator, is generated in such a
way that it repeats such block a given number of times, say r. Let us
assume, for example, that we want to calibrate the WAM instruction
“execute” when it does not fail and that we want to repeat its exe-
cution 5 times (i.e., r = 5). Table 2 shows a set of programs which
can be used to calibrate this WAM instruction. Columns Instruc-
tions and Trace show the WAM code as generated by the compiler
and the sequence of instructions executed when running the pro-
gram starting from the first clause respectively. In general, in our
approach, rather than a concrete program, calibrators are program
generation templates which take r as an input and return, e.g., the
programs in Table 2 for that value of r. The actual calibration pro-
gram includes an entry point which calls the programs in Table 2
and returns the value of the execution time of the execute instruc-
tion, subtracting the time spent in the entry calls (e.g., c1 5 for
Table 2). In this case the calibration time is easy to compute as the
difference between the execution time of c1 5 and c1 0 divided
by r. The result of the calibration should ideally be invariant with
respect to r; in practice this is however not true due, among other
factors, to timing imprecision. Thus, r needs to be determined for
each case: it has to be a large enough value to ensure stability of
the time measured by the calibrator for the particular platform and
the method used to measure time, but not excessively large, as this
would make calibration impractical.

In some cases we cannot isolate the behavior of only one byte-
code. This is specially the case in the calibrators of instructions
which alter the program flow, such as call, proceed, trust me,
try me else, retry me else, allocate, deallocate. It is also
the case when measuring the cost of failure for any of the instruc-
tions which can fail (generally the get and unify instructions).
All these instructions need to be always executed together with
other bytecodes in order to make the calibration program legal. As
a result, and due to interactions between the costs of the different
instructions, the equations are not as easy to configure in all cases
as the simple case for the execute instruction above.

As a simple example, the calibrator that returns the cost of call
and the proceed instructions uses the programs in Table 3 (where
we have turned off the optimization of register / variable allocation
in the compiler for simplicity). In order to be able to separate the

Programs Instructions Trace
c2 5 :- 00 : allocate 00 : allocate

c 5, 01 : call 09 01 : call 09
c 5, 02 : call 09 09 : proceed
c 5, 03 : call 09 02 : call 09
c 5, 04 : call 09 09 : proceed
c 5, 05 : call 09 03 : call 09
c 5, 06 : call 09 09 : proceed
c 5. 07 : deallocate 04 : call 09

08 : execute 09 09 : proceed
05 : call 09

c 5. 09 : proceed 09 : proceed
06 : call 09
09 : proceed
07 : deallocate
08 : execute 09
09 : proceed

c2 0 :- 00 : allocate 00 : allocate
c 0, 01 : call 04 01 : call 04
c 0. 02 : deallocate 04 : proceed

03 : execute 04 02 : deallocate
03 : execute 04

c 0. 04 : proceed 04 : proceed

Table 3. Programs used to get the execution time of the call and
proceed instructions.

cost of call and proceed an idea might be to find a calibrator that
isolates the cost of proceed by itself and subtract from the value
given by the calibrator for call and proceed and obtain the cost
of call. However, that is in general not possible since in all legal
calibrators proceed and call must always appear combined with
other bytecodes. In general we need to set up a system of equations
in which the known values are the costs given by our calibrators
and the unknown values are the costs of the individual bytecodes.
Such equations can be configured automatically, by executing the
calibration programs in a special version of the WAM with the
bytecode dispatch loop instrumented as in Figure 1 so that the
profiler keeps an account of the executed bytecodes.

Let ci, 0 ≤ i ≤ n, be the time calibrator Ci has returned, and
let βj , 0 ≤ j ≤ m, m ≥ n, be the cost of a bytecode Bj , distin-
guishing between the case of a fail or a success in the execution of
such bytecode. In other words, Bj ∈ I × {fail , success}, where I
the set of all possible bytecodes and fail and success represent the
failure or success of the execution of a bytecode. We can then set
up the following system of equations:

c1 = a11β1 + a12β2 + · · ·+ a1mβm

c2 = a21β1 + a22β2 + · · ·+ a2mβm

. . .
cn = an1β1 + an2β2 + · · ·+ anmβm

(1)

which we can rewrite such using matrix notation:

C = AB (2)

where B = (βi) is the vector of execution times for the bytecodes.
In order to obtain B we ideally need to configure as many calibra-
tors as bytecodes. Finding a solution to this system of equations re-
quires, in principle, independence among the equations (i.e., there
is no other linear independent equation but those in (1)), and to have
as many equations as variables. However, that is not always possi-
ble due to dependencies between the number of times a bytecode is
executed. For example, in the WAM under analysis, the following
invariant holds:
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PROPOSITION 1. For any program, the number of times re-
try me else is called plus the number of times trust me is called
is equal to the number of failures.

This holds since a failure always causes backtracking to the next
choice point, which always implies executing either a retry me else
or a trust me instruction. As the coefficients aij in the equation
above are precisely the number of times every bytecode is exe-
cuted, it turns out that, for a given execution, some coefficients are
dependent on some other coefficients, therefore breaking the initial
independence assumption: the system of equations is underdeter-
mined and it does not have a unique solution.

For this reason, since the coefficients aij where obtained by
summarizing legal programs (i.e., the calibrators), and they will be
affected by the linear dependency mentioned above, the undeter-
mined system (2) will not have a unique solution. However, note
that when several bytecodes in a block must be executed together
(because of constraints in the WAM compilation and execution
scheme) knowing the execution time of each of them in isolation
is not needed: knowing the total execution time of the whole block
is enough. This intuitive idea can be formalized and generalized
with the following result:

PROPOSITION 2. Given a set of n calibration programs Ci, that
define n linear independent equations with βi variables (corre-
sponding to the m bytecodes, with both success and failure cases
included), if we have that for all programs there exist m−n linear
independent relationships between the number of bytecodes that
are always fulfilled, then the estimated execution time is invariant
with respect to the choice of any arbitrary element of the solution
set of such linear system.

Proof : Let B be an arbitrary solution of C = AB. Let X be a
vector which represents the number of times each bytecode has
been executed for a given program. The estimated execution time is
E = XTB, i.e., the sum of the time for each bytecode multiplied
by the number of times it has been executed.

By linear algebra, and considering that each calibrator defines a
linear independent equation, we have that the range of A is n, and
the kernel (or nullspace) of A is given by the set of all λ such that
Aλ = 0, a vector space of dimension m− n (0 represents the null
vector of dimension n). In other words, we have that:

C = AB = AB + 0 = AB +Aλ = A(B + λ) (3)

Then,B+λ is a solution of (2), and it is also a representative of the
solution set of such equation system. What we should prove now
is that XT (B + λ) = XTB, that is, canceling common terms and
transposing the equations:

λTX = 0 (4)

On the other hand, we have a set ofm−n = k linear dependencies
between the number of bytecodes executed of the form:

0 = v11x1 + v12x2 + · · ·+ v1mxm

0 = v21x1 + v22x2 + · · ·+ v2mxm

. . .
0 = vk1x1 + vk2x2 + · · ·+ vkmxm

Or, rewriting them using matrices:

0 = V X (5)

The result of multiplying an arbitrary vector d by V is a vector
µT = (dV ) and for the equation above, it follows that µTX = 0.

But note that the rows of A were obtained executing a program
that meets the linear dependencies too, that is, µTAT = 0. Trans-
posing, we have:

Aµ = 0 (6)

For this reason, we can see that as λ, µ is a member of the kernel
of A, and considering the uniqueness of the kernel of a matrix, and
that µ is an element of a space of dimension m−n, we can choose
µ such that λ = µ, that is, we can express λ as the product (dV )T ,
as result of basic theorems of linear algebra. Therefore, we have
that:

λTX = µTX = (dV )X = d(V X) = d(0) = 0 (7)

2

Then, the method we follow to select a representative solution
B is simply to complete the equation systems with m − n arbi-
trary equations in order to make them become determined. Such
equations should be selected in such a way that the βi values be
positive, for example, by setting the cost to 0 as the time of the
bytecodes that are faster, avoiding negative solutions.

5.4 Dealing with unbound instructions
We now consider the case of bytecode instructions whose execution
time depends on the specific values that certain parameters can
take at run time. In such cases the accuracy of our analysis can
be increased by taking advantage of static term-size analysis and
the addition of cost-related assertions for such instructions. Such
assertions make it possible to introduce ad-hoc functions giving the
size of the input parameters of the bytecode.

In fact, our system is able to deal with several metrics (e.g.,
value, length, size, depth, ...) as shown in (12; 11; 13), but for
brevity, in the following paragraphs we will describe an example
unifying lists.

Let us take, the instruction unify variable(V, W) and let us
assume that we want to calculate an upper bound for its execution
time upon success and for the case where the two arguments to
unify are lists of numbers. We assume that an upper bound to the
execution time is proportional to the number of iterations necessary
to scan the lists. The timing model for such instruction is thus
K1 + K2 ∗ length(V ), because if the instruction succeeds, the
length of both V and W should be equal. The value of constants
K1 andK2 is calculated by setting up two benchmarks which unify
lists of different length l1 and l2. If the cost of unify variable
for these two list lengths is, respectively, B1 and B2, then we set
up the following system of linear equations:

B1 = K1 +K2 × l1
B2 = K1 +K2 × l2 (8)

Note that B1 and B2 can be added to the system of equations (2)
to get its values in one step, and later, we solve K1 and K2 in the
system of linear equations (6).

6. Experimental results
In order to evaluate the techniques presented so far we need to
choose a concrete bytecode language and an implementation of its
abstract machine to execute and profile with. As mentioned before,
the de-facto target abstract machine for most Prolog compilers is
the WAM (23; 1) or one of its derivatives. In order to evaluate
the feasibility of the approach we have chosen a relatively simple
WAM design, which is quite close to the original WAM definition.
It is based on (9), but has been ported from Java to C/C++ to
achieve similar performance of other Prolog systems. The use of a
relatively simple abstract machine allows evaluating the technique
while avoiding the many practical complications present in modern
implementations, such as having complex instructions resulting
from merging other, simpler ones, or specializations of instruction
and argument combinations. This of course does not preclude the
application of our technique to the more complex cases.

In our concrete abstract machine, we have considered 42 equa-
tions for 43 bytecodes, differentiating the success and failure cases.
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As we have seen in Proposition ??, there exists a linear relationship
between the number of bytecodes that a program will call which
can be stated as:

0 = x30 + x38 − x13 − x15 − x17 − x22 − x41

−x43 − x49 − x50 − x51 − x52 − x53

where the xi represent the number of times the bytecode tagged as
βi has been executed for any program being analyzed (see Tables 4
and 6).

By Proposition 1, we are free to select any arbitrary solution of
the linear system. The proposed solution has been found by setting
arbitrarily the cost of fail to zero. Then, our set of linear equations,
discarding those whose calibrators are composed only with one
bytecode, is as follows:

0 = β13 c01 = β01 + β07

c20 = β20 + β33 + β43 c09 = β09 + β24

c11 = β01 + β11 + 2β28 + β30 c15 = β15 + β38

c46 = β01 + 2β28 + β30 + β50 c17 = β17 + β30

c42 = β01 + 2β27 + β30 + β52 c07 = β07 + β24

c22 = β01 + β22 + β23 + β30 c29 = β01 + β17 + β30

c34 = β01 + β23 + β30 + β35 c37 = β17 + β38

c36 = β01 + 2β28 + β30 + β37 c38 = β07 + β24 + β39

c40 = β01 + β23 + β30 + β41 c19 = β19 + β33

c43 = β01 + β27 + β28 c13 = β01 + β13 + β30

+β30 + β49

c49 = β01 + 2β19 + 2β27 c51 = β01 + 2β20

+β30 + 2β31 + 2β33 + β51 +β30 + 2β31 + β53

(9)
Solving this linear system we get:

β01 = c29 − c17
β07 = −c29 + c17 + c01
β09 = −c29 + c17 + c09 − c07 + c01
β11 = −2c27 − c13 + c11
β13 = 0
β15 = −c37 + c29 + c15 − c13
β17 = c29 − c13
β19 = c19 − c32
β20 = −c44 − c32 + c20
β22 = −c23 + c22 − c13
β24 = c29 − c17 + c07 − c01
β30 = −c29 + c17 + c13
β35 = c34 − c23 − c13
β37 = c36 − 2c27 − c13
β38 = c37 − c29 + c13
β39 = c38 − c07
β41 = c40 − c23 − c13
β49 = c43 − c27 − c26 − c13
β50 = c46 − 2c27 − c13
β51 = c49 − 2c30 − 2c26 − 2c19 − c13
β52 = c42 − 2c26 − c13
β53 = c51 + 2c44 + 2c32 − 2c30 − 2c20 − c13

(10)

The leftmost column of Tables 4 and 6 summarizes the cali-
bration data for the instructions of our WAM implementation. For
brevity, we actually only show those being used in the examples
tested, although we have calibrated all of them. In the second col-
umn there is a tag that is the variable name in the linear equations
system. In the examples we deal with a subset of Prolog which
only has operations on integers, atoms, lists, and terms. Likewise,
we obviate issues like modules or syntactic sugar which can be
dealt with at the Prolog level. A few additional built-in predicates
are required to have a minimal functionality including write/1,
consult/1, etc. They are profiled separately and their timing is
given to the system through assertions. This is also a valid solution
in order to be able to analyze larger programs.

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

allocate β01 29 366 1055
arith add β02 29 489 1438
arith div β03 29 580 1541
arith mod β04 29 641 1553
arith mul β05 28 519 1468
arith sub β06 28 519 1438
call β07 11 183 261
cut β08 13 183 581
deallocate β09 7 305 142
execute β12 15 152 574
get constant atom β14 38 518 1211
get constant int β16 28 396 1157
get level β18 28 213 1054
get list β19 20 275 763
get struct β20 52 642 1766
get value β21 43 488 1457
get variable β23 43 549 1658
proceed β24 17 61 699
put a constant atom β25 20 122 594
put a constant int β26 20 122 506
put constant atom β27 37 274 1085
put constant int β28 37 274 997
put value β29 21 183 910
retry me else β30 33 336 999
set constant atom β31 26 213 861
set constant int β32 25 183 767
set variable β33 29 213 850
trust me β38 29 336 973
try me else β39 30 457 1132
unequal β40 21 244 1021
unify variable(nvar,var) β42 35 396 1309
unify variable(var,nvar) β43 35 397 1309
unify variable(int,int) β44 32 275 1179
unify variable(atm,atm) β46 44 427 1413

unify variable(
str(1),str(1)) β47 77 885 2560

unify variable(
list(1),list(1)) β45 96 1068 3291

unify variable(
list(100),list(100)) β48 4062 42511 217975

Table 4. Timing model for the WAM instructions. Cost of byte-
codes when they succeed.

The experiments were made on the following representative
platforms:

• UltraSparc-T1, 8 cores x 1GHz (4 threads per core), 8GB of
RAM, SunOS 5.10.

• Intel Core Duo 1.66GHz, 2GB of RAM, Ubuntu Linux 7.04.
• Nokia N810. 400MHz processor, 128MB of RAM, Internet

Tablet OS, Maemo Linux based OS2008 51.3

In order to reduce noise in the data because of spurious results,
we have repeated each experiment 20 times and present the lowest
results. In the calibration step 1000 repetitions were made (i.e., r =
1000). When possible, the tests were performed with the machines
in single-user mode, stopping unnecessary processes. System tasks
such as garbage collection, which, as mentioned before, is not
considered in our model at the moment, were turned off.
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Platform Timing Model (ns)
Intel 44 + 40.62 ∗ length(X)
N810 427 + 425.11 ∗ length(X)
Sparc 1413 + 2179.75 ∗ length(X)

Table 5. Timing model given by a linear function, for
unify variable(X,Y) when the arguments are lists of integers,
and the instruction does not fail.

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

fail β13 0 0 0
get constant atom β15 32 457 1256
get constant int β17 26 366 1169
get value β22 25 244 1106
unequal β41 11 61 651
unify variable β43 121 1065 3867

unify variable(
const1,const2)
const1 6= const2

β49 41 154 697

unify variable(int,int) β50 122 1035 3830
unify variable(

list(1),list(1)) β51 338 3227 12229

unify variable(atm,atm) β52 127 1126 4282
unify variable(

str(1),str(1)) β53 223 2381 9239

Table 6. Timing model for the WAM instructions. Cost of byte-
codes when they fail.

Tables 4 and 6 show the timing model for this WAM and the
architectures studied. In the benchmarks used the is/2 instruc-
tion is compiled into basic operations over pairs of numbers. The
table shows the corresponding instructions named arith *. We
also have separated the cost of the instructions put constant,
get constant when they are called for an atom or an integer.
Note however, that their cost is very similar in most cases, but
this will still help to reduce errors in the estimation. For the
unify variable instruction we have also included calibrations
for several cases depending on the type and size of the input argu-
ments in order to increase precision. In other cases, as mentioned
in 5.4, the execution time of this instruction is not bounded by any
a-priori known constant. Since, as also shown in Section 5.4, in our
implementation it is possible to use functions instead of constants
as timing model for a given instruction, in this table we include in
the calibrations two data points for the case when the arguments
are lists of integers, and for lists of size (length) 1 and 100 (β45

and β48 in Table 4). The value for an empty list is the same as for
unifying any two equal atoms, i.e., β46 in Table 4. Table 5 shows
the resulting timing model for unify variable using these values
to fit our linear model for this instruction.

Using the timing model shown in Tables 4, 5, and 6, we have
performed some experiments with a series of programs on the three
platforms (Intel, N810, and Sparc) in order to assess the accuracy
of our technique for estimating execution times. The results of
these experiments are shown in Tables 8 (Intel), 9 (N810), and 10
(Sparc).

Column Pr. No. lists the program identifiers, whose associa-
tion with the programs and the input data sizes used is shown in
Table 7. Column Cost App. indicates the type of approximation
of the automatically inferred cost functions which estimate exe-
cution times (as a function on input data size): upper bound (U),
lower bound (L), or exact (E). Such cost functions are shown in
column Cost Function for the three different platforms considered

No. Program Data size
1 append(+A,+,-) x=length(A)=150
2 evalpol(+A,+X,-) x=length(A)=100
3 fib(+N,-) x=N=16
4 hanoi(+N,+,+,+,-) x=N=8
5 nreverse(+L,-) x=length(L)=83
6 palindro(+A,-) x=length(A)=9
7 powset(+A,-) x=length(A)=11
8 list diff(+L,+D,-) x=length(L)=65

y=length(D)=65
9 list inters(+L,+D,-) x=length(L)=65

y=length(D)=65
10 substitute(+A,+B,-) x=term size(A)=67

y=term size(B)=80
11 derive(+E,+,-) x=term size(E)=75

Table 7. List of program examples used in the experimental as-
sessment.

in our experiments. The variables x and y represent the sizes of the
input arguments to the programs which are relevant for the infer-
ence of the cost functions. The type of approximation directly de-
pends on the one used by the static analysis described in Section 4
for estimating the number of executed instructions (as a function
on input data size). The value E means that the lower and upper
bound cost functions are the same, and thus, since the analysis is
safe, this means that the exact cost function was inferred. Using
the cost functions shown in column Cost Function, and in order
to assess their accuracy, we have also estimated execution times
for particular input data for each program and compared them with
the observed execution times. These execution times are shown in
columns Est. and Obs. respectively. Column D. shows the relative
harmonic difference between the estimated and the observed time 2.
The source of inaccuracies in the execution time estimations of our
technique come mainly from two sources: the timing model (which
gives the execution time estimation of bytecodes, as shown in Ta-
bles 4 and 6)) and the static analysis (described in Section 4, which
estimates the number of times that the bytecodes are executed, de-
pending on the input data size). Since we are interested in iden-
tifying the source(s) of inaccuracies, we have also introduced the
column Prf. It shows the result of estimating execution times using
the timing model and assuming that the static analysis was perfect
and obtained a function which provides the exact number of times
that the bytecodes are executed. This obviously represents the case
in which all loss of accuracy must be assigned to the timing model.
The “perfect” cost model is obtained from an actual execution by
instrumenting the profiler so that it records the number of times
each instruction is executed for the application and the particular
input data. Column Pr.D. shows the relative harmonic difference
between Prf. and the observed execution time Obs.

The upper part of Tables 8, 9, and 10, up to the double line
corresponds to examples where an exact cost function for the num-
ber of executed bytecodes was automatically inferred by the static
analysis (note that, as expected, the values Est. and Prf. are the
same). We can see that with an exact static analysis, the estimated
execution times Est. are quite precise, which in turn supports the
accuracy of our timing model.

It is particularly interesting to compare these results with those
which were obtained using a variety of higher-level models in (19).
Table 11 provides the standard deviation of the four high-level
models of (19) as well as that of the abstract machine-based model
presented in this paper, for the Intel platform and our set of bench-

2 rel harmonic diff(x, y) = (x− y)(1/x + 1/y)/2.
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Pr. Cost. Intel (µs)
No. App. Cost Function Est. Prf. Obs. D. % Pr.D. %

1 E 0.73x+ 0.21 110 110 113 -2.4 -2.4
2 E 0.69x+ 0.19 69 69 71 -2.3 -2.3
3 E 0.69 · 1.6x + 0.21(−0.62)x − 0.72 1525 1525 1576 -3.3 -3.3
4 E −0.0042 · 2x + 0.73x · 2x − 0.86 1501 1501 1589 -5.7 -5.7
5 E 0.37x2 + 0.49x+ 0.12 2569 2569 2638 -2.7 -2.7
6 E 0.36 · 2x + 0.37x · 2x − 0.24 1875 1875 2027 -7.8 -7.8
7 E 0.91 · 2x + 0.87x− 0.6 1868 1868 1931 -3.3 -3.3
8 L 0.66x+ 0.2 43 68 81 -67.2 -17.8

U 0.78xy + 1.7x+ 0.4 3414 3569 3640 -6.4 -2.0
9 L 0.83x+ 0.2 54 79 91 -54.6 -14.8

U 0.78xy + 1.7x+ 0.4 3414 3694 4011 -16.2 -8.2
10 L 2x 135 142 124 8.6 13.7

U 1.4xy + 1.4y + 6.1x+ 4.1 7922 2937 2858 120.6 2.7
11 L 2.9x 216 138 111 72.3 22.5

U 3x+ 3 226 216 162 34.0 29.5

Table 8. Observed and estimated execution time with cost functions, Intel platform (microseconds).

Pr. Cost. N810 (µs)
No. App. Cost Function Est. Prf. Obs. D. % Pr.D. %
1 E 7.8x+ 2.7 1169 1169 1037 12.0 12.0
2 E 7.8x+ 2.7 786 786 641 20.6 20.6
3 E 8.3 · 1.6x + 2.5(−0.62)x − 8.4 18333 18333 14496 23.7 23.7
4 E 0.74 · 2x + 7.8x · 2x − 10 16095 16095 16144 -0.3 -0.3
5 E 3.9x2 + 5.7x+ 1.6 27247 27247 28381 -4.1 -4.1
6 E 4.4 · 2x + 3.9x · 2x − 2.9 20167 20167 20416 -1.2 -1.2
7 E 9.5 · 2x + 10x− 6 19517 19517 19653 -0.7 -0.7
8 L 7.3x+ 2.8 474 744 640 -30.4 15.1

U 8.2xy + 19x+ 5.5 35849 37162 29266 20.4 24.1
9 L 8.7x+ 2.8 569 839 732 -25.4 13.7

U 8.2xy + 19x+ 5.5 35849 38076 29907 18.2 24.4
10 L 21x 1399 1475 1068 27.3 32.9

U 15xy + 15y + 64x+ 43 85893 30375 25543 153.3 17.4
11 L 29x 2190 1423 854 108.7 53.3

U 30x+ 30 2306 2193 1342 56.8 51.1

Table 9. Observed and estimated execution time with cost functions, Nokia N810 platform (microseconds).

Model Deviation
High Level 1 51.17 %

2 31.06 %
3 21.48 %
4 58.45 %

Abs. Machine 4.72 %

Table 11. Comparison between the higher level models and the
abstract machine-based model, on the Intel platform.

marks. It can be observed that the results obtained with the abstract
machine-based model are more than five times better on the same
platform than those obtained using the higher-level models.

With the abstract machine-based model, and for this type of pro-
grams we believe that the remaining error comes simply from the
accumulated loss of accuracy of the bytecode instruction profiling
and expect that making the timing model more precise will increase
precision even further.

The lower part of Tables 8, 9, and 10 shows programs for
which there is no unique value for Timep(n), where Timep(n)
(as described in Section 4.1) denotes the cost (in time units) of

computing a call to program p for an input of size n on a given
platform. The reason is that for such programs, the number of
instructions executed does not only depend on the input data sizes,
but also depends on other characteristics of the input data (e.g., their
actual values). Thus, for a given data size, there are actual lower
and upper bounds for the cost of the program calls. For this reason,
the two observed execution times shown in column Obs. for each
program have been obtained by running the program with the input
data, of the size specified in Table 7, that yield the actual lower and
upper bounds to the execution times for such size. In this case, the
static analysis infers approximations to such actual lower and upper
bound cost functions (L and U respectively). These predictions
are understandably much less accurate in these cases than those
in the first part of the table, but still reasonable. In any case, lower
bounds and upper bounds tend to be reasonably smaller or bigger
than the observed execution times respectively. In general, for the
programs in the lower part of the tables with big (absolute) values
for D., the (absolute) value for Pr.D. is reasonably small. This
means that, in those cases, most of the inaccuracy in the estimation
of execution times (Est.) comes from the static analysis, which
does not approximate actual lower and upper bound cost functions
accurately enough, and that the timing model used for predicting
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Pr. Cost. Sparc (µs)
No. App. Cost Function Est. Prf. Obs. D. % Pr.D. %
1 E 26x+ 7.4 3906 3906 4670 -18.0 -18.0
2 E 25x+ 7.1 2543 2543 2985 -16.1 -16.1
3 E 26 · 1.6x + 7.8(−0.62)x − 27 56828 56828 59120 -4.0 -4.0
4 E 1.2 · 2x + 26x · 2x − 33 53504 53504 63156 -16.7 -16.7
5 E 13x2 + 17x+ 4.3 90973 90973 109849 -19.0 -19.0
6 E 13 · 2x + 13x · 2x − 8.5 66400 66400 78980 -17.4 -17.4
7 E 32 · 2x + 32x− 22 66224 66224 78151 -16.6 -16.6
8 L 24x+ 7.1 1574 2458 2991 -68.7 -19.7

U 27xy + 62x+ 14 118269 123733 129951 -9.4 -4.9
9 L 30x+ 7.1 1940 2824 3394 -58.9 -18.5

U 27xy + 62x+ 14 118269 127378 133703 -12.3 -4.8
10 L 68x 4545 4821 4634 -1.9 4.0

U 48xy + 48y + 207x+ 140 277175 101779 111829 103.8 -9.4
11 L 95x 7104 4628 4038 59.6 13.7

U 98x+ 98 7454 7147 6081 20.5 16.2

Table 10. Observed and estimated execution time with cost functions, Sparc platform (microseconds).

the execution time of bytecodes is reasonably precise. Thus, we
believe that using a better static analysis for inferring cost functions
which take into account other characteristics of the input data,
besides their sizes, would significantly improve the predictions. In
any case, there is always a reasonable slack in the precision of the
estimations due to the timing measurements and the timing model.

7. Conclusions and Future Work
We have developed a framework for estimating upper and lower
bounds on the execution times of logic programs running on a
bytecode-based abstract machine. We have shown that working
at the abstract machine level allows taking into account low-level
issues without having to tailor the analysis for each architecture and
platform, and allows obtaining more accurate estimates than with
previous approaches, including comparatively accurate upper and
lower bound estimations of execution time.

Although the framework has been presented in the context of
logic programs, we believe the technique can easily be applied to
other languages. This adaptation of the approach, while certainly
not trivial, to some extent would actually imply some simplifica-
tion, since backtracking does not need to be taken into account.
For example, analyses have been recently developed for Java byte-
code (3) which infer the number of execution steps using simi-
lar techniques to those used in logic programming (12; 11; 13).
Such analyses could be adapted, following the techniques presented
herein, to take into account the bytecode timing information and
would then be able to estimate actual execution time for Java pro-
grams. Appropriate cost models for Java bytecode are already being
developed in (22).

We believe that the more accurate execution time estimates that
can be obtained with our technique can be very useful in several
contexts including parallelism, compilation, real-time applications,
pervasive systems, etc. More concretely, increased timing preci-
sion can improve the effectiveness of resource/granularity control
in parallel/distributed computing. This belief is based on previous
experimental results, where it appeared that, even if improved pre-
cision in timing estimates is not essential, it does yield increased
speedups. Also, the inferred cost functions can be used to develop
automatic program optimization techniques. For example, they can
be used for performing self-tuning specialization which compares
statically the estimated execution time of different specialized ver-
sions (10).

Given that our experimental results are encouraging with re-
spect to actually being able to find more accurate upper and lower
bounds to program execution times, the approach may eventually
also be used for verification (or falsification) of timing constraints,
as in, for example, real-time systems, which was not possible in
an accurate way with previous approaches. In fact, our approach
(which can be adapted to take also into account destructive assign-
ment, as in (20)) can potentially be used to solve a common prob-
lem in current WCET static analysis, where only constant WCET
bounds (i.e., non dependent on input data sizes) are inferred. These
bounds are not always appropriate since the WCET of a given pro-
gram often depends on several input parameters, and using an ab-
solute bound, covering all possible situations (i.e., all possible val-
ues or sizes of input), produces only a very gross over approxima-
tion (15). Substituting the estimated costs of the bytecodes by the
actual worst-case costs of the instructions and using our approach,
the WCET is expressed as a cost function parameterized by the size
or values of input arguments, providing tighter WCET approxima-
tions. On the other hand, WCET work has produced more accurate
(but, unfortunately, non-freely available) timing models which take
into account many low-level parameters (such as cache behavior,
pipeline state, etc.) which we have abstracted away in our work. It
is clear that a combination of both techniques might be very useful
in practice.
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Abstract. Automatic cost analysis of programs has been traditionally studied in
terms of a number of concrete, predefined resources such as execution steps, time, or
memory. However, the increasing relevance of analysis applications such as static de-
bugging and/or certification of user-level properties (including for mobile code) makes
it interesting to develop analyses for resource notions that are actually application-
dependent. This may include, for example, bytes sent or received by an application,
number of files left open, number of SMSs sent or received, number of accesses to a
database, money spent, energy consumption, etc. We present a fully automated anal-
ysis for inferring upper bounds on the usage that a Java bytecode program makes
of a set of application programmer-definable resources. In our context, a resource is
defined by programmer-provided annotations which state the basic consumption that
certain program elements make of that resource. From these definitions our analysis
derives functions which return an upper bound on the usage that the whole program
(and individual blocks) make of that resource for any given set of input data sizes.
The analysis proposed is independent of the particular resource. We also present some
experimental results from a prototype implementation of the approach covering an
ample set of interesting resources.

1 Introduction

The usefulness of analyses which can infer information about the costs of computations is
widely recognized since such information is useful in a large number of applications including
performance debugging, verification, and resource-oriented specialization. The kinds of costs
which have received most attention so far are related to execution steps as well as, sometimes,
execution time or memory (see, e.g., [21, 28, 29, 16, 8, 17, 32] for functional languages, [30, 7,
15, 34] for imperative languages, and [13, 12, 14, 26] for logic languages). These and other
types of cost analyses have been used in the context of applications such as granularity
control in parallel and distributed computing (e.g., [23]), resource-oriented specialization
(e.g., [10, 27]), or, more recently, certification of the resources used by mobile code (e.g., [11,
4, 9, 3, 18]). Specially in these more recent applications, the properties of interest are often
higher-level, user-oriented, and application-dependent rather than (or, rather, in addition
to) the predefined, more traditional costs such as steps, time, or memory. Regarding the
object of certification, in the case of mobile code the certification and checking process is
often performed at the bytecode level [22], since, in addition to other reasons of syntactic
convenience, bytecode is what is most often available at the receiving (checker) end.
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We propose a fully automated framework which infers upper bounds on the usage that
a Java bytecode program makes of application programmer-definable resources. Examples
of such programmer-definable resources are bytes sent or received by an application over a
socket, number of files left open, number of SMSs sent or received, number of accesses to a
database, number of licenses consumed, monetary units spent, energy consumed, disk space
used, and of course, execution steps (or bytecode instructions), time, or memory. In our
context, resources are defined by programmers by means of annotations. The annotations
defining each resource must provide for some user-selected elements corresponding to the
bytecode program being analyzed (classes, methods, variables, etc.), a value that describes
the cost of that element for that particular resource. These values can be constants or, more
generally, functions of the input data sizes. The objective of our analysis is then to statically
derive from these elementary costs an upper bound on the amount of those resources that
the program as a whole (as well as individual blocks) will consume or provide.

Our approach builds on the work of [13, 12] for logic programs, where cost functions are
inferred by solving recurrence equations derived from the syntactic structure of the program.
Also, most previous work deals only with concrete, traditional resources (e.g., execution
steps, time, or memory). The analysis of [26] is parametric but it is designed for Prolog
and works at the source code level, and thus cannot be applied to Java bytecode due to
particularities like virtual method invocation, unstructured control flow, assignment, the fact
that statements are low-level bytecode instructions, the absence of backtracking (which has a
significant impact on the method used in [26]), etc. More importantly, the presentation of [26]
is descriptive in contrast to the concrete algorithm provided herein. In [1], a cost analysis is
described that does deal with Java bytecode and is capable of deriving cost relations which
are functions of input data sizes. However, while the approach proposed can conceptually
be adapted to infer different resources, for each analysis developed the measured resource is
fixed and changes in the implementation are needed to develop analyses for other resources.
In contrast, our approach allows the application programmer to define the resources through
annotations in the Java source, and without changing the analyzer in any way. In addition,
the presentation in [1] is again descriptive, while herein we provide a concrete, memo table-
based analysis algorithm, as well as implementation results.

2 Overview of the Approach

We start by illustrating the overall approach through a working example. The Java program
in Fig. 1 emulates the process of sending text messages within a cell phone. The source code is
provided here just for clarity, since the analyzer works directly on the corresponding bytecode.
The phone (class CellPhone) receives a list of packets (SmsPacket), each one containing a
single SMS, encodes them (Encoder), and sends them through a stream (Stream). There
are two types of encoding: TrimEncoder, which eliminates any leading and trailing white
spaces, and UnicodeEncoder, which converts any special character into its Unicode(\uxxxx)
equivalent. The length of the SMS which the cell phone ultimately sends through the stream
depends on the size of the encoded message.

A resource is a fundamental component in our approach. A resource is a user-defined
notion which associates a basic cost function with some user-selected elements (class, method,
statement) in the program. This is expressed by adding Java annotations to the code. The
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import java . net . URLEncoder ;

public class CellPhone {

SmsPacket sendSms ( SmsPacket smsPk ,
Encoder enc ,
Stream stm) {

i f ( smsPk != null ) {
St r ing newSms = enc . format ( smsPk . sms ) ;
stm . send (newSms ) ;
smsPk . next=sendSms ( smsPk . next , enc , stm ) ;
smsPk . sms = newSms ;

}
return smsPk ;
}
}
class SmsPacket{

St r ing sms ;
SmsPacket next ;

}

interface Encoder{
St r ing format ( St r ing data ) ;

}
class TrimEncoder implements Encoder{

@Cost ({” cents ” , ”0”})
@Size ( ” s i z e ( r e t)<=s i z e ( s ) ” )
public St r ing format ( St r ing s ){

return s . tr im ( ) ;
}

}
class UnicodeEncoder implements Encoder{

@Cost ({” cents ” , ”0”})
@Size ( ” s i z e ( r e t )<=6∗ s i z e ( s ) ” )
public St r ing format ( St r ing s ){

return URLEncoder . encode ( s ) ;
}

}
abstract class Stream{

@Cost ({” cents ” , ”2∗ s i z e ( data ) ”})
native void send ( St r ing data ) ;

}

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.ne(r1,null,void)
Builtin.gtf(r1,sms,r6)

Builtin.asg(r4,r5)

Builtin.eq(r1,null,void)
Builtin.asg(null,r5)

Builtin.gtf(r1,next,r8)
CellPhone.sendSms(r0,r8,r2,r3,r9,r10)
Builtin.stf(r1,next,r10,r1_1)
Builtin.stf(r1_1,sms,r7,r4)

Encoder.format(r2, r6, r7)
Stream.send(r3,r7,void)

Stream.send(r0,r1,r2)

Encoder.format(r0,r1,r2)

Builtin.asg(r3,r2)
java.net.URLEncoder.encode(r1,r3)

Encoder.format(r0,r1,r2)

java.lang.String.trim(r1,r3)
Builtin.asg(r3,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

@Cost({"cents","0"}) @Cost({"cents","0"})

@Cost({"cents","2*size(r1)"})

@Size("size(r2)<=size(r1)") @Size("size(r2)<=6*size(r1)")

Fig. 1. Motivating example: Java source code and Control Flow Graph

objective of the analysis is to approximate the usage that the program makes of the resource.
In the example, the resource is the cost in cents of a dollar for sending the list of text
messages, since we will assume for simplicity that the carrier charges are proportional (2
cents/character) to the number of characters sent. This domain knowledge is reflected by
the user in the method that is ultimately responsible for the communication (Stream.send),
by adding the annotation @Cost({"cents","2*size(data)"}). Similarly, the formatting of
an SMS done in any implementation of Encoder.format is free, as indicated by the @Cost-

({"cents","0")}) annotation. The analysis understands these resource usage expressions
and uses them to infer a safe upper bound on the total usage of the program.

Step 1: Constructing the Control Flow Graph. In the first step, the analysis translates
the Java bytecode into an intermediate representation building a Control Flow Graph (CFG).
Edges in the CFG connect block methods and describe the possible flows originated from
conditional jumps, exception handling, virtual invocations, etc. A (simplified) version of the
CFG corresponding to our code example is also shown in Fig. 1.

The original sendSms method has been compiled into two block methods that share the
same signature: class where declared, name (CellPhone.sendSms), and number and type
of the formal parameters. The bottom-most box represents the base case, in which we re-
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turn null, here represented as an assignment of null to the return variable r5; the sibling
corresponds to the recursive case. The virtual invocation of format has been transformed
into a static call to a block method named Encoder.format. There are two block meth-
ods which are compatible in signature with that invocation, and which serve as proxies for
the intermediate representations of the interface implementations in TrimEncoder.format

and UnicodeEncoder.format. Note that the resource-related annotations have been carried
through the CFG and are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationships. The algorithm
infers in this phase size relationships between the input and the output formal parameters
of every block method. For now, we can assume that size of (the contents of) a variable is
the maximum number of pointers we need to traverse, starting at the variable, until null is
found. The following equations are inferred by the analysis for the two CellPhone.sendSms

block methods :

Sizer5

sendSms(sr0
, 0, sr2

, sr3
) ≤ 0

Sizer5

sendSms(sr0
, sr1

, sr2
, sr3

) ≤ 7× sr1
− 6 + Sizer5

sendSms(sr0
, sr1

− 1, sr2
, sr3

)

The size of the returned value r5 is independent of the sizes of the input parameters this,
enc, and stm (sr0

, sr2
and sr3

respectively) but not of the size sr1
of the list of text messages

smsPk (r1 in the graph). Such size relationships are computed based on dependency graphs,
which represent data dependencies between variables in a block, and user annotations if
available. In the example in Fig. 1, the user indicates that the formatting in Unicode-

Encoder results in strings that are at most six times longer than the ones received as input
@Size("size(ret)<=6*size(s)"), while the trimming in TrimEncoder returns strings that
are equal or shorter than the input (@Size("size(ret)<=size(s)")). The equation system
shown above is approximated by a recurrence solver included in our analysis in order to
obtain the closed form solution Sizer5

sendSms(sr0
, sr1

, sr2
, sr3

) ≤ 3.5× s2
r1
− 2.5× sr1

.

Step 3: Resource Usage Analysis. In the this phase, the analysis uses the CFG, the data
dependencies, and the size relationships inferred in previous steps to infer a resource usage
equation for each block method in the CFG (possibly simplifying such equations) and obtain
closed form solutions (in general, approximated –upper bounds). Therefore, the objective of
the resource analysis is to statically derive safe upper bounds on the amount of resources
that each of the block methods in the CFG consumes or provides. The result given by our
analysis for the monetary cost of sending the messages (CellPhone.sendSms) is

CostsendSms(sr0
, 0, sr2

, sr3
) ≤ 0

CostsendSms(sr0
, sr1

, sr2
, sr3

) ≤ 12× sr1
− 12 + CostsendSms(sr0

, sr1
− 1, sr2

, sr3
)

i.e., the cost is proportional to the size of the message list (smsPk in the source, r1 in the
CFG). Again, this equation system is solved by a recurrence solver, resulting in the closed
formula CostsendSms(sr0

, sr1
, sr2

, sr3
) ≤ 6× s2

r1
− 6× sr1

.

3 Intermediate program representation

Analysis of a Java bytecode program normally requires its translation into an intermediate
representation that is easier to manipulate. In particular, our decompilation (assisted by the
Soot [31] tool) involves elimination of stack variables, conversion to three-address statements,
static single assignment (SSA) transformation, and generation of a Control Flow Graph
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(CFG) that is ultimately the subject of analysis. The decompilation process is an evolution
of the work presented in [25], which has been successfully used as the basis for other (non
resource-related) analyses [24]. Our ultimate objective is to support the full Java language but
the current transformation has some limitations: it does not yet support reflection, threads,
or runtime exceptions. The following grammar describes the intermediate representation;
some of the elements in the tuples are named so we can refer to them as node.name.

CFG ::= Block+

Block ::= (id:N,sig:Sig,fpars:Id+,annot:expr∗,body:Stmt∗)
Sig ::= (class:Type,name:Id,pars:Type+)
Stmt ::= (id:N,sig:Sig,apars:(Id|Ct)+)
V ar ::= (name:Id, type:Type)

The Control Flow Graph is composed of block methods. A block method is similar to a Java
method, with some particularities: a) if the program flow reaches it, every statement in it
will be executed, i.e, it contains no branching; b) its signature might not be unique: the CFG
might contain several block methods in the same class sharing the same name and formal
parameter types; c) it always includes as formal parameters the returned value ret and, unless
it is static, the instance self-reference this; d) for every formal parameter (input formal
parameter) of the original Java method that might be modified, there is an extra formal
parameter in the block method that contains its final version in the SSA transformation
(output formal parameter); e) every statement in a block method is an invocation, including
builtins (assignment asg, field dereference gtf, etc.), which are understood as block methods
of the class Builtin.

As mentioned before, there is no branching within a block method. Instead, each con-
ditional if cond stmt1 else stmt2 in the original program is replaced with an invocation
and two block methods which uniquely match its signature: the first block corresponds to
the stmt1 branch, and the second one to stmt2. To respect the semantics of the language, we
decorate the first block method with the result of decompiling cond, while we attach cond

to its sibling. A similar approach is used in virtual invocations, for which we introduce as
many block methods in the graph as possible receivers of the call were in the original pro-
gram. A set of block methods with the same signature sig can be retrieved by the function
getBlocks(CFG, sig).

User specifications are written using the annotation system introduced in Java 1.5 which,
unlike JML specifications, has the very useful characteristic of being preserved in the byte-
code. Annotations are carried over to our CFG representation, as can be seen in Fig. 1.

Example 1 We now focus our attention on the two block methods in Fig. 1, which are the
result of (de)compiling the CellPhone.sendSms method. Input formal parameters r0, r1,
r2, r3 correspond to this, smsPk, enc, and stm, respectively. In the case of r1, the contents
of its fields next and sms are altered by invoking the stf and accessed by invoking the
gtf (abbreviation for setfield and getfield, respectively) builtin block methods. The
output formal parameter r4 contains the final state of r1 after those modifications. The value
returned by the block methods is contained in r5. Space reasons prevent us from showing
any type information in the CFG in Fig 1. In the case of Encoder.format, for example,
we say that there are two blocks with the same signature because they are both defined
in class Encoder, have the same name (format) and list of types of formal parameters
{Encoder,String,String}.
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resourceAnalysis (CFG, r e s ) {

CFG← c l a s sAna l y s i s (CFG)

mt← i n i t i a l i z e (CFG)

dg←dataDependencyAnalysis (CFG,mt)

for (SCC: SCCs)

// in reverse t opo l o g i c a l order

mt←genSizeEqs (SCC,mt ,CFG, dg )

mt←genResourceUsageEqs (SCC, res ,mt ,CFG)

return mt

}

normalize (Eqs ) {

for ( s i z e r e l a t i o n p ≤ e1 : Eqs )

do

i f ( exp r e s s i on s appears in e1

and s ≤ e2 ∈Eqs )

r ep l a c e ocur rence s o f s in e1 with e2

while the re i s change

return Eqs

}

Fig. 2. Generic resource analysis algorithm and normalization.

4 The resource usage analysis framework

We now describe our framework for inferring upper bounds on the usage that the Java
bytecode program makes of a set of resources defined by the application programmer, as
described before. The algorithm in Fig 2 takes as input a Control Flow Graph in the format
described in the previous section, including the user annotations that assign elementary costs
to certain graph elements for a particular resource. The user also indicates the set of resources
to be tracked by the analysis. Without loss of generality we assume for conciseness in our
presentation a single resource.

A preliminary step in our approach is a class hierarchy analysis [5, 24], aimed at simplify-
ing the CFG and therefore improving overall precision. Then, another analysis is performed
over the CFG to extract data dependencies, as described below. The next step is the decom-
position of the CFG into its strongly-connected components. After these steps, two different
analyses are run separately on each strongly connected component: a) the size analysis, which
estimates parameter size relationships for each statement and output formal parameters as a
function of the input formal parameter sizes (Sec. 4.1); and b) the actual resource analysis,
which computes the resource usage of each block method in terms also of the input data sizes
(Sec. 4.2). Each phase is dependent on the previous one.

The data dependency analysis is a dataflow analysis that yields position dependency

graphs for the block methods within a strongly connected component. Each graph G = (V,E)
represents data dependencies between positions corresponding to statements in the same
block method, including its formal parameters. Vertexes in V denote positions,

Fig. 3.

and edges (s1, s2) ∈ E denote that s2 is dependent on s1

(s1 is a predecessor of s2). We will assume a predec func-
tion that takes a position dependency graph, a statement,
and a parameter position and returns its nearest prede-
cessor in the graph. Fig. 3 shows the position dependency
graph of the TrimEncoder.format block method.

4.1 Size analysis

We now show our algorithm for estimating parameter size relations based on the data de-
pendency analysis, inspired by the original ideas of [13, 12]. Also, we provide a concrete
algorithm for performing the analysis, rather than the more descriptive presentations of the
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related work discussed previously. Our goal is to represent input and output size relation-
ships for each statement as a function defined in terms of the formal parameter sizes. Unless
otherwise stated, whenever we refer to a parameter we mean its position.

The size of an input is defined in terms of measures. By measure we mean a function
that, given a data structure, returns a number. Our method is parametric on measures,
which can be defined by the user and attached via annotations to parameters or classes.
For concreteness, we have defined herein two measures, int for integer variables, and the
longest path-length [1] ref for reference variables. The longest path-length of a variable is
the cardinality of the longest chain of pointers than can be followed from it. More complex
measures can be defined to handle other data types such as cyclic structures, arrays, etc.
The set of measures will be denoted by M.

The size analysis algorithm is given in pseudo-code in Fig. 4; its main steps are:

1. Assign an upper bound to the size of every parameter position of all statements, including
formal parameters, for all the block methods with the same signature (genSigSize).

2. For a given signature, take the set of size inequations returned by (1) and rename each
size relation in terms of the sizes of input formal parameters (normalize).

3. Repeat the first step for every signature in the same strongly-connected component
(genSizeEqs).

4. Simplify size relationships by resolving mutually recursive functions, and find closed form
solutions for the output formal parameters (genSizeEqs).

Intermediate results are cashed in a memo table mt, which for every parameter position
stores measures, sizes, and resource usage expressions defined in the L language:

〈expr〉 ::= 〈expr〉〈bin op〉〈expr〉 | (
P

|
Q

)〈expr〉

| 〈expr〉〈expr〉 | lognum〈expr〉 | −〈expr〉
| 〈expr〉! | ∞ | num
| size([〈measure〉,]arg(r num))

〈bin op〉 ::= + | − | × | / | %
〈measure〉 ::= int | ref | . . .

The size of the parameter at position i in statement stmt, under measure m, is referred to
as size(m, stmt, i). We consider a parameter position to be input if it is bound to some data
when the statement is invoked. Otherwise, it is considered an output parameter position. In
the case of input parameter and output formal parameter positions, an upper bound on that
size is returned by getSize (Fig. 4). The upper bound can be a concrete value when there is
a constant in the referred position, i.e., when the val function returns a non-infinite value:

Definition 1. The concrete size value for a parameter position under a particular measure

is returned by val : M×Stmt×N → L, which evaluates the syntactic content of the actual

parameter in that position:

val(m, stmt, i) =







n if stmt.aparsi is an integer n and m=int
0 if stmt.aparsi is null and m=ref
∞ otherwise

If the content of that input parameter position is a variable, the algorithm searches the
data dependency graph for its immediate predecessor. Since the intermediate representation
is in SSA form, the only possible scenarios are that either there is a unique predecessor
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genSizeEqs (SCC,mt ,CFG, dg ) {

Eqs← ∅|SCC|

for ( s i g : SCC)

Eqs [ s i g ]←genS igS i z e ( s ig ,mt ,SCC,CFG, dg )

So l s← recEqsSo lver ( s imp l i fyEqs (Eqs ) )

for ( s i g :SCC)

i n s e r t (mt , size , s i g , So l s [ s i g ] )

return mt

}

genSigSize ( s ig ,mt ,SCC,CFG, dg ) {

Eqs← ∅

BMS←getBlocks (CFG, s i g )

for (bm:BMs)

Eqs←Eqs ∪ genBlockSize (bm,mt ,SCC, dg )

return normal ize (Eqs )

}

genBlockSize (bm,mt ,SCC, dg ) {

Eqs← ∅

for ( stmt :bm. body )

I←stmt input parameter p o s i t i o n s

Eqs←Eqs ∪ genInS ize ( stmt , I ,mt , dg )

Eqs←Eqs ∪ genOutSize ( stmt ,mt ,SCC)

K← bm output formal parameter p o s i t i o n s

Eqs←Eqs ∪ genInS ize (bm,K,mt , dg )

return Eqs

}

genInSize ( elem , Pos ,mt , dg ) {

Eqs← ∅

for ( pos : Pos )

m← lookup (mt , measure , elem . s ig , pos )

s←ge tS i z e (m, elem . id , pos , dg )

Eqs←Eqs ∪ {size (m, elem . id , pos )≤s}

return Eqs

}

genOutSize ( stmt ,mt ,SCC) {

{i1, . . . , il} ← stmt input p o s i t i o n s

s i g←stmt . s i g

{mi1
, . . . ,mil

} ←{ lookup (mt , measure , s i g , i 1 ) , . . . ,

lookup (mt , measure , s i g , i l)}

{s i1
, . . . ,s il

} ← {size (mi1
, stmt . id , i 1 ) , . . . ,

size (mil
, stmt . id , i l )

Eqs← ∅

O← stmt output parameter p o s i t i o n s

for ( o :O)

mo ← lookup (mt , measure , s i g , o )

i f ( s i g /∈SCC)

S i z euser ← A
o
sig(s i1

, . . . ,s il
)

S i z ealg′ ←max( lookup (mt , size , s i g , o ) )

S i z ealg ←S i z ealg′ (s i1
, . . . ,s il

)

S i z e o ←min( S i z euser , S i z ealg )

else

S i z e o ← Sizeo
sig(mo,s i1

, . . . ,s il
)

Eqs←Eqs ∪ {size (mo , stmt . id , o )≤ S i z e o}

return Eqs

}

getSize (m, id , pos , dg ) {

r e s u l t←val (m, id , i )

i f ( r e s u l t 6=∞)

return r e s u l t

else

i f (∃( elem , posp) ∈ predec (dg , id , pos ) )

mp ← lookup (mt , measure , elem . s ig , posp )

i f (m=mp )

return size (mp , elem . id , posp )

return ∞

}

Fig. 4. The size analysis algorithm

whose size is assigned to that input parameter position, or there is none, causing the input
parameter size to be unbounded (∞).

Consider now an output parameter position within a block method, case covered in
genOutSize (Fig. 4). If the output parameter position corresponds to a non-recursive invoke
statement, either a size relationship function has already been computed recursively (since
the analysis traverses each strongly-connected component in reverse topological order), or it
is provided by the user through size annotations. In the first case, the size function of the out-
put parameter position can be retrieved from the memo table by using the lookup operation,
taking the maximum in case of several size relationship functions, and then passing the input
parameter size relationships to this function to evaluate it. In the second scenario, the size
function of the output parameter position is provided by the user through size annotations,
denoted by the A function in the algorithm. In both cases, it will able to return an explicit
size relation function.
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Example 2 We have already shown in the CellPhone example how a class can be annotated.
The Builtin class includes the assignment method asg, annotated as follows:

public class Bu i l t i n {

@Size{” s i z e ( r e t)<=s i z e ( o ) ”}
public stat ic native Object asg ( Object o ) ;

// . . . r e s t of annotated b u i l t i n s
}

which results in equation A1
asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0) .

If the output parameter position corresponds to a recursive invoke statement, the size
relationships between the output and input parameters are built as a symbolic size function.
Since the input parameter size relations have already been computed, we can establish each
output parameter position size as a function described in terms of the input parameter sizes.

At this point, the algorithm has defined size relations for all parameter positions within
a block method. However, those relations are either constants or given in terms of the imme-
diate predecessor in the dependency graph. The algorithm rewrites the equation system such
that we obtain an equivalent system in which only formal parameter positions are involved.
This process, called normalization, is shown in Fig. 2

After normalization, the analysis repeats the same process for all block methods in the
same strongly-connected component (SCC). Once every component has been processed, the
analysis further simplifies the equations in order to resolve mutually recursive calls among
block methods within the same SCC in the simplifyEqs procedure.

In the final step, the analysis submits the simplified system to a recurrence equation
solver (recEqsSolver, called from genSizeEqs) in order to obtain approximated upper-bound
closed forms. The interesting subject of how the equations are solved is beyond the scope of
this paper (see, e.g., [33]). Our implementation does provide a dedicated implementation (an
evolution of the solver of the Caslog system [12]) which covers a reasonable set of recurrence
equations such as first-order and higher-order linear recurrence equations in one variable
with constant and polynomial coefficients, divide and conquer recurrence equations, etc. In
addition, the system has interfaces to external solvers such as Purrs [6] or Mathematica.

Example 3 We now illustrate the definitions and algorithm with an example of how the
size relations are inferred for the two CellPhone.sendSms block methods (Fig. 1), using
the ref measure for reference variables. We will refer to the k-th occurrence of a statement
stmt in a block method as stmtk, and denote CellPhone.sendSms, Encoder.format, and
Stream.send by sendSms, format, and send respectively. Finally, we will refer to the size of
the input formal parameter position i, corresponding to variable ri, as sri

.
The main steps in the process are listed in Fig. 5. The first block of rows contains the

most relevant size parameter relationship equations for the recursive block method, while
the second block of rows corresponds to the base case. These size parameter relationship
equations are constructed by the analysis by first following the algorithm in Fig. 4, and then
normalizing them (expressing them in terms of the input formal parameter sizes sri

). Also, in
the first block of rows we observe that the algorithm has returned 6× size(ref, format, 1)
as upper bound for the size of the formatted string, max(lookup(mt, size, format, 2)). The
result is the maximum of the two upper bounds given by the user for the two implementations
for Encoder.format since TrimEncoder.format eliminates any leading and trailing white
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Size parameter relationship equations (normalized)

size(ref, ne, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, ne, 1) ≤ val(ref, ne, 1) ≤ 0
size(ref, gtf1, 0) ≤ size(ref, ne, 0) ≤ sr1

size(ref, gtf1, 2) ≤ A2
gtf (ref, size(ref, gtf1, 0), ) ≤ sr1 − 1

size(ref, format, 1) ≤ size(ref, gtf1, 2) ≤ sr1 − 1
size(ref, format, 2) ≤ max(lookup(mt, size, format, 2))(size(ref, format, 2))

≤ max(sr1, 6× sr1)(sr1
− 1)

≤ 6× (sr1 − 1)
size(ref, send, 1) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)
size(ref, gtf2, 0) ≤ size(ref, gtf1, 0) ≤ sr1

size(ref, gtf2, 2) ≤ A2
gtf (ref, size(ref, gtf2, 0), ) ≤ sr1 − 1

size(ref, sendSms, 1) ≤ size(ref, gtf2, 2) ≤ sr1 − 1
size(ref, sendSms, 5) ≤ Sizer5

sendSms(ref, , size(ref, sendSms, 1), , )
≤ Sizer5

sendSms(ref, sr0, sr1 − 1, sr2, sr3)
size(ref, stf1, 0) ≤ size(ref, gtf2, 0) ≤ sr1

size(ref, stf1, 2) ≤ size(ref, sendSms, 5) ≤ Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf1, 3) ≤ A3
stf (ref, size(ref, stf1, 0), , size(ref, stf1, 2))

≤ sr1 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 0) ≤ size(ref, stf1, 3) ≤ sr1 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 2) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)
size(ref, stf2, 3) ≤ A3

stf (ref, size(ref, stf2, 0), , size(ref, stf2, 2))
≤ 7× sr1 − 6 + Sizer5

sendSms(ref, sr0, sr1 − 1, sr2, sr3)
size(ref, asg, 0) ≤ size(ref, stf2, 3)

≤ 7× sr1 − 6 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, asg, 1) ≤ A1
asg(ref, size(ref, asg, 0))

≤ 7× sr1 − 6 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, eq, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, eq, 1) ≤ val(ref, eq, 1) ≤ 0
size(ref, asg, 0) ≤ val(ref, asg, 0) ≤ 0
size(ref, asg, 1) ≤ A1

asg(ref, size(ref, asg, 0)) ≤ 0

Output parameter size functions for builtins (provided through annotations)

A2
gtf(ref, size(ref, gtf, 0), ) ≤ size(ref, gtf, 0)− 1
A1

asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0)
A3

stf(ref, size(ref, stf, 0), , size(ref, stf, 2)) ≤ size(ref, stf, 0) + size(ref, stf, 2)

Simplified size equations and closed form solution

Sizer5
sendSms(ref, sr0, sr1, sr2, sr3) ≤


0 if sr1 = 0
7× sr1 − 6 + Sizer5

sendSms(ref, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Sizer5
sendSms(ref, sr0, sr1, sr2, sr3) ≤ 3.5× s2

r1 − 2.5× sr1

Fig. 5. Size equations example

spaces (thus the output is at most as bigger as the input), whereas UnicodeEncoder.format
converts any special character into its Unicode equivalent (thus the output is at most six
times the size of the input), a safe upper bound for the output parameter position size is
given by the second annotation.
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genResourceUsageEqs (SCC, res ,mt ,CFG) {

Eqs← ∅|SCC|

for ( s i g :SCC)

Eqs [ s i g ]←genSigRU ( s ig , res ,mt ,SCC,CFG)

So l s← recEqsSo lver ( s imp l i fyEqs (Eqs ) )

for ( s i g :SCC)

i n s e r t (mt , cost ,max( So l s [ s i g ] ) )

return mt

}

genSigRU( s ig , res ,mt ,SCC,CFG) {

Eqs← ∅

BMs←getBlocks (CFG, s i g )

for (bm:BMs)

body←bm. body

Costbody ← 0

for ( stmt : body )

Coststmt ←genStmtRU( stmt , res ,mt ,SCC)

Costbody ←Costbody + Coststmt

Costbm ←genBlockRU(bm, res ,mt)

Eqs←Eqs ∪ {Costbm ≤Costbody}

}

genStmtRU( stmt , res ,mt ,SCC) {

{i1, . . . , ik} ← stmt input parameter p o s i t i o n s

{si1
, . . . , sik

} ←

{max( lookup (mt , size , stmt . s ig , i 1 ) ) , . . . ,

max( lookup (mt , size , stmt . s ig , i k ) )}

i f ( stmt . s i g /∈ SCC)

Costuser ← Astmt.sig ( res , s i1
, . . . , s ik

)

Costalg′ ← lookup (mt , cost , res , stmt . s i g )

Costalg ←Costalg′ ( s i1
, . . . , s ik

)

return min( Costalg , Costuser )

else return Cost ( stmt . s ig , res , s i1
, . . . , s ik

)

}

genBlockRU(bm, res ,mt) {

{i1, . . . , il} ← bm input formal parameter p o s i t i o n s

{si1
, . . . , sil

} ←

{ lookup (mt , size ,bm. id , i 1 ) , . . . ,

lookup (mt , size ,bm. id , i l )

return Cost (bm. id , res , s i1
, . . . , s il

)

}

Fig. 6. The resource usage analysis algorithm

In the particular case of builtins and methods for which we do not have the code, size
relationships are not computed but rather taken from the user @Size annotations. These
functions are illustrated in the third block of rows. Finally, in the fourth block of rows we
show the recurrence equations built for the output parameter sizes in the block method and
in the final row the closed form solution obtained.

4.2 Resource usage analysis

The core of our framework is the resource usage analysis, whose pseudo code is shown in Fig 6.
It takes a strongly-connected component of the CFG, including the set of annotations which
provide the application programmer-provided resources and cost functions, and calculates
an resource usage function which is an upper bound on the usage made by the program of
those resources. The algorithm manipulates the same memo table described in Sec. 4.1 in
order to avoid recomputations and access the size relationships already inferred.

The algorithm is structured in a very similar way to the size analysis (which also allows us
to draw from it to keep the explanation within space limits): for each element of the strongly-
connected component the algorithm will construct an equation for each block method that
shares the same signature representing the resource usage of that block. To do this, the
algorithm will visit each invoke statement. There are three possible scenarios, covered by
the genStmtRU function. If the signatures of caller and callee(s) belong to the same strongly-
connected component, we are analyzing a recursive invoke statement. Then, we add to the
body resource usage a symbolic resource usage function, in an analogous fashion to the case
of output parameters in recursive invocations during the size analysis.

The other scenarios occur when the invoke statement is non-recursive. Either a resource
usage function Costalg for the callee has been previously computed, or there is a user anno-
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tation Costusr that matches the given signature, or both. In the latter case, the minimum
between these two functions is chosen (i.e., the most precise safe upper bound assigned by
the analysis to the resource usage of the non-recursive invoke statement).

Example 4 The call (sixth statement) in the upper-most CellPhone.sendSms block method
matches the signature of the block method itself and thus it is recursive. The first four
parameter positions are of input type. The upper-bound expression returned by genStmtRU

is Cost
sendSms

($, sr0, sr1−1, sr2, sr3). Note that the input size relationships were already normalized

during the size analysis. Now consider the invocation of Stream.send. The resource usage
expression for the statement is defined by the function Asend($, , 6×(sr1−1)) since the input
parameter at position one is at most six times the size of the second input formal parameter,
as calculated by the size analysis in Fig. 5. Note also that there is a resource annotation
@Cost({"cents","2*size(r1)"}) attached to the block method describing the behavior of
Asend and yielding the expression Costuser = 12×(sr1−1). On the other hand, the absence of
any callee code to analyze –the original method is native– results in Costalg = ∞. Then, the
upper bound obtained by the analysis for the statement is min(Costalg, Costuser) = Costuser.

At this point, the analysis has built a resource usage function (denoted by Costbody) that
reflects the resource usage of the statements within the block. Finally, it yields a resource
usage equation of the form Costblock ≤ Costbody where Costblock is again a symbolic resource
usage function built by replacing each input formal parameter position with its size relations
in that block method. These resource usage equations are simplified by calling simplifyEqs and,
finally, they are solved calling recEqsSolver, both already defined in Sec. 4.1. This process yields
an (in general, approximate, but always safe) closed form upper bound on the resource usage
of the block methods in each strongly-connected component. Note that given a signature the
analysis constructs a closed form solution for every block method that shares that signature.
These solutions approximate the resource usage consumed in or provided by each block
method. In order to compute the total resource usage of the signature the analysis returns
the maximum of these solutions yielding a safe global upper bound.

Example 5 The resource usage equations generated by our algorithm for the two sendSms

block methods and the “$” resource (monetary cost of sending the SMSs) are listed in
Fig. 7. The computation is partially based on the size relations in Fig. 5. The resource
usage of each block method is calculated by building an equation such that the left part
is a symbolic function constructed by replacing each parameter position with its size (i.e.,
Cost

sendSms
($, sr0, sr1, sr2, sr3) and Cost

sendSms
($, sr0, 0, sr2, sr3) ), and the rest of the equation consists of

adding the resource usage of the invoke statements in the block method. These are calculated
by computing the minimum between the resource usage function inferred by the analysis and
the function provided by the user. The equations corresponding to the recursive and non-
recursive block methods are in the first and second row, respectively. They can be simplified
(third row) and expressed in closed form (fourth row), obtaining a final upper bound for the
charge incurred by sending the list of text messages of 6× s2

r1 − 6× sr1.

5 Experimental results

We have completed an implementation of our framework, and tested it for a representative set
of benchmarks and resources. Our experimental results are summarized in Table 1. Column
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Resource usage equations

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ min(

∞
z }| {

lookup(mt, cost, $, ne),

@Cost(”cents”,”0”)=0
z }| {

Ane($, sr1, ))

+min(

∞
z }| {

lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0
z }| {

Agtf ($, sr1, ) )

+min(

0
z }| {

lookup(mt, cost, $, format)( , sr1 − 1),

∞
z }| {

Aformat($, , sr1 − 1))

+min(

∞
z }| {

lookup(mt, cost, $, send),

@Cost(”cents”,”2∗size(r1)”)=12×(sr1−1)
z }| {

Asend($, , 6× (sr1 − 1))

+min(

∞
z }| {

lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0
z }| {

Agtf ($, sr1, ) ) + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3)

+min(

∞
z }| {

lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0
z }| {

Astf ($, sr1, , ) )

+min(

∞
z }| {

lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0
z }| {

Astf ($, sr1, , ) )

+min(

∞
z }| {

lookup(mt, cost, $, asg),

@Cost(”cents”,”0”)=0
z }| {

Aasg($, ))

≤ 12× (sr1 − 1) + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3)

Cost
sendSms

($, sr0, 0, sr2, sr3) ≤ min(

∞
z }| {

lookup(mt, cost, $, eq) ,

@Cost(”cents”,”0”)=0
z }| {

Aeq($, 0, ))

+ min(lookup(mt, cost, $, asg)
| {z }

∞

, Aasg($, 0))
| {z }

@Cost(”cents”,”0”)=0

≤ 0

Simplified resource usage equations and closed form solution

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤


0 if sr1 = 0
12 ∗ sr1 − 12 + Cost

sendSms
($, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ 6× s2
r1 − 6× sr1

Fig. 7. Resource equations example

Program provides the name of the main class to be analyzed. Column Resource(s) shows
the resource(s) defined and tracked. Column ts shows the time (in milliseconds) required
by the size analysis to construct the size relations (including the data dependency analysis
and class hierarchy analysis) and obtain the closed form. Column tr lists the time taken
to build the resource usage expressions for all method blocks and obtain their closed form
solutions. t provides the total times for the whole analysis process. Finally, column Resource
Usage Func. provides the upper bound functions inferred for the resource usage. For space
reasons, we only show the most important (asymptotic) component of these functions, but
the analysis yields concrete functions with constants.

Regarding the benchmarks we have covered a reasonable set of data-structures used in
object-oriented programming and also standard Java libraries used in real applications. We
have also covered an ample set of application-dependent resources which we believe can
be relevant in those applications. In particular, not only have we represented high-level
resources such as cost of SMS, bytes received (including a coarse measure of bandwidth, as
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Program Resource(s) ts tr t Resource Usage Func.

BST Heap usage 250 22 367 O(2n) n ≡ tree depth

CellPhone SMS monetary cost 271 17 386 O(n2) n ≡ packets length

Client Bytes received and 391 38 527 O(n) n ≡ stream length
bandwidth required O(1) —

Dhrystone Energy consumption 602 47 759 O(n) n ≡ int value

Divbytwo Stack usage 142 13 219 O(log2(n)) n ≡ int value

Files Files left open and 508 53 649 O(n) n ≡ number of files
Data stored O(n×m) m ≡ stream length

Join DB accesses 334 19 460 O(n×m) n, m ≡ records in tables

Screen Screen width 388 38 536 O(n) n ≡ stream length

Table 1. Times of different phases of the resource analysis and resource usage functions.

a ratio of data per program step), and files left open, but also other low-level (i.e., bytecode
level) resources such as stack usage or energy consumption. The resource usage functions
obtained can be used for several purposes. In program Files (a fragment characteristic of
operating system kernel code) we kept track of the number of file descriptors left open. The
data inferred for this resource can be clearly useful, e.g., for debugging: the resource usage
function inferred in this case (O(n)) denotes that the programmer did not close O(n) file
descriptors previously opened. In program Join (a database transaction which carries out
accesses to different tables) we decided to measure the number of accesses to such external
tables. This information can be used, e.g., for resource-oriented specialization in order to
perform optimized checkpoints in transactional systems. The rest of the benchmarks include
other definitions of resources which are also typically useful for verifying application-specific
properties: BST (a generic binary search tree, used in [2] where a heap space analysis for
Java bytecode is presented), CellPhone (extended version of program in Figure 1), Client

(a socket-based client application), Dhrystone (a modified version of a program from [20]
where a general framework is defined for estimating the energy consumption of embedded
JVM applications; the complete table with the energy consumption costs that we used can be
found there), DivByTwo (a simple arithmetic operation), and Screen (a MIDP application
for a cellphone, where the analysis is used to make sure that message lines do not exceed
the phone screen width). The benchmarks also cover a good range of complexity functions
(O(1), O(log(n), O(n), O(n2) . . . , O(2n), . . .) and different types of structural recursion such
as simple, indirect, and mutual. The code for these benchmarks and a demonstrator are
available at http://www.cs.unm.edu/~jorge/RUA.

6 Conclusions

We have presented a fully-automated analysis for inferring upper bounds on the usage that
a Java bytecode program makes of a set of application programmer-definable resources. Our
analysis derives a vector of functions, one for each defined resource. Each of these functions
returns, for each given set of input data sizes, an upper bound on the usage that the whole
program (and each individual method) make of the corresponding resource. Important novel
aspects of our approach are the fact that it allows the application programmer to define the
resources to be tracked by writing simple resource descriptions via source-level annotations,
as well as the fact that we have provided a concrete analysis algorithm and report on an
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implementation. The current results show that the proposed analysis can obtain non-trivial
bounds on a wide range of interesting resources in reasonable time. Another important aspect
of our work, because of its impact on the scalability, precision, and automation of the analysis,
is that our approach allows using the annotations also for a number of other purposes such
as stating the resource usage of external methods, which is instrumental in allowing modular
composition and thus scalability. In addition, our annotations allow stating the resource
usage of any method for which the automatic analysis infers a value that is not accurate
enough to prevent inaccuracies in the automatic inference from propagating. Annotations
are also used by the size and resource usage analysis to express their output. Finally, the
annotation language can also be used to state specifications related to resource usage, which
can then be proved or disproved based on the results of analysis following, e.g., the scheme
of [19] thus finding bugs or verifying (the resource usage of) the program.
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