
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable 2.7

Report on Advanced Resource Policies

Due date of deliverable: 2009-09-01 (T0+48)

Actual submission date: 2009-10-09

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: UEDIN

Submitted version

Online repository revision code 7900

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Executive Summary

This is Deliverable 2.7 of MOBIUS, an integrated project (FP6-015905) in the European Community Sixth
Framework Programme. Full information about MOBIUS is available online at the project website http:
//mobius.inria.fr.

This deliverable reports on type systems and static analyses for advanced resource policies and analysis
(Task 2.4: Advanced resource policies and analyses). The deliverable consists of 24 publications that have
appeared elsewhere and includes contributions from all MOBIUS partners involved in Task 2.4, namely
INRIA, LMU, UEDIN, and UPM. The results reported here build on previous work (Task 2.3: Types for basic
resource policies).

This deliverable supersedes Deliverable 2.6, the Preliminary Report on Advanced Resource Policies. 11
of the 24 publications constituting this deliverable have already been included in Deliverable 2.6, 5 papers
have been revised since, and 8 are new.

• Chapter 1 is a brief introduction outlining the space of type systems and program analyses covered by
Task 2.4.

• Chapter 2 presents INRIA’s implementation of an inter-procedural relational analysis for Java byte-
code that can compute invariants used in the generation of resource certificates. The analysis is
supplemented by a provably correct bytecode transformation to get rid of the operand stack.

• Chapter 3 reports on LMU’s development of type inference algorithms for a type system which tracks
amortised heap-space usage in Java programs, and LMU’s development of a generic resource extension
to the MOBIUS base logic. The extended logic serves as a target for translating type derivations into
base logic proofs, as demonstrated by interpretations of type systems for constant heap space and for
block booking resources.

• Chapter 4 presents UEDIN’s approach to block booking: explicit accounting using resource managers.
Resource safety is then enforced either dynamically by run-time monitoring, or statically by a type
system. Additionally, preliminary results are reported about a static resource analysis for iterative
Java code based on counting lattice points inside polytopes.

• Chapter 5 summarises UPM’s work on resource usage analysis. It comprises a description of the
different phases carried out to infer upper bounds from Java bytecode programs in the COSTA system.
Also, it introduces a live heap space analysis which infers upper bounds on the peak of the heap usage
along any execution of an input program.

• Appendix A (500+ pages) collates the 24 publications that constitute this deliverable.

This report reflects only the views of the authors and the European Community is not liable for any use
that may be made of the information contained therein.

2

http://mobius.inria.fr
http://mobius.inria.fr

Version Control History

Revisions
Version Date Purpose Revision code

Draft D2.7 2009-08-07 First version, circulated for partner review 7645
Revised D2.7 2009-09-01 Revised version, prepared for lead site. 7827
Final D2.7 2009-10-09 Submitted to European Project Office 7900

Note: “Revision code” refers to the version control number assigned by the project online document repos-
itory. This uniquely identifies all historical versions of MOBIUS documents through drafting and editing.

Authors
Site Contributed to Chapter
INRIA 2
LMU 3
UEDIN 1,4, editor
UPM 5

3

Contents

Executive Summary . 2
Version Control . 3

1 Introduction 6

2 Polyhedral Analysis of Java Bytecode for Certificate Generation 8

3 Improvements in the development of RAJA 10

4 Safety Guarantees from Explicit Resource Management 12

5 Static Resource Analysis of Java bytecode 14

A Copies of Publications 18

Result certification for relational program analysis . 19
F. Besson, T. Jensen, D. Pichardie, and T. Turpin

A provably correct stackless intermediate representation for Java bytecode 51
D. Demange, T. Jensen, and D. Pichardie

Certification using the Mobius base logic . 107
L. Beringer, M. Hofmann, and M. Pavlova

Efficient type-checking for amortised heap-space analysis . 134
M. Hofmann and D. Rodriguez

Membership checking in greatest fixpoints revisited . 149
M. Hofmann and D. Rodriguez

Monitoring external resources in Java MIDP . 155
D. Aspinall, P. Maier, and I. Stark

Safety guarantees from explicit resource management . 168
D. Aspinall, P. Maier, and I. Stark

Resource analysis for iterative Java programs via lattice-point enumeration in polytopes 188
K. MacKenzie

Deciding extensions of the theories of vectors and bags . 219
P. Maier

Termination analysis of Java bytecode . 234
E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini

Termination and cost analysis with COSTA and its user interfaces 251
E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, G. Puebla, D. Ramírez,
G. Román, and D. Zanardini

4

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

Closed-form upper-bounds in static cost analysis . 261
E. Albert, P. Arenas, S. Genaim, and G. Puebla

Automatic inference of upper bounds for recurrence relations in cost analysis 299
E. Albert, P. Arenas, S. Genaim, and G. Puebla

Cost analysis of object-oriented bytecode programs . 316
E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini

Resource usage analysis and its application to resource certification 390
E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini

Heap space analysis of Java bytecode . 421
E. Albert, S. Genaim, and M. Gómez-Zamalloa

Live heap space analysis for languages with garbage collection . 433
E. Albert, S. Genaim, and M. Gómez-Zamalloa

Constancy analysis . 443
S. Genaim and F. Spoto

Efficient context-sensitive shape analysis with graph based heap models 454
M. Marron, M. V. Hermenegildo, D. Kapur, and D. Stefanovic

Identification of logically related heap regions . 469
M. Marron, D. Kapur, and M.Hermenegildo

Precise set sharing analysis for Java-style programs . 479
M. Méndez-Lojo and M. V. Hermenegildo

Towards execution time estimation in abstract machine-based languages 495
E. Mera, P. López-García, M. Carro, and M. Hermenegildo

Customizable resource usage analysis for Java bytecode . 506
J. Navas, M. Méndez-Lojo, and M. Hermenegildo

User-definable resource usage bounds analysis for Java bytecode 522
J. Navas, M. Méndez-Lojo, and M. Hermenegildo

5

Chapter 1

Introduction

This deliverable reports the results of Task 2.4 on type systems and static analyses for advanced resource
policies. The deliverable consists of copies of 24 publications — collated in the appendix for convenience
— that have appeared elsewhere and includes contributions from all MOBIUS partners involved in Task 2.4,
namely INRIA, LMU, UEDIN, and UPM, cf. following chapters for details.

This deliverable supersedes Deliverable 2.6, the Preliminary Report on Advanced Resource Policies. Of
the 24 publications constituting this deliverable, 11 have already been included in Deliverable 2.6, 5 papers
have been revised since, and 8 are new.

On mobile phones certain resources, like sending text messages, must be controlled tightly. As an example
scenario take bulk messaging where the user wants to send a text message to a number of recipients. Because
of the cost of sending text messages, the user must authorise each message explicitly. Java MIDP 2.0
implements this requirement by insisting on each message being authorised individually just before it is
sent, thus bombarding the user with confirmation screens. A better way to fulfil this requirement would
be collective authorisation of all messages in one go, also known as block booking. However, this requires
tracking the flow of authorised resources from the points of authorisation to the points of use, to ensure that
no more messages are sent than authorised.

The type systems and program analyses presented in this deliverable guarantee adherence to resource-
related properties of mobile code, like soundness of block booking, for instance. Type systems are an
enabling technology for the MOBIUS Proof-Carrying Code (PCC) architecture because they are intuitive,
automatic and scalable. Hence improvements of program coverage and language coverage as well as of
flexibility and scalability, as they are presented in this deliverable, are important steps to build the MOBIUS
PCC-architecture.

The following chapters describe various type systems and program analyses for controlling resources,
notably execution time, heap space, and access to external resources. The results reported here build on
previous work (in Task 2.3) in various ways.

• Chapter 2 presents INRIA’s implementation of an inter-procedural relational analysis for Java bytecode
that can compute invariants used in the generation of resource certificates (e. g., for applications using
block booking). The analysis relies on a stackless bytecode format (i. e., bytecode making trivial
use of the operand stack only), which is produced automatically by a provably correct bytecode
transformation.

• Chapter 3 reports on LMU’s development of type inference algorithms for a type system which tracks
amortised heap-space usage in Java programs, and LMU’s development of a generic resource extension
to the MOBIUS base logic. The extended logic serves as a target for translating type derivations into
base logic proofs, as demonstrated by interpretations of type systems for constant heap space and for
block booking resources.

• Chapter 4 presents UEDIN’s approach to block booking: explicit accounting using resource managers.
Resource safety is then enforced either dynamically by run-time monitoring, or statically by a type

6

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

system. Additionally, it reports early results about a static resource analysis for iterative Java code
based on counting lattice points inside polytopes.

• Chapter 5 summarises UPM’s work on resource usage analysis. It comprises a description of the
different phases carried out to infer upper bounds from Java bytecode programs in the COSTA system.
Also, it introduces a live heap space analysis which infers upper bounds on the peak of the heap usage
along any execution of an input program.

7

Chapter 2

Polyhedral Analysis of Java Bytecode for
Certificate Generation

In this deliverable, INRIA reports on the 2 publications listed below. The paper [1] is a revised version of
the work reported last year in Deliverable 2.6, and [2] is new.

[1] F. Besson, T. Jensen, D. Pichardie, and T. Turpin. Result certification for relational program analysis.
Research Report 6333, IRISA, September 2007. Revised August 2009.

[2] D. Demange, T. Jensen, and D. Pichardie. A provably correct stackless intermediate representation for
Java bytecode. Research Report 7021, IRISA, 2009.

The main goal of this activity is the implementation of a relational (polyhedral) analysis for Java bytecode
that can compute invariants used in the generation of resource certificates.

In [1], we have developed a relational (polyhedral-based) static analysis for Java bytecode that is capable
of automatically computing invariants of the relations between program variables. By introducing variables
that represent the amount of resources available (cf. the resource model for Java MIDP resources developed
in the project), such an analysis can be used to prove that a program uses its resources correctly in the sense
that it does not use more resources than it has been granted. To that end, the analysis infers invariants
between these variables. It takes as input Java bytecode and infers for each bytecode instruction a relation
between global variables, the parameters to a method, local variables and the numeric values stored on the
stack. This relation is represented by elements of the abstract state underlying the analysis. Rather than
fixing a particular abstract domain from the outset, we have specified the bytecode analysis with respect to
an abstract numeric relational interface made up of a few central operations such as upper bounds, variable
renaming and projection. These operations can then be instantiated with standard relational abstract
domains such as polyhedra and octagons.

Compared to the work that was reported last year, we have developed a new implementation of the
analysis. The modifications made on [1] are the following:

• The operand stack of Java bytecode can be costly to model fully in a relational analysis. In our
previous work, we enriched the abstract domain to include symbolic expressions that represent the
content of a stack element in terms of program variables. Our new implementation relies on the
bytecode transformation, described in [2] that removes the operand stack manipulation. This work is
described below.

• Inferring relations between the variables of a program allows to statically prove validity of array
accesses. We use this safety policy as a case study to experimentally measure the precision of our
relational analysis on real benchmarks. The revised version handles more benchmarks than before.

• We now treat some relations between reference fields, relying on the simple alias information given by
the typing properties of the Java language.

8

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

• Our numerical abstract domain is now able to manage some non-linear reasoning and is sound with
respect to the modulo arithmetic of Java.

In [2], we have investigated a semantic study of a bytecode transformation algorithm that allows to
remove operand stack manipulations. We choose a transformation technique based on a symbolic execution
of the bytecode, using a symbolic operand stack. We define a semantic preservation property and prove
it is satisfied by our algorithm. We obtain hence a semantic proof that both bytecode programs and their
respective stackless representation behave in the same way up to an observational semantic relation.

Such a provably correct transformation has many applications in static analysis where it has been used in
several places but never been formalised and proven correct. The transformation is not trivial because of the
special care that is taken not to generate too many temporary variables in the intermediate representation.
It is also complicated by the fact that the analysis operates in one pass through the bytecode instructions
of a program.

Future work should concern mechanisation of these results in the formal MOBIUS architecture. We
intend to finish (a big part of it has already been achieved) a Coq soundness proof of our relational analyser
in order to obtain a certified array bound checker for sequential Java bytecode programs. We also envisage
mechanising our bytecode transformation to obtain a stackless layer of the Bicolano semantics.

9

Chapter 3

Improvements in the development of
RAJA

In this deliverable, LMU reports on the 3 publications listed below. The papers [1, 3] were already reported
in last year’s Deliverable 2.6 (where [3] revises the paper titled Implementing a type system for amortised
heap-space analysis), and [2] is new.

[1] L. Beringer, M. Hofmann, and M. Pavlova. Certification using the Mobius base logic. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W. P. de Roever, editors, Formal Methods for Components and Objects:
Revised Lectures from the 6th International Symposium FMCO 2007, Lecture Notes in Computer Science,
volume 5382, pages 25–51. Springer-Verlag, 2008.

[2] M. Hofmann and D. Rodriguez. Membership checking in greatest fixpoints revisited. In FICS: 6th
Workshop on Fixed Points in Computer Science, 2009.

[3] M. Hofmann and D. Rodriguez. Efficient type-checking for amortised heap-space analysis. In CSL: 18th
EACSL Annual Conference on Computer Science Logic, Lecture Notes in Computer Science. Springer,
2009.

[1] describes a core component of MOBIUS’ Trusted Code Base, the MOBIUS base logic. This program logic
facilitates the transmission of certificates that are generated using logic- and type-based techniques and
is formally justified w.r.t. the Bicolano operational model of the JVM. The paper motivates major design
decisions, presents core proof rules, describes an extension for verifying intensional code properties, and
considers applications concerning security policies for resource consumption and resource access.

Of particular relevance for the present deliverable are Section 4 and 5 of the named publication. In
Section 4, a type system is presented that guarantees constant bound on heap space. In contrast to the
type system discussed above, the system is phrased on bytecode, and has been formally justified with
respect to the Bicolano operational semantics. Section 5 presents a solution to the block booking challenge,
namely a bytecode-level type system for numeric correspondence assertions, where the authorisation request
operation is parametric in a variable, such that the number of authorisations that are requested may depend
dynamically on other data.

In [3] we have presented an improved typechecking algorithm for RAJA programs using the notion of
views – refined types that describe the contribution of objects to the potential of data structures. We provide
automatic type checking under relatively mild annotations. In particular, we automatically construct types
arising from sharing and conditionals which had to be provided manually before. Finally, we prove soundness
and completeness of the algorithm with respect to the declarative typing rules.

The notions of subtyping and sharing we use in [3] are slightly more flexible than the original ones
from (Hofmann and Jost, ESOP 2006) and thus allow more examples to be typed. Semantic soundness of
the improved system is a direct extension of the soundness proof in (Hofmann and Jost, ESOP 2006).1 In

1http://raja.tcs.ifi.lmu.de/download/files/rajaSoundProof.pdf

10

http://raja.tcs.ifi.lmu.de/download/files/rajaSoundProof.pdf

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

particular, a sharing task can be reduced into a subtyping task in the presence of algorithmic views (v1+v2),
i.e. a view that may be split into views v1 and v2.

Algorithmic views are automatically computed views based on user-defined views. We define many of
them that are useful for the algorithm, for example: (v1 ∨ v2), (v1 ∧ v2) which provide least upper bounds
and greatest lower bounds for RAJA types respectively, or (v

.
− n) which are views like v but with minus n

units of potential. Future work should clarify the inference of view annotations in terms. We are currently
working on an algorithmic typing system that collects subtyping constraints and tries to solve them.

In [2] we provide an algorithm for membership checking in greatest fixpoints, which we adapt for deciding
subtyping for RAJA types. This algorithm extends a well-known algorithm for membership in greatest
fixpoints of monotone operators of a special form called invertible2 operators. The extended algorithm
computes membership in the greatest fixpoint of arbitrary monotone operators. The algorithm has been
proved correct by coinduction.

2Terminology due to B. C. Pierce. Types and Programming languages. MIT Press, 2002.

11

Chapter 4

Safety Guarantees from Explicit
Resource Management

In this deliverable, UEDIN reports on the 4 publications listed below. The papers [1, 2] were already reported
last year in Deliverable 2.6, and [3, 4] are new.

[1] D. Aspinall, P. Maier, and I. Stark. Monitoring external resources in Java MIDP. Electronic Notes in
Theoretical Computer Science, 197(1):17–30, 2008.

[2] D. Aspinall, P. Maier, and I. Stark. Safety guarantees from explicit resource management. In F. S.
de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, editors, Formal Methods for Components
and Objects: Revised Lectures from the 6th International Symposium FMCO 2007, Lecture Notes in
Computer Science, volume 5382, pages 52–71. Springer-Verlag, 2008.

[3] K. MacKenzie. Resource analysis for iterative Java programs via lattice-point enumeration in polytopes.
Technical Report EDI-INF-RR-1341, School of Informatics, University of Edinburgh, August 2009.

[4] P. Maier. Deciding extensions of the theories of vectors and bags. In N. D. Jones and M. Müller-Olm,
editors, Verification, Model Checking and Abstract Interpretation, Lecture Notes in Computer Science,
volume 5403, pages 245–259. Springer-Verlag, 2009.

The papers [1, 2, 4] focus on the compile- and run-time guarantees (e. g., static and dynamic soundness
of block booking, cf. Chapter 1) of our approach to the explicit (i. e., manifest in code) management of
resources such as text messages.

In [1], we present a Java library for MIDP devices which tracks and controls at run-time the use of
potentially costly resources, such as sending text messages. The library supports block booking of resources
while maintaining the security guarantee that attempted resource abuse is trapped. Tracking of resources is
done by resource managers, special objects encapsulating multisets of authorised resources. This allows for
fine-grained tracking; for instance, we are able to track not just the total number of text messages sent by an
application, but the number of messages sent to each individual recipient. To reduce the run-time overhead
of tracking multisets, resource managers can easily be erased without altering an application’s behaviour if
that application is dynamically resource safe, i. e., cannot be caught abusing resources. Additionally, the
library introduces a flexible notion of policy for deciding which resources to grant.

The resource manager library for trapping attempts to abuse resources at run-time can be viewed as a
language-based mechanism enforcing resource safety at run-time. In [2], we complement this with a type
system for proving that a given program (in a functional language with resource managers) does not attempt
to abuse resources. The type system derives logical constraints (in a generic logical constraint language)
approximating the effects of evaluating program expressions. Typability of functions in the effect type
system induces a notion of static resource safety, and in particular implies dynamic resource safety. As a
consequence, resource managers can always be erased from well typed programs.

12

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

The decidability of type checking in the above type system rests on the decidability of satisfiability in
the underlying constraint language. As examples like the bulk messaging application reveal, meaningful
types require a constraint language able to express properties of multisets (to model resource managers)
and container data structures (such as vectors and dictionaries). In [4], we present a decision procedure for
such an expressive constraint language combining vectors and multisets.

The report [3] presents early results on a static resource analysis — based on methods from convex ge-
ometry — for determining tight bounds on the number of iterations of nested loops. Abstract interpretation
over a domain of polyhedra (a technique due to Cousot and Halbwachs) is used to obtain linear constraints
on control variables in iterative loop nests in Java programs. These constraints delimit a polyhedral region
in some Euclidean space, and the points within this region which have integral coordinates correspond to
the iterations of the loops. A technique of Barvinok is used to calculate a compact generating function from
which it is easy to calculate the number of such points, and thus the number of times a particular program
location is visited during execution. We have implemented a Java compiler which exploits these techniques
to automatically determine resource bounds for realistic iterative Java programs.

13

Chapter 5

Static Resource Analysis of Java bytecode

To this deliverable, UPM contributes the 15 publications listed below. The papers [1, 4, 7, 9, 10, 12, 13, 14]
were already reported last year in Deliverable 2.6, the papers [3, 5, 15] have been revised since, and [2, 6, 8, 11]
are new.

[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination analysis of
Java bytecode. In Formal Methods for Open Object-Based Distributed Systems: Proceedings of the 10th
IFIP WG 6.1 International Conference FMOODS 2008, Oslo, Norway, June 4–6, 2008, Lecture Notes
in Computer Science 5051, pages 2–18. Springer-Verlag, 2008.

[2] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, G. Puebla, D. Ramírez, G. Román, and D. Za-
nardini. Termination and cost analysis with COSTA and its user interfaces. In Spanish Conference on
Programming and Computer Languages. Electronic Notes in Theoretical Computer Science, 2009. To
appear.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-form upper-bounds in static cost analysis.
Submitted to the Journal of Automated Reasoning.

[4] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic inference of upper bounds for recurrence
relations in cost analysis. In M. Alpuente and G. Vidal, editors, Static Analysis, 15th International
Symposium, SAS 2008, Valencia, Spain, July 15-17, 2008, Proceedings, Lecture Notes in Computer
Science 5079, pages 221–237. Springer-Verlag, 2008.

[5] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of object-oriented bytecode
programs. Submitted to ACM Transactions on Programming Languages and Systems.

[6] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Resource usage analysis and its appli-
cation to resource certification. In Foundations of Security Analysis and Design. FOSAD 2008/2009
Tutorial Lectures, LNCS. Springer-Verlag, To appear. 2009.

[7] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap space analysis of Java bytecode. In ISMM ’07:
Proceedings of the 6th International Symposium on Memory Management, pages 105–116, New York,
NY, USA, 2007. ACM Press.

[8] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live heap space analysis for languages with garbage
collection. In ISMM’09: Proceedings of the 8th International Symposium on Memory Management,
New York, NY, USA, June 2009. ACM Press.

[9] S. Genaim and F. Spoto. Constancy analysis. In M. Huisman, editor, 10th Workshop on Formal
Techniques for Java-like Programs, July 2008.

14

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

[10] M. Marron, M. V. Hermenegildo, D. Kapur, and D. Stefanovic. Efficient context-sensitive shape analysis
with graph based heap models. In L. Hendren, editor, Compiler Construction, 17th International
Conference, CC 2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008. Proceedings, Lecture Notes in
Computer Science, volume 4959, pages 245–259. Springer-Verlag, 2008.

[11] M. Marron, D. Kapur, and M.Hermenegildo. Identification of logically related heap regions. In
ISMM’09: Proceedings of the 8th International Symposium on Memory Management, New York, NY,
USA, June 2009. ACM Press.

[12] M. Méndez-Lojo and M. V. Hermenegildo. Precise set sharing analysis for Java-style programs. In
F. Logozzo, D. Peled, and L. D. Zuck, editors, Verification, Model Checking, and Abstract Interpretation,
9th International Conference, VMCAI 2008, San Francisco, USA, January 7-9, 2008, Proceedings,
Lecture Notes in Computer Science, volume 4905, pages 172–187. Springer-Verlag, 2008.

[13] E. Mera, P. López-García, M. Carro, and M. Hermenegildo. Towards execution time estimation in
abstract machine-based languages. In 10th Int’l. ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming (PPDP’08), pages 174–184. ACM Press, July 2008.

[14] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Customizable resource usage nalysis for Java byte-
code. Technical Report UNM TR-CS-2008-02 - CLIP1/2008.0, University of New Mexico, Department
of Computer Science, UNM, January 2008.

[15] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-definable resource usage bounds analysis for
Java bytecode. In Proceedings of the Workshop on Bytecode Semantics, Verification, Analysis and
Transformation (BYTECODE’09), Electronic Notes in Theoretical Computer Science. Elsevier - North
Holland, March 2009.

For brevity, we describe only the new publications [2, 6, 8, 11] in this chapter; please check Deliverable 2.6
for summaries of the other publications.

In [6] we provide a high-level overview of the main techniques used in COSTA1, a static analysis system
which allows obtaining safe symbolic upper-bounds on the resource usage of Java bytecode (JBC for short).
The results are symbolic in the sense that they do not refer to concrete, platform dependent, resources
such as execution time, but rather they provide platform-independent information. This has the advantage
that the results are applicable to any implementation of the Java Virtual Machine (JVM) on any particular
hardware and the disadvantage that the information cannot refer to platform specific resources such as
run-time. The fact that the analysis handles JBC represents that, at least in principle, it can deal with
general-purpose programs written in a mainstream programming language such as Java and potentially
other languages compiled to JBC. This high-level overview publication is of interest for dissemination of the
research techniques developed in the project.

In [2] we describe the different user interfaces provided by COSTA, which greatly facilitate user inter-
action with the system. Such interfaces include: a classical command line interface; a Web interface which
allows using COSTA from a remote location, without the need of installing it locally; and a recently devel-
oped Eclipse plug-in. The latter allows using the analyser during the development phase, in a widely used
programming environment. This plugin allows programmers to analyse methods during the development
process. As in the web interface, users can configure a large set of options by using the Eclipse preferences
configuration window. Also, the user can choose either the automatic analysis or the expert mode which
allows a more fine-grained customisation. By using this plugin, one can analyse one or several methods from
a class or the whole class (by running the analysis on all its methods). The results of the analysis are shown
using markers in the source code (see Fig. 5.1). Such markers are different depending on the cost model used
for analysis. In addition, the plugin also shows all previous analysis results in an additional view, which we

1More information about COSTA can be found at http://costa.ls.fi.upm.es.

15

http://costa.ls.fi.upm.es

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

Figure 5.1: COSTA Plugin Markers and View

call “the COSTA view”. The COSTA view also includes a warning icon for methods whose termination is
not proved, in order to alert the programmer about potential problems. It can also read comments in the
source code, written in Javadoc style, in order to set up analysis information.
COSTA can deal with almost full sequential Java, either in the Standard edition or the Micro edition. COSTA
is able to read standard .class files and produce meaningful and reasonably precise results for non-trivial
programs, possibly using Java libraries. Possible uses of such cost and termination results include:

• Helping the programmer in the development process, as obtained by including COSTA in Eclipse as a
plugin.

• Certification of resource usage upper bounds and termination, thus providing guarantees to the code
user, in the style of Proof-carrying code.

• Program optimisation, as for example, in concurrent systems.

Among all the above applications of resource analysis, we describe in [6] its application to resource
certification, whereby programs are coupled with information about their resource usage. This information
allows deciding whether the resources used by the program execution are acceptable or not before running
the program.

The works [8, 11] are related to heap analysis. In the context of COSTA, we present a general framework
to infer accurate bounds on the peak heap consumption of programs which improves the state-of-the-art
in that it is not restricted to any complexity class and deals with all bytecode language features including
recursion. To pursue our analysis, in [8] we characterise the behaviour of the underlying garbage collector.
We assume a standard scoped-memory manager that reclaims memory when methods return. In this setting,
our main contributions are:

16

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

1. Escaped Memory Analysis. We first develop an analysis to infer upper bounds on the escaped memory
of method’s execution, i.e., the memory that is allocated during the execution of the method and
which remains upon exit. The key idea is to infer first an upper bound for the total memory allocation
of the method. Then, such bound can be manipulated, by relying on information computed by the
escape analysis, to extract from it an upper bound on its escaped memory.

2. Live Heap Space Analysis. By relying on the upper bounds on the escaped memory, as our main
contribution, we propose a novel form of peak consumption cost relation which captures the peak
memory consumption over all program states along the execution for the considered scoped-memory
manager. An essential feature of our CRs is that they can be solved by using existing tools for solving
standard CRs.

3. Ideal Garbage Collection. An interesting, novel feature of our approach is that we can refine the
analysis to accommodate other kinds of scope-based managers which are closer to an ideal garbage
collector which collects objects as soon as they become unreachable.

4. Implementation. We report on a prototype implementation which is integrated in the COSTA system
and experimentally evaluate it on the JOlden benchmark suite. Preliminary results demonstrate that
our system obtains reasonably accurate live heap space upper bounds in a fully automatic way.

The second paper on heap analysis [11] introduces a novel technique for identifying logically related
sections of the heap such as recursive data structures, objects that are part of the same multi-component
structure, and related groups of objects stored in the same collection/array. This information can be used
in optimisations such as pool allocation, object co-location, static deallocation, and region-based garbage
collection. This is illustrated using the Barnes-Hut benchmark from the JOlden suite.

17

Appendix A

Copies of Publications

18

appor t
de r ech erch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
63

33
--

FR
+E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Result certification for relational program analysis

Frédéric Besson — Thomas Jensen — David Pichardie — Tiphaine Turpin

N° 6333 — version 2

initial version October 2007 — revised version August 2009

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

19

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

20

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Result certification for relational program analysis

Frédéric Besson∗, Thomas Jensen† , David Pichardie∗, Tiphaine Turpin‡

Thème SYM — Systèmes symboliques
Projet Lande

Rapport de recherche n° 6333 — version 2 — initial version October 2007 — revised version
August 2009 — 29 pages

Abstract: We define a generic relational program analysis for an imperative, stack-oriented byte
code language with procedures, arrays and global variables and instantiate it with an abstract
domain of polyhedra. The analysis has automatic inference of loop invariants and method pre-
/post-conditions, and efficient checking of analysis results by a simple checker. Invariants, which
can be large, can be specialized for proving a safety policy using an automatic pruning technique
which reduces their size. The result of the analysis can be checked efficiently by annotating the
program with parts of the invariant together with certificates of polyhedral inclusions, which allow
to avoid certain complex polyhedral computation such as the convex hull of two polyhedra. Small,
easily checkable inclusion certificates are obtained using Farkas lemma for proving the absence of
solutions to systems of linear inequalities. The resulting checker is sufficiently simple to be entirely
certified within the Coq proof assistant.

Key-words: Static analysis, abstract interpretation, bytecode Java, Coq

This is a revised version. A section about describing the implementation of the analyser has been added.

∗ INRIA Rennes - Bretagne Atlantique/IRISA
† CNRS/IRISA
‡ Université Rennes I/IRISA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

21

Certification de résultat pour l’analyse de programme
relationnelle

Résumé : Nous proposons une analyse générique de programme relationnelle pour un langage de
bytecode impératif avec pile d’opérande, procédures, tableaux et variables globales. Cette analyse
est instanciée avec un domaine abstrait de polyèdres. Elle propose une inférence automatique
d’invariants de boucle et de préconditions/postconditions de procédures, ainsi qu’une vérification
efficace du résultat de l’analyse par un vérificateur simple. Les invariants, qui peuvent être grands,
peuvent être spécialisés pour prouver une propriété de sûreté en utilisant une technique automa-
tique de compression de taille de certificat. Le résultat de l’analyse peut être vérifié efficacement
en annotant le programme avec une partie des invariants et quelques certificats d’inclusion de
polyèdre, qui permettent d’éviter certaines calculs polyédriques complexes comme le calcul de
l’enveloppe convexe de deux polyèdres. Nous obtenons des certificats d’inclusion petits et facile-
ment vérifiables grâce au lemme de Farkas pour prouver l’absence de solution dans un système
d’inégalités linéaires. Le vérificateur ainsi obtenu est suffisamment simple pour être entièrement
certifié avec l’assistant à la preuve Coq.

Mots-clés : Analyse statique, interprétation abstraite, bytecode Java, Coq

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

22

Result certification for relational program analysis 3

1 Introduction

Logic-based, static program verification, be it in form of abstract interpretation, symbolic model
checking or interactive proving of programs, is used in a number of ways to improve the confidence
in safety-critical systems and for protecting host machines from malicious code, as e.g., done by the
Java byte code verifier. As applications and the program logics grow in complexity, an automated
technique for verifying program invariants based on a program logics should ideally meet all of
the following three requirements:

� Automatic Inference: the complexity of both programs and the underlying logic can quickly
make it burdensome to conduct program proofs manually. Automatic inference of program
properties is necessary to obtain a technique that scales.

� Result certification: when inference is available, it often relies on advanced deductive methods
for inferring an invariant whose size and complexity make it difficult to ascertain its validity
manually. Efficient checking of the result of the inference or of any proposed invariant in
general becomes important.

� Small Trusted Computing Base (TCB): the result checker becomes the cornerstone of the
reliability of the verification framework. In order to reduce the part of the code base that
needs to be trusted without proof, the checker should be kept sufficiently simple and small
in order to be able to verify the checking algorithmics mechanically.

Program verification based on general Hoare-style program logics may follow the Verification
Condition Generator (VCGen) approach of e.g., Extended Static Checking by Flanagan, Leino et
al. [18] or use expressive type systems such as the dependent type systems of Xi and Pfenning [36]
for proving properties of programs. The approaches based on VCGens are generally complete for
partial correctness and will produce a set of verification conditions which, when satisfied, will allow
to conclude that a given program property holds in the logic. Verification conditions often fall into
fragments of logic that require them to be proved by dedicated decision procedures or theorem
provers. VCGens and the type-based approaches are primarily concerned with invariant checking
and discard part of the inference problem by relying on loop invariants and pre-post-condition of
methods to be provided by the programmer. In terms of small TCB, the VCGens remain complex
software which are hard to prove correct in extenso. The machine-checked formalizations e.g., by
Nipkow, Wildmoser et al. [33, 34] show that this is indeed possible to certify an entire VCGen
inside a proof assistant but also that this remains a major software certification challenge.

Another strand of program verification is based on abstract interpretation. Abstract inter-
pretation is an automatic technique for inferring program properties in the form of fixpoints of
monotone data flow functions. As a theory of proving programs it has strong semantic founda-
tions. At the same time it should be noted that the algorithmics of the domains underlying the
more advanced analyses such as polyhedral analysis (initially described by Cousot and Halbwachs
[15]) is highly non-trivial. Checking an invariant is in theory simple as it only requires one more
iteration to check that a property is indeed a fixpoint but, as said, this computation does in cer-
tain cases rely on non-trivial algorithmics that forms part of what must be trusted. In previous
work [11, 29], some of the authors formalised the theory of abstract interpretation inside the proof
assistant Coq and extracted Caml implementations of a variety of program analyses. This Certi-
fied Abstract Interpretation approach represents a systematic way of reducing the TCB of static
analyzers and fulfills the three requirements listed above. However, a fully mechanised correctness
proofs of more advanced program analysers such as an optimised, polyhedral-based analysis would
require an enormous effort in terms of program certification.

The purpose of this paper is to demonstrate that by focusing on certifying the result of the
analysis rather than the analysis itself, it is possible to develop a verification framework for ad-
vanced program properties that satisfies all of the three desired properties and, at the same time,
requires a significantly smaller effort in order to be proved correct. This idea was previously used
by Wildmoser et al [32] who use the result of an untrusted interval analysis in a VCGen for byte

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

23

4 Besson, Jensen, Pichardie & Turpin

// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I3) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I4) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0| ∧ low + high− 1 ≤ 2 · mid ≤ low + high

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I5) key0 = key∧|vec0| = |vec|∧−2+3·low ≤ 2·high+mid∧−1+2·low ≤ high+2·mid∧−1+low ≤ mid ≤
1+high∧high ≤ low+mid∧1+high ≤ 2 ·low+mid∧1+low+mid ≤ |vec0|+high∧2 ≤ |vec0| ∧2+high+mid ≤
|vec0|+ low

}
// (I6) key0 = key ∧ |vec0| = |vec| ∧ low− 1 ≤ high ≤ low ∧ 0 ≤ low ∧ high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

Figure 1: Binary search

code and by Leroy [23] in his certification of a compiler back-end where he, rather than certifying
the complex graph-coloring algorithms for register allocation, proves the correctness of a checker
that verifies a given coloring returned by an untrusted graph-coloring algorithms. Here, we gener-
alise this idea by developing a relational analysis framework together with a certified checker. The
basic observation is that an abstract interpretation can be decomposed into an abstract domain
of properties, a generic program logic for reasoning about these properties and a fixpoint engine
for solving recursive equations over the abstract domains. The inference does not need to use
certified abstract domain operations and fixpoint engines, and the checking of invariants does not
need to use a fixpoint engine at all. We take advantage of this to design a checker that re-uses the
program logic but replaces the more complex domain operations with simpler ones, at the expense
of providing some extra information in the certificate accompanying a program.

2 Overview

In the first part of this paper, we will develop a fully relational, interprocedural analyser which
automatically infers an invariant for each control point in the program, a pre-condition that must
hold at the point of calling a procedure and a post-condition that is guaranteed to hold when the
procedure returns. Relational analyses are useful for finding loop invariants needed for proving
program safety, e.g. when verifying the resource usage of programs or verifying safety properties
related to safe memory access such as checking that all array accesses are within bounds. We will
take Safe Array Access as an example safety policy and illustrate our approach with the Binary
Search example given in Fig. 1, showing how the analysis will prove that the instruction that
accesses the array vec with index mid will not index out of bounds.

We have annotated the code of Binary Search with the invariants that have been inferred
automatically. Invariants refer to values of local and global variables and can also refer to the
length of an array. For example, the invariant (I3) asserts among other properties that when
entering the while loop, the relation 0 ≤ low < high < |vec| is satisfied. Similarly, the post-
condition ensures that the result is a valid index into the array being searched, or −1, indicating
that the element was not found. In addition, the analysis introduces a 0-indexed variable (such as
e.g. key0 in the example) for each parameter (and also for the global variables, of which there are
none in the example) in order to refer to its value when entering the procedure. The effect of this
is that the invariant on exit of the program defines a relation between the input and the output
of the procedure, thus yielding a summary relation for the procedure.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

24

Result certification for relational program analysis 5

2.1 Compressing invariants

Abstract interpretations may give you more information than you need for proving a particular
property. In the case of the Binary Search example, if we are only interested in proving the validity
of array accesses, there are a number of relations between variables in the invariants that can be
forgotten. Reducing the number of constraints and the number of variables under consideration
can lead to a significant gain in execution time when it comes to checking a proposed invariant.
For example, pruning the invariants in Fig. 1 with respect to this property yields the simpler
invariant shown in Fig. 2:

// PRE: True
static int bsearch(int key, int[] vec) {

// (I′1) |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I′2) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I′3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I′4) |vec| − |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧
// 2 · high− 2 · mid− 1 ≥ 0 ∧ |vec0| − high− 1 ≥ 0

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I′5) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|
}

// (I′6) 0 ≤ |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

Figure 2: Binary search after invariant pruning

Notice that the inferred loop invariant I ′3 is close to what a specifying programmer of Bi-
nary Search might have come up with, but here produced automatically. We explain pruning of
procedures in Section 7.

2.2 Analysing a stack-based language

Polyhedral analysis of While languages is well understood but we want our framework to be able
to analyse byte code programs and not only source code. We could in theory avoid the problem by
transforming the program into three-address code and treat each stack location as a local variable
but this transformation is expensive from an algorithmic point of view, as it increases the number
of times that the relation has to be updated. Instead, we achieve the effect of this transformation
by defining an analysis for stack-oriented byte code that combines relational abstract interpretation
with symbolic execution, following an idea previously used for analysing Java byte code by Xi and
Xia [37] and Wildmoser et al [32]. This technique abstracts the environment of local variables by
a relation (e.g., a polyhedron) and replace the operand stack with a stack of symbolic expressions
used to “decompile” the operations on the operand stack. For example, the comparison of variables
low and high will be compiled to the byte codes below, which are analysed in a state consisting
of the relation I2 as defined in Fig. 1 and an abstract stack that evolves as values are pushed onto
the stack.

[] I2

7 : ipush 0 0 I2

8 : iload high high :: 0 I2

9 : iload low low :: high :: 0 I2

10 : isub (high−low) :: 0 I2

11 : if icmpge 56 [] I3

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

25

6 Besson, Jensen, Pichardie & Turpin

Before the comparison in instruction 11, the stack top contains the expression high−low, reflecting
that in the real execution the stack top at this point will contain the value of this expression. When
we learn from the test that the expression high>low evaluates to true in the state immediately
following the comparison (and only then), we update the relation accordingly to obtain invariant
I3. Similarly, we have to update the relation when assigning a new value to a variable. For
example, the instruction that assigns (high+low)/2 to mid is compiled and analysed as shown
below. Again, the relation I3 is only updated when the assignment to mid is done, to yield relation
I4.

[] I3

14 : iload low low I3

15 : iload high high :: low I3

16 : iadd (high+low) I3

17 : ipush 2 2 :: (high+low) I3

18 : idiv ((high+low)/2) I3

19 : istore mid [] I4

More generally, with the abstract stack of expressions, only the comparisons and assignment to
variables require updating the relation. In a polyhedron-based analysis this is a substantial saving.

2.3 Result checking with certificates

Checking an invariant obtained by computing a post-fixpoint of an abstract interpretation is in
theory simple as it only requires one more iteration to check that it is indeed a post-fixpoint.
In addition, only invariants at certain program points such as loop headers are required for re-
building an entire invariant in one iteration. Lightweight Bytecode Verification by Rose [30] and
the more general Abstraction-Carrying Code by Albert, Puebla and Hermenegildo [1] exploit this
to construct efficient checkers for invariant-based program certificates. For the code in Fig. 2, only
I ′2 is required.

The inference of invariants using our relational analysis uses an iterative fixpoint solver over an
abstract domain of polyhedra and is in principle amenable to the same technique. However, despite
efficient implementations of basic polyhedral operations, the algorithmic complexity of operations
such a computing the least upper bound (i.e. the convex hull) of two polyhedra remains high, and
certifying them in a proof assistant would be a major undertaking.

Instead, we propose an enriched certificate format which has the virtue of being simpler to
check, at the cost of sending more information than in basic fixpoint reconstruction. We exploit
that, for the checker, the only important property of the convex hull operators is that it produces
an upper bound of two polyhedra and therefore can be replaced by inclusion checks with respect
to an upper bound that is proposed by the certificates. Upper bounds are computed at join points
so in Fig. 2 we would also supply I ′5.

Safety checks also reduces to inclusions of polyhedra as verifying the array access vec[mid]
amounts to ensuring that I ′4 implies 0 ≤ mid < |vec|. By simple propositional reasoning, this
reduces to proving that the linear systems of constraints −mid−1 ≥ 0∧I ′4 and mid−|vec| ≥ 0∧I ′4
have no solution. Due to a result by Farkas, such problems can be checked efficiently using
certificates by a simple matrix computation. The key insight is that unsolvability follows from
the existence of a positive combination of the constraints which yield a strict negative constant.
This would lead to a contradiction because the sum and product of positive quantities cannot
be strictly negative. The certificate is therefore a vector which records the coefficients of the
positive combination. For example, the certificate [2;2;0;0;1;2] proves that the constraints
mid− |vec| ≥ 0 ∧ I ′4 are unsatisfiable, as the expression

2 · (mid− |vec|) + 2 · (|vec| − |vec0|) + 0 · · · ·+ 0 · · · ·+
1 · (2 · high− 2 · mid− 1) + 2 · (|vec0| − high− 1)

evaluates to −2. We explain these certificates in detail in Section 8.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

26

Result certification for relational program analysis 7

2.4 Certified certificate checkers

The result checking technique explained above already drastically reduces the TCB of the analysis
result which only rely on the result checker. To further reduce the TCB, we have machine-
checked the result checker of our analysis in the Coq proof assistant. The main components of the
formalisation are

1. a predicate Safe:program→Prop which models the safe programs with respects to the the
semantics described in Section 4,

2. a function checker:program→certificate→bool, which checks the safety of a program using
a certificate containing a (partial) result of an analysis and some inclusion certificates,

3. a machine checked proof establishing the correctness of the checker:

Theorem checker_correct :
∀ p cert, checker p cert = true → Safe p.

The Trusted Computed Base is hence reduced to the Coq type checker and the formal definition
of program safety.

Once the certified result checker is verified (by the Coq type checker) and installed by the code
consumer, two scenarios can be envisaged to verify the safety of programs sent by producers. In the
first one, the consumer may use an efficient Ocaml version of the checker, extracted from the Coq
version thanks to the Coq extraction mechanism. The other alternative is related to proof by re-
flection. For each program p and certificate cert the consumer may build a foundational Coq proof
of Safe p. To do so he only has to check in Coq the term checker_correct p cert refl_eqtrue

where refl_eqtrue denotes a proof of true=true. It is the role of the Coq reduction engine to
verify during type checking if true=true is equivalent to checker p cert = true by running the
checker inside Coq. In this way we combine two desirable features which are often difficult to
reconcile in state-of-the art Proof Carrying Code: foundational proofs and small certificates.

3 Notations

Let A and B be sets. If A and B are disjoint then A + B is the disjoint sum of A and B. We
write A⊥ the set A + {⊥}. For f ∈ A → B⊥, dom(f) = {a ∈ A | f(x) 6= ⊥}. Let f ∈ A → B,
f [x 7→ v] is the function identical to f everywhere except for x for which it returns v. The notation
[x1 7→ v1; . . . ;xn → vn] stands for a function f of domain {x1, . . . , xn} such that f(xi) = vi. A∗

is the set of lists of elements of A. We write [] for the empty list and a0 :: . . . :: an−1 is a list l
of length n (|l| = n) whose head (resp. tail) is a0 (resp. an−1). l[i] is the i-th element of l. We
write ai the list that is the repetition of a, i times. Let V , W be totally ordered sets. For x ∈ V ,
ιV (x) is the index of x in set V and ι−1

V is the inverse function. We abuse notations and identify
A|V | with V → A i.e., given a finite ordered set, V = {x1, . . . , xn} such that x1 < . . . < xn, we
identify the finite mapping [x1 7→ v1, . . . xn 7→ vn] with the n-tuple (v1, . . . , vn). We will write
AV to denote both A|V | and V → A. Let ρ ∈ AV and V ′ ⊆ V , ρ|V ′ ∈ AV ′

is the restriction
of e over the variables of V ′ such that for all x ∈ V ′, ρ|V ′(x) = e(x). Given V and W disjoint
set of variables, ρ1 ∈ AV and e2 ∈ AW , we write ρ1 ⊕ ρ2 ∈ AV +W for the finite mapping such
that (ρ1 ⊕ ρ2)|V = ρ1 and (ρ1 ⊕ ρ2)|W = ρ2. Let W and W ′ ordered sets of same cardinality. If
ρ ∈ AV +W , then ρW→W ′ ∈ AV +W ′

is obtained by renaming the variables of W to the variables
in W ′. Formally, we have ρW→W ′(x) = ρ(x) if x ∈ V and ρW→W ′(x) = ρ(ι−1

W (ιW ′(x))) if x ∈ W ′.
To make the distinction clear between syntactic expressions and values, syntactic expressions are
bracketed (x·y). For example, we write x1 + ey a syntactic expression built by applying the +
operator to the constant 1 and the syntactic expression e.

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

27

8 Besson, Jensen, Pichardie & Turpin

4 A byte code language and its semantics

We use a simple stack-based byte code language to illustrate our ideas. Features include integers,
dynamically created (unidimensional) array of integers, static methods (procedures) and static
fields (global variables).

Programs are lists of methods and a method consists of a name, a number of arguments and
a list of instructions. In the following, f ranges over the set S of static field names, r ranges over
the set R = {r0, . . . , r|R|} of local variables and id ranges over the set MethId of method names.
Moreover, i and n range over N or Z depending on the context and p is used for control points.

P ∈ Prog = Meth∗

m ∈ Meth = Sig × Code
Sig = MethId× N

c ∈ Code = Instr∗

instr ∈ Instr
instr ::= Nop | Ipush n | Iinc r n where n ∈ Z

Pop | Dup | Ineg | Iadd | Isub | Imult | Idiv
Load r | Store r
Getstatic f | Putstatic f
Newarray | Arraylength | Iaload | Iastore
Goto p | If icmp cond p

where cond ∈ {=, 6=, <,≤}
Invoke sig where sig ∈ Sig
Iinput | Return

The instruction set has operators for integer arithmetic and for manipulating local variable,
static fields and an operand stack. Instructions on arrays permit to create, obtain the size of,
access and update arrays. The flow of control can be modified unconditionally (with Goto), and
conditionally with the family of conditional instructions If icmp cond which compare the top
elements of the run-time stack and branch according to the outcome. Input of data is modelled
with the instruction Iinput . The inter-procedural layer of the language contains an instruction
Invoke for invoking a method and an instruction Return which transfers control to the calling
method, and, at the same time returns the top of the operand stack as result by pushing it onto
the operand stack of the caller (see the operational semantics below).

A program state is composed of a frame stack, the value of static fields and a heap of arrays
and has the form <(m, p, s, l)∗, g, h>. Each frame is a triple composed of a method m, a control
point p to be executed next, an operand stack s local to a frame and l a partial mapping from
local variables to values. The global heap h is used for storing allocated arrays and is modelled
as a partial function from memory locations to arrays. A special error state Error models the
run-time error arising from indexing an array outside its bounds.

ref ∈ Location
v ∈ Val = Z + Location
s ∈ Stack = Val∗

l ∈ LocVar = R → Val
a ∈ Array = Z∗
h ∈ Heap = Location → Array⊥
g ∈ Static = S → Val

Frame = Meth × N× Stack × LocVar
State = Frame∗ × Static ×Heap

+ {Error}

The byte code language is given an operational semantics via a transition relation → between
states. Some of the rules of the definition of → are shown in Fig. 3. In the semantics, for a method
m = ((id, n), c), we write m[p] for c[p]. Note that the language is untyped: registers and fields

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

28

Result certification for relational program analysis 9

may (and will) point successively to values of different types during execution. Instructions that
require arguments with a certain type get stuck in case of error. Also, the number of registers |R|
is the same for all methods. Unused registers and uninitialised fields have the value 0. Finally, we
only consider states <st, g, h> such that every location appearing in st, g is in dom(h), which is
clearly preserved by the semantics in Fig. 3.

s, l, g, h
Ipush n−→ n :: s, l, g, h n2 :: n1 :: s, l, g, h

Iadd−→ n1 + n2 :: s, l, g, h

l(r) = n

s, l, g, h
Iinc r i−→ s, l[r 7→ n + i], g, h s, l, g, h

Load r−→ l(r) :: s, l, g, h

v :: s, l, g, h
Store r−→ s, l[r 7→ v], g, h s, l, g, h

Getstatic f−→ g(f) :: s, l, g, h

h(ref) = ⊥ n ≥ 0

n :: s, l, g, h
Newarray−→ ref :: s, l, g, h[ref 7→ 0n]

h(ref) = a 0 ≤ i < |a|

i :: ref :: s, l, g, h
Iaload−→ a[i] :: s, l, g, h

h(ref) = a ¬ 0 ≤ i < |a|

i :: ref :: s, l, g, h
Iaload−→ Error

m[p] = instr s, l, g, h
instr−→ s′, l′, g′, h′

<(m, p, s, l) :: st, g, h> →P <(m, p + 1, s′, l′) :: st, g′, h′>

m[p] = If icmp cond p’ n1 cond n2

<(m, p, n2 :: n1 :: s, l) :: st, g, h> →P <(m, p′, s, l) :: st, g, h>

m[p] = If icmp cond p’ ¬ n1 cond n2

<(m, p, n2 :: n1 :: s, l) :: st, g, h> →P <(m, p + 1, s, l) :: st, g, h>

m[p] = Invoke (mn,n) m′ = ((mn,n), c) ∈ P

<(m, p, (vn−1 :: . . . :: v0 :: s), l) :: st, g, h> →P

<m′, 0, [], [r0 7→ v0; . . . ; rn−1 7→ vn−1; rn 7→ 0; . . . ; r|R| 7→ 0] :: (m, p, s, l) :: st, g, h>

m[p] = Return

<(m, p, v :: s, l) :: (m′, p′, s′, l′) :: st, g, h> →P <(m′, p′+1, v :: s′, l′) :: st, g, h>

Figure 3: Operational semantics of the byte code language

5 Relational analysis of byte code

In this section, we describe a generic, relational analysis for byte code, parameterised with respect
to a numeric relational domain used to abstract the values of the local and global variables of the
program.

5.1 Symbolic analysis of the stack

Rather than treating each stack location as a new local variable and include this variable in the
numeric abstraction describing the state, we integrate a symbolic de-compilation into the analysis
that abstracts a stack location by a symbolic expression describing how the value at that stack
location is computed from the values of the local variables. The operand stack is hence abstracted
by a stack of symbolic expressions which represents relation between operands, static fields and
local variables.

The following definition of expressions and guards has two purposes: they form the basis of
the abstract domain for stacks (Expr only), which is specific to stack-based byte code, and they
serve as the interface with the numeric relational domain, which is parametric. Note that those

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

29

10 Besson, Jensen, Pichardie & Turpin

two aspects of the analysis are completely independent apart from that.

ExprV 3 e ::= n | x | ? | e � e x ∈ V, � ∈ {+,−,×, /}
GuardV 3 t ::= e on e on∈ {=, 6=, <,≤, >,≥}

The expression ? represents an unknown value and is responsible for the non-deterministic eval-
uation of expressions. Analyses will use this expression to model interactive inputs and abstract
away numeric quantities not in the scope of the analysis. For instance, our analysis will not keep
track of values stored in arrays.

The semantics JeKρ and JtKρ of expressions and guards with respect to an environment ρ ∈
V → Z are given below.

JnKρ = {n} JxKρ = {ρ(x)} J?Kρ = Z
Je1�e2Kρ = {n1 � n2 | n1 ∈ Je1K, n2 ∈ Je2K}
Je1one2Kρ ⇐⇒ ∃ n1 ∈ Je1Kρ, n2 ∈ Je2Kρ n1 on n2

Note that this is not the whole concretisation function for symbolic expressions, which is described
later (see Fig. 4).

Symbolic stacks Concrete operand stacks are abstracted by lists of symbolic expressions. To
deal correctly with values which are returned after a method call we use auxiliary variables in a
given set A, so the symbolic abstract domain for stacks is Expr∗R+S+A.

5.2 Numeric relational domain specification

Apart from symbolic expressions stacks, the byte code analysis is specified with respect to an
abstract numeric relational interface (defined below) that can be instantiated with standard rela-
tional abstract domains. We thus assume a domain D parameterised over a (finite) totally ordered
set of variables V .

Language independent operators An abstract element is mapped to a set of environments
in ZV by the concretisation function γ : DV → P(ZV). To manage sets of variables, D is equipped
with a projection operator ∃V ′ : DV +V ′ → DV , an extension operator EV ′ : DV → DV +V ′ and
a renaming operator ·W→W ′ : DV +W → DV +W ′ .The abstract domain is also equipped with a
partial order v ⊆ DV ×DV and meet and upper bound operators u,t : DV ×DV → DV . These
components are language-independent.

Language dependent operators The abstract assignment of an expression e ∈ ExprV to a
variable x ∈ V is modelled by the operator Jx := eK] : DV → DV . A guard t ∈ GuardV may
be abstracted by two operators assume](t), ensure](t) : Dv: the assume] operator computes an
over-approximation of the guard, while ensure] computes an under-approximation.

Definition 5.1 states formally the requirements over the operators of abstract domain DV .

Definition 5.1. An abstract domain D is a family of sets DV with:

� a concretisation function γ : DV → P(ZV),

� a decidable ordering relation v ⊆ DV × DV such that

d v d′ ⇒ γ(d) ⊆ γ(d′),

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

30

Result certification for relational program analysis 11

� a projection ∃V ′ : DV +V ′ → DV , an extension EV ′ : DV → DV +V ′ and a renaming ·W→W ′ :
DV +W → DV +W ′ operators such that:

γ(∃V ′(d)) = {ρ|V | ρ ∈ γ(d)}
γ(EV ′(d)) = {ρ | ρ|V ∈ γ(d)}
γ(dW→W ′) = {ρW→W ′ | ρ ∈ γ(d)} ,

� a meet operator u : DV × DV → DV such that

γ(d u d′) = γ(d) ∩ γ(d′),

� an upper bound operator t : DV × DV → DV such that

γ(d t d′) ⊇ γ(d) ∪ γ(d′),

� an abstract assignment operator Jx := eK] : DV → DV s.t.

γ(Jx := eK](d)) ⊇ {ρ[x 7→ v] | ρ ∈ γ(d) ∧ v ∈ JeKρ},

� assume], ensure] : GuardV → DV such that

γ(ensure](t)) ⊆ {ρ | JtKρ} ⊆ γ(assume](t)).

With the operator assume# of the numerical domain we define the abstract test JtK] : DV → DV

of a guard t ∈ GuardV by:

Jeone′K](l]) = assume](eone′) u l] if on∈ {=, <,≤, >,≥}
Je6=e′K](l]) = (assume](e′<e) u l]) t (assume](e<e′) u l])

The specific rule for 6= is necessary to ensure a good precision with convex polyhedra.

5.3 Analysis specification

The byte code analysis is defined by specifying for each byte code an abstract transfer function
which maps abstract states to abstract states (for non-jumping intraprocedural instruction at
least). The abstract states are pairs of the form (s], l]) where l] is a relation between local, global
and auxiliary variables and s] is an abstract stack whose elements are symbolic expressions built
from these variables. More precisely, the analysis manipulates the following sets of variables:

R: set of local variables r0, . . . , r|L|−1 of methods,

R0: set of old local variables rold
0 , . . . , rold

|P |−1 of methods, representing their initial values t the
beginning of method execution,

S: set of static fields f0, . . . , f|S|−1 of the program

S0: set of old static fields fold
0 , . . . , fold

|S|−1 of the program used to model values of static fields at
the beginning of method execution

A: set of auxiliary variable aux 0, . . . , aux |A|−1 used to keep track of results of methods in the
symbolic operand stack

Moreover, we use a “primed” version X ′ of the variable set X for renaming purposes. For each
method the analysis computes a signature Pre → Post whose meaning is

if the method is called with in a context where its arguments and the static fields
satisfy the property Pre then if the method returns, then its result, its arguments, and
the initial and final values of static fields satisfy the property Post .

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

31

12 Besson, Jensen, Pichardie & Turpin

instr Finstr

Nop (s], l]) → (s], l])
Ipush n (s], l]) →

`
n :: s], l]

´
Pop (e :: s], l]) →

`
s], l]

´
Dup (e :: s], l]) →

`
e :: e :: s], l]

´
Iadd (e2 :: e1 :: s], l]) →

`
xe2 + e1y :: s], l]

´
Isub (e2 :: e1 :: s], l]) →

`
xe2 − e1y :: s], l]

´
Imult (e2 :: e1 :: s], l]) →

`
xe2 × e1y :: s], l]

´
Idiv (e2 :: e1 :: s], l]) →

`
xe2/e1y :: s], l]

´
Ineg (e :: s], l]) →

`
x0− ey :: s], l]

´
Iinput (s], l]) → (? :: s], l])
Load r (s], l]) →

`
xry :: s], l]

´
Store r (e :: s], l]) →

`
s][?/r], Jr := eK](l])

´
Getstatic f (s], l]) →

`
xfy :: s], l]

´
Putstatic f (e :: s], l]) →

`
s][?/f], Jf := eK](l])

´
Iinc r n (s], l]) →

`
s][xr − ny/r], Jr := r + nK](l])

´
Newarray (e :: s], l]) →

`
e :: s], l]

´
Arraylength (e :: s], l]) →

`
e :: s], l]

´
Iaload (e2 :: e1 :: s], l]) →

`
? :: s], l]

´
Iastore (e3 :: e2 :: e1 :: s], l]) →

`
s], l]

´
m[p] = instr 6∈ {Goto p’, If icmp cond p’, Invoke sig,Return}

Finstr(Loc(m, p)) v Loc(m, p + 1)
m[p] = Goto p

Loc(m, p) v Loc(m, p)

m[p] = If icmp cond p’ Loc(m, p) = (e2 :: e1 :: s], l])`
s], Je1 cond e2K](l])

´
v Loc(m, p′)

m[p] = If icmp cond p’ Loc(m, p) = (e2 :: e1 :: s], l])“
s], Je1 cond e2K](l])

”
v Loc(m, p + 1)

m[p] = Invoke (mn,n) ((m’,n),c’) ∈ P Loc(m, p) = (en−1 :: · · · :: e0 :: s], l])“
∃R+S0+A

“dn−1
i=0 assume](ei = rold

i) u ∃R0 (l])
””

S→S0
v Pre((mn, n), c′)

m[p] = Invoke sig (sig,c’) ∈ P Loc(m, p) = (en−1 :: · · · :: e0 :: s], l])0BB@
xaux jy :: s][?/aux j],

∃S′+{res}Jaux j := resK

0@ l]
S→S′

u ∃R0

„ dn−1
i=0 assume](ei = rold

i)S→S′

u Post(sig, c′)S0→S′

« 1A
1CCA v Loc(m, p + 1)

where p is the index of the j−th Invoke in m
m[p] = Return Loc(m, p) = (e :: s], l])

∃R+A(Jres := eK](l])) v Post(m)
(m, n, c) ∈ P

d|S|−1
i=0 assume](fi = fold

i)
dn−1

i=0 assume](rold
i = ri) u Pre(m) v Loc(m, 0)

((main, 0), c) ∈ P

> v Pre((main, 0), c)

Figure 4: Relational byte code analysis with stack de-compilation

Preconditions are actually chosen by over-approximating the context in which each method may
actually be invoked. Additionally the analysis computes at each control point of each method a
local invariant between the current (R) and initial (R0) values of local variables, the current (S)
and initial (S0) values of static fields, and some auxiliary variables (A) which are used temporarily
to remember results of method calls which are still on the stack

Definition 5.2 (Abstract domain). The abstract value for a program P is described by an element
(Pre,Post ,Loc) of the lattice

State# = Meth → DR0+S0

× Meth → DR0+S0+S+{res}
× Meth × N →

(
ExprR+S+A

? × DR0+S0+R+S+A

)
⊥

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

32

Result certification for relational program analysis 13

The analysis is specified as a solution of a constraint (inequation) system associated to each
program. The constraint system is formally defined in Fig 4. Note that extensions are left
implicit. For non-jumping intraprocedural instructions, the constraint is defined via a transfer
function in Expr? × DR0+S0+R+S+A → (Expr? × DR0+S0+R+S+A)⊥. We (ab)use notation and
write (e :: s], l]) →

(
e :: e :: s], l]

)
for the function that maps a state of the form (e :: s], l])

to the resulting state
(
e :: e :: s], l]

)
and other states to ⊥. The analysis maintains a symbolic

version of the operand stack and most of the transfer functions are defined as symbolic executions.
The transfer functions for the stack operations Nop, Pop and Dup mimic the semantics of those
operations so e.g., Dup will duplicate the expression on top of the (abstract) operand stack and
hence is abstracted by the function (e :: s], l]) →

(
e :: e :: s], l]

)
. The abstraction of the instruction

Load r for fetching the value of local variable r just pushes the expression xry onto the abstract
stack (rather than projecting an abstract value of r from the relation describing the local variables).
Similarly, the abstraction of the addition operation Iadd pops the two topmost expressions e1 and
e2 from the abstract stack and replaces them with the symbolic expression xe2 + e1y.

The transfer function for the Store r operation updates the abstract environment of local
variables with the constraint that r is now equal to the value given by the expression e on top
of the abstract stack top. Formally, this is done using the operation Jx := eK] provided by the
interface of the relational domain. By the same token, all occurrences of the sub-expression xxy
in the abstract stack become invalid, as r now (potentially) has changed value, and are replaced
by the “don’t know” expression x?y. The analysis abstracts arrays references by the length of the
referenced array, so the transfer functions for Newarray(which takes the length as argument and
returns a reference to the created array) becomes the identity function. Similarly for Arraylength.

For all non-jumping instructions, we generate a constraint saying that the state following the
instruction should include the result of applying the transfer function of the instruction to the
state preceding the instruction. For the conditional If icmp cond p’, we use the abstract tests
provided by the relational domain to take the outcome of the test into account, so e.g., at program
point p′ we know that the condition cond holds between the two top elements of the stack. If
these are given by expressions e1 and e2 then we know that the symbolic expression xe1 cond e2y
evaluates to true in the current environment. The expression Je1 cond e2K](l]) in the rule for
conditionals updates the environment of local variables (l] to take this information into account.
A similar constraint is generated for the program point p + 1 using this time the negation cond of
the condition cond.

The analysis of method calls is the most complicated part. The complications partly arise
because we have several kinds of variables (static fields, local and auxiliary variables) whose
different scope must be catered for. The analysis gives rise to two constraints: one that relates
the state before the call to the pre-condition of the method and one that registers the impact of
the call on the state immediately following the call site.

When invoking a method m′ from method m, we compute an abstract state that holds before
starting executing m′ and which constrains the Pre(m′) component of the abstract element de-
scribing m′. This state registers that the n topmost expressions e1, . . . , en on the abstract stack
corresponds to the actual arguments that will be bound to the local variables of the callee m′,
by injecting the constraints ei = rold

i into the relational domain and adding them to the current
state as given by l]. Care must be exercised not to confound the parameters R0 of the caller
with the parameters of the callee, hence the projecting out of R0 before joining the constraints.
Furthermore, the local variables R, the initial values of static fields S0 and the auxiliary variables
A of method m have a different meaning in the context of method m′ and are removed from the
abstract state at the start of m′ too. Finally, the current value of static fields S in m at the
point of the method call becomes the initial value of the static fields when analysing m′, hence
the renaming of S into S0. The entire start state for m′ is thus described by the expression(

∃R+S0+A

(
l

i

assume](ei = rold
i) u ∃R0(l

])

))
S→S0

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

33

14 Besson, Jensen, Pichardie & Turpin

The second rule for Invoke describes the impact of the method call on its successor state. We
use an auxiliary variable aux j (chosen to be free in s#) to name the result of a method call which
is pushed onto the stack. This variable is constrained to be equal to the variable res which receives
the value returned by m′. The rest of the left-hand side expression of the constraint

l]S→S′ u ∃R0

(
l

i

assume](ei = rold
i)S→S′ u Post(m′)S0→S′

)

serves to link the post-condition Post(m′) of the method with the state l] of the call site. These
are linked via the local variables xi constrained to be equal to the argument expressions ei and
via the global static fields S. Again, some renaming and hiding of variables is required: e.g., the
initial values of the static fields in m′, referred to by S0, correspond to the values of the static
fields before the call in the state l] and in the expressions ei, referred to by S. The renamings
S0 → S′ and S → S′, respectively, ensures that these values are identified.

Two rules are used to initiate the analysis of a method (constraint on Loc(m, 0)) and of the
entire program (constraint on Pre((main, n), c)). To initialise the analysis of a method m, the
precondition Pre(m) is conjoined with the constraints linking the variable fold

i to the current value
of the static field fi and linking the parameters rold

i with the local variables ri, in accordance with
how parameters are handled in e.g. Java byte code. The analysis of the main method starts in
the completely unconstrained state >.

5.4 Inference

The constraint system presented in the previous section can be turned into a post-fixpoint problem
by standard techniques. Consequently, the solutions of the system can be characterised as the set
of post-fixpoints {x | F](x) v x} of a suitable monotone operator F] ∈ State] → State] operating
on the global abstract domain State] of the analysis. Assuming that State] is a complete lattice1

we know that the least solution lfpF] of this problem exists and can be over-approximated by
any post-fixpoint of F]. Computing such a post-fixpoint is the role of chaotic iterations [14]
which operate on the equation system associated with the constraint system and choose a suitable
iteration strategy [9]. Iteration is sped up by using widening on well-chosen control points. Neither
the iteration strategy nor the widening operators belong to the TCB since the validity of the result
can be checked with a post-fixpoint test.

5.5 Safety checks

Once the analysis has inferred correct invariants, this information is used to check if they enforce
the suitable safety policy. In a context of array bound checking we must check that each array
access is within the bounds of the array. As a consequence, for each occurence of an instruction
Iaload or Iastore at a program point (m, pc), we test if the local invariant Loc(m, pc) computed
by the analysis ensures a safe array access.

Definition 5.3 (Abstract safety checks). We say a set of local invariant Loc ∈ (N → (Expr? × DP+S0+L+S+A)⊥)
verifies all safety checks of a program if and only if

∀m ∈ P, pc ∈ N,
m[p] = Iaload ⇒

Loc(m, pc) = (e2 :: e1 :: s], l]) ⇒
l] v ensure](x0 ≤ e2y) ∧ l] v ensure](xe2 < e1y)

∧
m[p] = Iastore ⇒

Loc(m, pc) = (e3 :: e2 :: e1 :: s], l]) ⇒
l] v ensure](x0 ≤ e2y) ∧ l] v ensure](xe2 < e1y)

1For the polyhedra abstract domain this assumption is too strong but we can relax it by considering a complete
lattice containing State] and all its upper bounds [15].

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

34

Result certification for relational program analysis 15

βV : Heap × (V → Val) → (V → Z⊥)
(h, z) 7→ λx. z(x) if z(x) ∈ Z

|h(z(x))| if z(x) ∈ dom(h)

γexpr
h,g,l,a : ExprR+S+A → P(Val), h ∈ Heap, g ∈ Static, l ∈ LocVar

and a ∈ Val → Z
e 7→ JeKβR+S+A(h,l⊕g⊕a)

∪
n
ref ∈ dom(h)

˛̨̨
|h(ref)| ∈ JeKβR+S+A(h,l⊕g⊕a)

o

γPre : DR0+S0 → P(Static × Heap × LocVar)
pre 7→

˘
(g0, h0, l0) | βR0+S0 (h0, l0 ⊕ g0) ∈ γ(pre)

¯
γPost : DR0+S0+S+{res} → P((Static × Heap × LocVar)× (Static × Heap × Val))

post 7→

((g0, h0, l0), (g, h, v)) |
βS0+R0+S+{res}(h0, g0 ⊕ l0 ⊕ g ⊕ [res 7→ v]) ∈ γ(post)

ff
γLoc :

Expr?

× DR0+S0+R+S+A
→ P

„
(Static × Heap × LocVar)
× (Static × Heap × Stack × LocVar)

«
(e1 :: · · · :: en, loc) 7→

8<:
((g0, h0, l0), (g, h, v1 :: · · · :: vn, l)) |

∃a ∈ A → Z, ∀i ∈ J1, nK, vi ∈ γexpr
h,g,l,a(ei) ∧

βS0+R0+S+R+A(h0, g0 ⊕ l0 ⊕ g ⊕ l ⊕ a) ∈ γ(loc)

9=;
Figure 5: Concretisation functions

5.6 Soundness of the analysis

Fig. 5 gives the concretisation functions for the abstract domains. The auxiliary abstraction
function β maps everything to an integer, abstracting arrays by their length. γexpr defines con-
cretisation of a symbolic expression with respect to an environment. γPre maps pre-conditions
to sets of calling contexts, γPost maps post-conditions to relations between calling contexts and
return contexts, and γLoc maps local invariants to relations between calling contexts and local
program states. Note that concretisations contain only states such that all locations that are
being referenced are defined in the heap.

Definition 5.4 (Reachable states). For a method m in a program P , a heap h, a static heap g,
a set of local variables l, a frame stack st, the set JP Km

h,g,l,st of reachable state from an execution
of m starting in an initial configuration (h, g, l, st) is defined by

JP Km
h,g,l,st =

{
s | <(m, 0, [], l′) :: st, g, h>

≥st−−→
∗
P s

}
where ≥st−−→

∗
P is the reflexive transitive closure of →P restricted to states who have a form < . . . ::

(m, . . .) :: st, . . . >.

The purpose of ≥st−−→
∗
P is to collect only the states in between the start and the end of the

execution of a particular stack frame.

Definition 5.5 (Safe method). A method m in a program P is said to be safe wrt. a precondition
Pre ⊆ Heap × Static ×LocVar if for all stack frames st and all (h, g, l) ∈ Pre, Error 6∈ JP Km

h,g,l,st.

Theorem 5.6 (Correctness).
Let P be a program and (Pre,Post ,Loc) a solution of the constraint system associated with P . If
Loc satisfies all safety checks then every method m in P is safe wrt. to Pre(m). In particular,

<(((main, n), c), 0, [], λr.0) :: [], λf.0, λref .⊥ > 6→P Error

Proof. The proof is divided into two parts. We first prove that each reachable intermediate state
at a point (m, p) satisfies the property γLoc(Loc(m, p)), that each method m is called in a context
satisfying γPre(Pre(m)) and that its return value (if it exists) satisfies γPost(Loc(m)). In the
second part we prove that if a state at some point (m, p) satisfies γLoc(Loc(m, p)) as well as the
abstract safety check associated with this point, then no error happens in the next semantic step.
To deal with the steps corresponding to procedure calls, the proof makes use of an intermediate
big-step operational semantics. Details are omitted for lack of space.

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

35

16 Besson, Jensen, Pichardie & Turpin

s1

s2

s3

r1

r2

Figure 6: Dual representation of polyhedra

6 Polyhedral analysis

We now instantiate the relational analysis framework using linear relations in the form of convex
polyhedra. Polyhedral program analysis has a well-established theory [15] with several implemen-
tations [4, 21]. Here, we recall the basics of this theory.

Definition 6.1. Convex polyhedra of dimension n (Pn ⊆ Qn) are (convex) subsets of Qn that can
be expressed as a finite intersection of half-planes of Qn.

Polyhedra can be represented as sets of linear constraints. It is desirable to keep these sets in
normal form i.e., without redundant constraints. For this purpose, polyhedra libraries maintain a
dual representation of polyhedra based on generators in which a convex polyhedron is the convex
hull of a (finite) set of vertices, rays and lines. Vertices, rays and lines are respectively extremal
points, infinite directions and bi-directional infinite directions of the polyhedron. Fig. 6 shows a
a polyhedron with four constraints whose dual representation is made of three vertices (s1,s2,s3)
and two rays (r1,r2).

The efficiency of the algorithm that maintains the normal form of the double description is of
crucial importance. For this task, state-of-the-art polyhedral libraries [4, 21] use Chernikova’s algo-
rithm [13]. In the worst case, the number of generators is exponential in the number of constraints
(and vice-versa) but, in practise, the double description offers a good performance. To alleviate
further the cost of normalising polyhedra, these libraries switch lazily from one representation to
the other.

Polyhedral cannot directly handle expressions that fall outside the linear fragment. It would
be sound but unsatisfactory to abstract those expressions towards an arbitrary value i.e., the ?
expression. More information can be retained by linearising expressions [26]. For instance, the
precise analysis of Binary Search (Fig. 1) requires a precise model of euclidean divisions. Given
an integer constant n, the guard y = x/n is abstracted by the linear guards 0 ≤ x − n · y < n.
Multiplications can also be linearised by using the range of variables.

We now briefly explain how polyhedral algorithms implement the abstract numeric relational
domain specified in Definition 5.1. To be implemented efficiently, the double description of poly-
hedra is needed, using Chernikova’s algorithm to reconstruct the coherence of the double repre-
sentation.

The convex polyhedron can directly be cast into an abstract numeric domain by mapping
variables of the domain to dimensions of the polyhedron. Hence, we get DV = P|V | and the
concretisation:

γ(P) = {ρ ∈ ZV | ρ ∈ P ∩ ZV }

Renaming of variables consists in applying a permutation to the dimensions of polyhedron. The
extension operation which add new variables consists in inserting new unconstrained dimensions
at the relevant indexes.
Projections can be efficiently performed on the generator description of polyhedra in linear time.
Each generator is projected by erasing the now irrelevant dimensions.
Intersections are computed by taking the union of the constraints of each polyhedron.
The convex hull, i.e., least upper bound, is computed by taking the union of the generators of
both polyhedra.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

36

Result certification for relational program analysis 17

An assignment Jx := eK] is modelled by the linear transformation (if e is linear) that keeps all
the variables unchanged except x which is mapped to e. The transformation is applied to the
generators.
Inclusion tests are using both representation at once. Checking the containment of two polyhedra
(P v Q) amounts to verifying that the generators of P satisfy the constraints of Q.
Widening operators are used by the fixpoint iterator to ensure convergence. For convex polyhe-
dra, there exist various widening operators [15, 3].
Assume and ensure operators are responsible for interpreting guards of the target language. If
the guard t is linear, a polyhedron is built from it and no abstraction takes place. Otherwise, t
has to be linearised. In the worst case, universal (resp. empty) polyhedra can be used as sound
(though very imprecise) fallbacks.

7 Fixpoint pruning

The result of the polyhedral byte code analysis will be a fixpoint of the transfer functions, rep-
resenting an invariant of the program under analysis. This invariant will often contain more
information than necessary for proving a particular safety policy such as absence of indexing out-
side array bounds. In the following we show how to prune an invariant with respect to a given
safety policy, resulting in an invariant that is smaller and cheaper to verify.

7.1 Witnesses and pruning

We have applied the technique described in [7] for pruning constraint-based invariants, with some
adaptations allowing to handle our interprocedural polyhedral analysis on byte code better. First
we recall the definition of witnesses for this particular analysis.

Definition 7.1. A witness for a program P is a solution (Pre, Post, Loc) to the constraint system
associated with P that satisfies the safety checks of P (see Definition 5.3).

We use this as the basis for building certificates, relying on the fact that if there exists a witness
for P then P is safe (see Theorem 5.6). Part of the witness is sent to the checker in the constraint
representation only (see Section 6), so we aim at extracting a weaker witness with fewer linear
constraints than the one produced by the inference algorithm of Section 5.4 (if the analysis is
accurate enough for the program). Pruning leaves the symbolic expression stacks of the witness
unchanged because the checker recomputes them (and hence nothing is transmitted about this
part).

It is easy to see that there is generally no unique weakest witness nor a unique witness with
the minimum number of constraints (because the analysis is not distributive). Also, the idea of
starting from the safety requirements to compute backward a witness that satisfies them cannot
achieve the same precision as a forward analysis, because intuitively it would have to guess the
invariants that a forward analysis naturally discovers. For these reasons we use a technique of
pruning that removes as many linear constraints as possible from a given witness.

7.2 Abstract algorithm

We use a variation of the greedy heuristic presented in [7]. In the following we identify polyhedra
with sets of constraints. We use

Var = {prem | m ∈ P} ∪ {postm | m ∈ P}
∪ {locm,p | m ∈ P, m = ((mn, n), c), p < |c|}

to denote the set of unknowns of the constraint system associated with P . For an abstract element
x = (Pre, Post, Loc) we define the set of linear constraints of x:

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

37

18 Besson, Jensen, Pichardie & Turpin

prune(w) :=
let w′ = ∅
while w′ is not a witness do

choose a constraint C and k ∈ w′
|dep(C) s.t. w′, {k} 6` C

(or a check C such that w′ 6` C)
choose x ⊆ (w \ w′)|dep(C) such that w′ ∪ x, {k} ` C

(respectively, w′ ∪ x ` C)
w′ := w′ ∪ x

done
return w′

Figure 7: Witness pruning algorithm

x =
⋃

m∈P

{(locm,p, k) | Loc(m, p) = (s#, l#), k ∈ l#}
∪ {(prem, k) | k ∈ Pre(m)}
∪ {(postm, k) | k ∈ Post(m)}

For V ⊆ Var we define x|V = {(var, k) ∈ x | var ∈ V } and x|V is defined accordingly.
Recall that the constraint system for P is a set of constraints of the form F (x) v x|{v}

where v ∈ Var . For a constraint c we note x, y ` C if F (x) v y|{v} (we can do so since the
expression stacks are fixed) and x ` C for x, x ` C. We will overload the notation and write
also x ` C if x satisfies the safety check C. Then, for every such constraint C, we define a set
dep(C) ⊆ Var that represents the dependencies of this constraint, in the sense that if x, y ` C
then x|dep(C), y ` C. The definition of dep is straightforward. For example, if C is the constraint
Finstr(Loc(m, p)) v Loc(m, p + 1) corresponding to an non-jumping intraprocedural instruction
(see the first part of Fig. 4), then dep(C) = {locm,p}. For the constraint . . . v Loc(m, p + 1) of an
Invoke sig instruction, dep(C) = {locm,p,post(sig,c)} where (sig, c) ∈ P .

The pruning algorithm is shown in Fig. 7. The main issue in this non-deterministic algorithm
is the choice of the subset x: we obviously want a minimal one in the sense of set inclusion
(achievable in reasonable time by monotonicity), but it is not unique.

7.3 Efficient pruning for polyhedral byte code analysis

Our strategy is to take a minimal such x that almost minimizes a cost function taking into account
the number of linear constraints, the number of non-null coefficients in them, and, for Invoke, the
number of post constraints (as opposed to loc). This allows us to obtain a witness with simpler
invariants and signatures. The heuristic blindly applies the definition of ` while labelling (part of)
the search space. The dependency function dep helps by reducing the number of linear constraints
to be considered at each step.

Finally, we face a problem specific to the polyhedra domain when pruning an invariant: in
order to keep things small, the polyhedra are usually represented in a minimal form in which the
relation between a set of dimensions does not necessarily appear as a dedicated linear constraint,
but often as a consequence of several other relations. For example, the constraint x ≤ z is implicit
in x ≤ y ≤ z. For the purpose of finding a small invariant, we may benefit from being able to
include such constraints. Our solution is to add some implicit constraints to the invariant before
pruning it. More precisely, for a polyhedron in DV , we add all the projections ∃V \V ′ (see Section 6)
where V ′ is a subset of V of cardinality at most n. For the maximal number n of dimensions in the
implicit constraints to be generated, ∞ seems too costly for non-trivial programs, and unnecessary.
It turns out that 3 is enough for all of our examples, which is not surprising because very few
correctness proofs actually rely on linear invariants involving more than three variables.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

38

Result certification for relational program analysis 19

8 Result checking of polyhedral analysis

A result checker for abstract interpretation based static analysis can be reduced to an (optimised)
fixpoint checker [1], with the downside that the abstract domains are still part of the TCB.
Formally certifying optimised polyhedral libraries [4, 21] is feasible but would require an enormous
certification effort. Instead, we propose a lightweight verifier of polyhedral analyses using a result
checking methodology which has two advantages: i) the TCB is small, and ii) the checking time
is optimised.

8.1 The polyhedral domain revisited

Chernikova’s algorithm is at the origin of the computational complexity of convex polyhedra
operations, so a first approach would be to design a result checker for Chernikova’s algorithm
i.e., a normal form checker. This has the inconvenience that most of the polyhedral operations
would be annotated with their result together with a certificate attesting that it is in normal
form. Instead, we develop a checker which only uses the constraint representation of polyhedra
and which never need to normalise. Moreover, projections are not computed but delayed using a
set of extra existential variables. More precisely, our polyhedra are represented by a list of linear
expression over two disjoint sets of variables V and E. Variables in v ∈ V are genuine variables
while e ∈ E are (existential) variables that represent dimensions which have been projected out.

Definition 8.1. Let V and E be disjoint sets of variables.

PV = Lin∗V +E

where
LinV +E = {xc1 × x1 + · · ·+ cn × xny | ci ∈ Z ∧ xi ∈ V + E}.

Given es ∈ PV , the concretisation function is defined by

γV (es) = {ρ|V | ∀k ∈ es, Jk ≥ 0Kρ}

In the following, we show how to implement the polyhedral operations using (only) polyhedra in
constraint form.
Renaming simply consists in applying the renaming to the expressions within the polyhedron.
Because the existential variables belong to a disjoint set, no capture can occur. In addition, for
this encoding, extension is a no-op because unused variables have no impact on the internal
representation.

es ∈ PV ⇒ ∀W ⊇ V, es ∈ PW

Using Fourier-Motzkin elimination (see e.g.), [31], projections can be computed directly over
the constraint representation of polyhedra However, in the worst case, the number of constraints
grows exponentially in the number of variables to project. To solve this problem, we delay the
projection and simply register them as existentially quantified. This is done by renaming these
variables to fresh variables.
To compute intersections, care must be taken not to mix up the existential variables. To avoid
capture, existentially variables are renamed to variables that are fresh for both polyhedra. There-
after, the intersection is implemented by taking the union of the expressions.
To implement the assume and ensure operators, the involved expressions are first linearised and
the obtained linear inequality is put into the form e ≥ 0 which now belongs to the set Lin defined
above.
For convex polyhedra, assignment is efficiently implemented as an atomic operation. However,
it can be expressed in terms of the previous operators: given x′ a fresh variable, an assignment
can be defined as follows.

Jx := eK](P) =
(
∃{x}

(
P u assume](x′ = e)

))
{x′}→{x}

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

39

20 Besson, Jensen, Pichardie & Turpin

It is this latter definition that we use.
Widening operators are only used during the fixpoint iteration, and are not needed at checking
time.
Convex Hull is the typical operation that is straightforward to implement using the generator
representation of polyhedra. Using a relaxation technique, it is possible to express the convex
hull as the projection of a polyhedron of higher dimension [2] but since this requires to compute
projections this does not scale. Even with our delaying of projections, the size of the polyhedron
doubles. Instead of computing a convex hull, we follow the result certification methodology and
provide a certificate polyhedron that is the result of the convex hull computation. Furthermore,
our result checker need not check that the result is exactly the convex hull but only that it is an
upper bound by doing a double inclusion test.

isUpperBound(P,Q,UB) ≡ P v UB ∧Q v UB

To implement inclusion tests, we push the result certification methodology further and use
inclusion certificates. The form of certificates and their generation are described below.

8.2 Result certification for polyhedral inclusion

Farkas lemma (Lemma 8.2) is a theorem of linear programming (see for instance [31]) which gives
a notion of emptiness certificate for polyhedra. In this part, we show how this result can be
i) lifted to obtain an inclusion checker; ii) extended further to deal with existential variables. Our
inclusion checker vcheck takes as input a pair of polyhedra (P,Q) and an inclusion certificate. It
will only return true if the certificate allows to conclude that P is indeed included in Q (P v Q).

Lemma 8.2 (Farkas Lemma). Let A ∈ Qm×n and b ∈ Qn. The following statements are equiva-
lent:

� For all x ∈ Qn, ¬(A · x ≥ b)

� There exists ic ∈ Qm satisfying At · ic = 0̄ and bt · ic > 0.

The soundness (⇐) of certificates is the easy part and is all that is needed in the machine-
checked proof. It follows that the existence of a certificate ensures the infeasibility of the linear
constraints and therefore that the polyhedron made of these constraints is empty.

Thus, an inclusion certificate ic is a vector of Qm and checking a certificate consists of 1) com-
puting a matrix-vector product (At · ic) 2) verifying that the result is a null vector; 3) computing a
scalar product (bt · ic); and 4) verifying that the result is strictly positive. All in all, the certificate
checker runs in quadratic-time in terms of arithmetic operations.

Certificates generation can be recast as a linear programming problem that can be efficiently
solved by either the Simplex or interior point methods. The set of certificates is characterised by
the convex polyhedron

Cert =
{
ic
∣∣ic ≥ 0̄ ∧ bt · ic > 0 ∧At · ic = 0̄

}
As a result, finding an extremal certificate amounts to solving a linear optimisation problem. For
instance, the solution of the linear program min{ct · 1̄ | c ∈ Cert} minimises the sum of the
coefficients of the certificate. In theory, such a minimisation might not yield a compact certificate
because the optimisation is done over the rationals – there are very small rationals that require
many bits. However, in practise, the technique is sufficiently efficient.

From emptiness to inclusion Lemma 8.3 states that in the absence of existential variables
an inclusion check amounts to emptiness checks.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

40

Result certification for relational program analysis 21

Lemma 8.3. Given P, P ′ ∈ PV +E, we have

∀e′ ∈ P ′, γV +E(−e′−1 :: P) = ∅

if and only if
γV +E(P) ⊆ γV +E(P ′).

Proof. By construction, polyhedra in PV +E do not have existential variables. Hence, we have
γV +E(P ′) =

⋂
e′∈P ′ γV +E(e′::[]). Moreover, the complement of a linear constraint e′ ≥ 0 is

−e′ − 1 ≥ 0. These facts allow to reduce inclusion to a set of emptiness tests.

Lemma 8.4 states that to do an inclusion test, it is sound to drop existential variables.

Lemma 8.4. Let P and P ′ be polyhedra in constraint form.

γV +E(P) ⊆ γV +E(P ′) ⇒ γV (P) ⊆ γV (P ′)

Proof. The Lemma follows from the definition of γ and the fact that the restriction operator on
environments is monotone.

Together, Lemma 8.3 and Lemma 8.4 allow the design of a sound result checker for inclusion
tests of form P ⊆ P ′. In general, the checker is incomplete but this only shows up in cases where
P ′ has existential variables. However, inclusions only need to be certified when P ′ is a polyhedron
computed by the analyser and such a P ′ does not contain existential variables, so the inclusion
checker is always used in a context where it is complete.

9 Implementation and Experiments

The relational bytecode analysis has been implemented in Caml and instantiated with the efficient
NewPolka polyhedral library [21] as its relational abstract domain. The programs we analyse
are genuine Java programs where unsupported instructions have been automatically replaced by
conservative numerical instructions e.g., Getfield replaces the top-most element of the stack by an
arbitrary value. The analyser then computes a solution to the constraint system generated from a
program. From these invariants, loop headers and join points are extracted. Inclusion certificates
required by the checker are generated using the GNU Linear Programming Toolkit [24] which
features a Simplex computing in exact rational arithmetic. Loop headers and join point invariants
constitute (the part of) the analyser result that is sent to the checker. The certificate is made of
the inclusion certificates.

As invariants computed by static analysers often contain more information than necessary for
proving a particular safety policy i.e., the absence of array out-of-bounds accesses, it is interesting
to prune the analysis result and eliminate invariants that are useless for proving a given safety
property. The advantages are twofold: invariants to check are smaller and their verification
cheaper. We have adapted the technique described in [7] for pruning constraint-based invariants,
thus allowing to handle our interprocedural polyhedral analysis (Section 7). For our benchmarks,
pruning can halve the number of constraints to verify. This reduction can sometimes but not
always produce a similar reduction in checking time. The reduction is especially visible when the
analyser tends to generate huge invariants which cannot be exploited. This is e.g., the case for
FFT where the analyser approximates an exponential with a complex polyhedron without any
positive effect on the number of successful safety checks.

For each program we provide the checking time with after fixpoint pruning, using either an
extracted checker (Caml) or the checker running in Coq. In the first approach the Coq result
checker is automatically transformed into a Caml program by the Coq extraction mechanism.
In the second approach, the result checker is directly run inside the reduction engine of Coq to
compute a foundational proof of safety of the program. Fig. 8 presents our experimental results.
The benchmarks are relatively modest in size and do not use that many variables and it is well

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

41

22 Besson, Jensen, Pichardie & Turpin

known that full-blown polyhedral analyses have scalability problems. Our analyser will not avoid
this but can be instantiated with simpler relational domains such as e.g., octagons, without having
to change the checker. The programs and the analysis results can be found on-line [35] and replayed
in Coq or with an extracted Caml checker. We consider two families of programs. The first one
consists of benchmarks used by Xi to demonstrate the dependent type system for Xanadu [36]. For
this family we automatically prove the absence of out-of-bound accesses. The second is taken from
the Java benchmark suite SciMark for scientific and numerical computing where our polyhedral
analysis prove safety for array accesses except for the more intricate multi-dimensional arrays
representing matrices. This explains why certain scores are below 100%. When the analyser
cannot prove all the array accesses safe, we obtain a certificate by using a refined version of the
safety property where all but a designated subset of array accesses are required to be correct.

Program size score #variables certificate size checking time (Caml/ Coq)
BSearch 80 100% 6 131 1.4 / 11.6
HeapSort 143 100% 9 334 3.7 / 35.5
QuickSort 276 100% 9 462 128.7 / 974.0
Random 883 83% 8 390 8.0 / 44.3
Jacobi 135 50% 19 132 1.7 / 9.2
LU 559 45% 16 997 17.4 / 91.5
SparseCompRow 90 33% 15 72 1.1 / 6.1
FFT 591 78% 30 645 22.7 / 193.8

Figure 8: Size in number of instructions, score in ratio succeeded checks / total checks, certificates
in bytes, checking time in milliseconds

The checking time is very small (less than one second), which is especially noteworthy given
that the checker is run in Coq. We clearly benefit here from our efficient implementation and the
optimised reduction engine of Coq [19]. Compared to the extracted version, the Coq checker is at
most 10 times slower.

10 Towards a Certified Lightweight Array Bound Checker
for Java Bytecode

The work we have reported in the previous sections demonstrates the feasibility of efficiently
checking, in a foundational way, the result of a relational static analyser. Our aim is now to
scale this approach on a more realistic fragment of Java (mainly its full sequential part) for a
competitive array bound checker.

To do so, we have designed a new static analyser of Java bytecode programs with several new
features. The prototype is written in OCaml. In a second time we will develop a certified result
checker in Coq. In this section we present the main characteristics of the analyser. All components
are schematically presented in Figure 9.

10.1 Parsing of .class files

We rely on the Javalib Ocaml library2 that gives us a factorized representation of bytecode in-
structions with full inlining of constant pool indirections.

10.2 Removing operand stack manipulation

The JVM is a stack-based virtual machine. This intensive use of the operand stack make it difficult
to adapt standard static analysis techniques that have been first designed for more standard

2http://javalib.gforge.inria.fr/

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

42

Result certification for relational program analysis 23

.class

JavaLib

bytecode
program

BC2BIR

stackless
program

Constraint
generator

constraint
system

Fixpoint
solver

Relational
abstract
domain

Auxiliary
analyses

fixpoint

Array bound
checks elimination

Figure 9: Architecture of the array bound analyser

(variable-based) 3-address codes. A naive translation from a stack-based code to 3-address code
may result in an explosion of temporary variables, which in turn may complicate analyses of
relational program analyses.

In Section 5.1 we rely on a stack of symbolic expressions to represents relation between
operands, static fields and local variables. We adapt here this idea to transform a bytecode
program into a stack-less representation. Instead of doing this transformation during the analysis,
we perform it once for all before the analysis, instead of re-transforming at each iteration of the
analysis.

The transformation algorithm is described and proved correct in a separate research report [17].
We give just give here an example of its result. Figure 10 presents a simple source program, its
bytecode and its stackless representation and finally the symbolic operand stack that is computed
during transformation. In this example the variable x is denoted by number 1 in the bytecode
representation and r1 its counterpart in the stackless representation. The iload 1 instruction
generates a nop instruction but pushes the symbol r1 on top of the symbolic operand stack. The
ifne 8 instruction uses the symbolic stack to recover the original guard (x==0) of the program.
It generates a conditional jump to line 8 and pops the first (and only) element of the symbolic
operand stack. The next instruction iconst 1 generates a nop instruction and pushes the symbol
1 on top of the symbolic operand stack. The effect of the next instruction goto 9 is more subtle:
since the target of the jump is a branching point, the transformation takes care to generate the
same symbolic stack from both predecessors of line 9. To do so, it generates a fresh variable b9

and generates the necessary assignment before the jump. The next instruction iconst -1 takes
the same precaution. Finally the instruction ireturn pop the top of the symbolic stack to return
the corresponding expression.

Thanks to this transformation our static analysis just need to reason on a simple language with
expression trees. Note that we do not expect the result verifier to rely on the same preliminary
transformation: we plan to keep a symbolic manipulation similar to Section 5.1 during fixpoint
checking. This is possible because the transformation algorithm operates mainly in one pass on
each methods.

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

43

24 Besson, Jensen, Pichardie & Turpin

int f(int x) {return (x==0) ? 1 : -1;}

(a) source program

int f(int);
0: iload 1
1: ifne 8
4: iconst 1
5: goto 9

8: iconst -1
9: ireturn

(b) bytecode program

int f(int);
0: nop;
1: if r1 != 0 goto 8;
4: nop;
5: b9 := 1;

goto 9;
8: b9 := -1;
9: return b9;

(c) stackless program

0: []
1: [r1]
4: []
5: [1]

8: []
9: [b9]

(d) symbolic stack

Figure 10: Example of bytecode transformation

10.3 Constraint generation

For each method of a program we generate a set of numerical symbolic constraints. Figure 11
presents a Java method (binary search), its stackless representation and the constraint system
that is generated for this method. On the left part of the constraint system, we note the corre-
sponding line number where the constraint has been generated. The system constrains three kind
of variables: Pre, Post and Loc(i) where i is a line number. Words in italic mode correspond to
reserve words. The first constraint binds the values of the variables key and vec with the formal
parameters of the method. The constraint generator only keeps expressions that can be expressed
in a simple numeric language with variable, constants and numeric operations. Hence, at line 12,
it keeps the expression ((high − low)/2) + low but forgets (key 6= vec[mid]) at line 32 because
it contains an array expression. The special operator [local :=?] projects all local variables (here
low, mid, high, key and vec.length). It is used to constrain the post-condition Post which only
deals with parameters and final result.

Auxiliary analyses are necessary to generate some of these constraints. It is for example
necessary to recover array types in order to predict which expression will definitively handle
rectangular arrays, with which dimensions. In this example, it allows us to predict that vec
handles an array of one dimension.

10.4 Fixpoint solving

Each constraint system is given to a generic fixpoint solver [20] that over-approximates its fix-
points. More precisely, for any value of the precondition variable Pre, it computes a value for the
postcondition Post. This technique allows us to obtain a context-sensitive analysis which has the
same level of precision that a full inlining of methods. In case of recursive calls, we iter the fixpoint
resolution between methods, using widenings to ensure convergence. The technique is taken and
adapted from the last chapter of Patrick Cousot’s PhD thesis [16].

The constraints are interpreted on top of any abstract domain of the Apron library [21], as
octagons [25] or polyhedra [15]. Java arithmetic overflow is taken into account by systematically
proving that no overflow/underflow occurs. As a consequence, in the binary search example of
Figure 11, the expression ((high−low)/2)+low is proved to be safe with respect to overflow/un-
derflow, while (high + low)/2 would have lead to a true alarm. When such a case occurs, the
analysis over-approximates the value of the expression by >.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

44

Result certification for relational program analysis 25

static int bsearch(int key, int[] vec) {
int low = 0;
int high = vec.length - 1;
while (high > low) {

int mid = (high -low) / 2 + low;
if (key == vec[mid]) return mid;
else if (key < vec[mid])

high = mid - 1;
else low = mid + 1;

}
return -1;

}

(a) source program

static int bsearch(int key, int[] vec)
0. low := 0
2. high := vec.length-1
7. if (high <= low) goto 56

12. mid := ((high-low)/2)+low
21. if (key != vec[mid]) goto 32
29. return mid
32. if (key >= vec[mid]) goto 48
40. high := mid-1
45. goto 53
48. low := mid+1
53. goto 7
56. return -1

(b) stackless bytecode representation

[key = param0][vec.length = param1.length]Pre v Loc(0)
0. [low := 0]Loc(0) v Loc(2)
2. [high := vec.length− 1]Loc(2) v Loc(7)
7. [high ≤ low]Loc(7) v Loc(56)

[high > low]Loc(7) v Loc(12)
12. [mid := ((high− low)/2) + low]Loc(12) v Loc(21)
21. Loc(21) v Loc(32)

Loc(21) v Loc(29)
29. [local :=?][result := mid]Loc(29) v Post
32. Loc(32) v Loc(48)

Loc(32) v Loc(40)
40. [high := mid− 1]Loc(40) v Loc(45)
45. Loc(45) v Loc(53)
48. [low := mid + 1]Loc(48) v Loc(53)
53. Loc(53) v Loc(7)
56. [local :=?][result := −1]Loc(56) v Post

(c) constraint system

Figure 11: Example of constraint generation

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

45

26 Besson, Jensen, Pichardie & Turpin

Bench name ABCD CAS This work Total

Series

LUF

SOR

HS

Crypt

FFT

SMM

S/G

S/TG

S/SG

MD

MC/MC

MC/RP

RT

1 2 2 6

7 10 12 75

7 7 10 12

1 3 5 13

15 17 9 72

6 7 7 36

2 2 3 9

0 2 2 36

1 5 13 37

2 3 2

5 15 28 37

4 4 4 6

3 4 6 22

2 4 5 8

0

6

12

18

24

30

Series LUF SOR HS Crypt FFT SMM S/G S/TG S/SG MD MC/MC MC/RP RT

#
 C

h
e
c
k
s
 E

lim
in

a
te

d

ABCD
CAS
This work

Figure 12: Evaluation of the precision of the intra-procedural part of the analyser on the Java
Grande Forum benchmarks

10.5 Preliminary experiments

The goal of this implementation is to obtain an array bound checker that with a state-of-the-art
precision and then design a certified result checker for it. In order to achieve the first goal we have
run the analyser on the same benchmark suite, Java Grande Forum benchmarks [10], as Niedzielski
et al. [28]. The benchmarks were modified to express to cope with their intra-procedural analysis.
They have also run teh ABCD analyser [8] on the same programs. We have bridle our analysis
in order to not propagate out of method calls and run our analysis on the same benchmark suite
(with the same modifications, kindly provided by the authors of [28]). The result is shown in
Figure. 12. For all benchs (except one) we obtain a similar or better precision. This results should
however be interpreted with precaution because some of the checks eliminated in [28] may not
have been counted here.

11 Related work

A number of relational abstract domains (octagons [25], convex polyhedra [15], polynomial equal-
ities [27]) have been proposed with various trade-offs between precision and efficiency, and intra-
procedural relational abstract interpretation for high-level imperative languages is by now a mature
analysis technique. However, to the best of our knowledge the present work is the first extension
of this to an inter-procedural analysis for byte code. Dependent type systems for Java-style byte
code for removing array bounds checks have been proposed by Xi and Xia [37]. The analysis of
the stack uses singleton types to track the values of stack elements, achieving the same as our
symbolic stack expressions. The analysis is intra-procedural and does not consider methods (they
are added in a later work [36] which also adds a richer set of types). The type checking relies on
loop invariants. We have run our analysis on the example Xanadu programs given by Xi and have
been able to infer the invariants necessary for verifying safe array access automatically.

The area of certified program verifiers has been an active field recently. Wildmoser, Nipkow
et al. [33] were the first to develop a fully certified VCGen within Isabelle/HOL for verifying
arithmetic overflow in Java byte code. The certification of abstract interpreters has been developed
by Cachera, Pichardie et al. [11, 29]. for a variety of analyses including class analysis of Java byte
code and interval analysis. Lee et al. [22] have certified the type analysis of a language close to
Standard ML in LF and Leroy [23] has certified some of the data flow analyses of a compiler back-
end. Leroy also observes that for certain, more involved analyses such as the register allocation,
it is simpler and sufficient to certify a checker of the result than the analysis itself. The same idea
is used by Wildmoser et al. [32] who certifies a VCGen that uses untrusted interval analysis for
producing invariants and that relies on Isabelle/HOL decision procedures to check the verification
conditions generated with the help of these invariants. Their technique for analysing byte code is
close to ours in that they also use symbolic expressions to analyse the operand stack and the main

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

46

Result certification for relational program analysis 27

contribution of the work reported here with respect to theirs is to develop this result checking
approach for a fully relational analysis.

The idea of removing useless parts from an invariant was developed independently by Besson
et al. [7] and by Yang et al. [38] who call it abstract value slicing. Both works deal with intra-
procedural invariants and both are based on a dependency computation that selects, for every
constraint F (X) v Y of the constraint system of P and every subset of an abstract state Y , a
sufficient subset of X that satisfies the constraint. The two methods differ in the way that this
choice is done but both have been shown viable for intra-procedural pruning of relational invariants.
The present work is an extension of the principles underlying the non-deterministic algorithm in
[7] to handle the pre-/post-conditions arising from the interprocedural analysis. Finally, it should
be noted that the fixpoint compression is orthogonal to and compatible with the optimisation of
iteration strategies for fixpoint checking underlying Lightweight Bytecode Verification [30] and the
more general abstraction-carrying code [1, 6]. Our checker combines both techniques.

12 Conclusions and future work

This paper demonstrates the feasibility of an interprocedural relational analysis which automati-
cally infers polyhedral loop invariants and pre-/post-condition for programs in an imperative byte
code language. The machine-generated invariants can be pruned wrt. a particular safety policy
to yield compact program certificates. To simplify the checking of these certificates, we have de-
vised a result checker for polyhedra which uses inclusion certificates (issued from a result due to
Farkas) instead of computing convex hulls of polyhedra at join points. This checker is much sim-
pler to prove correct mechanically than the polyhedral analyser and provides a means of building
a foundational proof carrying code that can make use of industrial strength relational program
analysis.

Future work concerns extensions to incorporate richer domains of properties such as disjunc-
tive completion of polyhedra or non-linear (polynomial) invariants. The certificate format and
the result checker can accommodate the disjunctive completions, the inclusion certificates from
Section 8.2 can be generalised to deal with non-linear inequalities as well [5]. However, the anal-
yses for inferring such properties are in their infancy. On a language level, the challenge is to
extend the analysis to cover the object oriented aspects of Java byte code. The inclusion of static
fields and arrays in our framework provides a first step in that direction but a full extension would
notably require an additional analysis to keep track of aliases between objects.

A promising domain of application for our relational analysis technique is to verify the dynamic
allocation and consumption of resources and in particular to ensure statically that a program
always acquires a necessary amount of resources before consuming them. The approach of Chander
et al. [12] relies on the programmer to provide loop invariants and pre- and post-conditions for
methods in order to link program variables to the amount of resources available and perform
powerful transformations such as hoisting resource allocations out of loops. Our inter-procedural
byte code analyser could infer the necessary invariants and pre-/post-conditions and in the same
vein provide the checker for integrating this into a mobile code resource certification scheme.

References

[1] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-carrying code. In Proc. of the 11th
Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning, Springer LNAI
vol. 3452, pages 380–397, 2004.

[2] B. De Backer and H. Beringer. A clp language handling disjunctions of linear constraints. In
Proc. of the 10th Int. Conf. on Logic Programming (ICLP’93), pages 550–563. MIT Press,
1993.

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

47

28 Besson, Jensen, Pichardie & Turpin

[3] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. In Proc. of 10th Int. Static Analysis Symposium, pages 337–354. Springer LNCS
vol. 2694, 2003.

[4] R. Bagnara, P.M Hill, and E. Zaffanella. The Parma polyhedral library user’s manual, 2006.

[5] F. Besson. Fast reflexive arithmetic tactics: the linear case and beyond. In Types for Proofs
and Programs, volume 4502 of LNCS, pages 48–62. Springer, 2006.

[6] F. Besson, T. Jensen, and D. Pichardie. Proof-carrying code from certified abstract interpre-
tation and fixpoint compression. Theoretical Computer Science, 364(3):273–291, 2006.

[7] F. Besson, T. Jensen, and T. Turpin. Small witnesses for abstract interpretation based proofs.
In Proc. of 16th Europ. Symp. on Programming (ESOP 2007), pages 268–283. Springer LNCS
vol. 4421, 2007.

[8] R. Bod́ık, R. Gupta, and V. Sarkar. Abcd: eliminating array bounds checks on demand. In
Proc. of PLDI’00, pages 321–333. ACM Press, 2000.

[9] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. of the Int. Conf.
on Formal Methods in Programming and their Applications, pages 128–141. Springer LNCS
vol. 735, 1993.

[10] J.M. Bull, L.A. Smith, M.D. Westhead, D.S. Henty, and R.A. Davey. A benchmark suite for
high performance java. Concurrency: Practice and Experience, 12(6):375–388, 2000.

[11] D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extracting a data flow analyser in
constructive logic. In Proc. of 13th Europ. Symp. on Programming (ESOP’04), pages 385–
400. Springer LNCS vol. 2986, 2004.

[12] A. Chander, D. Espinosa, N. Islam, P. Lee, and G. C. Necula. Enforcing resource bounds via
static verification of dynamic checks. In Proc. of the 14th European Symposium on Program-
ming (ESOP 2005), pages 311–325. Springer LNCS vol. 3444, 2005.

[13] N.V. Chernikova. Algorithm for finding a general formula for the non-negative solutions
of a system of linear inequalities. U.S.S.R Comp. Mathematics and Mathematical Physics,
5(2):228–233, 1965.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximations of fixpoints. In Proc. of 4th ACM Symp. on
Principles of Programming Languages, pages 238–252. ACM Press, 1977.

[15] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proc. of 5th ACM Symp. on Principles of Programming Languages (POPL’78),
pages 84–97. ACM Press, 1978.

[16] Patrick Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes. PhD thesis, Thèse
d’état ès sciences mathématiques, Université scientifique et médicale de Grenoble, France,
1978. In french.

[17] D. Demange, T. Jensen, and D. Pichardie. A provably correct stackless intermediate repre-
sentation for java bytecode. Research Report xxxx, IRISA, 2009.

[18] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In Proc. of the ACM Conf. on Programming
Language Design and Implementation (PLDI’2002), pages 234–245, 2002.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

48

Result certification for relational program analysis 29

[19] B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In Proc. of the
7th ACM International Conference on Functional Programming (ICFP’02), pages 235–246.
ACM Press, 2002.

[20] B. Jeannet. Fixpoint: generic fixpoint solving library, 2009.

[21] B. Jeannet and the Apron team. The Apron library, 2007.

[22] D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory of standard ml.
In Proc. of 34th ACM Symp. on Principles of Programming Languages (POPL’07), pages
173–184. ACM Press, 2007.

[23] X. Leroy. Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In Proc. of the 33rd ACM Symp. on Principles of Programming Languages,
pages 42–54. ACM Press, 2006.

[24] A. Makhorin. Glpk (gnu linear programming kit) version 4.28, 2008.

[25] A. Miné. The octagon abstract domain. In Proc. of Working Conf. on Reverse Engineering
2001, IEEE, pages 310–319. IEEE Computer Society, October 2001.

[26] A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In
VMCAI’06, volume 3855 of LNCS, pages 348–363. Springer, 2002.

[27] M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In
Proc. of 31st ACM Symp. on Principles of Programming Languages (POPL’04), pages 330–
341. ACM Press, 2004.

[28] D. Niedzielski, J. von Ronne, A. Gampe, and K. Psarris. A verifiable, control flow aware
constraint analyzer for bounds check elimination. In Proc. of the 16th International Static
Analysis Symposium (SAS’09), pages 137–153. Springer LNCS vol. 5673, 2009.

[29] D. Pichardie. Interprétation abstraite en logique intuitioniste: extraction d’analyseurs Java
certifiés. PhD thesis, Université de Rennes 1, 2005.

[30] E. Rose. Lightweight bytecode verification. J. Autom. Reason., 31(3-4):303–334, 2003.

[31] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

[32] M. Wildmoser, A. Chaieb, and T. Nipkow. Bytecode analysis for proof carrying code. In
Proc. of 1st Workshop on Bytecode Semantics, Verification and Transformation, ENTCS,
2005.

[33] M. Wildmoser and T. Nipkow. Asserting bytecode safety. In Proc. of the 15th European
Symp. on Programming (ESOP’05), 2005.

[34] M. Wildmoser, T. Nipkow, G. Klein, and S. Nanz. Prototyping proof carrying code. In Explor-
ing New Frontiers of Theoretical Informatics, TC1 3rd Int. Conf. on Theoretical Computer
Science (TCS2004), pages 333–347. Kluwer, 2004.

[35] Coq development of the certified checker. http://www.irisa.fr/lande/polycert/.

[36] H. Xi. Imperative Programming with Dependent Types. In Proc. of 15th IEEE Symposium
on Logic in Computer Science (LICS’00), pages 375–387. IEEE, 2000.

[37] Hongwei Xi and Songtao Xia. Towards Array Bound Check Elimination in Java Virtual
Machine Language. In Proc. of CASCOON ’99, pages 110–125, 1999.

[38] H. Yang, S. Seo, K. Yi, and T. Han. Goal-directed weakening of abstract interpretation
results. Submitted for publication.

RR n° 6333

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

49

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

50

appor t
de r ech erch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
??

??
--

FR
+E

N
G

Domaine 2

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Provably Correct Stackless Intermediate
Representation for Java Bytecode

Delphine Demange — Thomas Jensen — David Pichardie

N° ????

Juillet 2009

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

51

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

52

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

A Provably Correct Stackless Intermediate
Representation for Java Bytecode

Delphine Demange∗, Thomas Jensen†, David Pichardie‡

Domaine : Algorithmique, programmation, logiciels et architectures
Équipe-Projet Celtique

Rapport de recherche n° ???? — Juillet 2009 — 53 pages

Abstract: The Java virtual machine executes stack-based bytecode. The intensive use of an operand
stack has been identified as a major obstacle for static analysis and it is now common for static anal-
ysis tools to manipulate a stackless intermediate representation (IR) of bytecode programs. Several
algorithms have been proposed to achieve such a transformation, whereas only little attention has
been paid to their formal semantic properties. This paper specifies such a bytecode transformation
and provides the semantic foundations for proving that an initial bytecode program and its IR behave
similarly, in particular with respect to object creation and throwing of exceptions. The transformation
is based on a symbolic execution of the bytecode, using a symbolic operand stack. Each bytecode in-
struction modifies the abstract stack and gives rise to the generation of IR instructions. We formalize
a notion of semantics preservation: an initial program and its IR form have similar execution traces
but since the transformation does not preserve the order in which objects are allocated, the similarity
between traces is defined using an equivalence relation over the two heaps. Finally, we prove the
correctness of this transformation with respect to this semantic criterion.

Key-words: Program Analysis, Bytecode languages

Work partially supported by EU project MOBIUS

∗ Université de Rennes 1, Rennes, France
† CNRS, Rennes, France
‡ INRIA, Centre Rennes - Bretagne Atlantique, Rennes

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

53

Une Représentation Intermédiaire Basée Registre
Prouvée Correcte pour le Bytecode Java

Résumé : La machine virtuelle Java execute des programmes bytecodes en utilisant une pile d’opérande.
Cet usage intensif d’une pile d’opérande a été identifié comme un obstacle majeur pour l’analyse
statique. Il est désormais courant que les outils d’analyses statiques modernes aient recours a une
transformation préliminaire qui retire cet usage. Plusieurs algorithmes ont été proposés pour réaliser
cette transformation, mais très peu d’attention a été porté jusque là à leurs propriétés sémantiques.
Ce travail spécifie une telle transformation et propose les foundation sémantiques pour prouver qu’un
programme bytecode initial et sa représentation intermédiaire se comporte de façons similaires.

Mots-clés : Analyse statique, languages de bytecode

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

54

A Provably Correct Stackless Intermediate Representation for Java Bytecode 3

Chapter 1

Introduction

Static analysers of Java programs often work at bytecode level, for several reasons. The security of
a Java virtual machine (JVM) is enforced at byte-code level, hence security-related analyses (notably
the Java byte code verifier) operates at this level. Also, the Java byte code language is sometimes
considered simpler than its source counterpart (no inner class, no generics), and hence simpler to
analyse.

However four important features still complicates the static analysis of a bytecode program. First,
the JVM is a stack-based virtual machine. This intensive use of the operand stack may make it
difficult to adapt standard static analysis techniques that have been first designed for more standard
(variable-based) 3-address codes. As noticed by Logozzo and Fähndrich [LF08], a naive translation
from a stack-based code to 3-address code may result in an explosion of temporary variables, which
in turn may complicate analyses of relational program analyses. Second, the Java execution model
intensively relies on dynamic check to ensure part of its intrinsic properties like absence of null-pointer
dereferences, out-of-bounds array accesses, etc... The consequence is that many instructions of the
Java bytecode language may rise different kind of exceptions. Any sound static analysis must take
this mechanism into account without permuting the throwing of exceptions that could arise during
the execution of a program. The Java bytecode verifier not only enforces type safety of bytecode
programs but also a complex object initialisation property: an object can’t be used before an adequate
constructor has been called and terminated correctly. References to uninitialised objects are frequently
duplicated on the operand stack, which make difficult for an analysis to recover the sequence of actions
i) allocation of raw object, ii) call to a constructor, iii) store reference to initialised object in a local
variable. The bytecode verifier has this ability (at least for the two first actions), tracking alias of
uninitialised object in the operand stack, but this information is lost for the other static analyses.
Finally, Java bytecode is unstructured: a bytecode program is a list of instructions, the control flow is
affected by conditional and unconditional jumps.

These complications are well-known to the Java analysis community. As a consequence, sev-
eral Java bytecode optimization and analysis tools work on an intermediate representations (IR) of
bytecode that makes analysis simpler. This is for example the case with Soot [VRCG+99] and its
IR (Baf, Jimple and Grimp) and with the Jalapeno Dynamic Compiler developed at IBM [BCF+99].
Using such transformations may simplify the work of the analyser but its overall correctness now
becomes dependent on the semantics-preserving properties of the transformation. Surprisingly, the
semantic foundations of these byte code transformations has received less attention. This paper pro-
vides a semantically sound, provably correct specification of a transformation of byte code into an
intermediate representations (IR) of bytecode that i) removes the use of the operand stack and re-

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

55

4 Demange, Jensen and Pichardie

builds tree expressions, ii) makes more explicit the throwing of exception and takes care of preserving
their order, iii) rebuild the initialisation chain of an object with a dedicated instruction x := new
C(arg1,arg2,...).

The Figure 1.1 presents an example of Java program (Figure 1.1(a)) which raises some transfor-
mation challenges. This example illustrates the fact that transforming bytecode in order to reconstruct
side-effect-free expressions and folded object initialisations raises several challenges in the algorithm,
the observational equivalence and the correctness proof. Its corresponding bytecode version (Fig-
ure 1.1(c)) illustrates the standard object initialisation scheme. An expression like new A() is tradi-
tionally compiled into the sequence of lines [4;5;6]. A new object of class A is first allocated in the
heap and stored at an address that is pushed on top of the operand stack. The address is then dupli-
cated on the stack by the instruction dup and the non-virtual method A() is called, consuming the top
of the stack. The previous copy is now on the top of the stack and represents from now an initialized
object. This initialization by side-effect, is particularly challenging for the bytecode verifier [FM99]
which has to keep track of the alias between not-yet-initialized references on the stack. Using a sim-
ilar approach we are able to stick again allocation and instance initializer calls. Figure 1.1(b) shows
the result of such a folding. In this example we take care to not use expression with side-effects. It
is nevertheless wrong for multiple reasons. First, it does not respect the allocation order. This fact is
unavoidable if we want to keep side-effect free expression and still fold object constructions. It is not
so a serious problem because before the call to its constructor, an uninitialised reference is unusable.
This however complexify the correctness proof. In Bytecode Java programs, the allocation order may
nevertheless have a functional impact because of the static initializer A.<clinit> that may be called
when reaching an instruction new A. In Figure 1.1(b) this order is not preserved since A.<clinit>
may be call before B.<clinit> while the bytecode program follows an inverse order. The program
in Figure 1.1(d) solves this problem using a specific instruction mayinit(A) that make explicit the
potential call to a static initializer. The second major semantic problem of Figure 1.1(b) is that the
program does not respect the exception launching order of the bytecode version. In Figure 1.1(b)
the method call to A() may appear before the NullPointer exception that may be raised during the
evaluation of x.f if the value of x is null. The program in Figure 1.1(d) solves this problem using a
specific instruction notnull(x) that explicitly checks that x is non-null and raises a NullPointer
exception otherwise.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

56

A Provably Correct Stackless Intermediate Representation for Java Bytecode 5

B f(X x) {
return new B(x.f,new A());
}

(a) source function

B f(x);
0: t1 = new A();
1: t2 = new B(x.f,t1);
2: vreturn t2;

(b) BIR function (not semantic preserving)

B f(x);
0: new B
1: dup
2: aload x
3: getfield f
4: new A
5: dup
6: constructor A
7: constructor B
8: vreturn

(c) BC function

B f(x);
0: mayinit(B);
1: nop;
2: nop;
3: notnull(x);
4: mayinit(A);
5: nop;
6: t1 := new A();
7: t2 := new B(x.f,t1);
8: vreturn t2

(d) BIR function (semantic preserving)

Figure 1.1: Motivating example

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

57

6 Demange, Jensen and Pichardie

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

58

A Provably Correct Stackless Intermediate Representation for Java Bytecode 7

Chapter 2

Related work

Many Java bytecode optimization and analysis tools work on an intermediate representations (IR)
of bytecode that make its analysis much simpler. Soot [VRCG+99] is a Java bytecode optimization
framework originally providing three IR: Baf, Jimple and Grimp. Optimizing Java bytecode consists
in successively translating bytecode into Baf, Jimple, and Grimp, and then back to bytecode, while
performing diverse optimizations on each IR. Baf is a stack-based code that abstracts the constant
pool, a table in each class containing the value of all constants (numerical constants, references to
strings, class methods. . .), that is tedious to handle in static analyses. Each Baf instruction is fully
typed. Jimple is a typed stackless 3-address code. Expressions are made more explicit (operands
cannot be as separated as they could be in the stack). Jimple instructions are typed. Grimp is a stack-
less code with tree expressions. It is obtained by simple collapsing of 3-address Jimple instruction.
Costa [AAG+07] is a static analyser that infer cost information on Java bytecode programs. It re-
lies on an IR similar to Jimple by removing explicit uses of the operand stack using additional local
variables. Contrary to Soot, it does not address the problem of generating types instructions. Type
inference of Jimple instructions has been adressed in [GHM00]. The transformation algorithm stud-
ied in this paper follows instead The symbolic evaluation technique used by Whaley [Wha99] for the
High intermediate representation of the Jalapeño Optimizing Compiler [BCF+99]. This paper pushes
the technique further, generating boolean tree expressions in conditionnal branchings and folding con-
structor calls with allocation statements. All these previous works have been mainly concerned with
the construction of effective and powerfull tools but, as far as we know, little attention has been paid
to the formal semantic properties that are ensured by these transformations.

The use of a symbolic evalatution of the operand stack to recover some tree expressions in a
bytecode program has been employed in several context of Java Bytecode analysis. The technique was
already used in one of the first Sun Just-In-Time compiler [CFM+97] for direct translation of bytecode
to machine instruction. Xi and Xia propose a dependent type system for array bound check elimination
that uses symbolic expressions to type operand stacks with singleton types in order to recover relations
between length of arrays and index expression that are used to access them. Besson et al [BJP06], and
independently Wildmoser et al [WCN05], propose an extended interval analysis that verifies there is
no out-of-bound array accesses in certified programs using symbolic decompilation. Besson et al give
an example that shows how the precision of the standard interval analysis is enhanced by including
syntactic expressions in the abstract domain.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

59

8 Demange, Jensen and Pichardie

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

60

A Provably Correct Stackless Intermediate Representation for Java Bytecode 9

Chapter 3

The source language: BC

In our work, we consider a restricted version of the Java Bytecode language. Difficulties that are
inherent to the object oriented paradigm (e.g. object initialization) have to be addressed before con-
sidering e.g. multi-threading. In this chapter, we present the formalization of the subset of Java
Bytecode language we consider: BC. We first describe its syntax in Section 3.1. Then, we propose an
observational, operational semantics for BC.

3.1 Syntax of BC

The set of bytecodes we consider is given in Figure 3.1. We describe each of them briefly and justify
our choices before further formalizing their semantics in Section 3.2.

var ::= variables :
x | x1 | x2 | . . .

this

oper ::= operands :
c | c′ . . . | null constant
var variable
pc | pc′ . . . program counter
A | B | C | . . . class name
f | f′ | . . . field name
m | m′ | . . . method name

instr ::= instructions :
nop | push c | pop | dup | add | div
| load x | store x
| new C | constructor C
| getfield f | putfield f
| invokevirtual C.m
| if pc | goto pc
| vreturn | return

Figure 3.1: Operands and instructions of BC

BC provides simple stack operations: push c pushes the constant c (who might be null) onto
the stack. pop pops the top element off the stack. dup duplicates the top element of the stack. All
operands are the same size: we hence avoid the problem of typing dup and pop. The swap bytecode
is not considered as it would be treated similarly to dup or pop. Only two binary arithmetic operators
over values is available, the addition add and the division div: other operators (i.e. substraction,
multiplication) would be handled similarely. We also restrict branching instructions to only one, if
pc: the control flow jumps to the label pc if the top element of the stack is zero. Others jumps (e.g.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

61

10 Demange, Jensen and Pichardie

mcode ::= method code :
pc : return method end
pc : vreturn method end
1 : instr mcode instr list

r ::= return type :
void | v void/non void

msig ::= signature :
C r m : var . . . var : var . . . var

method ::= BC method :
msig { mcode }

class ::= BC class :
C {

f1 . . . fn
method1
. . .

methodm }

prog ::= BC program :
class1 . . .

classp

Figure 3.2: BC syntax: methods, classes, programs

ifle pc) would be treated similarely. For the same reason, we choose not to include switch tables in
BC.

The value of a local variable x can be pushed onto the stack with the instruction load x. The
special variable this denotes the current object (within a method). We do not distinguish between
loading an integer or reference variable, as it is in the real bytecode language: we suppose the bytecode
passes the BCV, hence variables are correctly used. The same applies to bytecode store x that stores
the value of the stack top element in the local variable x.

A new object of class C is allocated in the heap by the instruction new C. Then, it has to be ini-
tialized by calling its constructor constructor B, where B is either the declared class of the object
(C) or one of its super class. We will see in Section 5.1 that both cases have to be distinguished
during the transformation. The constructor of a class is supposed to be unique. In real Java byte-
code, constructor B corresponds to invokespecial B.<init>, but instruction invokespecial
is used for many other cases. Our dedicated bytecode focus on its role for object constructors. We
do not consider static fields or static methods. Class fields are read and assigned with getfield f
and putfield f (we suppose the resolution of field class has been done). A method m is called on
an object with invokevirtual C.m. Finally, methods can either return a value (vreturn) or not
(return). Real bytecode provides one instruction per return value type, but for the reason given
above, BC does not. For sake of simplicity, we do not use any constant pool. Hence constants, vari-
ables, classes, fields and method identifiers will be denoted by strings – their potential identifier at
Java source level (every identifier is unique).

Test {
f1 f2
Test v main: x y : z {
1: load x
2: load y
3: add
4: store z
5: push 1
6: load z
7: add
8: vreturn

}
}

Figure 3.2 gives the syntax of BC. A BC method is
made of its signature (class name, method name, value
or void return, formal paramaters and local variables) to-
gether with its code, a list of BC instructions, indexed by
a program counter pc starting from 1. In the following,
instrAtP(m, pc) denotes the instruction at pc in the method
m of the program P. A BC class is made of its name, its
fields names and its methods. Finally, a BC program is a
set of BC classes. In the next section, we present the oper-
ational, observational semantics we defined for BC. Here
is an example of BC program. The method main computes

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

62

A Provably Correct Stackless Intermediate Representation for Java Bytecode 11

the sum of its two arguments, stores the result in the local
variable z, and returns the sum of 1 and z.

3.2 Semantics of BC

3.2.1 Semantic domains

Semantic domains are given in Figure 3.3. A value is either an integer, a reference or the special value
Null.

Value = (Num n), n ∈ Z
(Ref r), r ∈ Reference
Null

Stack = Value∗

Env = var ↪→ Value
InitTag = ClassName ∪ ˜ClassName ∪ ˜ClassNamePCount

Object = (FieldName→ Value)InitTag

Heap = Reference ↪→ Object
Frame = MethodName × PCount × Env × Stack

State = (Heap × Frame) ∪ (Heap × (Value ∪ {Void})) ∪ΩNP
PCount ∪Ω

DZ
PCount

Figure 3.3: The BC’s semantic domains

The operand stack is a list of elements of Value. Given the set of variable identifiers var, that
includes the special identifier this (denoting the current object), an environment is a partial function
from var to Value. To lighten the notations, we assume in the following that when the variable x is
accessed in an environment l, written l(x), x is as required in the domain of l.

An object is represented as a total function from its fields names to values. An initialization status
is also attached to every object. Initialization tags were first introduced by Freund and Mitchell [FM03]
in order to formalize the object initialization verification pass performed by the Bytecode Verifier.
They provide a type system ensuring, amoung other things, that (i) every newly allocated object is
initialized before being used and (ii) every constructor, from the declared class of the object up to the
Object class is called before considering the object as initialized. We further explain initialization
tags in a dedicated paragraph below.

The heap is a partial function from non-null references to objects. The special reference Null
does not point to any object. Each time a new object is allocated in the heap, the partial function
is extended accordingly. Object allocation is a deterministic function, given the current state of the
heap and the size of the new object to allocate in it. We do not model any garbage collector and the
heap is considered arbitrarily large, or at least sufficiently large for the program execution not to raise
outOfMemory errors.

Initialization tags Object initialization is a key point in our work. So let us describe what it means
for an object to be initialized. In Figure 3.4 is given the life cycle of an object, from its creation to its
use. Suppose the direct super class of C is class B and the direct super class of B is Object (see class
hierarchy on the right). A new object of class C is allocated in the heap with new C at program counter
pc in the main method. It is allocated in the heap but yet uninitialized. No operation is allowed on
this object (no method call on it, nor field access or modification). At some point, the constructor of

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

63

12 Demange, Jensen and Pichardie

Figure 3.4: Object initialization process: example

class C is invoked. The initialization process has begun (the object is being initialized), and in the
JVM specification, from this point, its fields can be written. To simplify, we consider that no field
modification is allowed yet (this simplification is also done in [FM03]). The only operation that is
allowed on it is to call a super constructor of this object (in the JVM, another constructor of class C
can be invoked, but in our work constructors are supposed to be unique). Every super constructor in
the class hierarchy has to be called, up to the constructor of the Object class. As soon as the Object
constructor is called, the object is considered as initialized: methods can be called on it, and its fields
can be accessed or modified. In Figure 3.4, the grey area denotes the part of the execution where the
created object is considered as being initialized. Before entering this area, the object is said to be
uninitialized. After escaping this aera, the object is considered as initialized.

In our work, we suppose that the bytecode passes the Bytecode Verifier. Hence, we know that
the constructors chain is correctly called and that each object is initialized before being used. We use
the initialization tags introduced in [FM03] to a different end: the semantics preservation needs to
distinguish objects that are uninitialized from the other (see Section 5.2). We hence use a similar but
simplified version of Freund and Mitchell’s initialization tags:

• An object that is just allocated (no constructor has been called yet) has initialization tag C̃pc,
meaning that the object was allocated at line pc by the instruction new C. Keeping track of pc
strictly identifies uninitialized objects (thanks to the BCV pass, we are ensured that no uninitial-
ized reference is in the stack at backward branchings) and is used to ensure the correctness of
the substitutions on abstract stacks during the transformation (see Section 5.1 for further details)

• If the object is being initialized, its tag is C̃. The declared class of the object is C, and the current
constructor is of class C or above ([FM03] keeps track of it, but we do not need to)

• As soon as the constructor of the Object class is called on a yet unitialized object of class C,
the initialization tag is updated to C and the object is considered as initialized

We follow the work of [FM03] for the definition of function Blank(t), where t ∈ InitTag. This
function creates a new object of the class indicated in the tag and whose fields are set to the default
values (i.e. to zero for integers and Null for references).

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

64

A Provably Correct Stackless Intermediate Representation for Java Bytecode 13

Execution states In the BC semantics, there are two kinds of execution states: normal execution
states and error states. In the first case, the state is made of the current heap and, either an execution
frame (the method has not returned yet) or a returned value (possibly Void). An execution frame is
made of the current method m ∈ MethodName, environnement l ∈ Env, operand stack s ∈ Stack and
the next instruction to execute is at label pc ∈ PCount. Note that we do not define the semantics of
BC with the traditional call stack.

BC semantics also includes error states where the execution flows whenever a division by zero
(ΩDZ

pc) has occured or a null pointer has been dereferenced (ΩNP
pc) at program point pc. We denote

by Ωk
pc the error state whose kind k is either DZ or NP. The reason why error states are introduced

is twofold. First, it makes the semantics able to know when the execution gets stuck because of a
violation of syntactic or structural constraints verified by the BCV or because of an execution error.
Second, it makes it possible to state the semantics preservation not only for normal executions. Error
states are parametrized by the kind of error and the program point of the faulty instruction: whereas
exceptions are not included in BC, this mechanism can be considered as equivalent. In Section 5.2,
we state that both the kind of error and the faulty program point are preserved.

To lighten the notations, in the rest of this report, Value is ranged over by v when clear from the
context. In the next section, we present formally the semantics we give to BC.

3.2.2 Semantics

We define the semantics of BC with a view to capturing as much of the program behaviour as possible,
so that the semantics preservation property can fits the need of most of static analyses. We hence
formalize the BC semantics in terms of a labelled transition system: labels keep track amoung other
things of memory modifications, method calls and returns. Hence, the program behaviour is defined
in a more observationnal way, and more information than the classical input/output relation is made
available.

Basic semantics Before going into more details about labels and all the kinds of transitions we need,
let us first present the rules given in Figures 3.5, 3.6 and 3.7 without considering neither transition
labels, nor transitions indices. Transitions relate states in State as defined in Figure 3.3. We first
describe normal execution rules (Figures 3.5 and 3.6). The general form of a semantic rule is

instrAtP(m, pc) = instr
other conditions

〈s〉 → 〈s′〉

where s and s′ are execution states, related through the transition relation, which is defined by
case analysis on the instruction at the current program point. When needed, other conditions that
have to be satisfied (conditions about the content of the stack, of the heap. . .) are specified below the
instruction.

Rules for nop, push c, pop, dup, add, div and load x are rather simple, and we do not make
further comments about them. In rule for store x, we allow to explicitly store a reference in a local
register only if it points to a initialized object. We need this restriction in the transformation algorithm:
no valid BIR instruction sequence would match. Once again this restriction appears to be relatively
minor: even if it would fit the JVM specification, such a bytecode sequence seems to be rarely used in
practice: no such case were found in the analysis we made on the Soot distribution and the required
libraries.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

65

14 Demange, Jensen and Pichardie

instrAtP(m, pc) = nop

〈h,m, pc, l, s〉
τ
−→0 〈h,m, pc + 1, l, s〉

instrAtP(m, pc) = push c
v = (Num c)⇔ c , null

v = Null⇔ c = null

〈h,m, pc, l, s〉
τ
−→0 〈h,m, pc + 1, l, v :: s〉

instrAtP(m, pc) = pop

〈h,m, pc, l, v :: s〉
τ
−→0 〈h,m, pc + 1, l, s〉

instrAtP(m, pc) = dup

〈h,m, pc, l, v :: s〉
τ
−→0 〈h,m, pc + 1, l, v ::v :: s〉

instrAtP(m, pc) = add
v1 = (Num n1) v2 = (Num n2)

v′ = (Num (n1 + n2))

〈h,m, pc, l, v1 ::v2 :: s〉
τ
−→0 〈h,m, pc + 1, l, v′ :: s〉

instrAtP(m, pc) = div
v1 = (Num n1) v2 = (Num n2)

n2 , 0 v′ = (Num (n1/n2))

〈h,m, pc, l, v1 ::v2 :: s〉
τ
−→0 〈h,m, pc + 1, l, v′ :: s〉

instrAtP(m, pc) = load x

〈h,m, pc, l, s〉
τ
−→0 〈h,m, pc + 1, l, l(x) :: s〉

instrAtP(m, pc) = store x
v = (Ref r)⇒ h(r) = oC

〈h,m, pc, l, v :: s〉
[x←v]
−−−−→0 〈h,m, pc + 1, l[x 7→ v], s〉

instrAtP(m, pc) = if pc′

〈h,m, pc, l, (Num 0) :: s〉
τ
−→0 〈h,m, pc′, l, s〉

instrAtP(m, pc) = if pc′ n , 0

〈h,m, pc, l, (Num n) :: s〉
τ
−→0 〈h,m, pc + 1, l, s〉

instrAtP(m, pc) = goto pc′

〈h,m, pc, l, s〉
τ
−→0 〈h,m, pc′, l, s〉

instrAtP(m, pc) = vreturn

〈h,m, pc, l, v :: s〉
[return(v)]
−−−−−−−→0 〈h, v〉

instrAtP(m, pc) = return

〈h,m, pc, l, s〉
[return(Void)]
−−−−−−−−−→0 〈h,Void〉

instrAtP(m, pc) = new C
(h′, (Ref r)) = newOb ject(C, h) h′ = h[r 7→ Blank(̃Cpc)]

〈h,m, pc, l, s〉
[mayinit(C)]
−−−−−−−−→0 〈h′,m, pc + 1, l, (Ref r) :: s〉

instrAtP(m, pc) = putfield f
h(r) = oC o′ = o[f 7→ v]

〈h,m, pc, l, v :: (Ref r) :: s〉
τ.[r. f←v]
−−−−−−→0 〈h[r 7→ o′],m, pc + 1, l, s〉

instrAtP(m, pc) = getfield f
h(r) = oC

〈h,m, pc, l, (Ref r) :: s〉
τ
−→0 〈h,m, pc + 1, l, o(f) :: s〉

Figure 3.5: BC transition system

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

66

A Provably Correct Stackless Intermediate Representation for Java Bytecode 15

∀m ∈ MethodName, InitLocalState(m) = m, 1, [this 7→ (Ref r), x1 7→ v1 . . . xn 7→ vn], ε

instrAtP(m, pc) = invokevirtual C.m′

h(r) = oC′ rv , Void V = v1 :: . . . ::vn

Lookup(m′, C′) = mc 〈h, InitLocalState(mc)〉
~λ
=⇒n 〈h′, rv〉

〈h,m, pc, l,V :: (Ref r) :: s〉
τ.[r.C.mc(V)].~λh
−−−−−−−−−−−→n+1 〈h′,m, pc + 1, l, rv :: s〉

instrAtP(m, pc) = invokevirtual C.m′

h(r) = o′C V = v1 :: . . . ::vn

Lookup(m′, C′) = mc 〈h, InitLocalState(mc)〉
~λ
=⇒n 〈h′,Void〉

〈h,m, pc, l,V :: (Ref r) :: s〉
τ.[r.C.mc(V)].~λh
−−−−−−−−−−−→n+1 〈h′,m, pc + 1, l, s〉

instrAtP(m, pc) = constructor C
h(r) = ot t = C̃j C , Object

h′ = h[r 7→ upInit(o, C̃)] V = v1 :: . . . ::vn

〈h′, InitLocalState(C.init)〉
~λ
=⇒n 〈h′′,Void〉

〈h,m, pc, l,V :: (Ref r) :: s〉
[r←C.init(V)].~λh
−−−−−−−−−−−→n+1 〈h′′,m, pc + 1, l, s〉

instrAtP(m, pc) = constructor Object
h(r) = ot t = ˜Objectj

h′ = h[r 7→ upInit(o, Object)] V = v1 :: . . . ::vn

〈h′, InitLocalState(Object.init)〉
~λ
=⇒n 〈h′′,Void〉

〈h,m, pc, l,V :: (Ref r) :: s〉
[r←Object.init(V)].~λh
−−−−−−−−−−−−−−−−→n+1 〈h′′,m, pc + 1, l, s〉

instrAtP(m, pc) = constructor C′

h(r) = ot t = C̃ C ⊂ C′ , Object

V = v1 :: . . . ::vn 〈h, InitLocalState(C’.init)〉
~λ
=⇒n 〈h′,Void〉

〈h,m, pc, l,V :: (Ref r) :: s〉
τ.[r←C′.init(V)].~λh
−−−−−−−−−−−−−→n+1 〈h′,m, pc + 1, l, s〉

instrAtP(m, pc) = constructor Object
h(r) = ot t = C̃ h′ = h[r 7→ upInit(o, C)]

V = v1 :: . . . ::vn

〈h′, InitLocalState(Object.init)〉
~λ
=⇒n 〈h′′,Void〉

〈h,m, pc, l,V :: (Ref r) :: s〉
τ.[r←Object.init(V)].~λh
−−−−−−−−−−−−−−−−−→n+1 〈h′′,m, pc + 1, l, s〉

Figure 3.6: BC transition system : object initialization and method calls

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

67

16 Demange, Jensen and Pichardie

In rule for the bytecode new C, newOb ject(C, h) allocates a new object of class C in the heap h,
and returns the new heap h′ together with the new reference (Ref r). All fields of the object are set to
their default value by the function Blank() and its initialization tag is C̃pc. As already said, this tag will
be updated when calling a constructor of class C (or above) on (Ref r). One can access an object field
with getfield, or modify it using putfield: the object must be initialized. Modifying an object
field does not change its initialization status.

Dynamic methods can only be called on initialized objects (rule for invokevirtual in Fig-
ure 3.6). The method resolution returns the right method to execute (function Lookup(m,C’)). The
current object (pointed to by the reference (Ref r)) is passed to the called method m’ as an argument
using the special local variable this. Other arguments are passed to the method in variables x1 to xn,
assuming these are the variables identifiers found in the signature of m’.

Let us now describe the semantic rules of constructor calls (Figure 3.6). The first two rules are
used when calling the first constructor on a object: the object is not initialized yet . The constructor
is called with the reference to the object in its this register. At the beginning of the constructor, the
object initialization status is updated (using function upInit(o, t) that changes the initialization tag of
the object o for t). It changes for C̃ if the declared class of the object is not Object, and the object
is considered as initialized otherwise (second rule). The last two rules of Figure 3.6 are used when
calling a constructor on an object whose initialization is ongoing: the initialization tag of the object is
C̃. The object is initialized only at the beginning of the constructor of class Object.

Let us now describe how execution error are handled (Figure 3.7). The instruction div might
cause a division by zero if the second top element of the stack is (Num 0). In this case, the execution
goes into the error state ΩDZ

pc , meaning that the division by zero (DZ) arose at point pc. Similarely,
reading or writing a field might dereference a null pointer (the kind of error is here NP). Finally,
concerning method and constructor calls, there are two cases: either the error is raised by the call
itself (leading to ΩNP

pc), or the error arises during the execution of the callee, at a given program point
pc’ (other side conditions are equal to the normal case). In this case, the error state is propagated
to the caller: it ends in the error state of the same kind (NP or DZ) but parametrised by program
point pc, that is the program point of the faulty instruction, from the point of view of the caller. This
mechanism is very similar to Java Bytecode exception handlers.

Up to now, we described a rather classical bytecode semantics. We use the notion of initialization
status introduced by [FM03], that has been simplified: we know the object initialization is correct,
because we assume our bytecode passes the BCV. We only have to keep track of three initialization
status, parametrised by the declared class of the object (uninitialized, being initialized or initialized).
Now, we go into further details, describing the particularities of our semantics.

Observational semantics As can be seen in semantic rules, transitions are labelled. Labels are
intented to keep track of the most of information about the program behaviour (e.g. memory effects or
variable modifications. . .). Every (relevant) preserved elementary action should be made observable.
Program behaviour aspects that are not preserved by the transformation are defined in terms of silent
transitions, written 〈s〉

τ
−→ 〈s′〉 (see e.g rules for nop, dup or load x). From now on, we use λ to

denote either the silent event τ or any observable event. Observable events fall into one of these three
categories:

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

68

A Provably Correct Stackless Intermediate Representation for Java Bytecode 17

instrAtP(m, pc) = div

〈h,m, pc, l, (Num n) :: (Num 0) :: s〉
τ
−→0 ΩDZ

pc

instrAtP(m, pc) = putfield f

〈h,m, pc, l, v ::Null :: s〉
τ
−→0 Ω

NP
pc

instrAtP(m, pc) = getfield f

〈h,m, pc, l,Null :: s〉
τ
−→0 Ω

NP
pc

instrAtP(m, pc) = invokevirtual C.m′

V = v1 :: . . . ::vn

〈h,m, pc, l,V ::Null :: s〉
τ
−→0 Ω

NP
pc

instrAtP(m, pc) = invokevirtual C.m′

h(r) = oC′
Lookup(m′, C′) = mc V = v1 :: . . . ::vn

〈h, InitLocalState(mc)〉
~λ
=⇒n Ω

k
pc′

〈h,m, pc, l,V :: (Ref r) :: s〉
τ.[r.C.mc(V)].~λh
−−−−−−−−−−−→n+1 Ω

k
pc

instrAtP(m, pc) = constructor C
V = v1 :: . . . ::vn

〈h,m, pc, l,V ::Null :: s〉
τ
−→0 Ω

NP
pc

instrAtP(m, pc) = constructor C
h(r) = ot t = C̃j C , Object

h′ = h[r 7→ upInit(o, C̃)]
V = v1 :: . . . ::vn

〈h′, InitLocalState(C.init)〉
~λ
=⇒n Ω

k
pc′

〈h,m, pc, l,V :: (Ref r) :: s〉
[r←C.init(V)].~λh
−−−−−−−−−−−→n+1 Ω

k
pc

instrAtP(m, pc) = constructor Object
h(r) = ot t = ˜Objectj

h′ = h[r 7→ upInit(o, Object)]
V = v1 :: . . . ::vn

〈h′, InitLocalState(Object.init)〉
~λ
=⇒n Ω

k
pc′

〈h,m, pc, l,V :: (Ref r) :: s〉
[r←Object.init(V)].~λh
−−−−−−−−−−−−−−−−→n+1 Ω

k
pc

instrAtP(m, pc) = constructor C′

h(r) = ot t = C̃ C ⊂ C′ , Object
V = v1 :: . . . ::vn

〈h, InitLocalState(C’.init)〉
~λ
=⇒n Ω

k
pc′

〈h,m, pc, l,V :: (Ref r) :: s〉
τ.[r←C′.init(V)].~λh
−−−−−−−−−−−−−→n+1 Ω

k
pc

instrAtP(m, pc) = constructor Object
h(r) = ot t = C̃ h′ = h[r 7→ upInit(o, C)]

V = v1 :: . . . ::vn

〈h′, InitLocalState(Object.init)〉
~λ
=⇒n Ω

k
pc′

〈h,m, pc, l,V :: (Ref r) :: s〉
τ.[r←Object.init(V)].~λh
−−−−−−−−−−−−−−−−−→n+1 Ω

k
pc

Figure 3.7: BC transition system : error handling

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

69

18 Demange, Jensen and Pichardie

EventStore x← v Local assignment
EventHeap r.f ← v Field assignment

mayinit(C) Potential class initialization
r ← C.init(v1, . . . , vn) Object initialization
r.C.m(v1, . . . , vn) Dynamic method call

EventReturn return(v) Method return
return(Void)

Assigning the top element v of the stack to the local variable x (rule for store x) gives rise to
the observable event [x ← v]. When assigning the value v to the field f of the object pointed to
by the reference (Ref r) (rule for putfield f), the transition is labelled by the sequence of events
τ.[r.f ← v] (the τ event is introduced in order to match the execution of the BIR assertion generated
when transforming this instruction – more detail in Chapter 5).

When returning from a method (rules for return and vreturn), Void or the return value is made
observable. We do not observe the “object allocation” event – the memory effect of the instruction
new Cl. In fact, as will be seen in Section 5.2, the transformation does not preserve the order in
which objects are allocated. Both allocation orders could be related using trace languages, but this
would make the trace equivalence statement far too complex in relation to the gain of information: as
long as no constructor has been called on a reference, no operation is allowed on it, appart from basic
stack operations (e.g dup), and passing it as a constructor argument. Object allocation order is not
preserved by the transformation.

However, we would like the class initialization order to be preserved. In the JVM, classes are
initialized at the time of their first use: object creation, static method invocation, or a static field
access. A class initialization consists in executing its static initializer, and its static fields initializers.
BC does not include static methods or fields. Hence, the class initialization only happens when the
first object of a class is created. This is the role of the label mayinit(C) in the rule for new C. In
our work, for sake of clarity, we do not deal with class initialization. However, we introduce all the
required material that makes this extension feasible.

Transitions Let us now describe the different kinds of transitions used in the semantics. First, a
single transition can give rise to several observable events (see e.g. rule for putfield in Figure 3.5).
To this end, we use multi-label transitions.

Definition 1 (Multi-label transition). A multi-label transition 〈s1〉
~λ
−→ 〈s2〉 between state s1 and s2 is a

transition labelled by a (finite) sequence of events ~λ = λ1.λ2 . . . λn.

In rules for method or constructor calls, the execution of the callee has to be considered on its
whole from its starting states to its return (or error) state. We thus define multi-step transitions as
being the transitive closure of transitions: several steps are performed between two states s1 and sn

but intermediate states of the computation are not distinguished.

Definition 2 (Multi-step transition). There is a multi-step transition 〈s1〉
~λ
=⇒ 〈sn〉 between states s1

and sn if there exist states s2 up to sn and multi-labels ~λ1,. . . , ~λn−1 such that ~λ = ~λ1. ~λ2 . . . ~λn−1 and

〈s1〉
~λ1
−−→ 〈s2〉

~λ2
−−→ . . .

~λn−2
−−−→ 〈sn−1〉

~λn−1
−−−→ 〈sn〉.

Note that definition of multi-step and multi-label transitions are mutually recursive, from the above
definition and the semantic rules for method and constructor calls.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

70

A Provably Correct Stackless Intermediate Representation for Java Bytecode 19

In rule for invokespecial C.m’ (Figure 3.6), the whole method m’ is executed and terminates
in state 〈h′′, rv〉, using a multi-step transition. This execution produces an event trace ~λ. This trace
contains events related to the local variables of the method, its method calls, some modifications of
the heap, and the final return event. While events in EventStore and EventReturn only concerns m’
(they are irrelevant for m), events related to the heap should be seen outside the method (i.e. from
each caller) as well, since the heap is shared between all methods. We hence define the filtering ~λc

of an event trace ~λ to a category c ∈ {EventStore,EventHeap,EventReturn} of events as the maximal
subtrace of ~λ that contains only events in c. Finally, if the method terminates, then the caller m makes
a multi-label step, the trace ~λEventHeap (written ~λh in the rules) being exported from the callee m’.
Constructor calls rules are based on the same idea. Note the semantics does not distinguishes between
executions that are blocked and non-terminating.

Finally, each transition of our system is parametrized by a positive integer n representing the call-
depth of the transition, the number of method calls that arise within this computation step. Concerning
one-step transitions, this index is incremented when calling a method or a constructor. For multi-step
transitions, we define the call-depth index by the following two rules:

〈s1〉
~λ
−→n 〈s2〉

〈s1〉
~λ
=⇒n 〈s2〉

〈s1〉
~λ1
=⇒n1 〈s2〉 〈s2〉

~λ2
−−→n2 〈s3〉

〈s1〉
~λ1. ~λ2
===⇒n1+n2 〈s3〉

The call-depth index is mainly introduced for technical reasons. We show the semantics preserva-
tion theorem in Chapter 5 by strong induction on the call-depth of the step.

In this chapter, we have defined the source language we consider. BC is a sequential subset of
the Java bytecode language, providing object oriented features. We do not include exceptions, but the
way we handle execution errors is very similar. The BC semantics is defined in terms of a labelled
transition system. Labels are used to keep track of the most possible of behavioural aspects preserved
by the transformation. In the next chapter, we define the target language BIR of our tansformation. Its
semantics is intentionally very similar to the BC semantics: it is based on the same ideas and uses the
same kinds of transitions, so as to easily formulate the semantics preservation in terms of a simulation
property.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

71

20 Demange, Jensen and Pichardie

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

72

A Provably Correct Stackless Intermediate Representation for Java Bytecode 21

Chapter 4

The target language: BIR

In this chapter, we describe the intermediate representation language we propose. The BIR language
provides a language for expressions, and folds method and constructor calls. In the first section, we
describe its syntax and motivate our choices. The second section presents the operational semantics
we give to BIR which is very similar to the BC semantics (Section 3.2).

4.1 Syntax of BIR

We already saw how expression trees could increase the precision of static analyses. Many analyses
first reconstruct expressions before analysing the bytecode. Hence, the BIR language provides a
language for expressions. The language of BIR expressions and instructions is given in Figure 4.1.
BIR distinguishes between two kinds of variables: local variables in var are identifiers that are also
used in the initial BC program, while local variables in tvar are fresh variables that are introduced in
the BIR. We need to distinguish them in the semantics (see Section 4.2). An expression is either a
constant (integers or null), a variable, an addition or division of two expressions, or an access to a
field of an arbitrary expression (e.g x.f.g).

In BIR a variable or the field of a given expression can be assigned with x := expr and expr.f := expr.
We do not aim at folding control structures: BIR is unstructured and provides conditional and uncon-
ditional jumps to a given program point pc. Constructors are fold in BIR: new objects are created
with the instruction new C(expr, . . . expr), and are directly stored in a variable. The reason for fold-
ing method and constructor calls is twofold: first, to ease the analyses that often need to relate the
allocated reference and the corresponding constructor. Then, as no operation is permitted on an uni-
tialised object, there would be no need to keep the unitialised reference available in a variable. In
the constructor of class C, the constructor of the super class has to be called. This is done with the
instruction expr.super(C’, expr,. . . ,expr), where C’ is the super class of C. We need to pass C’
as an argument (unlike in Java source) in order to identify which constructor has to be called (we
simplified the initializations tags). The same remarks applies for method calls. Every method ends
with a return instruction: vreturn expr or return depending on whether the method returns a value
or not (Void). When calling a method on an object, the result, if any, must be directly stored in
a local variable (as there is no stack in BIR anymore). If the method returns Void, the instruction
expr.m(C, expr, . . . , expr) is used.

BIR includes the instruction mayinit(C) intended to initialize the class C whenever it is required.
As already mentioned in the previous chapter, we do not deal with proper class initialization. Hence,
this instruction semantically behaves as nop. A possible extension taking into account class initializa-

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

73

22 Demange, Jensen and Pichardie

var ::= local variables :
x | x1 | x2 | . . .
this

tvar ::= temporary variables :
t | t1 | t2 | . . .

x ::= variables :
var | tvar

oper ::= operands
pc | pc′ | . . . program counter
A | B | C | . . . class name
f | f′ | . . . field name
m | m′ | . . . method name

expr ::= expressions :
c | null constants
x variables
expr + expr addition
expr.f field access

instr ::= instructions :
nop
| notnull(expr) | notzero(expr)
| mayinit(C)
| x := expr
| expr.f := expr
| x := new C(expr, . . . , expr)
| expr.super (C, expr, . . . , expr)
| x := expr.m(C, expr, . . . , expr)
| expr.m(C, expr, . . . , expr)
| if expr pc | goto pc
| vreturn expr | return

Figure 4.1: Expressions and instructions of BIR

tion would consist in giving the appropriate semantics to this instruction, as well to the BC instruction
new C, and to match both executions in the theorem.

Finally, BIR provides two assertions: notzero(expr) and notnull(expr). They respectively
check whether the value of the expression is zero and null. If this is the case, then the execution
of the program continues. Otherwise, the execution goes in a corresponding error state. The benefit
brought by these assertions is threefold: it ensures that (i) both BC and BIR error states are reached,
in that event, at the same program point, (ii) each time a BIR expression is evaluated, its semantics
is defined and (iii) the execution of a BIR program never gets stuck but in a BIR error state which is
only reached through these assertions.

Figure 4.2 gives the syntax of BIR programs, which is very similar (apart from instructions) from
the BC syntax. Like in BC, a BIR method is made of its signature together with its code. The code
of a BIR method can be seen as a list of lists of BIR instructions: the transformation algorithm can
generate several instructions for a single BC instruction. To make the semantic preservation statement
more easy to state and prove, we keep track of this instruction mapping: BIR program instructions are
grouped into lists which are indexed by a program counter pc: pc is the label of the initial BC instruc-
tion.

Test {
f1 f2
Test v main: x y : z {
4: z := x + y
8: vreturn 1+z

}
}

In the following, we denote by instrsAtP(m, pc) the list of
instructions at label pc in the method m of program P. A
BIR class is made of its name, its fields names and its meth-
ods. Finally, a BIR program is a set of BIR classes. Here
is the BIR version of our example program of Section 3.1.
Expressions x+y and z+1 are reconstructed.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

74

A Provably Correct Stackless Intermediate Representation for Java Bytecode 23

mcode ::= method code :
pc : vreturn expr method end
pc : return method end
pc : (instr\{return, vreturn expr})∗

mcode instr list
r ::= return type :

void | v void/non void
msig ::= signature :

C r m : var . . . var : var . . . var

method ::= BIR method :
msig {
1 : instr∗

mcode
}

class ::= BIR class :
C {

f1 . . . fn
method1 . . .methodm }

prog ::= BIR program :
class1 . . . classp

Figure 4.2: BIR syntax: methods, classes, programs

4.2 Semantics of BIR

4.2.1 Semantic domains

Semantic domains of BIR are rather similar to those of BC, except that BIR is stackless. They are
given in Figure 4.3. The Value domain is the same as in BC. An object in BIR also needs to make its
initialization status explicit. It is defined similarely than in BIR.

Value = (Num n), n ∈ Z
(Ref r), r ∈ Reference
Null

Env = var ∪ tvar ↪→ Value
InitTag = ClassName ∪ ˜ClassNamePCount

Object =
(
FieldName→ Value

)
InitTag

Heap = Reference ↪→ Object
State =

(
Heap ×MethodName × (PCount × instr∗) × Env

)
∪
(
Heap × Value ∪ {Void}

)
∪ΩNP

PCount ∪Ω
DZ
PCount

Figure 4.3: The BIR’s semantic domains

As already mentionned, BIR program instructions are organized into lists. Hence, the program
counter does not index a single instruction. In a BIR semantic state, the current program point is
defined as a pair (pc, `) ∈ PCount × instr∗ where pc is the program counter and ` is the list of
instructions being executed. The head element of the list defines the next instruction to execute. More

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

75

24 Demange, Jensen and Pichardie

details is given in the semantic rules about the way the execution flows from one instruction to its
successor.

Note that error states are defined as in BC. Still, the PCount parameter uniquely determines the
faulty program point. As will be seen in the next chapter, at most one assertion is generated per
instruction list, and it is always the first instruction of the list.

4.2.2 Semantics of expressions

The semantics of expressions is defined as is standard by induction of the structure of the expression,
given an environment and a heap. Expressions are intended to be side-effect free, as it makes easier
their treatment in static analyses. As it is clear from the context, we use the same symbols + and
/ for both syntaxic and semantic versions of the addition and division operators. The semantics of
expression is defined by the relation defined on Heap × Env × expr × Value:

h, l � c ⇓ (Num c) h, l � null ⇓ Null
x ∈ dom(l)

h, l � x ⇓ l(x)

h, l � ei ⇓ (Num ni) for i = 1, 2
h, l � e1 + e2 ⇓ (Num (n1 + n2))

h, l � ei ⇓ (Num ni) for i = 1, 2 n2 , 0
h, l � e1/e2 ⇓ (Num (n1/n2))

h, l � e ⇓ (Ref r), r ∈ Reference r ∈ dom(h) h(r) = oC f ∈ dom(oC)
h, l � e. f ⇓ oC(f)

Figure 4.4: Semantics of BIR expressions

4.2.3 Semantics of instructions

It is very similar to the semantics of BC: it is an observational, operational semantics. We model
observational events the same way than in BC. Although they are not relevant in the trace equivalence
statement, temporary variables modifications are made observable: we need to distinguish them from
the τ event in order to be able to match execution traces. We thus split events in EventStore into two
event subsets:

EventStore = EventLocalStore ∪ EventTempStore
= {x← v | x ∈ var} ∪ {x← v | x ∈ tvar}

Transition rules are given in Figures 4.5, 4.6 and 4.7. Let us now explain how the flow of execution
goes from one instruction to the other. Suppose the instruction list being executed is ` = i; `′. As can
be seen in Figures 4.5 and 4.6, the first instruction i = hd(`) of ` is first executed. If the flow of control
does not jump, then we use the function next defined as follows:

next(pc, i; `′) =
{

(pc + 1, instrsAtP(m, pc+1)) if `′ = nil
(pc, `′) otherwise

A program P is initially run on instrsAtP(main, 1).
As will be seen in the next chapter, the generated BIR instruction lists are never empty. Hence, the

function next is well defined. Moreover, when the control flow jumps, the instruction list to execute
is directly identified by the label of the jump target (e.g. rule for goto).

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

76

A Provably Correct Stackless Intermediate Representation for Java Bytecode 25

In the rule for object creation (Figure 4.6), note that the freshly created object is directly consid-
ered as being initialized, thanks to the constructor folding: as soon as the object has been allocated,
its constructor is called thus its status updated. No instruction can be executed between the object
allocation and its constructor call.

Semantic rules for assertions are also rather intuitive: either the assertion passes, and the execution
goes on, or it fails and the execution of the program is aborted in the corresponding error state.

Concerning rules for handling execution errors, notice that the BIR semantics suggests more
blocking states than BC. For instance, no semantic rule can be applied when trying to execute a
method call on a null pointer. Here, we do not need to take into account this case: the transformation
algorithm generates an assertion when translating method call instruction. This assertion catches the
null pointer dereferencing attempt.

Apart from these points, rules of BIR use the same principles as BC rules. Hence, we do not
further comment them. Syntaxes and semantics of BC and BIR are now defined. The next chapter
defines the transformation algorithm BC2BIR, and shows that the semantics of BC is preserved by the
transformation.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

77

26 Demange, Jensen and Pichardie

hd(`) = nop

〈h,m, (pc, `), l〉
τ
−→0 〈h,m, next(pc, `), l〉

hd(`) = x := expr h, l � expr ⇓ v

〈h,m, (pc, `), l〉
[x←v]
−−−−→0 〈h,m, next(pc, `), l[x 7→ v]〉

hd(`) = expr.f := expr′

h, l � expr ⇓ (Ref r) h(r) = oC h, l � expr′ ⇓ v o′ = o[f 7→ v]

〈h,m, (pc, `), l〉
[r. f←v]
−−−−−−→0 〈h[r 7→ o′],m, next(pc, `), l〉

hd(`) = if expr pc’
h, l � expr ⇓ (Num 0)

〈h,m, (pc, `), l〉
τ
−→0 〈h,m, (pc′, instrsAtP(m, pc’)), l〉

hd(`) = if expr pc’
h, l � expr ⇓ (Num n) n , 0

〈h,m, (pc, `), l〉
τ
−→0 〈h,m, next(pc, next(pc, `)), l〉

hd(`) = goto pc’

〈h,m, (pc, `), l〉
τ
−→0 〈h,m, (pc′, instrsAtP(m, pc’)), l〉

hd(`) = vreturn expr
h, l � expr ⇓ v

〈h,m, (pc, `), l〉
[return(v)]
−−−−−−−−→0 〈h, v〉

hd(`) = return

〈h,m, (pc, `), l〉
[return(Void)]
−−−−−−−−−−→0 〈h,Void〉

hd(`) = notnull(expr)
h, l � expr ⇓ (Ref r)

〈h,m, (pc, `), l〉
τ
−→0 〈h, next(pc, `), l〉

hd(`) = notnull(expr)
h, l � expr ⇓ Null

〈h,m, (pc, `), l〉
τ
−→0 Ω

NP
pc

hd(`) = notzero(expr)
h, l � expr ⇓ (Num n) n , 0

〈h,m, (pc, `), l〉
τ
−→0 〈h, next(pc, `), l〉

hd(`) = notzero(expr)
h, l � expr ⇓ (Num 0)

〈h,m, (pc, `), l〉
τ
−→0 Ω

DZ
pc

hd(`) = mayinit(C)

〈h,m, (pc, `), l〉
[mayinit(C)]
−−−−−−−−→0 〈h, next(pc, `), l〉

Figure 4.5: BIR transition system

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

78

A Provably Correct Stackless Intermediate Representation for Java Bytecode 27

∀m ∈ MethodName, InitLocalState(m) = m, (1, instrsAtP(m, 1)), [this 7→ (Ref r), x1 7→ v1 . . . xn 7→ vn]

hd(`) = x:=new C (e1, . . . , en)
h, l � ei ⇓ vi (h0, (Ref r)) = newOb ject(C, h)

h′ = h0[r 7→ ot] t = C̃

〈h′, InitLocalState(C.init)〉
~λ
=⇒n 〈h′′,Void〉

〈h,m, (pc, `), l〉
[r←C.init(v1,...,vn)].~λh.[x←(Ref r)]
−−−−−−−−−−−−−−−−−−−−−−−−−→n+1 〈h′′, (m, next(pc, `), l[x 7→ (Ref r)]〉

hd(`) = e.super(C, e1, . . . , en)
h, l � e ⇓ (Ref r) h, l � ei ⇓ vi

C′ ⊆ C , Object h(r) = ot t = C̃′

〈h, InitLocalState(C.init)〉
~λ
=⇒n 〈h′,Void〉

〈h,m, (pc, `), l〉
[r←C.init(v1,...,vn)].~λh
−−−−−−−−−−−−−−−−→n+1 〈h′,m, next(pc, `), l〉

hd(`) = e.super(Object, e1, . . . , en)
h, l � e ⇓ (Ref r) h, l � ei ⇓ vi

h(r) = ot t = C̃ h′ = h[r 7→ upInit(o, C)]

〈h′, InitLocalState(Object.init)〉
~λ
=⇒n 〈h′′,Void〉

〈h,m, (pc, `), l〉
[r←Ob ject.init(v1,...,vn)].~λh
−−−−−−−−−−−−−−−−−−−−→n+1 〈h′′,m, next(pc, `), l〉

hd(`) = y := e.m′(C, e1, . . . , en)
h, l � ei ⇓ vi h, l � e ⇓ (Ref r)

h(r) = oC′ Lookup(m′, C′) = mc

〈h, InitLocalState(mc)〉
~λ
=⇒n 〈h′, v〉 v , Void

〈h,m, (pc, `), l〉
[r.C.mc(v1,...,vn)]. ~λh.[y←v]
−−−−−−−−−−−−−−−−−−−→n+1 〈h′,m, next(pc, `), l[y 7→ v]〉

hd(`) = e.m′(C, e1, . . . , en)
h, l � ei ⇓ vi h, l � e ⇓ (Ref r)

h(r) = oC Lookup(m′, C′) = mc

〈h, InitLocalState(mc)〉
~λ
=⇒n 〈h′,Void〉

〈h,m, (pc, `), l〉
[r.C.mc(v1,...,vn)]. ~λh
−−−−−−−−−−−−−−→n+1 〈h′,m, next(pc, `), l〉

Figure 4.6: BIR transition system: object initialisation and method calls

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

79

28 Demange, Jensen and Pichardie

hd(`) = x:=new C (e1, . . . , en)
h, l � ei ⇓ vi (h0, (Ref r)) = newOb ject(C, h)

h′ = h0[r 7→ ot] t = C̃

〈h′, InitLocalState(C.init)〉
~λ
=⇒n Ω

k
pc′

〈h,m, (pc, `), l〉
[r←C.init(v1,...,vn)].~λh
−−−−−−−−−−−−−−−−→n+1 Ω

k
pc

hd(`) = e.super(C, e1, . . . , en)
h, l � e ⇓ (Ref r) h, l � ei ⇓ vi

C′ ⊆ C , Object h(r) = ot t = C̃′

〈h, InitLocalState(C.init)〉
~λ
=⇒n Ω

k
pc′

〈h,m, (pc, `), l〉
[r←C.init(v1,...,vn)].~λh
−−−−−−−−−−−−−−−−→n+1 Ω

k
pc

hd(`) = e.super(Object, e1, . . . , en)
h, l � e ⇓ (Ref r) h, l � ei ⇓ vi

h(r) = ot t = C̃ h′ = h[r 7→ upInit(o, C)]

〈h′, InitLocalState(Object.init)〉
~λ
=⇒n Ω

k
pc′

〈h,m, (pc, `), l〉
[r←Ob ject.init(v1,...,vn)].~λh
−−−−−−−−−−−−−−−−−−−−→n+1 Ω

k
pc

hd(`) = y := e.m′(C, e1, . . . , en)
h, l � ei ⇓ vi h, l � e ⇓ (Ref r)

h(r) = oC′ Lookup(m′, C′) = mc

〈h, InitLocalState(mc)〉
~λ
=⇒n Ω

k
pc′

〈h,m, (pc, `), l〉
[r.C.mc(v1,...,vn)]. ~λh
−−−−−−−−−−−−−−→n+1 Ω

k
pc

hd(`) = e.m′(C, e1, . . . , en)
h, l � ei ⇓ vi h, l � e ⇓ (Ref r)

h(r) = oC Lookup(m′, C′) = mc

〈h, InitLocalState(mc)〉
~λ
=⇒n Ω

k
pc′

〈h,m, (pc, `), l〉
[r.C.mc(v1,...,vn)]. ~λh
−−−−−−−−−−−−−−→n+1 Ω

k
pc

Figure 4.7: BIR transition system: error cases

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

80

A Provably Correct Stackless Intermediate Representation for Java Bytecode 29

Chapter 5

BC2BIR is semantics-preserving

In this chapter, we present the transformation algorithm from BC to BIR and the properties it satisfies.
It is based on a symbolic execution of the bytecode, using a symbolic operand stack. Each bytecode
instruction modifies the abstract stack and gives rise to the generation of BIR instructions. It is very
similar to the BC2IR algorithm of the Jalapeño Optimizing Compiler [Wha99]. Many other similar
algorithms exist (see e.g [CFM+97], [XX99] or [WCN05]). Our contribution mainly lies in its for-
malization (Section 5.1) and especially the proof of its semantics preservation property (Section 5.2).

5.1 The BC2BIR algorithm

This algorithm transforms BC programs into BIR programs. It is based on a symbolic execution of
the bytecode that uses an abstract stack, containing symbolic expressions, as was used in the interval
analysis of Besson et al [BJP06]. Whereas this work performs the expression decompilation during
the analysis, the BC2BIR algorithm can be thought of as a preprocessing pass of the static analysis:
expression decompilation and constructor folding are done once and for all.

As the transformation symbolically executes the bytecode, it uses a stack of symbolic expressions:

Definition 3 (AbstrStack).
Abstract stacks are defined as AbstrStack = SymbExpr∗, where SymbExpr = expr∪ExprUninit(C, pc).

Expressions in expr are decompiled expressions of BC, while ExprUninit(C, pc) is used as a place-
holder for freshly allocated references in order to fold constructor calls. It denotes a reference pointing
to a yet uninitialized object allocated in the heap by the instruction new C at program point pc:

h, l � ExprUninit(C, pc) ⇓ Dummy(C, pc)

We need to keep the class (C) and program counter (pc) information in the value of this place-
holder. In fact, this information make consistant the substitution operation on abstract stacks used in
the transformation when folding constructors. Semantic domains as defined in Chapters 3 and 4 have
more or less the same name. In the following, we use language subscripts (BC or BIR) to desam-
biguate domains.

The heart of the algorithm is a transformation, BC2BIRi, that converts a BC instruction into a
list of BIR instructions. This basic transformation is then somewhat iterated on the whole code of a
method. BC2BIRi is defined as a function

BC2BIRi : PCount × instrBC × AbstrStack →
(
instr∗BIR × AbstrStack

)
∪ Fail

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

81

30 Demange, Jensen and Pichardie

Given an abstract stack, BC2BIRi modifies it according to the BC instruction at program point pc,
and returns a list of BIR instructions. Fail is returned when the transformation does not succeed.
We will need the program counter parameter for object creation and initialization. BC2BIRi is given
Figure 5.1, where the tipc denote fresh temporary variables introduced at point pc. They are used to
keep the abstract stack elements coherent with the value they should represent. Every undescribed
case (e.g. the stack height or content mismatches) yields Fail.

BC2BIRi(pc, nop, as) = ([nop], as)
BC2BIRi(pc, push c, as) = ([nop], c ::as)
BC2BIRi(pc, pop, e ::as) = ([nop], as)
BC2BIRi(pc, dup, e ::as) = ([nop], e ::e ::as)
BC2BIRi(pc, load x, as) = ([nop], x ::as)
BC2BIRi(pc, if pc′, e ::as) = ([if e pc′], as)
BC2BIRi(pc, goto pc′, as) = ([goto pc′], as)
BC2BIRi(pc, vreturn, e ::as) = ([return e], as)
BC2BIRi(pc, return, as) = ([return], as)

BC2BIRi(pc, add, e1 ::e2 ::as) = ([nop], (e1 + e2) ::as)
BC2BIRi(pc, div, e1 ::e2 ::as) = ([notzero(e2)], (e1/e2) ::as)
BC2BIRi(pc, getfield f, e ::as) = ([notnull(e)], e.f ::as)

BC2BIRi(pc, store x, e ::as) =

{
([x := e], as) if x < asa

([t0pc := x; x := e], as[t0pc/x]) if x ∈ asa

BC2BIRi(pc, new C, as) = ([mayinit(C)],ExprUninit(C, pc) ::as)

BC2BIRi(pc, putfield f, e′ ::e ::as) =
([notnull(e); t1pc := e1; . . . ; tnpc := en; e.f := e′], as[tipc/ei])

ab

BC2BIRi(pc, invokevirtual C.m, e1 :: . . . ::en ::e ::as) = ([notnull(e); t1pc := e′1; . . . ; t
m
pc := e′m; t

0
pc := e.m(e1, . . . , en)], t0pc ::as[tjpc/e′j]) if m returns a valueac

([notnull(e); t1pc := e′1; . . . ; t
m
pc := e′m; e.m(e1, . . . , en)], as[tjpc/e′j]) otherwisea c

BC2BIRi(pc, constructor C, e1 :: . . . ::en ::e ::as) = ([t1pc := e′1; . . . ; t
m
pc := e′m; t

0
pc := new C(e1, . . . , en)], as[tjpc/e′j][t

0
pc/e]) if e=ExprUninit(C, pc’)c

([notnull(e); t1pc := e′1; . . . ; t
m
pc := e′m; e.super(C, e1, . . . , en), as[tjpc/e′j]]) otherwisec

Figure 5.1: BC2BIRi – BC instruction transformation

awhere e , ExprUninit(C, pc’)
bwhere ei, i = 1 . . . n are all the elements of as such that f ∈ ei
cwhere e′j, j = 1 . . .m are all the elements of as that read a field

Transforming the bytecode push c, given an abstract stack as, consists in pushing the symbolic
expression c on as and generating the BIR instruction nop. Cases of pop, dup, add and load are
similar. Note that generated BIR instruction list is never empty: in order to simplify the lemmas and
their proof, we generate a BIR nop instruction even in the push c, pop, dup, add and iload. This
will make the step-matching easier in the simulation argument. All nop instructions could be removed
in BIR program, without changing anything to its semantics. Transformations of return instructions
are straightforward, as well as conditional and unconditional jumps.

For instruction div, generating nop is not sufficient for properly preserving execution errors:
an assertion notzero(e) has to be generated. Figure 5.2 gives an example (source, BC, and BIR
versions) of a simple function returning the third of its integer argument. Figure 5.2(c) gives, for each
program point, the entry abstract used by the transformation. Let us illustrate with this example how
this assertion is used to preserve the potential division by zero. At program point 3 in Figure 5.2(b),
if the second top element of the (concrete) stack, i.e the value of x2 is zero, executing the instruction
div leads to the error state ΩDZ

3 . This execution error is matched in BIR at program point 3, because
the generated assertion notzero(x2) will fail, leading to the BIR error state ΩDZ

3 . Otherwise, the
assertion successes, and the execution goes on. Without this assertion, the potential division by zero
would happen at program point 4 (when the expression is evaluated), leading to ΩDZ

4 . Even worst, it
could never happen, in case the code were dead.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

82

A Provably Correct Stackless Intermediate Representation for Java Bytecode 31

int f(int x1, int x2) {return (x1/x2) ;}
(a) source function

int f(x1,x2);
1: load x2;
2: load x1;
3: div;
4: vreturn;

(b) BC function

1: []
2: [x2]
3: [x1::x2]
4: [x1/x2]

(c) symbolic stack

int f(x1,x2);
1: nop;
2: nop;
3: notzero(x2);
4: vreturn x1/x2;

(d) BIR function

Figure 5.2: Example of bytecode transformation – error handling

The getfield f instruction reads the field f of the object pointed to by the reference on the top
of the stack. The BIR assertion notnull(e) is generated. Here again, the goal of this assertion is to
make sure that, if a null pointer is dereferenced by getfield f, the BIR program reaches the error
state program point. Similar assertions are generated for constructor and method calls.

In the case of store x, there are two cases. The simpliest one is when the symbolic expression x
is not used in the abstract stack as: the top expression of the stack is popped and the BIR instruction
x := e is generated. Now, if x is used in as. Suppose we only generate x := e and pop e off
the stack, the remainding expression x would not represent the old value of the variable x anymore,
but the new one. Hence, before generating x := e, we have to store the old value of x in a fresh
temporary variable t0pc. Then, every occurrence of the variable x in as has to be substituted for the new
temporary t0pc. This substitution is written as[t0pc/x] and is defined in a standard way (inductively on
the length of the abstract stack, and on the structure of the expression). Notice that for this instruction,
we additionaly demand that the expression e is not ExprUninit(C, pc’): no valid BIR instruction
could match this case, as constructors are fold. This hypothesis is made explicit: it is not part of the
constraints checked by the BCV, as it fits the JVM specification. The same remark can be done about
writing an object field (putfield f) and method calls.

The putfield f case is similar, except that there is more to save than the only e.f: because
of aliasing, any expression ei could be evaluated to the same value (reference) than the variable e.
Hence, when modifying e.f, ei.f could be modified as well. We choose to store in fresh temporaries
every element of as where the field f is used. Here, the substitutions by tipc is element-wise. More
temporary variables than needed are introduced. This could be refined using an alias analysis. Note
there is no conflict between substitutions as all tipc are fresh.

There are two cases when transforming object method calls: either the method returns a value,
or not (Void). This information is available in the method signature of the bytecode. In the former
case, a fresh variable is introduced in the BIR in order to store the value of the result, and this variable
is pushed onto the abstract stack as the result of the method call. The execution of the callee might
modify the value of all heap cells. Hence, before executing the method call, every abstract stack
element that accesses the heap must be stored in a fresh variable, in order to remember its value.

Let us describe now how BC2BIRi is dealing with object creation and initialization. We use the
program in Figure 5.3 as a running example. The source program is given in Figure 5.3(a): it stores
in the local variable x an object of class A, whose constructor is called with the field f of another
object of class A as argument. When symbolically executing the bytecode new C at program point
pc, ExprUninit(C, pc) is pushed on the abstract stack as. As already said, ExprUninit(C, pc) is the
symbolic expression that corresponds to freshly allocated references. Recall we do not treat class
initialization. If this were the case, in order to preserve the class initialization order, BIR should
initialize the class C at this point as well. This is the reason for generating instruction mayinit(C)

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

83

32 Demange, Jensen and Pichardie

at this point. In Figures 5.3(b), 5.3(c) and 5.3(c), it corresponds to program points 1 and 3 (for space
reason, in Figure 5.3(c), we abbreviate ExprUninit(C, pc) by EU(C, pc)).

There are two ways for transforming the instruction constructor C. If this is the first constructor
call on the reference (and in the abstract stack, on ExprUninit(C, j)), then the constructor is fold at this
point: the BIR instruction t0pc := new C(e1, . . . , en) is generated. For instance, this is the case at points
6 and 8 in Figure 5.3(d). Note that ExprUninit(C, j) uniquely identify a given object, thanks to the
alias information provided by j: (i) we assume the BC program to pass the BCV, no such expression
could be in the stack after a backward branching, (ii) moreover, we do not allow to store uninitialized
references in local variables (it does not belong to the BIR language of expressions). In BIR, every
newly created (and initialized) object is stored in a local variable (here t0pc). In the resulting abstract
stack, each occurrence of ExprUninit(C, j) is replaced with the variable t0pc. In Figure 5.3, at program
point 6, the constructor arguments and EU(A, 1) are popped off the abstract stack, and the remainding
EU(A, 1) (distinguished from EU(A, 3)) is replaced by t0

6
.

The second case is when constructor C is called on an already created object, and is actually a
call to a super constructor. Here, no new object should be created, and we have to decompile another
way. The reference pointing to the current object can be the value any expression (including this).
The generated BIR instruction is thus e.super(C, e1, . . . , en), where C is a super class of the class of
the current object, and whose name is available in the bytecode instruction.

void f() { A x = new A((new A(1)).f) ; return ;}
(a) source function

void f();x;
1: new A;
2: dup;
3: new A;
4: dup;
5: push 1;
6: constructor A;
7: getfield f;
8: constructor A;
9: store x;
10: return;

(b) BC function

1: []
2: [EU(A,1)]
3: [EU(A,1)::EU(A,1)]
4: [EU(A,3)::EU(A,1)::EU(A,1)]
5: [EU(A,3)::EU(A,3)::EU(A,1)::EU(A,1)]
6: [1::EU(A,3)::EU(A,3)::EU(A,1)::EU(A,1)]
7: [t0

6
::EU(A,1)::EU(A,1)]

8: [t0
6
.f::EU(A,1)::EU(A,1)]

9: [t0
8
]

10: []
(c) symbolic stack

void f();x;
1: mayinit(A)
2: nop;
3: mayinit(A);
4: nop;
5: nop;
6: t0

6
:= new A(1);

7: notnull(t0
6
);

8: t0
8
:= new A(t0

6
.f);

9: x:= t0
8
;

10: return;
(d) BIR function

Figure 5.3: Example of bytecode transformation – Constructor folding

The basic instruction-wise transformation BC2BIRi is used in the algorithm to generate the BIR
of a method. An entire BC program is obtained by translating each method of the class, and so for
each class of the program. Figure 5.4 gives the algorithm transforming a whole method m of a given
program P, where length(m) is the length of the code of m and succm(pc) is the set of all the successors
of pc in the method m. We write stackSize(pc) for the (precomputed) size of the abstract stack at
program point pc. We additionaly need to compute the set of branching points of the method:

jmpTgtPm = { j | ∃pc, instrAtP(m, pc) = if j or goto j }

All this information can be easily, statically computed and is thus supposed available at hand.
Along the algorithm, three arrays are computed. IR[m] contains the intermediate representation

of the method m: for each pc, IR[m,pc] is the list of generated instructions. ASin[m] is an array of
entry symbolic stacks, required to compute IR and ASout[m] contains the output abstract stack resulting
from the instruction transformation.

Basically, transforming the whole code of a BC method consists in iterating the BC2BIRi function,
passing on the abstract stack from one instruction to its successors. If the basic transformation fails, so

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

84

A Provably Correct Stackless Intermediate Representation for Java Bytecode 33

1 function BC2BIR(P,m) =
2 ASin[m,1] := nil
3 for (pc = 1, pc ≤ length(m), pc++) do
4
5 // Compute the entry abstract stack
6 if (pc ∈ jmpTgtPm) then ASin[m, pc] := newStackJmp(pc, stackSize(pc)) end
7 if (pc < jmpTgtPm ∧ succm(pc) ∩ jmpTgtPm , ∅) then
8 asin := newStack(pc, stackSize(pc))
9 else asin := ASin[m, pc] end

10
11 // Decompile instruction
12 ASout[m, pc], IR[m,pc] := BC2BIRi(pc, instrAtP(m, pc), asin)
13 if (succm(pc) ∩ jmpTgtPm , ∅) then
14 if (∀b ∈ succm(pc) ∩ jmpTgtPm, b < ASin[m, pc]) then
15 IR[m,pc] := paraAssignts(succm(pc), ASout[m, pc]) ++ IR[m,pc]
16 else IR[m,pc] := Assignts(pc, ASin[m, pc]) ++ paraAssignts(succm(pc), ASout[m, pc]) ++ IR[m,pc]
17 end
18 end
19
20 // Pass around the output abstract stack
21 if (pc + 1 ∈ succm(pc) ∧ pc + 1 < jmpTgtPm) then ASin[m, pc + 1] := ASout[m, pc] end
22 end

Figure 5.4: BC2BIR – BC method transformation

does the algorithm on the whole method. The algorithm consists in: (i) computing the entry abstract
stack asin used by BC2BIRi (from Line 6 to 9) to transform the instruction, (ii) performing the BIR
generation (from Line 12 to 16) and (iii) passing on the output abstract stack (Line 21)

Notice the transformation is performed on a single, linear pass on the bytecode. When the flow of
control is linear (from pc to pc+1), the abstract stack resulting from BC2BIRi is transmitted as it is
(Line 21). The case of control flow joins must be handled more carefully.

int f(int x) {return (x==0) ? 1 : -1;}
(a) source function

int f(x);
1: load x
2: if 5
3: push -1
4: goto 6

5: push 1
6: vreturn

(b) BC function

1: []
2: [x]
3: []
4: [-1]

5: []
6: [T16]

(c) symbolic stack

int f(x);
1: nop;
2: if x == 0 goto 5;
3: nop;
4: T16 := -1;
ttt goto 6;
5: T16 := 1;
6: vreturn T16;

(d) BIR function

Figure 5.5: Example of bytecode transformation – non-empty stack jumps

Thanks to the BCV hypothesis we make on the bytecode, we already know that at every branching
point, the size of the stack is the same regardless of the predecessor point. Still, for this one-pass trans-
formation to be correct, the content of the abstract stack must be uniquely determined at these points:
stack elements are expressions used in the generated instructions and hence must be independant of
the control flow path leading to these program points.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

85

34 Demange, Jensen and Pichardie

Let us illustrate this point with the example function of Figure 5.5. It returns 1 or −1 depending
of whether the argument x is zero or not. Let us focus on program point 6, i.e a branching point :
its predecessors are points 4 and 5, depending on the conditional at point 2. The abstract stack after
having executed the instruction goto 6 is [-1] (point 4), while it becomes [1] after program point
5. But, when transforming the vreturn at point 6, the abstract stack should be uniquely determined,
since the control flow is unknown.

The idea here is to store, before reaching a branching point, every stack element in a temporary
variable and then to use an abstract stack made of all of these variables at the branching point. A
naming convention has to be decided so that (i) identifiers do not depend on the control flow path and
(ii) each variable corresponds to exactly one stack element: we use the identifier Tipc to store the ith

element of the stack when the jump target point is pc. Hence, for each pc ∈ jmpTgtPm, the abstract
stack used by BC2BIRi is (almost) entirely determined by pc and the size of the entry stack at this
point. In Figures 5.5(c) and 5.5(d), at program points 4 and 5, we respectively store 1 and −1 in T16, a
temporary variable that will be used as point 6 in the entry abstract stack of the transformation.

Thus, in the algorithm, when transforming a BC instruction that preceeds a branching point, the
list or BIR instructions provided by BC2BIRi is no longer sufficient: we must prepend to it a list
of assignments of each abstract stack element to Tipc variables, and so for each potential target point
pc. These assignments must happen before the instruction list given by BC2BIRi, in case a jumping
instruction were generated by BC2BIRi at this point (see e.g program point 4 in Figure 5.5(d)).

Suppose now the stack before the branching point pc contains an uninitialized reference, repre-
sented by ExprUninit(C, pcn). As this element is not a BIR expression, it cannot be replaced by any
temporary variable – the assignment would not be a legal BIR instruction. Here, we need to assume
the following structural constraint on the bytecode: before a branching point pc, if the stack contains
any uninitialized reference at position i, then it is the case for every predecessor of pc. More formally,
this hypothesis can be formulated as a constraint on the array ASout:

∀pc, pcn, C, i.
(
∃pc′. pc ∈ succm(pc′)
∧ pc′ < pc

∧ ASout[m, pc′]i = ExprUninit(C, pcn)
)

⇒
(
∀pc′. pc ∈ succm(pc′)
∧ pc′ < pc

∧ ASout[m, pc′]i = ExprUninit(C, pcn)
)

Without this requirement, because constructors are fold in BIR the transformation would fail.
We use the function newStackJmp (Line 6) defined as follows to compute the entry abstract stack at
branching point pc, where n is the size of the abstract stack:

newStackJmp(pc, n) = e1 :: . . . ::en

where ∀i = 1 . . . n, ei =

ASout[m, pc′]i if ∃pcn, pc′, C. pc ∈ succm(pc′) ∧ pc′ < pc

such that ASout[m, pc′]i = ExprUninit(C, pcn)
Tipc otherwise

Notice the use of this function is coherent with ASin[m, 1]: even if 1 is a branching point, the stack
at the beginning of the method is empty.

Now, before reaching the branching point, we have to make sure all the Tipc have been assigned.
Given an abstract stack as and a set S of program points, paraAssignts(S, as) (Lines 15 and 16) returns
the list of such assignments which are ensured to be mutually conflict-free – in case as contained some
of the Tipc, new variables would be used.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

86

A Provably Correct Stackless Intermediate Representation for Java Bytecode 35

A last precaution has to be taken here. In case where some Tipc appeared in the entry stack used
by the basic transformation, the value of these variables must be remembered: the semantics of the
instruction list generated by BC2BIRi depends on them. This can only happens at non-branching
points. In this case, the entry abstract stack is changed to newStack(pc, n) (Line 8), where n is the size
of the stack at point pc. The corresponding assignments are generated by Assignts(pc,ASin[m, pc])
(Line 16).

newStack(pc, n) = e1 :: . . . ::en

where ∀i = 1 . . . n, ei =

T̃ipc if ∃pc′, k. pc′ ∈ succm(pc)

∧ Tkpc′ ∈ ASin[m, pc]i
ASin[m, pc]i otherwise

In the following section, we make further remarks on the algorithm and formalize the semantics
preservation property of the above algorithm.

5.2 Semantics preservation

The BC2BIR algorithm we presented in the previous section is semantics-preserving. In this section,
we formalize this notion of semantics preservation. The basic idea is that the BIR program BC2BIR(P)
simulates the initial BC program P and both have similar execution traces. The similarity between
traces is defined using an equivalence relation over the two heaps. Although the two heaps are not
equal, they keep related through a partial bijection1. This is due to the fact that the transformation does
not preserves the order in which objects are allocated. Section 5.2.1 demonstrates this point using a
simple example. In Section 5.2.2, we define the equivalence relations induced by this heap similarity.
We need them in the propositions of Section 5.2.3 to express the execution trace preservation.

5.2.1 Object allocation orders

Starting from the same heap, execution of P and P′ = BC2BIR(P) will not preserve this equality.
However, the two heaps keep isomorphic: there exists a partial bijection between them. Here, we
illustrate this fact on the simple example given in Figure 5.6, where temporary variable identifiers
have been simplified. The corresponding Java source is

A x = new A(new B(),3); return

The JVM specification regarding the operand stack when calling a constructor on a object is the
following: the reference to the object has to be pushed on the stack before other arguments. This
implies that the object must be created before other arguments are calculated. In the program of
Figure 5.6(a), the object of class A is hence allocated before the object of class B is passed as argument
to the former’s constructor. In the BIR version of the program (Figure 5.6(b)), as constructors are fold,
and because an object creation is not expression, the object of class B has to created (and initialized)
before passing the temporary variable t1 (that contains its reference) as an argument to the constructor
of the object of class A.

When executing program in Figure 5.6, one object of class A is allocated at program point 1
through the reference r1. At program point 3, a second object is allocated in the heap, with the

1The rigorous definition of a bijective function demands that it is totally defined on its domain. The term “partial
bijection” is however widely used and we consider it as equivalent to “partial injection”.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

87

36 Demange, Jensen and Pichardie

void Test.mtest () {
1 : new A
2 : dup
3 : new B
4 : dup
5 : constructor B
6 : push 3
7 : constructor A
8 : store x
9 : return

}
(a) BC program P

void Test.mtest () {
1 : mayinit(A)
2 : nop
3 : mayinit(B)
4 : nop
5 : t1 := new B()
6 : nop
7 : t2 := new A(t1,3)
8 : x := t2
9 : return

}
(b) BIR program P′ = BC2BIR(P)

Figure 5.6: Example program: BC and BIR versions

reference r2. Whereas in P the B object is pointed to by r2, it is pointed to by r3 in P′, and similarely
for object of class A that is pointed to by r4.

Heaps are not equal along the execution of the two programs: at program point 4 in P, the heap
contains two objects while in P′, the heap is still empty. However, after program points 5, we know
that each time the reference r1 is used in P′, it corresponds to the use of r4 is P (both constructors
have been called, so both references can be used freely). The same reasoning can be applied just after
program points 7: r2 in P corresponds to r3 in P′.

A bijection thus exists between references of programs P and P′: heaps are equal modulo the
allocation history. At each program point, objects being initialized (the constructor has just been
called) are pointed to by references that are in the partial bijection. In our example program, the
partial bijection is empty until program points 4. At these points, the bijection is extendend with
β(r1) = r4. β is then again extended at programs points 7 with β(r2) = r3.

The notion of a partial bijection relating two heaps has been earlier used in [BN05] and [BR05].
These works aim at ensuring the safety of information flows in Java and Java bytecode programs. Ob-
jects allocated in a high security context should not leak information. The bijection relates references
to the so-called “high objects”. Intuitively, the property that they want to ensure is: running a program
starting from two isomorphic heaps leads to two indistinguishable executions.

5.2.2 Equivalence relations

As stated in the previous section, the object allocation order is not preserved by the algorithm, but
there exists a partial bijection between the BC and BIR heaps that relates allocated objects as soon as
their initialization is ongoing. In order to relate heaps, environments and execution traces, equivalence
relations need to be defined. We need them in Section 5.2.3 to state and prove the semantics preserva-
tion. All of these are parametrised by the current partial bijection β : Reference ↪→ Reference. First,
an equivalence relation is defined over values:

Definition 4 (Value equivalence: ∼β).
The relation ∼β⊆ Value × Value ∪ Dummy(C, pc) is defined inductively by:

Null ∼β Null Void
∼β Void

n ∈ Z

(Num n) ∼β (Num n)

β(r1) = r2

(Ref r1) ∼β (Ref r2)

r1 < dom(β)

(Ref r1) ∼β Dummy(C, pc)

The interesting case is for references. References related by β are equivalent. Concerning objects
on which no constructor has been called yet (i.e. a reference that is not in the domain of β), references
pointing to them are equivalent to the special value Dummy.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

88

A Provably Correct Stackless Intermediate Representation for Java Bytecode 37

We can now define the equivalence relation on heaps. First, only objects existing in the two heaps
must be related by β. Secondly, the related objects are at least being initialized and must have the
same initialization status, hence the same class. Finally, their fields must have equivalent values.
More formally:

Definition 5 (Heap equivalence: ∼β).
Let h1 and h2 be two heaps. We have h1

∼β h2 if and only if:

• dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2)

• ∀r ∈ dom(β), C ∈ ClassName such that h1(r) = ot with t ∈ {C, C̃}, we have

(i) h2(β(r)) = o′t (ii) ∀ f ∈ dom(ot). ot(f) ∼β o′t(f)

The proof of the semantics preservation will be done using a simulation diagram scheme. We thus
have to relate environments: an BIR environment is equivalent to a BC environment if and only if
both local variables (temporary variables are not taken into account) have equivalent values.

Definition 6 (Environment equivalence: ∼β).
Let l1 ∈ EnvBC and l2 ∈ EnvBIR be two environments. We have l1

∼β l2 if and only if: dom(l1) ⊆

dom(l2) and ∀x ∈ dom(l1). l1(x) ∼β l2(x)

Finally, in order to relate execution traces, we need to define an equivalence relation over events.
It is extended pointwise as is standard to event traces.

Definition 7 (Event equivalence: !
∼β).

The equivalence relation over events !
∼β is inductively defined:

τ
!
∼β τ mayinit(C) !

∼β mayinit(C)

x ∈ var v1

∼β v2

[x← v1] !
∼β [x← v2]

β(r1) = r2 v1

∼β v2

[r1. f ← v1] !
∼β [r2. f ← v2]

β(r1) = r2 ∀i = 1 . . . n, vi

∼β v′i

[r1 ← C.init(v1, . . . , vn)] !
∼β [r2 ← C.init(v′1, . . . , v

′
n)]

β(r1) = r2 ∀i = 1 . . . n, vi

∼β v′i

[r1.C.m(v1, . . . , vn)] !
∼β [r2.C.m(v′1, . . . , v

′
n)]

5.2.3 Semantics preservation

Relating run-time and abstract stacks is the first step towards bridging the gap between the two repre-
sentations of P. We thus define an equivalence relation over stacks. This relation holds between s and
as if the ith element of as evaluates, given a BIR heap and environment, to a value that is equivalent
w.r.t ∼β to the ith element of s, and so for each i:

Definition 8 (Stack equivalence: ≈h,l,β).
Let s be in Stack, as be in AbstrStack, h be in HeapBIR and l in EnvBIR. The stack equivalence is
defined inductively as:

ε ≈h,l,β ε

h, l � e ⇓ v′ v ∼β v′ s ≈h,l,β as
v :: s ≈h,l,β e ::as

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

89

38 Demange, Jensen and Pichardie

The proof correctness of the transformation is organized as follows. We show that one-step
transitions are preserved by the basic transformation BC2BIRi. These results will be used in the
proof of one-step transitions by BC2BIR: the propositions hold, regarless of the potential assign-
ments added in the algorithm. Finally, multi-step transitions will be shown to be preserved by
BC2BIR using a strong induction of the call-depth. Propositions are first stated in their normal
and then in their error-execution variants. In the following, to lighten the notations, we write ~λpro j

for ~λEventLocalStore∪EventHeap∪EventReturn, i.e. the projection of the trace ~λ to any category of events but
EventTempStore.

Proposition 1 (BC2BIRi - zero call-depth one-step preservation - normal case).

Suppose we have 〈h,m, pc, l, s〉
~λ
−→0 〈h′,m, pc′, l′, s′〉. Let ht, lt, as, β be such that:

h ∼β ht l ∼β lt s ≈ht,lt,β as BC2BIRi(pc, instrAtP(m, pc), as) = (`, as′)

Then, there exist unique ht′, lt′ and ~λ′ such that 〈ht,m, (pc, `), lt〉
~λ′

=⇒0〈ht′,m, (pc′, instrsAtP(m, pc’)), lt′〉
with:

h′ ∼β ht′ l′ ∼β lt′ ~λ
!
∼β ~λ′pro j s′ ≈ht′,lt′,β as′

Under the same hypotheses, if 〈h,m, pc, l, s〉
~λ
−→0 〈h′, rv〉, then there exists 〈ht′, rv′〉 such that:

〈ht,m, (pc, `), lt〉
~λ′

=⇒0 〈ht′, rv′〉, with ~λ !
∼β ~λ′pro j, h′ ∼β ht′ and rv ∼β rv′.

Proof. We proceed by case analysis on the BC instruction at program point pc. Here, only interesting
cases are detailed. Others are trivial or can be treated a similar way.

• push c We have 〈h,m, pc, l, s〉
τ
−→0 〈h,m, pc + 1, l, (Num c) :: s〉. Let as, ht, lt be such that

h
∼β ht, l ∼β lt and s ≈ht,lt,β as. We have BC2BIRi(pc, push c, as) = ([nop], c :: as). Hence,
〈ht,m, (pc, [nop]), lt〉

τ
−→〈ht,m, (pc+1, instrsAtP(m, pc+1)), lt〉. The heaps and environments are

unchanged, both transitions are silent. Stacks stay trivially equivalent since ht, lt � c ⇓ (Num c).

• div Here, because the execution does not reach the error state, only one case is possible :
n2 , 0, and 〈h,m, pc, l, (Num n1) :: (Num n2) :: s〉

τ
−→0 〈h,m, pc + 1, l, (Num n1/n2) :: s〉. Let

as, ht, lt be such that h
∼β ht, l

∼β lt and (Num n1) :: (Num n2) :: s ≈ht,lt,β e1 :: e2 :: as.
We have BC2BIRi(pc, div, e1 :: e2 :: as) = ([notzero(e2)], e1/e2 :: as). But ht, lt � e2 ⇓

(Num n′2) with (Num n2) ∼β (Num n′2). Thus, n′2 , 0 and 〈ht,m, (pc, [notzero(e2)]), lt〉
τ
−→0

〈ht,m, (pc + 1, instrsAtP(m, pc+1)), lt〉. Heaps and environment are unchanged, and both tran-
sitions are silent. Finally, since ht, lt � e1 ⇓ (Num n′1) with (Num n1)

∼β (Num n′1) and
ht, lt � e2 ⇓ (Num n′2) with (Num n2)

∼β (Num n′2), we have ht, lt � e1/e2 ⇓ (Num n′1/n
′
2)

and (Num n1/n2) ∼β (Num n′1/n
′
2).

• load x We have 〈h,m, pc, l, s〉
τ
−→0 〈h,m, pc + 1, l, l(x) :: s〉. Let as, ht, lt, β be such that h

∼β

ht, l ∼β lt and s ≈ht,lt,β as. We have BC2BIRi(pc, load x, as) = ([nop], x :: as). Hence,
〈ht,m, (pc, [nop]), lt〉

τ
−→0 〈ht,m, (pc + 1, instrsAtP(m, pc+1)), lt〉. Heaps and environments are

unchanged and both transitions are silent. We now have to prove that stacks stay equivalent, i.e.
that l(x) :: s ≈ht,lt,β x ::as. We have ht, lt � x ⇓ lt(x), l ∼β lt and x ∈ var. Hence, by the definition
of ∼β, we have l(x) ∼β lt(x).

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

90

A Provably Correct Stackless Intermediate Representation for Java Bytecode 39

• store x We have 〈h,m, pc, l, v :: s〉
[x←v]
−−−−→0 〈h,m, pc + 1, l[x 7→ v], s〉. Let as, ht, lt, β be such

that h ∼β ht, l ∼β lt and v :: s ≈ht,lt,β e ::as. We distinguish two cases, whether x is already in as
or not:

– If x < as then BC2BIRi(pc, istore x, e :: as) = ([x := e], as). But v :: s ≈ht,lt,β e :: as

and ht, lt � e ⇓ v′ with v
∼β v′. Hence 〈ht,m, (pc, [x := e]), lt〉

[x←v′]
−−−−−→0 〈ht,m, (pc +

1, instrsAtP(m, pc+1)), lt[x 7→ v′]〉. Now, heaps are not modified, and stay equivalent.
Labels are equivalent: we have x ∈ var because it is used in a bytecode instruction, and
v ∼β v′. Thus [x ← v] !

∼β [x ← v′]. Environment stay equivalent: l[x 7→ v] ∼β lt[x 7→ v′]
since l ∼β lt by hypothesis and v ∼β v′. We finally have to prove that s ≈ht,lt′,β as, where
lt′ = lt[x 7→ v′]. Stacks are the same height. Moreover, as x < as, for all abstract stack
elements asi, we have: ht, lt′ � asi ⇓ v′i and ht, lt � asi ⇓ v′i with vi

∼β v′i .

– If x ∈ as then BC2BIRi(pc, istore x, e ::as) = ([t0pc := x; x := e], as[t0pc/x]). We hence

have that 〈ht,m, (pc, [t1pc := x; x := e]), lt〉
[t1pc←lt(x)]
−−−−−−−−→0〈ht,m, (pc, [x := e]), lt[t1pc 7→ lt(x)]〉.

t1pc is fresh, so t1pc < e.

Hence ht, lt[t1pc 7→ lt(x)] � e ⇓ v′ where v′ is such that ht, lt � e ⇓ v′, and v
∼β v′ by

hypothesis. Thus, we have 〈ht,m, (pc, [t1pc := x; x := e]), lt〉
[t1pc←lt(x)].[x←v′]
==============⇒0 〈ht,m, (pc+

1, instrsAtP(m, pc+1)), lt[t1pc 7→ lt(x), x 7→ v′]〉.

Heaps are not modified. We have [x ← v] ∼β
(
[t1pc ← lt(x)].[x← v′]

)
pro j
= [x ← v′]

because only t1pc ∈ tvar and v ∼β v′. Environments stay equivalent because t1pc ∈ tvar
and x ∈ var is assigned the value v′ with v ∼β v′.
We now have to show that s ≈ht,lt′,β as[t1pc/x], where lt′ = lt[t1pc 7→ lt(x), x 7→ v′]. But
for all elements as[t1pc/x]i of the abstract stack, we have: ht, lt′ � as[t1pc/x]i ⇓ vi where vi

is such that ht, lt � asi ⇓ vi because lt′(t1pc) = lt(x) and t1pc is fresh, so t1pc < asi.

• if pc’ According to the top element of the stack, there are two cases. We only treat the
case of a jump, the other one is similar. We have 〈h,m, pc, l, (Num 0) :: s〉

τ
−→0 〈h,m, pc′, l, s〉.

Let as, ht, lt, β be such that h
∼β ht, l

∼β lt and (Num 0) :: s ≈ht,lt,β e :: as. We have
BC2BIRi(pc, if pc′, e :: as) = ([if e pc′], as). But stacks are equivalent by hypothesis, thus e
evaluates to zero and 〈ht,m, (pc, [if e pc′]), lt〉

τ
−→0 〈ht,m, (pc′, instrsAtP(m, pc’)), lt〉 and labels

are equivalent. Heaps and environments are unchanged. Stacks stay trivially equivalent.

• new C We have 〈h,m, pc, l, s〉
mayinit(C)
−−−−−−−→0 〈h′,m, pc + 1, l, (Ref r) :: s〉, with (Ref r) freshly al-

located and h′ = h[r 7→ Blank(̃Cpc)]. Let as, ht, lt, β be such that h
∼β ht, l

∼β lt and
s ≈ht,lt,β as. We have that BC2BIRi(pc, new C, as) = ([mayinit(C)],ExprUninit(C, pc) ::

as). Hence 〈ht,m, (pc, [mayinit(C)]), lt〉
[mayinit(C)]
−−−−−−−−→0 〈ht,m, (pc + 1, instrsAtP(m, pc+1)), lt〉.

Labels are equal and environments are not modified. The reference (Ref r) is pointing to
an uninitialized object in h′, so β is not extended, and heaps keep related. Finally, we have
(Ref r) :: s ≈ht,lt,β ExprUninit(C, pc) :: as because ht, lt � ExprUninit(C, pc) ⇓ Dummy(C, pc)
and (Ref r) ∼β Dummy(C, pc) because r < dom(β).

• getfield f The execution does not reach the error state. Hence, we have 〈h,m, pc, l, (Ref r) ::
s〉
τ
−→0〈h,m, pc+1, l, h(r)(f) :: s〉, with h(r) = oC. Let e, as, ht, lt, β be such that h ∼β ht, l ∼β lt and

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

91

40 Demange, Jensen and Pichardie

(Ref r) :: s ≈ht,lt,β e ::as. We have BC2BIRi(pc, getfield f, e ::as) = ([notnull(e)], e. f ::as).
By hypothesis on the stacks, we have that ht, lt � e ⇓ (Ref r′). Hence, e does not evaluates
to Null and 〈ht,m, (pc, [notnull(e)]), lt〉

τ
−→0 〈ht,m, (pc + 1, instrsAtP(m, pc+1)), lt〉. Heaps and

environments are not modified, labels are equivalent. We now have to show that stacks keep
related. By hypothesis, we have β(r) = r′ since the object pointed to by r is initialized. Besides,
ht, lt � e. f ⇓ ht(r′)(f) since ht, lt � e ⇓ (Ref r′) and ht(r′)(f) = ht(β(r))(f). We know that
h ∼β ht by hypothesis, hence h(r)(f) ∼β ht(β(r′))(f). Stacks are hence equivalent.

• putfield f We have 〈h,m, pc, l, v :: (Ref r) :: s〉
τ.[r. f←v]
−−−−−−−→0 〈h[r(f) 7→ v],m, pc + 1, l, s〉 (the

field of the object pointed to by r is modified), with h(r) = oC. Let e, e′, as, ht, lt, β be such that
h ∼β ht, l ∼β lt and v :: (Ref r) :: s ≈ht,lt,β e′ ::e ::as. There are two cases:

– If f is not in any expression of the abstract stack, we have BC2BIRi(pc, putfield f, e′ ::
e :: as) = ([notnull(e); e.f := e′], as). But v :: (Ref r) :: s ≈ht,lt,β e

′ :: e :: as. We get
that v

∼β v′ where ht, lt � e′ ⇓ v′ and that there exists r′ such that ht, lt � e ⇓ (Ref r′)
with (Ref r) ∼β (Ref r′), and r′ points in ht to an initialized object, since the BC field
assignment is permitted.

We hence have 〈ht,m, (pc, [notnull(e); e.f := e′]), lt〉
τ
−→0〈ht,m, (pc, [e.f := e′]), lt〉

[r′. f←v′]
−−−−−−−→0

〈ht[r′(f) 7→ v′],m, (pc+ 1, instrsAtpc+1(), ,)lt〉. Environments are unchanged and stay re-
lated. We have to show that h′ = h[r(f) 7→ v]

∼β ht′ = ht[r′(f) 7→ v′]. We have
(Ref r) ∼β (Ref r′), hence β(r) = r′. Besides, v ∼β v′ with ht, lt � e′ ⇓ v′. Fields of the
two objects pointed to by r and r′ have hence equivalent values w.r.t β. Finally, we have
τ.[r. f ← v] !

∼β τ.[r′. f ← v′] since v ∼β v′ and (Ref r) ∼β (Ref r′).
– If f ∈ as, we have BC2BIRi(pc, putfield f, e′ :: e :: as) = ([notnull(e); tipc :=

asi; e. f := e′], as[tipc/asi]). But v :: (Ref r) :: s ≈ht,lt,β e′ :: e :: as hence, as in the pre-
vious case: v

∼β v′ where v′ is such that ht, lt � e′ ⇓ v′ and there exists r′ such that
ht, lt � e ⇓ (Ref r′) with (Ref r) ∼β (Ref r′).
Suppose now that n elements of as are expressions using the field f. For all i ∈ [1; n],
let vi be such that ht, lt � asi ⇓ vi. Thus, 〈ht,m, (pc, [notnull(e); tipc := asi; e. f :=

e′]), lt〉
τ.[t1pc←v1]...[tnpc←vn]
================⇒0 〈ht,m, (pc, [e. f := e′]), lt[t1pc 7→ v1, . . . t

n
pc 7→ vn]〉.

All tipc are fresh, they hence do not appear in e or e′. Let lt′ = lt[t1pc 7→ v1, . . . t
n
pc 7→ vn].

Thus ht, lt′ � e′ ⇓ v′ with ht, lt � e′ ⇓ v′ and ht, lt′ � e ⇓ (Ref r′). Thus, 〈ht,m, (pc, [e. f :=

e′]), lt′〉
[r′. f←v′]
−−−−−−−→0 〈ht[r′(f) 7→ v′],m, (pc + 1, instrsAtP(m, pc+1)), lt′〉.

Events are equivalent: τ.[r. f ← v] !
∼β
(
τ.[t1pc 7→ v1] . . . [tnpc ← vn].[r′. f ← v′]

)
pro j

because all tipc are in tvar, β(r) = r′ and v ∼β v′. Environments stay equivalent: l ∼β lt′

because all tipc are fresh. Besides, since β(r) = r′ and v ∼β v′, we have h[r(f) 7→ v] ∼β
ht[r′(f) 7→ v′]. Finally, we have that s ≈ht′,lt′,β as[tipc/asi], where ht′ = ht[r′(f) 7→ v′],
by the definition of as[tipc/asi].

�

Proposition 2 (BC2BIRi - zero call-depth one-step preservation - error case).

Suppose we have 〈h,m, pc, l, s〉
~λ
−→0 Ω

k
pc′ . Let ht, lt, as, β be such that:

h ∼β ht l ∼β lt s ≈ht,lt,β as BC2BIRi(pc, instrAtP(m, pc), as) = (`, as′)

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

92

A Provably Correct Stackless Intermediate Representation for Java Bytecode 41

Then, there exist unique ~λ′ such that 〈ht,m, (pc, `), lt〉
~λ′
−→0 Ω

k
pc′ with ~λ !

∼β ~λ′pro j

Proof. Here again, we proceed by case analysis on the instruction at program point pc.

• div Here, only one case is possible: 〈h,m, pc, l, (Num n1) :: (Num 0) :: s〉
τ
−→0 Ω

DZ
pc . Let as, ht, lt

be such that h
∼β ht, l ∼β lt and (Num n1) :: (Num 0) :: s ≈ht,lt,β e1 :: e2 :: as. We have

BC2BIRi(pc, div, e1 :: e2 :: as) = ([notzero(e2)], e1/e2 :: as). But ht, lt � e2 ⇓ (Num n′2)

with (Num 0) ∼β (Num n′2). Thus, n′2 = 0 and 〈ht,m, (pc, [notzero(e2)]), lt〉
τ
−→0 Ω

DZ
pc and both

transitions are silent.

• getfield The execution reaches the error state. Hence, we have 〈h,m, pc, l,Null :: s〉
τ
−→0

ΩNP
pc . Let e, as, ht, lt, β be such that h

∼β ht, l ∼β lt and Null :: s ≈ht,lt,β e :: as. We have
BC2BIRi(pc, getfield f, e :: as) = ([notnull(e)], e. f :: as). By hypothesis on the stacks, we
have that ht, lt � e ⇓ Null and 〈ht,m, (pc, [notnull(e)]), lt〉

τ
−→0 Ω

NP
pc .

• putfield fWe have 〈h,m, pc, l, v ::Null :: s〉
τ
−→0Ω

NP
pc . Let e, e′, as, ht, lt, β be such that h ∼β ht,

l ∼β lt and v :: Null :: s ≈ht,lt,β e′ :: e :: as. We have BC2BIRi(pc, putfield f, e′ :: e :: as) =
([notnull(e); tipc := asi; e. f := e′], as[tipc/asi]). But v :: Null :: s ≈ht,lt,β e′ :: e :: as, hence

ht, lt � e ⇓ Null. Thus, 〈ht,m, (pc, [notnull(e); tipc := asi; e. f := e′]), lt〉
τ
−→0 Ω

NP
pc .

• invokevirtualWe only treat here the case where the method returns Void. We have 〈h,m, pc, l, v1 ::
. . . :: vn :: Null :: s〉

τ
−→0 Ω

NP
pc . Let ei, e, as, ht, lt, β be such that h ∼β ht, l ∼β lt and v1 :: . . . :: vn ::

Null :: s ≈ht,lt,β e1 :: . . . ::en ::e ::as. We have BC2BIRi(pc, invokevirtualC.m′, e1 :: . . . ::en ::e ::
as) = ([notnull(e); t1pc := e′1; . . . ; t

m
pc := e′m; e.m(e1, . . . , en)], as[tjpc/e′j]). ht, lt � e ⇓ Null.

Thus, 〈ht,m, (pc, [notnull(e); tjpc := e′j; e.m(e1, . . . , en)]), lt〉
τ
−→0 Ω

NP
pc .

• constructor C We have 〈h,m, pc, l, v1 :: . . . :: vn :: Null :: s〉
τ
−→0 Ω

NP
pc . Let ei, e, as, ht, lt, β be

such that h ∼β ht, l ∼β lt and v1 :: . . . ::vn ::Null :: s ≈ht,lt,β e1 :: . . . ::en ::e ::as. By the hypothesis
on the stacks, we know that e , ExprUninit(C, pc’) since e should evaluate to Null. Then,
BC2BIRi(pc, constructorC, e1 :: . . . :: en :: e :: as) = ([notnull(e); t1pc := e′1; . . . ; t

m
pc :=

e′m; e.super(e1, . . . , en)], as[tjpc/e′j]). But ht, lt � e ⇓ Null. Thus, 〈ht,m, (pc, [notnull(e); tjpc :=

e′j; e.super(e1, . . . , en)]), lt〉
τ
−→0 Ω

NP
pc .

�

With the two above propositions, we can now show that the algorithm given in Figure 5.4 preserves
zero-call depth one-step transitions.

Proposition 3 (BC2BIR - zero call-depth one-step preservation - normal case).

Suppose we have 〈h,m, pc, l, s〉
~λ
−→0 〈h′,m, pc′, l′, s′〉 and ht, lt, β are s.t.

h ∼β ht l ∼β lt s ≈ht,lt,β ASin[m, pc]

Then there exist unique ht′, lt′, ~λ′ such that 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒0〈ht′,m, (pc′, IR[m, pc′]), lt′〉
with:

h′ ∼β ht′ l′ ∼β lt′ ~λ
!
∼β ~λ′pro j s′ ≈ht′,lt′,β ASin[m, pc′]

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

93

42 Demange, Jensen and Pichardie

Under the same hypotheses, if 〈h,m, pc, l, s〉
~λ
−→0 〈h′, rv〉 and s ≈ht,lt,β ASin[m, pc] then there exists a

unique 〈ht′, rv′〉 such that: 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒0 〈ht′, rv′〉, with ~λ !
∼β ~λ′pro j, h′ ∼β ht′ and

rv ∼β rv′.

Proof. Suppose 〈h,m, pc, l, s〉
~λ
−→0 〈h′,m, pc′, l′, s′〉 and ht, lt, β are such that h

∼β ht, l ∼β lt and
s ≈ht,lt,β ASin[m, pc]. What differs from basic BC2BIRi transformation is that (i) the entry abstract
stack is not always transmitted as it is from one instruction to its successors and (ii) additional assign-
ments might be preprended to the BIR instruction basically generated.

The proof is hence organized as follows. We first have to show that s and asin (the actual abstract
stack used in the basic transformation) keep related in the possibly modified environment. This inter-
mediate result makes us able to use Proposition 1. Finally, we must ensure that the transmitted abstract
stack is equivalent to s′ with respect to the new BIR heap and environment obtained by executing the
basic BIR instructions.

First, we show that s and asin keep equivalent with regards to the potentially modified environ-
ment. There are two cases whether pc is a branching point or not.

• If pc ∈ jmpTgtPm, then asin is set to ASin[m, pc]. Now, assignments potentially generated by
Assignts(pc, ASin[m, pc]) and paraAssignts(succm(pc), ASout[m, pc]) have to be taken into ac-
count. We show they do not alterare the stack equivalence between s and asin. There are two
cases according to whether successors of pc are branching points or not.

– If none of them is a branching point, then no additional assignment is generated. Hence,
the local environment lt is not modified and stacks keep related.

– Suppose now some successors of pc are branching points (denoted by pcb). First, because
pc is a branching point, the entry stack ASin[m, pc] has been normalized.

* if pc , pcb, the condition Line ?? is satisfied: none of the assigned Tk
pcb

can be used
in the elements of ASin[m, pc] = asin. Hence, assignments do not modify the stack
equivalence.

* if pc = pcb, then the condition is not meet. In this case, the instruction at point
pc is goto pc. Then assignments are T̃jpc := Tjpc; . . . ; T

j
pc := Tjpc. If pc is not its

only predecessor, Tjpc are already defined in the environment, and assignments do not
modify their value. Now, if pc is its only predecessor, then Tjpc are not yet defined
in the environment: the semantics of the program is stuck. However, the only case
where this instruction is reacheable is when it is the first instruction of the method,
and in this case, the stack is empty, hence no assignments are preprended to the BIR.
Hence, the stack equivalence still holds.

• If pc < jmpTgtPm, we distinguish two cases:

– If succm(pc) ∩ jmpTgtPm , ∅, then asin = newStack(pc, stackSize(pc)). The stack equiv-
alence has to be checked in the environment modified by Assignts(pc, ASin[m, pc]) and
paraAssignts(succm(pc), ASout[m, pc]).
First, none of the assigned T̃kpc are used in ASin[m, pc]: they are put onto the abstract
stack only at point pc and the stack is normalised with a different naming convention on
backward branches. Hence, stacks keep related with regards to the environment lt[T̃kpc 7→
vk] , where vk is the value of the kth element of ASin[m, pc].

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

94

A Provably Correct Stackless Intermediate Representation for Java Bytecode 43

Now, assignments generated by paraAssignts(succm(pc), ASout[m, pc]) modify lt[T̃kpc 7→
vk] but without changing the stack equivalence: all assigned Tj

pcb
(where pcb ∈ succm(pc)

is a branching point) have different identifiers from the T̃kpc.
– Otherwise, asin is set to ASin[m, pc]. But no assignment is preprend to the BIR. Hence,

the environment is not modified and stacks are equivalent.

Thus s ≈ht,̃lt,β asin, where l̃t is equal to lt that has been potentially modified by assignments
preprended to the BIR. In addition, the heap ht is not modified. The hypotheses of Proposition 1 are
thus satisfied, and we obtain that:

〈ht,m, (pc, IR[m, pc]), lt〉
~λ1
=⇒0 〈ht,m, (pc, instrs), l̃t〉

~λ2
=⇒0 〈ht′,m, (pc′, IR[m, pc′]), lt′〉

where the intermediate state 〈ht,m, (pc, instrs), l̃t〉 is obtained by executing potential additional
assignments. By Proposition 1, we have that resulting heaps and environments are equivalent w.r.t. β,
and ~λ !

∼β ~λ2 pro j. Furthermore, ~λ1 is only made of temporary variable assignment events, hence ~λ1 pro j

is empty, and ~λ !
∼β
(~λ1. ~λ2

)
pro j.

We conclude the proof by showing the transmitted abstract stack is equivalent to s′ with regards
to ht′, lt′ and β. Here again, there are two cases:

• If pc′ is not a branching point, then the transmitted abstract stack is ASout[m, pc], resulting from
the basic transformation BC2BIRi. The stack equivalence is here simply given by Proposition 1.

• If pc′ ∈ jmpTgtPm, the transmitted abstract stack is newStackJmp(pc′, stackSize(pc′)). All of the
T
j
pc′

have been assigned, but we must show that they have not been modified since then by the
BIR instructions generated by BC2BIRi. An environment can be modified by BIR instructions
that are either obtained by transforming an store x instruction, or instructions that could mod-
ify the value of ASout[m, pc] elements (see Figure 5.1 for variable or field assignment). In the
first case, the variable is used at BC level and is hence different from all Tj

pc′
. In the second

case, temporary variables are tkpc and have also different identifiers.

Thus, we have s′ ≈ht′,lt′,β ASin[m, pc′]. �

Proposition 4 (BC2BIR - zero call-depth one-step preservation - error case).

Suppose we have 〈h,m, pc, l, s〉
~λ
−→0 Ω

k
pc′ and ht, lt, β are s.t. h ∼β ht, l ∼β lt and s ≈ht,lt,β ASin[m, pc].

Then there exists a unique ~λ′ such that 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒0 Ω
k
pc′ with ~λ !

∼β ~λ′pro j

Proof. Similar to Proposition 3, but using Proposition 2. �

Proposition 5 (BC2BIR - zero call-depth preservation - normal case).

Suppose we have 〈h,m, pc, l, s〉
~λ
=⇒0 〈h′,m, pc′, l′, s′〉 and ht, lt, β are such that h

∼β ht, l ∼β lt and
s ≈ht,lt,β ASin[m, pc].

Then there exist unique ht′, lt′, ~λ′ such that 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒0 〈ht′,m, (pc′, IR[m, pc′]), lt′〉
with h′ ∼β ht′, l′ ∼β lt′, ~λ !

∼β ~λ′pro j and s′ ≈ht′,lt′,β ASin[m, pc′].

Under the same hypotheses, if 〈h,m, pc, l, s〉
~λ
=⇒0 〈h′, rv〉 and s ≈ht,lt,β ASin[m, pc] then there exists a

unique 〈ht′, rv′〉 such that: 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒0 〈ht′, rv′〉, with ~λ !
∼β ~λ′pro j, h′ ∼β ht′ and

rv ∼β rv′.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

95

44 Demange, Jensen and Pichardie

Proof. Similar to Proposition 3, using an induction on the number of steps of the BC computation. �

Proposition 6 (BC2BIR - zero call-depth preservation - error case).

Suppose we have 〈h,m, pc, l, s〉
~λ
=⇒0 Ω

k
pc′ and ht, lt, β are s.t. h ∼β ht, l ∼β lt and s ≈ht,lt,β ASin[m, pc].

Then there exist unique ~λ′ such that 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒0 Ω
k
pc′ with ~λ !

∼β ~λ′pro j.

Proof. As the error state is reached after a given number of normal execution steps, we use here
Propositions 5 and 2. �

We now have to state propositions similar to Propositions 5 and 6, dealing with an arbitrary call-
depth.

Proposition 7 (BC2BIR - multi-step preservation - normal case).

Let n ∈ N. Suppose that 〈h,m, pc, l, s〉
~λ
=⇒n 〈h′,m, pc′, l′, s′〉 and ht, lt, β are such that h ∼β ht, l ∼β lt,

s ≈ht,lt,β ASin[m, pc].

Then there exist unique ht′, lt′, ~λ′ and a unique β′ extending β such that 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒n

〈ht′,m, (pc′, IR[m, pc′]), lt′〉 with ~λ !
∼β′ ~λ′pro j, h′ ∼β′ ht′, l′ ∼β′ lt′ and s′ ≈ht′,lt′,β′ ASin[m, pc′].

Proposition 8 (BC2BIR - multi-step preservation - error case).

Let n ∈ N. Suppose that 〈h,m, pc, l, s〉
~λ
=⇒n Ω

k
pc′ and ht, lt, β are such that h

∼β ht, l ∼β lt, s ≈ht,lt,β

ASin[m, pc].

Then there exist a unique ~λ′ and a unique β′ extending β such that 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒n Ω
k
pc′

with ~λ !
∼β′ ~λ′pro j

The proof of Propositions 7 and 8 will be done by strong induction on the call-depth. For the sake
of clarity, let P(n,m) and PΩ(n,m) denote respectively Propositions 7 and 8, where n is the call depth
and m denotes the method that is being executed. Here, Propositions 5 and 6 are respectively the base
cases P(0,m) and PΩ(0,m). Concerning induction cases, we use an induction on the number of steps
of the BC computation. The base cases are shown using Proposition 9 and 10.

Proposition 9 (BC2BIR - one-step preservation - normal case).

Let n ∈ N. Suppose that P(k,m) for all m and k < n. Suppose that 〈h,m, pc, l, s〉
~λ
−→n 〈h′,m, pc′, l′, s′〉.

Let ht, lt, β be such that h ∼β ht, l ∼β lt, s ≈ht,lt,β ASin[m, pc].

Then there exist unique ht′, lt′ and a unique β′ extending β such that 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒n

〈ht′,m, (pc′, IR[m, pc]), lt′〉 with ~λ !
∼β′ ~λ′pro j, h′ ∼β′ ht′, l′ ∼β′ lt′ and s′ ≈ht′,lt′,β′ ASin[m, pc].

Proof. Here we use the same proof structure than for Proposition 3. Arguments are the same for
showing that the stack equivalence between s and asin is preserved by the potential additional as-

signments. Hence, we have 〈ht,m, (pc, IR[m, pc]), lt〉
~λ1
=⇒0 〈ht,m, (pc, instrs), l̃t〉 with l̃t is the new

environment, l ∼β l̃t and s ≈ht,̃lt,β asin. The instruction list instrs is obtained by the basic transfor-
mation BC2BIRi. We now have to match the BC execution step. We proceed by case analysis on the
BC instruction instrAtP(m, pc).

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

96

A Provably Correct Stackless Intermediate Representation for Java Bytecode 45

• constructor C Here, s = V :: (Ref r) :: s′. By case analysis on the semantic rule that is used,
we have four cases. In the first possible rule, we have h(r) = ot with t = C̃j where C , Ob ject.
Let h1 be the heap such that h1 = h[r 7→ upInit(o, C̃)]. We have that

〈h1,C.init, 1, [this 7→ (Ref r), x1 7→ v1, . . . , xn 7→ vn], ε〉
~λ2
=⇒n−1 〈h′2,Void〉

Only one form of abstract stack is compatible with the transformation to succeed (see Fig-
ure 5.1): only one symbolic expression can be evaluated to a value equivalent to (Ref r) (β is
not defined on r).

Whenever the abstract stack is not simply transmitted to pc from its direct predecessor, then the
abstract stack might be newStackJmp(pc, stackSize(pc)) or newStack(pc, stackSize(pc)). But
both functions preserve the ExprUninit(C, j). Moreover, by hypothesis on the bytecode, we
know that all ASout[m, pc′] contain the same ExprUninit(C, j) at the same places, where pc’ is
a predecessor. Thus, asin is of the form: e1 :: . . . :: en :: ExprUninit(C, j) :: as and v1 :: . . . :: vn ::
(Ref r) :: s ≈ht,̃lt,β asin.

We have BC2BIRi(pc, constructor C, e1 :: . . . :: en :: ExprUninit(C, j) :: as) = ([t1pc :=
e′1; . . . ; tmpc := e′m; t0pc := new C(e1, . . . , en)], as[tipc/ ei][t

0
pc/ExprUninit(C, j)])

Let us follow the semantics of BIR. Let (ht1, r′) = newOb ject(C, ht) and ht′1 = ht1[r′ 7→
upInit(o, C̃). We hence have ht′1(r′) = Blank(̃C). By hypothesis, stacks are equivalent. Thus, for
all i, ht′1, l̃t � ei ⇓ v′i and vi

∼β v′i .

We extend β to β′ to take r′ into account: β′(r) = r′, and we have that h1

∼β′ ht′1: objects pointed

to by r and r′ have the same initialization status, their class is equal, and each of their field has
default values (we have h1(r) = Blank(̃C), and before the call to the constructor, nothing can be
done on this object). Hence, both constructors are called on equivalent initial configurations.
We can now apply P(n − 1,C.init). Hence, we get that there exists β′′ extension of β′ relating
the two resulting heaps and constructor execution traces.

Now, from m point of view, the traces are equivalent: r ← C.init(v1, . . . , vn) !
∼β′′ r′ ←

C.init(v′1, . . . , v
′
n) and the remainder of both traces are equivalent by P(n − 1,C.init). The heaps

have been shown to be equivalent w.r.t β′′, and the environments keep related (only fresh tem-
porary variables have been introduced). The stacks keep equivalent, since t is fresh, and is now
evaluated to r′, which is an equivalent value to r w.r.t β′′.

For other rules, the proof is similar (for the last one, references are already related through the
bijection, which does not need to be extended).

• invokevirtual m We proceed similarely. The current objects are already initialized, hence
the bijection is not extended. We can distinguish between void and value-returning methods:
this information is available in the bytecode program, and we use the equivalence over the last
label of method execution trace given by P(n − 1,mc) to deduce that the BIR method has the
same signature.

Similarely to Proposition 3, we conclude by showing the transmitted abstract stack ASin[m, pc′] is
equivalent to s′. Here again, arguments are the same. �

Proof of Proposition 7. We proceed by strong induction on n.

• As already said, P(0,m) is exactly Proposition 5.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

97

46 Demange, Jensen and Pichardie

• Now suppose that ∀m and k < n,P(k,m). We show P(n,m) by induction on np, the number of
steps of the BC computation.

– If np = 1, then we use Proposition 9.

– Suppose now that np > 1 and P(n,m) holds for all np′-step computations with np′ < np.
Thus, by the definition of call-depth indices, we have that

〈h,m, pc, l, s〉
~λ1
=⇒n1 〈h1,m, pc1, l1, s1〉

~λ2
−−→n2 〈h2,m, pc2, l2, s2〉

(1) (2)

with n1 + n2 = n. Step (1) of the computation is made of np − 1 steps, and step (2) is a
one-step transition. In both cases, we can use the induction hypothesis (respectively on
np − 1 and 1) to get the result.

�

Proposition 10 (BC2BIR - one-step preservation - error case).

Let n ∈ N. Suppose that PΩ(k,m) for all m and k < n. Suppose that 〈h,m, pc, l, s〉
~λ
−→nΩ

k
pc′ . Let ht, lt, β

be such that h ∼β ht, l ∼β lt, s ≈ht,lt,β ASin[m, pc].

Then there exist a unique β′ extending β such that 〈ht,m, (pc, IR[m, pc]), lt〉
~λ′

=⇒nΩ
k
pc′ with ~λ !

∼β′ ~λ′pro j.

Proof. Here again the structure of the proof follows the one of Proposition 3.

Suppose that 〈h,m, pc, l, s〉
~λ
−→n Ω

k
pc′ . By similar arguments than before, we get that s ≈ht,̃lt,β asin.

To match the BC computation step, we now proceed by case analysis on the BC instruction at
program point pc.

• constructor C Here, four error computation steps are possible, according to the initialization
status of the object pointed to by the reference on which the constructor is called.

In the first two cases, the initialization tag of the object is C̃j. A similar reasoning than in the
proof of Proposition 9 can be done to deduce the form of the abstract stack asin and to state
that initial configurations on which the constructor execution starts are equivalent (the bijection
is extended to β′ to take into account the newly allocated object in the BIR heap).

Now, the execution of the BC constructor fails in the stateΩk
pc′ . We use here proposition PΩ(n−

1, C.init) to obtain that the BIR constructor execution fails too in Ωk
pc′ , and their traces are

equivalent with regards to β′.

Traces equivalence holds also from the point of view of the method m (the projection of traces
preserves their equivalence). Finally, error states are equal.

In both other cases, the reference pointing to the object on which the constructor is called is
already tagged as being initialized. Here, the bijection does not need to be extended. Second,
the τ event at the head of the BC trace is matched by the normal execution of the assertion
generated: the initialization of the object is ongoing, thus the reference pointing to it is in the
domain of β, and its equivalent value is also a non-null reference. The rest of the proof is similar.

• invokevirtual Here, the reference pointing to the object on which the method is called is
initialized. Hence the bijection does not need to be extended. Arguments are similar to the
previous case.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

98

A Provably Correct Stackless Intermediate Representation for Java Bytecode 47

�

Proof of Proposition 8. We proceed by strong induction on n.

• As already said, PΩ(0,m) is exactly Proposition 6.

• Now suppose that ∀m and k < n,PΩ(k,m). We show PΩ(n,m) by case analysis on np, the
number of steps of the BC computation.

– If np = 1, then we use Proposition 10.

– Suppose now that np > 1. Thus, by the definition of call-depth indices, we have that

〈h,m, pc, l, s〉
~λ1
=⇒n1 〈h1,m, pc1, l1, s1〉

~λ2
−−→n2 〈h2,m, pc2, l2, s2〉

(1) (2)

with n1 + n2 = n. For the step (1) of this computation, we apply Proposition 7. Then, we
are back in the base case for step (2), and we use Proposition 10.

�

From this proposition, we can derive the final theorem of semantics preservation. For the sake of
simplicity, we only consider the main method of the program. We denote by BC2BIR(P) the mapping
of BC2BIR(P,m) on all the methods m of P.

Theorem 1 (Semantics preservation - normal case).
Let P be a BC program and P′ be its BIR version P′ = BC2BIR(P). Let h0 denote the empty heap and
l0 an arbitrary environment. Let 〈h, main, pc, l, s〉 be a reachable state of P, i.e.

〈h0, main, 1, l0, ε〉
~λ
=⇒n 〈h, main, pc, l, s〉

Then, there exist a heap ht, an environment lt and partial bijection β such that

〈h0, main, (1, instrsAtP′(main, 1)), l0〉
~λ′

=⇒n 〈ht, main, (pc, instrsAtP′(main, pc)), lt〉

with h ∼β ht, l ∼β lt and ~λ !
∼β ~λ′pro j.

Under the same hypotheses, if 〈h0, main, 1, l0, ε〉
~λ
=⇒n 〈h, rv〉 Then, there exist a heap ht and partial

bijection β such that 〈h0, main, (1, instrsAtP′(main, 1)), l0〉
~λ′

=⇒n 〈ht, rv′〉 with h
∼β ht, rv

∼β rv′ and
~λ

!
∼β ~λ′pro j.

A similar theorem is obtained about executions leading to an error state.

Theorem 2 (Semantics preservation - normal case).
Let P be a BC program and P′ be its BIR version P′ = BC2BIR(P). Let h0 denote the empty heap and

l0 an arbitrary environment. If 〈h0, main, 1, l0, ε〉
~λ
=⇒n Ω

k
pc′ , then there exist a partial bijection β such

that 〈h0, main, (1, instrsAtP′(main, 1)), l0〉
~λ′

=⇒n Ω
k
pc′ with ~λ !

∼β ~λ′pro j.

Proof. We use Proposition 7. Starting states fullfill the hypotheses since the heaps are empty, the
environments are equal and the translation algorithm begins on an empty abstract stack. �

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

99

48 Demange, Jensen and Pichardie

We presented the translation algorithm BC2BIR and proved it preserves the semantics of the
initial BC program: the BIR program BC2BIR(P) simulates the program P, and their execution trace
are equivalent. This result gives us some guarantees about the IR of a given program, and brings the
hope that static analyses results obtained about the BIR program could be shifted back to the initial
BC program. In the next section we make a first step towards this “safeness preservation”, through
two simple examples.

5.3 Application example

In this section, we aim at demonstrating how the result of a static analysis on a BIR program can be
translated back to the initial BC program. We illustrate this on three examples of safety property.

Null-pointer error safety In [HJP08], Hubert et al propose a null-pointer analysis on a subset of
Java source and show it correct. Their analysis is based on abstract interpretation and infers, for each
field of each class of the program, whether the field is definitely non-null or possibly null after object
initialization. Adapting their definition for BC we obtain the following safety property:

Definition 9 (BC Null-Pointer error safety). A BC program is said to be null pointer error safe if,

for all pc′, 〈h0, main, 1, l0, ε〉
~λ
=⇒n s implies s , ΩNP

pc′ where h0 is the empty heap and l0 is the empty
environment (the main method is assumed to have no parameters).

Hubert later proposed a Bytecode version for the analysis in [Hub08]. It uses expression recon-
struction to improve the accuracy of the analysis. Additionnaly, as it deals with object initialization,
this analysis definitely needs to reconstruct the link between freshly allocated reference in the heap
and the call of the constructor on it. The BIR language provides this information, and this would have
eased the analysis. The safety property shifted to BIR is defined as follows:

Definition 10 (BIR Null-Pointer error safety). A BIR program P is said to be null pointer error safe

if, for all pc′, 〈h0, main, (1, instrsAtP(main, 1)), l0〉
~λ
=⇒n s implies s , ΩNP

pc′ where h0 is the empty heap
and l0 is the empty environment.

Suppose now given a correct BIR analysis, with regards to the Definition 10. As a direct conse-
quence of Theorem 1, we can show that if a program is deemed safe by the BIR analysis, then the
initial BC program is also null-pointer error safe.

Bounded field value Suppose we want to ensure that in a given program, the integer field f of
each object of class C always has a value within the interval [0, 10] . Interval analyses are the typical
solution for this problem: they determine at each program point an interval in which variables and
object fields take their values. Then, the analysis would check that at every interest program points,
i.e. f fields assignments, the value given to the field is in an appropriate interval. In Section ??, we
saw that the precision of such an analysis is increased with the help of symbolic expressions. Hence,
it would be easier to perform this analysis on the BIR version of the program. Here we prove that if
the program BC2BIR(P) is shown to satisfy this safety property (by mean of a correct static analysis),
then the initial BC program P is also safe. The proof is performed at a rather intuitive level of details.
Further formalization on this is ongoing work.

The problem can be formulated this way. Let L be one of our two languages BC or BIR. A
program p is safe if and only if ~p�L ⊆ SafeL, where ~p�L is the set of all reachable states of p (as
defined in Theorem 1) and SafeL is the set of all states in StateL that are safe:

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

100

A Provably Correct Stackless Intermediate Representation for Java Bytecode 49

Definition 11 (Safe states).
Let p be a L program. A state s ∈ StateL is in SafeL if:

• 〈h0,mainp, 1, l0, ε〉
~λ
=⇒n s, where h0 is empty, and l0 is an arbitrary environment,

• ~λ = λ1λ2 . . . λn and ∀i, SafeE(λi)

where SafeE(λ)⇔ λ < {r.f ← (Num n) | r ∈ Reference, n ∈ [−∞;−1] ∪ [11;+∞]}

Note that safe states could here include error states Ωk
pc, as the safety property only deals with

field assignments. A static analysis can be seen as a function progL → { f ail, ok}, that takes a program
written inL as argument, and returns f ail or ok depending on whether an invalid value can be assigned
to an f field. A given analysis Analyse is said to be correct if the following holds:

∀p ∈ progL,Analyse(p) = ok ⇒ ~p�L ⊆ SafeL

Now, suppose we are given a correct analysis on BIR, AnalyseBIR. Let P be a BC program and
P′ = BC2BIR(P) its BIR version. Suppose that AnalyseBIR(P′) = ok, and hence that the BIR program

is safe. We show that P is also safe. Let s be a reachable state of P, i.e. 〈h0,mainp, 1, l0, ε〉
~λ
=⇒n s with

h0 the empty heap, l0 an arbitrary environment, and ~λ = λ1λ2 . . . λn. Applying Theorem ??, we get
that there exist a state s′, partial bijection β and a trace ~λ′ such that

〈h0,mainP′ , (1, 0), l0〉
~λ′

=⇒n s′ with ~λ !
∼β ~λ′pro j

But P′ is safe, hence for all i ∈ [1; n], we have that SafeE(λ′i) where ~λ′pro j = λ
′
1 . . . λ

′
n. Take j and

n such that λ j = r j.f ← (Num nj). By the definition of !
∼β, we have that λ′j = r′j.f ← (Num nj). We

know that SafeE(λ′j), thus n ∈ [0; 10] and SafeE(λj). Hence, P is safe.

File access safety Our claim is that the correctness propositions of the last section suits well safety
properties expressed as FSM languages. To illustrate this, we take the example of checking whether a
given program correctly accesses a given file: every writing to it is performed after having it opened,
and before closing it. Here again, an analysis on the BIR version of the program appears to be more
easy to performed, thanks to the method call folding – the content of the stack does not need to be
analysed anymore.

LetA = (Σ,Q, δ,I,F) be a FSM, as is standardly defined. Transitions in δ relates states of Q and
are labelled with elements of the alphabet Σ. Initial and final states are respectively in subsets I and
F of Q. The safety property we are interested in can be expressed as a language L(A) of the FSMA
given in Figure 5.7, where the entry word is extracted from the execution trace of the program. More
formally,

Definition 12 (File access safety).
During the execution of the BIR program P, the object file pointed to in the heap by the refer-

ence (Ref r) is accessed safely if, whenever 〈h0, main, (1, instrsAtP(main, 1)), l0〉
~λ
=⇒n 〈ht,Void〉 then

ToSigma(~λr file) ∈ L(A)

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

101

50 Demange, Jensen and Pichardie44 Demange, Jensen and Pichardie

q1start

qFail

q2

open

othw

∗

write

close
othw

Figure 3.7: The FSMA accepting only safe file accesses

where the projection !λr file is

!λ restricted to events in {r.File.open(), r.File.write(v1, . . . , vn), r.File.close()}

and the function ToSigma is defined as:

ToSigma(λ1.!λ) =

open.ToSigma(!λ) if λ1 = [r.File.open()]
write.ToSigma(!λ) if λ1 = [r.File.write(v1, . . . , vn)]
close.ToSigma(!λ) if λ1 = [r.File.close()]

It follows from Theorem 1 that if a BIR program execution trace !λ is safe, then the initial BC
program executes producing a trace !λ′ and that ToSigma(!λ′β−1(r) file) ∈ L(A) (events of trace !λ′ have
been filtered to file accesses to the object pointed to by the corresponding reference in the BC heap).

In this section, we demonstrate on an example how the semantics preservation property of BC2BIR
algorithm could help shifting the results of a given analysis on a BIR program back to the initial BC
program. Our claim is that a similar reasoning could be applied to many other analyses. We also
believe that there exist analyses for which nothing can be said about the initial BC program, given its
result on the BIR version of the program. A direct example would be an analysis that deals with the
allocation history: the bijection β is never made explicit, we only ensure its existence. Investigating
this intuition, and further formalizing this “safety shifting” is left as future work.

Del: paragraph
oriente vers le
chapitre suivant,
a modifier

So far, we formalized both source and target languages of the transformation. In this chapter,
we formalized the algorithm BC2BIR. This algorithm, more precisely some variants of it, already
exist in the literature (see e.g [CFM+97],[XX99], or [WCN05]). Our contribution here is the proof
of its correctness: the semantics of the initial BC program is preserved by the transformation. The
proof argument is based on a commutative diagram (also known as the simulation argument), a rather
classical technique to prove the correctness of program transformations. The notion of simulation
is defined relatively to a partial bijection that relates both heaps throughout the execution of P and
BC2BIR(P). BC is a subset of the Java bytecode language. It is realistic in the sense that it includes
object oriented features and method calls, while it is simple enough to carry the proof with pen and
paper. Scaling the source language up to real-world bytecode requires other tools and techniques:
mechanized proofs. This is subject of the next chapter.

INRIA

Figure 5.7: The FSMA accepting only safe file accesses

where the projection ~λr file is

~λ restricted to events in {r.File.open(), r.File.write(v1, . . . , vn), r.File.close()}

and the function ToSigma is defined as:

ToSigma(λ1.~λ) =

open.ToSigma(~λ) if λ1 = [r.File.open()]
write.ToSigma(~λ) if λ1 = [r.File.write(v1, . . . , vn)]
close.ToSigma(~λ) if λ1 = [r.File.close()]

It follows from Theorem 1 that if a BIR program execution trace ~λ is safe, then the initial BC
program executes producing a trace ~λ′ and that ToSigma(~λ′β−1(r) file) ∈ L(A) (events of trace ~λ′ have
been filtered to file accesses to the object pointed to by the corresponding reference in the BC heap).

In this section, we demonstrate on an example how the semantics preservation property of BC2BIR
algorithm could help shifting the results of a given analysis on a BIR program back to the initial BC
program. Our claim is that a similar reasoning could be applied to many other analyses. We also
believe that there exist analyses for which nothing can be said about the initial BC program, given its
result on the BIR version of the program. A direct example would be an analysis that deals with the
allocation history: the bijection β is never made explicit, we only ensure its existence. Investigating
this intuition, and further formalizing this “safety shifting” is left as future work.

So far, we formalized both source and target languages of the transformation. In this chapter,
we formalized the algorithm BC2BIR. This algorithm, more precisely some variants of it, already
exist in the literature (see e.g [CFM+97],[XX99], or [WCN05]). Our contribution here is the proof
of its correctness: the semantics of the initial BC program is preserved by the transformation. The
proof argument is based on a commutative diagram (also known as the simulation argument), a rather
classical technique to prove the correctness of program transformations. The notion of simulation
is defined relatively to a partial bijection that relates both heaps throughout the execution of P and
BC2BIR(P). BC is a subset of the Java bytecode language. It is realistic in the sense that it includes
object oriented features and method calls, while it is simple enough to carry the proof with pen and
paper. Scaling the source language up to real-world bytecode requires other tools and techniques:
mechanized proofs. This is subject of the next chapter.

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

102

A Provably Correct Stackless Intermediate Representation for Java Bytecode 51

Chapter 6

Conclusions

As noticed by Logozzo and Fähndrich [LF08], static analysis of bytecode programs is made specially
difficult because of their intensive use of the operand stack. This paper provides a semantically sound,
provably correct specification of a transformation of byte code into an intermediate representations
(IR) of bytecode that i) removes the use of the operand stack and rebuilds tree expressions, ii) makes
more explicit the throwing of exception and takes care of preserving their order, iii) rebuild the initial-
isation chain of an object with a dedicated instruction x := new C(arg1,arg2,...).

Further extensions may be twofold. First we would like to extend this work into a multi-threading
context. This is a challenging task because symbolic expressions may be invalidated by concurrent
accesses. The second extension concerns mechanization of the development. We believe the current
transformation would be a valuable layer on top of the formal JVM semantics Bicolano that have
been developed during the European MOBIUS project. We would like to use the Coq extraction
mechanism to extract certified and efficient Caml code for the algorithm from a Coq formalisation of
the algorithm.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

103

52 Demange, Jensen and Pichardie

INRIA

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

104

A Provably Correct Stackless Intermediate Representation for Java Bytecode 53

Bibliography

[AAG+07] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of java bytecode. In
Proc. of ESOP’07, volume 4421, pages 157–172. Springer-Verlag, 2007.

[BCF+99] M G. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M J. Serrano, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The jalapeño dynamic optimizing compiler for java. In Proc. of
JAVA ’99, pages 129–141. ACM, 1999.

[BJP06] F. Besson, T. Jensen, and D. Pichardie. Proof-carrying code from certified abstract interpretation
and fixpoint compression. Theor. Comput. Sci., 364(3):273–291, 2006.

[BN05] A. Banerjee and D. A. Naumann. Stack-based access control and secure information flow. Journal
of Functional Programming, 15(2):131–177, 2005.

[BR05] G. Barthe and T. Rezk. Non-interference for a jvm-like language. In Proc. of TLDI ’05, pages
103–112, New York, NY, USA, 2005. ACM.

[CFM+97] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M. Wolczko. Compiling java just
in time. IEEE Micro, 17(3):36–43, 1997.

[FM99] Stephen N. Freund and John C. Mitchell. The type system for object initializatiion in the jave
bytecode language. ACM Trans. Program. Lang. Syst., 21(6):1196–1250, 1999.

[FM03] S. N. Freund and J. C. Mitchell. A type system for the java bytecode language and verifier. J.
Autom. Reason., 30(3-4):271–321, 2003.

[GHM00] E. Gagnon, L. J. Hendren, and G. Marceau. Efficient inference of static types for java bytecode.
In Proc. of SAS’00, pages 199–219. Springer-Verlag, 2000.

[HJP08] L. Hubert, T. Jensen, and D. Pichardie. Semantic foundations and inference of non-null annota-
tions. In Proc. of FMOODS 2008, volume 5051 of LNCS, pages 132–149. Springer Berlin, June
2008.

[Hub08] Laurent Hubert. A Non-Null annotation inferencer for Java bytecode. In Proceedings of the
Workshop on Program Analysis for Software Tools and Engineering (PASTE’08). ACM, Novem-
ber 2008.

[LF08] F. Logozzo and M. Fähndrich. On the relative completeness of bytecode analysis versus source
code analysis. In Proc. of CC 2008, pages 197–212. Springer LNCS 4959, 2008.

[VRCG+99] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a java bytecode
optimization framework. In Proc. of CASCON ’99. IBM Press, 1999.

[WCN05] M. Wildmoser, A. Chaieb, and T. Nipkow. Bytecode analysis for proof carrying code. In Proc. of
BYTECODE 2005, Electronic Notes in Computer Science, 2005.

[Wha99] J. Whaley. Dynamic optimization through the use of automatic runtime specialization. Master’s
thesis, Massachusetts Institute of Technology, May 1999.

[XX99] H. Xi and S. Xia. Towards array bound check elimination in java tm virtual machine language. In
Proc. of CASCON ’99, page 14. IBM Press, 1999.

RR n° 0123456789

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

105

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

106

Certification using the Mobius Base Logic

Lennart Beringer1, Martin Hofmann1, and Mariela Pavlova2

1 Institut für Informatik, Universität München
Oettingenstrasse 67, 80538 München, Germany

2 Trusted Labs, Sophia-Antipolis, France
{beringer|mhofmann}@tcs.ifi.lmu.de,Mariela.Pavlova@trusted-labs.fr

Abstract. This paper describes a core component of Mobius’ Trusted
Code Base, the Mobius base logic. This program logic facilitates the
transmission of certificates that are generated using logic- and type-based
techniques and is formally justified w.r.t. the Bicolano operational model
of the JVM. The paper motivates major design decisions, presents core
proof rules, describes an extension for verifying intensional code proper-
ties, and considers applications concerning security policies for resource
consumption and resource access.

1 Introduction: Role of the logic in Mobius

The goal of the Mobius project consists of the development of proof-carrying
code (PCC) technology for the certification of resource-related and information-
security-related program properties [16]. According to the PCC paradigm, code
consumers are invited to specify conditions (“policies”) which they require trans-
mitted code to satisfy before they are willing to execute such code. Providers of
programs then complement their code with formal evidence demonstrating that
the program adheres to such policies. Finally, the recipient validates that the
obtained evidence (“certificate”) indeed applies to the transmitted program and
is appropriate for the policy in question before executing the code.

One of the cornerstones of a PCC architecture is the trusted computing base
(TCB), i.e. the collection of notions and tools in whose correctness the recipi-
ent implicitly trusts. Typically, the TCB consists of a formal model of program
execution, plus parsing and transformation programs that translate policies and
certificates into statements over these program executions. The Mobius architec-
ture applies a variant of the foundational PCC approach [2] where large extents
of the TCB are represented in a theorem prover, for the following reasons.

– Formalising a (e.g. operational) semantics of transmitted programs in a the-
orem prover provides a precise definition of the model of program execution,
making explicit the underlying assumptions regarding arithmetic and logic

– The meaning of policies may be made precise by giving formal interpretations
in terms of the operational model

– Theorem provers offer various means to define formal notions of certificates,
ranging from proof scripts formulated in the user interface language (includ-
ing tactics) of the theorem prover to terms in the prover’s internal represen-
tation language for proofs (e.g. lambda-terms).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

107

In particular, the third item allows one to employ a variety of certificate notions
in a uniform framework, and to explore their suitability for different certifi-
cate generation techniques or families of policies. In contrast to earlier PCC
systems which targeted mostly type- and memory-safety [27, 2], policies and
specifications in Mobius are more expressive, ranging from (upper) bounds on
resource consumption, via access regulations for external resources and security
specifications limiting the flow of information to lightweight functional speci-
fications [16]. Thus, the Mobius TCB is required to support program analysis
frameworks such as type systems and abstract interpretation, but also logical
reasoning techniques.

Information Flow
Type Systems

Resource Type
System

JML
Specifications

Logic-based Verification
Tools (FreeBoogie, VCgens)

Other Program
Analyses

The Mobius
Base Logic

Bicolano

Fig. 1. Core components of the MOBIUS TCB

Figure 1 depicts the components of the Mobius TCB and their relations. The
base of the TCB is formed by a formalised operational model of the Java Virtual
Machine, Bicolano [30], which will be briefly described in the next section. Its
purpose is to define the meaning of JVML programs unambiguously and to serve
as the foundation on which the PCC framework is built. In order to abstract
from inessential details, a program logic is defined on top of Bicolano. This pro-
vides support for commonly used verification patterns such as the verification of
loops. Motivated by verification idioms used in higher-level formalisms such as
type systems, the JML specification language, and verification condition genera-
tors, the logic complements partial-correctness style specifications by two further
assertion forms: local annotations are attached to individual program points and

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

108

are guaranteed to hold whenever the annotated program point is visited during
a program execution. Strong invariants assert that a particular property will
continue to hold for all future states during the execution of a method, includ-
ing states inside inner method invocations. The precise interpretation of these
assertion forms, and a selection of proof rules will be described in Section 3.

We also present an extension of the program logic that supports reasoning
about the effects of computations. The extended logic arises uniformly from a
corresponding generic extension of the operational semantics. Using different
instantiations of this framework one may obtain domain-specific logics for rea-
soning about access to external resources, trace properties, or the consumption
of resources. Polices for such domains are difficult if not impossible to express
purely in terms of relations between initial and final states. The extension is
horizontal in the sense of Czarnik and Schubert [20] as it is conservative over
the non-extended (“base”) architecture.

The glue between the components is provided by the theorem prover Coq,
i.e. many of the soundness proofs have been formalised. The encoding of the pro-
gram logics follow the approach advocated by Kleymann and Nipkow [25, 29] by
employing a shallow embedding of formulae. Assertions may thus be arbitrary
Coq-definable predicates over states. Although the logic admits the encoding of
a variety of program analyses and specification constructs, it should be noted
that the architecture does not mandate that all analyses be justified with respect
to this logic. Indeed, some type systems for information flow, for example, are
most naturally expressed directly in terms of the operational semantics, as al-
ready the definition of information flow security is a statement over two program
executions. In neither case do we need to construct proofs for concrete programs
by hand which would be a daunting task in all but the simplest examples. Such
proofs are always obtained from a successful run of a type system or program
analysis by an automatic translation into the Mobius infrastructure. Examples
of this method are given in Sections 4 and 5.2.

Outline We give a high-level summary of the operational model Bicolano [30],
restricted to a subset of instructions relevant for the present paper, in Section
2. In Section 3 we present the program logic. Section 4 contains an example of a
type-based verification and shows how a bytecode-level type system guaranteeing
a constant upper bound on the number of heap allocations may be encoded in
the logic. The extended program logic is outlined in Section 5, together with an
application concerning a type system for numeric correspondence assertions [34].
We first discuss some related work.

1.1 Related work

The basic design decisions for the base logic were presented in [8], and the reader
is referred to loc.cit. for a more in-depth motivation of the chosen format of as-
sertions and rules. In that paper, we also presented a type-system for constant
heap space consumption for a functional intermediate language, such that typing

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

109

derivations could be translated into program logic derivations over an appropri-
ately restricted judgement form. In contrast, the type system given in the present
paper works directly on bytecode and hence eliminates the language translation
from the formalised TCB.

The first proposal for a program logic for bytecode we are aware of is the
one by Quigley [31]. In order to justify a rule for while loops, Quigley introduces
various auxiliary notions for relating initial states to intermediate states of an
execution sequence, and for relating states that behave similarly but apply to
different classes. Bannwart and Müller [4] present a logic where assertions ap-
ply at intermediate states and are interpreted as preconditions of the assertions
decorating the successor instructions. However, the occurrence of these local
specifications in positive and negative positions in this interpretation precludes
the possibility of introducing a rule of consequence. Indeed, our proposed rule
format arose originally from an attempt to extend Bannwart and Müller’s logic
with a rule of consequence and machinery for allowing assertions to mention ini-
tial states. Strong invariants were introduced by the Key project [6] for reasoning
about transactional safety of Java Card applications using dynamic logics [7].

Regarding formal encodings of type systems into program logics, Hähnle et
al. [23], and Beringer and Hofmann [9] consider the task of representing infor-
mation flow type systems in program logics, while the MRG project focused on
a formalising a complex type system for input-dependent heap space usage [10].

Certified abstract interpretation [11] complements the type-based certificate
generation route considered in the present paper. Similar to the relationship
between Necula-Lee-style PCC [27] and foundational PCC by Appel et al. [2],
certified abstract interpretation may be seen as a foundational counterpart to
Albert et al.’s Abstraction-carrying code [1]. Bypassing the program logic, the
approach chosen in [11] justifies the program analysis directly with respect to
the operational semantics. A generic framework for certifying program analyses
based on abstract interpretation is presented by Chang et al. [14]. The possibility
to view abstract interpretation frameworks as inference engines for invariants and
other assertions in program logics in general was already advocated in one of the
classic papers by Cousot & Cousot in [18].

Nipkow et al.’s VeryPCC project [33] explores an alternative foundational ap-
proach by formally proving the soundness of verification condition generators. In
particular, [32] presents generic soundness and completeness proofs for VCGens,
together with an instantiation of the framework to a safety policy preventing
arithmetic overflows. Generic PCC architectures have recently been developed
by Necula et al. [15] and the FLINT group [22].

2 Bicolano

Syntax and States We consider an arbitrary but fixed bytecode program P that
assigns to each method identifier M a method implementation mapping instruc-
tion labels l to instructions. We use the notation M(l) to denote the instruction
at program point l in M , and initM , sucM (l), and parM to denote the initial

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

110

label of M , the successor label of l in M , and the list of formal parameters of
M , respectively. While the Bicolano formalisation supports the full sequential
fragment of the JVML, this paper treats the simplified language given by the
basic instructions

basic(M, l) ≡ M(l) ∈

 load x, store x, dup, pop, push z,
unop u, binop o, new c, athrow,
getfield c f, putfield c f, getstatic c f, putstatic c f

and additionally conditional and unconditional jumps ifz l and goto l, static and
virtual method invocations invokestatic M and invokevirtual M , and vreturn.

Values and states The domain V of values is ranged over by v, w, . . . and com-
prises constants (integers z and Null), and addresses a, . . . ∈ A. States are built
from operand stacks, stores, and heaps

O ∈ O = V list S ∈ S = X ⇀fin V h ∈ H = A ⇀fin C × (F ⇀fin V)

where X , C and F are the domains of variables, class names, and field names,
respectively. In addition to local states comprising operand stacks, stores, and
heaps,

s, r ∈ Σ = O × S ×H,

we consider initial states Σ0 and terminal states T

s0 ∈ Σ0 = S ×H t ∈ T ::= NormState(h, v) + ExcnState(h, a)

These capture states which occur at the beginning and the end of a frame’s exe-
cution. Terminal states t are tagged according to whether the return value repre-
sents a pointer to an unhandled exception object (constructor ExcnState(., .)) or
an ordinary return value (constructor NormState(., .)). For s0 = (S, h) we write
state(s0) = ([], S, h) for the local state that extends s0 with an empty operand
stack. For parM = [x1, . . . , xn] and O = [v1, . . . , vn] we write parM 7→ O for
[xi 7→ vi]i=1,...,n. We write heap(s) to access the heap component of a state s,
and similarly for initial and terminal states. Finally, lv(.) denotes the local vari-
able component of a state and getClass(h, a) extracts the dynamic class of the
object at location a in heap h.

Operational judgements Bicolano defines a variety of small-step and big-step
judgements, with compatibility proofs where appropriate. For the purpose of
the present paper, the following simplified setup suffices3 (cf. Figure 2):

Non-exceptional steps The judgement `M l, s ⇒norm l′, r describes the (non-
exceptional) execution of a single instruction, where l′ is the label of the
next instruction (given by sucM (l) or jump targets). The rules are largely
standard, so we only give a rule for the invocation of static methods, Invs-
Norm.

3 The formalisation separates the small-step judgements for method invocations from
the execution of basic instructions and jumps, and then defines a single recursive
judgement combining the two. See [30] for the formal details.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

111

Exceptional steps The judgement `M l, s ⇒excn h, a describes exceptional
small steps where the execution of the instruction at program point M, l in
state s results in the creation of a fresh exception object, located at address
a in the heap h. In the case of method invocations, a single exceptional step
is also observed by the callee if the invoked method raised an exception that
could not be locally handled (cf. rule InvsExcn).

Small step judgements Non-exceptional and handled exceptional small steps
are combined to the small step judgement `M l, s ⇒ l′, r using the two rules
NormStep and ExcnStep. The reflexive transitive closure of this relation
is denoted by `M l, s ⇒∗ l′, r

Big-step judgements The judgement form `M l, s ⇓ t captures the execu-
tion of method M from the instruction at label l onwards, until the end of
the method. This relation is defined by the three rules Comp, Vret and
Uncaught.

Deep step judgements The judgement `M l, s ⇑ r is defined similarly to
the big-step judgement, by the rules D-Refl, D-Trans D-Invs, and D-
Uncaught. This judgement associates states across invocation boundaries,
i.e. r may occur in a subframe of the method M . This is achieved by rule D-
Invs which associates a call state of a (static) method with states reachable
from the initial state of the callee. A similar rule for virtual methods is
omitted from this presentation.

Small and big-step judgements are mutually recursive due to the occurrence of
a big-step judgement in hypotheses of the rules for method invocations on the
one hand and rule Comp on the other.

3 Base logic

This section outlines the non-resource-extended program logic.

3.1 Phrase-oriented assertions and judgements

The structure of assertions and judgements of the logic are governed by the
requirement to enable the interpretation of type systems as well as the rep-
resentation of core idioms of JML. High-level type systems typically associate
types (in contexts) to program phrases. Compiling a well-formed program phrase
into bytecode yields a code segment that is the postfix of a JVM method, i.e. all
program points without control flow successors contain return instructions. Con-
sequently, judgements in the logic associate assertions to a program label which
represents the execution of the current method invocation from the current point
(i.e. a state applicable at the program point) onwards. In case of method termi-
nation, a partial-correctness assertion (post-condition) applies that relates this
current state to the return state. As the guarantee given by type soundness re-
sults often extends to infinite computations (e.g. type safety, i.e. absence of type
errors), judgements furthermore include assertions that apply to non-terminating

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

112

InvsNorm

M(l) = invokestatic M ′

`M′ initM′ , ([], parM′ 7→ O, h) ⇓ NormState(k, v)

`M l, (O@O′, S, h) ⇒norm sucM (l), (v :: O′, S, k)

InvsExcn

M(l) = invokestatic M ′

`M′ initM′ , ([], parM′ 7→ O, h) ⇓ ExcnState(k, a)

`M l, (O@O′, S, h) ⇒excn k, a

NormStep
`M l, s ⇒norm l′, r

`M l, s ⇒ l′, r
ExcnStep

`M l, (O, S, h) ⇒excn k, a
getClass(k, a) = e Handler(M, l, e) = l′

`M l, (O, S, h) ⇒ l′, ([a], S, k)

Comp
`M l, s ⇒ l′, s′ `M l′, s′ ⇓ t

`M l, s ⇓ t
Vret

M(l) = vreturn

`M l, (v :: O, S, h) ⇓ NormState(h, v)

Uncaught
`M l, s ⇒excn h, a getClass(h, a) = e Handler(M, l, e) = ∅

`M l, s ⇓ ExcnState(h, a)

D-Refl`M l, s ⇑ s
D-Trans

`M l, s ⇒ l′, s′ `M l′, s′ ⇑ s′′

`M l, s ⇑ s′′

D-Invs
M(l) = invokestatic M ′ `M′ initM′ , ([], parM′ 7→ O, h) ⇑ s

`M l, (O@O′, S, h) ⇑ s

D-Uncaught
`M l, s ⇒excn h, a getClass(h, a) = e Handler(M, l, e) = ∅

`M l, s ⇑ ([a], ∅, h)

Fig. 2. Bicolano: selected judgements and operational rules

computations. These strong invariants relate the state valid at the subject la-
bel to each future state in the current method invocation. This interpretation
includes states in subframes, i.e. in method invocations that are triggered in the
phrase represented by the subject label.

Infinite computations are also covered by the interpretation of local anno-
tations in JML, i.e. assertions occurring at arbitrary program points which are
to be satisfied whenever the program point is visited. The logic distinguishes
these explicitly given annotation from strong invariants as the former ones are
not necessarily present at all program points. A further specification idiom of
JML that has a direct impact on the form of assertions is \old which refers to
the initial state of a method invocation and may appear in post-conditions, local
annotations, and strong invariants.

Formulae that are shared between postconditions, local annotations, and
strong invariant, and additionally only concern the relationship between the sub-
ject state and the initial state of the method may be captured in pre-conditions.

Thus, the judgement of the logic are of the form G ` {A}M, l {B} (I) where
M, l denotes a program point (composed of a method identifier and an instruc-

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

113

tion label), and the assertions forms are as follows, where B denotes the set of
booleans.

Assertions A ∈ Assn = Σ0 ×Σ → B occur as preconditions A and local
annotations Q, and relate the current state to the initial state of the current
frame.

Postconditions B ∈ Post = Σ0 ×Σ × T → B relate the current state to the
initial and final state of a (terminating) execution of the current frame.

Invariants I ∈ Inv = Σ0 ×Σ ×Σ → B relate the initial state of the current
method, the current state, and any future state of the current frame or a
subframe of it.

The component G of a judgement represents a proof context and is represented
as an association of specification triples (A,B, I) ∈ Assn×Post×Inv to program
points.

The behaviour of methods is described using three assertion forms.

Method preconditions R ∈ MethPre = Σ0 → B are interpreted hypothet-
ically, i.e. their satisfaction implies that of the method postconditions and
invariants but is not directly enforced to hold at all invocation points.

Method postconditions T ∈ MethSpec = Σ0 × T → B constrain the be-
haviour of terminating method executions and thus relate only initial and
final states.

Method invariants Φ ∈ MethInv = Σ0 ×Σ → B constrain the behaviour of
terminating and non-terminating method executions by relating the initial
state of a method frame to any state that occurs during its execution.

A program specification is given by a method specification table M that asso-
ciates to each method a method specification S = (R, T, Φ), a proof context G,
and a table Q of local annotations Q ∈ Assn. From now on, let M denote some
arbitrary but fixed specification table satisfying dom M = dom P .

3.2 Assertion transformers

In order to notationally simplify the presentation of the proof rules, we define
operators that relate assertions occurring in judgements of adjacent instructions.
The following operators apply to the non-exceptional single-step execution of
basic instructions.

Pre(M, l, l′, A)(s0, r) = ∃ s. `M l, s ⇒norm l′, r ∧A(s0, s)
Post(M, l, l′, B)(s0, r, t) = ∀ s. `M l, s ⇒norm l′, r → B(s0, s, t)

Inv(M, l, l′, I)(s0, r, t) = ∀ s. `M l, s ⇒norm l′, r → I(s0, s, t)

These operators resemble WP-operators, but are separately defined for pre-
conditions, post-conditions, and invariants.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

114

Exceptional behaviour of basic instructions is captured by the operators

Preexcn(M, l, e, A)(s0, r) = ∃ s h a. `M l, s ⇒excn h, a ∧ getClass(h, a) = e ∧
r = ([a], lv(s), h) ∧A(s0, s)

Postexcn(M, l, e, B)(s0, r, t) = ∀ s h a. `M l, s ⇒excn h, a → getClass(h, a) = e →
r = ([a], lv(s), h) → B(s0, s, t)

Invexcn(M, l, e, I)(s0, r, t) = ∀ s h a. `M l, s ⇒excn h, a → getClass(h, a) = e →
r = ([a], lv(s), h) → I(s0, s, t)

In the case of method invocations, we replace the reference to the operational
judgement by a reference to the method specifications, and include the construc-
tion and destruction of a frame. For example, the operators for non-exceptional
execution of static methods are

Presinv(R, T, A, [x1, . . . , xn])(s0, s) =
∃ O S h k v vi. (R([xi 7→ vi]ni=1, h) → T (([xi 7→ vi]ni=1, h), (k, v))) ∧

s = (v :: O,S, k) ∧A(s0, ([v1, . . . , vn]@O,S, h))
Postsinv(R, T, B, [x1, . . . , xn])(s0, r, t) =
∀ O S k k v vi. (R([xi 7→ vi]ni=1, h) → T (([xi 7→ vi]ni=1, h), (k, v))) →

r = (v :: O,S, k) → B(s0, ([v1, . . . , vn]@O,S, h), t)
Invsinv(R, T, I, [x1, . . . , xn])(s0, s, r) =
∀ O S k k v vi. (R([xi 7→ vi]ni=1, h) → T (([xi 7→ vi]ni=1, h), (k, v))) →

s = (v :: O,S, k) → I(s0, ([v1, . . . , vn]@O,S, h), r)

The exceptional operators for static methods cover exceptions that are raised
during the execution of the invoked method but not handled locally. Due to
space limitations we omit the operators for exceptional (null-pointer exceptions
w.r.t. the invoking object) and non-exceptional behaviour of virtual methods.

3.3 Selected proof rules

An addition to influencing the types of assertions, type systems also motivate the
use of a certain form of judgements and proof rules. Indeed, one of the advantages
of type systems is their compositionality i.e. the fact that statements regarding
a program phrase are composed from the statements referring to the constituent
phrases, as in the following typical proof rule for a language of expressions

` e1 : int ` e2 : int
` e1 + e2 : int

.

Transferring this scheme to bytecode leads to a rule format where hypothetical
judgements refer to the control flow successors of the phrase in the judgement’s
conclusion. In addition to supporting syntax-directed reasoning, this orienta-
tion renders the explicit construction of a control flow graph unnecessary, as no
control flow predecessor information is required to perform a proof.

Figure 3 presents selected proof rules. These are motivated as follows.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

115

Instr

basic(M, l) SC 1 SC 2 l′′ = sucM (l)
G ` {Pre(M, l, l′′, A)}M, l′ {Post(M, l, l′′, B)} (Inv(M, l, l′′, I))

∀ l′ e. Handler(M, l, e) = l′ →
G ` {Preexcn(M, l, e, A)}M, l′ {Postexcn(M, l, e, B)} (Invexcn(M, l, e, I))
∀ s0 s h a. (∀ e. getClass(h, a) = e → Handler(M, l, e) = ∅) →

`M l, s ⇒excn h, a → A(s0, s) → B(s0, s, (h, a))

G ` {A}M, l {B} (I)

Goto

M(l) = Goto l′ SC 1 SC 2

G ` {Pre(M, l, l′, A)}M, l′ {Post(M, l, l′, B)} (Inv(M, l, l′, I))

G ` {A}M, l {B} (I)

If0

M(l) = ifz l′ SC 1 SC 2 l′′ = sucM (l)
G ` {Pre(M, l, l′, A)}M, l′ {Post(M, l, l′, B)} (Inv(M, l, l′, I))

G ` {Pre(M, l, l′′, A)}M, sucM (l) {Post(M, l, l′′, B)} (Inv(M, l, l′′, I))

G ` {A}M, l {B} (I)

InvS

M(l) = invokestatic M ′ M(M ′) = (R, T, Φ) SC 1 SC 2

∀ s0 O S h O′ r vi. (R(parM′ 7→ O, h) → Φ((parM′ 7→ O, h), r)) →
A(s0, (O@O′, S, h)) → I(s0, (O@O′, S, h), r)

A1 = Presinv(R, T, A, parM′) B1 = Postsinv(R, T, B, parM′)
G ` {A1}M, sucM (l) {B1} (Invsinv(R, T, I, parM′))

∀ l′ e. Handler(M, l, e) = l′ →
G ` {Preexcn

sinv (R, T, A, e, parM′)} M, l′ {Postexcnsinv (R, T, B, e, parM′)}
(Invexcn

sinv (R, T, I, e, parM′))
∀ s0 O S h O′ k a. (R(parM′ 7→ O, h) → Φ((parM′ 7→ O, h), (k, a))) →

(∀ e. getClass(k, a) = e → Handler(M, l, e) = ∅) →
A(s0, (O@O′, S, h)) → B(s0, (O@O′, S, h), (k, a))

G ` {A}M, l {B} (I)

Ret

M(l) = vreturn SC 1 SC 2

∀ s0 v O S h. A(s0, (v :: O, S, h)) → B(s0, (v :: O, S, h), (h, v))

G ` {A}M, l {B} (I)

Conseq

G ` {A′} ` {B′} (I ′) ∀ s0 s. A(s0, s) → A′(s0, s)
∀ s0 s t. B′(s0, s, t) → B(s0, s, t) ∀ s0 s r. I ′(s0, s, r) → I(s0, s, r)

G ` {A} ` {B} (I)

Ax

G(`) = (A, B, I) ∀ s0 s. A(s0, s) → I(s0, s, s)
∀Q. Q(`) = Q → (∀ s0 s. A(s0, s) → Q(s0, s))

G ` {A} ` {B} (I)

Fig. 3. Program logic: selected syntax-directed rules

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

116

Rule INSTR describes the behaviour of basic instructions. The hypothetical
judgement for the successor instruction involves assertions that are related to
the assertions in the conclusion by the transformers for normal termination. A
further hypothesis captures exceptions that are handled locally, i.e. those ex-
ceptions e to which the exception handler of the current method associates a
handling instruction (predicate Handler(M, l, e) = l′). Exceptions that are not
handled locally result in abrupt termination of the method. Consequently, these
exceptions are modelled in a side condition that involves the method postcondi-
tion rather than a further judgemental hypothesis.

Finally, the side conditions SC 1 and SC 2 ensure that the invariant I and the
local annotation Q (if existing) are satisfied in any state reaching label l.

SC 1 = ∀ s0 s. A(s0, s) → I(s0, s, s)
SC 2 = ∀Q. Q(M, l) = Q → (∀ s0 s. A(s0, s) → Q(s0, s))

In particular, SC 2 requires us to prove any annotation that is associated with
label l. Satisfaction of I in later states, and satisfaction of local annotations Q′

of later program points are guaranteed by the judgement for sucM (l).
The rules for conditional and unconditional jumps include a hypotheses for

the control flow successors, and the same side conditions for local annotations
and invariants as rule Instr. No further hypotheses or side conditions regarding
exceptional behaviour are required as these instructions do not raise exceptions.
These rules also account for the verification of loops which on the level of byte-
code are rendered as jumps. Loop invariants can be inserted as postconditions
B at their program point. Rule Ax allows one to use such invariants whereas
according to Definition 1 they must be established once in order for a verification
to be valid.

In rule InvS, the invariant of the callee, namely Φ (more precisely: the sat-
isfaction of Φ whenever the initial state of the callee satisfies the precondition
R), and the local precondition A may be exploited to establish the invariant I.
This ensures that I will be satisfied by all states that arise during the execution
of M ′, as these states will always conform to Φ. The callee’s post-condition T
is used to construct the assertions that occur in the judgement for the succes-
sor instruction l′. Both conditions reflect the transfer of the method arguments
and return values between the caller and the callee. This protocol is repeated in
the hypothesis and the side condition for the exceptional cases which otherwise
follow the pattern mentioned in the description of the rule Instr.

A similar rule for virtual methods is omitted. The rule for method returns,
Ret, ties the precondition A to the post-condition B w.r.t. the terminal state
that is constructed using the topmost value of the operand stack.

Finally, the logical rules Conseq and Ax arise from the standard rules by
adding suitable side conditions for strong invariants and local assertions.

3.4 Behavioural subtyping and verified programs

We say that method specification (R, T, Φ) implies (R′, T ′, Φ′) if

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

117

– for all s0 and t, R(s0) → T (s0, t) implies R′(s0) → T ′(s0, t) , and
– for all s0 and s, R(s0) → Φ(s0, s) implies R′(s0) → Φ′(s0, s)

Furthermore, we say that M satisfies behavioural subtyping for P if whenever
P contains an instruction invokevirtual M ′ with M(M ′) = (S ′,G′,Q′), and M
overrides M ′, then there are S, G and Q with M(M) = (S,G,Q) such that S
implies S ′. Finally, we call a derivation G ` {A}M, l {B} (I) progressive if it
contains at least one application of a non-logical rule.

Definition 1. P is verified with respect to M, notation M ` P , if

– M satisfies behavioural subtyping for P , and
– for all M , M(M) = (S,G,Q), and S = (R, T, Φ)

• a progressive derivation G ` {A}M, l {B} (I) exists for any l, A, B, and
I with G(M, l) = (A,B, I), and

• a progressive derivation G ` {A}M, initM {B} (I) exists for

A(s0, s) ≡ s = state(s0) ∧R(s0)
B(s0, s, t) ≡ s = state(s0) → T (s0, t)
I(s0, s, r) ≡ s = state(s0) → Φ(s0, r).

As the reader may have noticed, behavioural subtyping only affects method spec-
ifications but not the proof contexts G or annotation tables Q. Technically, the
reason for this is that no constraints on these components are required in order to
prove the logic sound. Pragmatically, we argue that proof contexts and local an-
notations tables of overriding methods indeed should not be related to contexts
and annotation tables of their overridden counterparts, as both kinds of tables
expose the internal structure of method implementations. In particular, entries
in proof contexts and annotation tables are formulated w.r.t. specific program
points, which would be difficult to interprete outside the method boundary or
indeed across different (overriding) implementations of a method.

The distinction between progressive and non-progressive derivations prevents
attempts to justify a proof context or method specification table simply by ap-
plying the axiom rule to all entries. In program logics for high-level languages,
the corresponding effect is silently achieved by the unfolding of the method body
in the rule for method invocations [29]. As our judgemental form does not permit
such an unfolding, the auxiliary notion of progressive derivations is introduced.
In our formalisation, the separation between progressive and other derivations
is achieved by the introduction of a second judgement form, as described in [8].

3.5 Interpretation and soundness

Definition 2. The triple (Q, B, I) is valid at (M, l) for (s0, s) if

– for all r, if `M l, s ⇓ t then B(s0, s, t)
– for all l′ and r, if `M l, s ⇒∗ l′, r and Q(l′) = Q, then Q(s0, r), and
– for all r, if `M l, s ⇑ r then I(s0, s, r).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

118

Note that the second clause applies to annotations Q associated with arbi-
trary labels l′ in method M that will be visited during the execution of M from
(l, s) onwards. Although these annotations are interpreted without recourse to
the state s, the proof of Q(s0, r) may exploit the precondition A(s0, s).

The soundness result is then as follows.

Theorem 1. For M ` P let M(M) = (S,G,Q), G ` {A}M, l {B} (I) be a
progressive derivation, and A(s0, s). Then (Q, B, I) is valid at (M, l) for (s0, s).

In particular, this theorem implies that for M ` P all method specifica-
tions in M are honoured by their method implementations. The proof of this
result may be performed in two ways. Following the approach of Kleymann and
Nipkow [25, 29, 3], one would first prove that the derivability of a judgement en-
tails its validity, under the hypothesis that contextual judgements have already
been validated. For this task, the standard technique involves the introduction
of relativised notions of validity that restrict the interpretation of judgements to
operational judgements of bounded height. Then, the hypothesis on contextual
judgements is eliminated using structural properties of the relativised validity.
An alternative to this approach has been developed by Benjamin Gregoire in
the course of the formalisation of the present logic. It consists of (i) defining a
family of syntax-directed judgements (one judgement form for each instruction
form, inlining the rule of consequence), (ii) proving that property M ` P implies
that the last step in a derivation of G ` {A}M, l {B} (I) can be replaced by an
application of the syntax-directed judgement corresponding to the instruction at
M, l (in particular, an application of the axiom rule is replaced by the derivation
for the corresponding code blocks from G), and (iii) proving the main claim of
Theorem 1 by treating the three parts of Definition 2 separately, each one by
induction over the respective operational judgement.

4 Type-based verification

In this section we present a type system that ensures a constant bound on the
heap consumption of bytecode programs. The type system is formally justified
by a soundness proof with respect to the MOBIUS base logic, and may serve as
the target formalism for type-transforming compilers.

The requirement imposed on programs is similar to that of the analysis pre-
sented by Cachera et al. in [13] in that recursive program structures are denied
the facility to allocate memory. However, our analysis is presented as a type
system while the analysis presented in [13] is phrased as an abstract interpre-
tation. In addition, Cachera et al.’s approach involves the formalisation of the
calculation of the program representation (control flow graph) and of the infer-
ence algorithm (fixed point iteration) in the theorem prover. In contrast, our
presentation separates the algorithmic issues (type inference and checking) from
semantic issues (the property expressed or guaranteed) as is typical for a type-
based formulation. Depending on the verification infrastructure available at the
code consumer side, the PCC certificate may either consist of (a digest of) the

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

119

typing derivation or an expansion of the interpretation of the typing judgements
into the MOBIUS logic. The latter approach was employed in our earlier work
[10] and consists of understanding typing judgements as derived proof rules in
the program logic and using syntax-directed proof tactics to apply the rules in
an automatic fashion. In contrast to [10], however, the interpretation given in
the present section extends to non-terminating computations, albeit for a far
simpler type system.

The present section extends the work presented in [8] as the type system is
now phrased for bytecode rather than an intermediate functional language and
includes the treatment of exceptions and virtual methods.

Bytecode-level type system The type system consists of judgements of the form
`Σ,Λ ` : n, expressing that the segment of bytecode whose initial instruction is
located at ` is guaranteed not to allocate more than n memory cells. Here, `
denotes a program point M, l while signatures Σ and Λ assign types (natural
numbers n) to identifiers of methods and bytecode instructions (in particular,
when those are part of a loop), respectively.

C-New
n ≥ 1 M(l) = New C `Σ,Λ M, sucM (l) : n− 1

`Σ,Λ M, l : n

C-Instr

n ≥ 1 basic(M, l) ¬M(l) = New C `Σ,Λ M, sucM (l) : n
∀ l′ e. Handler(M, l, e) = l′ →`Σ,Λ M, l′ : n− 1

`Σ,Λ M, l : n

C-If
n ≥ 0 M(l) = ifz l′ `Σ,Λ M, l′ : n `Σ,Λ M, sucM (l) : n

`Σ,Λ M, l : n

C-Invoke

M(l) ∈ {invokestatic M ′, invokevirtual M ′} Σ(M ′) = k
n ≥ 1 k ≥ 0 `Σ,Λ M, sucM (l) : n

∀ l′ e. Handler(M, l, e) = l′ →`Σ,Λ M, l′ : n− 1

`Σ,Λ M, l : n + k

C-Ret
M(l) = vreturn

`Σ,Λ M, l : 0
C-Sub

`Σ,Λ ` : n n ≤ k

`Σ,Λ ` : k
C-Assum

Λ(`) = n

`Σ,Λ ` : n

Fig. 4. Type system for constant heap space

The rules are presented in Figure 4. The first rule, C-New, asserts that the
memory consumption of a code fragment whose first instruction is new C is the
increment of the remaining code. Rule C-Instr applies to all basic instructions
(in the case of goto l′ we take sucM (l) to be l′), except for new C – the predicate
basic(m, l) is defined as in Section 3.3. The memory effect of these instructions
is zero, as is the case for return instructions, conditionals, and (static) method

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

120

invocations in the case of normal termination. For exceptional termination, the
allocation of a fresh exception object is accounted for by decrementing the type
for the code continuation by one unit. The rule C-Assum allows for using the
annotation attached to the instruction if it matches the type of the instruction.

A typing derivation `Σ,Λ ` : k is called progressive if it does not solely contain
applications of rules C-Sub and C-Assum. Furthermore, we call P well-typed for
Σ, notation `Σ P , if for all M and n with Σ(M) = n there is a local specification
table Λ such that a progressive derivation `Σ,Λ M, initM : n exists, and for all
` with Λ(`) = k we have a progressive derivation `Σ,Λ ` : k.

Type checking and inference The tasks of checking and automatically finding
(inference) of typing derivations are not our main concern here. Nevertheless,
we discuss briefly how this can be achieved.

For this simple type system checking a given typing derivation amounts to
verifying the inequations that arise as side conditions. Furthermore, given Σ,Λ
a corresponding typing derivation can be reconstructed by applying the typing
rules in a syntax-directed fashion. In order to construct Σ,Λ as well (type in-
ference) one writes down a “skeleton derivation” with indeterminates instead of
actual numeric values and then solves the arising system of linear inequalities.
Alternatively, one can proceed by counting allocation statements along paths
and loops in the control-flow graph.

Our main interest here is, however, the use of existing type derivations how-
ever obtained in order to mechanically construct proofs in the program logic.
This will be described now.

Interpretation of the type system The interpretation for the above type system
is now obtained by defining for each number n a triple JnK = (A,B, I) consisting
of a precondition A, a postcondition B, and an invariant I, as follows.

JnK ≡

λ (s0, s). True,
λ (s0, s, t). |heap(t)| ≤ |heap(s)|+ n,
λ (s0, s, r). |heap(r)| ≤ |heap(s)|+ n

Here, |h| denotes the size of heap h and heap(s) extracts the heap component

of a state. We specialise the main judgement form of the bytecode logic to

G ` ` {n} ≡ let (A,B, I) = JnK in G ` {A} ` {B} (I).

By the soundness of the MOBIUS logic, the derivability of a judgement G ` ` {n}
guarantees that executing the code located at ` will not allocate more that n
items, in terminating (postcondition B) and non-terminating (invariant I) cases,
provided that M ` P holds. For (A,B, I) = JnK we also define the method
specification

Spec n ≡ (λ s0. True, λ (s0, t). B(s0, state(s0), t), λ (s0, s). I(s0, state(s0), s)),

and for a given Λ we define GΛ pointwise by GΛ(`) = JΛ(`)K.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

121

Finally, we say that M satisfies Σ, notation M |= Σ, if for all methods M ,
M(M) = (Spec n,GΛ, ∅) holds precisely if Σ(M) = n, where Λ is the context as-
sociated with M in `Σ P . Thus, method specification table M contains for each
method the precondition, postcondition and invariant from Σ, the (complete)
context determined from Λ, and the empty local annotation table Q.

We can now prove the soundness of the typing rules with respect to this inter-
pretation. By induction on the typing rules, we first show that the interpretation
of a typing judgement is derivable in the logic.

Proposition 1. For M |= Σ let M be provided in M with some annotation
table Λ such that `Σ,Λ M, l : n is progressive. Then GΛ ` M, l {n}.

From this, one may obtain the following, showing that well-typed programs
satisfy the verified-program property:

Theorem 2. Let M |= Σ and `Σ P , and let M satisfy behavioural subtyping
for P . Then M ` P .

Discussion In order to improve the precision of the analysis, a possibility is
to combine the type system with a null-pointer analysis. For this, we would
specialise the proof rules for instructions which might throw a null-pointer ex-
ception. At program points for which the analysis guarantees absence of such
exceptions, we may then use a specialised typing rule. For example, a suitable
rule for the field access operation is the following.

C-Getfld1
getField(m, l) refNotNull(m, l) `Σ,Λ m, sucm(l) : n

`Σ,Λ m, l : n

Program points for which the analysis is unable to discharge the side condition
refNotNull(m, l) would be dealt with using the standard rule. Similarly, instruc-
tions that are guaranteed not to throw runtime exceptions (like load x, store x,
dup) may be typed using the optimised rule

C-noRTE
`Σ,Λ m, sucm(l) : n noExceptionInstr(m, l)

`Σ,Λ m, l : n

We expect that justifying these specialised rules using the program logic would
not pose major problems, while the formal integration with other program anal-
yses (such as the null-pointer analysis) is a topic for future research.

5 Resource-extended program logic

In this section we give a brief overview of an extension of the MOBIUS base
logic as described in Section 3 for dealing with resources in a generic way. The
extension addresses the following shortcoming of the basic logic:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

122

Resource consumption Specific resources that we would like to reason about
include instruction counters, heap allocation, and frame stack height. A
well-known technique for modelling these resources is code instrumentation,
i.e. the introduction of (real or ghost) variables and instructions manipulat-
ing these. However, code instrumentation appears inappropriate for a PCC
environment, as it does not provide an end-to-end guarantee that can be un-
derstood without reference to the program at hand. In particular, the over-
all satisfaction of a resource property using code instrumentation requires
an analysis of the annotated program, i.e. a proof that the instrumenta-
tion variables are introduced and manipulated correctly. Furthermore, the
interaction between additional variables of different domains, and between
auxiliary variables and proper program variables is difficult to reason about.

Execution traces Here, the goal is to reason about properties concerning a
full terminating or non-terminating execution of a program, for example
by imposing that an execution satisfies a formula expressed in temporal
logics or a policy given in terms of a security automaton. Such specifications
may concern the entire execution history, i.e. be defined over a sequence of
(intermediate) Bicolano states, and are thus not expressible in the MOBIUS
base logic.

Ghost variables are heavily used in JML, both for resource-accounting pur-
poses as well as functional specifications, but are not directly expressible in
the base logic.

In this section we extend the base logic by a generic resource-accounting mech-
anism that may be instantiated to the above tasks. In addition to the work
reported here, we have also performed an analysis of the usage made of ghost
variables in JML, and have developed interpretations of ghost variables in na-
tive and resource-extended program logics [24]. In particular, loc.cit. contains a
formalised proof demonstrating how resource counting using ghost variables in
native logics may be effectively eliminated, by translating each proof derivation
into a derivation in the resource-extended logic.

5.1 Semantic modelling of generic resources

In order to avoid the pitfalls of code instrumentation discussed above, a semantic
modelling of resource consumption was chosen. The logic is defined over an
extended operational semantics, the judgements of which are formulated over
the same components as the standard Bicolano operational semantics, plus a
further resource-accounting component [20]. The additional component is of the
a priori unspecified type ACT, and occurs as a further component in initial, final,
and intermediate states. In addition, we introduce transfer functions that update
the content of this component according to the other state components, including
the program counter. The operational semantics of the extended framework is
then obtained by embedding each non-extended judgement form in a judgement
form over extended states and invoking the appropriate transfer functions on
the resource component. While these definitions of the operational semantics

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

123

are carried out once and for all, the implementation of the transfer functions
themselves is programmable. Thus, realisations of the framework for particular
resources may be obtained by instantiating the ACT to some specific type and
implementing the transfer functions as appropriate. The program logic remains
conceptually untouched, i.e. it is structurally defined as the logic from Section 3,
but the definitions of assertion transformers and rules, and the soundness proof,
are adapted to extended states and modified operational judgements.

In comparison to admitting the definition of ad-hoc extensions to the program
logic, we argue that the chosen approach is better suited to the PCC applications,
as the consumer has a single point of reference where to specify his policy, namely
the implementation of the transfer functions.

5.2 Application: block-booking

As an application of the resource-extended program logic, we consider a scenario
where an application repeatedly sends some data across a network provided that
each such operation is sanctioned by an interaction with the user. In order to
avoid authorisation requests for individual send operations, a high-level language
might contain a primitive auth(n) that asks the user to authorise n messages in
one interaction. A reasonable resource policy for the code consumer then is to
require that no send operation be carried out without authorisation, and that
at each point of the execution, the acquired authorisations suffice for servicing
the remaining send operations. (For simplicity, we assume that refusal by the
user to sanction an authorisation request simply blocks or leads to immediate
non-termination without any observable effect.)

We note that as in the case of the logic loop constructs from the high-level
language are mapped to conditional and unconditional jumps that must be typed
using the corresponding rules.

We now outline a bytecode-level type and effect system for this task, for
a sublanguage of scalar (integer) values and unary static methods. Effects τ
are rely-guarantee pairs (m,n) of natural numbers: a code fragment with this
effect satisfies the above policy whenever executed in a state with at least m
unused authorisations, with at least n unused authorisations being left over upon
termination. The number of authorisations that are additionally acquired, and
possibly used, during the execution are unconstrained. Types C,D, . . . are sets
of integers constraining the values stored in variables or operand stack positions.
Judgements take the form ∆, η, Ξ `Σ,Λ ` : C, τ , with the following components:

– the abstract store ∆ maps local variables to types
– the abstract operand stack η is represented as a list of types
– Ξ is an equivalence relation relation ranging over identifiers ρ from dom ∆∪

dom η where dom η is taken to be the set {0, . . . , |η| − 1}. The role of Ξ is
to capture equalities between values on the operand stack and the store.

– instruction labels ` = (M, l) indicate the current program point, as before
– the type C describes the return type
– the effect τ captures the pre-post-behaviour of the subject phrase with re-

spect to authorisation and send events

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

124

– the proof context Λ associates sets of tuples (∆, η, Ξ,C, τ) to labels l (im-
plicitly understood with respect to method M).

– the method signature table Σ maps method names to type signatures of the

form ∀i∈I. Ci
(mi,ni)−−−−−→ Di. Limiting our attention to static methods with

a single parameter, such a poly-variant signature indicates that for each i

in some (unspecified) index set I, the method is of type Ci
(mi,ni)−−−−−→ Di,

i.e. takes arguments satisfying constraint Ci to return values satisfying Di

with (latent) effect (mi, ni).

In addition to ignoring virtual methods (and consequently avoiding the need for
a condition enforcing behavioural subtyping of method specifications), we also
ignore exceptions. Finally, while our example program contains simple objects
we do not give proof rules for object construction or field access. We argue that
this impoverished fragment of the JVML suffices for demonstrating the concept
of certificate generation for effects, and leave an extension to larger language
fragments as future work.

For an arbitrary relation R, we let Eq(R) denote its reflexive, transitive and
symmetric closure. We also define the operations Ξ − ρ, Ξ + ρ and Ξ[ρ := ρ′]
on equivalence relation Ξ and identifiers ρ and ρ′, as follows.

Ξ − ρ ≡ Ξ \ {(ρ1, ρ2) | ρ = ρ1 ∨ ρ = ρ2}
Ξ + ρ ≡ Ξ ∪ {(ρ, ρ)}

Ξ[ρ := ρ′] ≡ Eq((Ξ − ρ) ∪ {(ρ, ρ′)})

The interpretation of position ρ in a pair (O,S) is given by JxK(O,S) = S(x)
and JnK(O,S) = O(n). The interpretation of a triple ∆, η, Ξ in a pair (O,S) is
given by the formula

J∆, η, ΞK(O,S) =

dom ∆ ⊆ dom S ∧ |η| = |O| ∧
∀x ∈ dom ∆. S(x) ∈ ∆(x) ∧
∀i < |η|. O(i) ∈ η(i) ∧
∀(ρ, ρ′) ∈ Ξ. JρK(O,S) = Jρ′K(O,S)

With the help of these operations, the type system is now defined by the rules
given in Figure 5. Due to the formulation at the bytecode level, the authorisation
primitive does not have a parameter but obtains its argument from the operand
stack.

The rule for conditionals, E-If, exploits the outcome of the branch condition
by updating the types of all variables associated with the top operand stack
position in Ξ. This limited form of copy propagation will be made use of in the
verification of an example program below.

In the rule of consequence, E-Sub, subtyping on types is denoted by C <:
D and given by subset inclusion, and is extended to abstract stores (notation
∆ <: ∆′) and abstract operand stacks (notation η <: η′) in a pointwise fashion.
Sub-effecting is given by the reflexive closure of the rule

k ≥ m + d l ≤ n + d

(m,n) <: (k, l)
.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

125

E-Send
M(l) = send ∆, η, Ξ `Σ,Λ M, sucM (l) : D, (m− 1, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-Auth

M(l) = auth ∀i ∈ C. i ≥ k
∆, η, Ξ − |η| `Σ,Λ M, sucM (l) : D, (m + k, n)

∆, C :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-Goto
M(l) = goto l′ ∆, η, Ξ `Σ,Λ M, l′ : D, (m, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-If

M(l) = ifz l′ Ξ ′ = Ξ − |η|
∆1 = ∆[x 7→ ∆(x) ∩ (Z \ {0})](|η|,x)∈Ξ

η1 = η[i 7→ η(i) ∩ (Z \ {0})](|η|,i)∈Ξ ∧ 0≤i<|η|
∆2 = ∆[x 7→ ∆(x) ∩ {0}](|η|,x)∈Ξ

η2 = η[i 7→ η(i) ∩ {0}](|η|,i)∈Ξ ∧ 0≤i<|η|
∆1, η1, Ξ

′ `Σ,Λ M, sucM (l) : (m, n) ∆2, η2, Ξ
′ `Σ,Λ M, l′ : D, (m, n)

∆, C :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-Store

M(l) = store x Ξ ′ = (Ξ[x := |η|])− |η|
∆[x 7→ C], η, Ξ ′ `Σ,Λ M, sucM (l) : D, (m, n)

∆, C :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-Load

M(l) = load x Ξ ′ = Ξ[|η| := x]
∆, ∆(x) :: η, Ξ ′ `Σ,Λ M, sucM (l) : D, (m, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-Push
M(l) = push c ∆, {c} :: η, Ξ + |η| `Σ,Λ M, sucM (l) : D, (m, n)

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

E-Binop

M(l) = binop ⊕ C = {z|z = x ⊕ y, x ∈ C1, y ∈ C2}
∆, C :: η, ((Ξ − |η|)− (|η|+ 1)) + |η| `Σ,Λ M, sucM (l) : D, (m, n)

∆, C1 :: C2 :: η, Ξ `Σ,Λ M, l : D, (m, n)

E-InvS

M(l) = invokestatic M ′ Σ(M ′) = ∀i∈I. Ci
τi−→ Di k ∈ I

Ξ ′ = (Ξ − |η|) + |η| ∆, Dk :: η, Ξ ′ `Σ,Λ M, sucM (l) : D, (nk, n)

∆, Ck :: η, Ξ `Σ,Λ M, l : D, (mk, n)

E-Vret
M(l) = vreturn

∆, D, Ξ `Σ,Λ M, l : D, (0, 0)
E-Ax

(∆, η, Ξ, D, τ) ∈ Λ(l)

∆, η, Ξ `Σ,Λ M, l : D, τ

E-Sub

∆′, η′, Ξ ′ `Σ,Λ ` : C, τ ′

∆ <: ∆′ η <: η′

C <: D τ ′ <: τ Ξ ′ ⊆ Ξ

∆, η, Ξ `Σ,Λ ` : D, τ
E-Univ

∀ O S. J∆, η, ΞK(O,S) = False

∆, η, Ξ `Σ,Λ M, l : D, (m, n)

Fig. 5. Type and effect system for block-booking

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

126

The final rule, E-Univ, allows us to associate an arbitrary effect and result
type to a code segment under the condition that the constraints ∆, η, Ξ on the
initial state are unsatisfiable. The main use of this rule is in cases where branch
conditions render one branch dead code.

In order to prove the soundness of the type system in the extended program
logic, we instantiate the parameter ACT to the type of finite words over the set
{send}∪{auth(z) | z ≥ 0} and implement the transfer functions such that each
execution of the primitives send and auth results in appending the appropriate
action to the trace - in case of authorisation events, the number z is obtained
by inspecting the topmost value of the operand stack.

We interpret a judgement ∆, η, Ξ `Σ,Λ M, l : D, (m,n) as the logic statement

JΛKM ` {λ s0. True}M, l {J(∆, η, Ξ,m, n,D)K} (J(∆, η, Ξ,m)K),

with the following components. The postcondition J(∆, η, Ξ,m, n,D)K is

λ (s0, (O,S, h,X), (h, v, Y)). J∆, η, ΞK(O,S) →
(∃Z. v ∈ D ∧ Y = XZ ∧ |Z|auth + m ≥ |Z|send + n).

For any terminating execution starting in an initial store and operand stack
conforming to the abstractions ∆ and η, and respecting the equivalence relation
Ξ, this property guarantees that the return value satisfies D. Furthermore, the
sub-traces for authorisation and send events (obtained by projecting from the
trace Z of all events encountered during the execution of the phrase) satisfy the
inequality interpreting the effect.

A similar explanation holds for the definition of the invariant J(∆, η, Ξ,m)K,

λ (s0, (O,S, h,X), (O′, S′, h′, X ′)). J∆, η, ΞK(O,S) →
(∃Z. X ′ = XZ ∧ |Z|auth + m ≥ |Z|send).

The local proof context JΛKM is given by

[(M, l) 7→ (True, J(∆, η, Ξ,m, n,D)K, J(∆, η, Ξ,m)K)]Λ(l)=(∆,η,Ξ,D,(m,n)),

i.e. by translating the entries of Λ pointwise. Finally, each specification entry

Σ(M) = ∀i∈I. Ci
(mi,ni)−−−−−→ Di results in an entry M(M) = (R, T, Φ) in the

bytecode logic specification table, where

R(s0) = True
T ((S, h,X), (h, v, Y)) = ∀i ∈ I.S(arg) ∈ Ci →

(∃ Z. v ∈ Di ∧ Y = XZ ∧
|Z|auth + mi ≥ |Z|send + ni)

Φ((S, h,X), (O,S′, h′, X ′)) = ∀i ∈ I.S(arg) ∈ Ci →
(∃ Z. X ′ = XZ ∧ |Z|auth + mi ≥ |Z|send)

where arg is the formal parameter. Based on this interpretation, certificate gener-
ation may now be obtained by deriving the typing rules from the program logic

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

127

and introducing appropriate notions of progressive derivations and well-typed
programs (in the absence of virtual methods: without a behavioural subtyping
condition), in a similar way as in Section 4. The formalisation of this is left as
future research.

5.3 Example

We assume two builtin integer-valued functions size_string yielding the num-
ber of SMS messages required to send a given string, and size_book which gives
the size of an address book. Figure 6 presents Java-style pseudocode for sending
a given string to all addresses of a given address book after requiring the neces-
sary permissions. The program first computes the total number of SMS messages

public interface Parameters {

int p=...; //some constant >= 0

}

class BlockBooking {

static void send () {...};

static void auth (int p) {...};

void block_send(Java.lang.String s, addrbook b) {

int n = size_string(s);

int m = size_book(b);

int nb_sms = n * m;

int j = 0;

int sent = 0;

while (nb_sms - sent > 0) {

if j > 0 {

//current authorisations suffice

send();

sent = sent + 1;

j = j - 1

} else {

//acquire p new authorisations

auth (Parameters.p);

j = Parameters.p;

}

}

return 0;

}

}

Fig. 6. Program for sending a message using authorisation chunks of size p

and then sends the messages where authorisations are acquired in blocks of size

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

128

p, for arbitrary fixed p ≥ 0. The primitives for sending and authorising messages
are modelled as additional (static) methods.

Figure 7 shows the bytecode for method block_send, which comprises six
basic blocks. In order to verify that this method does not send more messages

0 aload 1 //variable s

1 invokestatic sizestring

4 istore 3 //variable n

5 aload 2 // variable b

6 invokestatic sizebook

9 istore 4 //variable m

11 iload 3

12 iload 4

14 imul

15 istore 5 //variable nbms

17 iconst 0

18 istore 6 //variable j

20 iconst 0

21 istore 7 //variable sent

23 iload 5

25 iload 7

27 isub

28 ifle 64

31 iload 6

33 ifle 54

36 invokestatic send

39 iload 7

41 iconst 1

42 iadd

43 istore 7

45 iload 6

47 iconst 1

48 isub

49 istore 6

51 goto 23

54 iconst 3 // parameter p

55 invokestatic auth

58 iconst 3

59 istore 6

61 goto 23

64 iconst 0

65 ireturn

Fig. 7. Bytecode for method BlockBooking.block send.

than authorised, we derive the typing

[s 7→ C, b 7→ D], [], ∅ `Σ,Λ block send, 0 : {0}, (0, 0)

where C and D are arbitrary and

Σ ≡ [sizestring 7→ {(C, 0, 0,Z)}, sizebook 7→ {(D, 0, 0,Z)}]
Λ ≡ [23 7→ {specd | 0 ≤ d}]

specd ≡ (∆d, [], Ξd, {0}, (d, 0))
∆d ≡ [n 7→ Z,m 7→ Z, nbsms 7→ Z, j 7→ {d}, sent 7→ Z≥0]
Ξd ≡ {(n, n), (m,m), (nbsms, nbsms), (j, j), (sent, sent)}.

The proof context Λ contains a single entry, namely a polyvariant loop invari-
ant for instruction 23. The invariant contains one entry for each 0 ≤ d, where
the index specifies precisely the content of variable j and links this value to
the pre-effect. The equivalence relation relevant at this program point contains

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

129

merely the reflexive entries for all (integer) variables. The verification of the
above judgement applies the rules syntax-directedly for instructions 0, . . . , 21,
and then applies the axiom rule for label 23, guarded by an application of rule
E-Sub.

The overall verification complements the verification of the above judgement
with a justification of the context Λ, by providing a progressive derivation for
the loop invariant. Again, this verification proceeds syntax-directedly through
the loop, terminating in (subtyping-protected) applications of the rule E-Ax.
At the point where method send is invoked (instruction label 36) a case-split is
performed on the condition d = 0. If this condition holds, a vacuous statement is
obtained as the invocation occurs in the branch j > 0, and our invariant ensures
that j contains the value d. The vacuity is detected as the entry for j in ∆
is ∅ at that point: the load instruction at label 36 inserts (0, j) into Ξ, hence
the type associated with j in the fall-through-hypothesis of the branch at label
33 (in particular: at label 36) is {d} ∩ (Z \ {0}) = ∅ where the term {d} was
propagated unmodified to instruction 36 from instruction 23. Consequently, the
case d = 0 may be immediately discharged by an invocation of rule E-Univ. The
case d > 0 admits the application of the proof rule E-Send, and the remainder
of the branch is again proven in a syntax-directed fashion.

Type checking and inference Again, we briefly discuss these issues for this sys-
tem. The type system is generic in that types may be arbitrary sets of integers.
In order to support effective typechecking and inference one must of course re-
strict these sets themselves and also the sets of types that arise in annotations
and method specifications. A popular and for our intended application sufficient
way consists of restricting types to convex polyhedra specified by a system of
linear inequalities and to confine sets of types to those arising by intersecting a
fixed convex polyhedron with a hyperplane specified by one or more additional
parameters. Notice that the types in our running example are all of this form.

When we make this restriction (formally by applying the subtyping rule
immediately after each rule to bring the types back into the polyhedral format)
then type checking amounts to checking inclusion of convex polyhedra which can
be efficiently performed by linear programming. Furthermore, Farkas’ Lemma
also furnishes short, efficiently computable, and efficiently checkable certificates
[21, 28]. Indeed, since any convex polyhedron is the intersection of hyperplanes,
deciding containment of convex polyhedra reduces to deciding whether a convex
polyhedron H = {x | Ax ≤ b} is contained in a hyperplane of the form P =
{x | cT x ≤ d}. This, however, is the case iff max{cT x | x ∈ H} ≤ d; a linear
programming problem. Now, the latter inequality can be certified by providing
a vector r ≥ 0 (componentwise) such that rT A = cT and rT b ≤ d. For then,
whenever x ∈ H, i.e., Ax ≤ b then cT x = rT Ax ≤ rT b ≤ d. Farkas’ lemmas
asserts that such a vector r exists whenever max{cT x | x ∈ H} ≤ d. Given its
existence we can efficiently compute it by minimising yT b subject to yT A = cT

and y ≥ 0.
Regarding automatic type inference as opposed to type checking one has to

find unknown convex polyhedra specified by fixpoint equations. Besson et al. [12]

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

130

report that this can be done by iteration using widening heuristics from [19]. The
range and efficiency remains, however, unexplored in loc. cit. In our particular
application we expect constraints to be sufficiently simple so that these heuristics
or those proposed in [26] will be successful. Inference of the equivalence relations
Ξ can be achieved by employing standard copy-propagation techniques known
from compiler constructions.

6 Discussion

We have described the use of the Mobius base logic as a unified backend for both
program analyses and type systems. The Mobius base logic has been formally
proved sound with respect to the Bicolano formalisation of the JVM. Compared
to direct soundness proofs of type systems and analyses with respect to Bicolano
the use of the Mobius base logic as an intermediary offers two distinctive advan-
tages. First, the soundness proof of the Mobius base logic already does much of
the work that is common to soundness proofs, in particular inducting on steps in
the operational semantics and stack height. The Mobius logic is more transpar-
ent and allows for proof by invariant and recursion. Secondly, the standardised
format of assertions in the Mobius base logic makes it easier to compare results
of different type systems and analyses and also to assess whether the asserted
property coincides with the intuitively desired property.

The resource extension to both Bicolano and the Mobius base logic allows
for direct specification and certification of resource-related intensional properties
without having to go through indirect observations such as values of ordinary
program variables that are externally known to reflect some resource behaviour.
This is particularly important in the PCC scenario where providers and users of
specifications and certificates do not coincide and might have different objectives.

Similarly, the strong invariants enhance the expressive power of the Mo-
bius base logic compared to standard Hoare logics in that resource behaviour of
nonterminating programs is appropriately accounted for. In this way, the usual
strong guarantees of type systems and program analyses may be adequately
reflected in the logic.

We have demonstrated this use of the Mobius base logic on one of the Mobius
case studies: a block-booking scheme whose deployment could avoid the inflation
of permission requests that lead to social vulnerabilities.

Acknowledgements This work was funded in part by the Information Society
Technologies programme of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project. This paper reflects
only the author’s views and the Community is not liable for any use that may
be made of the information contained therein. We are grateful to all members
of the MOBIUS Working Group on work package 3, in particular Benjamin
Gregoire, David Pichardie, Aleksy Schubert and Randy Pollack, for the numerous
discussions on program logics, JML, and types, and on formalising these in
theorem provers. The constructive feedback from the reviewers helped us to
improve content and presentation of the paper.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

131

References

1. E. Albert, G. Puebla, and M. V. Hermenegildo. Abstraction-carrying code. In Logic
for Programming Artificial Intelligence and Reasoning, number 3452 in Lecture
Notes in Computer Science, pages 380–397. Springer-Verlag, 2005.

2. A. W. Appel. Foundational proof-carrying code. In J. Halpern, editor, Logic in
Computer Science, page 247. IEEE Press, June 2001. Invited Talk.

3. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A pro-
gram logic for resource verification. In Theorem Proving in Higher-Order Logic,
volume 3223 of Lecture Notes in Computer Science, pages 34–49, Berlin, Sept.
2004. Springer-Verlag.

4. F. Y. Bannwart and P. Müller. A program logic for bytecode. In F. Spoto, edi-
tor, Bytecode Semantics, Verification, Analysis and Transformation, volume 141 of
Electronic Notes in Theoretical Computer Science, pages 255–273. Elsevier, 2005.

5. G. Barthe and C. Fournet, editors. Trustworthy Global Computing, Third Sympo-
sium (TGC’07), Revised Selected Papers, volume 4912 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2008.

6. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

7. B. Beckert and W. Mostowski. A program logic for handling Java Card’s transac-
tion mechanism. In M. Pezzè, editor, Fundamental Approaches to Software En-
gineering, volume 2621 of Lecture Notes in Computer Science, pages 246–260.
Springer-Verlag, Apr. 2003.

8. L. Beringer and M. Hofmann. A bytecode logic for JML and types. In Asian
Programming Languages and Systems Symposium, Lecture Notes in Computer Sci-
ence 4279, pages 389–405. Springer-Verlag, 2006.

9. L. Beringer and M. Hofmann. Secure information flow and program logics. In
IEEE Computer Security Foundations Workshop. IEEE Press, 2007.

10. L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Automatic certifi-
cation of heap consumption. In Logic for Programming Artificial Intelligence and
Reasoning, volume 3452, pages 347–362. Springer-Verlag, 2005.

11. F. Besson, T. Jensen, and D. Pichardie. Proof-Carrying Code from Certified Ab-
stract Interpretation and Fixpoint Compression. Theoretical Computer Science,
2006.

12. F. Besson, T. Jensen, D. Pichardie, and T. Turpin. Result certification for relational
program analysis. Inria Research Report 6333, 2007.

13. D. Cachera, T. P. Jensen, D. Pichardie, and G. Schneider. Certified memory usage
analysis. In J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, FM 2005: Formal
Methods, International Symposium of Formal Methods Europe, Proceedings, volume
3582 of Lecture Notes in Computer Science, pages 91–106. Springer-Verlag, 2005.

14. B. Chang, A. Chlipala, and G. Necula. A framework for certified program analysis
and its applications to mobile-code safety. In E. Emerson and K.S.Namjoshi, ed-
itors, Verification, Model Checking, and Abstract Interpretation, 7th International
Conference (VMCAI’06), Proceedings, volume 3855 of Lecture Notes in Computer
Science, pages 174–189. Springer-Verlag, 2006.

15. B. Chang, A. Chlipala, G. Necula, and R. Schneck. The open verifier framework
for foundational verifiers. In J. Morrisett and M. Fähndrich, editors, Proceedings
of TLDI’05: 2005 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, pages 1–12. ACM Press, 2005.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

132

16. MOBIUS Consortium. Deliverable 1.1: Resource and information flow security
requirements. Available online from http://mobius.inria.fr, 2006.

17. MOBIUS Consortium. Deliverable 3.1: Bytecode specification language and pro-
gram logic. Available online from http://mobius.inria.fr, 2006.

18. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
mathematical foundations. In ACM Symposium on Artificial Intelligence & Pro-
gramming Languages, Rochester, NY, ACM SIGPLAN Not. 12(8):1–12, Aug. 1977.

19. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth ACM Symposium on
Principles of Programming Languages, pages 84–97, 1978.

20. P. Czarnik and A. Schubert. Extending operational semantics of the java bytecode.
In Barthe and Fournet [5], pages 57–72.

21. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM, 52(3):365–473, 2005.

22. X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework for foundational proof-
carrying code. In Proc. 2007 ACM SIGPLAN International Workshop on Types
in Language Design and Implementation (TLDI’07), pages 67–78, New York, NY,
USA, January 2007. ACM Press.

23. R. Hähnle, J. Pan, P. Rümmer, and D. Walter. Integration of a security type
system into a program logic. In U. Montanari, D. Sannella, and R. Bruni, ed-
itors, Trustworthy Global Computing, Second Symposium (TGC’06), Revised Se-
lected Papers, volume 4661 of Lecture Notes in Computer Science, pages 116–131.
Springer-Verlag, 2007.

24. M. Hofmann and M. Pavlova. Elimination of ghost variables in program logics. In
Barthe and Fournet [5], pages 1–20.

25. T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and Complete-
ness Proofs. PhD thesis, LFCS, University of Edinburgh, 1998.

26. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In Proc. ACM POPL 2004, pages 330–341, 2004.

27. G. C. Necula. Proof-carrying code. In Principles of Programming Languages, pages
106–119. ACM Press, 1997.

28. G. Nelson. Techniques for program verification. Technical Report CSL-81-10,
Xerox PARC Computer Science Laboratory, June 1981.

29. T. Nipkow. Hoare logics for recursive procedures and unbounded nondeterminism.
In J. Bradfield, editor, Computer Science Logic, volume 2471 of Lecture Notes in
Computer Science, pages 103–119. Springer-Verlag, 2002.

30. D. Pichardie. Bicolano – Byte Code Language in Coq.
http://mobius.inia.fr/bicolano. Summary appears in [17], 2006.

31. C. L. Quigley. A Programming Logic for Java Bytecode Programs. In D. A. Basin
and B. Wolff, editors, Theorem Proving in Higher Order Logics, 16th International
Conference, (TPHOLs’03), Proceedings, volume 2758 of Lecture Notes in Computer
Science, pages 41–54. Springer-Verlag, 2003.

32. M. Wildmoser. Verified Proof Carrying Code. PhD thesis, Institut für Informatik,
Technische Universität München, 2005.

33. M. Wildmoser, T. Nipkow, G. Klein, and S. Nanz. Prototyping proof carrying
code. In J.-J. Levy, E. W. Mayr, and J. C. Mitchell, editors, Theoretical Computer
Science, pages 333–347. Kluwer Academic Publishing, Aug. 2004.

34. T. Y. Woo and S. S. Lam. A semantic model for authentication protocols. In RSP:
IEEE Computer Society Symposium on Research in Security and Privacy, 1993.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

133

Efficient Type-Checking for Amortised

Heap-Space Analysis

Martin Hofmann and Dulma Rodriguez

Department of Computer Science, University of Munich
Oettingenstr. 67, D-80538 München, Germany
{martin.hofmann|dulma.rodriguez}@ifi.lmu.de

Abstract. The prediction of resource consumption in programs has
gained interest in the last years. It is important for a number of ar-
eas, notably embedded systems and safety critical systems. Different
approaches to achieve bounded resource consumption have been anal-
ysed. One of them, based on an amortised complexity analysis, has been
studied by Hofmann and Jost in 2006 for a Java-like language.
In this paper we present an extension of this type system consisting
of more general subtyping and sharing relations that allows us to type
more examples. Moreover we describe efficient automated type-checking
for a finite, annotated version of the system. We prove soundness and
completeness of the type checking algorithm and show its efficiency.
Keywords: Type systems, Resource analysis, Semantics, OOP

1 Introduction

The prediction of resource consumption in programs has gained interest in the
last years. It is important for a number of areas, in particular embedded sys-
tems and mobile computing. A variety of approaches to resource analysis have
been proposed based in particular on recurrence solving [AAG+07,Gro01], ab-
stract interpretation [GL98,NCQR05], sized types [HP99], and amortised anal-
ysis [HJ03,HJ06,Cam08].

The amortised approach which the present paper belongs to is particularly
useful in situations where heap-allocated data structures must be costed whose
size is proportional to parts of the input. Typical examples are various sorting
algorithms where trees, lists, or heaps appear as intermediate data structures.
In such cases amortised analysis can infer very good bounds based on intuitive
programmer annotations in the form of types and the solution of linear inequa-
tions.

In [HJ06] amortised analysis has been applied to a Java-like class-based
object-oriented language without garbage collection, but with explicit deallo-
cation similar to C’s free(). The evaluation of such programs is carried out by
maintaining a set of free memory units called freelist. When an object is cre-
ated, a number of heap units required to store it is taken from the freelist if it
contains enough units, otherwise the program execution is aborted. Finally, each
deallocated heap unit is returned to the freelist.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

134

The goal of the analysis is to predict a bound on the initial size that the
freelist must have so that a given program may be executed without causing
unsuccessful abortion due to insufficient memory. This has been achieved by
combining amortized analysis [Tar85,Oka98] with type-based techniques in order
to define potentials.

Essentially each object is ascribed an abstracted portion of the freelist, re-
ferred to as potential, which is just a number, denoting the size of freelist portion
associated with the object. Any object creation must be paid for from the poten-
tial in scope. The initial potential thus represents an upper bound on the total
heap consumption.

While type inference and automated type checking have already been de-
veloped for a functional language within the EmBounded Project ([HDF+05],
[HBH+07]), most of the properties of the type system for the Java-like language
(called Resource Aware JAva – RAJA) are still unknown.

This paper provides algorithmic typing rules for that system. We prove
soundness and completeness of algorithmic typing with respect to the declara-
tive typing from [HJ06]. This allows for automatic type checking under relatively
mild annotations. In particular, we automatically construct types arising from
sharing and conditionals which had to be provided manually beforehand. This
enables a realistic implementation of the system which we also provide.

The notion of subtyping we use is slightly more flexible than the one from
[HJ06] and thus allows more examples to be typed. Semantic soundness of the
improved system is a direct extension of the soundness proof in [HJ06] and can
be found in the following manuscript: [HJR].
Contents. Section 2 describes briefly the system RAJA and motivates it with
some examples. In Section 3 we define the type-checking algorithm and show its
soundness and completeness w.r.t. the declarative system. We then argue that
typechecking can be performed efficiently, i.e. in small-degree polynomial time.
Finally, in Sections 4 and 5, we discuss future and related work.

2 FJEU and RAJA

Our formal model of Java, FJEU, is an extension of Featherweight Java (FJ)
[IPW99] with attribute update, conditional and explicit deallocation. It is thus
similar to Classic Java [FKF98]. An FJEU program C is a partial finite map from
class names to class definitions, which we also refer to as class table. Each class
table C implies a subtyping relation <: among the class names in the standard
way by inheritance. The syntax of FJEU is given in Fig. 1. The let-normal form
of terms was merely chosen to eliminate boring redundancies from our proofs. In
our implementation we transform nested expressions into let-normal form and
infer a type for the let expressions by a simple preprocessing.

We will use a couple of shorthand notations: We write S(C) to denote the
super-class D of a class C, provided that C has a super-class. We write A(C) to
denote the ordered set of attributes of C, including inherited ones, i.e. A(C) :=
{a1, . . . , ak} ∪̇A(D). We write C.ai to denote the class type of each attribute ai

of class C. Similarly we write M(C) to denote the set of all defined method names

2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

135

c ::= class C [extends D] {A1; . . . ; Ak; M1 · · ·Mj}
A ::= C a
M ::= C0 m(C1 x1, . . . , Cj xj){return e; }
e ::= x (Variable)
| null (Constant)
| new C (Construction)
| free(x) (Destruction)
| (C)x (Cast)
| x.ai (Access)
| x.ai<-x (Update)
| x.m(x1, . . . , xj) (Invocation)
| if x instanceof C then e1 else e2 (Conditional)
| let C x = e1 in e2 (Let)

Fig. 1. The syntax of FJEU

of C, including inherited ones. For a method m of class C we write Mbody(C,m)
to denote the term that comprises the method body of method m and C.m to
denote the method type of m in class C. We base our statical resource analysis
on the standard operational semantics that can be found in [HJR].

Example 1 (Copy of singly-linked lists). Suppose we have defined a class of
singly-linked lists in an object-oriented style which harnesses dynamic dispatch
to obtain the functionality of pattern-matching. Most programmers would use
this style only for more complex tree-like data structures relying on “null” to
model the empty list. We use it here in order to have a simple enough running
example.

class List { List copy(){return null;} }

class Nil extends List { List copy() { return this; }}

class Cons extends List { int elem; List next;

List copy(){ let List res = new Cons in

let List res1 = res.elem <- this.elem in

let List res2 = res1.next <- this.next.copy() in return res2;}}

2.1 The system RAJA

Definition 1. A RAJA program is an annotation of an FJEU class table C in
the form of a sextuple R = (C ,V ,♦(·),Aget(· , ·) ,Aset(· , ·) ,M(· , ·)) specified as
follows:

V is a possibly infinite set of views. A RAJA class or refined type consists
of a class C and a view r and is written Cr. We use the letters r, s, p, q to denote
views. The meaning of views is given by the maps:

1. ♦(·) assigns to each RAJA class Cr a number ♦(Cr) ∈ D, where D = Q+ ∪∞.
2. Aget(· , ·) and Aset(· , ·) assign to each RAJA class Cr and attribute a ∈ A(C)

two views q = Aget(Cr, a) and s = Aset(Cr, a).
3. M(· , ·) assigns to each RAJA class Cr and method m ∈ M(C) having method

type E1, . . . , Ej → E0 a j-ary polymorphic RAJA method type M(Cr,m). A j-
ary polymorphic RAJA method type is a (possibly empty or infinite) set of j-
ary monomorphic RAJA method types. A j-ary monomorphic RAJA method

3

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

136

type consists of j+1 views and two numbers p, q ∈ D, written r1, . . . , rj
p/q
−→r0.

We sometimes write Er1

1 , . . . , E
rj

j
p/q
−→Er0

0 to denote an FJEU method type
combined with a corresponding monomorphic RAJA method type.

We introduce views and RAJA classes because we want to be able to assign
objects of the same class different potentials.The number ♦(·) will be used to
define the potential of a heap configuration under a given static RAJA typing.
The exact definition is omitted here for lack of space and can be found in [HJR].
Essentially, the potential of a program state is the sum of the annotations of all its
objects determined by their RAJA-type. Each access path (alias) to an object
makes a separate contribution to that sum. In reasonable typings of circular
data structures one arranges that all but finitely many paths make a nonzero
contribution.

If D = C.a is the FJEU type of attribute a in C then the RAJA class
DAget(Cr,a) will be the type used when reading a, whereas the (intendedly stronger)

type DAset(Cr,a) must be used when updating a. The stronger typing is needed
since an update will possibly affect several aliases.

If a method m has a RAJA method type Er1

1 , . . . , E
rj

j
p/q
−→Er0

0 then it may be

called with arguments v1 : Er1

1 , . . . , vj : E
rj

j , whose associated potential will be
consumed, as well as an additional potential of p. Upon successful completion the
return value will be of type Er0

0 hence carry an according potential. In addition
to this a potential of another q units will be returned.

Example 2 (RAJA annotation of copy of singly-linked lists).
We aim at analysing the heap-space requirements of the program of Exam-

ple 1. It is clear that the memory consumption of a call l.copy() will equal the
length of the list l. To calculate this formally we use a view rich which assigns
to List itself the potential 0, to Nil the potential 0 and to Cons the potential 1.
Another view is needed to describe the result of copy() for otherwise we could
repeatedly copy lists without paying for it. Thus, we introduce another view
poor that assigns potential 0 to all classes. In the following we show the RAJA
annotation of Example 1 in the syntax of our implementation.

class List { rich, poor : pot = 0;

rich : List<poor>,0 copy(0) { return null; }

}

class Nil extends List { rich, poor : pot = 0;

rich : List<poor>,0 copy(0) { return this; }

}

class Cons extends List { rich : pot = 1; poor : pot = 0;

rich : List<rich,rich> next;

poor : List<poor,poor> next;

rich, poor: int elem;

rich : List<poor>,0 copy(0) { let List res = new Cons in

let List res1 = res.elem <- this.elem in

let List res2 = res1.next <- this.next.copy() in return res2; }

}

4

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

137

The RAJA type of the method copy states that it is only defined in Listrich,
Nilrich and Consrich, but not in, e.g., Listpoor. It will consume the potential of this

and no additional potential. Upon successful completion the return value will
be of type Listpoor hence carry potential 0. In addition to this the method will
return no more potential. Thus, the typing amounts to saying that the memory
consumption of every call to copy is bounded by the potential of this, that in
case of Consrich is equal 1 and in case of Nilrich is equal 0. If a list of length n is
to be copied, the method will be called n+1 times, and the potential consumed
will be bounded by n. More examples can be found in the RAJA web page [raj].

RAJA Subtyping Relation RAJA subtyping is an extension of FJEU sub-
typing (<:), which is based on inheritance. We provide here a new definition
of subtyping w.r.t. [HJ06]. There, a subtyping relation r ⊑ s on views was de-
fined, based on all classes of the class table. Then, subtyping of RAJA classes
Cr <: Ds was defined as C <: D and r ⊑ s. This made subtyping unnecessarily
rigid. For example Nilrich <: Nilpoor did not hold because rich ⊑ poor did not hold
due to the class Cons. The new subtyping relation is defined directly on refined
types. However, the straightforward definition where Cr <: Ds only depends on
C and D is unsound. It is necessary to analyse the subclasses of C and D as well
because resource usage is determined by the dynamic type of the expressions.

Definition 2 (Subtyping of RAJA types). We define a preorder <: on
RAJA types Cr,Ds where C <: D in C and r, s ∈ V , as the largest relation
(Cr <: Ds) such that Cr <: Ds ⇐⇒ for each E <: C, F <: D with E <: F :

♦(Er) ≥ ♦(F s) (2.1)

∀a ∈ A(F) . (F.a)A
get(Er,a) <: (F.a)A

get(F s,a) (2.2)

∀a ∈ A(F) . (F.a)A
set(F s,a) <: (F.a)A

set(Er,a) (2.3)

∀m ∈ M(F) .∀β ∈ M(F s,m) .∃α ∈ M(Er,m) . (F.m)α <: (F.m)β (2.4)

where we extend <: to monomorphic RAJA method types as follows:

Definition 3 (Subtyping of RAJA methods). If D.m = E1, . . . , Ej → E0,

α = r1, . . . , rj
p/q
−→r0 and β = s1, . . . , sj

t/u
−→s0 then (D.m)α <: (D.m)β is defined

as p ≤ t and q ≥ u and Er0

0 <: Es0

0 and Esi

i <: Eri

i for i = 1, . . . , j.

Sharing Relation The sharing relation .(· |·) is important for correctly using
variables more than once. In a RAJA program, if a variable is to be used more
than once, then the different occurrences must be given different types which are
chosen such that the individual potentials assigned to each occurrence add up to
the total potential available for that variable. For example if we have l : Listrich

we can use the variable l with the types Lists1 and Lists2 if .
(

Listrich |Lists1 , Lists2
)

holds. In [HJ06] sharing was defined on views, i.e. .(r |s1, . . . , sn) which is less
flexible and precludes several examples.

Definition 4 (Sharing Relation). We define the sharing relation between
a single RAJA type Cr and a multiset of RAJA types Ds1 , . . . ,Dsn written

5

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

138

.(Cr |Ds1 , . . . ,Dsn) as the largest relation ., such that if .(Cr |Ds1 , . . . ,Dsn)
then for all E <: C, F <: D with E <: F :

♦(Er) ≥
∑

i

♦(F si) (2.5)

∀i . Er <: F si (2.6)

∀a ∈ dom(A(F)) ..
(

(F.a)A
get(Er,a)

∣

∣

∣
(F.a)A

get(F s1,a), . . . , (F.a)A
get(F sn,a)

)

(2.7)

We define sharing similarly to subtyping, so that the following can be proved:
subtyping and sharing coincide when the multiset of RAJA types consists of only
one element.

Lemma 1. Cr <: Cs ⇐⇒ .(Cr |Cs)

Typing RAJA The RAJA-typing judgment is formally defined by the rules in
Figure 2. The type system allows us to derive assertions of the form Γ

n
n′ e : Cr

where e is an expression or program phrase, C is an FJEU class, r is a view (so Cr

is a refined type). Γ maps variables occurring in e to refined types; we often write
Γx instead of Γ (x). Finally n, n′ are nonnegative numbers. The meaning of such
a judgment is as follows. If e terminates successfully in some environment η and
heap σ with unbounded memory resources available then it will also terminate
successfully with a bounded freelist of size at least n plus the potential ascribed
to η, σ with respect to the typings in Γ . Furthermore, the freelist size upon
termination will be at least n′ plus the potential of the result with respect to
the view r.

The typing rules extend the typing rules of FJEU. The most interesting
ones are (♦Share) and (♦Waste). First we notice that they are not syntax
directed. Thus, they need to be eliminated when we come to implement the
system in the next section. (♦Waste) corresponds to the rule of subsumption of
subtyping systems and weakens context, type, and effect. Herein, Γ <: Θ means
∀x ∈ Θ .Γx <: Θx.

The purpose of the (♦Share) rule is to ensure that a variable can be used
twice without duplication of potential. Suppose we have the following expression:

Γ, l :Listrich
n
n′ let nl = l.copy() in l.copy() : Listpoor (2.8)

If we allow the second call to the copy method we would be creating objects
without “paying” for it, which would be unsound. Since the method copy is
only defined for the view rich, the only possibility of typing (2.8) would be
that .

(

Listrich
∣

∣Listrich, Listrich
)

would hold, but it does not because ♦
(

Consrich
)

<

♦
(

Consrich
)

+ ♦
(

Consrich
)

. Notice that the declarative type system as it is gives
no procedure to find those intermediate views. To actually find them in order to
implement the system is not trivial and will be discussed in the next section.

The judgment ⊢ m : α ok means that α is a valid RAJA type for a method
m if the method body of m can be typed with the arguments, return type and
effects as specified in α. Programs, then, are well-typed if all method bodies
admit the announced type and, moreover, view and potential annotations are
compatible with subtyping. Formally,

6

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

139

RAJA Typing Γ
n
n′ e : Cr

∅
♦(Cr) + 1

0 new C : Cr

(♦New)
x :Cr

0
♦(Cr) + 1 free(x) : Es

(♦Free)

C <: E

x :Er
0
0 (C)x : Cr

(♦Cast)
∅

0
0 null : Cr

(♦Null)
x :Cr

0
0 x : Cr

(♦V ar)

s = Aget(Cr, a) D = C.a

x :Cr
0
0 x.a : Ds

(♦Access)
Aset(Cr, a) = s C.a = D

x :Cr, y :Ds
0
0 x.a<-y : Cr

(♦Update)

Γ1
n
n′ e1 : Ds Γ2, x :Ds n′

n′′ e2 : Cr

Γ1, Γ2
n
n′′ let C x = e1 in e2 : Cr

(♦Let)

`

Eq1
1 , . . . , E

qj

j
n/n′

−−→Eq0
0

´

∈ M(Cr, m)

x :Cr, y1 :Eq1
1 , . . . , yj :E

qj

j

n
n′ x.m(y1, . . . , yj) : Eq0

0

(♦Invocation)

x ∈ Γ Γ
n
n′ e1 : Cr Γ

n
n′ e2 : Cr

Γ
n
n′ if x instanceof E then e1 else e2 : Cr

(♦Conditional)

.(Ds |Dq1 , . . . , Dqn) Γ, y1 :Dq1 , . . . , yn :Dqn
n
n′ e : Cr

Γ, x :Ds
n
n′ e[x/y1, . . . , x/yn] : Cr

(♦Share)

n ≥ u n + u′ ≥ n′ + u Θ
u
u′ e : Ds Γ <: Θ Ds <: Cr

Γ
n
n′ e : Cr

(♦Waste)

RAJA Method Typing ⊢ m : α ok

m ∈ M(C) α = Er1
1 , . . . , E

rj

j
n/n′

−−→Er0
0 ∈ M(Cr, m) .(Cr |Cq, Cs)

this :Cq, x1 :Er1
1 , . . . , xj :E

rj

j

n + ♦(Cs)

n′ Mbody(C, m) : Er0
0

(♦MBody)
⊢ m : α ok

Fig. 2. Typing RAJA

7

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

140

Definition 5 (Well-typed RAJA-program). A RAJA-program
R = (C ,V ,♦(·),Aget(· , ·) ,Aset(· , ·) ,M(·, ·)) is well-typed if for all C ∈ C and
r ∈ V the following conditions are satisfied:

1. S(C) = D ⇒ Cr <: Dr

2. ∀a ∈ A(C) . (C.a)A
set(Cr,a) <: (C.a)A

get(Cr,a)

3. ∀m ∈ M(C) .∀α ∈ M(Cr,m) . ⊢ m : α ok

2.2 Algorithmic Views and Complete RAJA Programs

In this section we define algorithmic views which provide least upper and greatest
lower bounds for subtyping restricted to refinements of a fixed FJEU type and
also a formal addition operation on these refinements allowing us to infer the
necessary type of a variable from the types of its (multiple) occurrences. Finally,
they include operations to construct the intermediate views in method typings.

Recall the copy method of Example 2. We need one item of potential in order
to create a Conspoor object . We said before that this object creation will be payed
with the potential of this, but how exactly? In order to use the potential of the
variable this of RAJA-class Consrich, we put it in the context with a modified

type, for example, Consrich
.

−1, which is a view defined just like rich but with
potential 0 everywhere. Moreover we find another view with potential 1, which

we call 1(rich), such that .
(

Consrich
∣

∣

∣
Consrich

.

−1,Cons1(rich)
)

holds. Then we can

derive: this :Consrich
.

−1 1
0 let List res = new Conspoor in . . . in return res;

The declarative rule gives no information about how to find the views q and
s. In order to find them algorithmically, we will introduce special algorithmic
views like rich

.
− 1 and 1(rich).

Definition 6 (Algorithmic views). Let R be a RAJA-program. We extend
the given set of views V by algorithmic views

δ, γ ::= s1 ∨ s2 | s1 ∧ s2 | s1 + s2 | s
.
− n | n(s) s, s1, s2 ∈ V , n ∈ D

by extending the given maps ♦(·),Aget(· , ·), Aset(· , ·), M(·, ·) according to Fig. 3.

Definition 7 (Complete RAJA-program). A RAJA-program
R = (C ,V ,♦(·),Aget(· , ·) ,Aset(· , ·) ,M(·, ·)) is complete if the following condi-
tions are satisfied. Let ∗ ∈ {∧,∨,+}.

1. s1 ∗ s2 ∈ V , for all s1, s2 ∈ V .
2. s

.
− n, n(s) ∈ V , for all s ∈ V , n ∈ D.

3. The annotation table of R satisfies the equations from Def. 6.

Given a RAJA program R we can complete it with algorithmic views. Cs1∨s2

is the least upper bound of Cs1 and Cs2 and Cs1∧s2 is the greatest lower bound
of Cs1 and Cs2 . Cs1+s2 is defined such that .(Cs |Cs1 , Cs2) is equivalent to
Cs <: Cs1+s2 . This way we can deal only with subtyping instead of sharing,
which is simpler and more intuitive. Finally, the views n(s) are neutral views
of potential n and set-views like s. They are intended to be used together with
the views s

.
− n, which are nothing but the view s, with n units of potential

stripped-off. This way, we get .
(

Cs
∣

∣

∣
Cs

.

−n, Cn(s)
)

. These algorithmic views are

8

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

141

Let C ∈ C , a ∈ A(C) and m ∈ M(C). We set:

♦(Cs1∧s2) = max(♦(Cs1), ♦(Cs2))
♦(Cs1∨s2) = min(♦(Cs1), ♦(Cs2))
♦

`

Cs1+s2
´

= ♦(Cs1) + ♦(Cs2)

♦

“

Cn(s)
”

= n

♦

“

Cs
.
−n

”

=

♦(Cs)
.
− n ♦(Cs) ≥ n

0 otherwise

M(Cs1∧s2, m) = M(Cs1, m) ∪M(Cs2, m)
M(Cs1∨s2, m) = M(Cs1, m) ∨M(Cs2, m)
M

`

Cs1+s2, m
´

= M(Cs1, m) ∪M(Cs2, m)

M
“

Cn(s), m
”

= ∅

M
“

Cs
.
−n, m

”

= M(Cs, m)

Aget(Cs1∧s2, a) = Aget(Cs1, a) ∧ Aget(Cs2, a)
Aget(Cs1∨s2, a) = Aget(Cs1, a) ∨ Aget(Cs2, a)
Aget

`

Cs1+s2, a
´

= Aget(Cs1, a) + Aget(Cs2, a)

Aget
“

Cn(s), a
”

= 0(s)

Aget
“

Cs
.
−n, a

”

= Aget(Cs, a)

Aset(Cs1∧s2, a) = Aset(Cs1, a) ∨ Aset(Cs2, a)
Aset(Cs1∨s2, a) = Aset(Cs1, a) ∧ Aset(Cs2, a)
Aset

`

Cs1+s2, a
´

= Aset(Cs1, a) ∨ Aset(Cs2, a)

Aset
“

Cn(s), a
”

= Aset(Cs, a)

Aset
“

Cs
.
−n, a

”

= Aset(Cs, a)

M(Cs1, m) ∨ M(Cs2, m) = {(C.m)α1 ∨α2 | α1 ∈ M(Cs1, m) , α2 ∈ M(Cs2, m)}

(C.m)α1 ∨α2 = Ep1∧q1
1 , . . . , E

pj∧qj

j
max(n,m)/ min(n′,m′)
−−−−−−−−−−−−−−→Ep0∨q0

0

Fig. 3. Definition of ♦(·), Aget(· , ·) , Aset(· , ·) , M(· , ·) of algorithmic views

useful for implementing ⊢ m :α ok. If we need to use n units of potential of the
type Cs of this in the method body of a given method, we give this the type

Cs
.

−n and use the potential of Cn(s) in the method.
Of course, we are free to use the algorithmic views from the beginning and

in particular in the provided class and method typings. They may be seen as a
shorthand for a longer table which includes them explicitly. We stress, though,
that efficient type checking for incomplete programs is not possible with the tech-
niques from this paper. We do not consider typechecking of incomplete programs
to be of any practical relevance.

The following lemma summarizes the desirable order- and proof-theoretic
properties of algorithmic views:

Lemma 2. Let C,D ∈ C and s, s1, s2, . . . , sn, q1, q2, . . . , qn ∈ V .

1. Cs1∨s2 is the least upper bound of Cs1 and Cs2 .
2. Cs1∧s2 is the greatest lower bound of Csi .
3. .(Cs |Cs1 , . . . , Csn) ⇐⇒ Cs <: Cs1+...+sn .
4. If Cs <: Cs1+...+sn and Csi <: Cqi for all i, then Cs <: Cq1+...+qn .
5. Cs+0(s) = Cs.
6. If n ≤ ♦(Cs) then .

(

Cs
∣

∣

∣
Cs

.

−n, Cn(s)
)

. Moreover, .(Cs |Cs1 , Cs2) and

♦(Cs2) ≥ n imply Cs
.

−n <: Cs1 .

Algorithmic typechecking now faces one more obstacle. Officially, one method
can have infinitely many RAJA types. This does not compromise semantic type
soundness, but must of course be restricted to finitely many to enable algorithmic
type checking.

9

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

142

Moreover, the rule (♦Invocation) chooses non-deterministically one monomor-
phic RAJA method type according to the given method call. In order for algo-
rithmic typing to be efficient (not NP-complete) we need to make sure that there
is an optimal such choice in any situation.

Definition 8. If α = r1, . . . , rj
p/p′

−−→r0 and β = s1, . . . , sj
n/n′

−−→s0 then α ⊑ β iff
p ≤ n and p− p′ ≤ n− n′.

Definition 9. A RAJA-program is algorithmic if it is finite, complete, and for
all C, r,m the set M(Cr,m) is totally ordered by the ordering in Def. 8.

From now on we assume that all RAJA-programs are algorithmic without explicit
notice.

3 Algorithmic Typing of RAJA Programs

In this section we present an algorithm for typechecking RAJA programs. Al-
gorithmic type-checking must consist of syntax directed rules, thus, the rules
(♦Share) and (♦Waste) must be integrated in other rules. Instead of using
(♦Waste), we integrate subtyping in the rules.

The purpose of the (♦Share) rule is to ensure that a variable can be used
more than once without unsound incrementation of potential. The main chal-
lenge for implementing it is that it contains no information about how to find
the views q1 to qn for the different occurrences. The current implementation does
not include inference of these views. Instead, every variable occurrence has been
annotated with the corresponding view, which can be an algorithmic view. The
task of the type checker is then to check the correctness of the given sharing, or,
more exactly, since, as we saw in last section, using algorithmic views a sharing
task can be reduced into a subtyping task, the algorithm checks only subtyping.
The inference of these intermediate views remains under investigation.

The computed resource annotations in rules (⊢ Let) and (⊢ Cond.) are a
bit intricate. Ultimately, they are justified by soundness and completeness. Rule
(⊢Let) may be easier to understand if broken down into the two cases m ≥ n′ and
m < n′. In the latter case the output of the first computation suffices to satisfy
the second one. In the former case extra input potential must be provided for
the second computation. In rule (⊢Cond.) we must cater for both computations,
hence the max and the min. The adaptations u−n and u−m cater for the case
where, say, m ≥ n units were provided due to the max, yet the first branch of
the conditional was taken hence only n units “used” and vice versa.

In the rule (⊢ Inv.) we choose the minimal RAJA monomorphic type that
satisfies the subtyping conditions. Since the algorithmic system considers only
finite programs and the set of RAJA monomorphic types is totally ordered
according to ⊑, every nonempty subset of M(Gr,m) has a minimal element.

We define the judgment ∆Ψ n
n′ e◦ ⇇ Cγ inductively by the rules in Figure

4, where ∆, e◦ and Cγ are inputs and Ψ , n and n′ are outputs. ∆ is an FJEU
context, i.e. a map from variable names to FJEU types. Ψ is a map from variable
names to algorithmic views. Cγ is an algorithmic RAJA type, which is an FJEU
class refined with an algorithmic view and e◦ is an annotated FJEU expression.

10

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

143

Algorithmic RAJA Typing ∆Ψ n
n′ e◦ ⇇ Cr

Dγ <: Cγ

∆Ψ∅
♦(Dγ) + 1

0 new D ⇇ Cγ

(⊢New)
Eq <: Cγ

∆Ψ∅ , x :Eq
0
0 xq ⇇ Cγ

(⊢V ar)

∆Ψ∅ , x :Cq
0

♦(Cq) + 1 free (xq) ⇇ Eγ
(⊢Free)

D <: E (or E <: D) Dq <: Cγ

∆Ψ∅ , x :Eq
0
0 (D)xq ⇇ Cγ

(⊢Cast)
∆Ψ∅

0
0 null ⇇ Cγ

(⊢Null)

Aget(Cr, a) = q C.a = E Eq <: Dγ

∆Ψ∅ , x :Cr
0
0 xr.a ⇇ Dγ

(⊢Access)

Aset(Eq, a) = s E.a = D F p <: Ds Eq <: Cγ

∆Ψ∅ , x :Eq,+ y :F p
0
0 xq.a← yp ⇇ Cγ

(⊢Update)

∆Ψ ′ n
n′ e◦1 ⇇ Dγ1 ∆Ψ ′′

, x :Dγ1
m
m′ e◦2 ⇇ Cγ2

∆Ψ ′+Ψ ′′ max(n, n + m − n′)

max(m′, m′ + n′
− m) let D x = e◦1 in e◦2 ⇇ Cγ2

(⊢Let)

x ∈ ∆ ∆Ψ ′ n
n′ e◦1 ⇇ Cγ ∆Ψ ′′ m

m′ e◦2 ⇇ Cγ u = max(m, n)

∆Ψ ′∧Ψ ′′ u
min(n′ + u − n, m′ + u − m) if x instanceof E then e◦1 else e◦2 ⇇ Cγ

(⊢Cond.)

p/p′ = arg min{
`

Eq1
1 , . . . , E

qj

j
p/p′

−−→Eq0
0

´

∈M(Gr, m) | ∀i . F ti
i <: Eqi

i , Eq0
0 <: Cγ }

∆Ψ∅ , x :Gr ,+ y1 :F t1
1 ,+ . . . ,+ yj :F

tj

j

p
p′ xr.m (yt1

1 , . . . , y
tj

j) ⇇ Cγ

(⊢Inv.)

Typecheck function

typecheck(∆, e◦, Cγ) =

(Ψ, n, n′) if ∆Ψ n
n′ e◦ ⇇ Cγ

fail otherwise

Algorithmic RAJA Method Typing ⊢a m : α ok

α = Er1
1 , . . . , E

rj

j
n/n′

−−→Er0
0 ∈ M(Cr, m)

this :Cβ , x1 :Eβ1
1 , . . . , xj :E

βj

j

u
u′ Mbody(C, m)◦ ⇇ Er0

0

Eri
i <: Eβi

i p = u
.
− n u′ ≥ n′ + u− (n + p) ♦(Cr) ≥ p Cr

.
−p <: Cβ

⊢a m : α ok

Fig. 4. Algorithmic RAJA Typing

11

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

144

The notation ∆Ψ means that for every variable x ∈ ∆, if ∆x = C and Ψx = δ
then ∆Ψ

x = Cδ. We also use the notation ∆Ψ1+Ψ2 for meaning that if ∆Ψ1
x = Cδ1

and ∆Ψ2
x = Cδ2 then ∆Ψ1+Ψ2

x = Cδ1+δ2 . The meaning of ∆Ψ1∧Ψ2 is similar. We
write x :Cr,+ y :Ds for the following two cases. The usual case is x 6= y and then
it means nothing but x :Cr, y :Ds. On the other hand, if x = y, then C = D too,
and the notation means x :Cr+s. We write ∆Ψ∅ for meaning ∆

Ψ∅
x = C0(s) where

∆x = C and s is one of the view annotations of x or any view if x is not used in
the program. The idea is to return neutral views for variables that are not used
in the given expression. Finally, let e◦ denote an annotated RAJA expression.
In summary, we define the partial function typecheck(∆, e◦, Cγ) (Fig. 4).

Next, we define the algorithmic judgment ⊢a m : α ok based on algorithmic
typing. (Fig. 4). The typechecking algorithm returns a greater context than the
declared one. This has to be checked. Moreover, it calculates the space consump-
tion u of the method body. If u ≤ n then n items are enough and we do not need
any potential from this. Otherwise, we calculate how many items of potential
we need from this, i.e. p = u

.
− n, and we of course have to check whether the

potential of this is at least p. Finally, the amount of freelist units u′ released by
the expression should be at least n′ + u− (n + p).

In the following we show that the algorithmic typing system we just defined
is correct w.r.t. the declarative typing system of RAJA. If Γ is a RAJA context,
we write |Γ | for meaning its underlying FJEU context.

Lemma 3 (Soundness of algorithmic RAJA typing).
If ∆Ψ n

n′ e◦ ⇇ Cγ then ∆Ψ n
n′ e : Cγ .

Proof. By induction on algorithmic typing derivations, using the (♦Waste) rule
and Lemma 2.

Lemma 4 (Soundness of algorithmic RAJA method typing). Given a
RAJA type Cr, a method m ∈ M(C) and a RAJA method type α ∈ M(Cr,m), if
⊢a m : α ok then ⊢ m : α ok.

Proof. Follows by Lemma 3.

The completeness proof is a bit more complicated than the soundness proof.
The reason for this is that we have eliminated the rules (♦Share) and (♦Waste)
and we have to show that typing derivations that use these rules are still admis-
sible in the algorithmic system. The following lemma states the admissibility of
sharing in the algorithmic system.

Lemma 5 (Share). Let ∆Ψ , y1 : Dδ1 , . . . , yn : Dδn
n
n′ e◦ ⇇ Cγ . Then ∆Ψ , x :

Dδ n
n′ e[x/y1, . . . , x/yn]◦ ⇇ Cγ where either δ = δ1+. . .+δn or δ = δ1∧. . .∧δn.

Proof. By induction on algorithmic typing derivations.

Lemma 6 (Waste). Let ΛΨ u
u′ e◦ ⇇ Dγ , Dγ <: Cδ and ∆ <: Λ then

∆Ψ w
w′ e◦ ⇇ Cδ for some w ≤ u and w′ ≥ u′ + w − u.

Proof. By induction on algorithmic typing derivations.

12

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

145

Lemma 7 (Completeness of algorithmic RAJA typing).
If Γ

n
n′ e : Cr then there is an annotated version e◦ of the expression e with

|Γ |Ψ
u
u′ e◦ ⇇ Cr for some u ≤ n and u′ ≥ n′ + u− n so that Γ <: |Γ |Ψ .

Proof. By induction on typing derivations, using Lemma 5 and 6.

Lemma 8 (Completeness of algorithmic RAJA method typing). Given
a RAJA type Cr, a method m ∈ M(C) and a RAJA method type α ∈ M(Cr,m),
if ⊢ m : α ok then ⊢a m : α ok.

Proof. Follows by Lemma 7.

The statements relating to polynomial time below make the assumption that
the size of method typings, i.e. |M(Cr,m) | is constant. Otherwise the definition
of M(Cr1,m) ∨M(Cr2,m) may lead to exponential blowup.

Lemma 9 (Efficiency of algorithmic RAJA typing).
∆Ψ n

n′ e◦ ⇇ Cr is decidable in polynomial time.

Proof (sketch). The syntax-directed backwards application of the algorithmic
typing rules produces a linear number of subtyping and sharing constraints.
Furthermore, the algorithmic view expressions occurring in these constraints are
themselves of linear size. It then suffices to restrict attention to the views that
occur as subexpressions of the ones appearing in the constraints. Their num-
ber is therefore polynomial in the size of the program. A complete table of the
subtyping and sharing judgments for this relevant subset can then be computed
iteratively in polynomial time. In practice, a goal-directed implementation per-
forms even better.

Lemma 10. Given a RAJAclass C, a view r, a method m ∈ M(C) and a
RAJAmethod type α ∈ M(Cr,m), ⊢ m : α ok is decidable.

Proof. Follows by Lemmas 4, 8 and 9.

Theorem 1 (Efficiency of RAJA typing). Given a RAJA -Program R, its
well-typedness is decidable in polynomial time.

4 Related work

Since [HJ06] several authors have made contributions towards costing heap con-
sumption of object-oriented programs. [MP07] uses methods from abstract in-
terpretation and term rewriting (quasi interpretations) to estimate the size of
data structures and thus indirectly heap consumption. The approach is promis-
ing, but aliasing does not seem to have been taken into account properly and
not many examples are given. The interpretation of methods must be provided
manually.

COSTA [AAG+07] is similar in that it assigns cost functions to methods and
program parts. These refer directly to heap consumption and are given as so-
lutions of automatically constructed recurrence systems. The main contribution

13

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

146

of COSTA is an improved solver for these recurrences. COSTA is not as general
as RAJA which, however, is not fully automatic.

Another promising fully automatic system is [GMC09] which works by in-
strumenting code with resource-counting, integer-valued “ghost”-variables and
using modern tools from static analysis for estimating their range of values.
The examples given are stunning, but do not involve dynamically allocated data
structures. With further progress with automatic analysis of arithmetic rela-
tionships between integer variables systems like SPEED may eventually render
type-based analyses obsolete. More likely, however, is a combination of the two.

Finally, Java(X) [DTW07] is a type system quite similar to RAJA and de-
veloped independently which has, however, a different purpose, namely ensuring
the correct usage of resources like files etc. according to a specified protocol. The
paper [DTW07] does not present algorithmic type checking, let alone automatic
type inference; it is likely that the algorithmic system presented here could be
adapted to Java(X).

5 Conclusions
We have provided a type checking algorithm for RAJA programs and proved
its correctness and efficiency in the sense of polynomial-time computability. In
order to do this, we introduced algorithmic views which render the subtyping
lattice more well behaved and could also be a useful addition to the declarative
system which is exposed to the programmer. In this way, we were able to get rid
of most type annotations in method bodies although we still have to indicate
the types of multiple occurrences of a variable, i.e., how the potential belonging
to the variable is to be split among the different occurrences.

The algorithmic typechecking and the implementation allow us to investigate
larger examples which might prompt further extensions to RAJA. In particu-
lar, we would like to investigate the typability of the Iterator pattern and more
challengingly patterns involving callbacks like Observer. From a pragmatic view-
point, polymorphic quantification over views could be a useful extension, too.

Of course, full-blown type inference is also on our agenda, thus potentially
rendering RAJA into a push-button analysis.
Acknowledgment We acknowledge support by the EU integrated project MO-
BIUS IST 15905. We thank Andreas Abel, Lennart Beringer and Steffen Jost
for valuable comments.

References

[AAG+07] Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano
Zanardini. COSTA: Design and implementation of a cost and termination
analyzer for java bytecode. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem P. de Roever, editors, FMCO, volume 5382 of
Lecture Notes in Computer Science, pages 113–132. Springer, 2007.

[Cam08] Brian Campbell. Type-based amortized stack memory prediction. PhD thesis,
University of Edinburgh, 2008.

[DTW07] Markus Degen, Peter Thiemann, and Stefan Wehr. Tracking linear and
affine resources with java(X). In Erik Ernst, editor, ECOOP, volume 4609
of Lecture Notes in Computer Science, pages 550–574. Springer, 2007.

14

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

147

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and
mixins. In The 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’98), pages 171–183, New York, January
1998. Association for Computing Machinery.

[GL98] Gustavo Gómez and Yanhong A. Liu. Automatic accurate cost-bound anal-
ysis for high-level languages. In Frank Mueller and Azer Bestavros, editors,
Languages, Compilers, and Tools for Embedded Systems, ACM SIGPLAN
Workshop LCTES’98, Montreal, Canada. Springer, 1998. LNCS 1474.

[GMC09] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. SPEED: pre-
cise and efficient static estimation of program computational complexity. In
Zhong Shao and Benjamin C. Pierce, editors, POPL, pages 127–139. ACM,
2009.

[Gro01] Bernd Grobauer. Topics in Semantics-based Program Manipulation. PhD
thesis, BRICS Aarhus, 2001.

[HBH+07] Christoph A. Herrmann, Armelle Bonenfant, Kevin Hammond, Steffen Jost,
Hans-Wolfgang Loidl, and Robert Pointon. Automatic amortised worst-case
execution time analysis. In 7th Int’l Workshop on Worst-Case Execution
Time (WCET) Analysis, Proceedings, pages 13–18, 2007.

[HDF+05] Kevin Hammond, Roy Dyckhoff, Christian Ferdinand, Reinhold Heckmann,
Martin Hofmann, Steffen Jost, Hans-Wolfgang Loidl, Greg Michaelson,
Robert F. Pointon, Norman Scaife, Jocelyn Srot, and Andy Wallace. The
embounded project (project start paper). In Marko C. J. D. van Eekelen,
editor, Trends in Functional Programming, volume 6 of Trends in Functional
Programming, pages 195–210. Intellect, 2005.

[HJ03] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for
first-order functional programs. In POPL: 30th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, 2003.

[HJ06] Martin Hofmann and Steffen Jost. Type-based amortised heap-space anal-
ysis (for an object-oriented language). In Peter Sestoft, editor, Proceedings
of the 15th European Symposium on Programming (ESOP), Programming
Languages and Systems, volume 3924 of LNCS, pages 22–37. Springer, 2006.

[HJR] Martin Hofmann, Steffen Jost, and Dulma Rodriguez. Type-based
amortised heap space analysis. (complete soundness proof). In
http://raja.tcs.ifi.lmu.de/download/files/rajaSoundProof.pdf.

[HP99] John Hughes and Lars Pareto. Recursion and dynamic data-structures in
bounded space:, June 21 1999.

[IPW99] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. In Loren Meissner, editor, Proceed-
ings of the 1999 ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages & Applications (OOPSLA‘99), volume 34(10),
pages 132–146, N. Y., 1999.

[MP07] Jean-Yves Marion and Romain Péchoux. Resource control of object-oriented
programs. CoRR, abs/0706.2293, 2007. informal publication.

[NCQR05] Huu Hai Nguyen, Wei Ngan Chin, Shengchao Qin, and Martin C. Rinard.
Memory usage inference for object-oriented programs. January 2005.

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[raj] http://raja.tcs.ifi.lmu.de.
[Tar85] Robert E. Tarjan. Amortized computational complexity. SIAM Journal on

Algebraic and Discrete Methods, 6(2):306–318, April 1985.

15

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

148

Membership Checking in Greatest Fixponts Revisited
Martin Hofmann

LMU Munich
mhofmann@ifi.lmu.de

Dulma Rodriguez
LMU Munich

rodrigue@ifi.lmu.de

Abstract

Pierce (2002) presents an efficient algorithm for computingmembership in the greatest fixpoint
of invertibleoperators in a goal-directed way. In this paper we provide a new proof of correctness for
it based on coinduction. Moreover, we extend the algorithm for computing membership in thegfp of
arbitrary monotone operators and prove this extension correct in a very similar way.

1 Introduction
We are interested in computing membership in the greatest fixpoint of a monotone operator on the pow-
erset of some given set. Rather than computing the entire fixpoint by Knaster-Tarski iteration we want
to depart from a given goal. This may be advantageous if the size of the underlying set or of the great-
est fixpoint is large compared to the portion relevant for determining membership of a particular ele-
ment. For a concrete example consider the operatorF(X) = {x | x+1 mod 5∈ X} on the powerset of
G= {0, . . . ,2100}. Obviously, the largest fixpoint consists ofG itself; determining this by Knaster-Tarski
iteration is infeasible though. If we only want to check whether a particular element, say 23 is in thegfp

we can commence with the goal 23∈ gfp?. This leads to the sequence of subgoals 4∈ gfp?, 0∈ gfp?,
1∈ gfp?, 2∈ gfp?, 3∈ gfp?, 4∈ gfp? at which point we are done because we have discovered a loop in
the sequence of subgoals that have arisen.

We are specially interested in deciding subtyping for RAJA types. The RAJAsystem is a refine-
ment of an extension of Featherweight Java (FJ) [IPW01] with attribute update (FJEU), with the goal of
statically analysing the heap space consumption of object-oriented programs. The system has been first
described by Hofmann and Jost in [HJ06]. Recently, the current authors analysed algorithmic typing of
RAJA programs [HR09]. Briefly, RAJA types are FJEU classes refinedwith a possibly infinite set of
views. Subtyping for RAJA types is defined as the greatest fixpoint of a monotoneoperator, similarly to
the definitions of subtyping for other recursive types like tree types orµ-types [Pie02, Chapter 21].

Subtyping algorithms for recursive types have been widely studied in the past. Amadio and Cardelli
gave the first subtyping algorithm for recursive types [AC93]. Brandt and Henglein’s [BH98] showed the
underlying coinductive nature of Amadio and Cardelli’s algorithm. In [Pie02,Chapter 21] Pierce gives
an overview of many algorithms for membership checking for greatest fixedpoints and how they can be
used to decide subtyping for recursive types.

RAJA subtyping, however, is a bit more complicated than most of the other definitions of subtyping
for recursive types because in RAJA methods can have many differenttypes. Therefore, in order to check
that a RAJA typeCr is a subtype of a RAJA typeDs we need to check that for a given methodm for all
its method types inDs there is a method type inCr with some properties. This causes that thesupportof
a given goal is not a set of subgoals as usual but a boolean combinationof subgoals.

In this paper we will extend the efficient algorithm for membership checking for greatest fixed points
described in [Pie02, Chapter 21.6] to a more general version where the support of a given goal is a
positive boolean expression. Moreover, we provide a new proof of correctness for both algorithms.
We found the proof in [Pie02, Chapter 21.6] difficult to extend and provide therefore a more abstract
coinductive proof which can be easily adapted to the new algorithm.

Contents.In Section 2 we describe and prove correct an algorithm for membership checking in great-
est fixed points of monotone operators closed under intersection. In Section 3 we extend the algorithm
to arbitrary monotone operators. In Section 4 we instantiate the second algorithm in order to decide
subtyping for the RAJA system.

1

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

149

2 Invertible Operators
Let G be a set. We letP(G) denote the powerset ofG andPF(G) denote the set of finite subsets of
G. If F : P(G) → P(G) is a monotone operator we writegfp(F) for its greatest fixpoint. We have
gfp(F) = F(gfp(F)) and wheneverX⊆F(X) thenX⊆ gfp(F). The latter principle is called coinduction.
We may also use the notationνX.F(X) for gfp(F).

In the following we review a goal-directed algorithm for membership checkingfor greatest fixed
points described in [Pie02, Chapter 21.6]. This algorithm works only for aspecial kind of operators,
invertible operators, which we now characterize.

A given elementg∈G can be generated by a monotone operatorF in many ways, which means that
there can be more than one setX ⊆ G such thatg∈ F(X). We call any such set ageneratingset forg.
We focus here on the class of invertible operators, where eachg has at most one minimal generating set.

Definition 2.1. A monotone operatorF is said to beinvertible if, for all g ∈G, the collection of sets

Gg = {X ⊆G | g∈ F(X)}

is either empty or contains a unique finite member that is a subset of all the others.

WhenF is invertible, the partial functionsupportF : G→ PF(G) is defined like this:

supportF(g) =

{

X if X ∈Gg and∀X′ ∈Gg .X ⊆ X′

↑ if Gg = /0

That is, the support of a goalg is the least generating setX for g, or undefined ifg is not supported inF.

Definition 2.2. Let G be a set, A⊆G, f :G→ PF(G). A monotone operatorF f ,A is defined by

F f ,A : P(G)→ P(G)
F f ,A(X) = {g | g∈ A∧ f (g)⊆ X}

Then, the support of a goal is given by the functionf and it is only defined for elementsg∈ A:

supportFf,A
(g) =

{

f (g) if g∈ A
↑ otherwise

The following result seems to be folklore, well-known e.g. in the field of predicate transformers. The
operatorsF f ,A are equivalent to invertible operators and to monotone operators closed under intersection
where every goal has a finite support.

Theorem 2.3. LetF :P(G)→ P(G) be a monotone operator. The following are equivalent:

1. There exists f,A such thatF = F f ,A.

2. For each g∈ F(G) there exists a finite support set S∈ PF(G) such that g∈ F(S) and for all
X1,X2 ∈ PF(G) one hasF(X1∩X2) = F(X1)∩F(X2).

3. F is invertible.

Membership checking
Figure 1 shows an algorithm for membership checking in the greatest fixed point of F f ,A. The idea of
this membership algorithm is to runF backwards: to check membership for an elementg, we need to
ask howg could have been generated byF. The advantage of an invertibleF is that there is at most one
way to generate a giveng. We have to be careful though, a goalg might be supported e.g. by the same
goal g. If we do not detect these kind of loops, the algorithm will not terminate. Therefore we keep
a set of assumptionsU that is empty at the beginning and that will be incremented with every goal we
handle. This way we are able to detect a loop if we check whether the current goal is a member of the set
of assumptions, in which case we finish with a positive answer. The followingalgorithm takes a set of
assumptionsU as an argument and returns another set of assumptions as a result. This allows it to record

2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

150

Algorithm 1. test : G×P(G)→ P(G)⊥
test(g,U) = if g∈U then U

else if g /∈ A then fail

else

let {h1, . . . ,hn}= f (g) in

let V1 = test(h1,U ∪{g}) in

let V2 = test(h2,V1) in

. . .
let Vn = test(hn,Vn−1) in

Vn

Figure 1: Algorithm for membership checking of greatest fixed points.

the subtyping assumptions that have been generated during completed recursive calls and reuse them in
later calls. For failure we use the convention: if an expressionB fails, thenlet A = B in C also fails.

This algorithm has been described and proved correct in [Pie02, Chapter 21.6]. In [SC05], Costa
Seco and Caires have used it as well for defining subtyping for a class-based object oriented language
where classes are first class polymorphic values. We provide here a more abstract correctness proof
based on coinduction.

Theorem 2.4. 1. if G is a finite set thetest(g,U) terminates.

2. test(g, /0) = V ⇐⇒ g∈ νX.F f ,A(X).

Proof. 1. Termination of the algorithm follows using|G\U | as a ranking function.

2. LetN(U) := νX.{h | h∈U ∨ (h∈ A∧ f (h) ⊆ X)}. Note thatN(U) = νX.U ∪ FF,A(X). Conse-
quently,N(/0) = νX.F f ,A(X). The goal follows then from the more general results:

(a) test(g,U) = V ⇒ g∈N(U) andU ⊆V ⊆N(U).

(b) test(g,U) = fail⇒ g /∈N(U).

which we prove simultaneously by induction on the runtime of the computation oftest(g,U).

Case g∈U . Thentest(g,U) = U by definition andg∈N(U) sinceU ⊆N(U).

Case g/∈U andg /∈ A. Thentest(g,U) = fail andg /∈N(U) sinceN(U)⊆U ∪A.

Case g/∈U andg∈ A. We consider the representative casef (g) = {h1,h2}.

Case test(h1,U ∪{g}) = V1 andtest(h2,V1) = V2.
Then by induction hypothesis we geth1 ∈N(U ∪{g}) andU ∪{g} ⊆V1 ⊆N(U ∪{g})
andh2 ∈N(V1) andV1⊆V2⊆N(V1). From monotonicity ofN(.) then followsN(V1)⊆
N(N(U ∪{g})) = N(U ∪{g}) easily1, hence, we getf (g)⊆N(U ∪{g}) (*).
Next we claim thatN(U) = N(U ∪ {g}). One direction is clear by monotonicity of
N(.). For the other direction we use coinduction withX0 = N(U ∪{g}). To conclude
X0 ⊆N(U) we thus have to proveX0 ⊆U ∪{h | h∈ A∧ f (g)⊆ X0} which we now do.
Pickh∈ X0 = N(U ∪{g}).
From the definition ofN(.) we get thath∈U or h = g or f (g)⊆ X0. The first and third
case immediately yield the desired result. In the second case (g = h) we get f (g) ⊆ X0

from (*). So we provedN(U) = N(U ∪{g}). Then we havef (g) ⊆ N(U) andg∈ A,
thus, we get the desiredg ∈ N(U). Moreover, we getU ⊆U ∪{g} ⊆ N(U ∪{g}) ⊆
N(U).

Case test(hi ,U ∪{g}) = fail for somei. Theng /∈N(U) follows easily by I.H.
2

1N(N(U)) = N(U) follows by monotonicity ofN(.) and coinduction.

3

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

151

3 Arbitrary Monotone Operators
In this section we extend the previous algorithm to an algorithm for membership checking in the greatest
fixpoint of not necessarily invertible monotone operators, where the support of a given goal is the mean-
ing of some positive boolean expression. As mentioned in the introduction, thisextension is motivated
by the subtyping relation of the RAJA system. In the following we describe formally positive boolean
expressions and their meaning.
Definition 3.1. Positive boolean expressionsover G are defined by the grammar

e ::= tt | ff | g | e1∧e2 | e1∨e2

where g ranges over elements of G. LetPBool(G) be the set of positive boolean expressions over G.

Positive boolean expressions denote predicates onP(G). In particular,g denotes{X | g∈ X}. Formally,
if X ⊆G we define themeaningJeKX :bool as follows:

JttKX = tt

JffKX = ff

JgKX = g∈ X

Je1∧e2K
X = Je1K

X ∧ Je2K
X

Je1∨e2K
X = Je1K

X ∨ Je2K
X

Example 3.2. Let G= {a,b,c,d} and e= a∧ (b∨c), thenJeK{a,b} = tt andJeK{b,c} = ff.

Note thatX ⊆Y impliesJeKX ⇒ JeKY.

Definition 3.3. Let f :G→ PBool(G) be a boolean operator. Then we obtain a monotone operatorF f

as follows:
F f : P(G)→ P(G)
X 7→ {g | J f (g)KX = tt}

Next we prove constructively that, whenever a setG is finite, we can provide a boolean operator for any
monotone operator overG. We notice though that the so constructed boolean operator might be very big,
hence, applying the algorithm we are about to describe would be very inefficient.

Theorem 3.4. If G is a finite set andF : P(G) → P(G) then there exists f: G→ PBool(G) such that
F = F f .
Proof. For each (finite) subsetX = {g1, . . . ,gk} ⊆ G define

∧

X := g1∧ . . .∧ gk. We haveJ
∧

XKY =
tt ⇐⇒ X ⊆Y. Giveng let X1 . . .Xk be an enumeration of the subsetsX such thatg∈ F(X). We then
put f (g) =

∧

X1 ∨ . . .∨
∧

Xn. Now g∈ F(X)⇒ X = Xi for somei ⇒ J
∧

XiK
X = tt⇒ J f (g)KX = tt.

ConverselyJ f (g)KX = tt⇒ Xi ⊆ X for somei ⇒ g∈ F(Xi)⇒ g∈ F(X) by monotonicity. 2

For invertible operators we can provide a boolean operator directly. Given f : G→ P(G) as in the last
section andA⊆G, define f̃ as follows:

f̃ (g) =

{

ff if g /∈ A
∧

f (g) if g∈ A

ThenJ f̃ (g)KX = tt ⇐⇒ g∈ A∧ f (g)⊆ X, hence,F f̃ (X) = F f ,A(X).

Membership checking

Figure 2 shows a new algorithm for membership in thegfp of arbitrary monotone operators whenever a
boolean operatorf :G→ PBool(G) is given. Algorithm 2takes a set of assumptionsU as an argument
and returns another set of assumptions and a boolean as a result. The difference to the first algorithm
is that if the meaning of the support of a goal istt, then the new computed set of assumptions will be
returned; otherwise it will be dropped. Moreover,ff branches do not lead immediately to rejection. They
can lead to a positive answer if combined by “or” with att branch. In the following we prove correctness

4

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

152

Algorithm 2. Let ∗ ∈ {∧,∨}:
test : PBool(G)×P(G)→ bool×P(G)

test(e1∗e2,U) = let (b1,V1) = test(e1,U) in

let (b2,V2) = test(e2,V1) in

(b1∗b2,V2)
test(g,U) = if g∈U then (tt,U)

else let (b,V) = test(f (g), U ∪{g}) in

if b then (tt,V) else (ff,U)

Figure 2: Algorithm for membership checking in thegfp of arbitrary monotone operators.

and termination of the algorithm. If the basic set is finite the algorithm will terminate and the result will
be correct. Otherwise, even if the basic set is infinite, if the computation of thesupport of a goal do not
lead to an infinite chain of new goals, then the algorithm will terminate as well with a correct answer.

Theorem 3.5. Let f :G→ PBool(G) andtest defined as above. LetN(U) = ν X .U ∪ F f (X).

1. If test(e,U) = (b,V) thenJeKN(U) = b and U⊆V ⊆N(U).

2. If for each g there exists a finite set S such that f(S) ⊆ PBool(S) and g∈ S thentest(g, /0) termi-
nates.

Proof. 2. follows using|S\U | as a ranking function. For 1. we induct on the runtime oftest(e,U) and –
subordinately – on the structure ofe. We note that for allU ⊆G we haveU ⊆N(U), N(U) = N(N(U)).

Case e= e1∗e2. Write (b1,V1) = test(e1,U) and(b2,V2) = test(e2,V1).

Inductively, we haveb1 = Je1K
N(U) andU ⊆V1⊆N(U). Therefore,N(U)⊆N(V1)⊆N(N(U)) =

N(U), and thusN(V1) = N(U). It follows thatb2 = Je2K
N(U) andU ⊆V1⊆V2⊆N(U). The claim

then follows.
Case e= g.
Case g∈U . Thentest(g,U) = (tt,U) and obviouslyJgKN(U) = tt andU ⊆N(U).

Case g/∈U . Write (b,V) = test(f (g),U ∪{g}). Inductively, we haveU ∪{g} ⊆V ⊆ N(U ∪
{g}) andb = J f (g)KN(U∪{g}).

We claim thatN(U) = N(U ∪{g}). One direction is clear by monotonicity ofN(.). For the
other direction we use coinduction withX = N(U ∪{g}). To concludeX ⊆ N(U) we have
to proveX ⊆U ∪{h | J f (h)KX = tt} which we now do.

Pickh∈ X = N(U ∪{g}).

From the definition ofN(.) we get thath∈U or h = g or J f (h)KX = tt. The first and third
case immediately yield the desired result. In the second case (g = h) we getJ f (h)KX = tt

from the induction hypothesis. So we provedN(U) = N(U ∪{g}). The result is now direct
from the definitions. 2

Corollary 3.6. test(e, /0) = (b,) iff JeKgfp(Ff) = b.

4 Applications
In this section we consider a special application of the last algorithm. As we already mentioned we
are specially interested in computing subtyping for RAJA types. In the following we give a brief and
simplified introduction to the RAJA system and show how to instantiate the genericAlgorithm2 to gain
a RAJA subtyping algorithm.

RAJA programs are annotated FJEU programs, created with the goal of statically analysing their heap
space consumption. An FJEU programC is a partial finite map from class names to class definitions.
Classes contain attributes and methods. The RAJA type system is a refinementof the FJEU type system.
A refined (class) typeconsists of a classC and aview r and is writtenCr . The meaning of views is

5

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

153

given by three maps♦(), defining potentials,A, defining views of attributes, andM, defining refined
method types. More precisely,♦() : Class×View → Q+ assigns each class its potential according to
the employed view. Next,A : Class×View×Field→ View determines the refined types of the fields.
Finally, M : Class×View×Method→ P(Views of Arguments→ View of Result) assigns refined types
to methods. We allow polymorphism in the sense that one method may have more thanone (or no)
refined typing. For more details and concrete examples we refer to [HJ06,HR09].

Now we describe a simplified version of subtyping for RAJA types. The simplification disregards
subclasses and potentials but shows the need for going beyond invertibleoperators. LetRT be the set of
RAJA types. We define a monotone operatorF : P(RT×RT)→ P(RT×RT) as follows:

F(X) = {(Cr ,Ds) | ∀ attributesa . A(Cr ,a) = Ep, A(Ds,a) = Eq .(Ep, Eq) ∈ X

∀ methodsm . ∀(Eβ1
1 , . . . ,E

β j
j → Eβ0

0) ∈M(Ds,m) .

∃(Eα1
1 , . . . ,E

α j
j → Eα0

0) ∈M(Cr,m) .

(Eβ1
1 ,Eα1

1) ∈ X, . . . ,(E
β j
j ,E

α j
j) ∈ X,(Eα0

0 ,Eβ0
0) ∈ X}

ThenCr <: Ds ⇐⇒ (Cr ,Ds) ∈ νX.F(X). Now, in order to applyAlgorithm 2, we define a function
f : RT×RT→ PBool(RT×RT) so thatF(X) = F f (X):

f (Cr ,Ds) =
∧

a(E
p, Eq)∧

∧

m
∧

E
β1
1 ,...,E

β j
j →E

β0
0

∨

E
α1
1 ,...,E

α j
j →E

α0
0

(Eβ1
1 ,Eα1

1)∧ . . .∧ (E
β j
j ,E

α j
j)∧ (Eα0

0 ,Eβ0
0)

5 Conclusions
In this paper we extended the algorithm for membership checking for greatest fixed points described in
[Pie02, Chapter 21.6] to a more general version where the support of agiven goal is a positive boolean
expression. For finite sets this generalization encompasses all monotone operators. Next, we provided a
new coinductive correctness proof for both algorithms. Finally, we instantiated the general membership
algorithm in order to compute subtyping for RAJA types in a goal-directed way.

We believe that our new algorithm can be useful for computing subtyping for other refinement sys-
tems that also provide multiple types to methods. As part of a prototype implementationof the RAJA
system the algorithm has been implemented in Ocaml and we work currently in a formalization of its
correctness proof in the theorem prover Coq.
Acknowledgments.We acknowledge support by the EU integrated project MOBIUS IST 15905 and
by the DFG Graduiertenkolleg 1480 Programm- und Modell-Analyse (PUMA). We also thank Andreas
Abel for valuable comments.

References

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types.TOPLAS, 15(4):575–631, 1993.

[BH98] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality and subtyping.
Fundam. Inf., 33(4):309–338, 1998.

[HJ06] Martin Hofmann and Steffen Jost. Type-based amortised heap-space analysis (for an object-oriented
language). InESOP’06, volume 3924 ofLNCS, pages 22–37. Springer, 2006.

[HR09] Martin Hofmann and Dulma Rodriguez. Efficient type-checking for amortised heap-space analysis. In
CSL’09, LNCS. Springer, 2009.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: a minimal core calculus
for java and gj.TOPLAS, 23(3):396–450, 2001.

[Pie02] Benjamin C. Pierce.Types and programming languages. MIT Press, Cambridge, MA, USA, 2002.

[SC05] Jõao Costa Seco and Luı́s Caires. Subtyping first-class polymorphic components. In ESOP’05, volume
3444 ofLNCS, pages 342–356. Springer, 2005.

6

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

154

REM 2007

Monitoring External Resources in Java MIDP

David Aspinall Patrick Maier1 Ian Stark
Laboratory for Foundations of Computer Science

School of Informatics, The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

Abstract

We present a Java library for mobile phones which tracks and controls at runtime the use of potentially costly resources,
such as premium rate text messages. This improves on the existing framework (MIDP — the Mobile Information Device
Profile [6]), where for example every text message must be authorised explicitly by the user as it is sent. Our resource
management library supports richer protocols, like advance reservation and bulk messaging, while maintaining the security
guarantee that attempted resource abuse is trapped.

Keywords: Runtime Monitoring, Resource Control, Java MIDP, Security.

1 Introduction

Modern mobile phones are powerful computers. Their primary task, providing mobile
wireless telephone services, is comparatively losing importance as they are being used for
a range of other applications, from personal information managers to web browsers, from
media players to games. Most of these applications access the network 2 , either because it
is integral to their functionality (e. g. web browsers, online games), or because networking
is adding desired features (e. g. playing streaming media or synchronising diaries).

The cost of the standard computational resources, like execution time or memory space,
is determined solely by the computational device (i. e. the hardware of the mobile phone)
itself. The cost of network access, however, is determined by external entities, e. g. the
business model of the phone operator, which is why we classify network access as an
external resource. Moreover, it is a resource the spending of which users generally would
like to control tightly because it costs them money. The last point actually goes double:
If network access is maliciously exploited it could be very expensive, but even if it is not
exploited, users care about each 10p 3 , i. e. they want to know the exact cost beforehand.

In MIDP [6], the current standard framework for Java applications on mobile phones,
monitoring external resources, like communication via text message, is left to the user, as

1 Email: pmaier@inf.ed.ac.uk
2 Refers to the operator’s mobile phone network; access to other networks (like the Internet) is routed through this one.
3 The standard cost of sending a text message in the United Kingdom.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

155

Aspinall, Maier, Stark

send(msg3)
Is it ok to send 1 msg
to +44 444 1234567 ?

YES

create msg3

send to +44 444 1234567

send(msg2)
Is it ok to send 1 msg
to +33 333 7654321 ?

YES

create msg2

send to +33 333 7654321

send(msg1)
Is it ok to send 1 msg
to +44 444 1234567 ?

YES

create msg1

send to +44 444 1234567

NO

NO

NO

SecurityException

create multiset
of phone nums

To +44 444 1234567

To +33 333 7654321

How many msgs to send ?

2
1
0

1
0

(containing submultiset of granted nums)

return mgrall nums
granted to

NO

mgr ?

YES

create msg2
send(mgr, msg2)

create msg1

create msg3
send(mgr, msg3)

send(mgr, msg1)
send to +44 444 1234567

send to +33 333 7654321

send to +44 444 1234567

enable(multiset)

Fig. 1. Transaction sending 3 text messages; in MIDP 2.0 (left) and with explicit resource management (right).

illustrated by the flowchart on the left hand side of Figure 1. For each of the three messages,
the application pauses to ask the user for authorisation before sending. This one-shot autho-
risation is clearly prohibitive for applications wishing to send many messages because users
will get annoyed by the many pop-up screens, which malicious applications may exploit
to trick users into authorising messages to premium rate numbers. Such social engineering
attacks [12] have been reported in the wild [14]. Yet, even if an application sends only few
messages, one-shot authorisation can lead to undesirable results, like transactions aborted
midway by an exception because the user stops authorising messages (see the left hand side
of Figure 1).

We propose explicit accounting and monitoring of external resources to better protect
the user from accidental or malicious resource abuse. Our approach revolves around re-
source manager objects, which keep an account of which external resources an application
is granted to use and how often. The right hand side of Figure 1 illustrates this on the mes-
saging example. Before sending messages, the application computes a multiset of phone
numbers encoding how many messages it will send to which recipients. In a single authori-
sation dialogue the user then gets to decide how many messages the applications may send
to whom. This information (a submultiset of the multiset of requested numbers) is stored
in a resource manager. The application only proceeds if all the requested numbers have ac-
tually been granted, in which case it calls instrumented methods for sending the messages,
taking an extra resource manager argument, which monitors the resources being spent (and
would abort the application if it was overspending).

Explicit resource management has additional benefits besides runtime monitoring. It
forces the application to determine early on how many resources to request. It provides a
clear user interface by centralising the choice of which of the requested resource to grant
into a single dialogue. Plus, it enables the application to react flexibly to the amount of re-
sources it has been granted, i. e. the application can choose whether it is feasible to continue
with the resources granted or whether it has to abort because of insufficient resources.

The rest of this paper is structured as follows. Section 2 gathers some facts about
MIDP which are relevant to us. Section 3 introduces the resource management library,

2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

156

Aspinall, Maier, Stark

which Section 4 extends by adding policies. Section 5 describes the security properties that
library guarantees and outlines a deployment scenario. Section 6 discusses related work,
and Section 7 concludes.

2 Background: The MIDP Security Model

The Mobile Information Device Profile (MIDP, current version 2.0 [6]) is the current stan-
dard framework for Java applets (also called MIDlets) on networked mobile devices. MIDP
builds upon the Connected Limited Device Configuration (CLDC, current version 1.1 [7]).
Together, CLDC and MIDP, which are part of the Java Micro Edition Platform (Java ME),
define a set of APIs for programming small devices like phones and PDAs. With security
in mind, they restrict Java in several ways. In particular, reflection and custom class load-
ing are not supported; all of a MIDlet’s classes must be loaded from a single JAR using
the standard CLDC class loader, which renders possible to statically check the MIDlet’s
classes for certain properties (see Section 5.4).

As of MIDP 2.0, access to sensitive APIs and functions (e. g. for sending text mes-
sages) is regulated by a permission-based security model. MIDlets are bound to protection
domains based on whether and by whom they are signed (where a signature expresses the
signer’s trust in the MIDlet but does not provide any guarantees about the code itself). Each
protection domain holds a set of permissions, each of which is either flagged as Allowed or
User. The former grants unconditional access whereas the latter requires access to be au-
thorised by the user. How often this authorisation has to be obtained depends on whether a
User permission is flagged as Blanket, Session or OneShot; the latter requires authorisation
for every single access.

According to the MIDP specification, only MIDlets signed by the device manufac-
turer or the network operator may obtain unconditional access to cost-sensitive functions
(e. g. for sending text messages). The protection domains for other MIDlets must insist on
OneShot authorisation for access to these functions. As a consequence, MIDlets wishing
to use messaging more than just occasionally are faced with the choice of either having
to be signed by the operator (or manufacturer) or having to annoy their users with lots of
authorisation screens.

3 Basic Resource Management API

This section presents an API for monitoring the use of external resources. The API intro-
duces special objects, called resource managers, which encapsulate multisets of resources
that a MIDlet may legally use (according to the user’s approval) and which are passed as ar-
guments into instrumented MIDP methods that actually use the resources. These methods,
e. g. the method for sending text messages, check the resource manager before consuming
the resources. If the required resources are not present, the instrumented methods abort the
MIDlet with a runtime error.

3.1 Resource Managers

Figure 2 shows a class diagram of resource management package. The core of the API is
the final class ResManager, which encapsulates a multiset of resources and whose meth-

3

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

157

Aspinall, Maier, Stark

Resource

+ contains(ResMultiset) : boolean
+ clear()

+ subtract(ResMultiset)

+ isEmpty() : boolean

+ split(ResMultiset) : ResMultiset
+ intersect(ResMultiset)

+ add(ResMultiset)
+ remove(Resource, int)
+ insert(Resource, int)

+ union(ResMultiset)

ResMultiset

+ enable(ResMultiset)

+ join(ResManager)

+ assertEmpty()
+ assertAtLeast(ResMultiset)

+ clear()

+ split(ResMultiset) : ResManager

ResManager
java.lang.Error

ResManagerError
MsgResource

<<throw>>

1 0..1**

Fig. 2. UML class diagram of the basic resource management API. All terminal (w. r. t. generalisation) classes are final.

ods are explained below. The final class ResMultiset provides modifiable multisets
of resources, with the usual operations on multisets, including multiset intersection, sum
and inclusion. Internally, multisets are realised by hash tables, mapping resources to mul-
tiplicities (which may be infinite). Every ResMultiset object encapsulates its mutable
state, so that it cannot be changed other than by calling its public methods. The abstract
class Resource serves as an abstract type for resources; actual resources (e. g. the class
MsgResource representing the permission to send one text message to a given phone
number) must be final subclasses. Being used as keys in hash tables, resources must abide
by the following contract: They must be immutable objects, and resources constructed from
the same arguments must be indistinguishable by the equals method.

The class ResManager encapsulates a multiset of resources via a private field rs of
type ResMultiset. All public methods are synchronised to avoid races in case different
threads access the same resource manager. The table below lists the methods with a JML-
style 4 semantics, where the symbols ⊆,] and ∩ stand for multiset inclusion, sum and
intersection, respectively.

requires ensures modifies
ResManager() true this.rs = ∅ this.rs
void enable(ResMultiset req) true this.rs] req = \old(this.rs)] \old(req) ∧ this.rs, req

req ⊆ \old(req)
void clear() true this.rs = ∅ this.rs
void join(ResManager mgr) true this.rs = \old(this.rs)] \old(mgr.rs) ∧ this.rs, mgr.rs

mgr.rs = ∅
ResManager split(ResMultiset bound) true \fresh(\result) ∧ this.rs

\result.rs = \old(this.rs) ∩ bound ∧
\result.rs] this.rs = \old(this.rs)

void assertEmpty() this.rs = ∅ true \nothing
void assertAtLeast(ResMultiset bound) bound ⊆ this.rs true \nothing

The enable method takes a multiset req of requested resources and lets the user decide
(in a pop-up dialogue) how many of these resources to add to the manager’s multiset rs. As
a side effect, enable modifies its argument req; upon return from enable, the MIDlet
should check req to learn which of the requested resources it is being denied; in particular,
if req is empty then all of the requested resources have been granted.

The methods clear, split and join provide some control over the contents of a
resource manager, by consuming all its resources, transferring some resources to a new

4 The \operators generally bear the same meaning as in JML [11], except that \old(e) refers to the pre-state of expression
e in the pre-state of the heap.

4

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

158

Aspinall, Maier, Stark

void sendBulk(MessageConnection conn,
Message msg,
PhonebookEntry[] grp)

{
ResMultiset rs = new ResMultiset();
for (int i=0; i < grp.length; i++) {
String num = grp[i].getMobileNum();
rs.insert(new MsgResource(num), 1);

}

ResManager mgr = new ResManager();
mgr.enable(rs);

if (rs.isEmpty()) {
for (int i=0; i < grp.length; i++) {
String num = grp[i].getMobileNum();
msg.setAddress(num);
conn.send(mgr, msg);

}
mgr.assertEmpty();

}
else mgr.clear();

}

public void send(ResManager mgr, Message msg)
throws IOException, InterruptedIOException
{
synchorized (msg) {
String num = msg.getAddress();
ResMultiset rs = new ResMultiset();
rs.insert(new MsgResource(num), 1);

ResManager local_mgr = mgr.split(rs);
local_mgr.assertAtLeast(rs);

try {
send(msg);
local_mgr.clear(); local_mgr = null;

} catch (InterruptedIOException e) {
local_mgr.clear(); local_mgr = null;
throw e;

} catch (IOException e) {
mgr.join(local_mgr); local_mgr = null;
throw e;

}
}

}

Fig. 3. Bulk messaging example, left: MIDlet code, right: instrumented MIDP method.

manager, or joining the resources in two managers, respectively. Thanks to split and
join, the MIDlet may keep resource managers thread local, avoiding contention over
shared managers.

The assertion methods check whether their preconditions hold. If so they behave
like no-ops, otherwise they throw an instance of ResManagerError. The latter case
must be seen as a violation of the MIDlet’s own logic (much like failing an assertion),
and the MIDlet should not be allowed attempts at repairing the situation (by catching
the error), which is why ResManagerError extends java.lang.Error rather than
java.lang.Exception.

3.2 Example: Bulk Messaging MIDlet

We illustrate the use of resource managers by an example application built on top of the
Wireless Messaging API (WMA, current version 2.0 [8]), a bulk messaging MIDlet, which
lets the user send a text message to a group of recipients from his phone book. Figure 3 (left
column) shows the MIDlet’s method that actually sends the message. The method takes
an (already open) message connection, a message and a group of recipients (represented
as array of phone book entries). First, the MIDlet builds up a multiset of resources rs
by iterating over the group of recipients and for each one, extracting the mobile phone
number, converting it into a resource by constructing an instance of MsgResource, and
adding one occurrence of that instance to the multiset. Next, the MIDlet creates an empty
resource manager mgr and enables it to use the resources in the multiset rs. This will pop
up a confirmation dialogue box where the user can approve or deny the planned resource
usage, modifying rs as a side effect. Only if the user approves of all messages to be sent,
i. e. if enable returns its argument rs empty, does the code proceed to the actual send
loop. The send loop again iterates over the group of recipients, extracting for each one the
mobile phone number, setting the address field of the message and sending the message
using the instrumented send method, see below. After the loop, assertEmpty checks
that the resource manager mgr is really empty, i. e. all enabled resources have been used.
(Instead of checking, the manager could have been cleared explicitly, like in the else branch,
to prevent unintended later use of left-over resources.)

5

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

159

Aspinall, Maier, Stark

3.3 Instrumented Methods

Resources are consumed by specific methods, e. g. in the case of messaging by the method
send(Message) declared in the WMA interface MessageConnection. To moni-
tor whether these methods consume only resources that have been granted, we wrap them
with instrumentation code checking whether a given resource manager holds the required
resources. These instrumented methods are declared in sub-packages of the resource man-
agement package.

To instrument messaging, we have to augment MIDP and WMA in three places. We
supplement the WMA interface MessageConnection with a new wrapper method
send(ResManager,Message), provide a class which implements this extended in-
terface, and revise the MIDP method Connector.open to return the new class.

The code for the wrapper method is shown on the right-hand side of Figure 3. It ex-
tracts the phone number num from the message and constructs a multiset rs containing
a single occurrence of the resource corresponding to num. Then it splits the resources in
rs off from the resource manager mgr and stores them in the new local resource manager
local_mgr, which is checked for containing at least the resources in rs. If this check
fails a ResManagerError will be thrown, aborting the calling MIDlet; if the check suc-
ceeds we know that local_mgr holds exactly the resources in rs. Finally, the message
is actually sent by calling the uninstrumented send method. 5 Clearing local_mgr and
nulling the reference afterwards is not strictly necessary but considered good practise; it
signals that the resources in the local manager are now used up and that the manager itself
is ready to be reclaimed by garbage collection.

In case of a send failure, the event that actually spends the resources (i. e. delivering
the text message to the operator’s network) may or may not have happened yet. We assume
that an IOException is thrown before actually sending the message (e. g. because the
connection to the operator’s network is down), so the resources are not yet consumed, and
the handler can return them to the caller (by joining the local manager to mgr) before
propagating the exception. However, if an InterruptedIOException is raised, we
do not know whether the send event has already happened, so we assume that the resources
are already spent. In this case, the handler consumes the resources (by clearing the local
manager) before propagating the exception.

Note that the instrumented send method method must synchronise on msg, which is
accessed twice, but there is no need to synchronise on mgr (for there are no data depen-
dencies between the first and second access) or on this (for it is accessed only once).

3.4 Runtime Overhead

Monitoring of external resources does cause some runtime overhead. In terms of execution
time, the overhead is negligible, as very little time is spent on the instrumentation com-
pared to what is spent on actually consuming the resource (e. g. transmitting a message).
Due to the hash table based implementation of multisets, all operations on resource man-
agers take (at most) linear time w. r. t. to the size of the multisets involved. In fact, the
overhead of the instrumented send method in Figure 3 is constant because the argument of
assertAtLeast is a singleton multiset.

5 Depending on the MIDlet’s protection domain, the uninstrumented send method may again ask the user to authorise
sending the message; Section 5.4 addresses this shortfall.

6

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

160

Aspinall, Maier, Stark

MsgUserPolicy

+ getPolicy(MIDlet) : MsgUserPolicy + getPolicy() : MsgPhonebookPolicy

MsgPhonebookPolicy

+ getPolicy() : MsgNationalPolicy

MsgNationalPolicy

~ decide(ResMultiset) : ResMultiset

Policy

+ join(ResManager)

+ assertEmpty()
+ assertAtLeast(ResMultiset)

+ clear()

+ split(ResMultiset) : ResManager

ResManager

+ enable(Policy, ResMultiset)
<<call>>

Fig. 4. UML class diagram of policy extension of resource management API. All terminal classes are final.

In terms of memory, the overhead may be more severe, particularly on small devices,
because of the memory requirements of the hash tables. Additionally, resource monitoring
puts a higher strain on garbage collection because the instrumentation code temporarily al-
locates resources, multisets and managers. If runtime checking is not necessary or desired,
it can be switched off by “erasing” resource managers (see Section 5.2), which reduces the
memory overhead significantly.

3.5 Extensibility

By design, the resource management API is extensible. Monitoring new resources (e. g.
the number of bytes sent over a TCP/IP connection, or the space available in the persistent
record store) simply amounts to adding new resource types plus adding the appropriate in-
strumentation. New resource types are added by extending the abstract class Resource
with final subclasses, which abide by the contract on resources. Instrumented methods,
which monitor the new resources before calling the corresponding uninstrumented meth-
ods, are added to sub-packages of the resource management package.

4 Extending the API with Flexible Policies

So far, the enable method involves the user, who is selecting to-be-added resources in a
pop-up dialogue. That is, the user is acting as a policy oracle deciding which resources to
grant and which to deny. In this section, we extend the API to include more flexible policy
oracles, not just the user.

4.1 Changes to the API

Figure 4 shows the class diagram of the extension. It adds an abstract class Policy pro-
viding an abstract, package private method decide for deciding which resources to grant
and which to deny. The table below shows the formal, non-deterministic semantics of
decide; granted resources are returned in a new multiset, denied resources are returned
via the modified argument.

requires ensures modifies
ResMultiset decide(ResMultiset req) true \fresh(\result) ∧ \old(req) = req] \result req

Actual policies must be final subclasses of Policy and must provide a package private
implementation of decide. The latter requirement ensures that decide can be called by
the resource management library only, not directly by MIDlets themselves. For a MIDlet
to gain access to policies, each subclass of Policy provides a static getPolicy method

7

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

161

Aspinall, Maier, Stark

which hands out the requested policy (i. e. an instance of the respective class) or null if
the calling MIDlet is not authorised to use the requested policy.

MIDlets can only pass policies as arguments to other methods, in particular to the
enable method of class ResManager, which consults its policy argument as an ora-
cle to decide which resources to grant and which to deny, and which interprets a null
argument as the deny-all policy, see the implementation below. Note that enable defers
synchronisation on this as long as possible (i. e. until accessing the manager’s encapsu-
lated multiset rs) to avoid locking the manager during a call to decide, which may block
for a long time (e. g. if the policy consults the user).

public void enable(Policy p, ResMultiset req) {
if (p == null) return;
synchronized (req) {
ResMultiset granted = p.decide(req);
synchronized (this) { rs.add(granted); }

}
}

4.2 Use of Policies in MIDlets

The basic resource management API knew only one implicit policy: ask the user. Yet,
typically each resource type has its own policy or policies. The policies for MsgResource
include a MsgUserPolicy, which behaves like the implicit policy of the basic API,
asking the user how many messages to send to which phone numbers. To use this policy,
the call mgr.enable(rs) in the bulk messaging MIDlet (Figure 3) must be replaced by
mgr.enable(MsgUserPolicy.getPolicy(this), rs). 6

There could be other policies for MsgResource, e. g. a MsgNationalPolicy,
which grants only messages to national phone numbers. This policy could be combined
with MsgUserPolicy by chaining calls to enable as in the following code snippet.

mgr.enable(MsgNationalPolicy.getPolicy(), rs);
mgr.enable(MsgUserPolicy.getPolicy(this), rs);

The first call enables all requested messages to national numbers, without asking the user.
The second call asks the user to authorise the messages to the remaining (international)
numbers. In the end, rs contains only those international numbers that the user has denied.

Another interesting policy for messaging could be a MsgPhonebookPolicy, which
automatically grants all messages to numbers in the user’s phone book. If the bulk mes-
saging MIDlet used this policy, the user would not have to confirm anything. In return, the
MIDlet could maliciously send more messages than the user intended, but only to phone
numbers in the user’s phone book, not to premium rate numbers (unless the MIDlet was
allowed to modify the phone book).

4.3 Extensibility

By design of the API, adding new policies simply amounts to extending the abstract class
Policywith final subclasses, which abide by the contract on policies: No public fields and
methods (in particular, decide must be package private) except the static getPolicy
methods, and the implementation of decide must agree with the formal semantics as
shown in the table in Section 4.1.

6 MsgUserPolicy.getPolicy requires an argument of type MIDlet so that the policy can access the MIDlet’s screen.

8

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

162

Aspinall, Maier, Stark

5 Security Properties of Explicit Resource Management

This section informally summarises and motivates the security guarantees provided by the
resource management API and a trusted library implementing it.

5.1 No Abuse of Resources

Property 1 MIDlets using the resource management API cannot consume more resources
than granted; any attempt to do so will result in the MIDlet being aborted before the abuse
happens.

The property holds for two reasons.

(i) Before performing any actions, the instrumented methods, e. g. the send method
from Section 3.3, check their ResManager argument for the required resources and
throw a ResManagerError (which will abort the MIDlet) if there aren’t enough. If
there are enough resources, the instrumentation deduces the required amount from the
resource manager, even if the underlying uninstrumented method throws an exception.

(ii) The implementation of the resource management API ensures that policies cannot be
bypassed. Resources may be moved back and forth between managers by the methods
split and join, but there is no way to sneak new resources into the managers other
than by calling enable, in which case a policy gets to decide which resources to
grant and which to deny. Furthermore, the implementation confines the multiset held
by a manager, i. e. it ensures that there are no pointers from outside a manager into its
mutable state, hence a manager’s multiset cannot be modified from the outside.

Of course, the above argument assumes that the MIDlet does not bypass or subvert the
resource management library itself; see Section 5.4 on how to ensure this.

5.2 Erasure

Tracking the use of resources with resource managers does induce some overhead, mainly
in terms of the memory required for storing the multisets. On small devices, one might
want to avoid this overhead if a MIDlet is known to be resource safe, i. e. if it cannot ever
throw a ResManagerError. In this case, resource managers can be “erased”.

Erasure cannot be performed as a simple source code transformation removing all oc-
currences of resource managers from a MIDlet, for two reasons. First, MIDlets must be
able to access resource managers in order to call the enable method, even after erasure,
to let a policy decide which resources to grant. Second, resource managers may appear in
conditions like (mgr1 == mgr2), from where they cannot be removed unless the condi-
tion can be evaluated statically. What can be done, however, is a “soft” erasure, which keeps
the managers themselves in place but erases their multisets, resulting in very lightweight
erased resource managers.

Soft erasure can be achieved by retaining the public interface of class ResManager
but replacing its implementation with a stateless dummy implementation. More precisely,
erasure removes the private field rs (storing the manager’s multiset), which turns all public
methods into no-ops, except for split and enable. The latter still calls the policy and
reports the denied resources back to the MIDlet, whereas the former creates a fresh (erased)
manager.

9

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

163

Aspinall, Maier, Stark

Property 2 If a MIDlet is resource safe then erasing the resource managers does not
change its observable behaviour.

The property holds because by design of the resource management API, the value of a
resource manager can only affect the values of other resource managers; it cannot affect
the values of other types.

Note that an optimiser can eliminate all of the calls on erased resource managers, ex-
cept calls to enable, by inlining. As a result, resource managers may become unused and
can be optimised away. In fact, a clever optimiser could optimise away the entire instru-
mentation code from the instrumented send method in Figure 3, leaving just the call of
the uninstrumented method.

5.3 Information Flow Security

It may seem as if resource managers could infringe information flow security. Is it not
possible that sensitive data (e. g. phone numbers from the address book) leaks from a
manager while it is passed from method to method? We argue that at least for resource safe
MIDlets, this is not the case.

Property 3 If a MIDlet is resource safe then its resource managers do not leak information.

This is a corollary of Property 2. If a MIDlet is resource safe, the resource managers can be
erased without changing the MIDlet’s observable behaviour. Yet, erased resource managers
are stateless, so they cannot leak information. Hence, no leakage is observable.

5.4 Secure Deployment

As mentioned in Section 5.1, the security guarantees do not only depend on the correctness
of the resource management library itself but also on the MIDlet correctly using the API
(i. e. not bypassing or subverting the library).

Property 4 Correct use of the resource management API can be checked statically by in-
specting the MIDlet’s JAR only.

The property holds due to the restrictions imposed by CLDC and MIDP (see Section 2),
which imply that all of the MIDlet’s classes are statically known (since all classes must be
loaded from a single JAR) and the signature of each method call is statically known (since
reflection is not supported). Thus, the following properties of the MIDlet’s class files can
be statically checked.

• The MIDlet does not bypass the instrumentation. More precisely, if the MIDlet allocates
a particular resource type (e. g. MsgResource) then it does not call uninstrumented
methods for consuming resources of that type (e. g. the method send(Message) de-
clared in the WMA interface MessageConnection).

• The MIDlet does not suppress failing assertions. More precisely, it does not catch
ResManagerError or any of its superclasses.

• The MIDlet does not pass policies of its own to the enable method. More precisely,
none of the MIDlet’s classes extend the abstract class Policy.

• The MIDlet does not subvert the implementation of resource multisets by adding re-

10

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

164

Aspinall, Maier, Stark

source types of its own. 7 More precisely, none of the MIDlet’s classes extend the ab-
stract class Resource.

• The MIDlet does not exploit non-public methods (e. g. decide) of the resource man-
agement library. More precisely, none of the MIDlet’s classes are declared to be part of
the packages that constitute the resource management library.

The correctness of the resource management library itself cannot be checked easily, hence
the library (including the instrumented methods) has to be trusted. Yet, as MIDP does not
support the download of trusted libraries, MIDlets using the resource management API
have to provide the library as part of their own JAR. To establish trust in the library, a
trustworthy third party (e. g. the network operator) should vouch for it by signing the
MIDlet. In detail, the deployment process should comprise the following steps.

(i) In the MIDlet’s JAR, the signer replaces the untrusted resource management library
with its own trusted implementation.

(ii) The signer checks for correct use of the resource management API by checking the
above properties.

(iii) The signer signs and deploys the MIDlet (possibly after it passed other checks, too).

The signer may choose to erase resource managers by replacing the resource management
library with the library for erased managers (see Section 5.2) if there is additional confi-
dence in the MIDlet’s resource safety (where this confidence may have been gained by type
checking, extended static checking, interactive verification or extensive testing). Of course,
Property 1 is not guaranteed by the library for erased managers.

There is a reason, why MIDlets should be signed by the network operator (or device
manufacturer) rather than just by any trusted third party. For otherwise, the MIDP speci-
fication (see Section 2) demands that the uninstrumented methods which are called by the
instrumented ones do still pop-up authorisation screens, despite the fact that the user (or
the policy) has already approved all of the resources held by resource managers.

As an alternative deployment scenario, the resource management library could be in-
tegrated into future versions of MIDP. In this case, the MIDP class loader would have to
check for correct use of the API, rendering unnecessary the requirement that MIDlets be
signed by the network operator.

6 Related Work

Runtime monitoring to increase software reliability is at the heart of the Java language [4]
with its mandatory runtime checking of array bounds and null pointer dereferences. Several
frameworks have been proposed for enhancing Java with runtime monitoring of resource
consumption, for example JRes [3], J-Seal [1] and J-RAF [10]. Real-time Java (RTSJ [5])
provides resource monitoring as part of its support for real-time applications. These frame-
works monitor specific resources (CPU, memory, network bandwidth, threads), relying on
instrumentation of either the JVM (for CPU time), low level system classes (for memory
and network bandwidth) and the bytecode itself (for memory and instruction counting).
Where our resource management API is designed to enforce security, these frameworks

7 The hash table based implementation of multisets may fail to function correctly if resources are added that breach the
contract that Java imposes on the equals and hashCode methods.

11

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

165

Aspinall, Maier, Stark

were developed to support resource aware applications, which can adapt their behaviour in
response to resource fluctuation, for example by trading precision for time (by returning an
imprecise result to meet a deadline), or time for memory (by caching less to reduce memory
consumption).

Runtime monitoring can be used to check whether a program meets a safety property
specified in a propositional temporal logic. Tools like JPaX [9] compile a specification into
a finite automaton which runs in parallel with the program, observing its behaviour. This
kind of temporal specification can express resource protocols like authorise-before-use but
is not expressive enough to capture protocols that involve counting potentially unbounded
resources.

Schneider [13] advocates a similar use of (not necessarily finite) automata for enforcing
security policies at runtime. [15] extends this by allowing an application to query the
policy for compliance with a planned sequence of actions. Thus, the application can react
gracefully to the policy’s decisions; our resource managers provide a similar policy query
feature through the enable method.

7 Conclusion

We have designed a Java library for tracking and monitoring the use of external resources
on MIDP mobile phones (e. g. sending text messages). The library improves the flexibility
of runtime monitoring in MIDP (which previously was in the hands of the user), providing
a clear user interface and flexible policies while maintaining the security guarantee that any
attempt to abuse resources will be trapped.

Our technical contribution is an API for fine-grained accounting of external resources,
where fine-grained accounting is achieved by resource managers tracking not just a fixed
set of resources but an input-dependent unbounded set (e. g. phone numbers from the user’s
address book). The API is extensible, admitting to add new resource types and new poli-
cies by extending the class hierarchy. Moreover, we have outlined how a trusted library
implementing the API can be deployed to MIDP phones as part of a potentially malicious
application in such a way that the application cannot subvert the security guarantee (turn-
ing the application into a less malicious one). Finally, resource monitoring can be switched
off by “erasing” resource managers, which reduces the overhead without changing the ob-
servable behaviour of resource safe applications (and we are working on a type system for
certifying resource safety [2, chapter 3.3]).

Acknowledgements
This work was funded in part by the Sixth Framework programme of the European Com-
munity under the MOBIUS project FP6-015905. This paper reflects only the authors’
views and the European Community is not liable for any use that may be made of the
information contained therein. Ian Stark was also supported by an Advanced Research Fel-
lowship from the UK Engineering and Physical Sciences Research Council, EPSRC project
GR/R76950/01.

12

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

166

Aspinall, Maier, Stark

References
[1] Walter Binder, Jarle Hulaas, and Alex Villazón. Portable resource control in Java: The J-SEAL2 approach. In ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA), pages 139–
155, 2001.

[2] Mobius Consortium. Deliverable 2.1: Intermediate report on type systems. Available online from http://mobius.
inria.fr, September 2006.

[3] Grzegorz Czajkowski and Thorsten von Eicken. JRes: A resource accounting interface for Java. In ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA), pages 21–35, 1998.

[4] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification, third edition. The Java
Series. Addison-Wesley Publishing Company, 2005.

[5] JSR 1 Expert Group. JSR 1: Real-time specification for Java. Java specification request, Java Community Process,
January 2002.

[6] JSR 118 Expert Group. JSR 118: Mobile information device profile 2.0. Java specification request, Java Community
Process, November 2002.

[7] JSR 139 Expert Group. JSR 139: Connected limited device configuration 1.1. Java specification request, Java
Community Process, March 2003.

[8] JSR 205 Expert Group. JSR 205: Wireless messaging API 2.0. Java specification request, Java Community Process,
June 2004.

[9] Klaus Havelund and Grigore Rosu. Monitoring Java programs with Java PathExplorer. Electr.Notes Theor. Comput.
Sci., 55(2):200–217, 2001.

[10] Jarle Hulaas and Walter Binder. Program transformations for portable CPU accounting and control in Java. In ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation, pages 169–177, 2004.

[11] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok, Peter Müller, Joseph Kiniry, and
Patrice Chalin. JML Reference Manual, July 2007. In Progress. Available from http://www.jmlspecs.org.

[12] Kevin D. Mitnick and William L. Simon. The Art of Deception. John Wiley and Sons, Inc., 2002.

[13] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50, 2000.

[14] Unknown. Redbrowser.A, February 2006. J2ME trojan. Identified as Redbrowser.A (F-Secure), J2ME/Redbrowser.a
(McAfee), Trojan.Redbrowser.A (Symantec), Trojan-SMS.J2ME.Redbrowser.a (Kaspersky Lab).

[15] Dries Vanoverberghe and Frank Piessens. Supporting security monitor-aware development. In International Workshop
on Software Engineering for Secure Systems. IEEE Computer Society, 2007.

13

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

167

Safety Guarantees from Explicit Resource Management

David Aspinall, Patrick Maier, and Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics, The University of Edinburgh, Scotland
{David.Aspinall,Patrick.Maier,Ian.Stark}@ed.ac.uk

Abstract. We present a language and a program analysis that certifies the safe
use of flexible resource management idioms, in particular advance reservation
or “block booking” of costly resources. This builds on previous work with
resource managers that carry out runtime safety checks, by showing how to
assist these with compile-time checks. We give a small ANF-style language
with explicit resource managers, and introduce a type and effect system that
captures their runtime behaviour. In this setting, we identify a notion of dynamic
safety for running code, and show that dynamically safe code may be executed
without runtime checks. We show a similar static safety property for type-safe
code, and prove that static safety implies dynamic safety. The consequence is
that typechecked code can be executed without runtime instrumentation, and is
guaranteed to make only appropriate use of resources.

1 Introduction

Safe management of resources is a crucial aspect of software correctness. Bad resource
management impacts reliability and security. The more expensive a resource or the
more complex its usage pattern, the more important is good management. For example,
a media player could crash badly, leaving the hardware in a messy state, if its mem-
ory management was governed by the overly optimistic assumption that every request
for memory will succeed. Malware on a mobile phone can defraud an unaware user
by maliciously sending text messages to premium rate numbers, if there is no effec-
tive management of network access [12]. On current mobile platforms such as Java
MIDP 2.0, management of network access is commonly left to the user, but users can
easily be deceived by social engineering attacks.

Unfortunately, current programming languages do not provide special mechanisms
for resource management. Therefore, programmers can only hope that their applications
are resource safe, or use necessarily imprecise analyses to try to show this. For
example, there are type systems that over-approximate (hopefully tightly) the memory
requirements of an application [6], and static analyses that over-approximate the number
of text messages being sent by an application [7].

These approaches may fail if a dynamic set of resources must be managed, as with
bulk messaging where the user wants to send a text message to a number of recipients
selected from an address book. Because of the cost of sending text messages, the user
must authorise each recipient (i. e., their phone number) explicitly. This could happen
individually, just before each message is being sent, or collectively, before sending the

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

168

first message. Collective authorisation, or block booking of resources, is preferable but
requires detailed resource management, keeping track of the (multi-)set of authorised
resources – in this case the permitted phone numbers.

In this paper, we present a language-based mechanism that provides programmers
with a safe way to control complex resource usage patterns using a notion of resource
manager. Figure 1 shows the code of a bulk messaging application using resource
managers in our intermediate-level functional programming language. The language
and functions used will be explained in full detail in Section 2; for now, we just give
an outline of operation. The function send bulk calls send msgs to send the message
msg to the phone numbers stored in the array nums. Along with these two arguments
send msgs takes a resource manager m’ which encapsulates the resources that have been
authorised (during the call to enable) to send the messages. For each phone number in
nums, send msgs calls the wrapper function send msg, passing along a resource manager.
Prior to calling the primitive send function prim send msg, the wrapper checks (using
assertAtLeast) whether its input manager m contains the resource required to send a
message to num; if the resource is not present, the program will abort with a runtime
error, otherwise send msg removes the resource from the manager (using split), and
returns the modified manager as m’.

The bulk messaging application is (dynamically) resource safe by construction, as
the resource managers will trap attempts to abuse resources. The resource manager
abstraction works in tandem with a static analysis, so that programs which can be
proved resource safe statically can be treated more efficiently at runtime by removing
the dynamic accounting code. In Section 3.2, we prove resource safety statically for the
bulk messaging application.

Our contribution is two-fold. In Section 2, we develop a functional programming
language for coding complex resource idioms, such as block booking resources in
the bulk messaging application. The language is essentially a first-order functional
language in administrative normal form (ANF) [10] with a novel type system serving
two purposes. First, the type system names input and output parameters of functions
and avoids shadowing of previously bound names, thus admitting to view functions as
relations (expressed by logical formulae) between their input and output parameters.
Second, the language includes a special, linear type for resource managers, where
linearity serves as a means of introducing stateful objects into an otherwise pure
functional language. Resource managers track what resources a program is allowed
to use, and the operational semantics causes the program to go wrong (i. e., abort with
a runtime error) as soon as it attempts to abuse resources. This induces a notion of
dynamic resource safety, which holds if a program never attempts to abuse resources. In
this case, accounting is not necessary. As our first result, we show that erasing resource
managers does not alter the semantics of dynamically resource safe programs.

Decisions about which resources programs may use are typically guided by resource
policies. From the point of view of a program, a policy is simply an oracle determining
what resources to grant; and we abstract this as a non-deterministic operation on
resource managers. This covers many concrete policy mechanisms, both static (e. g.,
Java-style policy files) or dynamic (e. g., user interaction); see [3] for more on the
interaction of resource managers and policies.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

169

send bulk ::
λ let (r) = res from nums (nums) in

let (m) = init () in
let (m’,r’) = enable (m,r) in
let (n) = size (r’) in
if n then let () = consume (m’) in

ret ()
else let (m”) = send msgs (msg,nums,m’) in

let (m’”) = assertEmpty (m”) in
let () = consume (m’”) in
ret () :

(msg:str, nums:str[]) → ()

res from nums ::
λ let (i) = length (nums) in

let (r) = empty () in
let (r’) = res from nums’ (nums,r,i) in
ret (r’) :

(nums:str[]) → (r’:res{})

res from nums’ ::
λ if i then let (i’) = sub (i,1) in

let (num) = read (nums,i’) in
let (c) = fromstr (num) in
let (r c) = single (c,1) in
let (r”) = sum (r, r c) in
let (r’) = res from nums’ (nums,r”,i’) in
ret (r’)

else let (r’) = id (r) in
ret (r’) :

(nums:str[], r:res{}, i:int) → (r’:res{})

send msgs ::
λ let (i) = length (nums) in

let (m’) = send msgs’ (msg,nums,m,i) in
ret (m’) :

(msg:str, nums:str[], m:mgr) → (m’:mgr)

send msgs’ ::
λ if i then let (i’) = sub (i,1) in

let (num) = read (nums,i’) in
let (m”) = send msg (msg,num,m) in
let (m’) = send msgs’ (msg,nums,m”,i’) in
ret (m’)

else let (m’) = id (m) in
ret (m’) :

(msg:str, nums:str[], m:mgr, i:int) → (m’:mgr)

send msg ::
λ let (c) = fromstr (num) in

let (r) = single (c,1) in
let (m’,m r) = split (m,r) in
let (m r’) = assertAtLeast (m r,r) in
let () = prim send msg (msg,num) in
let () = consume (m r’) in
ret (m’) :

(msg:str, num:str, m:mgr) → (m’:mgr)

prim send msg ::
λ . . . :
(msg:str, num:str) → ()

Fig. 1. Bulk messaging application.

In Section 3 we present our second contribution, an effect type system for deriving
relational approximations of functions. These approximations are expressed as pairs of
constraints in a first-order logic, specifying a pre- and postcondition (or rather, state
transforming action) of a given function, similar to Hoare type theory [11]; note that
the use of logical formulae as effects is the rationale behind choosing a programming
language where functions have named input and output parameters. Typability of
functions in the effect type system induces a notion of static resource safety. As our
second result, we prove a soundness theorem stating that static implies dynamic resource
safety. As a corollary, we show that resource managers can always be erased from
statically resource safe programs. Proofs have been omitted due to lack of space.

2 A Programming Language for Resource Management

We introduce a simple programming language with built-in constructs for handling
resource managers. The language is essentially a simply-typed first-order functional
language in ANF [10], with the additional features that functions take and return tuples
of values, function types name input and output arguments, scoping avoids shadowing,
and the type of resource managers enforces a linearity restriction on its values. The first
three of these features are related to giving the language a relational appeal: for the
purpose of specifying and reasoning logically, functions ought to be viewed as relations

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

170

〈fundecl〉 ::= 〈prodtype〉 → 〈prodtype〉 (built-in function)
| λ〈exp〉 : 〈prodtype〉 → 〈prodtype〉 (λ-abstraction)

〈exp〉 ::= if 〈val〉 then 〈exp〉 else 〈exp〉 (conditional)
| let (〈var〉,. . .,〈var〉) = 〈fun〉 (〈val〉,. . .,〈val〉) in 〈exp〉 (function call)
| ret (〈var〉,. . .,〈var〉) (return)

〈val〉 ::= 〈const〉 | 〈var〉
〈prodtype〉 ::= (〈var〉:〈type〉,. . .,〈var〉:〈type〉)

〈type〉 ::= 〈datatype〉 | mgr

〈datatype〉 ::= unit | int | str | res | res{} | 〈datatype〉[]

Fig. 2. BNF grammar.

between input and output parameters. The fourth feature is a means of introducing state
into a functional language.

The choice for such a language has been inspired by Grail [2], another first-order
functional language in ANF. Moreover, Appel [1] argues that ANF, the intermediate
language used by many compilers for functional languages, and SSA, the intermediate
representation used by most compilers for imperative languages, are essentially the same
thing. Therefore, our language should capture the essence of first-order programming
languages, whether functional or imperative.

2.1 Syntax and Static Semantics

Grammar. Figure 2 shows the grammar of the programming language. The nontermi-
nals 〈fun〉, 〈var〉 and 〈const〉 represent functions, variables and constants, respectively.
A program Π is a partial function from 〈fun〉 to 〈fundecl〉, i. e., Π maps functions to
function declarations, which are either type declarations for built-in functions or λ-
abstractions (with type annotations serving as variable binders). We use the notation
Π(f) = [λ . . .]σ → σ′ if we are only interested in the type of f , regardless whether f
is built-in or a λ-abstraction. By dom(Π), we denote the domain of Π . We denote the
restriction of Π to the built-in functions by Π0, i. e., Π(f) is a λ-abstraction if and only
if f ∈ dom(Π) \ dom(Π0). We assume that Π0 declares exactly the functions that are
shown in Figure 4.

The grammar of expressions e ∈ 〈exp〉 and values v ∈ 〈val〉 is quite standard for
a first-order functional language in ANF. Throughout, functions operate on tuples of
values, which is reflected by the syntax for function call and return. The sets of free
and bound (by the let-construct) variables of an expression e, denoted by free(e) and
bound(e) respectively, are defined in the usual way.

Datatypes τ ∈ 〈datatype〉 comprise the unit type, integers, strings, resources,
multisets of resources, and arrays. A type τ ∈ 〈type〉 is either a datatype or the
special type of resource managers, denoted mgr. See Section 2.2 for the interpretations
of types. A tuple (x1:τ1,. . .,xn:τn) ∈ 〈prodtype〉 is a product type if the variables
x1, . . . , xn are pairwise distinct. Product types appear to associate types to variables,

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

171

but they really associate variables and types to positions in tuples. A pair of product
types of the form (x1:τ1,. . .,xm:τm) → (x′1:τ

′
1,. . .,x

′
n:τ ′n) forms a function type if the

variable sets {x1, . . . , xm} and {x′1, . . . , x′n} are disjoint. We call the product types to
the left and right of the arrow argument type and return type, respectively. As an example
consider the type of the function send msg from Figure 1. It states that send msg takes
two strings and a resource manager and returns a resource manager, while at the same
time binding the names of the formal input parameters msg, num and m and announcing
that the formal output parameter will be m’.

Static typing. A type environment Γ is a functional association list of type declarations
of the form x:τ , where x is a variable and τ a type. Being functional implies that
whenever Γ contains two type declarations x:τ and x:τ ′ we must have τ = τ ′.
Therefore, Γ can be seen as a partial function mapping variables to types. By dom(Γ),
we denote the domain of this partial function, and for x ∈ dom(Γ), we may write Γ (x)
for the unique type which Γ associates to x. We write type environments as comma-
separated lists, the empty list being denoted by ∅. The restriction Γ |X of Γ to a set of
variablesX , is defined in the usual way and induces a partial order� type environments,
where Γ ′ � Γ iff Γ ′|dom(Γ) = Γ .

We call a type environment Γ = x1:τ1, . . . , xn:τn linear if the variables x1, . . . , xn

are pairwise distinct. Note that such a linear type environment Γ may be viewed as
a product type σ = (x1:τ1,. . .,xn:τn), and vice versa. Occasionally, we will write
Π(f) = [λ . . .]Γ → ∆ to emphasise that argument and return types of the function f
are to be viewed as linear type environments.

Figure 3 shows the typing rules for the programming language. The judgement
C;Γ ` v : τ expresses that the value v has type τ in type environment Γ and context
C, where a context is a set of variables (generally the set of variables occurring in
some super-expression of v). Note that (T-const) restricts program constants to the unit
value, integers and strings, which are the interpretations of the types unit, int and str,
respectively (see Section 2.2). All other types are abstract in the sense that their values
can only be accessed through built-in functions.

The judgement C;Γ `Π e : σ means that the expression e has product type σ in
type environment Γ , context C and program Π . If the program is understood we may
write C;Γ ` e : σ. There are three things worth noting about expression typing. First,
although the type system is linear, weakening and contraction are available to all types
but mgr, rendering mgr the sole linear type of the language. Second, the side condition
of (T-let) ensures that let-bound variables do not shadow any variables in the context
(which is generally a superset of the set of variables occurring in the let-expression).
Third, the rule (T-ret) matches the variables in the return expression to the variables in
the product type, thus enforcing that an expression uniformly uses the same variables
to return its results (even though these return variables may be let-bound in different
branches of the expression). Note that (T-ret) is the only rule to exploit type information
about variables. Finally, the judgement Γ ` e : σ (or Γ `Π e : σ if we want to stress the
program Π) means that e has product type σ in a linear type environment Γ .

The judgement Π ` f states that f is a well-typed λ-abstraction in program Π .
Note that the syntax of λ-abstractions does not appear to bind variables, yet it does
bind the variables hidden in the argument type. Note also that the restriction on function

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

172

Typing of values C;Γ ` v : τ

(T-var)
C;x:τ ` x : τ

if x ∈ C (T-const)
C; ∅ ` d : τ

if

d ∈ τ ∧
τ ∈ {unit, int, str}

Typing of expressions C;Γ ` e : σ

(T-weak)
C;Γ ` e : σ

C;Γ, x:τ ` e : σ
if

x ∈ C ∧
τ 6= mgr

(T-contr)
C;Γ, x:τ, x:τ ` e : σ

C;Γ, x:τ ` e : σ
if τ 6= mgr

(T-if)
C;Γ ` v : int C;Γ ′ ` e1 : σ C;Γ ′ ` e2 : σ

C;Γ, Γ ′ ` if v then e1 else e2 : σ
(T-xch)

C;Γ, Γ ′ ` e : σ

C;Γ ′, Γ ` e : σ

(T-ret)
C;Γ1 ` x1 : τ1 . . . C;Γn ` xn : τn

C;Γ1, . . . , Γn ` ret (x1,. . .,xn) : (x1:τ1,. . .,xn:τn)

(T-let)

Π(f) = [λ . . .](z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n)

C;Γ1 ` v1 : τ1 . . . C;Γn ` vm : τm

C ∪ {x′1, . . . , x′n};Γ ′, x′1:τ
′
1, . . . , x

′
n:τ ′n ` e′ : σ′′

C;Γ1, . . . , Γm, Γ ′ ` let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′ : σ′′ if (∗)

where (∗)

x′1, . . . , x

′
n pairwise distinct ∧

x′1, . . . , x
′
n /∈ C ∪ dom(Γ ′)

Typing of expressions Γ ` e : σ

(T-lin)
dom(Γ);Γ ` e : σ

Γ ` e : σ
if Γ linear

Well-typedness of λ-abstractions Π ` f

(T-lam)

Π(f) = λe : (x1:τ1,. . .,xm:τm) → σ′

x1:τ1, . . . , xm:τm ` e : σ′

Π ` f

Fig. 3. Typing rules (for a fixed program Π).

types means that the return variables of the body of a λ-abstraction must be disjoint
from its argument variables. Finally, we call a program Π well-typed if Π ` f for all
f ∈ dom(Π) \ dom(Π0).

Lemma 1. Let e be an expression (referring to an implicit program Π), Γ a type
environment and σ a product type.

1. If Γ ` e : σ then free(e) ⊆ dom(Γ) and bound(e) ∩ dom(Γ) = ∅.
2. If Γ ` e : σ and X ⊇ free(e) then Γ |X ` e : σ.

2.2 Interpretation of Types and Effects of Built-in Functions

Constraints. To provide a formal semantics for the built-in functions, we introduce
a many-sorted first-order language L with equality. Sorts of L are the datatypes of
the programming language (note that this excludes the type mgr). Formulae of L are
formed from atomic formulae using the usual Boolean connectives ¬, ∧, ∨, ⇒ and ⇔
(in decreasing order of precedence), and the quantifiers ∀x:τ and ∃x:τ , where x ∈ 〈var〉

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

173

is a variable and τ ∈ 〈datatype〉 a sort. Atomic formulae are the Boolean constants
> and ⊥, or are constructed from terms using the binary equality predicate ≈ (which
is available for all sorts), the binary inequality predicate ≤ on sort int or the binary
inclusion predicate ⊆ on sort res{}. Terms are constructed from variables in 〈var〉 and
the term constructors, which are introduced below, alongside associating the sorts to
specific interpretations.

Sort unit is interpreted by the one-element set {?}. Its only constant is ?. There are
no function symbols.

Sort int is interpreted by the integers with infinity. Constants are the integers plus ∞.
Function symbols are the usual − : int → int and +, ·, /,% : int × int → int
(where / and % denote integer division and remainder, respectively).

Sort str is interpreted by the set of strings (over some fixed but unspecified alphabet).
Constants are all strings. The only function symbol is ++ : str × str → str
(concatenation).

Sort res is interpreted by an arbitrary infinite set (whose elements are termed re-
sources). There are no constants, and fromstr : str → res, an embedding of
strings into resources, is the only one function symbol.

Sort res{} is interpreted by multisets of resources. It features the constant ∅ (empty
multiset) and the function symbols ∩,∪,] : res{}×res{} → res{} (intersection,
union and sum of multisets, respectively), | | : res{} → int (size of a multiset),
count : res{}× res → int (counting the multiplicity of a resource in a multiset)
and { : } : res × int → res{} (constructing a “singleton” multiset containing a
given resource with a given multiplicity and nothing else).

Sort τ [] is interpreted by integer-indexed arrays of elements of sort τ , where an integer-
indexed array is a function from an initial segment of the natural numbers to τ .
This sort features the constant null (array of length 0) and the function symbols
len : τ [] → int (length of an array), [] : τ []× int → τ (reading at a given index)
and [:=] : τ []× int× τ → τ [] (updating a given index with a given value). Note
that the values of a[i] and a[i:=v] are generally unspecified if the index i is out of
bounds (i. e., i<0 or i≥ len(a)). As an exception, for i = len(a), the array a[i:=v]
properly extends a, i. e., len(a[i:=v]) = len(a) + 1. This models vectors that can
grow in size.

Treating the type mgr as an alias for the sort res{}, type environments can be seen as
associating sorts to variables. Given a type environment Γ and constraint φ ∈ L, we
write Γ ` φ if φ is well-sorted w. r. t. Γ ; note that this entails free(φ) ⊆ dom(Γ), where
free(φ) is the set of free variables in φ.

Substitutions. A substitution µ maps variables x ∈ 〈var〉 to values µ(x) ∈ 〈val〉
(which are variables again or constants, not arbitrary terms). We denote the domain
of a substitution µ by dom(µ). Given a type environment Γ , we write Γµ for the type
environment that arises from substituting the variables in Γ according to µ. This is
defined recursively: ∅µ = ∅ and (Γ, x:τ)µ equals Γµ, x:τ if x /∈ dom(µ), or Γµ, µ(x):τ
if µ(x) ∈ 〈var〉, or Γµ if µ(x) ∈ 〈const〉. Note that Γµ need not be linear even if
Γ is. Given a formula φ such that Γ ` φ, we write φµ for the formula obtained by
substituting the free variables of φ according to µ, avoiding capture. Note that Γ ` φ
implies Γµ ` φµ.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

174

Valuations. Let Γ be a type environment. A Γ -valuation αmaps variables x ∈ dom(Γ)
to elements α(x) in the interpretation of the sort Γ (x); we call α a valuation if we
do not care about the particular type environment Γ . We denote the domain of α by
dom(α). Note that dom(α) ⊆ dom(Γ) but not necessarily dom(α) = dom(Γ); we
call α a maximal Γ -valuation if dom(α) = dom(Γ). Given a Γ -valuation α and a set
of variables X , we denote the restriction of α to X by α|X ; note that dom(α|X) =
dom(α) ∩X . Restriction induces a partial order � on Γ -valuations, where α′ � α iff
α′|dom(α) = α. Given n pairwise distinct variables xi ∈ dom(Γ) and corresponding
elements di in the interpretation of Γ (xi), we write α{x1 7→ d1, . . . , xn 7→ dn} for the
Γ -valuation α′ that maps the xi to di and all other x ∈ dom(α) to α(x). In the special
case dom(α) = ∅, we may drop α and simply write {x1 7→ d1, . . . , xn 7→ dn}.

Entailment. Let φ, ψ ∈ L be constraints such that Γ ` φ and Γ ` ψ. Given a Γ -
valuation α with free(φ) ⊆ dom(α), we write α |= φ if α satisfies φ. We write |= φ
if α |= φ for all Γ -valuations α with free(φ) ⊆ dom(α), and we write φ |= ψ if
α |= φ implies α |= ψ for all Γ -valuations α with free(φ) ∪ free(ψ) ⊆ dom(α).
Entailment induces a theory T = {φ | free(φ) = ∅ ∧ > |= φ}, with respect to which
entailment can be reduced to unsatisfiability. Note that unsatisfiability w. r. t. T is not
even semi-decidable as T contains Peano arithmetic. Thus for reasoning purposes, we
will generally approximate T by weaker theories.

Effects. Let f be a built-in function with Π(f) = Γ → ∆ (viewing argument and
return types of f as type environments Γ and ∆, respectively.) An effect for f is a pair
of constraints φ and ψ such that Γ ` φ and Γ,∆ ` ψ. (Note that Γ → ∆ being a
function type implies dom(Γ) ∩ dom(∆) = ∅, hence Γ,∆ is a type environment.) We
write φ→ ψ to denote such an effect, and we call φ its precondition and ψ its action.

An effect environment maps the built-in functions f ∈ dom(Π0) to effects for f .
Figure 4 displays the effect environment Θ0, providing an axiomatic, relational seman-
tics for all f ∈ dom(Π0). This semantics ties most built-in functions to corresponding
logical operators in a straightforward way; note the non-trivial preconditions for divi-
sion, reading and writing arrays, and constructing singleton multisets. The effects of
functions operating on resource managers warrant some explanation.

init returns an empty manager m′.
enable non-deterministically adds some sub-multiset of r to manager m, returning

the result in manager m′; the complement of the added multiset is returned in r′.
In an implementation [3] the multiset to be added to m would be chosen by some
policy, perhaps involving security profiles or user input; we use non-determinism
to abstractly model such policy mechanisms.

split splits the multiset held by manager m and distributes it to the managers m′
1 and

m′
2 such that m′

2 gets the largest possible sub-multiset of r.
join adds the multisets held by managers m1 and m2, returning their sum in m′.
consume is an explicit destructor for manager m and all its resources; the linear type

system means that calls to consume are necessary even ifm is known to be empty.
assertEmpty acts as identity on managers, but subject to the precondition that m is

empty; it will be treated specially by the programming language semantics.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

175

f Π0(f) Θ0(f)

idτ (x:τ) → (x′:τ) >→ x′ ≈ x

eqτ (x1:τ ,x2:τ) → (i′:int) >→ i′ ≈ 1 ∧ x1 ≈ x2 ∨ i′ ≈ 0 ∧ x1 6≈ x2

add >→ i′ ≈ i1 + i2

sub >→ i′ ≈ i1 + (−i2)

mul (i1:int,i2:int) → (i′:int) >→ i′ ≈ i1 · i2

div i2 6≈ 0→ i′ ≈ i1 / i2

mod i2 6≈ 0→ i′ ≈ i1 % i2

leq >→ i′ ≈ 1 ∧ i1 ≤ i2 ∨ i′ ≈ 0 ∧ i1 � i2

conc (w1:str,w2:str) → (w′:str) >→ w′ ≈ w1 ++ w2

fromstr (w:str) → (c′:res) >→ c′ ≈ fromstr(w)

nullτ () → (a′:τ []) >→ a′ ≈ null

lengthτ (a:τ []) → (i′:int) >→ i′ ≈ len(a)

readτ (a:τ [],i:int) → (x′:τ) 0≤ i ∧ i < len(a)→ x′ ≈ a[i]

writeτ (a:τ [],i:int,x:τ) → (a′:τ []) 0≤ i ∧ i≤ len(a)→ a′ ≈ a[i:=x]

empty () → (r′:res{}) >→ r′ ≈ ∅
single (c:res,i:int) → (r′:res{}) i≥ 0→ r′ ≈ {c:i}
inter >→ r′ ≈ r1 ∩ r2

union (r1:res{},r2:res{}) → (r′:res{}) >→ r′ ≈ r1 ∪ r2

sum >→ r′ ≈ r1] r2

size (r:res{}) → (i′:int) >→ i′ ≈ |r|
count (r:res{},c:res) → (i′:int) >→ i′ ≈ count(r, c)

include (r1:res{},r2:res{}) → (i′:int) >→ i′ ≈ 1 ∧ r1 ⊆ r2 ∨ i′ ≈ 0 ∧ r1 * r2

init () → (m′:mgr) >→m′ ≈ ∅
enable (m:mgr,r:res{}) → (m′:mgr,r′:res{}) >→ r′ ⊆ r ∧ m] r ≈m′] r′

split (m:mgr,r:res{}) → (m′
1:mgr,m′

2:mgr) >→m′
2 ≈m ∩ r ∧ m≈m′

1]m′
2

join (m1:mgr,m2:mgr) → (m′:mgr) >→m′ ≈m1]m2

consume (m:mgr) → () >→>
assertEmpty (m:mgr) → (m′:mgr) m≈ ∅→m′ ≈m

assertAtLeast (m:mgr,r:res{}) → (m′:mgr) r ⊆m→m′ ≈m

Fig. 4. Types and effects of built-in functions. The subscripts τ indicate families of
functions indexed by τ ∈ 〈datatype〉, except for idτ , which is indexed by τ ∈ 〈type〉.

assertAtLeast acts as identity on managers, but subject to the precondition that the
manager m contains the multiset r; will be treated specially by the programming
language semantics.

To facilitate the presentation of programming language semantics, we capture the logical
semantics of effects directly in terms of valuations. Given a built-in function f with
Π0(f) = Γ → ∆ and Θ0(f) = φ→ ψ, we define Eff Π0

Θ0
(f) to be the set of maximal

(Γ,∆)-valuations such that α ∈ Eff Π0
Θ0

(f) if and only if α |= φ ∧ ψ.

2.3 Small-step Reduction Semantics

We present a stack-based reduction semantics (which is essentially a continuation
semantics) for our programming language. We will show that reduction preserves the

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

176

resources stored in resource managers, thanks to linearity. Throughout this section, let
Π be a fixed well-typed program.

Stacks. We call a tuple 〈x1, . . . , xn|α, e〉 a frame if x1, . . . , xn is a list of pairwise
distinct variables, α is a valuation and e is an expression such that

– dom(α) ∩ {x1, . . . , xn} = ∅ and
– dom(α) ⊆ free(e) ⊆ dom(α) ∪ {x1, . . . , xn}.

The roles of e (redex) and α (providing values for the free variables of e) should be
clear. The xi are only present if the frame is suspended waiting for a function to return
in which case the xi act as slots for the return values. A pre-stack is either or ε or
F :: S, where F is a frame and S is a pre-stack. (Pre-stacks essentially correspond to
continuations in an abstract machine interpreting λ-terms in ANF [10].) A stack (or Π-
stack if we want to emphasise the programΠ) is a pre-stack of the form or 〈|α, e〉 ::S.
We call the error stack. A stack of the form 〈|α, ret (x1,. . .,xn)〉::ε is called terminal.
If F :: S is a stack then F is its top frame.

Reduction. Figure 5 presents the rules generating the reduction relation Π on stacks.
We denote the reflexive-transitive closure of Π by ∗

Π . As usual Π may be omitted
if it is understood. Note that reduction performs an eager garbage collection in that it
deallocates unused variables immediately by restricting the valuation α in the post stack
to the free variables of the expression e.

Reduction is deterministic, except for calls to the built-in function enable.

Proposition 2. For all stacks S0 there is at most one stack S1 such that S0 S1,
unless S0 is of the form 〈|α, let (m′,r′) = enable (m,r) in e〉 :: S′0.

Typed stacks. Reduction is untyped since type information is not needed at runtime.
However, various properties of reduction are best stated if the type of variables is
known. Therefore, we annotate stacks with type environments and conservatively extend
reduction to typed stacks.

Given a frame 〈x1, . . . , xn|α, e〉, we call 〈x1, . . . , xn|α, e〉Γ a typed frame if Γ is a
linear type environment such that

– dom(Γ) = dom(α) ∪ {x1, . . . , xn},
– α is a Γ -valuation, and
– Γ ` e : σ for some product type σ.

A typed pre-stack is , or ε, or F ::εwhere F is a typed frame, orF ::F ′ :: S′ where S′ is a
typed pre-stack and F = 〈x1, . . . , xm|α, e〉Γ and F ′ = 〈x′1, . . . , x′n|α′, e′〉Γ

′
are typed

frames such that Γ ` e : (z′1:Γ
′(x′1),. . .,z

′
n:Γ ′(x′n)) for some variables z′1, . . . , z

′
n.

A typed stack is typed pre-stack of the form or 〈|α, e〉Γ :: S. Given a typed frame
F = 〈x1, . . . , xn|α, e〉Γ , we denote its underlying frame 〈x1, . . . , xn|α, e〉 by F \. We
extend this notation to typed (pre-)stacks, writing S\ for the (pre-)stack underlying the
typed (pre-)stack S.

The following proposition shows that reduction does not break the invariants
maintained by typed stacks.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

177

(R-ret)
α′′ = α′{x′1 7→ α(x1), . . . , x

′
n 7→ α(xn)}

〈|α, ret (x1,. . .,xn)〉 :: 〈x′1, . . . , x′n|α′, e′〉 :: S 〈|α′′|free(e′), e′〉 :: S

(R-lettl
1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′

α′ = {z1 7→ α(v1), . . . , zm 7→ α(vm)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in ret (x′1,. . .,x

′
n)〉 :: S 〈|α′|free(e), e〉 :: S

(R-let1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ e′ 6= ret (x′1,. . .,x
′
n)

α′ = {z1 7→ α(v1), . . . , zm 7→ α(vm)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′〉 :: S

 〈|α′|free(e), e〉 :: 〈x′1, . . . , x′n|α|free(e′), e′〉 :: S

(R-let2)

Π0(f) = (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n)

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} α′
f ∈ Eff Π0

Θ0
(f) α′

f � αf

α′ = α{x′1 7→ α′
f (z′1), . . . , x

′
n 7→ α′

f (z′n)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′〉 :: S 〈|α′|free(e′), e′〉 :: S

(R-let 2)

Π0(f) = (z1:τ1,. . .,zm:τm) → σ′ f ∈ {assertEmpty,assertAtLeast}
αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} ∀α′

f ∈ Eff Π0
Θ0

(f) : α′
f � αf

〈|α, let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′〉 :: S

(R-if1)
α(v) 6= 0

〈|α, if v then e1 else e2〉 :: S 〈|α|free(e1), e1〉 :: S

(R-if2)
α(v) = 0

〈|α, if v then e1 else e2〉 :: S 〈|α|free(e2), e2〉 :: S

Fig. 5. Small-step reduction relation (for a fixed program Π). Application of
valuations α extends to values v ∈ 〈val〉 in the natural way, i. e., α(v) = v if v is a
constant.

Proposition 3. Let Ŝ0 be a typed stack and S1 a stack. If Ŝ\
0 S1 then there is a typed

stack Ŝ1 such that Ŝ\
1 = S1.

The proposition justifies the view of reduction on typed stacks as a conservative
extension of the reduction relation defined in Figure 5, where reduction on typed stacks
is defined by Ŝ0 Π Ŝ1 if and only if Ŝ\

0 Π Ŝ\
1; as usual Π may be omitted if it is

understood.
We call a stack S0 stuck if there is no stack S1 such that S0 S1, and S0 is

neither terminal nor the error stack. Our next result shows that reduction on typed
stacks will get stuck only at calls to built-in functions (other than assertEmpty and
assertAtLeast), and only if the preconditions of these calls fail. As the effects listed
in Figure 4 reveal, reduction will get stuck only upon attempts to divide by 0, access
arrays out of bounds or construct singleton multisets with negative multiplicity.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

178

Proposition 4. Let Ŝ be a typed stack. If Ŝ\ is stuck then it is of the form

〈|α, let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′〉 :: S′ ,

f ∈ dom(Π0) \ {assertEmpty,assertAtLeast}, and there is no α′f ∈ Eff Π0
Θ0

(f)
such that α′f � αf , where αf is defined as in rule (R-let2).

Preservation of resources. Given a typed frame F = 〈x1, . . . , xn|α, e〉Γ , we define the
multiset res(F) of resources in F by res(F) =

⊎
{α(x) | x ∈ dom(α), Γ (x) = mgr}.

We extend res to typed non-error stacks by defining res(ε) = ∅ and res(F :: S) =
res(F)] res(S). Proposition 5 states resource preservation: The sum of all resources in
the system remains unchanged by reduction, unless the built-in functions enable and
consume are called. The former admits increasing (but not decreasing) the resources,
whereas the latter behaves the other way round. Obviously, resource preservation de-
pends on the linearity restriction on type mgr, otherwise resources could be duplicated
by re-using managers.

Proposition 5. Let S0 and S1 be typed stacks such that S0 S1 6= .

1. If S0 is of the form 〈|α, let (m′,r′) = enable (m,r) in e〉Γ :: S′0 then res(S0) ⊆
res(S1).

2. If S0 is of the form 〈|α, let () = consume (m) in e〉Γ :: S′0 then res(S0) ⊇
res(S1).

3. In all other cases, res(S0) = res(S1).

2.4 Erasing Resource Managers

According to the reduction semantics, a call to assertEmpty or assertAtLeast
either does nothing1 or goes wrong, and calling one of these two tests is the only way
to go wrong. Hence, if we know that a program cannot go wrong (and Section 3 will
present a type system for proving just that) then we can erase all calls to these built-ins
(or rather, replace them by true no-ops) and obtain an equivalent program.

In fact, we can do more than that. Once the assertion built-ins are gone, it is
even possible to remove the resource managers themselves. By the design of the
programming language (in particular, the choice of built-in operations on resource
managers) the contents of resource managers cannot influence the values of variables
of any other type. Informally, this justifies replacing the resource managers themselves
by variables of type unit whenever we know that a program cannot go wrong. Erasing
resource managers also means that the built-in functions acting on managers can be
replaced by simpler ones on unit: all of which are no-ops, except for enable itself.2

The remainder of the section formalises this intuition.
Figure 6 shows the necessary program transformations to erase resource managers.

Most fundamentally, erasure maps the manager type mgr to the unit type unit.
1 Due to the linearity restriction on resource managers these functions must copy the input

manager to an output manager; a true no-op would violate resource preservation.
2 We do keep the calls in place, so that erasure preserves the structure of programs; this simplifies

reasoning, and does not preclude optimising away no-op calls at a later stage.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

179

Erasure τ◦ of types τ
τ◦ = unit if τ = mgr
τ◦ = τ otherwise

Erasure σ◦ of product types σ
(x1:τ1,. . .,xn:τn)◦ = (x1:τ

◦
1 ,. . .,xn:τ◦n)

Erasure Γ ◦ of type environments Γ
∅◦ = ∅

(Γ, x:τ)◦ = Γ ◦, x:τ◦

Erasure Π◦ of programs Π
dom(Π◦) = dom(Π)

Π◦(f) = λe : σ◦ → σ′◦ if Π(f) = λe : σ → σ′

Π◦(f) = σ◦ → σ′◦ if Π(f) = σ → σ′

Erasure Θ◦
0 of effect environment Θ0

dom(Θ◦
0) = dom(Θ0)

Θ◦
0(enable) = >→ r′ ⊆ r

Θ◦
0(f) = >→> if

f ∈ {init, split, join, consume} ∪

{assertEmpty,assertAtLeast}
Θ◦

0(f) = Θ0(f) otherwise

Erasure α◦ of Γ -valuations α
dom(α◦) = dom(α)

α◦(x) = ? if Γ (x) = mgr
α◦(x) = α(x) otherwise

Erasure S◦ of typed stacks S
 ◦ = ε◦ = ε (〈x1, . . . , xn|α, e〉Γ :: S)◦ = 〈x1, . . . , xn|α◦, e〉Γ

◦
:: S◦

Fig. 6. Erasure of resource managers.

Erasure on types determines erasure on product types, type environments, programs
and valuations (where erasure uniformly maps the values of mgr-variables to ?, the
only value of type unit), which in turn determines erasure on typed stacks. As outlined
above, erasure on effect environments trivialises the effect of resource manager built-
ins, except enable, and preserves the effects of all built-ins not operating on managers.
The effect of enable after erasure is to non-deterministically choose a sub-multiset of
r and return its complement in r′. This reflects the fact that calls to enable provide
points of interaction for the policy (e. g., the user) to decide how many resources the
system is granted. Erasing resource managers does not mean that policy decisions are
fixed, it just removes the managers’ book keeping about those decisions.

Lemma 6. Let Π be a well-typed program and S a typed Π-stack. Then Π◦ is a well-
typed program and S◦ a typed Π◦-stack.

Erasure makes trivial the effects of assertEmpty and assertAtLeast, and in
particular, replaces their precondition by >. Thus a program cannot go wrong after
erasure, as rule (R-let 2) will never apply.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

180

Proposition 7. Let Π be a well-typed program and S a Π◦-stack S. Then S 6 ∗
Π◦ .

The next result states that the small-step reduction relation Π of a program Π is
almost bisimulation equivalent to the reduction relation Π◦ of its erasure. In fact,
it shows that the relation R = {〈S, S◦〉 | S is a Π-stack} would be a bisimulation if
 Π could not reduce stacks to the error stack . Put differently, if Π cannot go wrong
then Π and Π◦ are bisimulation equivalent. The proof of this theorem is by case
analysis on the reduction relation Π of the unerased program. As a corollary, we get
that reachability in the erased program is essentially the same as reachability in the
unerased one, provided that the unerased program cannot go wrong.

Theorem 8. Let Π be a well-typed program and Ŝ0 a typed Π-stack with Ŝ0 6 Π .

1. For all typed Π-stacks Ŝ1, if Ŝ0 Π Ŝ1 then Ŝ◦0 Π◦ Ŝ◦1 .
2. For all typed Π◦-stacks S1, if Ŝ◦0 Π◦ S1 then there is a typed Π-stack Ŝ1 such

that Ŝ0 Π Ŝ1 and Ŝ◦1 = S1.

Corollary 9. LetΠ be a well-typed program and S0 a typedΠ-stack. If S0 6 ∗
Π then

{S◦ | S0 ∗
Π S} = {S | S◦0 ∗

Π◦ S}.

What distinguishes erasure of resource managers from other erasure results (e. g.,
type erasure during compilation, Java generics erasure) is that here, erasure does not
completely remove a language construct. Instead, it removes the book keeping but
retains the semantically important bit that deals with dynamic policy decisions.

2.5 Big-step Relational Semantics

The reduction semantics presented in Section 2.3 is good for showing preservation
properties, like the preservation of resources. However, it does not easily yield a
relational view on functions, relating input and output parameters. This is achieved
by a relational semantics, which we will prove equivalent to the reduction semantics.
Contrary to the reduction semantics, which was originally untyped and had type
environments added conservatively, the relational semantics will be typed from the start.
(Types do not hurt here, as the relational semantics is not geared towards execution.)

Throughout this section, we assume that Π is a well-typed program. A state β is
either the error state or a normal state 〈Γ ;α〉, where Γ is a linear type environment
and α a maximal Γ -valuation. Given an expression e, a normal state 〈Γ ;α〉 and a state
β′, we define the judgement e, 〈Γ ;α〉 ⇓Π β′ (or e, 〈Γ ;α〉 ⇓ β′ if Π is understood)
by the rules in Figure 7 if dom(Γ) ∩ bound(e) = ∅ and there are Γe and σ such that
Γ � Γe and Γe ` e : σ. The intended meaning of e, 〈Γ ;α〉 ⇓ β′ is that evaluating
expression e in state 〈Γ ;α〉 may terminate and result in state β′.

The reduction semantics deallocates variables once they become unused (an eager
garbage collection, so to say), which is essential for the linear variables as otherwise
resource preservation would not hold. However, the intermediate values of variables are
thus lost. In contrast, the relational semantics names and records all intermediate values,
even the linear ones, as e, 〈Γ ;α〉 ⇓ 〈Γ ′;α′〉 implies Γ ′ � Γ and α′ � α.

By definition, violations of resource safety manifest themselves in reductions
ending in the error stack, and hence reductions which diverge or get stuck cannot

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

181

Evaluation of expressions e, 〈Γ ;α〉 ⇓ β′

(E-ret)
ret (x1,. . .,xn), 〈Γ ;α〉 ⇓ 〈Γ ;α〉

(E-let1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n) Γf = z1:τ1, . . . , zm:τm

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} e, 〈Γf ;αf 〉 ⇓ 〈Γ ′
f ;α′

f 〉
Γ ′ = Γ, x′1:τ

′
1, . . . , x

′
n:τ ′n α′ = α{x′1 7→ α′

f (z′1), . . . , x
′
n 7→ α′

f (z′n)}
e′, 〈Γ ′;α′〉 ⇓ β′′

let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ β′′

(E-let 1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ Γf = z1:τ1, . . . , zm:τm

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} e, 〈Γf ;αf 〉 ⇓
let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓

(E-let2)

Π(f) = (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n)

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} α′
f ∈ Eff Π0

Θ0
(f) α′

f � αf

Γ ′ = Γ, x′1:τ
′
1, . . . , x

′
n:τ ′n α′ = α{x′1 7→ α′

f (z′1), . . . , x
′
n 7→ α′

f (z′n)}
e′, 〈Γ ′;α′〉 ⇓ β′′

let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ β′′

(E-let 2)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ f ∈ {assertEmpty,assertAtLeast}
αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} ∀α′

f ∈ Eff Π0
Θ0

(f) : α′
f � αf

let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓

(E-if1)
e1, 〈Γ ;α〉 ⇓ β′

if v then e1 else e2, 〈Γ ;α〉 ⇓ β′ if α(v) 6= 0

(E-if2)
e2, 〈Γ ;α〉 ⇓ β′

if v then e1 else e2, 〈Γ ;α〉 ⇓ β′ if α(v) = 0

Fig. 7. Big-step evaluation relation (for a fixed program Π).

violate resource safety. Therefore, resource safety is not affected by the fact that the
relational semantics ignores such reductions. Under this proviso, Proposition 10 shows
the equivalence of reduction and relational semantics.

Proposition 10. Let 〈Γ ;α〉 and 〈Γ ′;α′〉 be states. Let e be an expression such that
dom(Γ) = free(e) and Γ ` e : σ for some product type σ. Then

1. e, 〈Γ ;α〉 ⇓ if and only if 〈|α, e〉Γ :: ε ∗ , and
2. e, 〈Γ ;α〉 ⇓ 〈Γ ′;α′〉 if and only if there is a typed stack 〈|α′′, ret (x1,. . .,xn)〉Γ ′′

::ε
such that 〈|α, e〉Γ :: ε ∗ 〈|α′′, ret (x1,. . .,xn)〉Γ ′′

:: ε and Γ ′ � Γ ′′ and α′ � α′′.

3 Effect Type System

In this section, we will develop a type system to statically guarantee dynamic resource
safety, i. e., the absence of reductions to the error stack . We will do so by annotating

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

182

functions with effects and then extending the notion of effect to a judgement on
expressions, which we will define by a simple set of typing rules.

3.1 Effect Type System

We extend the notion of effect φ→ ψ from built-in functions to λ-abstractions. To be
precise, φ→ψ is an effect for f if Γ ` φ and Γ,∆ ` ψ, whereΠ(f) = [λ . . .]Γ → ∆,
regardless of whether f is built-in or a λ-abstraction. In line with this extension, an
effect environment Θ maps all functions f ∈ dom(Π) to effects Θ(f) for f .

In order to derive the effects of λ-abstractions, we generalise effects to effect types
for expressions and develop a type system for inductively constructing such effect types.
Effects relate input and output parameters of functions by logical formulae. Likewise,
effect types shall relate input and output parameters of expressions. Here, the input
parameters of an expression are its free variables; the output parameters are those
variables that are not free yet but will become free during reduction, i. e., the (let-)bound
variables. Formally, an effect type Γ ;φ→∆;ψ is a pair of constraints φ and ψ together
with a pair of type environments Γ and ∆ such that dom(Γ)∩dom(∆) = ∅ and Γ ` φ
and Γ,∆ ` ψ. We call φ and ψ precondition and action, and Γ and ∆ input and output
(parameters), respectively. Given an expression e, we say that an effect type Γ ;φ→∆;ψ
is an effect type for e if dom(Γ) ∩ bound(e) = ∅.

We say that an effect type Γ ;φ→∆;ψ is stronger than an effect type Γ ′;φ′→∆′;ψ′,
denoted by Γ ;φ→ ∆;ψ ⊇ Γ ′;φ′ → ∆′;ψ′, if φ′ |= φ and (φ′ ∧ ψ) |= ψ′, i. e., the
stronger effect type Γ ;φ→ ∆;ψ has a weaker precondition but stronger action. The
stronger-than relation ⊇ is a quasi-order, i. e., reflexive and transitive, and induces an
equivalence relation on effect types, the as-strong-as relation, which we denote by ≡.
Note that for every effect type Γ ;φ→∆;ψ is as strong as an effect type Γ ′;φ→∆′;ψ
with linear type environments Γ ′ and ∆′.

Figure 8 presents the typing rules for deriving effect types. There, the judgement
Θ `Π e : Γ ;φ→∆;ψ states that expression e has effect type Γ ;φ → ∆;ψ in the
context of program Π and effect environment Θ. If Π is understood, we may omit it
and write Θ ` e : Γ ;φ→∆;ψ instead. The judgement Π,Θ ` f means that the effect
type ascribed to a λ-abstraction f by Θ and Π is consistent with the effect type derived
for the body of f . We say that Θ is an admissible effect environment for a program Π
if Π,Θ ` f for all λ-abstractions f ∈ dom(Π) \ dom(Π0).

Lemma 11. Let e be an expression, Θ an effect environment (referring to an implicit
program Π) and Γ ;φ→∆;ψ an effect type. If Θ ` e : Γ ;φ→∆;ψ then Γ ;φ→∆;ψ
is an effect type for e.

Theorem 12 states soundness of effect typing w. r. t. the big-step relational semantics.
The proof is by double induction on the derivation of relational semantics judgements
over the derivation of effect type judgements. As a corollary, we get that reduction
starting from a state that satisfies the precondition can’t go wrong, hence resource
managers can be erased. In fact, the untyped reductions in the erased program match
exactly the typed reductions in the original program.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

183

Typing of expression effects Θ ` e : Γ ;φ→∆;ψ

(ET-weak)
Θ ` e : Γ ;φ→∆;ψ

Θ ` e : Γ ′;φ′ →∆′;ψ′ if

dom(Γ ′) ∩ bound(e) = ∅ ∧
Γ ;φ→∆;ψ ⊇ Γ ′;φ′ →∆′;ψ′

(ET-ret)
Θ ` ret (x1,. . .,xn) : ∅;>→ ∅;>

(ET-if)
Θ ` e1 : Γ ; v 6≈ 0 ∧ φ→∆;ψ Θ ` e2 : Γ ; v ≈ 0 ∧ φ→∆;ψ

Θ ` if v then e1 else e2 : Γ ;φ→∆;ψ

(ET-let)

Π(f) = [λ . . .]Γ → ∆ Γ = z1:τ1, . . . , zm:τm ∆ = z′1:τ
′
1, . . . , z

′
n:τ ′n

Θ(f) = φ→ ψ µ = {z1 7→ v1, . . . , zm 7→ vm, z
′
1 7→ x′1, . . . , z

′
n 7→ x′n}

Θ ` e′ : Γ ′, ∆′;φ′ ∧ ψ′ →∆′′;ψ′′

Θ ` let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′ : Γ ′;φ′ →∆′, ∆′′;ψ′ ∧ ψ′′ if (∗)

where (∗)

dom(Γ ′) ∩ {x′1, . . . , x′n} = ∅ ∧
Γµ;φµ→∆µ;ψµ ⊇ Γ ′;φ′ →∆′;ψ′

Well-typedness of λ-abstraction effects Π,Θ ` f

(ET-lam)
Π(f) = λe : Γ → ∆ Θ(f) = φ→ ψ Θ ` e : Γ ;φ→∆;ψ

Π,Θ ` f

Fig. 8. Typing rules for effect types (for a fixed program Π).

Theorem 12. Let Θ be an admissible effect environment for a well-typed program Π .
Let e be an expression and Γ ;φ→∆;ψ an effect type such that Θ ` e : Γ ;φ→∆;ψ.
Let 〈Γ ;α〉 and β′ be states such that e, 〈Γ ;α〉 ⇓ β′ (which implies Γe ` e : σ for some
Γe, σ). If α |= φ then β′ = 〈Γ ′;α′〉 for some Γ ′ and α′ such that α′ |= φ ∧ ψ. (In
particular, if α |= φ then β′ 6= .)

Corollary 13. Let Θ be an admissible effect environment for a well-typed program Π .
Let e be an expression and Γ ;φ→∆;ψ an effect type such thatΘ `Π e : Γ ;φ→∆;ψ.
Let α be a maximal Γ -valuation, and let Ŝ0 = 〈|α|free(e), e〉Γ |free(e) :: ε be a typed
Π-stack (which implies Γ |free(e) `Π e : σ for some σ). If α |= φ then

1. Ŝ0 6 ∗
Π and

2. for all (untyped) Π◦-stacks S, Ŝ◦\0
∗
Π◦ S if and only if there is a typed Π-stack

Ŝ such that Ŝ0 ∗
Π Ŝ and Ŝ◦\ = S. (In particular, Ŝ◦\0 6 ∗

Π◦ .)

3.2 Example: Bulk Messaging Application

To illustrate the use of the effect type system, we revisit the example from Figure 1. The
interesting bits of code are in the functions send bulk and send msg.

The function send bulk first builds up a multiset of resources r by converting the
strings representing phone numbers in nums into resources. Next it attempts to authorise
the use of all resources by having enable add r to an empty resource manager m. If this

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

184

f Θ(f)

send bulk >→>
res from nums >→ r≈ bagof (mapfromstr (nums))

res from nums’
0 ≤ i ≤ len(nums) ∧ r’≈ bagof (mapfromstr (subarray(nums, i, len(nums))))

→ r≈ bagof (mapfromstr (nums))

send msgs bagof (mapfromstr (nums)) ⊆ m→ m≈ m’] bagof (mapfromstr (nums))

send msgs’
0 ≤ i ≤ len(nums) ∧ bagof (mapfromstr (subarray(nums, 0, i))) ⊆ m

→ m≈ m’] bagof (mapfromstr (subarray(nums, 0, i)))

send msg count(m, fromstr(num)) ≥ 1→ m≈ m’] {|fromstr(num):1|}
prim send msg >→>

∀a : len(mapfromstr (a))≈ len(a)

∀a∀i : 0≤ i < len(a) ⇒ mapfromstr (a)[i]≈ fromstr(a[i])

∀a∀j∀k : 0≤ j ≤ k ≤ len(a) ⇒ len(subarray(a, j, k)) = k + (−j)

∀a∀j∀k∀i : 0≤ j ≤ k ≤ len(a) ∧ 0≤ i < len(subarray(a, j, k)) ⇒ subarray(a, j, k)[i] = a[j + i]

∀a : |bagof (a)| ≈ len(a)

∀a : len(a)≈ 1 ⇒ bagof (a)≈ {a[0]:1}
∀a∀k : 0≤ k ≤ len(a) ⇒ bagof (a)≈ bagof (subarray(a, 0, k))] bagof (subarray(a, k, len(a)))

Fig. 9. Bulk messaging application: admissible effect environment Θ and axiomatisa-
tion of theory extension; for the sake of readability sort information is suppressed in the
axioms.

fails, i. e., the multiset r’ returned by enable is of non-zero size, send bulk terminates
(after destroying m’ and whatever resources it holds).3 If authorising all resources
succeeds, send bulk calls send msgs to actually send the messages while checking that the
manager m’ contains the required resources. After that, send bulk checks that send msgs

has used up all resources by asserting that the returned manager m” is empty; failing
this assertion will trigger a runtime error. Finally, send bulk explicitly destroys the empty
manager m’” and terminates.

The function send msg sends one message, checking whether the resource manager
m holds the resource required. It does so by converting the string num into a singleton
multiset of resources r. Then it splits the manager m into m’ and m r, so that m r contains
at most the resources in r. Next, send msg asserts that m r contains at least r; failing
this assertion will trigger a runtime error. Succeeding the assertion, send msg calls the
primitive send function, destroys the now used resource by consuming m r’, and returns
the remaining resources in the manager m’.

The bulk messaging example is statically resource safe, as witnessed by the admis-
sible effect environment displayed in Figure 9. Of particular interest is the effect>→>
ascribed to the main function send bulk. This least informative effect expresses nothing
about the function itself but implies the absence of runtime errors via Corollary 13.

The effects require an extension of the theory T (see Section 2.2) by three new
functions, axiomatised in Figure 9. The function map maps an array of strings to an

3 A more sophisticated version of the application could deal more gracefully with enable
granting only part of the requested resources. This would require more complex code to inspect
the multisets r and r’ (but not the resource manager m’).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

185

array of resources, subarray takes an array and cuts out the sub-array between two
given indices, and bagof converts an array of resources to a multiset (containing the
same elements with the same multiplicity). Note that the axiomatisation of bagof is not
complete4 but sufficient for our purposes.

Effect type checking, e. g., for checking admissibility of the effect environment Θ
from Figure 9, requires checking the side condition of the weakening rule (ET-weak),
which involves checking logical entailment w. r. t. to an extension of the theory T . Due
to the high undecidability of T , we actually check entailment w. r. t. (an extension of)
an approximation of T ; in particular, we approximate multiplication and division by
uninterpreted functions. For the bulk messaging example, we used an SMT solver [4]
that can handle linear integer arithmetic and arrays. We added axioms for multisets and
the axioms in Figure 9. Due to an incomplete quantifier instantiation heuristic, we had
to instantiate a number of these axioms by hand, yet eventually, the solver was able to
prove all the entailments required by the weakening rules.

Even though arising from a single example, we believe that the extension of the
theories of multisets and arrays with the functions subarray and bagof is quite generic
and could prove useful in many cases.

4 Conclusion

We have presented a programming language with support for complex resource man-
agement, close to the standard SSA/ANF forms of compiler intermediate languages [1].
By construction, programs are dynamically resource safe in that any attempts to abuse
resources are trapped. We have extended the language with an effect type system which
guarantees the for well-typed programs no such attempts occur: we have static resource
safety. In addition, for such programs the bookkeeping required by dynamic resource
management can be erased.

Related Work. Many tools and methods have been proposed to assist with resource
management at runtime, e.g., in Java, the JRes [9] and J-Seal [8] frameworks. Generally,
these aim to enable programs to react to fluctuations of resources caused by an
unpredictable environment. Our aim, however is to track the flow of resources through
the program, where the environment can influence the availability of resources only
at well-understood points of interaction with the program and with clear availability
policies. This offers the chance for more precise resource control whose behaviour can
be predicted statically.

This paper builds on previous work [3] with a Java library implementing resource
managers and focusing on the dynamic aspects of resource management policies. This
Java library supports essentially the same operations on resource managers as our
functional language, except that state is realised by destructive updates instead of linear
types. While [3] does not provide a static analysis to prove static resource safety, it does
outline how dynamic accounting could be erased if static resource safety were provable.
Our work here shows one way to do just that.

4 A complete axiomatisation of bagof is possible in the full first-order theory of multisets and
arrays but it is much more complicated and unusable in practise.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

186

Our approach is in line with a general trend of providing the programmer with
language-based mechanisms for security and additional static analyses (often using type
systems) which use these mechanisms. This combination provides a desirable graceful
degradation: if static analysis succeeds in proving certain properties, then the program
may be optimised without affecting security. Yet, even if the analyses fail the language
based mechanisms will enforce the security properties at runtime.

The context of our work is the MOBIUS project [5] on proof-carrying code (PCC)
for mobile devices. Our effect type system is very simple and in principle well-suited
for a PCC setting where checkers themselves are resource bounded. However, the
weakening rule relies on checking logical entailment in a first-order theory, which is
undecidable in general. Therefore, a certificate for PCC need not only provide a type
derivation tree but also proofs (in some proof system) for the entailment checks in the
weakening rule. The development of a suitable such proof system is a topic for further
research, as is the investigation of decidable fragments of relevant first-order theories.

Acknowledgements. This work was funded in part by the Sixth Framework programme of
the European Community under the MOBIUS project FP6-015905. This paper reflects only
the authors’ views and the European Community is not liable for any use that may be made
of the information contained therein. Ian Stark was also supported by an Advanced Research
Fellowship from the UK Engineering and Physical Sciences Research Council, EPSRC project
GR/R76950/01.

References
[1] A. W. Appel. SSA is functional programming. SIGPLAN Notices, 33(4):17–20, 1998.
[2] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic

for resources. Theoret. Comput. Sci., 389(3):411–445, 2007.
[3] D. Aspinall, P. Maier, and I. Stark. Monitoring external resources in Java MIDP. Electron.

Notes Theor. Comput. Sci., 197:17–30, 2008.
[4] C. Barrett, L. de Moura, and A. Stump. Design and results of the 2nd annual satisfiability

modulo theories competition. Form. Meth. Syst. Des., 31(3):221–239, 2007.
[5] G. Barthe, L. Beringer, P. Crégut, B. Grégoire, M. Hofmann, P. Müller, E. Poll, G. Puebla,

I. Stark, and E. Vétillard. MOBIUS: Mobility, ubiquity, security. Objectives and progress
report. In Proc. TGC 2006, LNCS 4661, pp.10–29. Springer, 2007.

[6] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Automatic certification of
heap consumption. In Proc. LPAR 2004, LNCS 3452, pp.347–362. Springer, 2005.

[7] F. Besson, G. Dufay, and T. P. Jensen. A formal model of access control for mobile
interactive devices. In Proc. ESORICS 2006, LNCS 4189, pp.110–126. Springer, 2006.

[8] W. Binder, J. Hulaas, and A. Villazón. Portable resource control in Java. In Proc.
OOPSLA 2001, pp.139–155. ACM, 2001.

[9] G. Czajkowski and T. von Eicken. JRes: A resource accounting interface for Java. In Proc.
OOPSLA ’98, pp.21–35. ACM, 1998.

[10] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. In Proc. PLDI ’93, pp.237–247. ACM, 1993.

[11] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates and mutable
ADTs in Hoare type theory. In Proc. ESOP 2007, LNCS 4421, pp.189–204. Springer, 2007.

[12] Unknown. Redbrowser.A, Feb. 2006. J2ME trojan, variously identified in the wild as
Redbrowser.A (F-Secure), J2ME/Redbrowser.a (McAfee), Trojan.Redbrowser.A (Syman-
tec), Trojan-SMS.J2ME.Redbrowser.a (Kaspersky Lab).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

187

Informatics Report EDI-INF-RR-1341

Resource Analysis for Iterative Java Programs via

Lattice-point Enumeration in Polytopes

Kenneth MacKenzie
School of Informatics, University of Edinburgh

August 2009

1 Introduction

We give an overview of some aspects of the theory of lattice point enumeration
in polyhedra, and give brief description of a compiler which uses these methods
to calculate resource bounds for iterative Java programs. We are particularly
interested in the question of producing certified resource bounds for mobile
programs, and so our discussion will draw attention to some of the issues that
are especially pertinent in this context. For example, it is desirable that it
should be possible to express the results of computations compactly, and also
that it should be possible to check these results quickly, even if the computations
performed to obtain them may have been time-consuming.

2 Loops and Geometry

Consider the following loop L which might occur in a C or Java program:

for (i=1; i<=9; i++)
for (j=1; j<=i && j<=7; j++) B

If one is interested in (say) the memory usage of a program including this code,
then if the block B allocates some memory, an obvious problem is to determine
exactly how many times B is executed.

If B does not alter the values of i and j then within B we have the invariants

1 ≤ i ≤ 9
1 ≤ j ≤ i

1 ≤ j ≤ 7.

Considered as inequalities over the real numbers, these define a trapezoidal
region P in the (i, j)-plane, and it is easy to see that number of times the block
B is executed is equal to |P ∩ Z2|, the number of lattice points1 within the
polygon P (see Figure 1).

1i.e. points with integral coordinates.

1

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

188

Figure 1: Polygon for loop L

There is a rich mathematical theory of the enumeration of lattice points
in polytopes (the generalisation of polygons to higher dimensions) and we will
describe some aspects of this theory and its relations to program analysis.

2.1 Linear inequalities and halfspaces

Fix an integer d ≥ 0 and a1, . . . , ad ∈ R. We will be interested in solutions
(x1, . . . , xn) ∈ Rd of inequalities of the form

a1x1 + · · ·+ adxd ≤ b

In our applications, such inequalities will arise in the form of linear constraints
on program variables.
Consider firstly the equality

a1x1 + · · ·+ adxd = 0. (1)

Writing a = (a1, . . . , ad) and x = (x1, . . . , xd) we can rewrite this as a · x = 0,
and this allows us to write the set H of solutions of (1) as

H = {x ∈ Rd : a · x = 0},

If a 6= 0 then H is the set of all vectors orthogonal to the vector a, which
form a hyperplane in Rd, that is a (d − 1)-dimensional subspace of Rd. In
R2 a hyperplane is a line passing through the origin (Figure 2), and in R3, a
hyperplane is a plane passing through the origin.
Similarly, if b ∈ R then the set of solutions to

a1x1 + · · ·+ adxd = b. (2)

is an affine hyperplane H ′, the set of all points at a distance of b/‖a‖ from the
hyperplane H (Figure 3).

Finally, the set of solutions to the inequality

a1x1 + · · ·+ adxd ≤ b. (3)

describes a halfspace, the set of all points on one side of the affine hyperplane
H ′ (Figure 4).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

189

Figure 2: {
(x

y

)
∈ R2 :

(x
y

)
·
(

1
2

)
= 0} Figure 3: {

(x
y

)
∈ R2 :

(x
y

)
·
(

1
2

)
= 6}

Figure 4: {
(x

y

)
∈ R2 :

(x
y

)
·
(

1
2

)
≤ 6}

2.2 Polyhedra and Polytopes

In the previous section we have considered the set of solutions to a single linear
inequality. We now consider the set of simultaneous solutions to a finite set of
such inequalities: geometrically, this is is equal to the intersection of a finite
number of halfspaces.

Definition 1. A convex polyhedron in Rd is the intersection of a finite number
of halfspaces.

A convex polyhedron is thus the set of solutions to a system of n inequalities

a11x1 + · · ·+ a1dxd ≤ b1

a21x1 + · · ·+ a2dxd ≤ b2

...
an1x1 + · · ·+ andxd ≤ bn

which may be written more compactly as

Ax ≤ b. (4)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

190

where A lies in Rn×d, the set of n × d matrices over R. Note that we always
use ≤; this is not as restrictive as it might at first appear, since the inequality
a · x ≥ b can be rewritten as (−a).x ≤ −b, and an equality a · x = b can be
written as a conjunction of two inequalities. a · x ≥ b and (−a) · x ≤ −b,

The dimension dim P of a polyhedron P in Rd is the dimension of the small-
est affine subspace containing P . We always have dim P ≤ d, and if dim P = d
then P is said to be full-dimensional. It should be clear that not all polyhedra
are full-dimensional; for example, if we let

P =
{(

x
y

)
∈ R2 :

(
1 −1
−1 1

) (
x
y

)
≤

(
0
0

)}
then we see that P is the 1-dimensional line x = y in R2.

2.3 Faces of polyhedra

For a 3-dimensional polyhedron, we are familiar with the notion of vertex, edge,
and face. For general d, this generalises to the notion of k-face, a k-face being
a k-dimensional subpolyhedron which is extremal in a suitable sense. Faces of
certain dimensions have special names. Given a d-polyhedron P ,

• a 0-face is called a vertex

• a 1-face is called an edge

• a (d− 2)-face is called a ridge

• a (d− 1)-face is called a facet

• P has a single d-face, P itself

The set of faces of P of all dimensions is partially ordered by inclusion, and
in fact forms a lattice, called the face lattice of P . Two polyhedra are said to
be combinatorially equivalent if they have isomorphic face lattices. This is the
natural definition of what it means for two polyhedra to be of the same general
“shape”.

Note that this definition of polyhedron is broader than the usual 3-dimensional
notion in that there is no requirement that a polyhedron be bounded (ie, of fi-
nite extent; contained in some sphere): for example a halfspace is a polyhedron,
as is Rd itself, the polyhedron determined by an empty set of constraints. The
next section will define the notion of a polytope, which is perhaps a more natural
generalisation of the usual concept of polyhedron.

2.4 Polytopes

Recall that if p,q ∈ Rd then the line segment from p to q is

l(p,q) = {tp + (1− t)q : 0 ≤ t ≤ 1},

and that a subset X of Rd is said to be convex if whenever p,q ∈ X, l(p,q) ⊆ X.
Every set Y ⊆ Rd is contained in a unique minimal convex set called the convex
hull of Y.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

191

Definition 2. A convex polytope (or just polytope) in Rd is the convex hull of
a finite subset Y ⊂ Rd. The convex hull of a set Y = {y1, . . . ,ym} is

conv Y =

{
m∑

i=1

tiyi : ti ∈ R, ti ≥ 0,

m∑
i=1

ti = 1

}
.

We will sometimes also denote conv{y1, . . . ,ym} by conv Y, where Y ∈
Rd×m is the d×m matrix whose columns are the vectors y1, . . . ,ym.

The following theorem [37, Theorem 1.1] may appear obvious, but turns out
to be surprisingly difficult to prove.

Theorem 3. Every bounded convex polyhedron in Rd is a convex polytope, and
vice versa.

It follows that every convex polytope P has two different descriptions: the
facet representation (or halfspace representation)

P = {x ∈ Rd : Ax ≤ b}

and the vertex representation2

P = conv Y

Note that if we have a polytope P described by m halfspaces, the number of
facets is at most m; however, some halfspaces may be redundant, meaning that
the actual number of facets may be strictly less than m. For example, consider
the 1-polytope P = {x ∈ R : x ≥ 0, x ≤ 1,−2 ≤ x ≤ 2}. This is equal to the
closed interval [−1, 1] and the constraint −2 ≤ x ≤ 2 is redundant.
The problem of obtaining a vertex representation from a facet representation
is known as the Vertex Enumeration problem, and that of obtaining a facet
representation from a vertex representation is known as the Facet Enumeration
problem. We will consider these problems in more detail later.
The general theory of polyhedra has many applications in mathematics and in
computer science. See [6] for a survey of CS applications.

3 Lattice-point enumeration

As indicated earlier, we are interested in |P ∩ Zd|, the number of lattice points
in a polytope P . This problem becomes very difficult when polytopes whose
vertices have irrational coordinates are involved, so we will only consider the
following types of polytopes.

Definition 4. A polytope P = conv{y1, . . .yn} is said to be integral if every
coordinate yij is an integer, and rational if every coordinate is a rational number.

Note that even if a polytope P is given in the form P = {x ∈ Rd : Ax ≤ b}
with all aij and bi in Z, P will not in general be an integral polytope; it will
however always be rational.

2In fact, there is even an extended version of the vertex description which applies to
unbounded polyhedra. This is known as the Minkowski description: see [37] for details.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

192

Many applications of polytope methods have been based on the work of
Eugène Ehrhart, who studied the problem of how the number of lattice points
inside a polytope grows as the size of the polytope increases. More precisely, let

P = conv{y1, . . . ,ym}

be a polytope and for n ∈ N, let

nP = conv{ny1, . . . , nym}

be the n-fold dilate of P . Ehrhart showed that |nP ∩ Zd| is a quasipolynomial
in n, which we will now define.

Definition 5. Let k ∈ N. A periodic number with period k is a function f :
Z → Z with the property that f(n + k) = f(n) for all n ∈ Z.

A periodic number with period k is uniquely determined by its value at the
points 0, . . . , k− 1, and this allows us to define a compact notation for periodic
numbers.

Definition 6. Let k ∈ N and a0, . . . , ak−1 ∈ Z. We write

[a0, . . . , ak−1]n =

a0 if n ≡ 0 (mod k)
a1 if n ≡ 1 (mod k)
...
ak−1 if n ≡ k − 1 (mod k).

The function n 7→ [a0, . . . , ak−1]n is a periodic number with period k, and
every periodic number can be written in a similar way.

Definition 7. A quasipolynomial (or pseudopolynomial) of degree d and quasiperiod
k is a function f : Z → Z of the form

f(n) =
d∑

i=0

ai(n)ni

where each ai is a periodic number of period k and ad is not identically zero.
Alternatively, we may write such a quasipolynomial in the form

f(n) =

f0(n) if n ≡ 0 (mod k)
f1(n) if n ≡ 1 (mod k)
...
fk−1(n) if n ≡ k − 1 (mod k).

where each fj is a polynomial of the usual kind and max{deg f0, . . . ,deg fk−1} =
d.

We can now state Ehrhart’s Theorem.

Theorem 8 (Ehrhart[17, 18]). Let P = conv{y1, . . . ,yn} be a convex polytope
in Zd and let

EP (n) = |nP ∩ Zd|

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

193

• If P is integral then EP (n) is a polynomial of degree dim P

• If P is rational then EP (n) is a quasipolynomial of degree dim P and
quasiperiod equal to the greatest common denominator of the coordinates
of the vertices of P .

The function EP (n) is referred to as the enumerator of P , or the Ehrhart
(quasi -)polynomial of P .
As an exercise, we invite the reader to show that the Ehrhart quasipolynomial
of the rectangular polytope

P = conv
(

0 1
2

1
2 0

0 0 1
3

1
3

)
⊂ R2

is given by

EP (n) = [1, 1
3 , 1

3 , 1
2 , 2

3 , 1
6]n + [56 , 1

2 , 1
2 , 2

3 , 2
3 , 1

3]n · n + [16 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6]n · n2

3.1 Ehrhart polynomials and program analysis

There is a considerable amount of research applying Ehrhart polynomials to
program analysis and optimisation, especially in the field of high-performance
computing involving array calculations. One of the first papers in this area is
due to Clauss [14], where it is stated that the problem of counting the number of
solutions to equations derived from affine loop bounds is applicable to problems
such as counting the flops executed by a loop, the number of memory locations
touched by a loop, the array elements that must be transmitted from one pro-
cessor to another during parallel array computations, the maximum parallelism
induced by a loop from a given time-schedule, and several other problems.

Clauss applies the theory of Ehrhart polynomials to the analysis of loops
where the upper bound is parametric. This allows him to deal with situations
such as

for (i=1; i<=n; i++)
for (j=1; j<=i; j++) B

where the total number of executions is controlled by a single parameter n. In
this case, increasing the parameter corresponds to dilating the entire associated
polytope, which is the situation which Ehrhart polynomials describe.

The case when several independent parameters are involved is more difficult.
In this case varying a single parameter corresponds to moving a single facet of
the associated polytope while leaving the others in place. For example,

for (i=1; i<=n; i++)
for (j=1; j<=m; j++) B

has two parameters m and n, and the associated polytope is a rectangle. Varying
one of the parameters corresponds to changing the width of the rectangle, but
not the height (or vice versa). In more complex situations, variation of param-
eters may lead to a change in the combinatorial type of the associated polytope
(see Appendix A).

To deal with this, Clauss uses the work of Loechener and Wilde [25], where it
is shown that given a polytope P whose shape and size is controlled by several

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

194

parameters, the parameter space can be decomposed into a finite number of
regions (called validity domains) such that each domain D has an associated
quasipolynomial which counts the number of lattice points within the polytope
as long as the parameters lie in D; if the parameters move into a different
validity domain then you must switch to a different quasipolynomial. Is a later
paper Clauss and Loechner [15] extend this work further to produce a method
for dealing with the multi-parameter case. This method was purported to be
entirely automatic, but this claim was subject to some criticism in [36, §2].

The methods of Clauss seem to have remained largely within the high-
performance/parallel computing community (see [24, 33] for example) until
2006, when Braberman et al [11] (and see also [10]) showed how to adapt these
techniques to predict the memory usage of (iterative) Java programs; at present
this appears to be the only application of polytope methods within the pro-
gramming language community.

Note that if we restrict to natural numbers, then linear inequalities of the
type considered above are exactly the type of inequalities that occur in Pres-
burger arithmetic. It follows that the lattice point enumeration problem sub-
sumes the problem of counting solutions to systems of Presburger inequalities.
This point of view is examined in greater depth in Pugh[34].

3.2 Drawbacks of Ehrhart polynomials

The standard method used to compute Ehrhart polynomials is interpolation,
where the coefficients of a polynomial f of degree d are derived from the values
of the polynomial at d + 1 distinct points: this data gives a (d + 1) × (d + 1)
system of linear equations in the coefficients of f which can then be solved by
Gaussian elimination or some other technique. In the case of a quasipolynomial
of period k and degree d, this requires us to solve k systems of (d + 1)× (d + 1)
equations. Recalling that the period k of the Ehrhart polynomial associated with
a rational polytope P is the greatest common denominator of the coefficients of
the vertices of P , it becomes clear that a considerable amount of computation
can be required to calculate EP (n). In addition to this, the initial d+1 values of
the k polynomial components of the quasipolynomial have to be computed by
explicitly counting the number of lattice points in the dilates 0P, P, 2P, . . . , (d+
1)P . The number k can be very large, even for relatively simple polytopes. For
example, for the triangular polytope

P = conv
(

1/4 5/7 8/9
2/5 2/11 1/2

)
the quasiperiod of EP (n) is 13,680. Calculating the Ehrhart polynomial of P
thus requires the solution of 13,680 3×3 systems of linear equations, which would
be reasonably time-consuming. In fact, even if the dimension d is fixed, the time
taken to compute (via interpolation) the Ehrhart polynomial of a polytope with
n vertices can grow exponentially with n (see [36, §2.3]), whereas the methods
presented in the next section are polynomial in fixed dimension.

The sheer amount of data required to specify an Ehrhart function is also
something of a barrier in the context of certified resource analysis, where such
functions would have to be recorded in certificates accompanying mobile pro-
grams. This may not in fact be an insurmountable problem. One could possibly

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

195

find simpler functions which are upper bounds for the exact Ehrhart function
(see [32]); this would save space at the expense of a (hopefully small) loss of
precision. Another issue is that Ehrhart functions are not arbitrary quasipoly-
nomials: for example it is clear that they are increasing functions, whereas
a general quasipolynomial can have polynomial components which are com-
pletely unrelated, leading to a function whose value oscillates drastically. It is
conceivable that the quasipolynomials arising as Ehrhart functions have special
properties which would enable them to be specified by a relatively small amount
of data. Unfortunately, it seems that very little is known about exactly which
quasipolynomials can occur as Ehrhart polynomials (see [28, 9] for some partial
results) so at present it is difficult to be precise about the minimum of data re-
quired to explicitly specify an Ehrhart function. However, the results discussed
in the next section may enable us to bypass this problem.

4 Generating functions

The difficulty of computing Ehrhart polynomials suggests that they would be un-
suitable for polytope-based analyses in a certifying framework, but fortunately
some more recent results provide a much more efficient means of enumerating
lattice points. The basic tool in this theory is the generating function of a poly-
tope, which is a multivariate polynomial with a term for every lattice point in
the polytope. More concretely, suppose we have a polytope P in Rd. We will
consider polynomials in the variables x1, . . . , xd. Given v = (v1, ..., vd) ∈ Zd we
define

xv = xv1
1 xv2

2 · · ·xvd

d

and the generating function of P is then defined by

GP (x) =
∑

{xv : v ∈ P ∩ Zd}

It is easy to see that the number of lattice points in P is given by GP (1, . . . , 1).
The obvious difficulty here is that the polynomial GP (x) will in general be
enormous and costly to compute. Recall our earlier example, which gave rise to
a trapezoidal region in R2:

for (i=1; i<=9; i++)
for (j=1; j<=i && j<=7; j++) B

For this relatively small example, the full generating function is equal to

GP (x, y) = xy + x2y + x3y + x4y + x5y + x6y + x7y + x8y + x9y

+x2y2 + x3y2 + x4y2 + x5y2 + x6y2 + x7y2 + x8y2 + x9y2

+x3y3 + x4y3 + x5y3 + x6y3 + x7y3 + x8y3 + x9y3

+x4y4 + x5y4 + x6y4 + x7y4 + x8y4 + x9y4

+x5y5 + x6y5 + x7y5 + x8y5 + x9y5

+x6y6 + x7y6 + x8y6 + x9y6

+x7y7 + x8y7 + x9y7

which is already quite unwieldy.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

196

Fortunately, Alexander Barvinok [7] has recently shown how to express the
generating function as a sum of short rational functions which are easily de-
termined from local information at the vertices of P . In the case above, we
have

GP (x, y) =
xy

(1− x)(1− xy)
+

x9y

(1− x−1)(1− y)
+

x9y9

(1− y−1)(1− x−1y−1)

Where does this formula come from? Barvinok exploits a theorem of Brion[13]
which states that the generating function of a polytope is (up to a certain equiv-
alence relation) the sum of the generating functions of the supporting cones at
the vertices of the polytope. Informally, to obtain the supporting cone Kv at
a vertex v, take all edges emanating from v, extend them to infinity, and then
take the subset of Rd which they enclose (Figure 5).

Figure 5: Supporting cone at vertex
(

1
1

)
Note that a supporting cone is always unbounded and hence its generating

function has infinitely many terms; however, it can be shown that the gener-
ating function is still well-behaved, in the sense that there is some nonempty
region D in Rd such that GKv(x) converges to a finite limit whenever x ∈ D.
Moreover, Barvinok shows that any cone can be decomposed into a signed sum
of unimodular cones3 whose generating functions are easy to compute. Once
these functions been found they can be combined to give the generating function
of the original cone, and Brion’s Theorem can then be used to calculate GP (x)
as a sum of the various GKv(x)

It so happens that in our example all of the supporting cones are unimodular,
so it’s easy to find their generating functions. Consider, for example the vertex
v = (1, 1) (Figure 5). Here the generating function of the supporting cone is

xy

(1− x)(1− xy)
.

The term xy in the numerator is obtained from the fact that the vertex lies
at the point x = 1, y = 1, and the numerator comes from the fact that the

3See [7] for the definition

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

197

supporting cone is generated by the vectors
(

1
0

)
(giving the term (1 − x) and(

1
1

)
(giving the term (1− xy)).

Similarly, at the vertex (9, 7) the generating function of the supporting cone
is Here the generating function of the supporting cone is

x9y7

(1− x−1)(1− y−1)
.

We now obtain the generating function of the entire polytope as the sum

GP (x, y) =
xy

(1− x)(1− xy)
+

x9y

(1− x−1)(1− y)

+
x9y7

(1− y−1)(1− x−1)
+

x7y7

(1− x)(1− x−1y−1)

=
xy

(1− x)(1− xy)
+

x.x9y

x(1− x−1)(1− y)

+
x.y.x9y7

y(1− y−1)x(1− x−1)
+

xy.x7y7

(1− x)xy(1− x−1y−1)

=
xy

(1− x)(1− xy)
+

x10y

(x− 1)(1− y)
+

x10y8

(y − 1)(x− 1)
+

x8y8

(1− x)(xy − 1)

=
xy(1− y)

(1− x)(1− xy)(1− y)
+

x10y(1− xy)
(x− 1)(1− y)(1− xy)

+
x10y8(1− xy)

(y − 1)(x− 1)(1− xy)
+

x8y8(1− y)
(1− x)(xy − 1)(1− y)

=
xy(1− y)− x10y(1− xy) + x10y8(1− xy)− x8y8(1− y)

(1− x)(1− y)(1− xy)

=
xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9

(1− x)(1− y)(1− xy)

To determine the number of lattice points in P we still have to evaluate
GP (x, y) at the point (1, 1), which is complicated by the fact that the denomi-
nator of the rational function above vanishes at this point. However, the point
(1,1) is in fact a removable singularity of the function, and GP (1, 1) can easily
be determined by calculating the residue at (1, 1), which can be done quickly
by various methods.

For example, in this case we can remove the singularity by repeatedly ap-
plying L’Hôpital’s rule4 by differentiating the numerator and denominator until
the denominator is non-zero:

4If f and g are continuous at a and limx→a f(x) = limx→a g(x) = 0 then
limx→a f(x)/g(x) = limx→a f ′(x)/g′(x)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

198

∣∣P ∩ Z2
∣∣ = GP (1, 1)

= lim
(x,y)→(1,1)

xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9

(1− x)(1− y)(1− xy)

= lim
(x,y)→(1,1)

xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9

1− x− y + x2y + xy2 − x2y2

= lim
(x,y)→(1,1)

∂
∂y (xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9)

∂
∂y (1− x− y + x2y + xy2 − x2y2)

= lim
(x,y)→(1,1)

∂
∂y (x− 2xy − x10 + 2x11y + 8x10y7 − 9x11y8 − 8x8y7 + 9x8y8)

∂
∂y (−1 + x2 + 2xy − 2x2y)

= lim
(x,y)→(1,1)

∂
∂x (−2x + 2x11 + 56x10y6 − 72x11y7 − 56x8y6 + 72x8y7)

∂
∂x (2x− 2x2)

= lim
(x,y)→(1,1)

(−2 + 22x10 + 5609y6 − 448x7y6 + 576x7y7)
(2− 4x)

=
−2 + 22 + 560− 792− 448 + 576

−2
= 84/2
= 42,

which is indeed equal to the number of lattice points in Figure 1.
This calculation may appear to be quite complex in relation to our relatively

small example, but it would be quite easy to automate. Note also that the
complexity of the calculation depends only on the shape of the polytope, and
not its size. If we took a region of a similar shape but many times larger, all
that would change would be the exponents of x and y in the numerator of the
generating function; the calculation required to determine the number of lattice
points would be essentially identical to that above.

We have only considered Barvinok’s construction for integral polytopes here,
but the theory can be extended to rational polytopes as well. it is also possible
to recover most of the theory of Ehrhart polynomials as well, which is useful
for the study of parametric bounds. This approach is developed detail by De
Loera et al in [26], which describes the implementation of Barvinok’s techniques
in the LattE package. De Loera’s work is applied to program analysis problems
in [36], where much of Clauss’ work is recast in terms of Barvinok’s methods.
See also [8] for an exposition of the Barvinok theory, along with a lot of other
interesting material.

5 Vertex Enumeration

With luck, the discussion above should have persuaded the reader that Barvi-
nok’s method can be used to calculate the number of lattice points in a polytope
quickly, even in the general d-dimensional case (and see [7] for detailed com-
plexity bounds). This means that these techniques are a good candidate for
consumer-side analysis of memory usage in mobile programs. However there is
potentially a hidden bottleneck.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

199

Barvinok’s techniques depend on knowing the vertices of the polytope whereas
the invariants arising from program analysis are constraints describing the facets
(higher-dimensional faces) of the polytope. Thus in order to apply Barvinok’s
algorithm we must first perform Vertex Enumeration.

The problem of translating between the vertex and facet representations of
polytopes have been intensively studied for at least 50 years, and many algo-
rithms for converting one representation into the other are known (such algo-
rithms are required in the theory of linear programming for example). See [27]
for a survey of Vertex Enumeration algorithms (this paper dates from 1980, but
it appears that no significantly better algorithms have appeared since then).

A difficulty here is that the number of vertices can be exponential in the
number of constraints. It is easy to see that the d-cube {(x1, . . . ,xd) ∈ Rd :
−1 ≤ x + j ≤ 1∀j} can be described by 2d constraints but has 2d vertices. For
arbitrary polytopes, a corollary of McMullen’s Upper Bound Theorem[29, 30]
gives a sharp bound for the number of vertices. We require a couple of definitions
before stating the result.

Definition 9. The moment curve in Rd is {(t1, t2, . . . , td) : t ∈ R}. The cyclic
polytope C(d, m) is the convex hull of m distinct points on the moment curve
in Rd.

The definition of C(d, m) might appear to depend on the choice of points in
the definition, but it can be shown that in fact the combinatorial type of the
polytope is the same for all choices.

Theorem 10. Let P be a polytope specified as the intersection of m halfspaces
in Rd. Then P can have as many as(

m− b(d + 1)/2c
bd/2c

)
+

(
m− b(d + 2)/2c
b(d− 1)/2c

)
vertices, and this bound is attained by C(d, m).

For d = 2k even this number is equal to m
m−k

(
m−k

k

)
, and for d = 2k+1 odd, it is

equal to 2
(
m−k−1

k

)
. The following table gives some sample values of the upper

bound, and demonstrates that the number of vertices can become extremely
large as the dimension increases.

m (number of constraints)
10 20 50 100 500 1000

2 10 20 50 100 500 1000
3 16 36 96 196 996 1996
5 42 272 2162 9312 246512 993012

d 10 2 4004 1.36× 106 6.10× 107 2.45× 1011 8.09× 1012

20 - 2 1.06× 109 6.36× 1012 2.05× 1020 2.41× 1023

40 - - 5.01× 107 4.42× 1018 1.21× 1035 2.30× 1041

80 - - - 6.99× 1015 7.52× 1057 1.09× 1071

All known algorithms for Vertex Enumeration have worst-case running time
O(mbd/2c) (m constraints involving d variables); see [3] for more information.
The Upper Bound theorem shows that this time complexity is unavoidable, but
it seems that in practice the upper bound is very seldom achieved.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

200

On the other hand, the number of vertices can be as low as (m − d)(d −
1) + 2 [37, 8.38]. Due to this huge variation in the possible size of the output,
VE algorithms are classified as output-sensitive algorithms, in which complexity
is considered in terms of the input size plus the output size [12]. Thus for a
polytope P in Rd with m facets5 and n vertices, complexity is usually measured
with respect to size(P) = d(m+n). Even in this setting, the precise complexity
is still open: it is unknown whether the VE problem can be solved in a time
polynomial in size(P), or whether it even lies in NP (but see [22] for recent
progress in the case of unbounded polyhedra). See [3] for a survey of results in
this area.

A further difficulty is that even checking the result of VE is hard. Suppose
that we have have a halfspace representation of a polytope P and a vertex
representation of a polytope Q (perhaps the output of a VE algorithm applied
to P). The Polytope Verification problem (PV) is to check whether P = Q. It
is easy to check whether Q ⊆ P (just check whether every vertex of Q satisfies
every constraint of P), but proving equality is difficult. In fact, it can be
shown [3] that a polynomial-time algorithm for PV would yield a polynomial
time algorithm for VE (with respect to the size measure mentioned earlier).
This may be contrasted with a problem such as boolean satisfiability, where it
may take a long time to find a satisfying solution for a boolean formula, but once
an answer is known it can be checked very quickly. For Vertex Enumeration,
checking a solution is provably as hard as obtaining one in the first place.

The remarks above suggest that Vertex Enumeration could be a major bot-
tleneck in the application of Barvinok’s methods to program analysis. This may
not be as bad as it seems: in realistic programs it is probable that the numbers
d, m and n would all be relatively small. For example, d is equal (more or less)
to the maximum depth of loop nesting, and it is unlikely that this number would
ever exceed 3 or 4. Nevertheless, it would be well worthwhile to investigate the
possibility of certifying Vertex Enumeration algorithms: given a polytope de-
scribed by halfspaces, calculate its vertices and produce some evidence which
would allow another party to check quickly that the result is indeed correct. In
this connection, it should be noted that the problem of Polytope Verification
(ie, given a polytope P described by halfspaces and a polytope Q described by
vertices, check that P = Q) is polynomially equivalent to Vertex Enumeration,
and hence it is again unknown whether this problem is even in NP (ref?). It
is easy to check whether Q ⊆ P simply by checking that each vertex satisfies
every constraint, but there is no known way to check the reverse inclusion other
than performing Vertex Enumeration on P and seeing if the answer is in fact
Q. The fact that the complexity of Polytope Verification is unknown suggests
that a certification method for Vertex Enumeration might be of considerable
interest, independent of its applications to program analysis.

6 Implementation

We have implemented a Java compiler which uses lattice point enumeration
techniques to calculate resource bounds for simple imperative programs. This is
a preliminary implementation, but the results it produces are quite promising; it

5A facet is the higher-dimensional equivalent of the notion of a face of a 3-dimensional
polyhedron.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

201

can successfully (and automatically) produce precise bounds for realistic matrix
manipulation programs, for example. We will give a brief description of the
structure of the compiler and then outline the methods we have used to perform
our analysis.

6.1 The compiler

Our compiler is provisionally called raj, a name which is supposed to suggest
resource aware Java.

The compiler itself is entirely implemented in OCaml, and handles the full
Java language with the exception of generics and (at present) certain aspects
of inner classes and enum classes. The compiler uses the ocfgc tool of Tse and
Zdancewic to parse source code and convert it into a standard abstract syntax
tree (AST), and then the following steps are performed.

• The AST is converted to an expression-based form which reflects the struc-
ture of the original Java program, but with all ambiguities resolved. Types
are also inferred during this phase. We also replace all for loops with
equivalent while loops.

• The expression-based form is converted to a linear SSA-like form.

• The linear version is broken into basic blocks

• The block-based form is converted into an abstract OCaml representation
of Java bytecode.

• We use tools which we have developed previously to converted the abstract
representation into executable Java classfiles.

The first phase, in which names and types are resolved, is by far the most
complicated. Java source code is surprisingly ambiguous: for example, in a
Java expression x+1, x may represent a local variable or parameter, a field of
the current class, a field of some superclass or superinterface of the current
class, a field in some enclosing class (or a superclass/superinterface thereof)
if the current class is a nested class, or a field imported via a static import
statement. Things become considerably more complex when qualified names of
the form x.y.z are considered.

6.2 Inferring linear constraints

We perform our analysis on the expression-based form obtained in the first
phase of the compilation process outlined above. This form is very similar to
the source program, and preserves the explicit control-flow structures of Java.

Our first task is to infer systems of linear constraints on program variables.
The expression-based form is converted into a control-flow graph and then be-
tween every pair of expressions we infer a polyhedron which bounds the values
of the integral variables in the program. This is done using the abstract inter-
pretation technique of Cousot and Halbwachs described in [16], whose details
we will not describe here.

A number of polyhedral operations are required to perform this process. It
is necessary to have some representation of polyhedra and the means to convert

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

202

between vertex and facet representations, and methods for combining polyhedra
in various ways (intersection, join (polyhedral hull), widening, . . .) are also
needed. These can be difficult to program, but fortunately there are a number
of high-quality libraries available. We have chosen to use the Parma Polyhedra
Library (PPL) [5], which is a large (more than 100,000 lines) C++ library
providing (amongst many others) all of the operations we require, including a
widening operator (see [4]), which is more precise than the standard polyhedral
widening operator proposed by Cousot and Halbwachs in [16] and which was
very useful for our application. The PPL also provides an OCaml interface
which was convenient for linking with our OCaml-based compiler.

Using the PPL it was a relatively straightforward task to implement the
Cousot-Halbwachs technique and obtain linear bounds on program variables;
see Appendix B for some examples.

6.3 Polytopes and loop bounds

Having obtained bounds on program variables, we now wish to use them to
obtain bounds on the number of times a loop is executed. For simple examples,
such as the one we looked at earlier, it is quite clear how to do this.

for (i=1; i<=9; i++)
for (j=1; j<=i && j<=7; j++) B

The Cousot-Halbwachs technique yields the constraints {j ≤ 7, j ≥ 1, i−j ≥
0, i ≤ 9} and the structure of the program makes it clear that each lattice point
in the corresponding polytope is visited once and once only during execution of
the program.

Unfortunately, for more complex programs (and ones where the loop struc-
ture is less explicit) it is less easy to see what to do. To bound the number of
times a particular location l is visited, it suffices to identify a set of variables
x1, . . . ,xd such that the vector x = (x1, . . . ,xd) never has the same value twice
when the program reaches l; if we can determine a polyhedron P which contains
all values of x then we can be sure that l is visited at most |P ∩Zd| times. Typ-
ically, the variables x1, . . . ,xd will be variables controlling for-loops. However,
we must ensure that the set x = (x1, . . . ,xd) is not too large: if we include
variables which are irrelevant to the progress and termination of the loop then
we run the risk of obtaining too large a polytope, and thus too large a bound
for the number of executions of the loop.

It is not clear how to do this for general while loops, and we have been
unable to find any answers in the literature. We have also been unable to find
any proofs of correctness for program analysis techniques based on lattice point
enumeration. This may be due to the fact that these methods usually seem to
be applied to source code, where the loop structure is explicit and it is clear
which variables are involved in the behaviour of the loop. However, we are
ultimately interested in applying these methods to unstructured bytecode, and
we are already working on a slightly lower level than the source code.

We hope to do further research on finding provably correct methods for
attacking these problems, but for the moment we are applying heuristics to
decide which variables to look at. Our technique is fairly simple, and is as
follows:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

203

• At each program location l we have a list V (l) consisting of all variables
which are involved in the termination conditions of all enclosing loops.

• Having performed the Cousot-Halbwachs analysis, we obtain a set of con-
straints which give bounds on the values of every variable at the location
l

• We regard a constraint C as relevant if (i) each of its variables either lies
in V (l) or is an argument of the current method, and (ii) not all variables
of C are method arguments. This selects constraints which relate program
variables to one another and to method arguments, but rejects ones which
merely provide relations between arguments.

• We construct a polyhedron P (l) given by all of the relevant constraints at
l, and count the number of lattice points in P (l) as described in the next
section.

This technique is neither sound nor optimal, but it does give correct results
in most of the examples we have looked at. It is possible to produce examples
which cause the analysis to give incorrect results, but this is reasonably difficult
to do. In particular, we believe that our method will always give reliable results
for programs using standard for loops.

6.4 Lattice point enumeration

We have used the barvinok library6 of Verdoolaege to perform lattice point
enumeration. within our compiler. This is a library which implements the gen-
erating function methods of §4. The barvinok library is again implemented in
C++, but this time there is no OCaml interface; moreover, the internal repre-
sentations of constraints are different from those used in PPL. This necessitated
the implementation of our own OCaml interface, together with a fair amount of
code to translate from one representation to another, but this was fairly routine.

Using the library is fairly straightforward. At each location l of interest
(for instance, l might involve memory allocation or invocation of a particular
method), we construct the polyhedron P (l) as described earlier and call a func-
tion from the library to determine the number of lattice points in P (l). The
structure of P (l) may depend parametrically on one or more method arguments,
but we have recorded which arguments are involved and can ask barvinok to
give us a formula for the number of lattice points which is parametric with
respect to these arguments.

We give several examples of the output of this phase in Appendix B.

7 Further work

There is a great deal of further work which could be done in this area. Some
possibilities are given below.

6http://freshmeat.net/projects/barvinok/

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

204

Theorems. Prove some theorems about the correctness of the methods which
we have described here. In particular, obtain provably correct methods for
selecting program a set V (l) of variables at each program location l such that
valid linear constraints on those variables give a polyhedron P with the property
that any lattice point in P corresponds to a most one visit to the location l.

Certifying algorithms. Develop certifying versions of algorithms for poly-
hedral computations (in particular, Vertex Enumeration) and lattice-point enu-
meration. This would be useful both from at least two points of view:

• Resource certification for mobile code. We would like to equip mobile
programs with easily-verified certificates of resource usage, but without
the overheads required by PCC techniques.

• Verification of the results of polyhedral computations. The libraries which
we have used are very large and are implemented in C++; furthermore
they rely on several other C++ libraries for things such as unlimited-
precision arithmetic and calculations in number theory and linear algebra.
This provides a lot of scope for errors to creep in. Certifying versions
of these algorithms should make it possible to provide checkers for the
results of analyses which are small (and hence hopefully easier to trust)
and independent of the original analyses. This would increase confidence
in the correctness of the analyses. See [31, 23] for more on this point of
view.

Perform the analysis on compiled bytecode. The implementation which
we have described here is performed on a language which is quite close to Java
source, and where the loop structure is manifest. This was largely because our
aim was to quickly develop a working prototype in order to examine the viability
of these methods, but it would be desirable (especially in the context of mobile
code certification) to be able to deal with unstructured bytecode. Being able
to analyse bytecode would also mean that we were no longer tied to Java as a
source language, and it is likely that methods which work for bytecode would
also be applicable to languages such as C and even machine language without
major changes.

Interprocedural analysis. Our current analysis is entirely intraprocedural.
Extensions to make it interprocedural would enable us to deal with larger pro-
grams, and a greater variety of them. In particular we are unable to deal with
recursive programs at the moment. The analysis of Braberman et al. [11] is
somewhat more sophisticated in this respect (and this might provide a useful
starting point for us), but they also comment on the desirability of being able
to deal with recursion. One avenue which might be worth exploring here would
be the possibility of integrating our methods into some existing tool, such as
the COSTA tool which has been developed in Madrid for the cost analysis of
Java bytecode [1, 2]. Another possibility in a rather different area would be the
cost analysis tool developed in the Embounded Project for the Hume language
for resource-bounded programs for embedded devices: see [20, 19], for example.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

205

“Dependent” allocation. One of our motivations is to measure memory
consumption of Java programs. A common assumption in research on this topic
is that all objects from a given class are of the same size. However, this will
not always be the case: for example, the Java BigInteger class represents
integers with unlimited precision, and the size of an object will depend on the
integer involved. Furthermore, the size of an object returned by a method
may depend on the method arguments (consider the BigInteger multiply
method). We are not aware of any previous research which is able to deal
with this type of behaviour. However, there is some recent work on weighted
generating functions for polytopes [35] in which instead of considering the usual
generating function

∑
{xv : v ∈ P ∩ Zd}, one considers a function of the form∑

{f(v)xv : v ∈ P ∩ Zd} in which each lattice point is weighted according to
some function f . This corresponds to the situation in which a nest of loops
indexed by i1, . . . , id allocates an amount of memory given by the function
f(i1, . . . , id). It seems plausible that this work (possibly in combination with
techniques such as sized types [21]) would be useful for attacking the problem
of dependent allocation of the type discussed above.

8 Acknowledgments

This work was funded by in part by the ReQueST grant (EP/C537068) from
the UK Engineering and Physical Sciences Research Council.
This work was funded in part by the Sixth Framework programme of the Euro-
pean Community under the MOBIUS project FP6-015905.
This report reflects only the author’s views and the European Community is
not liable for any use that may be made of the information contained therein.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

206

Appendix A Multiple Parameters

Consider this Java method:

public static void m2 (int p, int q)

for (int i=0; i<=p; j++)

for (int j=0; j<=9 && i+j<=q; j++)

System.out.println ("Hello");

with corresponding constraints

0 ≤ i ≤ p, 0 ≤ j ≤ q, i + j ≤ 7.

The iteration is controlled by the parameters p and q, and the shape (not just
the size) of the iteration space depends on the relative values of these. If this
case, there are five regions in the parameter space for which the corresponding
polytope is nonempty.

0 ≤ p

p + 10 ≤ q

p + 1 ≤ q

10 ≤ q ≤ p + 9

10 ≤ q ≤ p

0 ≤ q ≤ 9

q ≤ p

0 ≤ p

p + 1 ≤ q ≤ 9

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

207

Analysis of multiple parameters.

• A different quasipolynomial in p and q is required to describe the number
of lattice points in each of the five figures above.

• As the parameters p and q in this example vary, the set of points (i, j, p, q),
where i and j satisfy the inequalities determined by p and q, forms a
polyhedron in R4.

• The pictures of the iteration spaces above can be obtained as two-dimensional
slices through this four-dimensional polyhedron.

• The enumerating function for each configuration can be automatically ob-
tained from the generating function for the four-dimensional polyhedron.

• The barvinok library can supply these answers with relatively little effort
on the part of the user.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

208

Appendix B Examples

B.1 Simple example with nested loops

Our first example is the trapezoidal example considered earlier.

public class Trapezoid {

public static void test () {

for (int i=1; i<=9; i++)

for (int j=1; j<=i && j<=7; j++)

System.out.println ("Hello");

}

public static void main (String[] args) {

test ();

}

}

When invoked with the -g argument, raj outputs a rather crude represen-
tation of internal representation of the program, annotated with constraints
inferred by the Cousot-Halbwachs technique. Note that the explicit for state-
ments in the source program have been replaced by equivalent while state-
ments in the internal representation. Note also that the constraints fall between
statements; they are both a postcondtion for the preceding statement and a
precondition for the following one.

==================== Method test ===================

Dimension = 2

5 iterations

-- {}

i <- 1

-- {i >= 1, i <= 10}

while (le[boolean] i 9) {

-- {i >= 1, i <= 9}

j <- 1

-- {i >= 1, i-j >= -1, j >= 1, j <= 8, i <= 9}

while (&&[boolean] le[boolean] j i le[boolean] j 7) {

-- {j <= 7, j >= 1, i-j >= 0, i <= 9}

[invokevirtual getstatic <[java.io].PrintStream.out java/langSystem>

<void java/ioPrintStream.println([java.lang].String)> ("Hello")]

-- {j <= 7, j >= 1, i-j >= 0, i <= 9}

j <- j+1

-- {j <= 8, j >= 2, i-j >= -1, i <= 9}

}

-- {i >= 1, i-j >= -1, j >= 1, j <= 8, i <= 9}

i <- i+1

-- {i >= 2, i-j >= 0, j >= 1, j <= 8, i <= 10}

}

-- {i = 10}

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

209

If we invoke the compiler with the -p option then it prints out the number
of times the println statement is invoked (we have chosen to count method
calls here in order to make the examples easy to understand, but we could
easily modify the compiler to count the number of objects created, or the total
number of statements executed for example).

==== method test ====

Calls to java.io.PrintStream.println (java.lang.String):

42

{0 <= 1}

The reader can count the number of points in diagram 1 and check that 42 is
the correct answer. Note the condition {0 <= 1} here; this is a representation
of the polytope comprising all of R2 and says that the bound 42 is valid for all
inputs. We will see examples later where bounds vary depending on the values
of method arguments.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

210

B.2 Gaussian Elimination

This example involves some code for solving simultaneous equations by Gaussian
elimination. This code was downloaded from the internet, and has required
minor amendments to make it amenable to our analysis (in particular we have
provided the array size as a parameter, rather than looking it up from the
array: it should be easy to modify the compiler to deal with this special case
automatically). We have also added println statements at various points so
that we can see how any times these points are visited.

public class GaussianElimination {

private static final double EPSILON = 1e-10;

// Gaussian elimination with partial pivoting

public static double[] lsolve(double[][] A, double[] b, int N) {

// int N = b.length;

for (int p = 0; p < N; p++) {

System.out.println ("Loop 1");

// find pivot row and swap

int max = p;

for (int i = p; i < N; i++) { // i=p+1

System.out.println ("Loop 1a");

if (Math.abs(A[i][p]) > Math.abs(A[max][p])) {

max = i;

}

}

double[] temp = A[p]; A[p] = A[max]; A[max] = temp;

double t = b[p]; b[p] = b[max]; b[max] = t;

// singular or nearly singular

if (Math.abs(A[p][p]) <= EPSILON) {

throw new RuntimeException("Matrix is singular or nearly singular");

}

// pivot within A and b

for (int i = p + 1; i < N; i++) {

System.out.println ("Loop 2");

double alpha = A[i][p] / A[p][p];

b[i] -= alpha * b[p];

for (int j = p; j < N; j++) {

System.out.println ("Loop 2a");

A[i][j] -= alpha * A[p][j];

}

}

}

// back substitution

double[] x = new double[N];

for (int i = N - 1; i >= 0; i--) {

System.out.println ("Loop 3");

double sum = 0.0;

for (int j = i + 1; j < N; j++) {

System.out.println ("Loop 3a");

sum += A[i][j] * x[j];

}

x[i] = (b[i] - sum) / A[i][i];

}

return x;

}

}

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

211

Here is the output of the lattice-point enumeration analysis: the method calls
occur in the same order as in the source program.

==== method lsolve ====

Calls to java.io.PrintStream.println (java.lang.String):

N

{1 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

N^2

{1 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

-N/2 + N^2/2

{2 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

-N/3 + 0 + N^3/3

{2 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

N

{1 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

-N/2 + N^2/2

{2 <= N, 0 <= 1}

Calls to java.lang.Math.abs (double):

N^2

{1 <= N, 0 <= 1}

Calls to java.lang.Math.abs (double):

N^2

{1 <= N, 0 <= 1}

Calls to java.lang.Math.abs (double):

N

{1 <= N, 0 <= 1}

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

212

B.3 Multi-parameter example

Here is the example discussed in Appendix A. This demonstrates the ability of
our analysis (exploiting the capabilities of the barvinok library) to automati-
cally discover how resource bounds vary with input parameters.

public class Two_args {

public static void f (int p, int q) {

for (int i=0; i <= p; i++)

for (int j=0; j <= 9 && i+j <= q; j++)

System.out.println ("Hello");

}

public static void main (String[] args) {

int k = Integer.parseInt (args[0]);

int l = Integer.parseInt (args[1]);

f(k,l);

}

}

The analysis outputs five cases, in each case giving us a parametric bound on
the number of method calls together with a set of constraints telling us for which
values of the input parameters that bound applies.

==== method f ====

Calls to java.io.PrintStream.println (java.lang.String):

5 domains in R^2

-35 + 10q

{q <= p, 10 <= q, 0 <= 1}

1 + (3/2)q + q^2/2

{q <= p, 0 <= q, q <= 9}

(1 + q) + (1/2 + q)p + -p^2/2

{q <= 9, 0 <= p, p+1 <= q}

10 + 10p

{0 <= p, p+10 <= q, 0 <= 1}

(-35 + (19/2)q + -q^2/2) + (1/2 + q)p + -p^2/2

{p+1 <= q, q <= p+9, 10 <= q}

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

213

B.4 A deeply nested example

The preceding examples have been fairly small, and in each case the entire anal-
ysis (and compilation to bytecode) took less than two seconds. A large part of
this time was occupied in indexing the rt.jar file containing the standard Java
API classes (17335 of them), which are required for the resolution of external
methods and fields.

Here is a rather complex example which is somewhat more challenging for
the analysis.

public class Deep2 {

public static void f (int p, int q, int r, int s, int t, int u) {

for (int j1=0; j1<=5*p+90000; j1++)

for (int j2=1; 5*j2-2378*q<=40000; j2++)

for (int j3=7; 3234*r + j3<=20000; j3++)

for (int j4=10; j4<=10000-234*s; j4++)

for (int j5=50; j5<=8000 && j5 <= j4+u+4*t; j5++)

for (int j6=3000; j6<=4000 && j6 <j5+u; j6++)

for (int j7=50; j7<=8000; j7++)

for (int j8=3000; j8<=4000&&j8<j2 &&j8<j5 ; j8++)

System.out.println ("Hello");

}

}

This takes over a minute to analyse, and produces over 838 kilobytes of
textual output. The output begins as follows:

==== method f ====

Calls to java.io.PrintStream.println (java.lang.String):

101 domains in R^6

((((((3431309446276774893179437888800 + 1373787663160817909748744000{(4/5) + (2/5)q})

+ ((9845615202610376705206428738/5) + 788374520767936638123588{(4/5) + (2/5)q})u

+ ((1342522867498346898578214/5) + 107500730071533562764{(4/5) + (2/5)q})u^2)

+ ((3222054881996032556587713600 + 1290008760858402753168000{(4/5) + (2/5)q})

+ ((3580060979995591729541904/5) + 286668613524089500704{(4/5) + (2/5)q})u)t)

+ ((-188490210596767904560381245600 + -75465512510216561060328000{(4/5) + (2/5)q})

+ ((-209433567329742116178201384/5) + -16770113891159235791184{(4/5) + (2/5)q})u)s)

+ ((((-555009240235025007729433936800 + -222208127571375668706984000{(4/5) + (2/5)q})

+ ((-1592513732381812456968970218/5) + -127518415532835204946068{(4/5) + (2/5)q})u

+ ((-217151093002383408522654/5) + -17388084477910350204{(4/5) + (2/5)q})u^2)

+ ((-521162623205720180454369600 + -208657013734924202448000{(4/5) + (2/5)q})

+ ((-579069581339689089393744/5) + -46368225274427600544{(4/5) + (2/5)q})u)t)

+ ((30488013457534630556580621600 + 12206435303493065843208000{(4/5) + (2/5)q})

+ ((33875570508371811729534024/5) + 2712541178554014631824{(4/5) + (2/5)q})u)s)r)

+ (((((652811488420836244459701341600 + 130680041499710096930536000{(4/5) + (2/5)q})

+ ((1873142255301113544571689866/5) + 74993259769292134241972{(4/5) + (2/5)q})u

+ ((255416879501083615913598/5) + 10225888791776573916{(4/5) + (2/5)q})u^2)

+ ((613000510802600678192635200 + 122710665501318886992000{(4/5) + (2/5)q})

+ ((681111678669556309102928/5) + 27269036778070863776{(4/5) + (2/5)q})u)t)

+ ((-35860529881952139674269159200 + -7178573931827154889032000{(4/5) + (2/5)q})

+ ((-39845033202169044082521288/5) + -1595238651517145530896{(4/5) + (2/5)q})u)s)

+ ((((-105591295066169071450568877600 + -21137303901673624761096000{(4/5) + (2/5)q})

+ ((-302977996081014364466582226/5) + -12130049119430367217092{(4/5) + (2/5)q})u

+ ((-41313303406347124830678/5) + -1654022424357579276{(4/5) + (2/5)q})u^2)

+ ((-99151928175233099593627200 + -19848269092290951312000{(4/5) + (2/5)q})

+ ((-110168809083592332881808/5) + -4410726464953544736{(4/5) + (2/5)q})u)t)

+ ((5800387798251136326227191200 + 1161123741899020651752000{(4/5) + (2/5)q})

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

214

+ ((6444875331390151473585768/5) + 258027498199782367056{(4/5) + (2/5)q})u)s)r)q

+ ((((31049577860331119030695353600 + (89091992605919055479462736/5)u

+ (12148355884630569812208/5)u^2) + (29156054123113367549299200

+ (32395615692348186165888/5)u)t)

+ (-1705629166202132001634003200 + (-1895143518002368890704448/5)u)s)

+ (((-5022223407037653243236409600 + (-14410498353883276253905296/5)u

+ (-1964978640136804179888/5)u^2) + (-4715948736328330031731200

+ (-5239943040364811146368/5)u)t)

+ (275883001075207306856275200 + (306536667861341452062528/5)u)s)r)q^2)

+ ((((((190626184502215247229444000 + 76320688834613943720000{(4/5) + (2/5)q})

+ (109394508978904420008738 + 43798097841576017940{(4/5) + (2/5)q})u

+ (14916755008259318214 + 5972196424013820{(4/5) + (2/5)q})u^2)

+ ((179001060099111818568000 + 71666357088165840000{(4/5) + (2/5)q})

+ (39778013355358181904 + 15925857130703520{(4/5) + (2/5)q})u)t)

+ ((-10471562015798041386228000 + -4192481889657701640000{(4/5) + (2/5)q})

+ (-2327013781288453641384 + -931662642146155920{(4/5) + (2/5)q})u)s)

+ ((((-30833504085233775609684000 + -12344758812200734920000{(4/5) + (2/5)q})

+ (-17694400422015449350218 + -7084277704294130340{(4/5) + (2/5)q})u

+ (-2412763113769662654 + -965993959951020{(4/5) + (2/5)q})u^2)

+ ((-28953157365235951848000 + -11591927519412240000{(4/5) + (2/5)q})

+ (-6434034970052433744 + -2575983893202720{(4/5) + (2/5)q})u)t)

+ ((1693759705866303183108000 + 678127759885616040000{(4/5) + (2/5)q})

+ (376391045748067374024 + 150695057752359120{(4/5) + (2/5)q})u)s)r)

+ (((((36266901946691494786708000 + 7259921639743452680000{(4/5) + (2/5)q})

+ (20812460476007083749866 + 4166245917783809860{(4/5) + (2/5)q})u

+ (2837933795192093598 + 568098620669580{(4/5) + (2/5)q})u^2)

+ ((34055205542305123176000 + 6817183448034960000{(4/5) + (2/5)q})

+ (7567823453845582928 + 1514929655118880{(4/5) + (2/5)q})u)t)

+ ((-1992229524224849705796000 + -398805231710045160000{(4/5) + (2/5)q})

+ (-442717672049966601288 + -88623384824454480{(4/5) + (2/5)q})u)s)

+ ((((-5866117880144057924388000 + -1174281613630605480000{(4/5) + (2/5)q})

+ (-3366384774402666242226 + -673884130144685460{(4/5) + (2/5)q})u

+ (-459031604163810678 + -91889113696380{(4/5) + (2/5)q})u^2)

+ ((-5508379249965728136000 + -1102669364356560000{(4/5) + (2/5)q})

+ (-1224084277770161808 + -245037636523680{(4/5) + (2/5)q})u)t)

+ ((322240186122995095956000 + 64506157814858760000{(4/5) + (2/5)q})

+ (71608930249554465768 + 14334701736635280{(4/5) + (2/5)q})u)s)r)q

+ ((((1724957381603044356768000 + 989900030065433222736u + 134980232271092208u^2)

+ (1619762787253106496000 + 359947286056245888u)t)

+ (-94756123054306730016000 + -21056916234290384448u)s)

+ (((-279009311398631862048000 + -160114869322377265296u + -21832853414259888u^2)

+ (-261994240971118656000 + -58220942438026368u)t)

+ (15326663096810441376000 + 3405925132624542528u)s)r)q^2)p

{2t+u <= 1495, 0 <= p+18000, 234s <= 4t+u+1999, 0 <= u+3999,

2378q+5u+24995 <= 0, 0 <= q+10, r <= 6, q+9 <= 0}

This is followed by another 100 similar results. The symbols {} appearing
round some terms denote fractional parts, and demonstrate the quasipolynomial
nature of the expression, which arises from the fact that we have a polytope with
non-integral vertices.

Fortunately this example is artificial and it is unlikely that such code would
arise naturally, but the fact that this result was obtained entirely automatically
serves to demonstrate the power of the methods used in the analysis.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

215

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost anal-
ysis of java bytecode. In In 16th European Symposium on Programming,
ESOP07, Lecture Notes in Computer Science, Lecture Notes in Computer
Science, pages 157–172. Springer–Verlag, 2007.

[2] Elvira Albert, Puri Arenas, Samir Genaim, and German Puebla. Cost
relation systems: A language-independent target language for cost anal-
ysis. In Spanish Conference on Programming and Computer Languages
(PROLE’08), 2008. To appear.

[3] David Avis and David Bremner. How good are convex hull algorithms?
Computational Geometry: Theory and Applications, 7:265–301, 1997.

[4] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening opera-
tors for convex polyhedra. Science of Computer Programming, 58(1–2):28–
56, 2005.

[5] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and veri-
fication of hardware and software systems. Science of Computer Program-
ming, 72(1–2):3–21, 2008.

[6] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Applications of
polyhedral computations to the analysis and verification of hardware and
software systems. Technical report, Department of Mathematics, University
of Parma, Italy, 2007. Technical Report. Quaderno 458 (2007). Updated
version to appear in TCS.

[7] Alexander Barvinok and James E. Pommersheim. An algorithmic theory of
lattice points in polyhedra. In New perspectives in algebraic combinatorics
(Berkeley, CA, 1996–97), volume 38 of Math. Sci. Res. Inst. Publ., pages
91–147. Cambridge Univ. Press, Cambridge, 1999.

[8] Matthias Beck and Sinai Robins. Computing the continuous discretely.
Undergraduate Texts in Mathematics. Springer–Verlag, New York, 2007.

[9] Matthias Beck, Steven Sam, and Kevin Woods. Maximal periods of
(Ehrhart) quasi-polynomials. J. Combin. Theory Ser. A, 115:517–525,
2008.

[10] V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Symbolic
prediction of dynamic memory requirements. In ISMM 2008.

[11] Victor Braberman, Diego Garbervetsky, and Sergio Yovine. A static analy-
sis for synthesizing parametric specifications of dynamic memory consump-
tion. Journal of Object Technology, 5(5):31–58, Jun 2006.

[12] David Bremner. Incremental convex hull algorithms are not output sen-
sitive. In ISAAC ’96: Proceedings of the 7th International Symposium on
Algorithms and Computation, volume 1178 of Lecture Notes in Computer
Science, pages 26–35, London, UK, 1996. Springer–Verlag.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

216

[13] Michel Brion. Points entiers dans les polyèdres convexes. Ann. Sci. École
Norm. Sup. (4), 21(4):653–663, 1988.

[14] Philippe Clauss. Counting solutions to linear and nonlinear constraints
through Ehrhart polynomials: applications to analyze and transform scien-
tific programs. In ICS ’96: Proceedings of the 10th international conference
on Supercomputing, pages 278–285, New York, NY, USA, 1996. ACM.

[15] Philippe Clauss and Vincent Loechner. Parametric analysis of polyhedral
iteration spaces. Journal of VLSI Signal Processing, 19:179–194, 1998.

[16] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming Languages, pages
84–97. ACM Press, 1978.

[17] Eugène Ehrhart. Sur un problème de géométrie diophantienne linéaire. I.
Polyèdres et réseaux. J. Reine Angew. Math., 226:1–29, 1967.

[18] Eugène Ehrhart. Sur un problème de géométrie diophantienne linéaire. II.
Systèmes diophantiens linéaires. J. Reine Angew. Math., 227:25–49, 1967.

[19] Kevin Hammond, Greg Michaelson, and others. The EmBounded project.
See http://www.embounded.org/.

[20] Kevin Hammond, Greg Michaelson, and others. The Hume language. See
http://www-fp.cs.st-andrews.ac.uk/hume/index.shtml.

[21] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of
reactive systems using sized types. In Conference Record of 23rd ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL
’96), pages 410–423. ACM Press, 1996.

[22] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbassioni, and
Vladimir Gurvich. Generating all vertices of a polyhedron is hard. Discrete
& Computational Geometry, 39(1-3):174–190, 2008.

[23] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy P. Spin-
rad. Certifying algorithms for recognizing interval graphs and permutation
graphs. In SODA ’03: Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 158–167, Philadelphia, PA, USA,
2003. Society for Industrial and Applied Mathematics.

[24] Christian Lengauer. Loop parallelization in the polytope model. In CON-
CUR ’93, LNCS 715, pages 398–416. Springer-Verlag, 1993.

[25] Vincent Loechner and Doran K. Wilde. Parameterized polyhedra and their
vertices. Int. J. of Parallel Programming, 25:25–6, 1997.

[26] Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko
Yoshida. Effective lattice point counting in rational convex polytopes. Jour-
nal of symbolic computation, 38:1273–1302, 2004.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

217

[27] T. H. Matheiss and David S. Rubin. A survey and comparison of methods
for finding all vertices of convex polyhedral sets. Mathematics of Operations
Research, 5(2):167–185, 1980.

[28] Tyrrell B. McAllister. Coefficient functions of the Ehrhart quasi-
polynomials of rational polygons. In Matthias Dehmer, Michael Drmota,
and Frank Emmert-Streib, editors, ITSL, pages 114–118. CSREA Press,
2008.

[29] P. McMullen. The maximum numbers of faces of a convex polytope. Math-
ematika, 17:179–184, 1970.

[30] P. McMullen and G.C. Shephard. Convex polytopes and the upper bound
conjecture. Cambridge University Press, 1971.

[31] Kurt Mehlhorn, Arno Eigenwillig, Kanela Kanegossi, Dieter Kratsch, Ross
Mcconnel, Uli Meyer, and Jeremy Spinrad. Certifying algorithms (a paper
under construction), 2005. Available at http://www.mpi-inf.mpg.de/
∼mehlhorn/ftp/CertifyingAlgorithms.pdf.

[32] Benôıt Meister. Approximations of polytope enumerators using linear ex-
pansions. Technical report, Universite Louis Pasteur, May 2007. Revised
edition of a paper submitted in 2005.

[33] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. It-
erative optimization in the polyhedral model: part II, multidimensional
time. SIGPLAN Not., 43(6):90–100, 2008.

[34] William Pugh. Counting solutions to Presburger formulas: how and why.
In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on Pro-
gramming language design and implementation, pages 121–134, New York,
NY, USA, 1994. ACM.

[35] Sven Verdoolaege and Maurice Bruynooghe. Algorithms for weighted
counting over parametric polytopes: A survey and a practical compari-
son. In The 2008 International Conference on Information Theory and
Statistical Learning, pages 60–66, 2008.

[36] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and
Maurice Bruynooghe. Analytical computation of Ehrhart polynomials: En-
abling more compiler analyses and optimizations. In M.J. Irwin, W. Zhao,
L. Lavagno, and S. Mahlke, editors, Proceedings of the 2004 international
conference on Compilers, architecture, and synthesis for embedded systems
(CASES), pages 248–258, Washington DC, USA, September 2004. ACM.

[37] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in
Mathematics. Springer–Verlag, New York, 1995.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

218

Deciding Extensions of the Theories of Vectors and Bags

Patrick Maier

Laboratory for Foundations of Computer Science
School of Informatics, The University of Edinburgh, Scotland

Patrick.Maier@ed.ac.uk

Abstract. Vectors and bags are basic collection data structures, which are used
frequently in programs and specifications. Reasoning about these data structures
is supported by established algorithms for deciding ground satisfiability in the
theories of arrays (for vectors) and multisets (for bags), respectively. Yet, these
decision procedures are only able to reason about vectors and bags in isolation,
not about their combination.
This paper presents a decision procedure for the combination of the theories of
vectors and bags, even when extended with a function bagof bridging between
vectors and bags. The function bagof converts vectors into the bags of their el-
ements, thus admitting vector/bag comparisons. Moreover, for certain syntacti-
cally restricted classes of ground formulae decidability is retained if the theory
of vectors is extended further with a map function which applies uninterpreted
functions to all elements of a vector.

1 Introduction

Vectors and bags are basic collection data structures, which are used frequently in pro-
grams and specifications. Reasoning about these data structures is supported by decision
procedures for deciding the satisfiability of quantifier-free formulae in the theories of
arrays (for vectors) and multisets (for bags), respectively. However, known decision pro-
cedures are essentially only able to reason about vectors and bags in isolation, whereas
practical software verification problems often require non-trivial combinations.

Let us illustrate this problem with an example. Figure 1 shows a Java method
sendBulk taking a message text msg, a group of recipients group (represented as
an array of phone numbers) and a resource manager mgr holding (symbolic represen-
tations of) the resources required to send text messages to the recipients. As the cost of
sending text messages may vary depending on the recipient, the state of a resource man-
ager cannot be simply the number of messages that may be sent; instead it should be a
multiset of resources, representing exactly how many messages may be sent to whom.
In order to enforce the resource limit, at least at run-time, actual use of resources must
be preceded by a call to the resource manager’s use method, which checks whether the
required resource is present and if so, deduces it, otherwise aborts the program. This is
what’s happening in the body of method sendBulk, which iterates over group, send-
ing msg to each member by calling SMS.send, but only after checking for and using
up the associated resource by calling mgr.use. This approach to run-time monitoring
of resources via explicit resource managers has been described in [1], for example.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

219

void sendBulk(String msg, PhoneNum[] group, ResourceMgr mgr) {
for (int i=0; i < group.length; i++) {

mgr.use(MessageResource(group[i]));
SMS.send(msg, group[i]);

}
}

PreCond ≡ bagof(mapMessageResource(group)) ⊆ mgr

PostCond ≡ \old(mgr) = mgr] bagof(mapMessageResource(group))

LoopInv ≡ 0 ≤ i ≤ group.length ∧
bagof(mapMessageResource(group[i:group.length])) ⊆ mgr ∧
\old(mgr) = mgr] bagof(mapMessageResource(group[0:i]))

VC ≡ LoopInv ∧ ¬LoopInv [i+ 1/i,mgr′/mgr] ∧ i < group.length ∧
count(mgr,MessageResource(group[i])) > 0 ∧
mgr = mgr′] JMessageResource(group[i])K(1)

Fig. 1. Java bulk messaging example: code and specification of send loop.

Run-time monitoring provides dynamic guarantees of resource safety, as abuse of
resources will be trapped. However, aborting a program midway is not always a desir-
able solution; it would be better if we could guarantee statically that a program will
never even attempt to abuse resources. This is done in [2], which presents a type system
for proving static resource safety in a programming language with explicit resource
managers. When proving resource safety of a method like sendBulk, whether it is
done via a type system as in [2] or in the more traditional way by generating veri-
fication conditions, the hard part is reasoning about constraints between the program
variables. Ideally, we’d like to have fully automated theorem provers for this task.

Let us take a look at the constraints required to express invariants and pre- and
postconditions for sendBulk, see the bottom half of Figure 1. Informally, the pre-
condition states that mgr is a super-multiset of the vector group, when the latter is
viewed as a multiset of resources. To express this view, we first need to convert group
into a vector of resources (by applying the map function) and then into a multiset of
resources (by applying the bagof function). The postcondition states that the old mgr
splits into two multisets: the new mgr and the multiset of resources corresponding to
the vector group. The loop invariant essentially combines pre- and postcondition, but
for different slices of the vector group. The first conjunct bounds the loop variable i,
the second is the precondition for the remainder of the loop, i. e., for the subvector from
index i to the end, and the third is the effect of the loop so far, i. e., the postcondition
for the subvector from index 0 up to (but excluding) i. The (negated) verification con-
dition conjoins the loop invariant before, the negated loop invariant after the execution
of the loop (arising by substituting the variables i and mgr), the loop condition, and
the precondition (mgr has some resources corresponding to number group[i]) and
effect (mgr′ holds one unit of resource less than mgr) of the loop body. Hence, to ver-
ify the loop invariant of an example even this simple we must prove unsatisfiability of

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

220

constraints about bags, vectors, subvectors, the map function for transforming vectors
pointwise, and the bagof function for transforming vectors into multisets.

Decision procedures for vectors (or arrays) exist for quite some time; early work
goes back to the late 1970s [6, 10]. Recently, [4] and [3] found expressive yet decidable
extensions of the theory arrays by injectivity predicates and by restricted quantification
over array indices, respectively. Decision procedures for bags (or multisets) have been
published recently in [12] and [7, 8], where the latter supports a cardinality operator.
However, decision procedures combining vectors and bags and linking them via the
bagof function (or something similar) do not exist.

The main contribution of this paper is a decision procedure for ground satisfiabil-
ity in the combination of the theories of vectors and bags extended with the function
bagof . For certain syntactically restricted classes of ground formulae decidability is re-
tained if the theory of vectors is extended further with a mapf function for transforming
vectors pointwise by applying the uninterpreted function f . The decision procedure re-
duces formulae containing bagof(·) to formulae without by instantiating universally
quantified variables in the axiomatisation of the bagof function, eventually reducing
the problem to the theories of vectors and bags. It relies on a decision procedure for
the Array Property Fragment described in [3] and on a decision procedure for multisets
with cardinality described in [7, 8].

Plan. Section 2 introduces some basic notation. Section 3 presents the theories of bags,
vectors, map and bagof functions. Section 4 utilises known results to construct a deci-
sion procedure for the combination of the theories of bags and vectors (including map).
Section 5 presents our main result: an extension of the decision procedure (and its proof
of correctness) to cope with bagof .

2 Preliminaries

We work in the framework of many-sorted first-order logic with equality, assuming
familiarity with the basic syntactic and semantic concepts. Below we fix some notation.

Throughout the paper, we fix three countably infinite and pairwise disjoint uni-
verses: a set S of sorts, a set F of function symbols and a set X of variable symbols. By
S+ we denote the set of non-empty words over a set S.

Signatures. A decorated variable xs is a pair consisting of a variable x ∈ X and a
sort s ∈ S. A decorated function symbol fw is a pair consisting of a function symbol
f ∈ F and an arity w ∈ S+. A decorated function symbol cs of arity s ∈ S is called a
decorated constant. For the sake of readability, we may write decorated constants and
function symbols in the form c : s and f : s1×. . .×sn→s0 instead of cs and fs0s1...sn ,
respectively. We may drop decorations entirely if they are clear from the context.

A (many-sorted) signature Σ is a pair Σ = 〈S, F 〉 where S ⊆ S is a non-empty
finite set of sorts and F ⊆ F×S+ is a set of decorated function symbols. We may write
ΣS andΣF to refer to S and F , respectively. IfΣ1 andΣ2 are signatures then the union
Σ1 ∪Σ2 = 〈ΣS

1 ∪ΣS
2 , Σ

F
1 ∪ΣF

2 〉 and intersection Σ1 ∩Σ2 = 〈ΣS
1 ∩ΣS

2 , Σ
F
1 ∩ΣF

2 〉
are signatures, too. Two signaturesΣ1 andΣ2 are disjoint ifΣF

1 ∩ΣF
2 = ∅, i. e., disjoint

signatures do not share decorated function symbols but may share sorts.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

221

Union and intersection induce a lattice structure on signatures. We denote the in-
duced partial order by ⊇, where Σ2 ⊇ Σ1 (in words: Σ2 extends Σ1) if ΣS

2 ⊇ ΣS
1

and ΣF
2 ⊇ ΣF

1 . The constant expansion of Σ, denoted by Σ̂, is the greatest signature
extending Σ such that Σ̂S = ΣS and all function symbols in Σ̂F \ ΣF are constants,
i. e., Σ̂ provides infinitely many constants per sort.

Terms and formulae. Let Σ be a signature. Σ-terms are well-sorted terms constructed
from decorated function symbols in ΣF and decorated variables in X ×ΣS. A ground
Σ-term is a variable-freeΣ-term. IfΣ is clear from the context, we may drop the prefix
and write “term” instead of “Σ-term”. We may refer to terms of sort s ∈ ΣS as s-terms.

A Σ-atom is an equality1 t = t′, where t and t′ are Σ-terms of the same sort. A
Σ-literal is a Σ-atom t = t′ or its negation ¬(t = t′), often written as t 6= t′. If we
want to stress that the sort of left- and right-hand sides of a Σ-atom (resp.-literal) is
s, we may refer to the atom (resp. literal) as s-atom (resp. s-literal). Σ-formulae are
formed from Σ-atoms by the usual connectives (¬, ∧, ∨,⇒) and quantifiers (∀, ∃) of
first-order logic, inducing the usual notion of bound and free variables. A Σ-sentence
is a Σ-formula without free variables, and a Σ-theory is a set of Σ-sentences. Note that
a Σ-theory T is also a Σ′-theory, for all Σ′ extending Σ. A ground Σ-formula is a
quantifier-free Σ-sentence.

Algebras and satisfiability. Let Σ = 〈S, F 〉 be a signature. A Σ-algebra A is a pair
〈SA, FA〉where SA is a S-indexed family of carrier sets and FA is a F -indexed family
of functions on the carrier sets. More formally, SA = {sA|s ∈ ΣS} is a family of
non-empty and pairwise disjoint sets sA, and FA = {fAs0s1...sn

|fs0s1...sn ∈ F} is a
family of functions fAs0s1...sn

from sA1 ×· · ·× sAn to sA0 . We extend the interpretation of
function symbols in a Σ-algebra A homomorphically to ground Σ-terms t in the usual
way, denoting the resulting element of the algebra by tA. Note that for all Σ′ extending
Σ, a Σ′-algebra A can also be viewed as a Σ-algebra.

The truth of a Σ-sentence φ in a Σ-algebra A, denoted by A |= φ, is defined in the
usual way. A is a model of a Σ-theory T , also denoted by A |= T , if A |= φ for all
φ ∈ T . Given a Σ-algebraA, the theory T (A) is the greatest Σ-theory which hasA as
a model. Given a class∆ ofΣ-algebras, T (∆) =

⋂
A∈∆ T (A) is the greatestΣ-theory

which has all algebras A ∈ ∆ as models.
Let T be a Σ-theory. A Σ-algebra A is a T -model if A |= T . A Σ̂-sentence φ

is T -satisfiable if there is a T -model A which is a model of φ; note that A must be a
Σ̂-algebra. Two Σ̂-sentences φ and ψ are T -equisatisfiable if both are T -satisfiable or
neither is.

Given a subset S′ ⊆ ΣS of sorts, aΣ-theory T is stably infinite w. r. t. S′ if every T -
satisfiable ground Σ̂-formula φ has a T -model A such that sA is infinite for all s ∈ S′.
T is stably infinite if it is stably infinite w. r. t. the set of all sorts ΣS.

3 Theories

We introduce the signatures and theories used throughout this paper, see also Figure 2.
1 We consider equality the only predicate symbol of the logic. Other predicates can be encoded

as functions with a non-trivial codomain.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

222

ΣE-theory TE of elements
ΣE arbitrary signature disjoint from all signatures below,
TE arbitrary stably infinite theory with decidable ground TE-satisfiability problem.
ΣINT-theory TINT of Presburger arithmetic
ΣS

INT = {INT}
ΣF

INT =
˘
0, 1 : INT,
+,−,min,max : INT× INT→ INT

¯
TINT = T (AINT) where AINT is the standard ΣINT-algebra.
ΣBAG-theory TBAG of multisets with cardinality
ΣS

BAG = ΣS
INT ∪ΣS

E ∪ {BAGs | s ∈ ΣS
E}

ΣF
BAG = ΣF

INT ∪
˘
|·| : BAGs→ INT,
count : BAGs × s→ INT,
JK : BAGs,

J·K(·) : s× INT→ BAGs,
∩,∪,] : BAGs × BAGs→ BAGs

˛̨
s ∈ ΣS

E

¯
TBAG = T (∆BAG) where ∆BAG is the class of standard ΣBAG-algebras.
ΣVEC-theory TVEC of vectors
ΣS

VEC = ΣS
INT ∪ΣS

E ∪ {VECs | s ∈ ΣS
E}

ΣF
VEC = ΣF

INT ∪
˘
fst, end : VECs→ INT,
·[·] : VECs × INT→ s,
const : s× INT× INT→VECs,
·[·:·] : VECs × INT× INT→VECs,
·{· ← ·} : VECs × INT× s→VECs

˛̨
s ∈ ΣS

E

¯
TVEC =

˘
∀u, v : fst(u) = fst(v) ∧ end(u) = end(v) ∧

(∀k : fst(u) ≤ k < end(u)⇒ u[k] = v[k])⇒ u = v,
∀x, i, j : fst(const(x, i, j)) = i ∧ end(const(x, i, j)) = j,
∀x, i, j, k : i ≤ k < j ⇒ const(x, i, j)[k] = x,
∀v, i, j : fst(v[i:j]) = max(i, fst(v)) ∧ end(v[i:j]) = min(j, end(v)),
∀v, i, j, k : fst(v[i:j]) ≤ k < end(v[i:j])⇒ v[i:j][k] = v[k],
∀v, i, x : fst(v{i← x}) = fst(v) ∧ end(v{i← x}) = end(v),
∀v, i, x : fst(v) ≤ i < end(v)⇒ v{i← x}[i] = x,
∀v, i, x, k : fst(v) ≤ k < end(v) ∧ i 6= k ⇒ v{i← x}[k] = v[k]

¯
ΣBAGOF-theory TBAGOF of bagof function on vectors
ΣS

BAGOF = ΣS
VEC ∪ΣS

BAG

ΣF
BAGOF = ΣF

VEC ∪ΣF
BAG ∪ {bagof : VECs→ BAGs | s ∈ ΣS

E}
TBAGOF =

˘
∀v : |bagof(v)| = max(end(v)− fst(v), 0),

∀v : end(v)− fst(v) = 1⇒ bagof(v) = Jv[fst(v)]K(1),
∀x, i, j : i ≤ j ⇒ bagof(const(x, i, j)) = JxK(j−i),
∀v, k : fst(v) ≤ k ≤ end(v)⇒

bagof(v) = bagof(v[fst(v):k])] bagof(v[k:end(v)])
¯

ΣMAP-theory TMAP of map function on vectors
ΣS

MAP = ΣS
VEC

ΣF
MAP = ΣF

VEC ∪ {f : s→ s′ | (f :s→ s′) ∈ ΣF
MAP ∧ s, s′ ∈ ΣS

E} ∪
{mapf : VECs→VECs′ | (f :s→ s′) ∈ ΣF

MAP ∧ s, s′ ∈ ΣS
E}

TMAP =
˘
∀v : fst(mapf (v)) = fst(v) ∧ end(mapf (v)) = end(v),

∀v, k : fst(v) ≤ k < end(v)⇒ mapf (v)[k] = f(v[k])
˛̨
mapf ∈ ΣF

MAP

¯
Fig. 2. Theories of vectors and bags; see Section 3 for details.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

223

Elements. TE is a given theory of elements (of vectors and bags). Its signature ΣE is
arbitrary but must be disjoint from all other signatures introduced in this section. The
theory TE is arbitrary, too, but must be decidable and stably infinite so it can be coupled
with the theory of multisets, see Section 4.1.

Presburger arithmetic. ΣINT is the signature of Presburger arithmetic, with one sort,
two constants and four binary function symbols (for addition, subtraction, minimum
and maximum). We introduce the binary predicate symbols ≤ and < as abbreviations;
we may write s ≤ t instead of min(s, t) = s and s < t instead of s ≤ t ∧ s 6= t.

The theory TINT of Presburger arithmetic is defined as the set of allΣINT-sentences
which are true inAINT, the standard ΣINT-algebra which interprets the sort INT as the
integers and constants and function symbols by their usual meaning.

Multisets. The signature ΣBAG of multisets (with cardinality) extends the signature
of Presburger arithmetic with element sorts and multiset sorts BAGs, one per element
sort s. For each element sort, ΣBAG extends ΣINT with a constant JK for the empty
multiset, a singleton constructor J·K(·) (taking an element and its multiplicity), the usual
binary operations ∩, ∪,] for intersection, union and sum, a destructor count(·, ·) for
counting the frequency of an element in a multiset, and a destructor |·| for measuring
the cardinality (i. e., the number of elements, taking into account their multiplicities)
of a multiset. We introduce the binary predicate symbol ⊆ as an abbreviation; we may
write s ⊆ t instead of s ∩ t = s.

Due to the cardinality function, the theory of multisets cannot be finitely axioma-
tised in our logic.2 Therefore, the theory TBAG of multisets is defined as the set of all
ΣBAG-sentences that are true of ∆BAG, the class of standard ΣBAG-algebras. A is a
standard ΣBAG-algebra if it interprets the sort INT as the integers, the sorts BAGs as
the finite multisets over the interpretations of the sorts s, and the constants and func-
tion symbols by their usual meanings. Note that the theory TINT is contained in TBAG;
stable infiniteness will be relevant in Section 4.1.

Lemma 1. TBAG is stably infinite.

Vectors. We represent vectors by finite arrays of elements indexed by consecutive in-
tegers. The signature ΣVEC of vectors extends the signature of Presburger arithmetic
with element sorts and vector sorts VECs, one per element sort s. For each element
sort, ΣVEC extends ΣINT with two destructors fst(·) and end(·) for accessing the first
and last (more precisely, the first beyond the last) index of a vector, a destructor ·[·] for
reading an element of a vector, a constructor const(·, ·, ·) for creating a vector filled
with a multiple occurrences of the same element, a constructor ·[·:·] for slicing the sub-
vector in between two indices out of a vector, and a constructor ·{· ← ·} for updating a
vector at an index.

The theory TVEC axiomatises vectors. The first axiom is extensionality, equating
all vectors that behave equally under the destructors. The remaining axioms define the
constructors (uniquely due to extensionality) in terms of the destructors. Note ΣVEC

provides no append(·, ·) because TVEC forces vector concatenation to be partial.
2 See [7] for an axiomatisation in a first-order logic extended with an infinite sum quantifier.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

224

Given a signatureΣ extendingΣVEC, aΣ-algebraA is called vector complete if for
all element sorts s ∈ ΣS

E, all integers i, and all finite sequences x0, . . . , xk−1 ∈ sA there
is a vector v ∈ VECA

s such that fst(v)A = i and end(v)A = i+ k and v[i+ l]A = xl

for all integers l with 0 ≤ l < k. AΣ-theory T is vector complete if every T -satisfiable
ground Σ̂-formula has a vector complete model.

Bagof function. The signature ΣBAGOF extends the union of the signature ΣVEC and
ΣBAG with functions bagof(·) mapping vectors to the multisets of their elements. The
theory TBAGOF axiomatises these functions. The first axiom equates the length of the
argument vector with the cardinality of the resulting multiset. The next two axioms de-
fine bagof(·) for the special cases that the argument vector is of length one or constant.
The last axiom admits recursive computation of bagof(·) by splitting the argument into
two subvectors and summing the results.

Map function. The signatureΣMAP extendsΣVEC by adding a set F of unary functions
on elements (i. e., (f :s→ s′) ∈ F implies s, s′ ∈ ΣS

E) and a set Fmap of map functions
on vectors such that (mapf : VECs→VECs′) ∈ Fmap if and only if (f :s→ s′) ∈ F .
Note that Figure 2 specifies ΣMAP by a fixpoint equation which has infinitely many
solutions.3

The theory TMAP axiomatises the functions mapf , in terms of the vector destruc-
tors, thus uniquely defining these functions. Note that TMAP does not define the unary
functions on elements; these functions are intended to be free.

Base theory. We define the Σ-theory TBASE = TE ∪ TBAG ∪ TVEC ∪ TMAP as the
union of the above theories excluding TBAGOF, where Σ = ΣE ∪ ΣBAG ∪ ΣVEC ∪
ΣMAP∪ΣBAGOF is the union of the above signatures (includingΣBAGOF, i. e., TBASE

leaves the bagof functions uninterpreted). The following model-theoretic properties
will become relevant in Section 5.

Lemma 2. TBASE is vector complete and stably infinite.

4 Known Decision Procedures Applied to Bags and Vectors

This section employs known results to obtain a decision procedure for ground satisfia-
bility in the combination of the theories of elements, multisets and vectors (including
the theory of map functions). We will make repeated use of the following result on the
combination of arbitrary theories with free functions.

Proposition 3 (Sofronie-Stokkermans 2005 [9]). Let Σ′ ⊇ Σ be signatures and
let T be a Σ-theory. If T -satisfiability is decidable for ground Σ̂-formulae then T -
satisfiability is decidable for ground Σ̂′-formulae.

3 Extremal solutions are uninteresting. The least solution would yield ΣMAP = ΣVEC, and the
greatest solution would likely violate the requirement that ΣE and ΣMAP be disjoint.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

225

The decision procedure behind Proposition 3 reduces a ground Σ̂′-formula in nega-
tion normal form4 (NNF) to a T -equisatisfiable ground Σ̂-formula in NNF; the reduc-
tion may cause a quadratic blowup.

4.1 Combining the Theories of Elements and Multisets

A decision procedure for the theory TBAG of multisets with cardinality is known [7].
We combine this decision procedure with an arbitrary decision procedure for the theory
TE of elements, using the Nelson-Oppen combination method [6, 11]. This is possible
because TE and TBAG are stably infinite theories (cf. Figure 2 and Lemma 1) over
disjoint signatures.

Proposition 4. Ground (TE ∪ TBAG)-satisfiability is decidable.

4.2 Deciding the Theory of Vectors (Including Map)

We use a decision procedure for the Array Property Fragment [3] to decide ground
satisfiability in the union of the theories of vectors and map functions. The procedure
reduces the satisfiability problem to ground satisfiability in the combination of the the-
ories of Presburger arithmetic, uninterpreted functions and an unspecified theory of
vector elements.

Proposition 5. Let T0 be a Σ0-theory where the signature Σ0 shares no non-constant
function symbols withΣVEC∪ΣMAP except for the function symbols inΣINT, formally
Σ0 ∩ (ΣVEC ∪ ΣMAP) ⊆ ˆΣINT. Let Σ1 = Σ0 ∪ ΣINT ∪ ΣVEC ∪ ΣMAP and T1 =
T0 ∪ TINT ∪ TVEC ∪ TMAP. If (T0 ∪ TINT)-satisfiability is decidable for ground Σ̂-
formulae, where Σ extends Σ0 ∪ ΣINT, then T1-satisfiability is decidable for ground
Σ̂1-formulae.

Proof. Let φ be a ground Σ̂1-formula (in NNF). Perform the following reductions.

1. Eliminate disequalities and updates: Normalise φ w. r. t. the rewrite rules NOTEQ
and UPDATE from Figure 3. NOTEQ expresses disequalities s 6= t using extension-
ality and Skolemisation. UPDATE is based on expressing equations v = u{i← x}
by splitting u and v into three subvectors each (a prefix up to index i, a middle
part of length 1 at index i and a suffix from index i + 1) and equating these ac-
cordingly (in particular, equating the middle part of v to a constant vector). The
resulting ground Σ̂1-formula φ′ is T1-equisatisfiable to φ but contains no vector
disequalities and updates.

2. Purify w. r. t. vector sorts: In a bottom up manner, rewrite φ′
[
t
]

to φ′
[
c
]
∧ c = t,

where c is a fresh constant and t a non-constant vector term. The result of normal-
ising φ′ w. r. t. the above rule is a T1-equisatisfiable Σ̂1-formula φ′′ such that

– for all terms of the form fst(u) or end(u) or u[i], u is a constant, and
– all vector atoms are of the form u = v or v = u[i:j] or v = const(x, i, j) or
v = mapf (u), where u and v are constants.

4 The procedure in [9] expects input in clause form; however, the reduction works just as well
for formulae in NNF.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

226

[NOTEQ]
φ

ˆ
u 6= v

˜
φ

»
fst(u) 6= fst(v) ∨ end(u) 6= end(v) ∨
(fst(u) ≤ k < end(u) ∧ u[k] 6= v[k])

– if u, v vectors ∧ k fresh

[READ]
φ

ˆ
u[i]

˜
φ

ˆ
x

˜
∧ u[i:i+ 1] = const(x, i, i+ 1)

if x fresh

[UPDATE]
φ

ˆ
u{i← x}

˜
φ

ˆ
v

˜
∧ ψ(v, u, i, x)

if v fresh

where ψ(v, u, i, x) ≡

8>><>>:
`
fst(u) ≤ i < end(u) ∨ u = v

´
∧

`
i < fst(u) ∨ end(u) ≤ i ∨`

fst(v) = fst(u) ∧ end(v) = end(u) ∧
v[fst(u):i] = u[fst(u):i] ∧ v[i:i+ 1] = const(x, i, i+ 1) ∧
v[i+ 1:end(u)] = u[i+ 1:end(u)]

´´
[BAGOF]

φ
ˆ
bagof(u)

˜
φ

ˆ
b
˜
∧ b = bagof(u)

if b fresh

[SUBCONST]
φ

ˆ
v = u[k:l] ∧ u = const(x, i, j)

˜
φ

ˆ
v = const(x,max(k, i),min(l, j)) ∧ u = const(x, i, j)

˜
[MAPCONST]

φ
ˆ
v = mapf (u) ∧ u = const(x, i, j)

˜
φ

ˆ
v = const(f(x), i, j) ∧ u = const(x, i, j)

˜
Fig. 3. Vector transformations; see sections 4.2 and 5.1 for details.

3. Eliminate all subterms of the form fst(u) and end(u) in φ′′ by replacing them with
INT-constants fstu and endu, respectively, introducing two new INT-constants
fstu, endu per vector constant u. Then normalise φ′′ w. r. t. all rewrite rules in
Figure 4. This results in a T1-equisatisfiable Σ̂1-formula φ′′′, which falls into the
Array Property Fragment [3].

4. Use decision procedure for the Array Property Fragment outlined in [3]:
– Instantiate universal quantifiers in φ′′′.
– Replace all constants u of sort VECs by unary functions fu : INT→ s, and

replace all terms of the form u[i] by fu(i).
The resulting ground Σ̂-formula φ′′′′ is (T0 ∪ TINT)-satisfiable if and only if φ′′′ is
T1-satisfiable, where Σ extends Σ0 ∪ΣINT with the above unary functions fu and
with the unary functions f on element sorts from signature ΣMAP. ut

4.3 Deciding the Base Theory

Finally, we pull the results of the previous subsections together to obtain a decision pro-
cedure for TBASE, the union of all theories introduced in Section 3 excluding TBAGOF.
Recall that the signature Σ of TBASE includes ΣBAGOF, i. e., TBASE treats the bagof
functions as free.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

227

[EQ]
φ

ˆ
u = v

˜
φ

ˆ
fstu = fstv ∧ endu = endv ∧ ∀k : fstu ≤ k < endu ⇒ u[k] = v[k]

˜
[SUB]

φ
ˆ
v = u[i:j]

˜
φ

»
fstv = max(i, fstu) ∧ endv = min(j, endu) ∧
∀k : fstv ≤ k < endv ⇒ v[k] = u[k]

–

[CONST]
φ

ˆ
v = const(x, i, j)

˜
φ

ˆ
fstv = i ∧ endv = j ∧ ∀k : fstv ≤ k < endv ⇒ v[k] = x

˜
[MAP]

φ
ˆ
v = mapf (u)

˜
φ

ˆ
fstv = fstu ∧ endv = endu ∧ ∀k : fstv ≤ k < endv ⇒ v[k] = f(u[k])

˜
Fig. 4. Translating to the Array Property Fragment; see Section 4.2 for details.

Proposition 6. Ground TBASE-satisfiability is decidable.

Proof. Let φ be Σ̂-formula (in NNF).

1. Reduce φ to a T -equisatisfiable ground Σ̂′-formula φ′ where Σ′ = ΣE ∪ΣBAG ∪
ΣVEC ∪ΣMAP, using the decision procedure for free functions (Proposition 3).

2. Reduce φ′ to a ground Σ̂′′-formula φ′′ using the decision procedure for vectors
(Proposition 5; the Σ0-theory T0 there is TE ∪ TBAG here). The resulting signature
Σ′′ extends ΣE ∪ΣBAG by free unary functions on element sorts (stemming from
signature ΣMAP) and free unary functions from INT to element sorts (arising from
encoding arrays as unary functions). The formula φ′′ is (TE ∪ TBAG)-satisfiable iff
φ′ is T -satisfiable.

3. Reduce φ′′ to a (TE ∪TBAG)-equisatisfiable ground Σ̂′′′-formula φ′′′ where Σ′′′ =
ΣE ∪ΣBAG, using the decision procedure for free functions (Proposition 3).

4. Check (TE∪TBAG)-satisfiability of φ′′′ using the combined decision procedure for
elements and multisets (Proposition 4). ut

5 A Decision Procedure for Bags, Vectors and Bagof Functions

Recall the Σ-theory TBASE, defined in Section 3 as the union of all theories excluding
TBAGOF, where Σ is the union of all signatures (including ΣBAGOF). For this section,
let T = TBASE ∪ TBAGOF be the Σ-theory extending TBASE with the axioms for the
bagof functions.

5.1 Decision Procedure

The decision procedure relies on reducing ground T -satisfiability to ground TBASE-
satisfiability by instantiating axioms of TBAGOF. The reduction is shown in Figure 5.
Termination is obvious. Soundness is established by the lemma below.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

228

Input: Ground Σ̂-formula φ0 (in NNF).
Output: Ground Σ̂-formula φ6.
Algorithm:

1. Eliminate definable vector operators, purify and simplify:
(a) Construct φ1 by normalising φ0 w. r. t. the rule NOTEQ (Figure 3).
(b) Construct φ2 by normalising φ1 w. r. t. the rules READ, UPDATE and BAGOF

(Figure 3).
(c) Construct φ3 by purifying φ2 w. r. t. vector sorts: In a bottom up manner, rewrite

φ2

ˆ
t
˜

to φ2

ˆ
c
˜
∧ c = t, where c is a fresh constant and t a non-constant vector

term.
(d) Construct φ4 by converting φ3 into disjunctive normal form (DNF).
(e) Construct φ5 by normalising φ4 w. r. t. the rules SUBCONST and MAPCONST

(Figure 3).
2. Determine the sets of vector constants C, element terms E and index terms I:

C = {v | v vector constant occurring in φ5}
E = {x | ∃i, j : const(x, i, j) occurs in φ5} and
I = {fst(u), end(u) | u ∈ C} ∪
{i, j | ∃x : const(x, i, j) occurs in φ5 ∨ ∃u : u[i:j] occurs in φ5} .

3. Instantiate (variants of) the TBAGOF axioms with terms generated from C, E and I:

φ6 ≡ φ5 ∧
^

u∈C;i,j∈I

Axu,i,j
1 ∧

^
x∈E;i,j∈I

Axx,i,j
3 ∧

^
u∈C;i,j,k∈I

Axu,i,j,k
4

where Axu,i,j
1 ≡ fst(u) ≤ i ≤ j ≤ end(u)⇒ |bagof(u[i:j])| = j − i

Axx,i,j
3 ≡ i ≤ j ⇒ bagof(const(x, i, j)) = JxK(j−i)

Axu,i,j,k
4 ≡ fst(u) ≤ i ≤ k ≤ j ≤ end(u)⇒

bagof(u[i:j]) = bagof(u[i:k])] bagof(u[k:j])

Fig. 5. Reduction to base theory by instantiating TBAGOF axioms.

Lemma 7 (Soundness). If φ0 is T -satisfiable then φ6 is TBASE-satisfiable.

Proof. As φ0 and φ5 are T -equisatisfiable, it suffices to show that every T -model is
a model of the instances Axu,i,j

1 , Axx,i,j
3 and Axu,i,j,k

4 , for all u ∈ C, x ∈ E and
i, j, k ∈ I .

– Axu,i,j
1 follows from the first TBAGOF axiom (after instantiating v with u[i:j]) as in

TVEC, fst(u) ≤ i ≤ j ≤ end(u) implies max(end(u[i:j])− fst(u[i:j]), 0) = j− i.
– Axx,i,j

3 is an instance of the third TBAGOF axiom.
– Axu,i,j,k

4 follows from the fourth TBAGOF axiom (after instantiating v with u[i:j]
and k with k) because in TVEC, the antecedent fst(u) ≤ i ≤ k ≤ j ≤ end(u)
implies u[i:j][fst(u[i:j]):k] = u[i:k] and u[i:j][k:end(u[i:j])] = u[k:j]. ut

Before we show completeness of the reduction, we point out that step 1 converts the
input formula φ0 to a ground DNF formula φ5 such that

– bagof occurs only in atoms of the form b = bagof(u), where b and u are constants,

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

229

– all vector atoms are of the form u = v or v = u[i:j] or v = const(x, i, j) or
v = mapf (u), where u and v are constants,

– all other vector terms are of the form fst(u) or end(u), where u is a constant, and
– the arguments of mapf are non-constant, i. e., whenever mapf (u) occurs in a dis-

junct ψ then there are no terms x, i and j such that the atom u = const(x, i, j)
would logically follow from ψ in theory TBASE. Note that this last property is
achieved by conversion to DNF and propagation of constant vectors within each
disjunct (steps 1d and 1e in Figure 5).

5.2 Completeness in the Absence of Map Functions

We call the signatureΣMAP trivial ifΣMAP = ΣVEC, i. e., there are no unary functions
on elements and no map functions. By model-theoretic arguments, we prove complete-
ness of the reduction shown in Figure 5, given that ΣMAP is trivial.

Lemma 8 (Completeness without map). Assume ΣMAP trivial. If φ6 is TBASE-satis-
fiable then φ0 is T -satisfiable.

Proof. Assume a Σ̂-algebraA which is a TBASE-model of φ6; w. l. o. g. we assume that
A is vector complete (cf. Lemma 2). It suffices to construct a Σ̂-algebra A′ which is a
T -model of one disjunct ψ of φ5; we assume that A |= ψ.

Recall that C is the set of vector constants occurring in φ5. We choose A′ so that

1. A and A′ agree on the interpretations of all sorts, all constants except vector con-
stants occurring in φ5, and all function symbols except the bagof functions,

2. A′ interprets bagof : VECs→ BAGs as functions mapping vectors in VECA′

s to
the multisets of their elements in BAGA′

s ,
3. A′ interprets vector constants u occurring in φ5 such that A and A′ agree

(a) on the interpretations of the ground terms fst(u) and end(u), and
(b) on the interpretations of the ground term bagof(u).

We have to explain how the interpretations of vector constants can be chosen in such a
way that item (3b) holds, i. e., how to keep the interpretations of ground terms bagof(u)
invariant even though the interpretations of the bagof functions change.

Recall the set of index terms I defined in step 2 of the reduction (Figure 5). Let
〈i1, . . . , in〉 be an enumeration of I such that A orders their interpretations in ascend-
ing sequence iA1 ≤ · · · ≤ iAn . Items (1) to (3a) ensure that A and A′ agree on the
interpretations of index terms ij ∈ I , hence A′ orders their interpretation iA

′

j in the
same sequence.

Item (3b) is achieved by an inductive process. Let j < n be minimal such that there
is u ∈ C with fst(u)A ≤ iAj ≤ iAj+1 ≤ end(u)A and bagof(u[ij :ij+1])A differing from
the multiset of elements in u[ij :ij+1]A. Note that there can be no x ∈ E — recall the
set E of element terms occurring in φ5 — such that const(x, ij , ij+1)A = u[ij :ij+1]A.
For if there were such x ∈ E then the TBAGOF instance Axx,ij ,ij+1

3 (appearing as a
conjunct in φ6) would ensure that bagof(u[ij :ij+1])A equals the multiset of elements

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

230

in u[ij :ij+1]A. Now let Cu be the set of vector constants whose slice between ij and
ij+1 happens to equal u[ij :ij+1] in A, formally

Cu = {v ∈ C | A |= fst(v) ≤ ij ≤ ij+1 ≤ end(v) ∧ u[ij :ij+1] = v[ij :ij+1]} .

Let 〈x0, x1, . . . , xk−1〉 be an enumeration of the multiset bagof(u[ij :ij+1])A. Note
that the TBAGOF instance Axu,ij ,ij+1

1 constrains the size of the multiset so that k =
iAj+1 − iAj . As A is vector complete, we can choose the interpretations of all v ∈ Cu

such that for all l < k, vA
′

stores xl at index iA
′

j +l. This ensures thatA′ |= u[ij :ij+1] =
v[ij :ij+1]. The construction proceeds from there by induction on j.

After the construction is completed, one can show thatA andA′ do in fact agree on
the interpretation of bagof(u), for all u ∈ C. The proof is by induction on the length
end(u) − fst(u) of u and uses the TBAGOF instances Axu,i,j,k

4 , for all i, j, k ∈ I such
that A |= fst(u) ≤ i ≤ k ≤ j ≤ end(u).

Obviously,A′ is a model of TBAGOF (and thus of T) as that is how the interpretation
of the bagof functions was chosen. To show that A′ |= ψ, it suffices to show that A′
satisfies every vector atom thatA satisfies (becauseA andA′ agree on the interpretation
of non-vector literals and all vector literals occurring in ψ are positive). In the case of
atoms of the form v = const(x, i, j) this is so because the construction does not change
the interpretation of v. In the case of atoms of the form u = v or v = u[i:j], the
construction alters the interpretations of corresponding slices of u and v uniformly. ut

The decidability of ground satisfiability in the theories of elements, multisets, vec-
tors (excluding map functions) and the bagof function follows from soundness and
completeness of the reduction (lemmas 7 and 8) and from decidability of the base the-
ory (Proposition 6).

Theorem 9. Assume ΣMAP trivial. Then ground T -satisfiability is decidable.

We remark that the conversion to DNF (step 1d in Figure 5) during the reduction is
not necessary if ΣMAP is trivial; NNF is all that’s required in that case.

5.3 Completeness in the Presence of Map Functions

To prove completeness of the reduction from Figure 5 when ΣMAP is not trivial, we
need syntactic restrictions on the occurrences of map functions in the input formula.

Given a set of element sorts S ⊆ ΣS
E, we say a term t is a S-term (resp. VECS-

term) if t is a s-term (resp. VECs-term) for some s ∈ S. A ground Σ̂-formula φ is
stratified if there is a partition {S1, . . . , Sm} of the set of element sorts ΣS

E such that

– for every subterm mapf (u) of φ there are strata Si and Si+1 such that u is a
VECSi-term and mapf (u) is a VECSi+1-term, and

– all arguments of bagof(·) in φ are uniformly VECSm -terms.

The verification condition VC from Figure 1 is an example of a stratified formula.
Given the strata S1 = {String} and S2 = {Resource}, it is easy to check that
mapMessageResource maps vectors of strings to vectors of resources, and that all argu-
ments of bagof(·) are vectors of resources. On the other hand, a formula containing a
function symbol mapf : VECs→VECs′ fails to be stratified if s = s′, for instance.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

231

Lemma 10 (Completeness for stratified input). Assume φ0 stratified. If φ6 is TBASE-
satisfiable then φ0 is T -satisfiable.

Proof (Sketch). Let S1, . . . , Sm be the strata for φ0. As stratification is preserved by
step 1 of the reduction, φ5 is stratified w. r. t. the same strata. Recall the set C of
vector constants defined in step 2 of the reduction. Stratification induces a partition
{C1, . . . , Cm} of C such that each Ci contains the VECSi

-constants occurring in φ5.
We modify step 3 of the reduction slightly by generating instances of Axu,i,j

1 and
Axu,i,j,k

4 only for u ∈ Cm.
Now, assume a Σ̂-algebra A (which due to Lemma 2 can be assumed vector com-

plete and stably infinite5) which is a TBASE-model of φ6. The construction of a T -model
A′ of a disjunct ψ of φ5 is similar to the one in Lemma 8 except for the fact that nowA′
may not only change the interpretations of bagof(·) and of vector constants but also the
interpretations of function symbols from signature ΣMAP. The construction proceeds
in m phases, yielding a sequence 〈Am,Am−1, . . . ,A1〉 of Σ̂-algebras.

The first phase constructs a Σ̂-algebra Am fixing the interpretations of the bagof
functions and the vector constants in Cm; this construction is analogous to the proof of
Lemma 8. Changing the interpretation some constant v ∈ Cm may falsify some atom
of the form v = mapf (u). To rectify this, the second phase constructs a Σ̂-algebra
Am−1 fixing the interpretations of vector constants in Cm−1 (and possibly changing
the interpretations of functions in ΣMAP) in order to restore the truth of v = mapf (u).
This in turn may falsify some other map atom, whose truth is restored by constructing
Am−2, and so on.

We present the construction of Am−1 in more detail; recall that we assume that
A |= ψ, and that ψ is a conjunction of literals. Let 〈i1, i2, . . . , in〉 be the ascending enu-
meration of index terms as defined in the proof of Lemma 8. Let j < n be minimal such
that ψ contains some atom v = mapf (u) with Am 6|= v[ij :ij+1] = mapf (u[ij :ij+1]).
Because A and Am essentially differ in the interpretations of vector constants in Cm,
we conclude that v ∈ Cm, hence u ∈ Cm−1 due to stratification. In Am−1, we change
the interpretation of u (and of all u′ with Am |= u′[ij :ij+1] = u[ij :ij+1]) such that
the elements of u[ij :ij+1]Am−1 are fresh and pairwise distinct. Freshness means that
the elements of u[ij :ij+1]Am−1 occur neither in the A- nor in the Am-interpretation of
any element or vector constant. Because A and Am (which features the same carriers)
are stably infinite and vector complete, we can always find enough fresh elements and
create arbitrary vectors from them. Next, we change the interpretation of the free func-
tion f . Define fAm−1 such that fAm−1(uAm−1 [l]) = vAm−1 [l], for all integers l with
i
Am−1
j ≤ l < i

Am−1
j+1 . Due to freshness of the elements in u[ij :ij+1]Am−1 , the function

fAm−1 is well-defined. The construction proceeds by induction on j.
It is obvious that Am−1 |= v[ij :ij+1] = mapf (u[ij :ij+1]). What remains to be

shown is that the construction preserves the truth of other vector atoms occurring in ψ.
In the case of atoms of the form u′ = u or u′ = u[i:j], the argument is the same as in
the proof of Lemma 8: Both sides are altered uniformly. Finally, the case of atoms of the
form u = const(x, i, j) cannot arise because if it did then step 1e of the reduction would

5 By abuse of notation, we call a Σ-algebra A stably infinite if all its carriers are infinite.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

232

have propagated the constant vector through mapf , replacing the atom v = mapf (u)
with v = const(f(x), i, j). ut

The decidability of satisfiability of stratified ground formulae in the theories of el-
ements, multisets, vectors, map functions and the bagof function follows; the proof is
similar to Theorem 9.

Theorem 11. Ground T -satisfiability is decidable for stratified ground Σ̂-formulae.

Relation to local theory extensions. The way the reduction in Figure 5 instantiates
universal quantifiers with selected ground terms is reminiscent of local theory exten-
sions [5], and one may wonder whether the theory T can be viewed as a local extension
of the theory TBASE. However, our model construction does not fit entirely into the
framework of local theory extensions because not only does it extend partial extension
functions (like the bagof functions) to total ones but also changes the interpretations of
base constants and free base functions. It remains to be seen whether the framework of
local theory extensions can be suitably generalised to encompass our construction.

Acknowledgements. This work was funded in part by the Sixth Framework programme of
the European Community under the MOBIUS project FP6-015905. This paper reflects only the
author’s views and the European Community is not liable for any use that may be made of the
information contained therein.

References

[1] D. Aspinall, P. Maier, and I. Stark. Monitoring external resources in Java MIDP. Electr.
Notes Theor. Comput. Sci., 197(1):17–30, 2008.

[2] D. Aspinall, P. Maier, and I. Stark. Safety guarantees from explicit resource management.
In Proc. FMCO 2007, LNCS 5382, pages 52–71. Springer, 2008.

[3] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In Proc.
VMCAI 2006, LNCS 3855, pages 427–442. Springer, 2006.

[4] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for extensions of
the theory of arrays. Ann. Math. Artif. Intell., 50(3-4):231–254, 2007.

[5] C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in verification.
In Proc. TACAS 2008, LNCS 4963, pages 265–281. Springer, 2008.

[6] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[7] R. Piskac and V. Kuncak. Decision procedures for multisets with cardinality constraints. In
Proc. VMCAI 2008, LNCS 4905, pages 218–232. Springer, 2008.

[8] R. Piskac and V. Kuncak. Linear arithmetic with stars. In Proc. CAV 2008, LNCS 5123,
pages 268–280. Springer, 2008.

[9] V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In R. Nieuwen-
huis, editor, Proc. CADE-20, LNCS 3632, pages 219–234. Springer, 2005.

[10] N. Suzuki and D. Jefferson. Verification decidability of presburger array programs. J. ACM,
27(1):191–205, 1980.

[11] C. Tinelli and C. G. Zarba. Combining decision procedures for sorted theories. In Proc.
JELIA 2004, LNCS 3229, pages 641–653. Springer, 2004.

[12] C. G. Zarba. Combining multisets with integers. In Proc. CADE-18, LNCS 2392, pages
363–376. Springer, 2002.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

233

Termination Analysis of Java Bytecode

Elvira Albert1, Puri Arenas1, Michael Codish2,
Samir Genaim3, Germán Puebla3, and Damiano Zanardini3

1 DSIC, Complutense University of Madrid (UCM), Spain
2 CS, Ben-Gurion University of the Negev, Israel

3 CLIP, Technical University of Madrid (UPM), Spain

Abstract. Termination analysis has received considerable attention,
traditionally in the context of declarative programming, and recently
also for imperative languages. In existing approaches, termination is per-
formed on source programs. However, there are many situations, includ-
ing mobile code, where only the compiled code is available. In this work
we present an automatic termination analysis for sequential Java Byte-
code programs. Such analysis presents all of the challenges of analyzing
a low-level language as well as those introduced by object-oriented lan-
guages. Interestingly, given a bytecode program, we produce a constraint
logic program, CLP, whose termination entails termination of the byte-
code program. This allows applying the large body of work in termination
of CLP programs to termination of Java bytecode. A prototype analyzer
is described and initial experimentation is reported.

1 Introduction

It has been known since the pre-computer era that it is not possible to write a
program which correctly decides, in all cases, if another program will terminate.
However, termination analysis tools strive to find proofs of termination for as
wide a class of (terminating) programs as possible. Automated techniques are
typically based on analyses which track size information, such as the value of
numeric data or array indexes, or the size of data structures. This information is
used for specifying a ranking function which strictly decreases on a well-founded
domain on each computation step, thus guaranteeing termination.

In the last two decades, a variety of sophisticated termination analysis tools
have been developed, primarily for less-widely used programming languages.
These include analyzers for term rewrite systems [15], and logic and functional
languages [18,10,17]. Termination-proving techniques are also emerging in the
imperative paradigm [6,11,15], even for dealing with large industrial code [11].

Static analysis of Java ByteCode (JBC for short) has received considerable
attention lately [25,23,24,22,1]. The present paper presents a static analysis for
sequential JBC which is, to the best of our knowledge, the first approach to
proving termination. Bytecode is a low-level representation of a program, de-
signed to be executed by a virtual machine rather than by dedicated hardware.
As such, it is usually higher level than actual machine code, and independent of

G. Barthe and F. de Boer (Eds.): FMOODS 2008, LNCS 5051, pp. 2–18, 2008.
c© IFIP International Federation for Information Processing 2008

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

234

Termination Analysis of Java Bytecode 3

the specific hardware. This, together with its security features, makes JBC [19]
the chosen language for many mobile code applications. In this context, anal-
ysis of JBC programs may enable performing a certain degree of static (i.e.,
before execution) verification on program components obtained from untrusted
providers. Proof-Carrying Code [20] is a promising approach in this area: mo-
bile code is equipped with certain verifiable evidence which allows deployers to
independently verify properties of interest about the code. Termination analysis
is also important since the verification of functional program properties is often
split into separately proving partial correctness and termination.

Object-oriented languages in general, and their low-level (bytecode) counter-
parts in particular, present new challenges to termination analyzers: (1) loops
originate from different sources, such as conditional and unconditional jumps,
method calls, or even exceptions; (2) size measures must consider primitive
types, user defined objects, and arrays; and (3) tracking data is more difficult,
as data can be stored in variables, operand stack elements or heap locations.

Analyzing JBC is a necessity in many situations, including mobile code, where
the user only has access to compiled code. Furthermore, it can be argued that
analyzing low-level programs can have several advantages over analyzing their
high-level (Java) counterparts. One advantage is that low-level languages typi-
cally remain stable, as their high-level counterparts continue to evolve — ana-
lyzers for bytecode programs need not be enhanced each time a new language
construct is introduced. Another advantage is that analyzing low-level code nar-
rows the gap between what is verified and what is actually executed. This is
relevant, for example, in safety critical applications.

In this paper we take a semantic-based approach to termination analysis,
based on two steps. The first step transforms the bytecode into a rule-based
program where all loops and all variables are represented uniformly, and which is
semantically equivalent to the bytecode. This rule-based representation is based
on previous work [1] in cost analysis, and is presented in Sec. 2. In the second step
(Sec. 3), we adapt directly to the rule-based program standard techniques which
usually prove termination of high-level languages. Sec. 4 reports on our prototype
implementation and validates it by proving termination of a series of object-
oriented benchmarks, containing recursion, nested loops and data structures
such as trees and arrays. Conclusions and related work are presented in Sec. 5.

2 Java Bytecode and Its Rule-Based Representation

We consider a subset of the Java Virtual Machine (JVM) language which han-
dles integers and object creation and manipulation (by accessing fields and call-
ing methods). For simplicity, exceptions, arrays, interfaces, and primitive types
besides integers are omitted. Yet, these features can be easily handled within our
setting: all of them are implemented in our prototype and included in benchmarks
in Table 1. A full description of the JVM [19] is out of the scope of this paper.

A sequential JBC program consists of a set of class files, one for each class,
partially ordered with respect to the subclass relation �. A class file contains

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

235

4 E. Albert et al.

information about its name, the class it extends, and the fields and methods it
defines. Each method has a unique signature m from which we can obtain the
class, denoted class(m), where the method is defined, the name of the method,
and its signature. When it is clear from the context, we ignore the class and the
types parts of the signature. The bytecode associated with m is a sequence of
bytecode instructions 〈pc1:b1, . . . , pcn:bn〉, where each bi is a bytecode instruc-
tion, and pci is its address. The local variables of a method are denoted by
〈l0, . . . , ln−1〉, of which the first k≤n are the formal parameters, and l0 corre-
sponds to the this reference (unlike Java, in JBC, the this reference is explicit).
Similarly, each field f has a unique signature, from which we can obtain its name
and the name of the class it belongs to. The bytecode instructions we consider
include:

bcInst ::= istore v | astore v | iload v | aload v | iconst i | aconst null
| iadd | isub | iinc v n | imul | idiv
| if φ pc | goto pc | ireturn | areturn
| new c | invokevirtual m | invokespecial m | getfield f | putfield f

where c is a class, φ is a comparison condition on numbers (ne, le, icmpgt)
or references (null, nonnull), v is a local variable, i is an integer, and pc is an
instruction address. Briefly, instructions are: (row 1) stack operations referring
to constants and local variables; (row 2) arithmetic operations; (row 3) jumps
and method return; and (row 4) object-oriented instructions. All instructions
in row 3, together with invokevirtual, are branching (the others are sequential).
For simplicity, we will assume all methods to return a value. Fig. 1 depicts the
bytecode for the iterative method fact , where indexes 0, . . . , 3 stands for local
variables this , n, ft and i respectively. next(pc) is the address immediately after
the program counter pc. As instructions have different sizes, addresses do not
always increase by one (e.g., next(6)=9).

We assume an operational semantics which is a subset of the JVM specifica-
tion [19]. The execution environment of a bytecode program consists of a heap h
and a stack A of activation records. Each activation record contains a program
counter, a local operand stack, and local variables. The heap contains all objects
(and arrays) allocated in the memory. Each method invocation generates a new
activation record according to its signature. Different activation records do not
share information, but may contain references to the same object in the heap.

2.1 From Bytecode to Control Flow Graphs

The JVM language is unstructured. It allows conditional and unconditional
jumps as well as other implicit sources of branching, such as virtual method
invocation and exception throwing. The notion of a Control Flow Graph (CFG
for short) is a well-known instrument which facilitates reasoning about programs
in unstructured languages. A CFG is similar to the older notion of a flow chart,
but CFGs include a concept of “call to” and “return from”. Methods in the byte-
code program are represented as CFGs, and calls from one method to another
correspond to calls between these graphs. In order to build CFGs, the first step

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

236

Termination Analysis of Java Bytecode 5

int fact(int);
0 : iconst 1

1 : istore 2
2 : iconst 1
3 : istore 3
4 : iload 3

5 : iload 1
6 : if icmpgt 19
9 : iload 2

10 : iload 3
11 : imul
12 : istore 2
13 : iinc 3, 1
16 : goto 4
19 : iload 2

20 : ireturn

int fact(int n){
int ft=1;
for (int i=1; i<=n; i++) ft=ft*i;
return ft;

}

20 : ireturn 6 : if icmpgt 19

i > n

fact2

4 : iload 3
5 : iload 119 : iload 2

fact4

class DoSum 0 : iconst 1
1 : istore 2
2 : iconst 1
3 : istore 3 fact3

9 : iload 2
10 : iload 3

12 : istore 2
13 : iinc 3, 1
16 : goto 4

i ≤ n

fact1

11 : imul

Fig. 1. A JBC method (left) with its corresponding source (center) and its CFG (right)

is to partition a sequence of bytecode instructions into a set of maximal sub-
sequences, or basic blocks, of instructions which execute sequentially, i.e., with-
out branching nor jumping. Given a bytecode instruction pc:b, we say that pc′:b′

is a predecessor of pc:bc if one of the following conditions holds: (1) b′=goto pc,
(2) b′=if φ pc, (3) next(pc′)=pc.

Definition 1 (partition to basic blocks). Given a method m and its se-
quence of bytecode instructions 〈pc1:b1, . . . , pcn:bn〉, a partition into basic blocks
m1, . . . , mk takes the form

pci1 :bi1 , . . . , pcf1 :bf1
︸ ︷︷ ︸

m1

, pci2 :bi2 . . . , pcf2 :bf2
︸ ︷︷ ︸

m2

, . . . pcik
:bik

. . . , pcfk
:bfk

︸ ︷︷ ︸

mk

where i1=1, fk=n and

1. the number of basic blocks (i.e. k) is minimal;
2. in each basic block mj, only the instruction bfj can be branching; and
3. in each basic block mj, only the instruction bij can have more than one

predecessor.

A partition to basic blocks can be obtained as follows: the first sequence m1
starts at pc1 and ends at pcf1=min(pce1

, pcs1
), where pce1

is the address of
the first branching instruction after pc1, and pcs1

is the first address after pc1
s.t. the instruction at address next(pcs1

) has more than one predecessor. The
sequence m2 is computed similarly starting at pci2=next(pcf1

), etc. Note that
this partition can be computed in two passes: the first computes the predecessors,
and the second defines the beginning and end of each sub-sequence.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

237

6 E. Albert et al.

Example 1. The JBC fact method on the left of Fig. 1 is partitioned into four
basic blocks. The initial addresses (pcix

) of these blocks are shown within boxes.
Each block is labeled by fact id where id is a unique block identifier. A directed
edge indicates a control flow from the last instruction in the source node to the
first instruction in the destination node. Edges may be labeled by a guard which
states conditions under which the edge may be traversed during execution. �

In invokevirtual, due to dynamic dispatching, the actual method to be called may
not be known at compile time. To facilitate termination analysis, we capture this
information and introduce it explicitly in the CFG. This is done by adding new
blocks, the implicit basic blocks, containing calls to actual methods which might
be called at runtime. Moreover, access to these blocks is guarded by mutually
exclusive conditions on the runtime class of the calling object.

Definition 2 (implicit basic block). Let m be a method which contains an
instruction of the form pc:b, where b=invokevirtual m′. Let M be a superset
of the methods (signatures) that might actually be called at runtime when ex-
ecuting pc:b. The implicit basic block for m′′∈M is mpc:c, where c=class(m ′′)
if class(m ′′)�class(m ′), otherwise c=class(m ′). The block includes the single
special instruction invoke(m′). The guard of mpc:c is mg

pc:c=instanceof(n, c, D),
where D={class(m ′′) | m ′′∈M , class(m ′′)≺c}, and n is the arity of m′.

It can be seen that m is used to denote both methods and blocks in order to make
them globally unique. The above condition instanceof(n, c, D) states that the
(n+1)th stack element (from the top) is an instance of class c and not an instance
of any class in D. Computing the set M in the above definition can be statically
done by considering the class hierarchy and the method signature, which is
clearly a safe approximation of the set of the actual methods that might be called
at runtime when executing b. However, in some cases this might result in a much
larger set than the actual one, which in turn affects the precision and performance
of the corresponding static analysis. In such cases, class analysis [25] is usually
applied to reduce this set as it gives information about the possible runtime
classes of the object whose method is being called. Note that the instruction
invoke(m′) does not appear in the original bytecode, but it is instrumental to
define our rule-based representation in Sec. 2.2. For example, consider the CFG
in Fig. 2, which corresponds to the recursive method doSum and calls fact . This
CFG contains two implicit blocks labeled doSum11:DoSum and doSum19:DoSum .

The following definition formalizes the notion of a CFG for a method. Al-
though the invokespecial bytecode instruction always corresponds to only one
possible method call which can be identified from the symbolic method reference,
in order to simplify the presentation, we treat it as invokevirtual, and associate
it to a single implicit basic block with the true guard. Note that every bytecode
instruction belongs to exactly one basic block. By BlockId(pc, m)=i we denote
the fact that the instruction pc in m belongs to block mi. In addition, for a given
invokevirtual instruction pc:b in a method m, we use Mm

pc and Gm
pc to denote the

set of its implicit basic blocks and their corresponding guards respectively.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

238

Termination Analysis of Java Bytecode 7

int doSum(List x);
0 : aload 1
1 : ifnonnull 6
4 : iconst 0
5 : ireturn
6 : aload 0
7 : aload 1
8 : getfield List.data
11 : invokevirtual fact
14 : aload 0
15 : aload 1
16 : getfield List.next
19 : invokevirtual doSum
22 : iadd
23 : ireturn

1 : ifnonnull 6

doSum1 class DoSum

x �= null

6 : aload 0

doSum3

x=null

doSum2

4 : iconst 0
5 : ireturn

0 : aload 1

7 : aload 1
8 : getfield List.data
11 : invokevirtual fact

14 : aload 0
15 : aload 1
16 : getfield List.next
19 : invokevirtual doSum

22 : iadd
23 : ireturn

(1) doSum11:DoSum

doSum4

(2) doSum19:DoSum

doSum5

invoke(doSum)

invoke(fact)

instanceof(1, DoSum, {})
instanceof(1, DoSum, {})

(G1)
(G2)

int doSum(List x) {
if (x==null) return 0;
else return fact(x.data)+ doSum(x.next);

}

Fig. 2. The Control Flow Graph of the doSum example

Definition 3 (CFG). The control flow graph for a method m is a graph G =
〈N , E〉. Nodes N consist of:

(a) basic blocks m1, . . . , mk of m; and
(b) implicit basic blocks corresponding to calls to methods.

Edges in E take the form 〈mi → mj , conditionij〉 where mi and mj are, resp.,
the source and destination node, and conditionij is the Boolean condition la-
beling this transition. The set of edges is constructed, by considering each node
mi∈N which corresponds to a (non-implicit) basic block, whose last instruction
is denoted as pc:b, as follows:

1. if b=goto pc′ and j=BlockId(pc′, m) then we add 〈mi → mj , true〉 to E;
2. if b=if φ pc′, j=BlockId (pc′, m) and i′=BlockId(next(pc), m) then we add

both 〈mi → mj , φ〉 and 〈mi → mi′ ,¬φ〉 to E;
3. if b∈{invokevirtual m′, invokespecial m′}, and i′=BlockId(next(pc), m) then,

for all d∈Mm
pc and its corresponding gm

pc:d∈Gm
pc, we add 〈mi → mpc:d, g

m
pc:d〉

and 〈mpc:d → mi′ , true〉 to E;
4. otherwise, if j=BlockId(next(pc), m) then we add 〈mi → mj , true〉 to E.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

239

8 E. Albert et al.

For conciseness, when a branching instruction b involving implicit blocks leads to
a single successor block, we include the corresponding invoke instruction within
the basic block b belongs to. For instance, consider that the classes DoSum
and List are not extended by any other class. In this case, the branching in-
structions 11 and 19 have a single continuation. Their associated implicit blocks
marked with (1) and (2) in Fig. 2 are, thus, just included within the basic block
doSum3. G1 and G2 at the bottom indicate the guards which should label the
edge.

2.2 Rule-Based Representation

The CFG, while having advantages, is not optimal for our purposes. Therefore,
we introduce a Rule-Based Representation (RBR) on which we demonstrate our
approach to termination analysis. This RBR is based on a recursive representa-
tion presented in previous work [1], where it has been used for cost analysis.

The main advantages of the RBR are that: (1) all iterative constructs (loops)
fit in the same setting, independently of whether they originate from recursive
calls or iterative loops (conditional and unconditional jumps); and (2) all vari-
ables in the local scope of the method a block corresponds to (formal parameters,
local variables, and stack values) are represented uniformly as explicit arguments.
This is possible as in JBC the height of the operand stack at each program point
is statically known. We prefer to use this rule-based representation, rather than
other existing ones (e.g., BoogiePL [13] or those in Soot [26]), as in a simple
post-processing phase we can eliminate almost all stack variables, which results,
as we will see in Sec. 3.1, in a more efficient analysis.

A Rule-Based Program (RBP for short) defines a set of procedures, each of them
defined by one or more rules. As we will see later, each block in the CFG gen-
erates one or two procedures. Each rule has the form head(x̄ , ȳ):=guard , instr ,
cont where head is the name of the procedure the rule belongs to, x̄ and ȳ indi-
cate sequences 〈x1, . . . , xn〉, n>0 (resp. 〈y1, . . . , yk〉, k>0) of input (resp. output)
arguments, guard is of the form guard(φ), where φ is a Boolean condition on the
variables in x̄, instr is a sequence of (decorated) bytecode instructions, and cont
indicates a possible call to another procedure representing the continuation of this
procedure. In principle, x̄ includes the method’s local variables and the stack el-
ements at the beginning of the block. In most cases, ȳ only needs to store the re-
turn value of the method, which we denote by r. For simplicity, guards of the form
guard(true) are omitted. When a procedure p is defined by means of several rules,
the corresponding guards must cover all cases and be pairwise exclusive.

Decorating Bytecode Instructions. In order to make all arguments explicit, each
bytecode instruction in instr is decorated explicitly with the (local and stack)
variables it operates on. We denote by t=stack height(pc, m) the height of the
stack immediately before the program point pc in a method m. Function dec in
the following table shows how to decorate some selected instructions, where n is
the number of arguments of m.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

240

Termination Analysis of Java Bytecode 9

pc:b dec(b)
iconst i iconst(i, st+1)
istore v istore(st, �v)
iload v iload (lv, st+1)
new c new(c, st+1)
ireturn ireturn(st, r)

pc:b dec(b)
iadd iadd(st−1, st, st−1)
invoke(m) m(〈st−n, . . . , st〉, 〈st−n〉)
getfield f getfield(f, st, st)
putfield f putfield(f, st−1, st, st−1)
guard(icmpgt) guard(icmpgt(st−1, st))

Guards are translated according to the bytecode instruction they come from.
Note that branching instructions do not need to appear in the RBR, since
their effect is already captured by the branching at the RBR level and since
invoke instructions are replaced by calls to the entry rule of the corresponding
method.

Definition 4 (RBR). Let m be a method with l0, . . ., ln−1 local variables, of
which l0, . . . , lk−1 are the formal parameters together with the this reference l0
(k ≤ n), and let 〈N , E〉 be its CFG. The rule-based representation of 〈N , E〉 is
rules(〈N , E〉) = entry(〈N , E〉)

⋃

mp∈N translate(mp, 〈N , E〉), with:

entry(〈N , E〉)=
{m(〈�0, . . . , �k−1〉, 〈r〉):=init local vars(〈lk, . . . , ln−1〉),m1 (〈�0, . . . , �n−1〉, 〈r〉)}

where the call init local vars initializes the local variables of the method, and

translate(mp, 〈N , E〉) =
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

{mp(〈l̄, s0, . . . , spi−1〉, 〈r〉):=TBC p
m.} � ∃〈mp �→ , 〉∈E

{mp(〈l̄, s0, . . . , spi−1〉, 〈r〉):=TBC p
m, mc

p(〈l̄, s0, . . . , spo−1〉, 〈r〉).}
⋃

{mc
p(〈l̄, s0, . . . , spo−1〉, 〈r〉):=g,mq(〈l̄, s0, . . . , sqi−1〉, 〈r〉).

| 〈mp → mq, φq〉 ∈ E ∧ g=dec(φq)}
otherwise

In the above formula, pi (resp., po) denotes the height of the operand stack of m
at the entry (resp., exit) of mp. Also, qi is the height of the stack at the entry
of mq, and TBC p

m is the decorated bytecode for mp. We use “ ” to indicate that
the value at the corresponding position is not relevant.

The function translate(mp, 〈N , E〉) is defined by cases. The first case is applied
when mp is a sink node with no out-edges. Otherwise, the second rule introduces
an additional procedure mc

p (c is for continuation), which is defined by as many
rules as there are out-edges for mp. These rules capture the different alterna-
tives which execution can follow from mp. We will unfold calls to mc

p whenever
it is deterministic (mp has a single out-edge). This results in mp calling mq

directly.

Example 2. The RBR of the CFG in Fig. 1 consists of the following rules where
local variables have the same name as in the source code and o is the this
object:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

241

10 E. Albert et al.

fact(〈o, n〉, 〈r〉) := init local vars(〈ft, i〉), fact1 (〈o, n, ft, i〉, 〈r〉).
fact1 (〈o, n, ft, i〉, 〈r〉) := iconst(1, s0), istore(s0, ft), iconst(1, s0),

istore(s0, i), fact2 (〈o, n, ft, i〉, 〈r〉).
fact2 (〈o, n, ft, i〉, 〈r〉) := iload(i, s0), iload(n, s1),

fact c
2(〈o, n, ft, i, s0, s1〉, 〈r〉).

fact c
2(〈o, n, ft, i, s0, s1〉, 〈r〉) := guard(icmpgt(s0, s1)), fact4 (〈o, n, ft, i〉, 〈r〉).

fact c
2(〈o, n, ft, i, s0, s1〉, 〈r〉) := guard(icmple(s0, s1)), fact3 (〈o, n, ft, i〉, 〈r〉).

fact3 (〈o, n, ft, i〉, 〈r〉) := iload(ft, s0), iload(i, s1), imul(s0, s1, s0),
istore(s0, ft), iinc(i, 1), fact2 (〈o, n, ft, i〉, 〈r〉).

fact4 (〈o, n, ft, i〉, 〈r〉) := iload(ft, s0), ireturn(s0, r).

The first rule corresponds to the entry. Block fact4 is a sink block. Blocks fact1
and fact3 have a single out-edge and we have unfolded the continuation. Finally,
block fact2 has two out-edges and needs the procedure factc

2. The RBR from the
CFG of doSum in Fig. 2 is (doSum3 merges several blocks with one out-edge):

doSum (〈o, x〉, 〈r〉) := init local vars(〈〉), doSum1 (〈o, x〉, 〈r〉).
doSum1(〈o, x〉, 〈r〉) := aload(x, s0), doSumc

1(〈o, x, s0〉, 〈r〉).
doSumc

1(〈o, x, s0〉, 〈r〉) := guard(nonnull(s0)), doSum3 (〈o, x〉, 〈r〉).
doSumc

1(〈o, x, s0〉, 〈r〉) := guard(null(s0)), doSum2 (〈o, x〉, 〈r〉).
doSum2(〈o, x〉, 〈r〉) := iconst(0, s0), ireturn(s0, r).
doSum3(〈o, x〉, 〈r〉) := aload(o, s0), aload(x, s1), getfield(List.data, s1, s1),

fact(〈s0, s1〉, 〈s0〉), aload(o, s1), aload(x, s2),
getfield(List.next, s2, s2), doSum(〈s1, s2〉, 〈s1〉),
iadd(s0, s1, s0), ireturn(s0, r).

We can see that a call to a different method, fact , occurs in doSum3. This shows
that our RBR allows simultaneously handling the two CFGs in our example. �

Rule-based Programs vs JBC Programs. Given a JBC program P , Pr denotes
the RBP obtained from P . Note that, it is trivial to define an interpreter (or ab-
stract machine) which can execute any Pr and obtain the same return value and
termination behaviour as a JVM does for P . RBPs, in spite of their declarative
appearance, are in fact imperative programs. As in the JVM, an interpreter for
RBPs needs, in addition to a stack for activation records, a global heap. These
activation records differ from those in the JVM in that the operand stack is no
longer needed (as stack elements are explicit) and in that the scope of variables
is no longer associated to methods but rather to rules. In RBPs all rules are
treated uniformly, regardless of the method they originate from, so that method
borders are somewhat blurred. As in the JVM, call-by-value is used for passing
arguments in calls.

3 Proving Termination

This section describes how to prove termination of a JBC program given its
RBR. The approach consists of two steps. In the first, we abstract the RBR rules
by replacing all program data by their corresponding size, and replacing calls

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

242

Termination Analysis of Java Bytecode 11

corresponding to bytecode instructions by size constraints on the values their
variables can take. This step results in a Constraint Logic Program (CLP) [16]
over integers, where, for any bytecode trace t, there exists a CLP trace t′ whose
states are abstractions of t states. In particular, every infinite (non terminating)
bytecode trace has a corresponding infinite CLP trace, so that termination of the
CLP program implies termination of the bytecode program. Note that, unlike in
bytecode traces which are always deterministic, the execution of a CLP program
can be non-deterministic, due to the precision loss inherent to the abstraction.

In the second step, we apply techniques for proving termination of CLP pro-
grams [9], which consist of: (1) analyzing the rules for each method to infer input-
output size relations between the method input and output variables; (2) using
the input-output size relations for the methods in the program, we infer a set of
abstract direct calls-to pairs which describe, in terms of size-change, all possible
calls from one procedure to another; and (3) given this set of abstract direct
calls-to pairs, we compute a set of all possible calls-to pairs (direct and indi-
rect), describing all transitions from one procedure to another. Then we focus
on the pairs which describe loops, and try to identify ranking functions which
guarantee the termination of each loop and thus of the original program.

3.1 Abstracting the Rules

As mentioned above, rule abstraction replaces data by the size of data, and
focuses on relations between data size. For integers, their size is just their in-
teger value [12]. For references, we take their size to be their path-length [24],
i.e., the length of the maximal path reachable from the reference. Then, bytecode
instructions are replaced by constraints on sizes taking into account a Static Sin-
gle Assignment (SSA) transformation. SSA is needed because variables in CLP
programs cannot be assigned more than one value. For example, an instruction
iadd(s0, s1, s0) will be abstracted to s′0=s1+s0 where s′0 refers to the value of s0
after executing the instruction. Also, the bytecode getfield(f, s0, s0) is abstracted
to s0>s′0 if it can be determined that s0 (before executing the instruction) does
not reference a cyclic data-structure, since the length of the longest-path reach-
able from s0 is larger than the length of the longest path reachable from s′0.

bytecode b abstract bytecode bα ρi+1

iload(lv, sj) s′

j=ρi(lv) ρi[sj �→s′

j]
iadd(sj , sj+1, sj) s′

j=ρi(sj)+ρi(sj+1) ρi[sj �→s′

j]
guard(icmpgt(sj , sj+1)) ρi(sj)>ρi(sj+1) ρi

getfield(f, sj , sj) if f is of ref. type: ρi(sj)>s′

j if sj is not cyclic ρi[sj �→ s′

j]
otherwise ρi(sj) ≥ s′

j . If f is not of ref. type: true

putfield(f, sj , sj+1) if sj and sj+1 do not share, s′

k≤ρi(sk)+ρi(sj+1) ρi[sk �→ s′

k]
s.t f is of ref. type for any sk that shares with sj , otherwise true.

To implement the SSA transformation we maintain a mapping ρ of variable
names (as they appear in the rule) to new variable names (constraint vari-
ables). Such a mapping is referred to as a renaming. We let ρ[x 	→ y] denote the

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

243

12 E. Albert et al.

modification of the renaming ρ such that it maps x to the new variable y. We
denote by ρ[x̄ 	→ ȳ] the mapping of each element in x̄ to a corresponding one
in ȳ.

Definition 5 (abstract compilation). Let r ≡ p(x, y) := b1, . . . , bn be a rule.
Let ρi be a renaming associated with the point before each bi and let ρ1 be the
identity renaming (on the variables in the rule). The abstraction of r is denoted
r

α and takes the form p(x, y′) := bα
1 , . . . , bα

n where bα
i are computed iteratively

from left to right as follows:

1. if bi is a bytecode instruction or a guard, then bα
i and ρi+1 are obtained from

a predefined lookup table similar to the one above.
2. if bi is a call to a procedure q(w, z), then the abstraction bα

i is q(w′, z′) where
each w′k∈w′ is ρi(wk), variables z′ are fresh, and ρi+1=ρi[z 	→ z′, u 	→ u′]
where u′ are also fresh variables and u is the set of all variables in w which
reference data-structures that can be modified when executing q and those
that share (i.e., might have common regions in the heap) with them.

3. at the end we define each y′i ∈ y′ to be the constrained variable ρn+1(yi).

In addition, all reference variables are (implicitly) assumed to be non-negative.

Note that in point 2 above, the set of variables such that the data-structures
they point to may be modified during the execution of q can be approximated by
applying constancy analysis [14], which aims at detecting the method arguments
that remain constant during execution, and sharing analysis [23] which aims at
detecting reference variables that might have common regions on the heap. Also,
the non-cyclicity condition required for the abstraction of getfield can be verified
by non-cyclicity analysis [22]. In what follows, for simplicity, we assume that
abstract rules are normalized to the form p(x, y) := ϕ, p1(x1, y1), . . . , pj(xj , yj)
where ϕ is the conjunction of the (linear) size constraints introduced in the
abstraction and each pi(xi, yi) is a call to a procedure (i.e., block or method).

Example 3. Recall the following rule from Ex. 2 (on the left) and its abstraction
(on the right) where the renamings are indicated as comments.

fact3 (〈o, n, ft, i〉, 〈r〉) :=
iload(ft, s0),
iload(i, s1),
imul(s0, s1, s0),
istore(s0, ft),
iinc(i, 1),
fact2 (〈o, n, ft, i〉, 〈r〉).

fact3 (〈o, n, ft, i〉, 〈r′〉) := % ρ1 = id
s′0 = ft, % ρ2 = ρ1[s0 	→ s′0]
s′1 = i, % ρ3 = ρ2[s1 	→ s′1]
true, % ρ4 = ρ3[s0 	→ s′′0]
ft′ = s′′0 , % ρ5 = ρ4[ft 	→ ft′]
i′ = i + 1, % ρ6 = ρ5[i 	→ i′]
fact2 (〈o, n, ft′, i′〉, 〈r′〉). % ρ7 = ρ6[r 	→ r′]

Note that imul is abstracted to true, since it imposes a non-linear constraint. �

3.2 Input Output Size-Relations

We consider the abstract rules obtained in the previous step to infer an abstrac-
tion (w.r.t. size) of the input-output relation of the program blocks. Concretely,

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

244

Termination Analysis of Java Bytecode 13

we infer input-output size relations of the form p(x, y) ← ϕ, where ϕ is a con-
straint describing the relation between the sizes of the input x and the output
y upon exit from p. This information is needed since output of one call may
be input to another call. E.g., consider the following contrived abstract rule
p(〈x〉, 〈r〉):={x>0,x>z}, q(〈z〉, 〈y〉), p(〈y〉, 〈r〉). To prove termination, it is cru-
cial to know the relation between x in the head and y in the recursive call to p.
This requires knowledge about the input-output size relations for q(〈z〉, 〈y〉). As-
suming this to be q(〈z〉, 〈y〉) ← z>y, we can infer x>y. Since abstract programs
are CLP programs, inferring relations can rely on standard techniques [4].

Computing an approximation of input-output size relation requires a global
fixpoint. In practice, we can often take a trivial over-approximation where for all
rules there is no information, namely, p(x, y) ← true. This can prove termination
of many programs, and results in a more efficient implementation. It is not
enough in cases as the above abstract rule, which however, in our experience,
often does not occur in imperative programs.

3.3 Call-to Pairs

Consider again the abstract rule from Ex. 3 which (ignoring the output variable)
is of the form fact3 (x̄) := ϕ, fact2 (z̄). It means that whenever execution reaches
a call to fact3 (x̄) there will be a subsequent call to fact2 (z̄) and the constraint ϕ
holds. In general, subsequent calls may arise also from rules which are not binary.
Given an abstract rule of the form p0 := ϕ, p1, . . . , pn, a call to p0 may lead to
a call to pi, 1≤i≤n. Given the input-output size relations for the individual
calls p1, . . . , pi−1, we can characterize the constraint for a transition between the
subsequent calls p0 and pi by adding these relations to ϕ. We denote a pair of
such subsequent calls by 〈p0(x) � pi(y), ϕi〉 and call it a calls-to pair.

Definition 6 (direct calls-to pairs). Given a set of abstract rules A and its
input-output size relations IA, the direct calls-to pairs induced by A and IA are:

CA =

⎧

⎨

⎩

〈p(x) � pi(xi), ψ〉

∣

∣

∣

∣

∣

∣

p(x, y) := ϕ, p1(x1, y1), . . . , pj(xj, yj)∈A,
i∈{1, . . . , j}, ∀0<k<i. pk(xk, yk) ← ϕk∈IA
ψ = ∃̄x ∪ xi.ϕ ∧ ϕ1 ∧ . . . ∧ ϕi−1

⎫

⎬

⎭

where ∃̄v means eliminating all variables but v from the corresponding constraint.

Example 4. Consider the rule for doSum in Ex. 2: note that input-output rela-
tions for fact and doSum are true. Direct calls-to pairs for those rules are:

〈doSum(o, x) � doSum1(o′, x′), {x′=x, o′=o}〉
〈doSum1(o, x) � doSumc

1(o′, x′, s0), {x′=x, o′=o, s0=x}〉
〈doSumc

1(o, x, s0) � doSum3(o′, x′), {x′=x, o′=o, s0>0}〉
〈doSumc

1(o, x.s0) � doSum2(o′, x′), {x′=x, o′=o, s0=0}〉
〈doSum3(o, x) � fact(s′0, s

′′
1), {s′0=o}〉

〈doSum3(o, x) � doSum(s′′′1 , s′′2), {s′′′1 =o, x>s′′2}〉

In the last rule, s′′2 corresponds to x.next, so that we have the constraint x>s′′2 .
It can be seen that since the list is not cyclic and does not share with other

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

245

14 E. Albert et al.

variables, size analysis finds the above decreasing of its size x>s′′2 . Note also
that all variables corresponding to references are assumed to be non-negative.
Similarly, we can obtain direct calls-to pairs for the rule of fact. �

It should be clear that the set of direct calls-to pairs relations CA is also a binary
CLP program that we can execute from a given goal. A key feature of this binary
program is that if an infinite trace can be generated using the abstract program
described in Sec. 3.1, then an infinite trace can be generated using this binary
CLP program [10]. Therefore, absence of such infinite traces (i.e., termination) in
the binary program CA implies absence of infinite traces in the abstract bytecode
program, as well as in the original bytecode program.

Theorem 1 (Soundness). Let P be a JBC program and CA the set of direct
calls-to pairs computed from P . If there exists a non-terminating trace in P then
there exists a non-terminating derivation in CA.

Intuitively, the result follows from the following points. By construction, the
RBP captures all possibly non-terminating traces in the original program. By
the correctness of size analysis, we have that, given a trace in the RBP, there
exists an equivalent one in CA, among possibly others. Therefore, termination
in CA entails termination in the JBC program.

3.4 Proving Termination of the Binary Program CA

Several automatic termination tools and methods for proving termination of
such binary constraint programs exists [9,10,17]. They are based on the idea of
first computing all possible calls-to pair from the direct ones, and then finding a
ranking function for each recursive calls-to pairs, which is sufficient for proving
termination. Computing all possible calls-to pairs, usually called the transitive
closure C∗

A, can be done by starting from the set of direct calls-to pairs CA, and
iteratively adding to it all possible compositions of its elements until a fixed-point
is reached. Composing two calls-to pairs 〈p(x) � q(y), ϕ1〉 and 〈q(w) � r(z), ϕ2〉
returns the new calls-to pair 〈p(x) � r(z), ∃̄x̄ ∪ z̄.ϕ1 ∧ ϕ2 ∧ (ȳ = w̄)〉.
Example 5. Applying the transitive closure on the direct calls-to pairs of Ex. 4,
we obtain, among many others, the following calls-to pairs. Note that x (resp.
i) strictly decreases (resp. increases) at each iteration of its corresponding loop:

〈doSum(o, x) � doSum(o′, x′), {o′=o, x>x′, x≥0}〉
〈fact2(o, n, ft , i) � fact2(o

′, n′, ft ′, i′), {o′=o, n′=n, i′>i, i≥1, n≥i′−1}〉 �

As already mentioned, in order to prove termination, we focus on loops in
C∗
A. Loops are the recursive entities of the form 〈p(x) � p(y), ϕ〉 which indicate

that a call to a program point p with values x̄ eventually leads to a call to the
same program point with values ȳ and that ϕ holds between x and y. For each
loop, we seek a ranking function f over a well-founded domain such that ϕ |=
f(x)>f(y). As shown in [9,10], finding a ranking function for every recursive
calls-to pair implies termination. Computing such functions can be done, for
instance, as described in [21]. As an example, for the loops in Ex. 5 we get the
following ranking functions: f1(o, x)=x and f2(o, n, ft , i)=n−i+1.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

246

Termination Analysis of Java Bytecode 15

3.5 Improving Termination Analysis by Extracting Nested Loops

In proving termination of JBC programs, one important question is whether we
can prove termination at the JBC level for a class of programs which is compa-
rable to the class of Java source programs for which termination can be proved
using similar technology. As can be seen in Sec. 4, directly obtaining the RBR
of a bytecode program is non-optimal, in the sense that proving termination on
it may be more complicated than on the source program. This happens because,
while in source code it is easy to reason about a nested loop independently of
the outer loop, loops are not directly visible when control flow is unstructured.
Loop extraction is useful for our purposes since nested loops can be dealt with
one at a time. As a result, finding a ranking function is easier, and computing
the closure can be done locally in the strongly connected components. This can
be crucial in proving the termination of programs with nested loops.

To improve the accuracy of our analysis, we include a component which can
detect and extract loops from CFGs. Due to space limitations, we do not describe
how to perform this step here (more details in work about decompilation [2],
where loop extraction has received considerable attention). Very briefly, when a
loop is extracted, a new CFG is created. As a result, a method can be converted
into several CFGs. These ideas fit very nicely within our RBR, since calls to
loops are handled much in the same way as calls to other methods.

4 Experimental Results

Our prototype implementation is based on the size analysis component of [1]
and extends it with the additional components needed to prove termination. The
analyzer can also output the set of direct call-pairs, which allows using existing
termination analyzers based on similar ideas [10,17]. The system is implemented
in Ciao Prolog, and uses the Parma Polyhedra Library (PPL) [3].

Table 1 shows the execution times of the different steps involved in prov-
ing the termination of JBC programs, computed as the arithmetic mean of five
runs. Experiments have been performed on an Intel 1.86 GHz Pentium M with
1 GB of RAM, running Linux on a 2.6.17 kernel. The table shows a range of
benchmarks for which our system can prove termination, and which are meant
to illustrate different features. We show classical recursive programs such as
Hanoi, Fibonacci, MergeList and Power. Iterative programs DivByTwo and Con-
cat contain a single loop, while Sum, MatMult and BubbleSort are implemented
with nested loops. We also include programs written in object-oriented style,
like Polynomial, Incr, Scoreboard, and Delete. The remaining benchmarks use
data structures: arrays (ArrayReverse, MatMultVector, and Search); linked lists
(Delete and ListReverse); and binary trees (BST).

Columns CFG, RBR, Size, TC, RF, Total1 contain the running times (in
ms) required for the CFG (including loop extraction), the RBR, the size analysis
(including input-output relations), the transitive closure, the ranking functions
and the total time, respectively. Times are high, as the implementation has been
developed to check if our approach is feasible, but is still preliminary. The most

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

247

16 E. Albert et al.

Table 1. Measured time (in ms) of the different phases of proving termination

Benchmark CFG RBR Size TC RF Total1 Termin Total2 Ratio
Polynomial 138 12 260 1453 26 1890 yes 2111 1.12
DivByTwo 52 4 168 234 4 462 yes 538 1.17
EvenDigits 59 7 383 1565 17 2030 yes 2210 1.09
Factorial 43 3 46 268 3 363 yes 353 0.97
ArrayReverse 58 5 208 339 24 635 yes 834 1.32
Concat 65 8 660 943 38 1715 yes 3815 2.23
Incr 35 12 854 4723 28 5652 yes 6590 1.17
ListReverse 21 5 141 310 5 481 yes 515 1.07
MergeList 107 23 130 5184 21 5464 yes 5505 1.01
Power 14 3 72 357 9 454 yes 459 1.01
Cons 25 7 65 1318 10 1424 yes 1494 1.05
ListInter 136 22 585 9769 49 10560 yes 27968 2.65
SelectOrd 154 16 1298 4076 48 5592 no 25721 4.60
DoSum 57 10 64 923 6 1060 yes 1069 1.01
Delete 121 14 54 2418 1 2608 yes 33662 12.91
MatMult 240 11 2411 4646 294 7602 no 32212 4.24
MatMultVector 254 15 2563 8744 242 11817 no 34688 2.94
Hanoi 39 5 172 979 3 1198 no 1198 1.00
Fibonacci 23 3 90 290 5 411 yes 401 0.98
BST 68 12 97 4643 18 4838 yes 4901 1.01
BubbleSort 152 12 1125 4366 83 5738 no 14526 2.53
Search 65 11 307 756 11 1150 yes 1430 1.24
Sum 64 7 480 1758 35 2343 no 5610 2.39
FactSumList 65 12 80 961 5 1123 yes 1306 1.16
Scoreboard 268 23 1597 4393 81 6362 no 32999 5.19

expensive steps are the size analysis and the transitive closure, since they require
global analysis. Last three columns show the benefits of loop extraction. Termin
tells if termination can be proven (using polyhedra) without extraction. In seven
cases, termination is only proven if loop extraction is performed. Total2 shows
the total time required to check termination without loop extraction. Ratio
compares Total2 with Total1 (Total2/Total1), showing that, in addition to
improving precision, loop extraction is beneficial for efficiency, since Ratio ≥ 1
in most cases, and can be as high as 12.91 in Delete. Note that termination of
these programs may be proved without loop extraction by using other domains
such as monotonicity constraints [7]. However, we argue that loop extraction is
beneficial as it facilitates reasoning on the loops separately. Also, if it fails to
prove termination, it reports the possibly non-terminating loops.

5 Conclusions and Related Work

We have presented a termination analysis for (sequential) JBC which is, to
the best of our knowledge, the first approach in this direction. This analysis

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

248

Termination Analysis of Java Bytecode 17

successfully deals with the challenges related to the low-level nature of JBC,
and adapts standard techniques used, in other settings, in decompilation and
termination analysis. Also, we believe that many of the ideas presented in this
paper are also applicable to termination analysis of low-level languages in gen-
eral, and not only JBC. We have used the notion of path-length to measure the
size of data structures on the heap. However, our approach is parametric on the
abstract domain used to measure the size. As future work, we plan to implement
non-cyclicity analysis [22], constancy analysis [14], and sharing analysis [23], and
to enrich the transitive closure components with monotonicity constraints [7].
Unlike polyhedra, monotonicity constraints can handle disjunctive information
which is often crucial for proving termination. In [5], a termination analysis for
C programs, based on binary relations similar to ours, is proposed. It uses sep-
aration logic to approximate the heap structure, which in turn allows handling
termination of programs manipulating cyclic data structures. We believe that,
for programs whose termination does not depend on cyclic data-structures, both
approaches deal with the same class of programs. However, ours might be more
efficient, as it is based on a simpler abstract domains (a detailed comparison
is planned for future work). Recently, a novel termination approach has been
suggested [8]. It is based on cyclic proofs and separation logic, and can even
handle complicated examples as the reversal of panhandle data-structures. It is
not clear to us how practical this approach is.

Acknowledgments. This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS project, by the Spanish Ministry of
Education (MEC) under the TIN-2005-09207 MERIT project, and the Madrid
Regional Government under the S-0505/TIC/0407 PROMESAS project. Samir
Genaim was supported by a Juan de la Cierva Fellowship awarded by the Span-
ish Ministry of Science and Education. Part of this work was performed during
a research stay of Michael Codish at UPM supported by a grant from the Secre-
taŕıa de Estado de Educación y Universidades, Spanish Ministry of Science and
Education. The authors would like to thank the anonymous referees for their
useful comments.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, Springer,
Heidelberg (2007)

2. Allen, F.: Control flow analysis. In: Symp. on Compiler optimization (1970)
3. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.: Possibly not closed convex polyhedra

and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS
2002. LNCS, vol. 2477, Springer, Heidelberg (2002)

4. Benoy, F., King, A.: Inferring Argument Size Relationships with CLP(R). In: Gal-
lagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 204–223. Springer, Heidel-
berg (1997)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

249

18 E. Albert et al.

5. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, Springer, Heidelberg (2006)

6. Bradley, A., Manna, Z., Sipma, H.: Termination of polynomial programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, Springer, Heidelberg (2005)

7. Brodsky, A., Sagiv, Y.: Inference of Inequality Constraints in Logic Programs. In:
Proceedings of PODS 1991, pp. 95–112. ACM Press, New York (1991)

8. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: Proceedings of POPL-35 (January 2008)

9. Bruynooghe, M., Codish, M., Gallagher, J., Genaim, S., Vanhoof, W.: Termina-
tion analysis of logic programs through combination of type-based norms. ACM
TOPLAS 29(2) (2007)

10. Codish, M., Taboch, C.: A semantic basis for the termination analysis of logic
programs. J. Log. Program. 41(1), 103–123 (1999)

11. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI (2006)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proc. POPL. ACM Press, New York (1978)

13. DeLine, R., Leino, R.: BoogiePL: A typed procedural language for checking object-
oriented programs. Technical Report MSR-TR-2005-70, Microsoft (2005)

14. Genaim, S., Spoto, F.: Technical report, Personal Communication (2007)
15. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination

Proofs in the Dependency Pair Framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130. Springer, Heidelberg (2006)

16. Jaffar, J., Maher, M.: Constraint Logic Programming: A Survey. Journal of Logic
Programming 19(20), 503–581 (1994)

17. Lee, C., Jones, N., Ben-Amram, A.: The size-change principle for program termi-
nation. In: Proc. POPL. ACM Press, New York (2001)

18. Lindenstrauss, N., Sagiv, Y.: Automatic termination analysis of logic programs.
In: ICLP (1997)

19. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. A-W (1996)
20. Necula, G.: Proof-Carrying Code. In: POPL 1997. ACM Press, New York (1997)
21. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear

ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937.
Springer, Heidelberg (2004)

22. Rossignoli, S., Spoto, F.: Detecting Non-Cyclicity by Abstract Compilation into
Boolean Functions. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855. Springer, Heidelberg (2005)

23. Secci, S., Spoto, F.: Pair-sharing analysis of object-oriented programs. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 320–335. Springer, Heidelberg
(2005)

24. Spoto, F., Hill, P.M., Payet, E.: Path-length analysis for object-oriented programs.
In: Proc. EAAI (2006)

25. Spoto, F., Jensen, T.: Class analyses as abstract interpretations of trace semantics.
ACM Trans. Program. Lang. Syst. 25(5), 578–630 (2003)

26. Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -
a Java optimization framework. In: Proc. of CASCON 1999, pp. 125–135 (1999)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

250

PROLE 2009

Termination and Cost Analysis with COSTA

and its User Interfaces

E. Albert1 P. Arenas1 S. Genaim1 M. Gómez-Zamalloa1

G. Puebla2 D. Ramı́rez2 G. Román2 D. Zanardini2

1 DSIC, Complutense University of Madrid, {elvira,puri,samir.genaim,mzamalloa}@fdi.ucm.es

2 Technical University of Madrid, {german,diana,groman,damiano}@clip.dia.fi.upm.es

Abstract

costa is a static analyzer for Java bytecode which is able to infer cost and termination information for
large classes of programs. The analyzer takes as input a program and a resource of interest, in the form
of a cost model, and aims at obtaining an upper bound on the execution cost with respect to the resource
and at proving program termination. The costa system has reached a considerable degree of maturity in
that (1) it includes state-of-the-art techniques for statically estimating the resource consumption and the
termination behavior of programs, plus a number of specialized techniques which are required for achieving
accurate results in the context of object-oriented programs, such as handling numeric fields in value analysis;
(2) it provides several non-trivial notions of cost (resource consumption) including, in addition to the number
of execution steps, the amount of memory allocated in the heap or the number of calls to some user-specified
method; (3) it provides several user interfaces: a classical command line, a Web interface which allows
experimenting remotely with the system without the need of installing it locally, and a recently developed
Eclipse plugin which facilitates the usage of the analyzer, even during the development phase; (4) it can deal
with both the Standard and Micro editions of Java. In the tool demonstration, we will show that costa is
able to produce meaningful results for non-trivial programs, possibly using Java libraries. Such results can
then be used in many applications, including program development, resource usage certification, program
optimization, etc.

Keywords: Cost Analysis, Termination Analysis, Resource Usage.

1 Introduction and System Description

We start by describing the architecture of costa, an abstract-interpretation-based

static analyzer for studying the cost [4] and termination [1] behavior of Java bytecode

[7] programs. Cost analysis deals with statically estimating the amount of resources

which can be consumed at runtime (i.e., the cost), given the notion of a specific

resource of interest, while the goal of termination analysis is to prove, when it is

the case, that a program terminates for every input.

⋆ This work was funded in part by the Information Society Technologies program of the European Commis-
sion, Future and Emerging Technologies under the IST-15905 MOBIUS and IST-231620 HATS projects, by
the Spanish Ministry of Education (MEC) under the TIN-2005-09207 MERIT, TIN-2008-05624 DOVES and
HI2008-0153 (Acción Integrada) projects, and the Madrid Regional Government under the S-0505/TIC/0407
PROMESAS project.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

251

Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

The input provided to the analyzer consists of a program and a description of

the resource of interest, which we refer to as cost model. costa tries to infer an up-

per bound of the resource consumption, and sound information on the termination

behavior (i.e., if the system infers that the program terminates then it should def-

initely terminate). The system comes equipped with several notions of cost, such

as the heap consumption, the number of bytecode instructions executed, and the

number of calls to a specific method.

costa is based on the classical approach to static cost analysis [14] which consists

of two phases. First, given a program and a description of the resource, the analysis

produces cost relations, which are sets of recursive equations. Second, closed-form

solutions are found, if possible. For this, costa uses PUBS [2].

Having both cost and termination analysis in the same tool is interesting since

such analyses share most of the computing machinery, and thus a large part of the

analyzer is common to both. As an example, proving termination needs reasoning

about the number of iterations of every loop in the program, which is also an

essential piece of information for computing its cost.

In spite of being still a prototype, costa includes state-of-the-art techniques

for cost and termination analysis, plus a number of specialized components and

auxiliary static analyses which are required in order to achieve accurate results in

the context of object-oriented programs, such as handling numeric fields in value

analysis. As for the usability, the system provides several user interfaces: (i) a

classical command-line interface (Section 2.1); (ii) a Web interface which allows

using costa from a remote location, without the need of installing it locally (Sec-

tion 2.2), and permits to upload user-defined examples as well as testing programs

from a representative set; and (iii) a recently developed plugin for the widely used

programming environment Eclipse [6], which allows easily using the analyzer while

developing software (Section 2.3). costa can deal with full sequential Java, either

in the Standard Edition [13] or the Micro Edition [8]. Needless to say, the analyzer

works on Java bytecode programs, and does not require them to come from the

compilation of Java source code: instead, bytecode may have been implemented by

hand, or obtained by compiling languages different from Java.

The tool demonstration will show that costa is able to read .class files and

produce meaningful and reasonably precise results for non-trivial programs, possibly

using Java libraries. Possible uses of such cost and termination results include:

• helping the programmer in the development process, as obtained by using costa

from the Eclipse plugin;

• the costa results can be used as guarantees that the program will not take too

much time or resources in its execution nor fail to terminate; furthermore, this

can potentially be combined with the Proof-carrying code [10] paradigm by adding

certificates to programs which make checking resource usage more efficient.

• program optimization, costa can be used for guiding program optimization or

choosing the most efficient implementation among several alternatives.

The preliminary experimental results performed to date are very promising and they

suggest that resource usage and termination analysis can be applied to a realistic

object-oriented, bytecode programming language.

2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

252

Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

Fig. 1. Two ways of setting values for analysis options

2 User Interfaces of COSTA

2.1 Command-Line Interface

costa has a command-line interface for executing costa as a standalone application.

Different switches allow controlling the different options of the analyzer. It facili-

tates the implementation of other interfaces, as discussed below. They collect user

information and interact with costa by making calls to its command-line interface.

2.2 Web Interface

The costa web interface allows users to try out the system on a set of representative

examples, and also to upload their own programs, which can be in the form of either

Java source, or as Java bytecode, in which case it can be given as a .class or a

.jar file. As the behavior of costa can be customized using a relatively large set

of options, the web interface allows two alternatives modes of use.

The first alternative, which we call automatic (see Figure 1, left) allows the user

to choose from a range of possibilities which differ in the analysis accuracy and

overhead. Starting from level 0, the default, we can increase the analysis accuracy

(and overhead) by using levels 1 through 3. We can also reduce analysis overhead

(and accuracy) by going down to levels -1 through -3. The main advantage of the

automatic mode is that it does not require the user to understand the different

options implemented in the system and their implications in analysis accuracy and

overhead. The second alternative is called manual (see Figure 1, right) and it

is meant for expert users. There, the user has access to all the analysis options,

allowing a fine-grained control over the behavior of the analyzer. For instance,

these options allow deciding whether to analyze the Java standard libraries or not,

whether to take exceptions into account, to perform or not a number of pre-analyses,

to write/read analysis results to file in order to reuse them in later analyses, etc.

Figure 2 shows the output of costa on an example program with exponential

3

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

253

Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

Fig. 2. Results

Fig. 3. costa Plugin Preferences

complexity. In addition to showing the result of termination analysis and an upper

bound on the execution cost, costa (optionally) displays information about the time

required by the intermediate steps performed by the analyzer in previous phases.

2.3 Eclipse Plugin

costa also has available an Eclipse plugin interface, which is fully integrated within

the Eclipse development environment. This plugin allows programmers to analyze

methods during the development process. It loads the classpath established for

the project and uses for analysis the same classes and libraries specified by the user

to compile and execute the program. As in the web interface, users can configure a

large set of options by using the Eclipse preferences configuration window, as shown

in Fig. 3. These options are saved and loaded at every Eclipse execution. Also, the

user can choose either the automatic analysis or the expert mode which allows a

more fine-grained customization, like in the web interface. By using this plugin,

4

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

254

Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

Fig. 4. costa Plugin Markers and View

one can analyze one or several methods from a class (see Fig. 5) or the whole class

(by running the analysis on all its methods). The results of the analysis are shown

using markers in the source code (see Fig. 4). Such markers are different depending

on the cost model used for analysis. In addition, the plugin also shows all previous

analysis results in an additional view, which we call “the costa view”. The costa

view also includes a warning icon for methods whose termination is not proved, in

order to alert the programmer about potential problems. It can also read comments

in the source code, written in Javadoc style, in order to set up analysis information.

Fig. 5. costa Plugin Methods Selection

3 Functionalities of COSTA

In this section, we explain the main functionalities of costa by means of several

small examples. Some of these examples aim at illustrating the different cost models

available in the system. The last two examples are related to termination issues.

In particular, we start in Sect. 3.1 by showing a program whose execution requires

5

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

255

Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

public static int funExp(int n) {

if (n < 1) return 1;

else return funExp(n - 1) + funExp(n - 2);

}

Fig. 6. Example for number of instructions

abstract class List {

abstract List copy();

}

class Nil extends List {

List copy() {

return new Nil();

}

}

class Cons extends List {

int elem;

List next;

List copy(){

Cons aux = new Cons();

aux.elem = m(this.elem);

aux.next = this.next.copy();

return aux;

}

static int m(int n) {

Integer aux = new Integer(n);

return aux.intValue();

}

} // class Cons

Fig. 7. Example for memory consumption

an exponential number of bytecode instructions. Then, in Sect. 3.2, we present

the cost model that bounds the total heap consumption of executing a program

and the recent extension to account for the effect of garbage collection. Sect. 3.3

performs resource analysis on a MIDlet using the cost model “number of calls” to

a given method. Finally, in Sect. 3.4, we prove termination on an example whose

resource consumption cannot be bound by costa and, also, show the latest progress

to handle numeric fields(Sect. 3.5) in termination analysis.

3.1 Number of Instructions

The cost model which counts the number of instructions which are executed is

probably the most widely used within cost analyzers, as it is a first step towards

estimating the runtime required to run a program. Let us consider the Java method

in Fig. 6. The execution of this method has an exponential complexity as each call

spawns two recursive calls until the base case is found. costa yields the upper

bound(slightly pretty printed) -13 + 18*2nat(n) using its automatic mode which

indicates, as expected, that the number of instructions which are executed grows

exponentially with the value of the input argument n. This shows that costa is not

restricted to polynomial complexities, in contrast to many other approaches to cost

analysis.

3.2 Memory Consumption

Let us consider the Java program depicted in Figure 7. It consists of a set of Java

classes which define a linked-list data structure in an object-oriented style. The

class Cons is used for data nodes (in this case integer numbers) and the class Nil

plays the role of null to indicate the end of a list. Both Cons and Nil extend the

abstract class List. Thus, a List object can be either a Cons or a Nil instance.

Both subclasses implement a copy method which is used to clone the corresponding

6

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

256

Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

object. In the case of Nil, copy just returns a new instance of itself since it is the

last element of the list. In the case of Cons, it returns a cloned instance where the

data is cloned by calling the static method m, and the continuation is cloned by

calling recursively the copy method on next.

The heap cost model of costa basically assigns, to each memory allocation in-

struction, the number of heap units it consumes. It can therefore be used to infer

the total amount of memory allocated by the program. Running costa in automatic

mode, level 0, yields the following upper bound for the copy method of class Cons:

nat(this-1)*(12 + k1 + k2 + k3) + 12 + 2*k1 + k2 + k3

It can be observed that the heap consumption is linear w.r.t. the input parameter

this, which corresponds to the size of the this object of the method, i.e., the length

of the list which is being cloned. This is because the abstraction being used by

costa for object references is the length of the longest reference chain, which in

this case corresponds to the length of the list. The expression also includes some

constants. The symbolic constants k1, k2 and k3 represent the memory consumption

of the library methods which are transitively invoked. In particular, k1 corresponds

to the constructor of class Object and k2 resp. k3 to the constructor and intValue

method of the class Integer. The numeric constant 12 is obtained by adding 8 and

4, being 8 the bytes taken by an instance of class Cons, and 4 the bytes taken by

an Integer instance. Note that we are approximating the size of an object by the

sum of the sizes of all of its fields. In particular, both an integer and a reference are

assumed to consume 4 bytes.

Interestingly, we can activate the flag go into java api and thus ask costa to

analyze all library methods which are transitively invoked. In this case we obtain

the upper bound 12*nat(this-1) + 12, for the same method. This is because the

library methods used do not allocate new objects on the heap.

3.2.1 Peak Heap Consumption

In the case of languages with automatic memory management (garbage collection)

such as Java Bytecode, measuring the total amount of memory allocated, as done

above, is not very accurate, since the actual memory usage is often much lower.

Peak heap consumption analysis aims at approximating the size of the live data on

the heap during a program’s execution, which provides a much tighter estimation.

We have recently developed and integrated in costa a peak memory consumption

analysis [5]. Among other things, this has required the integration of an escape

analysis which approximates the objects which do not escape, i.e., which are not

reachable after a method’s execution. The upper bound ub(A) = 8*nat(A-1) + 24

is now obtained for the same example.

An interesting observation is that the Integer object which is created inside the m

method is not reachable from outside and thus can be garbage collected. The peak

heap analyzer accounts for this and therefore deletes the size of the Integer object

from the recursive equation, thus obtaining 8 instead of 12 multiplying nat(A− 1).

By looking at the upper bound above, it can be observed that costa is not being

fully precise, as the actual peak consumption of this method is 8 ∗ nat(A − 1) + 8

7

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

257

Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

public void commandAction(Command c, Displayable s) {

if (c == exitCommand) {

destroyApp(false);

notifyDestroyed();

}

if (c == sendMsgCommand) {

try {

TextMessage tmsg=(TextMessage)clientConn.newMessage(MessageConnection.TEXT MESSAGE);

tmsg.setAddress("sms://+34697396559");

tmsg.setPayloadText(msgToSend);

clientConn.send(tmsg);

}

catch (Exception exc) {

exc.printStackTrace();

}

}

}

Fig. 8. Example for number of calls

(i.e. the size of the cloned list). The reason for this is that the upper bound solver

has to consider an additional case introduced by the peak heap analysis to ensure

soundness, hence making the second constant increase to 24.

3.3 Number of Calls – Java Micro Edition

The Java Micro Edition (Java ME) [8] technology provides a limited environment

to create Java applications which can be run on small devices with limited memory,

display and power capacity. It is based on three elements: a configuration that

provides the most basic set of libraries and virtual machine capabilities, a profile

which is a set of APIs supported by mobile devices and an optional package (set

of technology-specific APIs). MIDP (Mobile Information Device Profile) [12] is

the profile that limits the set of APIs to only those functional areas considered as

absolute requirements to achieve broad portability and successful deployments. A

MIDlet is an application meeting the specifications for the Java ME technology,

such as a game or a business application. Each MIDlet is an object of class MIDlet

which follows a lifecycle [9], which is a state automaton managed by the Application

Management System (AMS).

costa is able to perfom resource analysis on MIDlets by considering all classes

used on each method called during the lifecycle of the MIDlet. Such methods are

the constructor of the class, the startApp() and the commandAction(Command c,

Displayable d) methods. In particular, the classes used during the analysis of

the class constructor are added to the analysis of the startApp() method. Af-

ter analyzing startApp() method, the current classes are used for analyzing the

commandAction(Command c, Displayable d) method. As a result, the analyzer

obtains a more precise cost and resource analysis for MIDP applications. Fig. 8

shows a simple but real example MIDlet that sends a text message: the text mes-

sage is created (newMessage method), the recipient phone number set (setAddress

method) and the text message is sent using the method send(Message tmsg) of

the Wireless Messaging API.

We analyze this example using the cost model that counts the number of calls

8

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

258

Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

static int factorial(int n) {

int fact=1;

for (int i=1; i<=n; i++) fact=fact*i;

return fact;

};

static int doSum(List x) {

if (x==null) return 0;

else return factorial(x.elem)*doSum(x.next);

}

Fig. 9. Example for termination

(ncalls) to a particular method. We apply it to obtain an upper bound on how

many times the send(Message tmsg) method is called during the execution of

commandAction method in a mobile device. costa outputs 1 as result, as it is to be

expected.

3.4 Termination

Fig. 9 shows two methods which belong to the same class. The method doSum

computes the sum of all factorial numbers contained in the elements of a linked list

x, where List is defined as in Fig. 7. costa is able to ensure the termination of

method doSum but no upper bound can be found by the system for the cost model

ninst. The information that costa yields when computing an upper bound is:

The Upper Bound for ’doSum’(x) is nat(x)*(19+c(maximize_failed)*9)+4
Terminates?: yes

Intuitively, the cost of the calls to factorial cannot be bound because the value of

x.elem is unknown at analysis time. However, we can still prove that the execution

of the two methods always terminates by finding a so-called ranking function [11].

The technical details about how costa deals with termination can be found in [1].

3.5 Numeric Fields

Fig. 10 shows a Java program involving a numeric field in the condition of the loop

of method m. This loop terminates in sequential execution because the field size is

decreased at each iteration, at instruction x.f.setSize(x.f.getSize()− 1), and, for

any initial value of size, there are only a finite number of values which size can take

before reaching zero. Unfortunately, applying standard value analyses on numeric

fields can produce wrong results because numeric variables are stored in a shared

mutable data structure, i.e., the heap. This implies that they can be modified using

different references which are aliases and point to such memory location. Hence,

further conditions are required to safely infer termination. costa incorporates a

novel approach for approximating the value of heap allocated numeric variables [3]

which greatly improves the precision over existing field-insensitive value analyses

while introducing a reasonable overhead. For the example in Fig. 10, costa not

only guarantees termination of method m but is also able to compute the (pretty

printed) upper bound for m(this,x,y,size) is 33+nat(size)*35 by using the

cost model ninst.

4 Discussion and Future Work

costa is, to the best of our knowledge, the first tool for fully automatic cost analy-

sis of object-oriented programs. Currently, the system can be tried online through

9

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

259

Albert, Arenas, Genaim, Puebla, Ramirez, Roman, Zamalloa, Zanardini

class B {

private int size;

public int getSize(){return size;};

public void setSize(int n){size=n;};

};

class A {

private B f;

int m(A x,B y) {

int i=0;

while (x.f.getSize()>0) {

i=i+y.getSize();

x.f.setSize(x.f.getSize()-1);

}

return i;

}

};

Fig. 10. Example for termination in presence of numeric fields

the COSTA web site: http://costa.ls.fi.upm.es. We plan to distribute it soon

under a GPL license. The fact that costa analyzes bytecode, i.e., compiled code,

makes it more widely applicable, since it is customary in Java applications to dis-

tribute compiled programs, often bundled in jars, for which the Java source is not

available.

As future work we plan to: (1) define new cost models to measure the consump-

tion of new resources; (2) support other complexity schemes such as the inference

of lower-bounds; (3) improve both the precision and performance of the underlying

static analyses; and (4) handle the analysis of concurrent programs.

References

[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination Analysis of
Java Bytecode. In FMOODS, LNCS 5051, pages 2–18, 2008.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper Bounds for Recurrence
Relations in Cost Analysis. In SAS, LNCS 5079, 2008.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Dealing with numeric fields in termination analysis
of java-like languages. In FTfJP, 2008.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Bytecode. In
ESOP, LNCS 4421, pages 157–172. Springer, 2007.

[5] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for Languages with Garbage
Collection. In ISMM’09: Proceedings of the 8th international symposium on Memory management,
New York, NY, USA, June 2009. ACM Press.

[6] ECRC. Eclipse User’s Guide. European Computer Research Center, 1993.

[7] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. A-W, 1996.

[8] Java ME. http://java.sun.com/javame/technology/index.jsp.

[9] MIDP. http://java.sun.com/javame/reference/apis/jsr118/javax/-microedition/midlet/package-
summary.html.

[10] G. Necula. Proof-Carrying Code. In Proc. of ACM Symposium on Principles of programming languages
(POPL), pages 106–119. ACM Press, 1997.

[11] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking functions. In
VMCAI, 2004.

[12] Java Community Process MIDP Release. http://jcp.org/aboutJava/communityprocess/final/jsr118-
/index.html.

[13] Java SE. http://java.sun.com/javase/technologies/index.jsp.

[14] B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM, 18(9), 1975.

10

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

260

Noname manuscript No.
(will be inserted by the editor)

Closed-Form Upper-Bounds in Static Cost Analysis

Elvira Albert · Puri Arenas

Samir Genaim · Germán Puebla

Received: November 11, 2008 / Accepted: ???

Abstract The classical approach to automatic cost analysis consists of two phases.

Given a program and some measure of cost, the analysis first produces cost relations

(CRs), i.e., recursive equations which capture the cost of the program in terms of the

size of its input data. Second, CRs are converted into closed-form without recurrences.

Whereas the first phase has received considerable attention, with a number of cost

analyses available for a variety of programming languages, the second phase has been

comparatively less studied. This article presents, to our knowledge, the first practical

framework for the generation of closed-form upper-bounds for CRs which (1) is fully

automatic, (2) can handle the distinctive features of CRs originated from cost analysis

of realistic programming languages, (3) is not restricted to simple complexity classes,

and (4) produces reasonably accurate solutions. A key idea in our approach is to view

CRs as programs, which allows applying semantic-based static analyses and trans-

formations to bound them, namely our method is based on the inference of ranking

functions and loop invariants and on the use of partial evaluation.

Keywords Cost analysis, closed-form upper-bounds, resource analysis, automatic

complexity analysis, static analysis, abstract interpretation, programming languages.

1 Introduction

Having information about the execution cost of programs, i.e., the amount of resources

that the execution will require, is quite useful for many different purposes. Also, reason-

ing about execution cost is difficult and error-prone. Therefore, it is widely recognized

that cost analysis, sometimes also referred to as resource analysis or automatic com-

plexity analysis, is quite important. In this work we are interested in static cost analysis,

Elvira Albert · Puri Arenas · Samir Genaim
DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
E-mail: {elvira,puri,samir.genaim}@sip.ucm.es

Germán Puebla
CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain
E-mail: german@clip.dia.fi.upm.es

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

261

2

i.e., the analysis results for a program P should allow bounding the cost of executing

P on any input data x without having to actually run P (x).

The classical approach to static cost analysis consists of two phases. First, given a

program and a cost model, the analysis produces cost relations (CRs for short), i.e., a

system of recursive equations which capture the cost of the program in terms of the

size of its input data. As a simple example, consider the following Java method m

which traverses an array v and, depending whether the array elements are odd or even,

invokes a different method m2 or m1:

public void m(int[] v) {
int i=0;

for (i=0; i<v.length; i++)

if (v[i]%2==0) m1();

else m2();

}
The following cost relations capture the cost of executing this program:

(a) Cm(v) = k1 + Cfor (v, 0) {v≥0}
(b) Cfor (v, i) = k2 {i≥v, v≥0}
(c) Cfor (v, i) = k3 + Cm1() + Cfor (v, i+1) {i<v, v≥0}
(d) Cfor (v, i) = k4 + Cm2() + Cfor (v, i+1) {i<v, v≥0}

where v denotes the length of the array v, i stands for the counter of the loop and Cm,

Cm1 and Cm2 approximate, respectively, the costs of executing the methods m, m1 and

m2. The constraints attached to the equations contain their applicability conditions.

For instance, equation (a) corresponds to the cost of executing the method m with

an array of length greater that 0 (stated in the condition {v≥0}), where a cost k1 is

accumulated to the cost of executing the loop, given by Cfor . The constants k1, . . . , k4
take different values depending on the cost model that one selects. For instance, if

the cost model is the number of executed instructions, then k1 is 1 which corresponds

to the execution of the Java instruction “int i = 0;”. If the cost model is the heap

consumption, then k1 is 0 since the previous instruction does not allocate any memory.

Equations (c) and (d) capture, respectively, the costs of the then and the else branches.

Note that, even if the program is deterministic, they are non-deterministic equations

which contain the same applicability conditions. This is due to the fact that the array v

is abstracted to its length and hence the values of its elements are unknown statically.

Equation (b) captures the cost of exiting the loop.

Some interesting features of cost relations are that: (1) They are programming

language independent: there are analyzers for many different languages which produce

cost relations. (2) They are not limited to any complexity class. The same techniques

can be used to infer cost which is logarithmic, exponential, etc. (3) They can be used

for capturing a variety of non-trivial notions of resources, such as heap consumption,

number of calls to a specific method, etc.

Though cost relations are simpler than the programs they originate from, since all

variables are of integer type, in several respects they are not as static as one would

expect from the result of a static analysis. One reason is that they are recursive and

thus we may need to iterate for computing their value for concrete input values. An-

other reason is that even for deterministic programs, it is well known that the loss of

precision introduced by the size abstraction may result in cost relations which are non-

deterministic. This happens in the above example: since the array v has been abstracted

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

262

3

to its length v, the values of v[i] are unknown statically. Hence, the last two equations

(c) and (d) become non-deterministic choices. In general, for finding the worst-case

cost we may need to compute and compare (infinitely) many results. For both reasons,

it is clear that it is interesting to compute closed-form upper-bounds for the cost re-

lation, whenever this is possible, i.e., upper-bounds which are not in recursive form.

For instance, for the above example, we aim at inferring the closed-form upper bound

k1+k2+v∗max ({k3 + Cm1 , k4 + Cm2 }) where Cm1 and Cm2 are in turn closed-form

upper-bounds for the corresponding methods.

Since cost relations are syntactically quite close to Recurrence Relations (RRs for

short), in most cost analysis frameworks, it has been assumed that cost relations can

be easily converted into RRs. This has led to the belief that it is possible to use existing

Computer Algebra Systems (CAS for short) for finding closed-forms in cost analysis.

As we will show, cost relations are far from RRs. In this article, we present, to the

best of our knowledge, the first practical framework for the fully automatic inference of

reasonably accurate closed-form upper-bounds for CRs originating from a wide range

of programs. The main novelty of our approach is that, by providing a semantics for

CRs, we can view CRs as programs and, thus, apply semantic-based static analyses

and transformations to automatically infer upper bounds for them. In particular, our

main contributions are summarized as follows:

– We identify the differences between CRs and RRs, in Section 2.

– We provide a formal definition of CRs and their semantics in terms of evaluation

trees, in Section 3. These notions are independent of the language and cost model.

– We present a general approximation scheme to infer closed-form upper-bounds in

Section 4. Basically, it is based on the idea of bounding the cost of the corresponding

evaluation trees. This requires computing upper bounds both on the depth of tree

and also on the cost of nodes.

– In Section 5, we propose to use a specific form of ranking functions, which have

been extensively studied in termination analysis (see e.g. [41]), to bound the depth

of the evaluation tree.

– In Section 6, we present how to bound the cost of nodes by relying on loop invari-

ants [21] and maximization operations.

– In Section 7, we develop an extension of our method to obtain more accurate upper

bounds for divide and conquer programs which is based on counting levels in the

evaluation tree rather than counting nodes.

– Our method can be used when CRs are directly recursive. We present in Section 8

an automatic program transformation, formalized in terms of partial evaluation

(see e.g. [30]), which converts CRs into an equivalent directly recursive form.

– We report on a prototype implementation and apply it to obtain closed-form upper-

bounds for CRs automatically generated from Java bytecode programs.

A preliminary version of this work appeared in the Proceedings of SAS’08 [10]. We have

pursued cost relations as a language-independent target language for cost analysis in

[3]. Our remaining previous work on cost analysis [4,5,7,8] is not related to this article

but to the first phase in cost analysis which obtains, from a program and a cost model,

a cost relation.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

263

4

1.1 Applications of Upper Bounds of Cost Relations

Automatic cost analysis requires the inference of closed-form upper-bounds in order to

be used within its large application field, which includes the following applications:

Resource Bound Certification. This research area deals with security properties in-

volving resource usage requirements; i.e., the (untrusted) code must adhere to specific

bounds on its resource consumption. The present work enables the automatic genera-

tion of non-trivial closed-form upper-bounds on cost. Such upper bounds could then be

translated to certificates, in the proof-carrying code style. Previous work in this direc-

tion was restricted to linear bounds [23,11,29] and to semi-automatic techniques [19].

Performance Debugging and Validation. This application is based on automating the

process of checking whether certain assertions about the efficiency of the program, pos-

sibly written by the programmer, hold or not. This application was already mentioned

as future work in [50] and is available in the CiaoPP system for Prolog programs [27].

Our closed-form upper-bounds can be used to check whether the overall cost of an

application meets the resource-consumption constraints specified in the assertions.

Program Synthesis and Optimization. This application was already mentioned as one

of the motivations for [50]. Both in program synthesis and in semantic-preserving op-

timizations, such as partial evaluation (see e.g. [22,42]), there are multiple programs

which may be produced in the process, with possibly different efficiency levels. Here,

upper bounds on the cost can be used for guiding the selection process among a set of

candidates.

2 Cost Relations vs. Recurrence Relations

The aim of this section is to identify the differences between cost relations and tradi-

tional recurrence relations. For this purpose, we take a close look at the CRs which

appear in cost analysis of real programs. Figure 1 shows a Java program which we use

as running example. We explain in detail, in Section 2.1 below, the CRs produced for

this program by the automatic cost analysis of [4]. Then, in Section 2.2 we discuss the

differences with RRs.

2.1 Cost Relations for the Running Example

Consider the Java code in Figure 1. It uses a List class for (non sorted) linked lists of

integers which is implemented in the usual way. The del method receives as input: l,

a list without repetitions; p, an integer value (the pivot); a and b, two sorted arrays

of integers; and la and lb, two integers which indicate, respectively, the number of

positions occupied in a and b. The a (resp. b) array is expected to contain values which

are smaller (resp. greater or equal) than p, the pivot. Under the assumption that all

values in l are contained in either a or b, the method del removes all values in l from

the corresponding arrays. The rm vec auxiliary method removes a given value e from

an array a of length la and returns a’s new length, la−1.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

264

5

stat ic void d e l (L i s t l , int p , int a [] , int l a , int b [] , int l b){
while (l !=null){ // co s t e qua t i o n s (2) , (3) , (4)

i f (l . data < p) l a=rm vec (l . data , a , l a) ;
else l b=rm vec (l . data , b , l b) ;
l=l . nex t ;

}
}
stat ic int rm vec (int e , int a [] , int l a){

int i =0;
while (i < l a && a [i]<e) { i ++;}; // co s t e qua t i o n s (5) , (6) , (7)
for (int j=i ; j<l a −1; j++) a [j]=a [j +1] ; // co s t e qua t i o n s (8) , (9)
return l a −1;

}

Fig. 1 Java code of running example

loop-D ENTRY

i<la and
a [i]<e

i>= la o r
 a [i]>=e

i = i + 1 loop-D EXIT

del ENTRY

call LOOP-C

loop-E ENTRY

 j<la-1 j>= la -1

j + +
a [j] =a [j +1]

loop-E EXIT

l !=nu l l
l .data<p

l !=nu l l
l . da ta>=p

l=nu l l

la=rm_vec(l.data,b, lb)la=rm_vec(l.data,a,la)

loop-C ENTRY

l= l .next

loop-C EXIT

DEL rm_vec

i = 0
call LOOP-D
j = i
call LOOP-E
return la-1

Fig. 2 Control flow graphs for running example

Example 1 In Figure 2, we show the control flow graphs (CFG) constructed by COSTA

in order to generate automatically the CRs. Such CFGs correspond to the graphs for

the two methods (del and rm vec) and separate CFGs for the loops, as in COSTA loop

extraction is performed mainly for efficiency issues (see [2]). Although [4] analyzes Java

bytecode and not Java source, we show the source for clarity of the presentation.

Figure 3 shows the CRs automatically generated by the system for the del method

in Figure 1 using the CFGs in Figure 2. The syntax and semantics of CRs is explained

in detail in Section 3. Briefly, cost relations are defined by means of equations, each of

which has an associated set of constraints which is shown to the right of the equation.

Intuitively, the CRs are obtained from the program after performing the following three

main steps:

1. In the first step, the recursive structure of the cost relation is determined by observ-

ing the iterative constructs in the program. In the case of imperative programs, both

loops and recursion produce recursive calls in the cost relation. The CR matches

the structure of the program such that when the program contains an iterative

construct, its CR has a recursion. To carry out this step, analyzers usually build

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

265

6

(1) Del(l, a, la, b, lb) = 1+C(l, a, la, b, lb) {l ≥ 0, a ≥ la, la ≥ 0, b ≥ lb, lb ≥ 0}

(2) C(l, a, la, b, lb) = 2 {l = 0, a ≥ la, a ≥ 0, b ≥ lb, b ≥ 0}
(3) C(l, a, la, b, lb) = 25+D(a, la, 0)+E(la, j)+

C(l′, a, la − 1, b, lb) {l > 0, a ≥ la, a ≥ 0, b ≥ lb, b ≥ 0, j ≥ 0, l > l′}
(4) C(l, a, la, b, lb) = 24+D(b, lb, 0)+E(lb, j)+

C(l′, a, la, b, lb − 1) {l > 0, a ≥ la, a ≥ 0, b ≥ lb, b ≥ 0, j ≥ 0, l > l′}

(5) D(a, la, i) = 3 {i ≥ la, a ≥ la, i ≥ 0}
(6) D(a, la, i) = 8 {i < la, a ≥ la, i ≥ 0}
(7) D(a, la, i) = 10+D(a, la, i+1) {i < la, a ≥ la, i ≥ 0}

(8) E(la, j) = 5 {j ≥ la − 1, j ≥ 0}
(9) E(la, j) = 15+E(la, j+1) {j < la − 1, j ≥ 0}

Fig. 3 Cost relations generated by cost analysis of running example

CFGs. In our example, we have three recursive cost relations C, D and E which

correspond to the three CFGs for the loops in Figure 2:

– C : cost of the while loop in del,

– D : cost of the while loop in rm vec,

– E : cost of the for loop in rm vec.

For readability, the CRs in Figure 3 are shown after performing partial evaluation,

as we will explain in Section 8. This explains why there is no relation for the method

rm vec: the calls to rm vec have been unfolded within its calling context, i.e., they

have been replaced by the right hand side of the corresponding equation.

2. In the second step, static analysis techniques are used in order to approximate how

the size of variables change from one call in the cost relation to another. Each pro-

gram variable is abstracted using a size measure such that every non-integer value

is represented as a natural number. Classical size measures used for non-integer

types are: array length for arrays, list length for lists, the length of the longest ref-

erence path for linked data structures, etc. In the above example, l represents the

path-length [47] of the corresponding dynamic structure, which in this case coin-

cides with the length of the list; a and b are the lengths of the corresponding arrays.

Since la and lb are numeric (integer) variables, the CR directly handles those val-

ues, i.e., no abstraction is required for them. Analysis is often done by obtaining an

abstract version of the program by relying on abstract interpretation [20]. Essen-

tially, the abstraction consists in inferring size constraints, sometimes also referred

to as size relations, between the program variables at different program points.

In Figure 3, such size relations are shown to the right of the equations. They are

usually expressed by means of linear constraints. We refer to such abstraction by

size abstraction and to an analysis that infers such relations by size analysis.

3. In the last step, instructions in the original program are replaced by the cost they

represent. In the running example, we count the number of bytecode instructions

executed such that each Java instruction corresponds to several bytecodes. It is

not a concern of this paper to understand how bytecode instructions are related to

Java statements. Hence, we omit explanations about the inferred constants in the

equations.

After applying the above steps, the analyzer can set up the CRs shown in Figure 3

which we explain below. Equation (1) defines the cost of method del as 1 bytecode

instruction plus the cost of the call to C . Observe also that the set of constraints contain

applicability conditions (i.e., guards) for each equation, if any, by providing constraints

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

266

7

which only affect a subset of the variables in the left hand side (lhs for short). For

clarity, we have inlined equality constraints (e.g., inlining equality lb′ = lb− 1 is done

by replacing all occurrences of lb′ by lb − 1). The constraints attached to (1) are the

(abstract) preconditions of the program. Among them, we have a ≥ la (resp. b ≥ lb),

which requires that the number of elements occupied in each array is less or equal than

its length. Such preconditions are propagated properly to the rest of the equations.

In addition to Del, we have three recursive relations. As regards E, Equation (8)

is its base case and it corresponds to the exit from the for loop, whereas Equation (9)

counts the cost of each iteration in the loop. As expected, the value of j is increased

by one at the recursive call to E. As regards the cost relation D, we have two base

cases, Equations (5) and (6), which correspond to the exits from the loop because

i ≥ la and because a[i] ≥ e, respectively. The important point here is that the second

condition does not appear in the constraints of Equation (6) because this condition

is not observable after abstracting the array a to its length, i.e., the value in a[i] is

unknown. For the selected cost model, we count 3 bytecode instructions in the first

base case and 8 in the second one. The cost of executing an iteration of the loop is

captured by (7), where the condition i < la must be satisfied and variable i is increased

by one at each recursive call.

Finally, in relation C, Equation (2) corresponds to the case of an empty list, in-

dicated by the condition l = 0. Equations (3) and (4) correspond, respectively, to the

then and else branches of the if-then-else construct within the while loop. Hence, both

of them contain the relation l > 0. Note that, as before, the conditions l.data < p and

l.data ≥ p in the Java program do not appear in the constraints attached to Equa-

tions (3) and (4) as they are not preserved by the corresponding size abstraction. The

calls to D and E in (3) capture the cost of executing the method rm vec for a and la.

In the constraints, la decreases by one upon exit from rm vec. l′ corresponds to the

length of the list when we perform the recursive call. It is ensured that the size of l

has decreased (l > l′), but due to the size abstraction, we do not know how much.

This is because the size analysis for heap allocated data structures used in [4] is based

on path-length analysis, where size relations are expressed using > and ≥ only. Equa-

tion (4) is similar to (3) but for b and lb instead of a and la. Note that when calling

E in equations (3) and (4), a fresh variable j is used since we do not know the value

that j can take after executing the while loop. We only know that j ≥ 0, as it appears

in the attached constraint. 2

Importantly, if the program was written in a different programming language, the first

phase in cost analysis would produce a similar cost relation which differs essentially

only on intermediate equations and on the constants which are counted. This step is

outside the scope of this article (see Section 11 for references to this phase in several

programming languages). Our approach for computing closed-form upper-bounds takes

as input cost relations which originate from programs written in any programming

language.

2.2 Why Cost Relations are not Recurrence Relations ?

As can be seen in the CRs in the example, CRs differ from standard RRs in the

following ways:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

267

8

(a) Non-determinism. In contrast to RRs, CRs are highly non-deterministic: equations

for the same relation are not required to be mutually exclusive. Even if the program-

ming language is deterministic, size abstractions introduce a loss of precision: some

guards which make the original program deterministic may not be observable when

using the size of arguments instead of their actual values. In Example 1, this happens

between Equations (3) and (4) and also between (6) and (7).

(b) Inexact constraints. CRs may have constraints other than equalities, such as l > l′.

When dealing with realistic programming languages which contain non-linear data

structures, such as trees, it is often the case that size analysis does not produce exact

results. E.g., analysis may infer that the size of a data structure strictly decreases from

one iteration to another, but it may be unable to provide the precise reduction. This

happens in Example 1 in Equations (3) and (4).

(c) Multiple arguments. CRs usually depend on several arguments that may increase

(variable i in Equation (7)) or decrease (variable l in Equation (2)) at each iteration.

In fact, the number of times that a relation is executed can be a combination of several

of its arguments. E.g., relation E is executed la− j − 1 times.

Point (a) is an obvious source of non-determinism and it was already detected

in [50]. Point (b) is another source of non-determinism. Though it may not be so

evident in small examples, it is almost unavoidable in programs handling trees or when

numeric value analysis loses precision. As a result of (a) and (b), strictly speaking,

CRs do not define functions, but rather relations: given a relation C and input values

v̄, there may exist multiple output values for C(v̄). As regards point (c), most existing

solvers can only handle single-argument recurrences (Mathematica is an exception).

Sometimes it is possible to automatically convert relations with several arguments into

relations with only one. However, this approach only provides correct results when the

CR, in addition to the recursive calls themselves, only has constant value expression

in the right hand side (rhs for short). Note that this is in general not the case except

for toy CRs.

The above differences make existing methods for solving RRs insufficient to bound

CRs, since they do not cover points (a), (b), and (c) above. On the other hand, CASs

can solve complex recurrences (e.g., coefficients to function calls can be polynomials)

which our framework cannot handle. However, this additional power is not needed in

cost analysis, since such recurrences do not occur as the result of cost analysis.

Given a (non-deterministic) cost relation, it is sometimes useful to define a cost

function. A relatively straightforward way of obtaining a cost function from non-

deterministic CRs would be to introduce a maximization operator. Unfortunately, the

cost functions thus produced are not very useful since existing CAS do not support the

maximization operator. Adding it is far from trivial, since computing the maximum

when the equations are not mutually exclusive requires taking into account multiple

possibilities, which results in a highly combinatorial problem. This combinatorial ex-

plosion also affects the use of such cost-bound function in dynamic approaches, i.e.,

those based on executing cost-bound functions, such as [26].

Another approach is to obtain a cost-bound function by eliminating non-determinism.

For this, we need to remove equations from CRs as well as sometimes to replace inex-

act constraints by exact ones while preserving the worst-case solution. However, this

is not possible in general. E.g., in Figure 3, the maximum cost is obtained when the

execution interleaves Equations (3) and (4), and therefore the worst case cannot be

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

268

9

achieved if we remove either equation. In other words, the upper bound obtained by

removing either of Equations (3) and (4) is not an upper bound of the original CR.

Finally, let us observe that the properties listed above are all evident properties

of constraint programs whose arguments are integer values. This explains the fact

that we treat CR as programs and apply analysis and transformations delevoped for

programming languages on them.

3 Cost Relations: Syntax and Semantics

Let us introduce some notation and preliminary definitions. The sets of natural, integer

and real values are denoted respectively by N, Z and R. The sets of non-negative integer

and real values are denoted respectively by Z+ and R+. We use v and w for values from

Z and Z+, r for values from R and R+, and n for values from N. We write x, y, and

z, to denote variables which range over Z. Given any entity t, vars(t) refers to the set

of variables occurring in t. The notation t̄ stands for a sequence of entities t1, . . ., tn,

for some n > 0. For simplicity, we sometimes interpret these sequences as sets. We use

t[ȳ/x̄] to denote the renaming of the variables x̄ by ȳ.

A linear expression has the form v0 + v1x1 + · · · + vnxn. A linear constraint c

(over Z) has the form l1 ≤ l2 where l1 and l2 are linear expressions. For simplicity,

we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and l1 < l2 instead of l1 + 1 ≤ l2. Note

that constraints with rational coefficients can be always transformed to equivalent

constraints with integer coefficients, e.g., 1
2x > y is equivalent to x > 2y. We write

ϕ, ψ or φ, possibly subscripted, to denote sets of linear constraints, i.e., of the form

{c1, . . . , cn}, which should be interpreted as the conjunction c1 ∧ · · · ∧ cn. We write

x̄ = ȳ to denote x1 = y1∧· · ·∧xn = yn and ϕ1 |= ϕ2 to indicate that the (set of) linear

constraints ϕ1 implies the (set of) linear constraints ϕ2. An assignment σ over a tuple

of variables x̄ is a mapping from x̄ to Z. Sometimes we denote an assignment over x̄ as

x̄ = v̄, therefore we might write σ |= ϕ for x̄ = v̄ |= ϕ. The projection operator ∃x̄.ϕ
(resp. ∃̄x̄.ϕ) projects the polyhedron defined by ϕ on the space vars(ϕ) \ x̄ (resp. x̄).

The following definition presents our notion of basic cost expression, which char-

acterizes syntactically the kind of expressions we deal with. Such expressions will be

crucial to characterize the cost relation systems defined in the next section.

Definition 1 (basic cost expression) A symbolic expression exp is a basic cost

expression if it can be generated using the grammar below:

exp::= r | nat(l) | exp + exp | exp ∗ exp | expr | logn(exp) | nexp | max(S) | exp− r

where r ∈ R+, l is a linear expression, S is a non empty set of basic cost expressions,

nat : Z → Z+ is defined as nat(v)= max({v, 0}), and exp satisfies that for any assign-

ment σ : vars(exp) 7→ Z we have that [[exp]]σ ∈ R+, where [[exp]]σ is the result of

evaluating exp w.r.t. σ.

Basic cost expressions are symbolic expressions which represent the resources we accu-

mulate and are the non-recursive building blocks for defining cost relations and for the

closed-form upper-bounds that we infer for them. Cost expressions enjoy two crucial

properties: (1) By definition, they are always evaluated to non-negative values, for in-

stance, the expression nat(x)−1 is not a cost expression, since its evaluated to negative

numbers for x ≤ 0, however, nat(x − 1) is a valid cost expression; and (2) They are

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

269

10

monotonic in their nat components, i.e., replacing a sub-expression nat(l) by nat(l′)

such that l′ ≥ l, results in an upper bound of the original expression. This is essential

for defining the maximization procedure ub exp, which is defined in Section 6.2.

Proposition 1 Let exp be a basic cost expression, l and l′ be linear expressions and

ϕ be a set of linear constraints such that ϕ |= l′ ≥ l. Let exp′ be the result of replacing

an occurrence of nat(l) in exp by nat(l′). Then for any assignment σ for vars(exp′) ∪
vars(exp), if σ |= ϕ then [[exp′]]σ ≥ [[exp]]σ.

Proof By structural induction on basic cost expressions: (1) for expressions of the form

nat(l) the result follows from σ |= ϕ and ϕ |= l′ ≥ l, which implies [[l′]]σ ≥ [[l]]σ; and

(2) for the induction step, composing expressions as described in Definition 1 preserves

trivially the monotonicity property. 2

A cost relation C of arity n is a subset of Z
n×R+. We use C and D to denote cost

relations. Although the standard techniques for solving recurrences focus on solving

(i.e., finding a closed-form) for a recurrence at a time, the cost analysis of a program,

as seen in Example 3, in general produces a bunch of interconnected cost relations.

I.e., the cost relation for the main function contains calls to cost relations which rep-

resent the cost of other functions or program blocks. We refer to such sets of cost

relations produced by cost analysis as Cost Relation Systems (CRSs for short), which

are formally defined as follows.

Definition 2 (Cost Relation System) A cost relation system S is a finite set of

equations of the form 〈C(x̄) = exp +
Pk

i=1Di(ȳi), ϕ〉 with k ≥ 0, where C and all Di

are cost relation symbols, all variables x̄ ∪ ȳi are distinct variables; exp is a basic cost

expression; and ϕ is a set of linear constraints over x̄ ∪ vars(exp)
Sk

i=1 ȳi.

In contrast to standard definitions of RRs, in CRSs, the variables which occur in the

rhs of the equations do not need to be related to those in the left hand side (lhs for

short) by equality constraints. Other constraints such as ≤ and < can also be used.

We denote by rel(S) the set of cost relation symbols which are defined in S, i.e., which

appear in the lhs of some equation in S. Given a CRS S and a cost relation symbol C,

the definition of C in S, denoted def (S, C), is the subset of the equations in S whose

lhs is of the form C(x̄). Without loss of generality, we assume that all equations in

def (S, C) have the same variable names in the lhs, and that S is self-contained in the

sense that all cost relation symbols which appear in the rhs of an equation in S must

be in rel(S).

Intuitively, a cost equation 〈C(x̄) = exp +
Pk

i=1Di(ȳi), ϕ〉 states that the cost of

C(x̄) is exp plus the sum of the cost of all Di(ȳi) where the linear constraints ϕ contain

the applicability conditions for the equation as well as size relations for the equation

variables. We now provide a formal (denotational) semantics for CRSs in terms of calls

and answers. It is based on the notion of evaluation tree for a call C(v̄). We will repre-

sent evaluation trees using nested terms of the form node(Call, Local Cost, Children),

where Local Cost is a constant in R+ and Children is a sequence of evaluation trees.

Definition 3 (evaluation tree) A tree node(C(v̄), r, 〈T1, . . . , Tk〉) is an evaluation

tree for C(v̄) in S, if

1. there exists a renamed apart equation E = 〈C(x̄) = exp+
Pk

i=1Di(ȳi), ϕ〉 ∈ S and

an assignment σ : vars(E) 7→ Z such that σ |= x̄ = v̄ ∧ ϕ; and

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

270

11

(9) E(2,1) 5

(8) E(2,0) 15

(5) D(10,2,2)

(7) D(10,2,1) 10

3

(5) D(20,2,2) 3

(7) D(20,2,1) 10

10(7) D(20,2,0)

5(9) E(2,1)

(8) E(2,0) 15

24(4) C(2,10,1,20,2)

(2) C(0,10,0,20,1) 25(9) E(1,0)

(5) D(10,1,1) 3

(7) D(10,1,0) 10

(3) C(1,10,1,20,1) 25

(6) D(20,2,0) 8 (8) E(2,1) 5 (2) C(0,10,1,20,2)2

(4) C(3,10,2,20,2) 24

1(1) Del(3,10,2,20,2)1

(3) C(3,10,2,20,2) 25

(1) Del(3,10,2,20,2)

(7) D(10,2,0) 10

Fig. 4 Two evaluation trees for Del(3, 10, 2, 20, 2)

2. r = [[exp]]σ; and

3. ∀1 ≤ i ≤ k we have that Ti is an evaluation tree for Di(v̄i) and σ |= ȳi = v̄i.

Intuitively, we first look for an equation E such that it is applicable for solving C(v̄)

and for an assignment σ which is consistent with E ’s guard (1). Then (2) tells us that

r is obtained by evaluating exp. Finally, (3) requires that each Ti be an evaluation tree

of the corresponding call Di(v̄i). Note that step 1 is non-deterministic as there might

be several equations for C and (infinitely many) different assignments σ that satisfy

x̄ = v̄ ∧ ϕ. Therefore, we write Trees(C(v̄),S) to denote the set of all evaluation trees

for C(v̄). Now, we define

Answers(C(v̄),S)={Sum(T) | T ∈ Trees(C(v̄),S)}
where Sum(T) is the sum of all cost expressions in T, i.e., Sum(node(C(v), r, 〈T1, . . . ,

Tk〉)) = r +
Pk

i=0 Sum(Ti). A cost-bound function C+(x̄) can be defined as C+(v̄) =

max(Answers(C(v̄),S)). Clearly, it is not always computable as we might have infinite

trees. Note that the branching in each tree is conjunctive and corresponds to the

different calls in the body, an that the disjunction comes in the form of multiple trees

for the same query.

Example 2 Figure 4 shows two possible evaluation trees for Del(3, 10, 2, 20, 2) in S,

where S is the CR in Figure 3. The tree on the left has maximal cost, whereas the one

on the right has minimal cost. Nodes are represented using boxes split in two parts.

The part on the left contains a call, e.g., Del(3, 10, 2, 20, 2) in the root nodes of both

trees, annotated with a number in parenthesis, e.g., (1) in such nodes, which indicates

the equation which was selected for evaluating such call. The part on the right contains

the local cost associated to the call, 1 in both root nodes. Nodes are linked by arrows

to their children, if any.

The two trees differ in that, for solving C(3, 10, 2, 20, 2), in the one on the left we

pick Equation (3) and in the one on the right we pick Equation (4). Furthermore, in

the recursive call to C in Equations (3) and (4) we always assign l′ = l− 1 in the tree

on the left and we assign l′ = l−3 in the tree on the right. Note that both possibilities

are valid w.r.t. S, since we are allowed to pick any value l′ such that l′ < l. The tree

on the left corresponds to a possible execution of the program. However, the tree on

the right does not correspond to any actual execution. This is a side effect of using safe

approximations in static analysis for computing size abstractions: information is correct

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

271

12

in the sense that given a concrete program execution, at least one of the evaluation

trees must correspond to such execution, but there may be other trees which do not

correspond to any valid execution. Therefore, CRSs provide information which is sound

but possibly imprecise.

As this example shows, there may be multiple evaluation trees for a call. In fact,

there may even be infinitely many of them. The latter happens in our example call, as

step 1 in Definition 3 can provide an infinite number of assignments to variable j which

are compatible with the constraint j ≥ 0 in Equations (3) and (4). This shows that

approaches like [26] based on evaluation of RRs may not be of general applicability in

CRSs, as size relations can be inexact and multiple, or even infinitely many evaluation

trees may exist. Fortunately, since we are not interested in executing CRSs but rather

on finding closed-form (i.e., static) upper bounds for them, whether there are infinitely

many evaluation trees for a call is not directly an issue, as long as there are not

infinitely many different answers. In our example, Trees(Del(3, 10, 2, 20, 2),S) is an

infinite set, but infinitely many of the trees in this set produce equivalent results and

Answers(Del(3, 10, 2, 20, 2)),S) is finite. Thus, it is in principle possible to find an

upper bound for it. 2

4 Closed-Form Upper-Bounds for Cost Relations

After providing a suitable semantics for CRs, we now study how to obtain closed-

form upper bounds for them. In what follows, we are only interested in upper bound

functions which are in closed-form. Therefore, for brevity, we often just write ‘upper

bound’ instead of ‘closed-form upper-bound’.

A function f : Z
n 7→ R+ is in closed-form if it is defined as f(x̄) = exp, where

exp is a basic cost expression and vars(exp) ⊆ x̄. Let C be a relation over Z
n × R+.

A closed-form function U : Z
n 7→ R+ is an upper bound of C if ∀v̄ ∈ Z

n and ∀r ∈
Answers(C(v̄),S) we have U(v̄) ≥ r. Given a relation (or function) C, we use C+ to

refer to an upper bound of C.

4.1 Standalone Cost Relations

An important feature of CRSs, also present in RRs, is their compositionality. This al-

lows computing upper bounds of CRSs composed of multiple relations by concentrating

on one relation at a time. Let us consider an equation E for a cost relation C(x̄) where

a call of the form D(ȳ), with D 6= C appears on the rhs of E . In order to compute an

upper bound of C(x̄), we can replace E by another equation E ′ where the call to D(ȳ)

is replaced by a call to an upper bound D+(ȳ), already in closed-form. The resulting

cost relation is trivially an upper bound of the original one. E.g., suppose that we have

the following upper bounds:

E+(la, j) = 5 + 15 ∗ nat(la− j − 1)

D+(a, la, i) = 8 + 10 ∗ nat(la− i)

Replacing the calls to D and E in Equations (3) and (4) by D+ and E+ results in the

CR shown in Figure 5.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

272

13

(2) C(l, a, la, b, lb) = 2

{a ≥ la, b ≥ lb, b ≥ 0, a ≥ 0, l = 0}
(3) C(l, a, la, b, lb) =

38+15*nat(la-j-1)+10*nat(la) + C(l′, a, la − 1, b, lb)

{a ≥ 0, a ≥ la, b ≥ lb, j ≥ 0, b ≥ 0, l > l′, l > 0}
(4) C(l, a, la, b, lb) =

37+15*nat(lb-j-1)+10*nat(lb) + C(l′, a, la, b, lb − 1)

{b ≥ 0, b ≥ lb, a ≥ la, j ≥ 0, a ≥ 0, l > l′, l > 0}

(3) C(3,10,2,20,2)
 38+15*nat(2−0−1)+
 10*nat(2)=73

(4) C(2,10,1,20,2) 37+15*nat(2−0−1)+
 10*nat(2)=72

(3) C(1,10,1,20,1) 38+15*nat(1−0−1)+
 10*nat(1)=48

(2) C(0,10,0,20,1) 2

Fig. 5 Standalone CR for relation C and a corresponding evaluation tree

The compositionality principle only results in an effective mechanism if all recur-

sions are direct (i.e., all cycles are of length one). In that case we can start by computing

upper bounds for cost relations which do not depend on any other relations, which we

refer to as standalone cost relations and continue by replacing the computed upper

bounds on the equations which call such relations. In the following, we formalize our

method by assuming standalone cost relations and, in Section 8, we provide a mecha-

nism for obtaining direct recursion automatically.

4.2 Approximating Evaluation Trees

Existing approaches to compute upper bounds and asymptotic complexity of RRs,

usually applied by hand, are based on reasoning about evaluation trees in terms of

their size, depth, number of nodes, etc. They typically consider two categories of nodes:

(1) internal nodes, which correspond to applying recursive equations, and (2) leaves

of the tree(s), which correspond to the application of a base (non-recursive) case. The

central idea then is to count (or obtain an upper bound on) the number of leaves and

the number of internal nodes in the tree separately and then multiply each of these by

an upper bound on the cost of the base case and of a recursive step, respectively. For

instance, in the evaluation tree in Figure 5 for the standalone cost relation C, there

are three internal nodes and one leaf. The values in the internal nodes, once performed

the evaluation of the expressions are 73, 72, and 48, therefore 73 is the worst case. In

the case of leaves, the only value is 2. Therefore, the tightest upper bound we can find

using this approximation is 3× 73 + 1 ∗ 2 = 221 ≥ 73 + 72 + 48 + 2 = 193.

We now extend the approximation scheme mentioned above in order to consider

all possible evaluation trees which may exist for a call. In the following, we use |S| to
denote the cardinality of a set S. Also, given an evaluation tree T , leaf (T) denotes

the set of leaves of T (i.e., those without children) and internal(T) denotes the set of

internal nodes (all nodes but the leaves) of T .

Proposition 2 (node-count upper-bound) Let C be a cost relation. We define:

C+(x̄) = internal+(x̄) ∗ costr+(x̄) + leaf+(x̄) ∗ costnr+(x̄)

where internal+(x̄), costr+(x̄), leaf+(x̄) and costnr+(x̄) are closed-form functions de-

fined on Z
n 7→ R+. Then, C+ is an upper bound of C if for all v̄ ∈ Z

n and for all

T ∈ Trees(C(v̄),S), the following properties hold:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

273

14

1. internal+(v̄) ≥ |internal(T)| and leaf+(v̄) ≥ | leaf (T)|;
2. costr+(v̄) is an upper bound of {r | node(, r,) ∈ internal(T)} and

3. costnr+(v̄) is an upper bound of {r | node(, r,) ∈ leaf (T)}.

Proof The proposition is trivially correct by the definition of upper bound and Answers.

2

This proposition presents the main approximation approach which we use for comput-

ing upper bounds. Our main contribution is to come up with mechanisms to infer the

four functions appearing above.

5 Upper Bounds on the Number of Nodes

In this section, we present an automatic mechanism for obtaining correct internal+(x̄)

and leaf+(x̄) functions which statically provides upper bounds of the number of internal

nodes and leaves in evaluation trees. The basic idea is to first obtain upper bounds on

the branching factor (denoted b) and height (the distance from the root to the deepest

leaf) of all corresponding evaluation trees (denoted h+(x̄)) and, then, use the number

of internal nodes and leaves of a complete tree with such branching factor and height

as an upper bound. Well-known formulas exist which, given the branching factor and

the height of the tree, compute the number of nodes of the complete tree. As usual,

a tree is complete when all internal nodes have as many children as indicated by the

branching factor and leaves are at the same depth. Clearly, complete trees provide an

upper bound of the number of nodes of any tree with such height and branching factor.

Therefore, we define internal+(x̄) and leaf+(x̄) as follows:

leaf+(x̄) = bh+(x̄) internal+(x̄) =

(

h+(x̄) b = 1

bh+(x̄)-1
b-1

b ≥ 2

For a cost relation C, the branching factor b in any evaluation tree for a call C(v̄) is

limited by the maximum number of recursive calls which occur in a single equation

for C, which obviously can be computed statically. Note that we mean the actual

occurrences of recursive calls in the right hand side of the equations which determines

the complexity scheme (exponential, polynomial, etc.) not how many calls will actually

be performed in a concrete execution. This is not related to how the arguments increase

or decrease.

We now propose a way to compute an upper bound for the height, h+. Given an

evaluation tree T ∈ Trees(C(v̄),S) for a cost relation C, consecutive nodes in any

branch of T represent consecutive recursive calls which occur during the evaluation of

C(v̄). Therefore, bounding the height of a tree may be reduced to bounding consecutive

recursive calls during the evaluation of C(v̄). The notion of loop in a cost relation, which

we introduce below, is used to model consecutive calls.

Definition 4 (loops) Let E = 〈C(x̄) = exp +
Pk

i=1 C(ȳi), ϕ〉 be an equation for a

cost relation C. The set of loops induced by E is defined as:

Loops(E) = {〈C(x̄)→ C(ȳi), ϕ
′〉 | ϕ′ = ∃̄x̄ ∪ ȳi.ϕ, 1 ≤ i ≤ k}

Similarly, we define Loops(C) = ∪E∈def (S,C)Loops(E).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

274

15

Intuitively, a loop 〈C(x̄) → C(ȳ), ϕ′〉 over-approximates that evaluating C(v̄1) such

that x̄ = v̄1 |= ϕ′, may eventually be followed by an evaluation for C(v̄2) such that x̄ =

v̄1 ∧ ȳ = v̄2 |= ϕ′. In terms of evaluation trees, this means that the node corresponding

to C(v̄1) will have a child with C(v̄2).

Example 3 The cost relation in Figure 5 induces the following two loops which corre-

spond to Equations (3) and (4).

(3) 〈C(l, a, la, b, lb)→ C(l′, a, la′, b, lb), ϕ′1〉
where ϕ′1 = {a ≥ 0, a ≥ la, b ≥ lb, b ≥ 0, l > l′, l > 0, la′ = la− 1}

(4) 〈C(l, a, la, b, lb)→ C(l′, a, la, b, lb′), ϕ′2〉
where ϕ′2 = {b ≥ 0, b ≥ lb, a ≥ la, a ≥ 0, l > l′, l > 0, lb′ = lb− 1}

2

The problem of bounding the number of consecutive recursive calls has been exten-

sively studied in the context of termination analysis. Automatic termination analyzers

usually prove that an upper bound of the number of iterations of the loop exists by

proving that there exists a function f from the loop’s arguments to a well-founded

partial order, such that f decreases in any two consecutive calls. This in turn guar-

antees the absence of infinite traces, and therefore termination. These functions are

usually called ranking functions. A difference w.r.t. termination analysis is that we aim

at determining a concrete ranking function f , rather than just proving that it exists,

which is usually enough for termination proofs. The following definition characterizes

the kind of ranking functions we are interested in since, as we will see later, they are

adequate for bounding the number of iterations of a loop.

Definition 5 (ranking function for a loop) A function f : Z
n 7→ Z is a ranking

function for a loop 〈C(x̄)→ C(ȳ), ϕ〉 if the two conditions below are satisfied:

1. ϕ |= f(x̄) > f(ȳ)

2. ϕ |= f(x̄) > 0.

An important thing to note is that the constraint ϕ is computed using static analysis

and, therefore, part of the information may be lost. Thus, in order to find a ranking

function it is crucial that ϕ keeps enough information. Condition 1 requires that f be

decreasing in every iteration of the loop. In order to satisfy this condition it is required

that the constraint ϕ captures information about the way in which the value of variables

change from one iteration to another. Condition 2 requires that f be well-founded. In

order to satisfy this condition it is required that ϕ captures sufficient information about

the applicability conditions (guards) of the loop so as to identify cases where the loop

does not apply.

In addition, since a cost relation may induce several loops (i.e., several possibilities

for generating calls), we require the ranking function to decrease for all loops.

Definition 6 (ranking function for a cost relation) A function fC : Z
n 7→ Z is a

ranking function for C if it is a ranking function for all loops in Loops(C).

Example 4 The function fC(l, a, la, b, lb) = l is a ranking function for C in the cost

relation in Figure 5. Note that ϕ′1 and ϕ′2 in the loops of C in Example 3 contain

the constraints {l > l′, l > 0} which is enough to guarantee that fC is decreasing and

well-founded. 2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

275

16

The following example illustrates that sometimes the ranking function involves

several arguments.

Example 5 Consider the loop which originates from Equation (7) depicted in Figure 3.

〈D(a, la, i)→ D(a, la, i′), {i′ = i+ 1, i < la, a ≥ la, i ≥ 0}〉. The function fD(a, la, i) =

la− i is a ranking function for the above loop. Any ranking function for D must involve

both la and i. 2

We propose to use ranking functions for cost relations as an upper bound on the

number of consecutive calls (and therefore on the height of the corresponding evaluation

trees). This is justified by the following two facts: (1) the ranking function decreases

at least by one unit in each iteration when applying it on two consecutive calls (since

its range is Z); and (2) it is always greater than zero in the recursive equations (i.e.,

when applied to a call in an internal node).

In order to be able to define h+ in terms of a ranking function, one thing to fix

is that the ranking function is only guaranteed to return meaningful (positive) values

for input values which are consistent with the loops of guards (Condition 2). Thus, if

we apply the ranking function to input values which correspond to base cases (leaves

of the tree) we may obtain negative values. Therefore, we define h+(x̄) = nat(fC(x̄)).

Function nat, introduced in Section 3, guarantees that negative values are lifted to 0

and, therefore, they provide a correct approximation for the height of evaluation trees

with a single node.

Lemma 1 Let fC(x̄) be a ranking function for a cost relation C. Then, ∀v̄ ∈ Z
n and

∀ T ∈ Trees(C(v̄),S) it holds nat(fC(v̄)) ≥ h(T).

Proof For h(T) = 0, the proof is straightforward as nat(fC(v̄)) is non-negative. For

h(T) > 0, assume the contrary, i.e., there exists an evaluation tree T ∈ Trees(C(v̄),S)

such that h(T) = n > nat(fC(v̄)). This means there exists a path (starting from the

root) which consists of n+ 1 nodes. Let C(v̄0), . . . , C(v̄n) be the calls that correspond

to the nodes in that path, where v̄0 = v̄. By definition of ranking function for a cost

relation, for all i < n, we have fC(v̄i) − fC(v̄i+1) ≥ 1 and fC(v̄i) > 0. Then, it holds

that fC(v̄) ≥ n+1 > n = h(T), which contradicts the assumption that fC(v̄) < h(T).

2

Even though the ranking function provides an upper bound for the height of the

corresponding trees, in some cases we can further refine it and obtain a tighter upper

bound. For example, if the difference between the value of the ranking function in

each two consecutive calls is guaranteed to be larger than a constant δ > 1, then

⌈nat(
fC(x̄)

δ)⌉ is a tighter upper bound. A more interesting case, if each loop 〈C(x̄) →
C(ȳ), ϕ〉 ∈ Loops(C) satisfies ϕ |= fC(x̄) ≥ k ∗ fC(ȳ) where k > 1 is a constant,

then the height of the tree is bounded by ⌈logk(nat(fC(v̄)) + 1)⌉, as each time the

value of the ranking function decreases by k. For instance, given a loop the form:

〈C(l) → C(l′), {l′ = l/3, l > 0}〉, we find the bound “⌈log3(l) + 1⌉” for the height of

the tree. These cases are handled in our system (see Section 7).

6 Bounding the Cost per Node

After studying how to obtain upper bounds of the number of internal and leave nodes

in evaluation trees, in this section, we present an automatic method to obtain functions

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

276

17

costr+(x̄) and costnr+(x̄), which are upper bounds of the local cost associated to an

internal node and of a leave node, respectively. We first give an intuitive description of

the technique on our running example. Consider the evaluation tree in Figure 5. There

is only one leave node and its local cost is 2. Therefore, we can define costnr+(x̄) = 2.

As regards the three internal nodes, observe that the corresponding expressions are

instantiations of either:

exp3 = 38 + 15 ∗ nat(la− j − 1) + 10 ∗ nat(la)

exp4 = 37 + 15 ∗ nat(lb− j − 1) + 10 ∗ nat(lb)

Knowing the expressions which generate the possible values in nodes is important, since

if we know (or have a safe approximation of) the values of the variables which appear

in such expressions, then it is possible to obtain an upper bound of the cost of nodes.

Therefore, we split the construction of costr+(x̄) and costnr+(x̄) in the following two

parts.

Invariants. First, it is necessary to know what are the possible values to which the

different variables in exp3 and exp4 can be instantiated. Computing this information is

usually undecidable or impractical, but it can be approximated (by means of a superset

of the actual values) using static program analysis. One possible way to approximate

it is to infer (linear) constraints between the values of the variable in each node and

the initial values. For example, for the equations in Figure 5, we are interested in

obtaining constraints between the root call C(l0, a0, la0, b0, lb0) and the call in any

node C(l, a, la, b, lb). Note that for a variable x we use x0 to refer to the value of x at

the root call. The following linear constraints describe a (possible) relation:

ψ = {0 ≤ l ≤ l0, a = a0, la ≤ la0, b = b0, lb ≤ lb0}

In other words, ψ is a loop invariant that holds between the initial values {l0, a0, la0, b0, lb0}
and the variables in any recursive call C(l, a, la, b, lb) during the evaluation.

Upper Bounds of Cost Expressions. The invariant can then be used to infer upper

bounds for exp3 and exp4. Since exp3 and exp4 are monotonic in their nat sub-

expressions, as stated in Proposition 1, it is enough to obtain upper bounds for those

sub-expressions in order to obtain upper bounds for exp3 and exp4. For maximizing

exp3, we need to compute an upper bound for la− j− 1 in the context of the invariant

ψ conjoined with the local constraints ϕ3, associated to Equation (3). By maximizing

la−j−1 w.r.t. {l0, a0, la0, b0, lb0}, we infer that la0−1 is an upper bound for la−j−1

since ψ ∧ ϕ3 |= {la ≤ la0, j ≥ 0}. Similarly, we obtain the upper bounds la0, lb0 − 1

and lb0 for la, lb− j − 1, and lb, respectively. By putting all pieces together we obtain

that:

mexp3 = 38 + 15 ∗ nat(la0 − 1) + 10 ∗ nat(la0)

mexp4 = 37 + 15 ∗ nat(lb0) + 10 ∗ nat(lb0)

are upper bounds for exp3 and exp4, respectively. Then, we use max({mexp3, mexp4})
as an upper bound for all possible expressions in the internal nodes of any possible

evaluation tree for C(l0, a0, la0, b0, lb0). We now formalize the two steps that have

been described above.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

277

18

6.1 Invariants

Computing an invariant, in terms of linear constraints, that holds between the ar-

guments at the initial call and at each call during the evaluation, can be done by

using Loops(C). Intuitively, if we know that a linear constraint ψ holds between

the arguments of the initial call C(x̄0) and the arguments of a specific recursive

call C(x̄) during the evaluation, denoted 〈C(x̄0) ; C(x̄), ψ〉, and we have a loop

〈C(x̄)→ C(ȳ), ϕ〉 ∈ Loops(C), then we can apply the loop one more step and get the

new calling context (or context for short) 〈C(x̄0) ; C(ȳ), ∃x̄.(ψ ∧ ϕ)}〉. The following

definition describes how from a set of contexts I we learn more contexts by applying

all loops in a relation. We denote by R the set of all possible contexts for C, and by

℘(R) all subsets of C that include I0 = 〈C(x̄0) ; C(x̄), {x̄0 = x̄}〉.

Definition 7 (loop invariants) For a relation C, let TC : ℘(R) 7→ ℘(R) be an

operator defined:

TC(X) =

8

<

:

〈C(x̄0) ; C(ȳ), ψ′〉

˛

˛

˛

˛

˛

˛

〈C(x̄0) ; C(x̄), ψ〉 ∈ X
〈C(x̄)→ C(ȳ), ϕ〉 ∈ Loops(C)

ψ′ = ∃̄x̄0 ∪ ȳ.(ψ ∧ ϕ)

9

=

;

which derives a set of contexts, from a given context X, by applying all loops. The

loop invariant IC is defined as ∪i∈ωT i
C({I0}).

Example 6 Let us compute IC for the loops that we have computed in Example 3. Let

x̄0 = 〈l0, a0, la0, b0, lb0〉 and x̄ = 〈l, a, la, b, lb〉. The initial context is

I0 = 〈C(x̄0) ; C(x̄), {l = l0, a = a0, la = la0, b = b0, lb = lb0}〉

In the first iteration we compute T 0
C({I0}) = {I0}. In the second iteration we compute

T 1
C({I0}), which results in the contexts

I1 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0 − 1, b = b0, lb = lb0, l0 > 0}〉
I2 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0, b = b0, lb = lb0 − 1, l0 > 0}〉

where I1 and I2 correspond to applying respectively the first and second loops on I0.

The underlined constraints are the modifications due to the application of the loop.

Note that in I1 (resp. I2) the variable la0 (resp. lb0) decreases by one. The third

iteration T 2
C({I0}), i.e., TC({I1, I2}), results in

I3 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0 − 2, b = b0, lb = lb0, l0 > 0}〉
I4 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0 − 1, b = b0, lb = lb0 − 1, l0 > 0}〉
I5 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0, b = b0, lb = lb0 − 2, l0 > 0}〉
I6 = 〈C(x̄0) ; C(x̄), {l < l0, a = a0, la = la0 − 1, b = b0, lb = lb0 − 1, l0 > 0}〉

where I3 and I4 originate from applying the loops to I1, and I5 and I6 from apply-

ing the loops to I2. The modifications on the constraints reflect that, when applying

a loop, either we decrease la or lb. After three iterations, the invariant IC includes

{I0, . . . , I6}. More iterations will add more contexts that further modify the value of

la or lb. Therefore, the invariant IC grows indefinitely in this case. 2

The following lemma guarantees that IC , as defined in Definition 7, is a loop invari-

ant, i.e., it holds between the initial call and any call in the corresponding evaluation

tree.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

278

19

Lemma 2 Let C(v̄) be a call, then ∀T ∈ Trees(C(v̄),S) and ∀node(C(w̄), ,) ∈ T ,

there exists 〈C(x̄0) ; C(x̄), ψ〉 ∈ IC such that {x̄0 = v̄ ∧ x̄ = w̄} |= ψ.

Proof Given an initial call C(v̄) and an evaluation tree T ∈ Trees(C(v̄),S), we show

by induction that if node(C(w̄), ,) ∈ T is at a level n (the level of the root is 0), then

there exists 〈C(x̄0) ; C(x̄), ψ〉 ∈ ∪0≤i≤nT i
C({I0}) such that {x̄0 = v̄ ∧ x̄ = w̄} |= ψ.

Then, since TC is continuous over the lattice 〈℘(R), {I0},R,⊆,∪,∩〉, it holds for the

least fixed point IC = ∪i∈ωT i
C(I0) and any level.

Base case. If n = 0, it is obvious that the lemma holds using the initial context which

is in T 0
C({I0}).

Induction step. Assume the above lemma holds for any node at a level smaller than

n. Consider a node node(C(w̄), ,) ∈ T at level n ≥ 1, and let its parent node

be node(C(w̄′), ,) ∈ T . By the induction assumption, since the parent level is n− 1,

there exists I = 〈C(x̄0) ; C(x̄), ψ〉 ∈ ∪0≤i<nT i
C({I0}) such that x̄0 = v̄∧ x̄ = w̄′ |= ψ.

By the definition of Loops(C), there exists a loop ℓ = 〈C(x̄) → C(ȳ), ϕ〉 ∈ Loops(C)

such that x̄ = w̄′ ∧ ȳ = w̄ |= ϕ. Since the context I must have been introduced

by T k
C ({I0}) for some k < n, then at iteration k + 1 ≤ n the operator TC will use

I and ℓ to generate 〈C(x̄0) ; C(ȳ), ∃̄x̄0 ∪ ȳ.(ψ ∧ ϕ)〉 ∪0≤i≤n T i
C({I0}). Moreover,

x̄0 = v̄ ∧ ȳ = w̄ |= ∃̄x̄0 ∪ ȳ.(ψ ∧ ϕ). 2

The problem with Definition 7 is that it is not computable in general since the

invariant IC possibly consists of an infinite number of calling contexts, as it happens

in our example. In practice, we approximate IC using abstract interpretation over, for

instance, the domain of convex polyhedra [21]. For our example, as an approximation

for IC of Example 6 we obtain the invariant:

Iα
C = {〈C(x̄0) ; C(x̄), {l ≤ l0, a = a0, la ≤ la0, b = b0, lb ≤ lb0}〉}

In general, we usually approximate IC by a single context Iα
C = 〈C(x̄0) ; C(x̄), ψ′〉}

such that ∀〈C(x̄0) ; C(x̄), ψ〉 ∈ IC .ψ |= ψ′. This is simply done by replacing ∪ in

Definition 7 by a convex-hull operation, and applying a widening operator to guarantee

termination [21]. It is clear that Lemma 2 also holds for such approximation of IC .

6.2 Upper Bounds on Cost Expressions

At this point, we want to use the loop invariant in order to obtain upper bounds,

in terms of the initial call values, for the values in all internal nodes and leaves in

the corresponding evaluation trees. Since the values which appear in the nodes of

evaluation trees correspond to different instantiations of the cost expressions in the

cost equations, we concentrate first on finding upper bounds for those cost expressions

and then combine them to build upper bounds for all internal nodes and all leaves.

Consider, for example, the expression nat(la− j−1) which appears in Equation (3)

of Figure 5. We want to infer an upper bound of the values that it can be evaluated

to in terms of the input values 〈l0, a0, la0, b0, lb0〉. We have inferred that 〈C(x̄0) ;

C(x̄), ψ〉 where ψ = {l ≤ l0, a = a0, la ≤ la0, b = b0, lb ≤ lb0}, is a safe approximation

of the loop invariant IC , from which we can observe that the maximum value that la

can take is la0. In addition, from the local constraints ϕ of Equation (3) we know that

j ≥ 0. Since la−j−1 takes its maximal value when la is maximal and j is minimal, the

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

279

20

expression la0 − 1 is an upper bound for la− j − 1. In practice, this inference method

can be done in a fully automatic way using linear constraints tools (e.g. [12]) as follow:

1. compute φ = ∃̄l0, a0, la0, b0, lb0, r.(ψ∧ϕ∧y = la−j−1), where y is a new variable;

2. syntactically look in φ for an expression that can be rewritten to y ≤ f ′, where f ′ is

a linear expression which (obviously) contains only variables from {l0, a0, la0, b0, lb0}.
Given a cost equation 〈C(x̄) = exp +

Pk
i=1 C(ȳi), ϕ〉 and a safe approximation of its

loop invariant 〈C(x̄0) ; C(x̄), ψ〉, the function below computes an upper bound for

exp by maximizing its nat components:

1: function ub exp(exp,x̄0,ϕ,ψ)
2: mexp = exp

3: for all nat(f)∈exp do

4: φ = ∃̄x̄0, y.(ϕ ∧ ψ ∧ y = f) // y is a fresh variable
5: if ∃f ′ such that vars(f ′) ⊆ x̄0 and φ |= y ≤ f ′ then mexp = mexp[nat(f)/nat(f ′)]
6: else return ∞
7: return mexp

This function computes an upper bound f ′ for each expression f which occurs inside a

nat function and then replaces in exp all such f expressions with their corresponding

upper bounds (line 5). If it cannot find an upper bound, the method returns ∞ (line

6).

Example 7 Applying ub exp to the cost expressions exp3 and exp4, that appear in

Equations (3) and (4) in Figure 5, w.r.t. the invariant that we have computed in

Section 6.1, can be done by maximizing their nat sub-expressions. Similarly to what

we have done above for la− j − 1, we can find upper bounds for lb− j − 1, la and lb

as lb0 − 1, la0 and lb0 respectively. Therefore, the expressions

mexp3 = 38 + 15 ∗ nat(la0 − 1) + 10 ∗ nat(la0)

mexp4 = 37 + 15 ∗ nat(lb0 − 1) + 10 ∗ nat(lb0)

are upper bounds for exp3 and exp4. 2

The lemma below guarantees the soundness of the function ub exp.

Lemma 3 (soundness of ub exp) Let 〈C(x̄) = exp +
Pk

i=1 C(ȳi), ϕ〉 be a cost equa-

tion for C, 〈C(x̄0) ; C(x̄), ψ〉 be a safe approximation of the loop invariant IC , and

mexp = ub exp(exp, x̄0, ϕ, ψ). Then, for any call C(v̄) and for all T ∈ Trees(C(v̄),S),

if node(C(w̄), r,) ∈ T such that r originates from exp, then [[mexp]]σ ≥ r where σ is a

substitution that maps x̄0 to v̄.

Proof The Lemma is trivially correct when mexp = ∞. For mexp 6= ∞, given T ∈
Trees(C(v̄),S) and node(C(w̄), r,) ∈ T , by Lemma 2, there exists a substitution σ,

over x̄0 and the variables of the equation, such that σ |= x̄0 = v̄ ∧ x̄ = w̄ ∧ ψ ∧ ϕ and

r = [[exp]]σ. Let exp′ be a cost expression obtained from exp by replacing only one

nat(f) by nat(f ′) (lines 4 and 5 in function ub exp). Proposition 1 and the fact that

ψ ∧ ϕ |= f ≤ f ′ implies [[exp′]]σ ≥ [[exp]]σ. Since mexp is obtained by repeating such

replacement for all nat components, at the end we will have [[mexp]]σ ≥ [[exp]]σ = r. 2

The following lemma is a completeness lemma for function ub exp, in the sense that

if ψ and ϕ imply that there is f ′ which is an upper bound for f , then by syntactically

looking on φ (line 4 of ub exp) we will be able to find one, without guarantees that it

will be the tightest one.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

280

21

Lemma 4 (completeness of ub exp) Consider line 5 of ub exp, if there exists f ′

such that φ |= y ≤ f ′ and φ = {c1, . . . , cn}, then there exists ci which can be worked

out to y ≤ f ′′ (or y = f ′′) where vars(f ′′) ⊆ x̄0.

Proof The lemma follows from: (1) if there exists f ′ such that vars(f ′) ⊆ x̄0 and

ψ ∧ ϕ |= f ≤ f ′ then, φ |= y ≤ f ′, since y = f and y 6∈ vars(ψ ∧ ϕ); (2) if φ |= y ≤ f ′

and vars(φ) ⊆ x̄0 ∪ {y}, then y must appear in one of the ci, which obviously can be

worked out to y ≤ f ′; and (3) if there is more than one ci where y appears, then taking

one is safe as they appear in a conjunction. 2

6.3 Concluding Remarks

Using Lemmata 2 and 3, the theorem below concludes by building the upper bound

expression costnr+(x̄0) and costr+(x̄0).

Theorem 1 Let S = S1 ∪ S2 be a cost relation where S1 and S2 are respectively the

sets of non-recursive and recursive equations for C. Let

– 〈C(x̄0) ; C(x̄), ψ〉 be a safe approximation of the loop invariant IC ;

– Ei = {ub exp(exp, x̄0, ϕ, ψ) | 〈C(x̄) = exp+
Pk

j=1 C(ȳj), ϕ〉 ∈ Si}, 1 ≤ i ≤ 2; and

– costnr+(x̄0) = max(E1) and costr+(x̄0) = max(E2).

Then, for any call C(v̄) and for all T ∈ Trees(C(v̄),S), it holds that

– ∀node(, r,) ∈ internal(T). costr+(v̄) ≥ r; and

– ∀node(, r,) ∈ leaf (T). costnr+(v̄) ≥ r.

Proof Follows from Lemmata 2 and 3. 2

Example 8 At this point we have all the pieces in order to compute an upper bound,

as described in Proposition 2, for the CR depicted in Figure 3. We start by computing

upper bounds for E and D as they are standalone cost relations:

h+ costnr+ costr+ Upper Bound

E(la0, j0) nat(la0 − j0 − 1) 5 15 5 + 15 ∗ nat(la0 − j0 − 1)

D(a0, la0, i0) nat(la0 − i0) 8 10 8 + 10 ∗ nat(la0 − i0)

These upper bounds can then be substituted in the Equations (3) and (4) which results

in the cost relation for C depicted in Figure 5. We have already computed a ranking

function for C in Example 4, and costnr+ and costr+ in Example 7, which are then

combined into:

C+(l0, a0, la0, b0, lb0) = 2 + nat(l0) ∗max({mexp3, mexp4})

By reasoning similarly, we obtain the upper bound for Delete shown in Table 1. 2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

281

22

7 Improving Accuracy in Divide and Conquer Programs

We have presented in Section 4 an approximation approach based on bounding both

the number of nodes in evaluation trees and the cost per node which is able to provide

upper bounds for a large class of programs, and it is not limited to any complexity

class. However, there is an important class of programs known as divide and conquer

for which the node-count upper-bound does not compute sufficiently precise upper

bounds. Intuitively, the reason for this is that divide and conquer programs have a

branching factor greater than one. Therefore, the number of nodes grows exponentially

with the height of the evaluation tree. However, the size of the input data decreases

so quickly from one level of the tree to the next one that the sum of the local cost

expressions in the nodes at each level does not increase from one level to another.

In this section we propose an approximation mechanism, which we refer to as level-

count upper-bound which is based on bounding both the number of levels in evaluation

trees and the total cost per level. It allows obtaining accurate upper bounds for divide

and conquer programs.

7.1 Level-count upper-bound

Given an evaluation tree T , we denote by Sum Level(T, i) the sum of the local cost of

all nodes in T which are at depth i, i.e., at distance i from the root. As before, we

write h(T) to denote the height of T .

Proposition 3 (level-count upper-bound) Let C be a cost relation. We define

function C+ as:

C+(x̄) = l+(x̄) ∗ costl+(x̄)

where l+(x̄) and costl+(x̄) are closed-form functions defined on Z
n 7→ R+. Then, C+

is an upper bound of C if for all v̄ ∈ Z
n and T ∈ Trees(C(v̄),S), it holds:

1. l+(v̄) ≥ h(T) + 1; and

2. ∀ 0 ≤ i ≤ h(T) . costl+(v̄) ≥ Sum Level(T, i).

Proof The proposition is trivially correct by the definition of upper bound and Answers.

2

Similarly to what we have done for h+(x̄) in Section 5, the function l+(x̄) can

simply be defined as l+(x̄) = nat(fC(x̄))+1. Finding an accurate costl+ function is not

easy in general, which makes Proposition 3 not as widely applicable as Proposition 2.

7.2 Divide and Conquer Programs

We now provide a formal definition of divide and conquer programs and show that

for all programs which fall into this class it is possible to apply the level-count upper-

bound approach. Intuitively, a program belongs to the divide and conquer class when

the local cost of each node in the evaluation tree is guaranteed to be greater than or

equal to the sum of the local costs of its children. As we will see, this guarantees that

Sum Level(T, k) ≥ Sum Level(T, k + 1). In that case, we can simply take the local cost

of the root node as an upper bound of costl+(x̄).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

282

23

Often we have multiple recursive and non-recursive equations for a cost relation.

Checking that the local cost of a node is greater than the sum of those of its children

needs to take into account all possible combinations of cost expressions produced by

picking a recursive equation followed by picking any equation –be it recursive or not– for

each recursive call in such equation. We now define the set of child local-cost expressions

as a set of triplets composed by two cost expressions linked by a set of constraints which

are all those achievable in the combinations explained.

Definition 8 (Child local-cost expressions) The set of child local-cost expressions

of a standalone cost relation C, denoted Child Exps(C), is defined as

Child Exps(C) =

8

>

<

>

:

〈exp, exp′, ψ〉

˛

˛

˛

˛

˛

˛

˛

〈C(x̄) = exp +
Pk

i=1 C(ȳi), ϕ〉 ∈ S, where k ≥ 1

∀ 1 ≤ i ≤ k. 〈C(ȳi) = expi +
Pki

j=1 C(z̄j), ϕi〉 ∈ S

exp′ = exp1 + · · ·+ expk

ψ = ∃̄vars(exp) ∪ vars(exp′).ϕ ∧ ϕ1 ∧ · · · ∧ ϕk

9

>

=

>

;

Example 9 Consider a CR in which C is defined by the two equations:

〈C(x) = 0, {x ≤ 0}〉
〈C(x) = nat(x) + C(x1) + C(x2), ϕ〉

where ϕ = {x > 0, x1+x2+1 ≤ x, x ≥ 2∗x1, x ≥ 2∗x2, x1 ≥ 0, x2 ≥ 0}. It corresponds

to a divide and conquer problem such as merge-sort when the cost model used counts

the number of comparison instructions executed, which is a usual criteria for comparing

sorting programs and algorithms. The set Child Exps(C) consists of:

Child Exps(C) =

8

>

>

<

>

>

:

〈nat(x), 0, ϕ ∧ x1 ≤ 0 ∧ x2 ≤ 0〉
〈nat(x), nat(x1), ϕ ∧ x1 ≤ 0 ∧ ϕ2〉
〈nat(x), nat(x2), ϕ ∧ ϕ1 ∧ x2 ≤ 0〉
〈nat(x), nat(x1) + nat(x2), ϕ ∧ ϕ1 ∧ ϕ2〉

9

>

>

=

>

>

;

where ϕ1 (resp. ϕ2) is a renaming apart of ϕ, except for the variable x1 (resp. x2). 2

The following lemma provides a sufficient condition for a cost relation falling into

the divide and conquer class, i.e., for Proposition 3 to be applicable. It is based on

checking that each cost expression contributed by an equation is greater than or equal

to the sum of the cost expressions contributed by the corresponding immediate recursive

calls.

Lemma 5 (A sufficient condition for divide and conquer) Let C be a standalone

cost relation. If for any 〈exp, exp′, ψ〉 ∈ Child Exps(C) and any σ : vars(exp) ∪
vars(exp′) 7→ Z such that σ |= ψ it holds that [[exp]]σ ≥ [[exp′]]σ, then for any call

C(v̄), a corresponding evaluation tree T ∈ Trees(C(v̄),S), and a level k, it holds that

Sum Level(T, k) ≥ Sum Level(T, k + 1).

Proof Assume the contrary, i.e., the condition holds but there exists a call C(v̄), a corre-

sponding evaluation tree T ∈ Trees(C(v̄),S), and a level k, such that Sum Level(T, k) <

Sum Level(T, k+1). This means that there exists a node node(C(v̄), r, 〈T1, . . . , Tn〉) at

level k, such that for each subtree Ti = node(C(v̄i), ri, 〉) it holds r < r1 + · · ·+rn. As-

sume this node was constructed using an equation E = 〈C(x̄) = exp+
Pm

i=1 C(ȳi), ϕ〉 ∈
S and that 〈C(ȳi) = expi +

Pmi

j=1 C(z̄j), ϕi〉 ∈ S was used to match each call Ci(ȳi) in

E . Then, there exists σ verifying σ |= ϕ∧ϕ1∧· · ·∧ϕm |= x̄ = v̄∧ȳ1 = v̄1∧· · ·∧ȳm = v̄m,

such that [[exp]]σ < [[exp1 + · · · + expm]]σ, which contradicts the assumption that the

condition holds. 2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

283

24

The intuition of the above lemma is that for each node in any evaluation tree, there

exists a tuple 〈exp, exp′, ψ〉 ∈ Child Exps(C) and a substitution σ : vars(exp) ∪
vars(exp′) 7→ Z such that σ |= ψ, [[exp]]σ is equal to its local cost, and [[exp′]]σ is equal

to the sum of its children local costs.

Theorem 2 Let C be a standalone cost relation which satisfies the divide and con-

quer condition of Lemma 5, E = {ub exp(exp, x̄0, ϕ, {x̄0 = x̄}) | 〈C(x̄) = exp +
Pk

i=1 C(ȳi), ϕ〉 ∈ S}, and costl+(x̄) = max(E). Then, for any call C(v̄), a corre-

sponding evaluation tree T ∈ Trees(C(v̄),S), and a level k, it holds that costl+(v̄) ≥
Sum Level(T, k).

Proof It follows from Lemmata 3 and 5. 2

Example 10 Consider again the cost relation C defined in Example 9. Computing the

set E of Theorem 2 results in {nat(x), 0}, and therefore costl+(x) = nat(x). Using the

techniques described in Section 5 we can automatically compute

l+(x)=⌈log2(nat(x)+1)⌉+1

Thus, we obtain the upper bound C+(x) = nat(x) ∗ (⌈log2(nat(x) + 1)⌉ + 1). Note

that this upper bound is inferred in a fully automatic way by our prototype which is

described in Section 10. By using the node-count approach, we would obtain C+(x) =

nat(x) ∗ (2⌈log2(nat(x)+1)⌉−1) = nat(x)2 as upper bound. 2

8 Direct Recursion using Partial Evaluation

Our approach requires that all recursions be direct. However, automatically generated

CRSs often contain recursions which are not direct, i.e., cycles involve more than one

function.

Example 11 The cost analyzer of [4,6], in order to define the cost of the “for” loop in

the program in Figure 1, instead of Equations (8) and (9) (relation E) in Figure 3,

produces the following equations:

(8’) E(la, j) = 5 + F (la, j, j′, la′) {j′ = j, la′ = la− 1, j′ ≥ 0}
(9’) F (la, j, j′, la′) = H(j′, la′) {j′ ≥ la′}
(10) F (la, j, j′, la′) = G(la, j, j′, la′) {j′ < la′}
(11) H(j′, la′) = 0

(12) G(la, j, j′, la′) = 10 + E(la, j + 1) {j < la− 1, j ≥ 0, la− la′ = 1, j′ = j}

The new E relation captures the cost of evaluating the loop condition “j < la − 1”

(5 cost units) plus the cost of its continuation, captured by F . In Equation (9’) the

relation F corresponds to the exit of the loop (it calls the auxiliary relation H, which

represents the cost of exiting the loop, i.e., 0 units). Equation (10) captures the cost

of one iteration, which accumulates 10 cost units and calls E recursively. 2

In this section, we present an automatic transformation of CRSs into directly re-

cursive form. The transformation is done by replacing calls to intermediate relations

by their definitions using unfolding. For instance, given the CRS in Example 11, if we

keep E and unfold the remaining relations in the example (F , G, and H), we obtain

the equations for E shown in Figure 3.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

284

25

8.1 Binding Time Classification

We now recall some standard terminology on graphs. A directed graph G is a pair

〈N,A〉 where N is the set of nodes and A ⊆ N × N is the set of arcs. Given a graph

G = 〈N,A〉, a set of nodes S ⊆ N is strongly connected if ∀n, n′ ∈ S we have that n′ is

reachable from n. The strongly connected components of G = 〈N,A〉 is a partition of N

into the largest possible strongly connected sets. Given a graph G we write SCC(G) to

denote its strongly connected components. Given a graph G = 〈N,A〉 and a set S⊆N ,

the subgraph of G w.r.t. S, denoted G|S , is defined as G|S = 〈S,A ∩ (S×S)〉. Also,

given a strongly connected component S, a node n ∈ S is a covering point for G|S if

G|S\{n} is an acyclic graph, i.e., n is a covering point of G|S if n is part of all cycles

in G|S . The problem of finding a minimal set of nodes to delete from a cyclic graph

in order to convert it into an acyclic graph is also known as the feedback vertex set

problem in computational complexity theory. The feedback vertex set decision problem

is NP-complete in general, but for reducible graphs (which is the case of most control

flow graphs coming from structured programming languages) is it linear [46]. Moreover,

since our interest is only in checking if there exists a feedback set of size 1, when the

graph is not reducible, we can solve it in quadratic time simply by removing a node n

from G|S and checking if G|S\{n} is acyclic.

The notion of unfolding corresponds to the intuition of replacing a call to a relation

by the definition of the corresponding relation. Naturally, this process in the presence of

recursive relations might be non-terminating. Intuitively, the transformation proposed

removes intermediate relations from the CRS and we achieve direct recursion if at most

one relation remains per each strongly connected component in the call graph of the

original CRS . In this section, we find a Binding Time Classification (or BTC for short)

which ensures the termination of the unfolding process by declaring which relations are

residual, i.e., they have to remain in the CRS . The remaining relations are considered

unfoldable, i.e., they are eliminated. To define such BTC, we associate a call graph to

each CRS S as follows. Given a CRS S with C, D ∈ rel(S), we say that C calls D in

S, denoted C 7→SD, iff there is an equation 〈C(x̄) = exp +
Pk

i=1Di(ȳi), ϕ〉 ∈ S such

that Di = D for some i ∈ {1, . . . , k}. The call graph associated to S, denoted G(S),

is the directed graph obtained from S by taking N = rel(S) and where (C,D) ∈ A
iff C 7→SD. We now present sufficient conditions under which CRSs can be put into

directly recursive form. In particular, we require that the graph associated to the CRS

be of minimal coverage.

Definition 9 (minimal coverage) A graph G = 〈N,A〉 is of minimal coverage iff

∀S ∈ SCC(G), there exists n ∈ S such that n is a covering point for G|S .

Intuitively, a graph is of minimal coverage if each SCC has a covering point. Let us

see some examples.

Example 12 Given the CRS S of Example 11, its call graph G(S) is shown on the left

hand side of the figure below. Also, we have that SCC(G(S)) = {{E,F,G}, {H}}.

H

E

F

G H

E

F

G

(11’)(11)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

285

26

The strongly connected component which could be problematic as regards minimal

coverage (more than one element) is {E,F,G}. Since there is just one cycle, any of

the nodes is a covering point and therefore G is of minimal coverage. However, if we

replace Equation (11) in Example 11 with Equation (11’) below:

(11′) 〈H(j′, la′)← 1 +H(j′′, la′) + E(j′′, la′), {j′′ = j′ − 1}〉

we obtain the graph to the right of the figure. Now, SCC(G(S)) = {{E,F, G,H}},
i.e., all nodes are in the same strongly connected component, and we have three cycles

(〈E,F,G〉, 〈E,F,H〉, and 〈H〉) which belong to such strongly connected component.

Unfortunately, this time there is no node which belongs simultaneously to the three

cycles. 2

As shown in the example above, there are graphs which are not of minimal cover-

age. Therefore, there are CRSs which cannot be put into canonical form. However,

structured loops (built using for, while, etc.) and the recursive patterns found in most

programs naturally result in CRSs whose reachability graphs are of minimal coverage.

We can now define the notion of directly recursive BTC which ensures both the

termination of our partial evaluation process and the effectiveness of the transformation

(i.e., we indeed obtain direct recursion form). Formally, a relation D is reachable from

a relation C in S iff there is a path from C to D in G(S). A relation C is recursive iff C

is reachable from itself. It is directly recursive if (C 7→SD∧D 6=C)⇒ C is not reachable

from D in S, i.e., there cannot be cycles in the reachability relation (recursion) of

length greater than one.

Definition 10 (directly recursive BTC) Given a CRS S with graph G, a BTC

btc for S is directly recursive if for all S ∈ SCC(G) the following two conditions hold:

(DR) if s1, s2 ∈ S and s1, s2 ∈ btc, then s1 = s2.

(TR) if S has a cycle, then there exists s ∈ S such that s ∈ btc.

Condition (DR) ensures that all recursions in the transformed CRS are direct, as there

is only one residual relation per SCC. Condition (TR) guarantees that the unfolding

process terminates, as there is a residual relation per cycle.

A directly recursive BTC for Example 11 is btc = {E}. In our implementation we

include in BTCs only the covering point of SCCs which contain cycles, but not that

of components without cycles. This way of computing BTCs, in addition to ensuring

direct recursion, also eliminates all intermediate cost relations which are not part of

cycles. Coming back to Example 11, our implementation computes btc = {E}. This is

why the CRS shown in Figure 3 does not include equations for H.

8.2 Partial Evaluation of Cost Relations

We now present a Partial Evaluation [30] (PE for short) algorithm for transforming

CRSs. Unfolding, in this context, in addition to taking care of combining arithmetic

expressions, also has to combine the linear constraints and to consider a BTC btc to

control the transformation process. The next definition of unfolding, given a call to a

relation, produces a specialization for such call by unfolding all calls to relations which

are marked as unfoldable in btc.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

286

27

Definition 11 (unfolding) Given a CRS S, a call C(x̄0) such that C ∈ rel(S),

a set of linear constraints ϕx̄0 over the variables x̄0, and a BTC btc for S, a spe-

cialization 〈E,ϕ〉 is obtained by unfolding C(x̄0) and ϕx̄0 in S w.r.t. btc, denoted

Unfold(〈C(x̄0), ϕx̄0〉,S, btc) ; 〈E,ϕ〉, if one of the following conditions hold:

(res) (C ∈ btc ∧ ϕ 6= true) ∧ 〈E,ϕ〉 = 〈C(x̄0), ϕx̄0〉.
(unf) (C 6∈ btc ∨ ϕ = true) ∧ 〈E,ϕ〉 = 〈(exp + e1 + . . .+ ek), ϕ′

V

i=1..k

ϕi〉,

where we have that:

1. 〈C(x̄) = exp +
Pk

i=1Di(ȳi), ϕC〉 is a renamed apart equation in S such that ϕ′ is

satisfiable in Z, where ϕ′ = ϕx̄0 ∧ ϕC [x̄0/x̄].

2. Unfold(〈Di(ȳi), ϕ
′〉,S, btc) ; 〈ei, ϕi〉 for all i ∈ {1, . . . , k}.

The first case, (res), is required for termination. When we call a relation C which

is marked as residual, we simply return the initial call C(x̄0) and constraints ϕx̄0 ,

as long as ϕx̄0 is not the initial one (true). The latter condition is added in order to

enforce the initial unfolding step for relations marked as residual. In all subsequent

calls to Unfold different from the initial one, the constraints are different from true.

The second case (unf) corresponds to continuing the unfolding process. Step 1 is non

deterministic in general, since cost relations are often defined by means of several

equations. Furthermore, since expressions are transitively unfolded, step 2 may also

provide multiple solutions. As a result, unfolding may produce multiple outputs. Also,

note that the final constraint ϕ can be unsatisfiable. In such case, we simply do not

regard 〈E,ϕ〉 as a valid unfolding. In the following, we denote by
unf
=e an “unfolding

step” performed by unf where an equation e is selected to replace a function call by

its right hand side.

Example 13 Given the initial call 〈E(la, j), true〉, we obtain an unfolding by performing

the following steps.

〈E(la, j), true〉 unf
= (8′)

〈5 + F (la, j, j′, la′), {j′ = j, la′ = la− 1, j′ ≥ 0}〉 unf
= (10)

〈5 +G(la, j, j′, la′), {j′ = j, la′ = la− 1, j′ ≥ 0, j′ < la′}〉 unf
= (12)

〈15 + E(la, j′′), {j < la− 1, j ≥ 0}〉

The last call E(la, j′′) cannot be further unfolded because the relation belongs to btc

and ϕ 6= true. 2

In the above definition, from each result of unfolding, we can build a residual equa-

tion. Given Unfold(〈C(x̄0), ϕx̄0〉,S, btc) ; 〈E,ϕ〉, its corresponding residual equation

is 〈C(x̄0) = E,ϕ〉. We use Residuals(〈C(x̄0), ϕx̄0〉,S, btc) to denote the set of residual

equations for 〈C(x̄0), ϕx̄0〉 in S w.r.t. ϕ. Now, we obtain a partial evaluation of C by

collecting all residual equations for the call 〈C(x̄0), true〉 where x̄0 are distinct variables.

Definition 12 (partial evaluation) Given a CRS S, a relation C, and a BTC btc

for S, the partial evaluation for C in S w.r.t. btc is defined as:

[

D∈btc∪{C}

Residuals(〈D(x̄0), true〉,S, btc)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

287

28

The above definition provides an algorithm for partial evaluation of CRSs. In terms

of PE [30], the algorithm we propose is an off-line PE which at the global control

level is monovariant, since the initial constraint is true for all residual relations, and

at the local-control it unfolds all calls to unfoldable relations and residualizes all calls

to residual relations. Note that, in addition to the relations in btc, we also generate

equations for the initial relation C.

Example 14 The partial evaluation of the equations of Example 11 w.r.t. the call of

Example 13 are Equations (8) and (9) of Figure 3. Equation (9) is obtained from the

unfolding steps depicted in Example 13 and Equation (8) from an unfolding derivation

where the selected equations are (8’), then (9’) and finally (11). As expected, the

resulting CRS is directly recursive. 2

The lemma below shows that partial evaluation is an effective way of obtaining

direct recursion. It easily follows by the definition of BTC.

Lemma 6 Let S be a CRS of minimal coverage and let C be a relation. Let btc be a

directly recursive BTC for S. Then,

1. partial evaluation for C in S w.r.t. btc produces a CRS S’ which is directly recursive

and,

2. S′ is obtained in finite time.

Proof The proof is by contradiction. Let us first prove claim 1. Assume that we have a

relation in S’ which is not directly recursive. This means that we can have equations of

the form: 〈C(x̄) = exp+D(ȳ), ϕC〉 and 〈D(x̄) = exp+C(ȳ), ϕD〉 with D 6= C. As D has

not been unfolded, then it must happen that D ∈ btc. We have that C is in the same

SCC as D. Then, by condition (DR) of Definition 10, it must happen that C = D.

This contradicts the initial assumption. Claim 2 follows from the condition (TR) of

Definition 10 by reasoning by contradiction. Let us assume that S’ is not obtained in

finite time. This can only happen because Unfold does not terminate. Hence, there exists

an infinite derivation 〈E1, ϕ1〉 unf
= 〈E2, ϕ2〉 unf

= . . .
unf
= 〈En, ϕn〉 unf

= 〈En+1, ϕn+1〉 unf
=

Since the number of cost relations in rel(S) is finite and the sequence is infinite, there

is a cycle from some Ei to an En for i < n. By condition (TR), this cannot happen

because there must exist an Ej in the cycle with i ≤ j ≤ n that belongs to btc. 2

The following lemma guarantees that PE preserves the solutions of CRSs. The

proof basically consists in ensuring the correctness of the basic operators in the partial

evaluation algorithm of Definition 12 to, then, rely on the classical correctness results

of PE proven in the context of logic programming (see e.g. [36,31,30] and more recent

formulations like [35,34]).

Lemma 7 (correctness of PE) Let S be a CRS, C be a relation, and let btc be a

BTC for S. Let S′ be the partial evaluation of C in S w.r.t. btc. Then, ∀v̄ ∈ Z
n, ∀r ∈ R+

we have that r ∈ Answers(C(v̄),S) iff r ∈ Answers(C(v̄),S′).

Proof (sketch) The proof can be done by demonstrating that Definition 12 is a correct

partial evaluation as defined in logic programming. Correctness results were already

stated in Theorem 1 of [31] and more recent formulations appear in [35,34]. In all cases,

correctness requires proving that:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

288

29

1. Soundness. The soundness condition ensures that the all answers in the partially

evaluated program are also answers in the original program. It is proven by demon-

strating that each unfolding step in the partially evaluated program corresponds

to a sequence of equivalent steps in the original one. In our context, it amounts to

ensuring that the operator Unfold of Definition 11 preserves the answers.

2. Completeness. Completeness guarantees that all answers in the original program

are also found in the partially evaluated one. It can be ensured when the set of terms

to be partially evaluated meets the so-called closedness condition [36]. The role of

this condition is to ensure that all possible calls that raise during the execution of

a CRS will find a matching relation. In our context, we need to ensure that the set

btc enforces the closedness condition, i.e., answers are not lost.

Point 1 requires to prove the correctness of operator Unfold of Definition 11. It indeed

trivially holds as Unfold simply replaces in rule (unf) a function call by its right hand

side, with the corresponding propagation of constraints. In terms of evaluation trees,

this step basically merges a node with (some of) its successors.

The closedness of the terms to be partially evaluated, i.e., the elements in the set

btc, follows from the fact that only terms in btc remain in the relation and the remaining

ones are unfolded. This trivially ensures that all possible calls during execution will be

covered by btc, as required by point 2 above. In standard PE, correctness requires that

the partial evaluation process terminates. This is ensured by Lemma 6. 2

9 Incompleteness in Cost Analysis

When we consider the whole cost analysis which comprises the two phases mentioned

in Section 1, i.e., obtaining a closed-form upper-bound from a program —instead of

from a CRS— the problem is strictly more difficult than proving termination. This is

explained by the fact that obtaining a closed-form upper-bound of a program which has

a non-zero cost expression associated to each recursive equation implies the termination

of the program from which the CR has been generated. Therefore, the approach is

necessarily incomplete and might fail to produce an upper-bound. Clearly, this may

occur because the resource usage of the program is actually infinite w.r.t. the cost model

used. For instance, a non-terminating program that can perform an infinite number of

steps. When the resource consumption is finite, we can still fail to produce an upper

bound because of loss of precision in one of the two phases in the cost analysis. This

can occur in the first phase, i.e., when the program is transformed into the CRS since

it applies abstract interpretation based analyses in order to approximate undecidable

problems such as aliasing and size relations. However, the incompleteness in the first

part of the analysis is completely outside the scope of this paper and we refer to [4] for

further details.

Certainly, the second part of cost analysis is undecidable as well, i.e., if a given cost

relation admits a closed-form upper-bound, so we must accept certain restrictions. In

[14], it is proven that a simpler problem, namely the termination of a special case of

CRS where all equations have at most one call in the body and constraints are of the

form x−y ≤ c, is undecidable. A detailed discussion about decidability of simple loops

with integer constraints can be found in [18]. There are three sources of incompleteness

in our approach, i.e., in the process of obtaining an upper bound from a CRS by using

our techniques.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

289

30

1. The first one is obtaining directly recursive CRs. For instance, the following CRS

does not have a cover point:

〈C(n) = C(n′) +D(n′), {n > 0, n′=n−1}〉
〈D(n) = D(n′) + C(n′), {n > 0, n′=n−1}〉

Importantly, this phase is complete for CRs extracted from structured loops and

from the recursive patterns found in most programs. The use of features like break

and continue that languages like Java or C do not pose any problem, since the

control flow graph of the program can be constructed and turned into recursive

form. As it can be seen in the example, incompleteness might occur in certain

types of mutually recursive relations.

2. The second source of incompleteness in our method is on finding ranking functions.

Currently, we use a complete procedure for inferring linear ranking functions [41].

However, there are CRSs which do not have a linear ranking function like this one

(borrowed from [41]):

〈C(n) = 1 + C(n′), {n>=0, n′=−2∗n+10}〉

Integrating other more sophisticated ranking functions is possible, but it is probably

not required in practice.

3. The third one is finding useful invariants. Sometimes this is not possible by using

linear constraints. This happens for example in this example:

〈C(n,m) = m, {n=0}〉
〈C(n,m) = C(n′,m′), {n′=n−1,m′=2∗m,n>0}〉

The value of m in the base case will be (2n) ∗ m0. In principle, we could use

methods for inferring polynomial invariants, although we would need a different

maximization procedure.

10 Experimental Evaluation

We have implemented our proposal in Prolog, and we use PPL [12] (Parma Poly-

hedra Library) for manipulating linear constraints. This implemented system, called

PUBS (Practical Upper Bounds Solver), can be executed on-line using a web interface

available at http://www.cliplab.org/Systems/PUBS. In order to test our system on

realistic CRs obtained by automatic cost analysis, we have used as input a set of CRs

automatically generated by the cost analyzer of Java bytecode described in [4] from a

series of Java programs which represent classical examples in complexity analysis. The

source code of such programs is also available at the above url. All benchmarks are

presented in increasing complexity order and, as can be seen, the benchmarks range

from constant to exponential complexity, ranging through polynomial and divide and

conquer. The benchmark MergeSort falls into the class of divide-and-conquer programs

explained in Section 7 where, by using the level-count approach, we obtain the accurate

closed-form shown in the table. In addition, in the experiments, we have used three

different cost models:

– the heap consumption (in bytes), in those benchmarks marked with “∗”, and

– the number of executed comparison instructions, in the benchmark marked with

“n”,

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

290

31

Benchmark Properties Upper Bound

Polynomial∗ a,b,c 216
DivByTwo a,b 8log2(nat(2x−1)+1)+14

ArrayReverseM a 14nat(x)+12

ConcatM a,c 11nat(x)+11nat(y)+25

IncrM a,c 19nat(x+1)+9

ListReverseM a,b,c 13nat(x)+8
MergeList a,b,c 29nat(x+ y)+26

Power 10nat(x)+4
Cons∗ a,b 22nat(x−1)+24

MergeSortn a,b,c 2nat(−x+ y + 1)(log2(nat(−2x+ 2y − 1) + 1) + 1)
EvenDigits a,b,c nat(x)(8log2(nat(2x−3) + 1) + 24) + 9nat(x) + 9
ListInter a,b,c nat(x)(10nat(y) + 43) + 21
SelectOrd a,c nat(x−2)(17nat(x−2) + 34) + 9
FactSum a nat(x+1)(9nat(x) + 16) + 6
Delete a,b,c 3 + nat(l)max(38+15nat(la−1)+10nat(la),

37+15nat(lb−1)+10nat(lb))

MatMultM a,c nat(y)(nat(x)(27nat(x)) + 10) + 17

HanoiM 20(2nat(x))-17

FibonacciM 18(2nat(x−1))-13

BST∗ a,b 96(2nat(x))-49

Table 1 Upper bounds computed automatically

– the number of executed bytecode instructions, in the rest of benchmarks.

Table 1 shows the upper bounds obtained by our system. Those benchmarks marked

with M were also solved using MathematicaR© in [5] but this required significant human

intervention as we explain below. The column Properties in Table 1 shows the prop-

erties of the corresponding CR, in such a way that a, b and c indicate, respectively,

that the CR is non-deterministic, that it has inexact size constraints, and multiple

arguments (Section 2.2). We argue that the obtained upper bounds are reasonably

accurate and relatively syntactically simple, especially when compared to the exact

closed-form solutions produced by CAS for those marked M. The only examples that

can be directly solved in MathematicaR© are Fibonacci and Hanoi. For instance, for Fi-

bonacci, MathematicaR© computes the following upper bound: −(23−x(151+x − 19(1−√
5)x +5

√
5(1−

√
5)x−19(1+

√
5)x−5

√
5(1+

√
5)x))/((−1+

√
5)2(1+

√
5)2) which is

rather complex (even if it is more accurate) than the one computed by PUBS for the

same CRS . The fact that it is more complex makes it more difficult to use it for the

applications discussed in Section 1.1. This is clearly the case of the use of upper bounds

for performance debugging, as the process of checking the complexity order from such

complex expression is less intuitive to the user and sometimes hardly doable. For Hanoi,

both PUBS and MathematicaR© obtain the same result, which is the one shown in the

table.

The remaining examples marked with M require non-trivial manual transformations

in order to make them solvable in MathematicaR©. Concat performs the concatenation of

two lists and its complexity is a function of the length of both lists. MathematicaR© has

several restrictions that the CRS does not satisfy and which prevent us from solving it,

namely (1) we cannot include guards, (2) variables cannot be repeated in the equation

head, (3) all equations must have at least one variable argument and (4) variables in

the equation head must appear in the body. Still, we can manipulate the CRS , split

its equations into the two parts which correspond to the two loops which perform the

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

291

32

Benchmark #eq T #c
eq Tpe Tub Rat.

Polynomial 23(3) 10 385(97) 388 1190 4.1
DivByTwo 9(3) 2 362(94) 402 1173 4.3

ArrayReverse 9(3) 2 344(88) 387 1122 4.4
Concat 14(5) 10 335(85) 386 1102 4.4

Incr 28(5) 23 321(80) 384 1046 4.5
ListReverse 9(3) 4 293(75) 374 943 4.5
MergeList 21(4) 17 284(72) 374 925 4.6

Power 8(2) 2 262(67) 366 898 4.8
Cons 22(2) 6 253(64) 376 912 5.1

MergeSort 39(12) 499 230(61) 354 805 5.0
EvenDigits 18(5) 7 191(49) 130 290 2.2
ListInter 37(9) 48 173(44) 126 246 2.2
SelectOrd 19(6) 22 136(35) 115 169 2.1
FactSum 17(5) 8 117(29) 109 143 2.2
Delete 33(9) 106 100(24) 102 130 2.3

MatMult 19(7) 17 67(15) 69 34 1.5
Hanoi 9(2) 5 48(8) 67 16 1.7

Fibonacci 8(2) 4 39(6) 63 11 1.9
BST 31(4) 36 31(4) 64 8 2.3

Table 2 Scalability of upper bounds inference

concatenation, solve them separately and then compose their results. After this, the

upper bounds computed by MathematicaR© and PUBS are identical for this example.

Something similar occurs in MatMult, whose complexity depends on the number of

rows and columns of the matrixes to be multiplied. After doing the transformation,

MathematicaR© and PUBS compute exactly the same upper bound. For the case of Incr,

the CRS contains non-deterministic equations originated from a virtual invocation

with three different implementations. This requires to generate three corresponding

CRS and solve them independently and then take the maximum. As it was noted in

Section 2.2, this is not always possible to ensure a sound result.

Although it does not happen in the examples shown in the table, a possible source

of inaccuracy in our approach occurs when we find examples like this one:

for (int i = 0; i<n; i++)

for (int j=i; j<n; j++) C

PUBS gives an upper bound of the form n∗n∗C where C represents the (upper bound)

cost of each iteration of the innermost loop. It is well known that the exact solution

would be C ∗ ((n ∗ (n− 1))/2). This is because we provide as upper bound of the inner

loop the worst case, which corresponds to i = 0 in order to plug it in the calling context

from the outer loop.

Table 2 aims at studying the efficiency of our system by showing the results of two

different experiments. In the first experiment, we analyze each of the benchmarks in

isolation. Column #eq shows the number of equations before PE (in brackets after

PE). Note that PE greatly reduces #eq in all benchmarks. Column T shows the total

runtime in milliseconds. The experiments have been performed on an Intel Core 2

Quad Q9300 at 2.50GHz with 1.95GB of RAM, running Linux 2.6.24-21. We argue

that analysis times are acceptable. In the case of MergeSort analysis time is higher

because its equations contain a large number of variables when compared to those of

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

292

33

the other examples. This affects the efficiency when computing the ranking function

and also when maximizing expressions.

The second experiment aims at studying how analysis time increases when larger

CRs are used as benchmarks, i.e., the scalability of our approach. In order to do so,

we have connected together the CRs for the different benchmarks by introducing a

call from each CR to the one appearing immediately below it in the table. Such call

is always introduced in a recursive equation. The results of this second experiment

are shown in the last four columns of the table. Column #c
eq shows the number of

equations we want to solve in each case (in brackets after PE). Reading this column

bottom-up, we can see that when we analyze BST in the second experiment we have

the same number of equations as in the first experiment. Then, for Fibonacci we have

its 8 equations plus 31 which have been previously accumulated. Progressively, each

benchmark adds its own number of equations to #c
eq. Thus, in the first row we have a

CRS with all the equations connected, i.e., we compute a closed-form upper-bound of

a CRS with at least 20 nested loops and 385 equations. In this experiment, the analysis

time is split into Tpe and Tub, where Tpe is the time of PE and Tub is the time of

all other phases. The results show that even though PE is a global transformation, its

time efficiency is linear with the number of equations, since PE operates on strongly

connected components. Our system solves 385 equations in 388 + 1190ms.

Finally, column Rat. shows the total time per equation. The ratio is quite small

from BST to EvenDigits, which are the simplest benchmarks and also have few equa-

tions. It increases notably when we analyze the benchmark MergeSort because, as

discussed above, its equations have a large number of variables. The important point

is that for larger CRs (from MergeSort upwards) this ratio decreases more and more

as we connect new benchmarks. It should be observed that it decreases even if the

size of the CRs increases and also the equations have to count more complex expres-

sions. This happens because the new benchmarks which are connected are simpler than

MergeSort in terms of the number of variables. We believe that this demonstrates that

our approach is scalable even if the implementation is preliminary. The upper bound

expressions get considerably large when the benchmarks are composed together. We

are currently implementing standard techniques for simplification of arithmetic expres-

sions.

Pubs is already integrated within the COst and Termination Analyzer for Java

bytecode, Costa [6]. If one wants to obtain closed-form upper bounds from the Java

program rather than from the cost relations, the Costa system can be used online at:

http://pargo.ls.fi.upm.es/costa.

11 Related Work

As already mentioned in Section 1, the classical approach to automatic cost analysis,

which dates back to the seminal work of [50] consists of two phases. In the first phase,

given a program and a cost model, static analysis produces what we call a cost relation

(CR), which is a set of recursive equations which capture the cost of our program in

terms of the size of its input data. The fact that CRs are recursive make them not

very useful for most applications of cost analysis. Therefore, a second phase is required

to obtain a non-recursive representation of such CRs, known as closed-form. In most

cases, it is not possible to find an exact solution and the closed-form corresponds to

an upper-bound.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

293

34

There are a number of cost analyses available which are based on building CRs

and which can handle a range of programming languages, including functional [50,33,

43,49,45,16,37], logic [25,39], and imperative [4]. Such CRs must ensure that, for any

valid input integer tuple, a value which is guaranteed to be an upper bound of the

execution cost of the program for any input data in the (usually infinite) set of values

which are consistent with the input sizes. There is no unified terminology in this area

and such cost relations are referred to as worst-case complexity functions in [1], as

time-bound functions in [43], and recursive time-complexity functions in [33]. Apart

from syntactic differences, the main differences between such forms of functions and

our cost relations are twofold: (1) our equations contain associated size constraints and

(2) we consider (possibly) non-deterministic relations. Both features are necessary to

perform cost analysis of realistic languages (see Section 2.2). While in all such analyses

the first phase, i.e., producing CRs is studied in detail, the second phase, i.e., obtaining

closed-form upper-bounds for them, has received comparatively less attention.

There are two main ways of viewing CRs which lead to different mechanisms for

finding closed-form upper-bounds. We call the first view algebraic and the second view

transformational. The algebraic one is based on regarding CRs as recurrence relations.

This view was the first one to be proposed and it is the one which is advocated for in

a larger number of works. It allows reusing the large existing body of work in solving

recurrence relations. Within this view, two alternatives have been used in previous

analyzers. One alternative consists in implementing restricted recurrence solvers within

the analyzer based on standard mathematical techniques, as done in [50,25]. The other

alternative, motivated by the availability of powerful computer algebra systems (CASs

for short) such as MathematicaR©, MAXIMA, MAPLE, etc., consists in connecting the

analyzer with an external solver, as proposed in [49,45,16,4,37].

The transformational view consists in regarding CRs as (functional) programs. In

this view, closed-form upper-bounds are produced by applying (general-purpose) pro-

gram transformation techniques on the time-bound program [43] until a non-recursive

program is obtained. Note that, as discussed in Section 2, it is straightforward to

obtain time-bound programs from CRs by introducing a maximization operator (or

disjunctive execution). The transformational view was first proposed in the ACE sys-

tem [33], which contained a large number of program transformation rules aimed at

obtaining non-recursive representations. It was also advocated by Rosendahl in [43],

who later in [44] provided a series of program transformation techniques based on

super-compilation [48] which were able to obtain closed-forms for some classes of pro-

grams.

The problem with all the approaches mentioned above is that, though they can

be successfully applied for obtaining closed-forms for CRs generated from simple pro-

grams, they do not fulfill the initial expectations in that they are not of general appli-

cability to CRs generated from real programs. The essential features which neither the

algebraic nor the transformational approaches can handle are discussed in Section 2.2.

The main motivation for this work was our own experience in trying to apply the alge-

braic approach on the CRs generated by [4]. We argue that automatically converting

CRs into the format accepted by CASs is unfeasible. Furthermore, even in those cases

where CASs can be used, the solutions obtained are so complicated that they become

useless for most practical purposes. In contrast, our approach can produce correct and

comparatively simple results even in the presence of non-determinism.

The need for improved mechanisms for automatically obtaining closed-form upper-

bounds was already pointed out in Hickey and Cohen [28]. A significant work in this

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

294

35

direction is PURRS [13], which has been the first system to provide, in a fully au-

tomatic way, non-asymptotic closed-form upper and lower bounds for a wide class of

recurrences. Unfortunately, and unlike our proposal, it also requires CRs to be de-

terministic. Another relevant work is that of Marion et. al. [38,17], who propose an

analysis for stack frame size in first order functional programming. They use quasi-

interpretations, which are different from ranking functions and the whole approach is

limited to polynomial bounds.

An altogether different approach to cost analysis is based on type systems with

resource annotations, which does not use CRs as an intermediate step. Thus, this

approach does not require computing closed-form upper-bounds for CRs, but it is

often restricted to linear bounds [29], with some notable exception like [24].

A program analysis based approach for inferring polynomial boundedness of com-

puted values (as a function of the input) has been recently proposed in [15]. It infers

the complexity of a given program by first obtaining a step-counting program. This

work builds on similar previous works along the lines of [40,32], and the main novelty

here is that it provides completeness for a simple (Turing incomplete) language. Com-

pared to this line of research, our approach is more powerful in that it is not limited

to polynomial complexity but, on the other hand, the techniques we use are inherently

incomplete.

12 Conclusions and Future Work

We have proposed an approach to the automatic inference of non-asymptotic closed-

form upper-bounds of CRs produced by automatic cost analysis. For this, we have

formally defined CRs as a target language for cost analysis. Hence, our method for

closed-form upper-bound inference can be used in static cost analysis of any program-

ming language. In spite of the inherent incompleteness, we have experimentally shown

that our approach is able to obtain useful upper bounds for a large class of common pro-

grams. In summary, the use of ranking functions and our practical method to compute

upper bounds for a very general notion of cost expression (including exponential, loga-

rithmic, etc.) allows obtaining closed-form upper-bounds for realistic CRs with possibly

non-deterministic equations, multiple arguments, and inexact size constraints.

In recent work [8], we have applied our method to obtain closed-form upper-bounds

from non-standard CRs, namely from CRs which capture the heap space usage of

programs by taking into account the deallocations performed by garbage collection,

without requiring any change to the techniques presented in this paper.The way that

cost relations are generated is different from the standard approach because the live

heap space is not an accumulative resource of a program’s execution but, instead, it

requires to reason on all possible states to obtain their maximum. As a result, cost

relations include non-deterministic equations which capture the different peak heap

usages reached along the execution. Importantly, the additional non-determinism does

not pose any problem to applying our method.

As future work, we plan to adapt our general framework to infer closed-form lower-

bounds on the cost. While the minimization can be done similarly to the maximization

method used for upper bounds inference, we will need different techniques to infer

lower bounds on the number of iterations of loops. As another direction of future work,

Abstraction-Carrying Code [9] (ACC) proposes the use of static analysis as enabling

technology for certification. In particular, in ACC, the safety policies are defined over

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

295

36

different abstract domains. The main idea is that the abstraction (or abstract model)

of the program computed by standard static analyzers is used as a certificate. Then,

the validity of the abstraction on the consumer side is checked in a single pass by

a very efficient and specialized abstract-interpreter. Within the ACC framework, the

present work suggests that it is possible to automatically generate non-trivial resource

usage bounds for a realistic programming language. In the future, we plan to integrate

our work into a proof-carrying code infrastructure where our upper bounds should be

translated to certificates which provide cost assurances on the mobile code.

Acknowledgements We gratefully thank the anonymous referees for many useful comments
and suggestions that greatly helped to improve this article. This work was funded in part
by the Information Society Technologies program of the European Commission, Future and
Emerging Technologies under the IST-15905 MOBIUS and IST-231620 HATS projects, by the
Spanish Ministry of Education (MEC) under the TIN-2005-09207 MERIT ,TIN-2008-05624
DOVES and HI2008-0153 (Acción Integrada) projects, and the Madrid Regional Government
under the S-0505/TIC/0407 PROMESAS project.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination
Analysis of Java Bytecode. In Gilles Barthe and Frank de Boer, editors, Proceedings of
the IFIP International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS), volume 5051 of Lecture Notes in Computer Science, pages 2–18,
Oslo, Norway, June 2008. Springer-Verlag, Berlin.

3. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Cost Relation Systems: a Language–
Independent Target Language for Cost Analysis. In Spanish Conference on Programming
and Computer Languages (PROLE’08), volume 17615 of ENTCS. Elsevier, October 2008.
To appear.

4. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Byte-
code. In Rocco De Nicola, editor, 16th European Symposium on Programming, ESOP’07,
volume 4421 of Lecture Notes in Computer Science, pages 157–172. Springer, March 2007.

5. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Experiments in Cost
Analysis of Java Bytecode. In ETAPS Workshop on Bytecode Semantics, Verification,
Analysis and Transformation (BYTECODE’07), volume 190, Issue 1 of Electronic Notes
in Theoretical Computer Science, pages 67–83. Elsevier - North Holland, July 2007.

6. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design and Imple-
mentation of a Cost and Termination Analyzer for Java Bytecode. In Post-proceedings of
Formal Methods for Components and Objects (FMCO’07), number 5382 in LNCS, pages
113–133. Springer-Verlag, October 2008.

7. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis of Java Bytecode.
In International Symposium on Memory Management (ISMM’07). ACM Press, 2007.

8. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for Languages
with Garbage Collection. In ISMM’09: Proceedings of the 8th international symposium
on Memory management, New York, NY, USA, June 2009. ACM Press.

9. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code: A Model for
Mobile Code Safety. New Generation Computing, 26(2):171–204, March 2008.

10. Elvira Albert, Puri Arenas, Samir Genaim, and German Puebla. Automatic Inference of
Upper Bounds for Recurrence Relations in Cost Analysis. In Maŕıa Alpuente and Germán
Vidal, editors, Static Analysis, 15th International Symposium, SAS 2008, Valencia, Spain,
July 15-17, 2008, Proceedings, volume 5079 of Lecture Notes in Computer Science, pages
221–237. Springer-Verlag, July 2008.

11. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource Guaran-
tees for Smart Devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Proc. of Workshop on Construction and Analysis of Safe, Secure and Interoper-
able Smart Devices (CASSIS), volume 3362 of LNCS, pages 1–27. Springer, 2005.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

296

37

12. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and
software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

13. R. Bagnara, A. Pescetti, A. Zaccagnini, and E. Zaffanella. PURRS: Towards computer
algebra support for fully automatic worst-case complexity analysis. Technical report, 2005.
arXiv:cs/0512056 available from http://arxiv.org/.

14. Amir M. Ben-Amram. Size-change termination with difference constraints. ACM Trans.
Program. Lang. Syst., 30(3), 2008.

15. Amir M. Ben-Amram, Neil D. Jones, and Lars Kristiansen. Linear, polynomial or expo-
nential? complexity inference in polynomial time. In Logic and Theory of Algorithms, 4th
Conference on Computability in Europe, CiE 2008, Athens, Greece, June 15-20, 2008,
Proceedings, volume 5028 of Lecture Notes in Computer Science, pages 67–76. Springer,
2008.

16. R. Benzinger. Automated Higher-Order Complexity Analysis. Theor. Comput. Sci., 318(1-
2), 2004.

17. G. Bonfante, J-Y. Marion, and J-Y. Moyen. Quasi-interpretations and small space bounds.
In J. Giesl, editor, RTA, volume 3467 of Lecture Notes in Computer Science, pages 150–
164. Springer, 2005.

18. M. Braverman. Termination of Integer Linear Programs. In Computer Aided Verification
(CAV 2006), volume 4144 of Lecture Notes in Computer Science, pages 372–385. Springer,
2006.

19. A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula. Enforcing resource bounds via
static verification of dynamic checks. In ESOP’05, volume 3444 of LNCS. Springer, 2005.

20. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Fourth ACM
Symposium on Principles of Programming Languages, pages 238–252, 1977.

21. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among Variables
of a Program. In ACM Symposium on Principles of Programming Languages (POPL),
pages 84–97. ACM Press, 1978.

22. Stephen-John Craig and Michael Leuschel. Self-Tuning Resource Aware Specialisation for
Prolog. In PPDP ’05: Proceedings of the 7th ACM SIGPLAN international conference
on Principles and practice of declarative programming, pages 23–34, New York, NY, USA,
2005. ACM Press.

23. K. Crary and S. Weirich. Resource Bound Certification. In POPL’00, pages 184–198.
ACM, 2000.

24. K. Crary and S. Weirich. Resource bound certification. In POPL’00. ACM Press, 2000.
25. S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions on

Programming Languages and Systems, 15(5):826–875, November 1993.
26. G. Gómez and Y. A. Liu. Automatic Time-Bound Analysis for a Higher-Order Language.

In Proceedings of the Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM). ACM Press, 2002.

27. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Program Debug-
ging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming, 58(1–2):115–140, October 2005.

28. T. Hickey and J. Cohen. Automating program analysis. J. ACM, 35(1), 1988.
29. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional

programs. In POPL, 2003.
30. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program

Generation. Prentice Hall, New York, 1993.
31. J. Komorovski. An Introduction to Partial Deduction. In A. Pettorossi, editor, Meta Pro-

gramming in Logic, Proceedings of META’92, volume 649 of LNCS, pages 49–69. Springer-
Verlag, 1992.

32. Lars Kristiansen and Neil D. Jones. The flow of data and the complexity of algorithms.
In S. Barry Cooper, Benedikt Löwe, and Leen Torenvliet, editors, CiE, volume 3526 of
Lecture Notes in Computer Science, pages 263–274. Springer, 2005.

33. D. Le Metayer. ACE: An Automatic Complexity Evaluator. ACM Transactions on Pro-
gramming Languages and Systems, 10(2):248–266, April 1988.

34. M. Leuschel. A framework for the integration of partial evaluation and abstract interpre-
tation of logic programs. ACM Transactions on Programming Languages and Systems,
26(3):413 – 463, May 2004.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

297

38

35. M. Leuschel and M. Bruynooghe. Logic Program Specialisation through Partial Deduction:
Control Issues. Theory and Practice of Logic Programming, 2(4 & 5):461–515, July &
September 2002.

36. J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming. Journal of
Logic Programming, 11(3–4):217–242, 1991.

37. Beatrice Luca, Stefan Andrei, Hugh Anderson, and Siau-Cheng Khoo. Program transfor-
mation by solving recurrences. In PEPM ’06: Proceedings of the 2006 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manipulation, pages 121–
129, New York, NY, USA, 2006. ACM.

38. J-Y. Marion and R. Péchoux. Resource analysis by sup-interpretation. In M. Hagiya and
P. Wadler, editors, FLOPS, volume 3945 of Lecture Notes in Computer Science, pages
163–176. Springer, 2006.

39. J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-Definable Resource
Bounds Analysis for Logic Programs. In International Conference on Logic Programming
(ICLP), volume 4670 of LNCS, pages 348–363. Springer-Verlag, September 2007.

40. K-H. Niggl and H. Wunderlich. Certifying Polynomial Time and Linear/Polynomial Space
for Imperative Programs. SIAM J. Comput., 35(5):1122–1147, 2006.

41. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking
functions. In VMCAI, 2004.

42. G. Puebla and C. Ochoa. Poly-Controlled Partial Evaluation. In Proc. of 8th ACM-
SIGPLAN International Symposium on Principles and Practice of Declarative Program-
ming (PPDP’06), pages 261–271. ACM Press, July 2006.

43. M. Rosendahl. Automatic Complexity Analysis. In Proc. ACM Conference on Functional
Programming Languages and Computer Architecture, pages 144–156. ACM, New York,
1989.

44. M. Rosendahl. Simple driving techniques. In T. Mogensen, D. Schmidt, and I. Hal Sudbor-
ough, editors, The Essence of Computation, volume 2566 of Lecture Notes in Computer
Science, pages 404–419. Springer, 2002.

45. D. Sands. A näıve time analysis and its theory of cost equivalence. J. Log. Comput., 5(4),
1995.

46. Adi Shamir. A linear time algorithm for finding minimum cutsets in reducible graphs.
SIAM J. Comput., 8(4):645–655, 1979.

47. Fausto Spoto, Patricia M. Hill, and Etienne Payet. Path-length analysis of object-oriented
programs. In Proc. International Workshop on Emerging Applications of Abstract Inter-
pretation (EAAI), Electronic Notes in Theoretical Computer Science. Elsevier, 2006.

48. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, 8(3):292–325, 1986.

49. P. Wadler. Strictness analysis aids time analysis. In Proc. ACM Symposium on Principles
of Programming Languages (POPL), pages 119–132. ACM Press, 1988.

50. B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM, 18(9), 1975.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

298

Automatic Inference of Upper Bounds for
Recurrence Relations in Cost Analysis

Elvira Albert1, Puri Arenas1, Samir Genaim2, and Germán Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. The classical approach to automatic cost analysis consists of
two phases. Given a program and some measure of cost, we first pro-
duce recurrence relations (RRs) which capture the cost of our program
in terms of the size of its input data. Second, we convert such RRs into
closed form (i.e., without recurrences). Whereas the first phase has re-
ceived considerable attention, with a number of cost analyses available
for a variety of programming languages, the second phase has received
comparatively little attention. In this paper we first study the features
of RRs generated by automatic cost analysis and discuss why existing
computer algebra systems are not appropriate for automatically obtain-
ing closed form solutions nor upper bounds of them. Then we present,
to our knowledge, the first practical framework for the fully automatic
generation of reasonably accurate upper bounds of RRs originating from
cost analysis of a wide range of programs. It is based on the inference of
ranking functions and loop invariants and on partial evaluation.

1 Introduction

The aim of cost analysis is to obtain static information about the execution cost
of programs w.r.t. some cost measure. Cost analysis has a large application field,
which includes resource certification [11,4,16,9], whereby code consumers can
reject code which is not guaranteed to run within the resources available. The
resources considered include processor cycles, memory usage, or billable events,
e.g., the number of text messages or bytes sent on a mobile network.

A well-known approach to automatic cost analysis, which dates back to the
seminal work of [25], consists of two phases. In the first phase, given a program
and some cost measure, we produce a set of equations which captures the cost of
our program in terms of the size of its input data. Such equations are generated
by converting the iteration constructs of the program (loops and recursion) into
recurrences and by inferring size relations which approximate how the size of
arguments varies. This set of equations can be regarded as recurrence relations
(RRs for short). Equivalently, it can be regarded as time bound programs [22].
The aim of the second phase is to obtain a non-recursive representation of the
equations, known as closed form. In most cases, it is not possible to find an exact
solution and the closed form corresponds to an upper bound.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 221–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

299

222 E. Albert et al.

There are a number of cost analyses available which are based on this ap-
proach and which can handle a range of programming languages, including
functional [7,18,22,23,24,25], logic [12,20], and imperative [1,3]. While in all such
analyses the first phase is studied in detail, the second phase has received com-
paratively less attention. Basically, there are three different approaches for the
second phase. One approach, which is conceptually linked viewing equations as
time bound programs, was proposed in [18] and advocated in [22]. It is based on
existing source-to-source transformations which convert recursive programs into
non-recursive ones. The second approach consists in building restricted recur-
rence solvers using standard mathematical techniques, as in [12,25]. The third
approach consists in relying on existing computer algebra systems (CASs for
short) such as MathematicaR©, MAXIMA, MAPLE, etc., as in [3,7,23,24].

The problem with the three approaches above is that they assume a rather
limited form of equations which does not cover the essential features of equa-
tions actually generated by automatic cost analysis. In the rest of the paper,
we will concentrate on viewing equations as recurrence relations and will use
the term Cost Relation (CR for short) to refer to the relations produced by
automatic cost analysis. In our own experience with [3], we have detected that
existing CASs are, in most cases, not capable of handling CRs. We argue that
automatically converting CRs into the format accepted by CASs is unfeasible.
Furthermore, even in those cases where CASs can be used, the solutions ob-
tained are so complicated that they become useless for most practical purposes.
An altogether different approach to cost analysis is based on type systems with
resource annotations which does not use equations. Thus, it does not need to
obtain closed forms, but it is typically restricted to linear bounds [16]. The need
for improved mechanisms for obtaining upper bounds was already pointed out in
Hickey and Cohen [14]. A relevant work in this direction is PURRS [5], which has
been the first system to provide, in a fully automatic way, non-asymptotic upper
and lower bounds for a wide class of recurrences. Unfortunately, and unlike our
proposal, it also requires CRs to be deterministic. Marion et. al. [19,8] use a
kind of polynomial ranking functions, but the approach is limited to polynomial
bounds and can only handle a rather restricted form of CRs.

We believe that the lack of automatic tools for the above second phase is a
major reason for the diminished use of automatic cost analysis. In this paper we
study the features of CRs and discuss why existing CASs are not appropriate
for automatically bounding them. Furthermore, we present, to our knowledge,
the first practical framework for the fully automatic inference of reasonably
accurate upper bounds for CRs originating from a wide range of programs. To do
this, we apply semantic-based transformation and analysis techniques, including
inference of ranking functions, loop invariants and the use of partial evaluation.

1.1 Motivating Example

Example 1. Consider the Java code in Fig. 1. It uses a class List for (non sorted)
linked lists of integers. Method del receives an input list without repetitions l,

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

300

Automatic Inference of Upper Bounds for Recurrence Relations 223

void del(List l, int p, int a[], int la, int b[], int lb){
while (l!=null) {

if (l.data<p) {
la=rm vec(l.data, a, la);

} else {
lb=rm vec(l.data, b, lb);

}
l=l.next;

}
}
int rm vec(int e, int a[], int la){

int i=0;
while (i<la && a[i]<e) i++;
for (int j=i; j<la−1; j++) a[j]=a[j+1];
return la−1;

}

(1) Del(l, a, la, b, lb)=1+C (l, a, la, b, lb)
{b≥lb, lb≥0 ,a≥la, la≥0 , l≥0}

(2) C (l, a, la, b, lb)=2 {a≥la, b≥lb, b≥0 , a≥0 , l=0}
(3) C (l, a, la, b, lb)=

25+D(a, la, 0)+E(la, j)+C (l′, a, la−1 , b, lb)
{a≥0 ,a≥la, b≥lb, j≥0 , b≥0 , l>l′, l>0}

(4) C (l, a, la, b, lb)=
24+D(b, lb, 0)+E(lb, j)+C (l′, a, la, b, lb−1)
{b≥0 , b≥lb, a≥la, j≥0 , a≥0 , l>l′, l>0}

(5) D(a, la, i)=3 {i≥la, a≥la, i≥0}
(6) D(a, la, i)=8 {i<la, a≥la, i≥0}
(7) D(a, la, i)=10+D(a, la, i+1) {i<la, a≥la, i≥0}
(8) E(la, j)=5 {j≥la−1 , j≥0}
(9) E(la, j)=15+E(la, j+1) {j<la−1 , j≥0}

Fig. 1. Java Code and the Result of Cost Analysis

an integer value p (the pivot), two sorted arrays of integers a and b, and two
integers la and lb which indicate, respectively, the number of positions occupied
in a and b. The array a (resp. b) is expected to contain values which are smaller
than the pivot p (resp. greater or equal). Under the assumption that all values
in l are contained in either a or b, the method del removes all values in l from
the corresponding arrays. The auxiliary method rm vec removes a given value e
from an array a of length la and returns its new length, la−1.

We have applied the cost analysis in [3] on this program in order to approx-
imate the cost of executing the method del in terms of the number of executed
bytecode instructions. For this, we first compile the program to bytecode and
then analyze the resulting bytecode. Fig. 1 (right) presents the results of analy-
sis, after performing partial evaluation, as we will explain in Sec. 6, and inlining
equality constraints (e.g., inlining equality lb′=lb−1 is done by replacing the
occurrences of lb′ by lb−1). In the analysis results, the data structures in the
program are abstracted to their sizes: l represents the maximal path-length [15]
of the corresponding dynamic structure, which in this case corresponds to the
length of the list, a and b are the lengths of the corresponding arrays, and la and
lb are the integer values of the corresponding variables. There are nine equations
which define the relation Del, which corresponds to the cost of the method del,
and three auxiliary recursive relations, C, D, and E. Each of them corresponds
to a loop (C: while loop in del; D: while loop in rm vec; and E: for loop in rm vec).
Each equation is annotated with a set of constraints which capture size relations
between the values of variables in the left hand side (lhs) and those in the right
hand side (rhs). In addition, size relations may contain applicability conditions
(i.e., guards) by providing constraints which only affect variables in the lhs. Let
us explain the equations for D . Eqs. (5) and (6) are base cases which corre-
spond to the exits from the loop when i≥la and a[i]≥e, respectively. Note that
the condition a[i]≥e does not appear in the size relation of Eq. (6) nor (7). This
is because the array a has been abstracted to its length. Thus, the value in a[i]
is no longer observable. For our cost measure , we count 3 bytecode instructions
in Eq. (5) and 8 in Eq. (6). The cost of executing an iteration of the loop is

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

301

224 E. Albert et al.

captured by Eq. (7), where the condition i<la must be satisfied and variable i
is increased by one at each recursive call. �

1.2 Cost Relations vs. Recurrence Relations

CRs differ from standard RRs in the following ways:

(a) Non-determinism. In contrast to RRs, CRs are possibly non-deterministic:
equations for the same relation are not required to be mutually exclusive. Even if
the programming language is deterministic, size abstractions introduce a loss of
precision: some guards which make the original program deterministic may not
be observable when using the size of arguments instead of their actual values. In
Ex. 1, this happens between Eqs. (3) and (4) and also between (6) and (7).
(b) Inexact size relations. CRs may have size relations which contain constraints
(not equalities). When dealing with realistic programming languages which con-
tain non-linear data structures, such as trees, it is often the case that size analysis
does not produce exact results. E.g., analysis may infer that the size of a data
structure strictly decreases from one iteration to another, but it may be unable
to provide the precise reduction. This happens in Ex. 1 in Eqs. (3) and (4).
(c) Multiple arguments. CRs usually depend on several arguments that may
increase (variable i in Eq. (7)) or decrease (variable l in Eq. (2)) at each iteration.
In fact, the number of times that a relation is executed can be a combination of
several of its arguments. E.g., relation E is executed la−j−1 times.

Point (a) was detected already in [25], where an explicit when operator is added
to the RR language to introduce non-determinism, but no complete method for
handling it is provided. Point (b) is another source of non-determinism. As a
result, CRs do not define functions, but rather relations. Given a relation C
and input values v, there may exist multiple results for C(v). Sometimes it is
possible to automatically convert relations with several arguments into relations
with only one. However, in contrast to our approach, it is restricted to very
simple cases such as when the CR only count constant cost expressions.

Existing methods for solving RRs are insufficient to bound CRs since they
do not cover points (a), (b), and (c) above. On the other hand, CASs can solve
complex recurrences (e.g., coefficients to function calls can be polynomials) which
our framework cannot handle. However, this additional power is not needed in
cost analysis, since such recurrences do not occur as the result of cost analysis.

An obvious way of obtaining upper bounds in non-deterministic CRs would
be to introduce a maximization operator. Unfortunately, such operator is not
supported by existing CAS. Adding it is far from trivial, since computing the
maximum when the equations are not mutually exclusive requires taking into
account multiple possibilities, which results in a highly combinatorial problem.
Another possibility is to convert CRs into RRs. For this, we need to remove
equations from CRs as well as sometimes to replace inexact size relations by
exact ones while preserving the worst-case solution. However, this is not possible
in general. E.g., in Fig. 1, the maximum cost is obtained when the execution
interleaves Eqs. (3) and (4), and therefore we cannot remove either of them.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

302

Automatic Inference of Upper Bounds for Recurrence Relations 225

2 Cost Relations: Evaluation and Upper Bounds

Let us introduce some notation. We use x, y, z, possibly subscripted, to denote
variables which range over integers (Z), v, w denote integer values, a, b natural
numbers (N) and q rational numbers (Q). We denote by Q

+ (resp. R
+) the set of

non-negative rational (resp. real) numbers. We use t to denote a sequence of en-
tities t1, . . ., tn, for some n>0. We sometimes apply set operations on sequences.
Given x, an assignment for x is a sequence v (denoted by [x/v]). Given any entity
t, t[x/v] stands for the result of replacing in t each occurrence of xi by vi. We use
vars(t) to refer to the set of variables occurring in t. A linear expression has the
form q0+q1x1+ · · ·+qnxn. A linear constraint has the form l1 op l2 where l1 and
l2 are linear expressions and op ∈ {=,≤, <, >,≥}. A size relation ϕ is a set of
linear constraints (interpreted as a conjunction). The operator ∃̄x.ϕ eliminates
from ϕ all variables except for x. We write ϕ1 |= ϕ2 to indicate that ϕ1 implies
ϕ2. The following definition presents our notion of basic cost expression.

Definition 1 (basic cost expression). Basic cost expressions are of the form:
exp::=a|nat(l)|exp+exp|exp∗exp|expa|loga(exp)|aexp|max(S)|expa |exp−a,where
a≥1, l is a linear expression, S is a non empty set of cost expressions, nat:Z→Q

+

is defined as nat(v)= max({v, 0}), and exp satisfies that for any assignment v for
vars(exp) we have that exp[vars(exp)/v] ∈ R

+.

Basic cost expressions are symbolic expressions which indicate the resources we
accumulate and are the non-recursive building blocks for defining cost relations.
They enjoy two crucial properties: (1) by definition, they are always evaluated
to non negative values; (2) replacing a sub-expression nat(l) by nat(l’) such that
l′≥l, results in an upper bound of the original expression.

A cost relation C of arity n is a subset of Z
n ∗ R

+. This means that for a
single tuple v of integers there can be multiple solutions in C(v). We use C
and D to refer to cost relations. Cost analysis of a program usually produces
multiple, interconnected, cost relations. We refer to such sets of cost relations as
cost relation systems (CRSs for short), which we formally define below.

Definition 2 (Cost Relation System). A cost relation system S is a set of
equations of the form 〈C(x)=exp+

∑k
i=0 Di(yi), ϕ〉 with k≥0, where C and all

Di are cost relations, all variables x and yi are distinct variables; exp is a basic
cost expression; and ϕ is a size relation between x̄ and x̄∪vars(exp)∪ȳi.

In contrast to standard definitions of RRs, the variables which occur in the rhs
of the equations in CRSs do not need to be related to those in the lhs by equality
constraints. Other constraints such as ≤ and < can also be used. We denote by
rel(S) the set of cost relations which are defined in S. Also, def (S, C) denotes
the subset of the equations in S whose lhs is of the form C(x). W.l.o.g. we
assume that all equations in def (S, C) have the same variable names in the lhs.
We assume that any CRS S is self-contained in the sense that all cost relations
which appear in the rhs of an equation in S must be in rel(S).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

303

226 E. Albert et al.

(9) E(2,1) 5

(8) E(2,0) 15

(5) D(10,2,2)

(7) D(10,2,1) 10

3

(5) D(20,2,2) 3

(7) D(20,2,1) 10

10(7) D(20,2,0)

5(9) E(2,1)

(8) E(2,0) 15

24(4) C(2,10,1,20,2)

(2) C(0,10,0,20,1) 25(9) E(1,0)

(5) D(10,1,1) 3

(7) D(10,1,0) 10

(3) C(1,10,1,20,1) 25

(6) D(20,2,0) 8 (8) E(2,1) 5 (2) C(0,10,1,20,2) 2

(4) C(3,10,2,20,2) 24

1(1) Del(3,10,2,20,2)1

(3) C(3,10,2,20,2) 25

(1) Del(3,10,2,20,2)

(7) D(10,2,0) 10

Fig. 2. Two Evaluation Trees for Del(3, 10, 2, 20, 2)

We now provide a semantics for CRSs. Given a CRS S, a call is of the form
C(v), where C∈rel(S) and v are integer values. Calls are evaluated in two phases.
In the first phase, we build an evaluation tree for the call. In the second phase we
obtain a value in R

+ by adding up the constants which appear in the nodes of the
evaluation tree. We make evaluation trees explicit since, as discussed below, our
approximation techniques are based on reasoning about the number of nodes and
the values in the nodes in such evaluation trees. Evaluation trees are obtained by
repeatedly expanding nodes which contain calls to relations. Each expansion is
performed w.r.t an appropriate instantiation of a rhs of an applicable equation.
If all leaves in the tree contain basic cost expressions then there is no node left
to expand and the process terminates. We will represent evaluation trees using
nested terms of the form node(Call,Local Cost ,Children), where Local Cost is a
constant in R

+ and Children is a sequence of evaluation trees.

Definition 3 (evaluation tree). Given a CRS S and a call C(v), a tree node
(C(v), e, 〈T1, . . . , Tk〉) is an evaluation tree for C(v) in S, denoted Tree(C(v), S)
if: 1) there is a renamed apart equation 〈C(x)=exp+

∑k
i=0 Di(yi), ϕ〉 ∈ S s.t.

ϕ′ is satisfiable in Z, with ϕ′=ϕ[x/v], and 2) there exist assignments w, vi for
vars(exp), yi respectively s.t. ϕ′[vars(exp)/w, yi/vi] is satisfiable in Z, and 3)
e=exp[vars(exp)/w], Ti is an evaluation tree Tree(Di(vi),S) with i = 0, . . . , k.

In step 1 we look for an equation E which is applicable for solving C(v). Note
that there may be several equations which are applicable. In step 2 we look
for assignments for the variables in the rhs of E which satisfy the size rela-
tions associated to E . This a non-deterministic step as there may be (infinitely
many) different assignments which satisfy all size relations. Finally, in step 3 we
apply the assignment to exp and continue recursively evaluating the calls. We
use Trees(C(v),S) to denote the set of all evaluation trees for C(v). We define
Answers(C(v),S)={Sum(T) | T∈Trees(C(v),S)}, where Sum(T) traverses all
nodes in T and computes the sum of the cost expressions in them.

Example 2. Fig. 2 shows two possible evaluation trees for Del(3, 10, 2, 20, 2).
The tree on the left has maximal cost, whereas the one on the right has minimal
cost. A node in either tree contains a call (left box) and its local cost (right box)
and it is linked by arrows to its children. We annotate calls with a number in

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

304

Automatic Inference of Upper Bounds for Recurrence Relations 227

(2)C (l, a, la, b, lb)= 2
{a≥la, b≥lb, b≥0 , a≥0 , l=0}

(3)C (l, a, la, b, lb)=

38+15*nat(la-j-1)+10*nat(la) +C (l′, a, la−1 , b, lb)

{a≥0 , a≥la, b≥lb, j≥0 , b≥0 , l>l′, l>0}
(4)C (l, a, la, b, lb)=

37+15*nat(lb-j-1)+10*nat(lb) +C (l′, a, la, b, lb−1)

{b≥0 , b≥lb, a≥la, j≥0 ,a≥0 , l>l′, l>0}

(3) C(3,10,2,20,2)
 38+15*nat(2−0−1)+
 10*nat(2)=73

(4) C(2,10,1,20,2) 37+15*nat(2−0−1)+
 10*nat(2)=72

(3) C(1,10,1,20,1) 38+15*nat(1−0−1)+
 10*nat(1)=48

(2) C(0,10,0,20,1) 2

Fig. 3. Self-Contained CR for relation C and a corresponding evaluation tree

parenthesis to indicate the equation which was selected for evaluating such call.
Note that, in the recursive call to C in Eqs. (3) and (4), we are allowed to pick
any value l′ s.t. l′<l. In the tree on the left we always assign l′=l−1. This is what
happens in actual executions of the program. In the tree on the right we assign
l′=l−3 in the recursive call to C. The latter results in a minimal approximation,
however, it does not correspond to any actual execution. This is a side effect of
using safe approximations in static analysis: information is correct in the sense
that at least one of the evaluation trees must correspond to the actual cost, but
there may be other trees with different cost. In fact, there are an infinite number
of evaluation trees for our example call, as step 2 can provide an infinite number
of assignments to variable j which are compatible with the constraint j≥0 in
Eqs. (3) and (4). This shows that approaches like [13] based on evaluation of
CRSs are not of general applicability. Nevertheless, it is possible to find an upper
bound for this call since though the number of trees is infinite, infinitely many
of them produce equivalent results. �

2.1 Closed Form Upper Bounds for Cost Relations

Let C be a relation over Z
n∗R

+. A function U :Zn→R
+ is an upper bound of C iff

∀v∈Z
n, ∀a∈Answers(C(v),S), U(v)≥a. We use C+ to refer to an upper bound of

C. A function f :Zn→R
+ is in closed form if it is defined as f(x)=exp, with exp a

basic cost expression s.t. vars(exp)⊆x. An important feature of CRSs, inherited
from RRs, is their compositionality, which allows computing upper bounds of
CRSs by concentrating on one relation at a time. I.e., given a cost equation
for C(x) which calls D(y), we can replace the call to D(y) by D+(y). The
resulting relation is trivially an upper bound of the original one. E.g., suppose
that we have the following upper bounds: E+(la, j)=5+15∗nat(la−j−1) and
D+(a, la, i)=8+10∗nat(la−i). Replacing the calls to D and E in equations (3)
and (4) by D+ and E+ results in the CRS shown in Fig. 3.

The compositionality principle only results in an effective mechanism if all
recursions are direct (i.e., all cycles are of length one). In that case we can start
by computing upper bounds for cost relations which do not depend on any other
relations, which we refer to as standalone cost relations and continue by replacing

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

305

228 E. Albert et al.

the computed upper bounds on the equations which call such relations. In the
following, we formalize our method by assuming standalone cost relations and
in Sec. 6 we provide a mechanism for obtaining direct recursion automatically.

Existing approaches to compute upper bounds and asymptotic complexity of
RRs, usually applied by hand, are based on reasoning about evaluation trees
in terms of their size, depth, number of nodes, etc. They typically consider two
categories of nodes: (1) internal nodes, which correspond to applying recursive
equations, and (2) leaves of the tree(s), which correspond to the application of a
base (non-recursive) case. The central idea then is to count (or obtain an upper
bound on) the number of leaves and the number of internal nodes in the tree
separately and then multiply each of these by an upper bound on the cost of the
base case and of a recursive step, respectively. For instance, in the evaluation
tree in Fig. 3 for the standalone cost relation C, there are three internal nodes
and one leaf. The values in the internal nodes, once performed the evaluation
of the expressions are 73, 72, and 48, therefore 73 is the worst case. In the case
of leaves, the only value is 2. Therefore, the tightest upper bound we can find
using this approximation is 3×73+1∗2=221 ≥ 73+72+48+2=193.

We now extend the approximation scheme mentioned above in order to con-
sider all possible evaluation trees which may exist for a call. In the following,
we use |S| to denote the cardinality of a set S. Also, given an evaluation tree
T , leaf (T) denotes the set of leaves of T (i.e., those without children) and
internal(T) denotes the set of internal nodes (all nodes but the leaves) of T .

Proposition 1 (node-count upper bound). Let C be a cost relation and let
C+(x) = internal+(x) ∗ costr+(x)+ leaf +(x) ∗costnr+(x), where internal+(x),
costr+(x), leaf +(x) and costnr+(x) are closed form functions defined on Z

n→R
+.

Then, C+ is an upper bound of C if for all v∈Z
n and for all T∈Trees(C(v),S), it

holds: (1) internal+(v) ≥ |internal(T)| and leaf +(v) ≥ |leaf (T)|; (2) costr+(v)
is an upper bound of {e | node(, e,)∈internal(T)} and (3) costnr+(v) is an upper
bound of {e | node(, e,)∈leaf (T)}.

3 Upper Bounds on the Number of Nodes

In this section we present an automatic mechanism to obtain safe internal+(x)
and leaf +(x) functions which are valid for any assignment for x. The basic idea
is to first obtain upper bounds b and h+(x) on, respectively, the branching factor
and height (the distance from the root to the deepest leaf) of all corresponding
evaluation trees, and then use the number of internal nodes and leaves of a
complete tree with such branching factor and height as an upper bound. Then,

leaf +(x) = bh+(x) internal+(x) =

{
h+(x) b=1

bh+(x)−1
b−1 b≥2

For a cost relation C, the branching factor b in any evaluation tree for a
call C(v) is limited by the maximum number of recursive calls which occur in a
single equation for C. We now propose a way to compute an upper bound for

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

306

Automatic Inference of Upper Bounds for Recurrence Relations 229

the height, h+. Given an evaluation tree T∈Trees(C(v),S) for a cost relation C,
consecutive nodes in any branch of T represent consecutive recursive calls which
occur during the evaluation of C(v). Therefore, bounding the height of a tree
may be reduced to bounding consecutive recursive calls. The notion of loop in a
cost relation, which we introduce below, is used to model consecutive calls.

Definition 4. Let E=〈C(x)=exp+
∑k

i=1 C(yi), ϕ〉 be an equation for a cost re-
lation C. Then, Loops(E)={〈C(x)→C(ȳi), ϕ′〉 | ϕ′=∃̄x̄∪ȳi.ϕ, i=1· · ·k} is the set
of loops induced by E. Similarly, Loops(C) = ∪E∈def (S,C)Loops(E).

Example 3. Eqs. (3) and (4) in Fig. 3 induce the following two loops:

(3)〈C (l ,a, la, b, lb)→C (l ′, a, la ′, b, lb),ϕ′
1={a≥0, a≥la, b≥lb, b≥0, l>l′, l>0, la′=la−1}〉

(4)〈C (l ,a, la, b, lb)→C (l ′, a, la, b, lb′),ϕ′
2={b≥0, b≥lb, a≥la, a≥0, l>l′, l>0, lb′=lb−1}〉

Bounding the number of consecutive recursive calls is extensively used in the con-
text of termination analysis. It is usually done by proving that there is a function
f from the loop’s arguments to a well-founded partial order which decreases in
any two consecutive calls and which guarantees the absence of infinite traces,
and thus termination. These functions are usually called ranking functions. We
propose to use the ranking function to generate a h+ function. In practice, we
use [21] to generate functions which are defined as follows: a function f :Zn →Z is
a ranking function for a loop 〈C(x̄)→C(ȳ), ϕ〉 if ϕ|=f(x̄)>f(ȳ) and ϕ|=f(x̄)≥0.

Example 4. The function fC(l , a, la, b, lb)=l is a ranking function for C in the
cost relation in Fig. 3. Note that ϕ′1 and ϕ′2 in the above loops of C contain
the constraints {l>l′, l>0} which is enough to guarantee that fC is decreas-
ing and well-founded. The height of the evaluation tree for C(3, 10, 2, 20, 2) is
precisely predicted by fC(3, 10, 2, 20, 2)=3. Ranking functions may involve sev-
eral arguments, e.g., fD(a, la, i)=la−i is a ranking function for 〈D(a, la, i) →
D(a, la, i ′), {i ′=i+1 , i<la, a≥la, i≥0}〉 which comes from Eq. (7). �

Observe that the use of global ranking functions allows bounding the number
of iterations of possibly non-deterministic CRSs with multiple arguments (see
Sec. 1.2). In order to be able to define h+ in terms of the ranking function, one
thing to fix is that the ranking function might return a negative value when is
applied to values which correspond to base cases (leaves of the tree). Therefore,
we define h+(x)=nat(fC(x)). Function nat guarantees that negative values are
lifted to 0 and, therefore, they provide a correct approximation for the height of
evaluation trees with a single node. Even though the ranking function provides
an upper bound for the height of the corresponding trees, in some cases we can
further refine it and obtain a tighter upper bound. For example, if the difference
between the value of the ranking function in each two consecutive calls is larger
than a constant δ>1, then �nat(fC(x̄)

δ)� is a tighter upper bound. A more inter-
esting case, if each loop 〈C(x)→C(y), ϕ〉 ∈ Loops(C) satisfies ϕ|=fC(x)≥k∗fC(y)
where k>1, then the height of the tree is bounded by �logk(nat(fC(v)+1))�.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

307

230 E. Albert et al.

4 Estimating the Cost Per Node

Consider the evaluation tree in Fig. 3. Note that all expressions in the nodes are
instances of the expressions which appear in the corresponding equations. Thus,
computing costr+(x) and costnr+(x) can be done by first finding an upper bound
of such expressions and then combining them through a max operator. We first
compute invariants for the values that the expression variables can take w.r.t.
the initial values, and use them to derive upper bounds for such expressions.

4.1 Invariants

Computing an invariant (in terms of linear constraints) that holds in all calling
contexts (contexts for short) to a relation C between the arguments at the initial
call and at each call during the evaluation can be done by using Loops(C). Intu-
itively, if we know that a linear constraint ψ holds between the arguments of the
initial call C(x0) and those of a recursive call C(x), denoted 〈C(x0)�C(x), ψ〉,
and we have a loop 〈C(x)→C(y), ϕ〉∈Loops(C), then we can apply the loop one
more step and get the new calling context 〈C(x0)�C(y), ∃̄x0∪y.ψ∧ϕ〉.

Definition 5 (loop invariants). For a relation C, let T be an operator defined:

T (X) =
{

〈C(x0)�C(y), ψ′〉
∣
∣
∣
∣
〈C(x0)�C(x), ψ〉∈X, 〈C(x)→C(y), ϕ〉∈Loops(C),
ψ′=∃̄x0∪y.ψ∧ϕ

}

which derives a set of contexts, from a given context X, by applying all loops, then
the loop invariants I is lfp∪i≥0T i(I0) where I0 = {〈C(x0)�C(x), {x0=x}〉}.

Example 5. Let us compute I for the loops in Sec. 3. The initial context is
I1=〈C (x̄0)�C (x̄), {l=l0 , a=a0 , la=la0 , b=b0 , lb=lb0}〉 where x̄0=〈l0, a0, la0, b0, lb0〉
and x̄=〈l, a, la, b, lb〉. In the first iteration we compute T 0({I1}) which by defi-
nition is {I1}. In the second iteration we compute T 1({I1}) which results in

I2=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0−1 , b=b0 , lb=lb0 , l0>0}〉
I3=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0 , b=b0 , lb=lb0−1 , l0>0}〉

where I2 and I3 correspond to applying respectively the first loop and second
loops on I1. The underlined constraints are the modifications due to the appli-
cation of the loop. Note that in I2 the variable la0 decreases by one, and in I3
lb0 decreases by one. The third iteration T 2({I1}), i.e. T ({I2, I3}), results in

I4=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0−2 , b=b0 , lb=lb0 , l0>0}〉
I5=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0−1 , b=b0 , lb=lb0−1 , l0>0}〉
I6=〈C (x̄0)�C (x̄), {l<l0 , a=a0 , la=la0 , b=b0 , lb=lb0−2 , l0>0}〉
I7=〈C (x̄0)�C (x̄),{l<l0 , a=a0 , la=la0−1 , b=b0 , lb=lb0−1 , l0>0}〉

where I4 and I5 originate from applying the loops to I2, and I6 and I7 from
applying the loops to I3. The modifications on the constraints reflect that, when
applying a loop, either we decrease la or lb. After three iterations, the invariant
I includes I1 · · · I7. More iterations will add more contexts that further modify
the value of la or lb. Therefore, the invariant I grows indefinitely in this case. �

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

308

Automatic Inference of Upper Bounds for Recurrence Relations 231

In practice, we approximate I using abstract interpretation over, for instance, the
domain of convex polyhedra [10], whereby we obtain the invariant Ψ=〈C(x0) �

C(x), {l≤l0 , a=a0 , la≤la0 , b=b0 , lb≤lb0 }〉.

4.2 Upper Bounds on Cost Expressions

Once invariants are available, finding upper bounds of cost expressions can be
done by maximizing their nat parts independently. This is possible due to the
monotonicity property of cost expressions. Consider, for example, the expres-
sion nat(la−j−1) which appears in equation (3) of Fig. 3. We want to infer an
upper bound of the values that it can be evaluated to in terms of the input
values 〈l0, a0, la0, b0, lb0〉. We have inferred, in Sec. 4.1, that whenever we call
C the invariant Ψ holds, from which we can see that the maximum value that
la can take is la0. In addition, from the local size relations ϕ of equation (3)
we know that j≥0. Since la−j−1 takes its maximal value when la is maximal
and j is minimal, the expression la0−1 is an upper bound for la−j−1 . This can
be done automatically using linear constraints tools [6]. Given a cost equation
〈C(x)=exp+

∑k
i=0 C(yi), ϕ〉 and an invariant 〈C(x0)�C(x), Ψ〉, the function

below computes an upper bound for exp by maximizing its nat components.

1: function ub exp(exp,x0,ϕ,Ψ)
2: mexp=exp
3: for all nat(f)∈exp do
4: Ψ ′=∃̄x0, r.(ϕ∧Ψ∧(r=f)) // r is a fresh variable
5: if ∃f ′ s.t. vars(f ′)⊆x0 and Ψ ′|=r≤f ′ then mexp=mexp[nat(f)/nat(f ′)]
6: else return ∞
7: return mexp

This function computes an upper bound f ′ for each expression f which occurs
inside a nat operator and then replaces in exp all such f expressions with their
corresponding upper bounds (line 5). If it cannot find an upper bound, the
method returns ∞ (line 6). The ub exp function is complete in the sense that if
Ψ and ϕ imply that there is an upper bound for a given nat(f), then we can find
one by syntactically looking on Ψ ′ (line 4).

Example 6. Applying ub exp to exp3 and exp4 of Eqs. (3) and (4) in Fig. 3 w.r.t.
the invariant we have computed in Sec. 4.1 results in mexp3=38+15∗nat(la0−1)
+10∗nat(la0) and mexp4=37+15∗nat(lb0−1) + 10∗nat(lb0). �

Theorem 1. Let S=S1∪S2 be a cost relation where S1 and S2 are respec-
tively the sets of non-recursive and recursive equations for C, and let I=〈C(x0)
�C(x), Ψ〉 be a loop invariant for C; Ei={ub exp(exp, x0, ϕ, Ψ) | 〈C(x) = exp+
∑k

j=0 C(yj), ϕ〉∈Si}; costnr+(x0)=max(E1) and costr+(x0)=max(E2). Then
for any call C(v) and for all T ∈ Trees(C(v),S): (1) ∀node(, e,)∈internal(T)
we have costr+(v)≥e; and (2) ∀node(, e,)∈leaf (T) we have costnr+(v)≥e.

Example 7. At this point we have all the pieces in order to compute an upper
bound for the CRS depicted in Fig. 1 as described in Prop. 1. We start by
computing upper bounds for E and D as they are cost relations:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

309

232 E. Albert et al.

Ranking Function costnr+ costr+ Upper Bound
E(la0, j0) nat(la0−j0−1) 5 15 5+15∗nat(la0−j0−1)

D(a0, la0, i0) nat(la0−i0) 8 10 8+10∗nat(la0−i0)

These upper bounds can then be substituted in the equations (3) and (4) which
results in the cost relation for C depicted in Fig. 3. We have already computed
a ranking function for C in Ex. 4 and costnr+ and costr+ in Ex. 6, which
are then combined into C+(l0, a0, la0, b0, lb0)=2+nat(l0)∗max({mexp3, mexp4}).
Reasoning similarly, for Del we get the upper bound shown in Table 1. �

5 Improving Accuracy in Divide and Conquer Programs

For some CRSs, we can obtain a more accurate upper bound by approximating
the cost of levels instead of approximating the cost of nodes, as indicated by
Prop. 1. Given an evaluation tree T , we denote by Sum Level(T, i) the sum of
the values of all nodes in T which are at depth i, i.e., at distance i from the root.

Proposition 2 (level-count upper bound). Let C be a cost relation and let
C+ be a function defined as: C+(x)=l+(x) ∗costl+(x), where l+(x) and costl+(x)
are closed form functions defined on Z

n→R
+. Then, C+ is an upper bound of C

if for all v∈Z
n and T∈Trees(C(v),S), it holds: (1) l+(v) ≥ depth(T) + 1; and

(2) ∀i∈{0, . . . , depth(T)} we have that costl+(v) ≥ Sum Level(T, i).

The function l+ can simply be defined as l+(x)=nat(fC(x))+1 (see Sec. 3).
Finding an accurate costl+ function is not easy in general, which makes Prop. 2
not as widely applicable as Prop. 1. However, evaluation trees for divide and
conquer programs satisfy that Sum Level(T, k)≥Sum Level(T, k+1), i.e., the cost
per level does not increase from one level to another. In that case, we can take the
cost of the root node as an upper bound of costl+(x). A sufficient condition for a
cost relation falling into the divide and conquer class is that each cost expression
that is contributed by an equation is greater than or equal to the sum of the
cost expressions contributed by the corresponding immediate recursive calls.
This check is implemented in our prototype using [6].

Consider a CRS with the two equations 〈C(n)=0, {n≤ 0}〉 and 〈C(n) =
nat(n)+C(n1)+C(n2), ϕ〉 where ϕ={n>0, n1+n2+1≤n, n≥2∗n1, n ≥2∗n2, n1≥0,
n2≥0}. It corresponds to a divide and conquer problem such as merge-sort. In
order to prove that Sum Level does not increase, it is enough to check that,
in the second equation, n is greater than or equal to the sum of the expres-
sions that immediately result from the calls C(n1) and C(n2), which are n1 and
n2 respectively. This can be done by simply checking that ϕ|=n≥n1+n2. Then,
costl+(x)=max{0, nat(x)}=nat(x). Thus, given that l+(x)=�log2(nat(x)+1)�+1,
we obtain the upper bound nat(x)∗(�log2(nat(x)+1)�+1). Note that by using the
node-count approach we would obtain nat(x)∗(2nat(x)−1) as upper bound.

6 Direct Recursion Using Partial Evaluation

Automatically generated CRSs often contain recursions which are not direct,
i.e., cycles involve more than one function. E.g., the actual CRS obtained for

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

310

Automatic Inference of Upper Bounds for Recurrence Relations 233

the program in Fig. 1 by the analysis in [3] differs from that shown in the right
hand side of Fig. 1 in that, instead of Eqs. (8) and (9), the “for” loop results in:

(8’) E (la, j)=5+F (la, j , j ′, la ′) {j ′=j , la ′=la−1 , j ′≥0}
(9’) F (la, j , j ′, la ′)=H (j ′, la ′) {j ′≥la ′}
(10) F (la, j , j ′, la ′)=G(la, j , j ′, la ′) {j ′<la ′}
(11) H (j ′, la ′)=0 {}
(12) G(la, j , j ′, la ′)=10+E (la, j+1) {j<la−1 , j≥0 , la−la ′=1 , j ′=j}

Now, E captures the cost of the loop condition “j<la−1” (5 cost units) plus the
cost of its continuation, captured by F . Eq. (9’) corresponds to the exit of the
loop (it calls H , Eq. (11), which has 0 cost). Eq. (10) captures the cost of one
iteration by calling G, Eq. (12), which accumulates 10 units and returns to E.

In this section we present an automatic transformation of CRSs into directly
recursive form. The transformation is based on partial evaluation (PE) [17] and
it is performed by replacing calls to intermediate relations by their definitions
using unfolding. The first step in the transformation is to find a binding time
classification (or BTC for short) which declares which relations are residual, i.e.,
they have to remain in the CRS. The remaining relations are considered unfold-
able, i.e., they are eliminated. For computing BTCs, we associate to each CRS S
a call graph, denoted G(S), which is the directed graph obtained from S by tak-
ing rel(S) as the set of nodes and by including an arc (C, D) iff D appears in the
rhs of an equation for C. The following definition provides sufficient conditions
on a BTC which guarantee that we obtain a directly recursive CRS.

Definition 6. Let G(S) be the call graph of S and let SCC be its strongly con-
nected components. A BTC btc for S is directly recursive if for all S∈SCC the
following conditions hold: (1) if s1, s2∈S and s1, s2∈btc, then s1=s2; and (2) if
S has a cycle, then there exists s∈S such that s∈btc.

Condition 1 ensures that all recursions in the transformed CRS are direct, as
there is only one residual relation per SCC. Condition 2 guarantees that the
unfolding process terminates, as there is a residual relation per cycle. A directly
recursive BTC for the above example is btc={E}. In our implementation we only
include in the BTC the covering point (i.e., a node which is part of all cycles) of
SCCs which contain cycles, but no node is included for SCCs without cycles. This
way of computing BTCs, in addition to ensuring direct recursion, also eliminates
all relations which are not part of cycles (such as H in our example).

We now define unfolding in the context of CRSs. Such unfolding is guided by
a BTC and at each step it combines both cost expressions and size relations.

Definition 7 (unfolding). Given a CRS S, a call C(x0) s.t. C∈rel(S), a size
relation ϕx0 over x0, and a BTC btc for S, a pair 〈E, ϕ〉 is an unfolding for
C(x0) and ϕx0 in S w.r.t. btc, denoted Unfold(〈C(x0), ϕx0〉,S, btc)�〈E, ϕ〉, if
either of the following conditions hold:
(res) C∈btc∧ϕ�=true∧〈E, ϕ〉=〈C(x0), ϕx0〉;
(unf) (C �∈btc∨ϕ=true)∧〈E, ϕ〉= 〈(exp+e1 + . . . + ek), ϕ′

∧

i=1..k

ϕi〉

where 〈C(x)=exp+
∑k

i=1 Di(yi), ϕC〉 is a renamed apart equation in S s.t. ϕ′ =
ϕx0∧ϕC [x/x0] is satisfiable in Z and ∀1≤i≤k Unfold(〈Di(yi), ϕ′〉,S, btc)�〈ei, ϕi〉.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

311

234 E. Albert et al.

The first case, (res), is required for termination. When we call a relation C which
is marked as residual, we simply return the initial call C(x0) and size relation
ϕx0 , as long as the current size relation ϕx0 is not the initial one (true). The
latter condition is added in order to force the initial unfolding step for relations
marked as residual. In all subsequent calls to Unfold different from the initial
one, the size relation is different from true. The second case (unf) corresponds
to continuing the unfolding process. Note that step 1 is non-deterministic, since
often cost relations contain several equations. Since expressions are transitively
unfolded, step 2 may also provide multiple solutions. Also, if the final size relation
ϕ is unsatisfiable, we simply do not regard 〈E, ϕ〉 as a valid unfolding.

Example 8. Given the initial call 〈E(la, j), true〉, we obtain an unfolding by per-
forming the following steps, denoted by e

� where e is the selected equation:
〈E (la, j), true〉(8

′)
� 〈5+F (la, j , j ′, la ′), {j ′=j , la ′=la−1 , j ′≥0}〉(10)�

〈5+G(la, j , j ′, la ′), {j ′=j , la ′=la−1 , j ′≥0 , j ′<la ′}〉(12)� 〈15+E (la, j ′′), {j<la−1 , j≥0}〉
The call E(la, j ′′) is not further unfolded as E belongs to btc and ϕ�=true. �

From each result of unfolding we can build a residual equation. Given the unfold-
ing Unfold(〈C(x0), ϕx0〉,S, btc)�〈E, ϕ〉 its corresponding residual equation is
〈C(x0)=E, ϕ〉. As customary in PE, a partial evaluation of C is obtained by col-
lecting all residual equations for the call 〈C(x0), true〉. The PE of 〈E(la, j), true〉
results in Eqs. (8) and (9) of Fig. 1. Eq. (9) is obtained from the unfolding steps
depicted in Ex. 8 and Eq. (8) from unfolding w.r.t. Eqs. (8’), (9’), and (11).

Correctness of PE ensures that the solutions of CRSs are preserved. Regarding
completeness, we can obtain direct recursion if all SCCs in the call graph have
covering point(s). Importantly, structured loops (for, while, etc.) and recursive
patterns found in most programs result in CRSs that satisfy this property. In
addition, before applying PE, we check that the CRS terminates [2] with respect
to the initial query, otherwise we might compromise non-termination and thus
lead to incorrect upper bounds. We believe this check is not required when CRSs
are generated from imperative programs.

7 Experiments in Cost Analysis of Java Bytecode

A prototype implementation in Ciao Prolog, which uses PPL [6] for manipulating
linear constraints, is available at http://www.cliplab.org/Systems/PUBS. We
have performed a series of experiments which are shown in Table 1. We have used
CRSs automatically generated by the cost analyzer of Java bytecode described
in [3] using two cost measures: heap consumption for those marked with “∗”, and
the number of executed bytecode instructions for the rest. The benchmarks are
presented in increasing complexity order and grouped by asymptotic class. Those
marked with M were solved using MathematicaR© by [3] but after significant
human intervention. The marks a, b and c after the name indicate, respectively,
if the CRS is non-deterministic, has inexact size relations and multiple arguments
(Sec. 1.2). Column #eq shows the number of equations before PE (in brackets

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

312

Automatic Inference of Upper Bounds for Recurrence Relations 235

Table 1. Experiments on Cost Analysis of Java Bytecode

Benchmark #eq T #c
eq Tpe Tub Rat. Upper Bound

Polynomial∗ abc 23 (3) 13 346 (70) 174 649 2.4 216
DivByTwo ab 9 (3) 3 323 (68) 166 596 2.4 8log2(nat(2x−1)+1)+14

FactorialM 8 (2) 4 314 (66) 165 590 2.4 9nat(x)+4
ArrayRevM a 9 (3) 4 305 (64) 165 579 2.4 14nat(x)+12
ConcatM ac 14 (5) 13 296 (62) 158 538 2.4 11nat(x)+11nat(y)+25
IncrM ac 28 (5) 29 282 (58) 155 490 2.3 19nat(x+1)+9
ListRevM abc 9 (3) 4 254 (54) 144 415 2.2 13nat(x)+8
MergeList abc 21 (4) 18 245 (52) 138 406 2.2 29nat(x+y)+26
Power 8 (2) 3 223 (48) 125 371 2.2 10nat(x)+4
Cons∗ ab 22 (2) 6 214 (46) 123 359 2.3 22nat(x−1)+24
EvenDigits abc 18 (5) 9 191 (44) 115 322 2.3 nat(x)(8log2(nat(2x−3)+1)+24)+9nat(x)+9
ListInter abc 37 (9) 59 173 (40) 110 298 2.4 nat(x)(10nat(y)+43)+21
SelectOrd ac 19 (6) 27 136 (32) 86 198 2.1 nat(x−2)(17nat(x−2)+34)+9
FactSum a 17 (5) 8 117 (27) 76 173 2.1 nat(x+1)(9nat(x)+16)+6
Delete abc 33 (9) 125 100 (23) 71 165 2.4 3+nat(l)max(38+15nat(la−1)+10nat(la),

37+15nat(lb−1)+10nat(lb))
MatMultM ac 19 (7) 23 67 (15) 27 40 1.0 nat(y)(nat(x)(27nat(x))+10)+17

Hanoi 9 (2) 4 48 (8) 23 17 0.8 20(2nat(x))-17
FibonacciM 8 (2) 5 39 (6) 20 13 0.8 18(2nat(x−1))-13
BST∗ ab 31 (4) 26 31 (4) 19 7 0.9 96(2nat(x))-49

after PE). Note that PE greatly reduces #eq in all benchmarks. Column T shows
the total runtime in milliseconds. The experiments have been performed on an
Intel Core 2 Duo 1.86GHz with 2GB of RAM, running Linux.

The next four columns aim at demonstrating the scalability of our approach.
To do so, we connect the CRSs for the different benchmarks by introducing a
call from each CRS to the one appearing immediately below it in the table. Such
call is always introduced in a recursive equation. Column #c

eq shows the number
of equations we want to solve in each case (in brackets after PE). Reading this
column bottom-up, we can see that BST has the same number of equations as
the original one and that, progressively, each benchmark adds its own number
of equations to #c

eq. Thus, in the first row we have a CRS with all the equations
connected, i.e., we compute an upper bound of CRS with at least 19 nested loops
and 346 equations. The total runtime is split into Tpe and Tub, where Tpe is
the time of PE and it shows that even though PE is a global transformation,
its time efficiency is linear with the number of equations. Our system solves 346
equations in 823ms. Column Rat. shows the total time per equation. The ra-
tio is small for benchmarks with few equations, and for reasonably large CRSs
(from Delete upwards) it almost has no variation (2.1–2.4 ms/eq). The small
increase is due to the fact that the equations count more complex expressions
as we connect more benchmarks. This demonstrates that our approach is totally
scalable, even if the implementation is preliminary. The upper bound expres-
sions get considerably large when the benchmarks are composed together. We
are currently implementing standard techniques for simplification of arithmetic
expressions.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

313

236 E. Albert et al.

Acknowledgments. This work was funded in part by the Information Society
Technologies program of the European Commission, Future and Emerging Tech-
nologies under the IST-15905 MOBIUS project, by the Spanish Ministry of Ed-
ucation (MEC) under the TIN-2005-09207 MERIT project, and the Madrid Re-
gional Government under the S-0505/TIC/0407 PROMESAS project. S. Genaim
was supported by a Juan de la Cierva Fellowship awarded by MEC.

References

1. Adachi, A., Kasai, T., Moriya, E.: A theoretical study of the time analysis of
programs. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 201–207. Springer,
Heidelberg (1979)

2. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termina-
tion Analysis of Java Bytecode. In: Proc. of FMOODS. LNCS, Springer, Heidelberg
(to appear, 2008)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, Springer,
Heidelberg (2007)

4. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile Resource
Guarantees for Smart Devices. In: Barthe, G., Burdy, L., Huisman, M., Lanet,
J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, Springer, Heidelberg
(2005)

5. Bagnara, R., Pescetti, A., Zaccagnini, A., Zaffanella, E.: PURRS: Towards com-
puter algebra support for fully automatic worst-case complexity analysis. Technical
report, arXiv:cs/0512056 (2005), http://arxiv.org/

6. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhe-
dra and the Parma Polyhedra Library. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, Springer, Heidelberg (2002)

7. Benzinger, R.: Automated higher-order complexity analysis. In: TCS, vol. 318(1-2)
(2004)

8. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: Quasi-interpretations and small space
bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, Springer, Heidelberg (2005)

9. Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.: Enforcing resource
bounds via static verification of dynamic checks. In: Sagiv, M. (ed.) ESOP 2005.
LNCS, vol. 3444, Springer, Heidelberg (2005)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL (1978)

11. Crary, K., Weirich, S.: Resource bound certification. In: POPL (2000)
12. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. TOPLAS 15(5) (1993)
13. Gómez, G., Liu, Y.A.: Automatic time-bound analysis for a higher-order language.

In: PEPM, ACM Press, New York (2002)
14. Hickey, T., Cohen, J.: Automating program analysis. J. ACM 35(1) (1988)
15. Hill, P.M., Payet, E., Spoto, F.: Path-length analysis of object-oriented programs.

In: Proc. EAAI, Elsevier, Amsterdam (2006)
16. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-

tional programs. In: POPL (2003)
17. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program

Generation. Prentice Hall, New York (1993)
18. Le Metayer, D.: ACE: An Automatic Complexity Evaluator. TOPLAS 10(2) (1988)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

314

Automatic Inference of Upper Bounds for Recurrence Relations 237

19. Marion, J.-Y., Péchoux, R.: Resource analysis by sup-interpretation. In: Hagiya,
M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, Springer, Heidelberg (2006)

20. Navas, J., Mera, E., López-Garćıa, P., Hermenegildo, M.: User-definable resource
bounds analysis for logic programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007.
LNCS, vol. 4670, Springer, Heidelberg (2007)

21. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
Springer, Heidelberg (2004)

22. Rosendahl, M.: Automatic Complexity Analysis. In: FPCA, ACM Press, New York
(1989)

23. Sands, D.: A näıve time analysis and its theory of cost equivalence. Journal of
Logic and Computation 5(4) (1995)

24. Wadler, P.: Strictness analysis aids time analysis. In: POPL (1988)
25. Wegbreit, B.: Mechanical Program Analysis. Comm. of the ACM 18(9) (1975)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

315

Cost Analysis of Object-Oriented Bytecode Programs

ELVIRA ALBERT, PURI ARENAS and SAMIR GENAIM

Complutense University of Madrid

GERMAN PUEBLA and DAMIANO ZANARDINI

Technical University of Madrid

Cost analysis statically approximates the cost of programs in terms of their input data sizes. This
paper presents, to the best of our knowledge, the first approach to the automatic cost analysis of
object-oriented bytecode programs. In languages such as Java and C#, analyzing bytecode has

a much wider application area than analyzing source code since the latter is often not available.
Cost analysis in this context has to consider, among others, dynamic dispatch, jumps, the operand
stack and the heap. The proposed method takes a bytecode program and a cost model specifying

the resource of interest and generates cost relations which approximate the execution cost of the
program w.r.t. such resource. Our basic techniques can be directly applied to infer cost relations
for other object-oriented imperative languages, not necessarily in bytecode form. Finally, we
report on COSTA, an implementation for Java bytecode which can obtain upper bounds on cost

for a large class of programs and complexity classes, getting meaningful results.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—Object-oriented languages; F.2.0 [Analysis of Algorithms and Problem Complexity]:

General; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Lan-
guages—Program analysis; I.2.2 [Artificial Intelligence]: Automatic Programming—Automatic
analysis of algorithms

General Terms: Complexity, Languages, Theory.

Additional Key Words and Phrases: Upper bounds, cost analysis, program complexity, bytecode.

1. INTRODUCTION

The computational complexity theory is a fundamental research area in computer
science, which aims at determining the amount of resources required to run a given
algorithm or to solve a given problem in terms of the input values. Computational
complexity has received considerable attention since the early days of computer sci-
ence. The most common metrics studied are time-complexity and space-complexity,
which measure, respectively, the time and memory required for running an algo-
rithm or solving a problem. In complexity theory, algorithms and problems are

Author’s address: Elvira Albert / Puri Arenas / Samir Genaim. Facultad de Informática, Uni-
versidad Complutense de Madrid, E-28.040, Madrid (Spain).
Germán Puebla / Damiano Zanardini. Facultad de Informática, Universidad Politécnica de

Madrid, E-28.660, Boadilla del Monte (Spain).
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM XXX

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

316

2 · E. Albert et al.

often categorized into complexity classes, according to the amount of resources re-
quired for executing the algorithm or solving the problem by using the best possible
algorithm. Though complexity theory has produced a wealth of research results,
especially in the last decades, assigning a complexity class to an algorithm is still
far from being automatic, and requires significant human intervention.

In this work, rather than on the complexity of problems or algorithms, we con-
centrate on analyzing the complexity of programs, i.e., a particular implementation
of a given algorithm. The first proposal for automatically computing the complexity
of programs was the seminal work of Wegbreit [1975], whereby the Metric system
is described, together with a number of applications of automatic cost analysis.
This system was able to automatically compute closed-form cost functions which
capture the non-asymptotic cost of simple Lisp programs as functions of the size
of the input arguments (using different measures). Since then, a number of cost
analysis frameworks have been proposed, mostly in the context of declarative pro-
gramming languages (functional programming [Le Metayer 1988; Rosendahl 1989;
Wadler 1988; Sands 1995; Benzinger 2004] and logic programming [Debray and Lin
1993; Navas et al. 2007]). Cost analysis of imperative programming languages has
received significantly less attention. It is worth mentioning the pioneering work
of Adachi et al. [1979] and, for Java-like languages, recent work focused on estimat-
ing memory consumption [Braberman et al. 2008; Chin et al. 2008].

Traditionally, cost analysis has been formulated at the source code level. However,
it can be the case that the analysis must consider the compiled code instead. This
may happen, in particular, when the code consumer is interested in verifying some
properties of 3rd party programs, but has no direct access to the source code, as
usual for commercial software and in mobile code. This is the general picture where
the idea of Proof-Carrying code [Necula 1997] was born: in order for the code to
be verifiable by the user, security properties (including resource usage limitations)
must refer to the (compiled) code available to the user, so that it is possible to
check the provided proof and verify that the program satisfies the requirements
(e.g., that the code does not require more than a certain amount of memory, or
that it executes in less than a certain amount of time).

In the context of mobile code, programming languages which are compiled to
bytecode and executed on a virtual machine are widely used nowadays. This is
the approach used by Java bytecode and .NET. The execution model based on
virtual machines has two important benefits when compared to classical machine
code. First, bytecode is platform-independent. Therefore, the same compiled code
can be run on multiple platforms. Second, since the virtual machine is not directly
executed on the hardware, it is possible to apply a sand-box model which guarantees
that the bytecode does not have access to certain assets of the platform unless the
code is explicitly granted access to them.

1.1 Applications of Cost Analysis of Object-Oriented Bytecode Programs

We now summarize some of the applications of cost analysis in general and of cost
analysis of object-oriented bytecode in particular:

—Resource Bound Certification. This research area deals with security properties
involving resource usage requirements; i.e., the (untrusted) code must adhere to

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

317

Cost Analysis of Object-Oriented Bytecode Programs · 3

specific bounds on its resource consumption. Abstraction-Carrying Code [Albert
et al. 2008] (ACC) proposes the use of static analysis as enabling technology for
mobile code certification. In particular, in ACC, the safety policies are defined
over different abstract domains. The main idea is that the abstraction (or ab-
stract model) of the program computed by standard static analyzers is used as a
certificate. Then, the validity of the abstraction on the consumer side is checked
in a single pass by a very efficient and specialized abstract-interpreter. Within
the ACC framework, the present work suggests that it is possible to automatically
generate non-trivial resource usage bounds for a realistic programming language.
Such bounds could then be translated to certificates, in the proof-carrying code
style. Previous work in this direction was restricted to linear bounds [Crary and
Weirich 2000; Aspinall et al. 2005; Hofmann and Jost 2003], to semi-automatic
techniques [Chander et al. 2005], or to source code [Albert et al. 2008]. It is
important to note that mobile code (where bytecode is widely used) is one of the
settings where estimating the cost of programs and guaranteeing upper bounds
it is most important, because of the limited computing power typically available
on mobile devices. Nevertheless, an actual use of resource bounds certificates will
require the overall design of the framework and of the certificate checkers. This
remains as a challenge for the future.

—Performance Debugging and Validation. This is a direct application of resource
usage analysis, where the analyzer tries to verify or falsify assertions about the
efficiency of the program which are written by the programmer. This application
was already mentioned as future work in [Wegbreit 1975] and is available in the
CiaoPP system for Prolog programs [Hermenegildo et al. 2005]. In our context,
and when the compiled code is not obfuscated, assertions can possibly refer to the
source code level, but it is straightforward to translate them to be understandable
by our compiled code analyzer. In the other direction, results obtained by our
analysis performed on the compiled code can be easily related to the source
program.

—Granularity Control. Parallel computers have recently become mainstream with
the massive use of multicore processors. In parallel systems, knowledge about
the cost of different procedures in the code can be used in order to guide the
partitioning, allocation and scheduling of parallel processes [Debray and Lin 1993;
Hermenegildo et al. 2005].

—Program Synthesis and Optimization. This application was already mentioned
as one of the motivations for [Wegbreit 1975]. Both in program synthesis and
in semantic-preserving optimizations, such as partial evaluation (see e.g. [Craig
and Leuschel 2005; Puebla and Ochoa 2006]), there are multiple programs which
may be produced in the process, with possibly different efficiency levels. Here,
automatic cost analysis can be used for guiding the selection process among a set
of candidates.

1.2 Summary of Contributions

As its main contribution, the present work formulates an automatic approach to
cost analysis of real-life, object-oriented bytecode programs (from now on, we use
bytecode for short), whose features include the most important difficulties encoun-

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

318

4 · E. Albert et al.

tered when analyzing both (source) object-oriented languages and low-level code:
(1) from low-level code, bytecode inherits its unstructured control flow : execution
flow is modified using conditional and unconditional jumps; (2) from object-oriented
languages, bytecode inherits features such as virtual method invocation, extensive
usage of exceptions, and the use of a heap; and (3) an additional difficulty present in
bytecode (but not necessarily in other low-level languages) is the use of an operand
stack for storing the intermediate results of computations.

As will be presented in detail in the rest of the paper, our analysis takes as input
the bytecode corresponding to a program, the cost model of interest, and yields a
set of recursive equations which capture the cost of the program by performing the
following steps:

1. A control flow graph (CFG for short) is generated for each method in the
original bytecode program by using techniques from compiler theory [Aho et al.
1974; Aho et al. 1986]. Advanced features like virtual invocation and exceptions
are simply handled as additional nodes and arcs in the graph.

2. Each CFG is represented as a set of procedures (composed of one or more
rules) by using a rule-based, recursive representation (RBR for short), where the
arguments to the bytecode instructions are made explicit, and the operand stack is
flattened by converting its contents into additional local variables.

3. Static analysis infers, for each rule, size relations among the input variables
to the rule and the variables in all calls in the rule. Size relations are, in the
case of integer variables, constraints on the value of variables, and, in the case of
references, constraints on their path length, i.e., the length of the longest reference
chain reachable from the given reference [Spoto et al. 2006a].

4. A parametric notion of cost model is introduced, which allows describing how
the resource consumption associated to a program execution should be computed.
A cost model defines how cost is assigned to each execution step and, by extension,
to an entire execution trace. We consider a range of non-trivial cost models for
measuring different aspects of computations.

5. From the RBR, the size relations, and a given cost model, a cost relation
system (CRS for short) is automatically obtained. Cost relations express the cost
of any block in the CFG (or rule in the RBR) in terms of the cost of the block itself
plus the cost of its successors.

6. If possible, an exact solution or an upper bound in non-recursive, i.e., closed-
form is found for the cost relation system. This step requires the use of a solver
for such systems, whose detailed description is not in the scope of this paper. See
e.g. [Albert et al. 2008a] for more details.

As another contribution, the present work reports on the COSTA system: an im-
plementation of our proposed framework for Java bytecode (JBC), which is one of
the most widely used languages in mobile code architectures, and one of the candi-
dates for building a realistic proof-carrying code framework for software verification.
The implementation considers exceptions, though it is restricted to sequential JBC.

COSTA [Albert et al. 2008a; 2008b] computes an upper bound for the cost of
JBC programs, by relying on a series of static analyses, such as class, sign and
nullity analysis, slicing of irrelevant variables, sharing and cyclicity analysis, etc.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

319

Cost Analysis of Object-Oriented Bytecode Programs · 5

Moreover, closed-form solutions are found by means of a dedicated solver [Albert
et al. 2008a]. By means of such techniques, COSTA can deal with quite a large
class of JBC programs.

Finally, though our method is formalized at the level of bytecode, the basic
techniques developed in the paper could be directly applied to cost analysis of other
object-oriented imperative languages, not necessarily in low-level form. Besides,
since Java is compiled to bytecode, then our work also constitutes the first approach
to the automatic cost analysis of Java programs.

1.3 Organization of the Article

This article is organized as follows. The next section briefly describes the bytecode
language we consider and its semantics. Section 3 is devoted to present the trans-
formation from bytecode programs to rule-based programs. First, the syntax of the
RBR language is described. The definition of CFG for a bytecode method and its
RBR transformation are then formally presented, together with the semantics of
the RBR. Its equivalence to the original bytecode program is proven. The resulting
RBR can be useful in itself for developing various static analyses (not necessarily
cost) on the bytecode in a much simpler way, as it will become apparent later from
the simplicity of the size and cost analyses that we define on the RBR.

Section 4 formalizes the notion of cost that the proposed analysis aims at ap-
proximating. It also presents examples of cost models. Section 5 introduces the
proposed cost analysis in two main steps. First, Sections 5.1, 5.2 and 5.3 present the
components of the size analysis which allow inferring precise size relations between
the execution states at different program points. Then, the generation of CRSs for
bytecode programs is introduced in Section 5.4 and the correctness of the resulting
analysis is proven.

Section 6 discusses a series of practical issues related to the simplification and
solving of the CRS. In particular, Section 6.1 discusses the notion of cost-relevant
variables, and sketches a static analysis to infer them. Section 6.2 states the dif-
ferences between CRS and traditional recurrence relation systems (RRs for short).
Then, Section 6.3 overviews the existing technology to compute closed form (i.e.,
non recursive) solutions or upper bounds both from CRSs and RRs.

Section 7 describes our implementation, the COSTA system, and demonstrates
its practicality on a series of experiments. With this aim, COSTA infers the cost
of a set of selected benchmarks illustrating object-oriented features and using Java
libraries. Section 8 reviews some related work, and Section 9 concludes the article.

2. OBJECT-ORIENTED BYTECODE

In order to simplify the formalization of our analysis, a simple sequential object-
oriented bytecode language is considered, which roughly corresponds to a repre-
sentative subset of Java bytecode. We refer to it as simple bytecode. For short,
unless we explicitly mention Java bytecode, all references to bytecode in the rest
of the paper correspond to our simple bytecode. Simple bytecode is able to han-
dle integers and object creation and manipulation. For simplicity, simple bytecode
does not include advanced features of Java bytecode, such as exceptions, interfaces,
static methods and fields, access control (e.g., the use of public, protected and pri-
vate modifiers) and primitive types besides integers and references. Anyway, such

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

320

6 · E. Albert et al.

class A {
int incr(int i) {

return i+1;
}

}

1: load 1
2: push 1
3: add
4: return

class B extends A {
int incr(int i) {

return i+2;
}

}

1: load 1
2: push 2
3: add
4: return

class C extends B {
int incr(int i) {

return i+3;
}

}

1: load 1
2: push 3
3: add
4: return

class Main {
int add(int n,A o) {

int res=0;
int i=0;
while (i<=n) {

res=res+i;
i=o.incr(i);

}
return res;

}
}

1: push 0 12: load 2
2: store 3 13: load 4
3: push 0 14: invokevirtual A.incr:(I)I
4: store 4 15: store 4
5: load 4 16: goto 5
6: load 1 17: load 3
7: ifgt 17 18: return
8: load 3
9: load 4

10: add
11: store 3

Fig. 1. A Java source (left) with its corresponding bytecode (right)

features can be easily handled in this framework, as shown by the implementation
presented in Section 7, based on actual Java bytecode.

2.1 The Syntax

A bytecode program consists of a set of classes C, partially ordered with respect to
the subclass relation �. Each class c ∈ C contains information about the class c′ =
extends(c) ∈ C ∪ {none} it extends, the fields fields(c) and the methods methods(c)
it declares. Subclasses inherit all the fields and methods of the class they extend.
The special class name none is used as in Java bytecode when there is no super class
(e.g., for the class Object). Each method comes with a signature m which consists
of the class class(m) ∈ C where it is defined, its name name(m) and its type
type(m) = τ1 , . . . , τk → τ , where τi ∈ C ∪ {int} is the type of its i-th argument,
and τ ∈ C ∪ {int} is the type of its return value (for simplicity, all methods are
supposed to return a value). There cannot be two methods with the same signature.
In addition, the name init is reserved for the class instance initialization method.
The bytecode associated to a method m is denoted bc(m), and it is a sequence
〈b1, . . . , bn〉 where each bi is a bytecode instruction. We use m[i] to denote the i-th
instruction in bc(m). Local variables of a k-ary method are denoted by 〈l0, . . . , ln〉
with n ≥ k, from which 〈l1, . . . , lk〉, are the formal parameters, l0 corresponds to the
this reference and the remaining 〈lk+1, . . . , ln〉 are the local variables declared in the
method. Similarly, each field f has a unique signature which consists of the class
class(f) ∈ C where it is declared, its name name(f) and its type type(f) ∈ C ∪ {int}.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

321

Cost Analysis of Object-Oriented Bytecode Programs · 7

A class cannot declare two fields with the same name. The following instructions
are included:

bcInstr ::= load i | store i | push n | pop | dup | add | sub
| iflt j | ifgt j | ifeq j | ifnull j | goto j
| new c | getfield f | putfield f
| newarray d | aload | astore | arraylength
| invokevirtual m | invokenonvirtual m | return

Similarly to Java bytecode, simple bytecode is a stack-based language. The instruc-
tions in the first row manipulate the operand stack (see the semantics below). The
second row contains jump instructions. Instructions in the third row manipulate
objects, while the fourth row works on arrays, where d ∈ C ∪ {int}. The last row
contains instructions dealing with method invocation. As regards notation, i is an
integer which corresponds to a local variable index, n is an integer or null, j is
an integer which corresponds to an index in the bytecode sequence, c ∈ C, m is a
method signature, and f is a field signature.

Example 2.1. (running example) Figure 1 depicts the bytecode and a possible
Java source (only shown for clarity of the presentation) of our running example.
The program consists of four classes. A, B and C are three related classes which
provide different implementations for the incr method, which returns the result of
increasing an integer by a different amount. The Main class defines a method named
add which receives an integer value n and an object o, and computes (1) Σn

i=0i if

the runtime class of o is A; (2) Σ
⌊n/2⌋
i=0 2i if the runtime class is B; or (3) Σ

⌊n/3⌋
i=0 3i

if the runtime class is C. The first four instructions of add initialize local variables
res and i to the value 0, corresponding, respectively, to indexes 3 and 4 in the
table of local variables. Instructions 5, 6 and 7 check the loop condition. If the
test fails, then control goes to the end of the loop (instruction 17). Otherwise, the
value of i is accumulated in res in the next four instructions. Afterwards, before
invoking incr, the reference to o (local variable 2) and the variable i are pushed
on the stack (instructions 12-13). Depending on the runtime instance in o, the
corresponding method is invoked at instruction 14, the return value is stored in i

at 15, and control goes back to the loop entry (at 16). The last two bytecodes return
the result. 2

2.2 The Operational Semantics

This section presents the operational semantics of simple bytecode. A heap h is
a partial map from an infinite set of memory locations to objects. We use Heaps,
Locations , and Objects to denote the sets of all heaps, memory locations, and
objects, respectively. For simplicity, an array of length n is modeled as an object o
with a special (read-only) field length initialized to n, and fields 1, . . . , n of type d
which correspond to the array elements. Moreover, we assume that the class tag of
an object contains information from which it is possible to distinguish array objects
from class instance objects. Given h ∈ Heaps and r ∈ Locations , we use h(r) to
denote the object referred to by r in h. We use h[r 7→ o] to indicate the result of
updating the heap h by making h(r) = o while h stays the same for all locations
different from r. Note that for any location r and heap h, r ∈ dom(h) iff there is an
object associated to r in h. A value v belongs to the set Z∪{null}∪Locations . An

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

322

8 · E. Albert et al.

(1)bc
m[pc] ≡ load i

〈m, pc, lv , stk〉·ar ; h ;bc 〈m, pc+1 , lv , lv(i)·stk〉·ar ; h

(2)bc
m[pc] ≡ store i

〈m, pc, lv , v·stk〉·ar ; h ;bc 〈m, pc+1 , lv [i 7→v], stk〉·ar ; h

(3)bc
m[pc] ≡ push n

〈m, pc, lv , stk〉·ar ; h ;bc 〈m, pc+1 , lv ,n·stk〉·ar ; h

(4)bc
m[pc] ≡ pop

〈m, pc, lv , v·stk〉·ar ; h ;bc 〈m, pc+1 , lv , stk〉·ar ; h

(5)bc
m[pc] ≡ dup

〈m, pc, lv , v·stk〉·ar ; h ;bc 〈m, pc+1 , lv , v ·v ·stk〉·ar ; h

(6)bc
(m[pc] ≡ add ∧ v = v1 + v2) ∨ (m[pc] = sub ∧ v = v2 − v1)

〈m, pc, lv , v1·v2·stk〉·ar ; h ;bc 〈m, pc+1 , lv , v ·stk〉·ar ; h

(7)bc
m[pc] ≡ new c, o = newobject(c), r 6∈ dom(h)

〈m, pc, lv , stk〉·ar ; h ;bc 〈m, pc+1 , lv , r ·stk〉·ar ; h[r 7→o]

(8)bc
m[pc] ≡ getfield f, r 6= null, v = h(r).f,

〈m, pc, lv , r·stk〉·ar ; h ;bc 〈m, pc+1 , lv , v ·stk〉·ar ; h

(9)bc
m[pc] ≡ putfield f, r 6= null, o = h(r),

〈m, pc, lv , v·r·stk〉·ar ; h ;bc 〈m, pc+1 , lv , stk〉·ar ; h[o.f 7→v]

Fig. 2. Operational Semantics of the Bytecode Language (1)

object o is a pair consisting of the object class tag and a mapping from field names
to values which is consistent with the signatures of the fields. The class tag of o is
denoted by class(o), o.f refers to the value of the field f in o, and o[f 7→v] sets the
value of o.f to v. Finally, h[o.f 7→v] is a shortcut for h(r)[f 7→v] with o = h(r).

An activation record a is a tuple of the form 〈m, pc, lv , stk〉, where: m is a
method signature; pc is the program counter, i.e., the address of the instruction to
be executed; stk is an operand stack of values (ǫ denotes the empty stack); and lv
is a mapping from local variable indexes to values. Given an index i, lv(i) refers
to the value of li, and lv [i7→v] updates lv by making lv(i) = v while lv remains
the same for all indexes different from i. Different activation records do not share
information, but may contain references to the same objects in the heap.

An execution state or configuration C takes the form ar ; h, where ar is a stack of
activation records, and h is a global heap. Given a configuration C, the operational
semantics (see Figures 2 and 3) uniquely determines how to perform a step and
produce the next configuration C ′. The transition is denoted by C ;bc C

′.
Executions start from an initial configuration C0 = 〈start, 1, lv , vn · · · v1〉;h,

where: start is an auxiliary method (not part of the program) that has only one
instruction (at start[1]) which is a non-virtual call to the actual method that we
want to start the execution from (e.g., main in Java and Java bytecode); lv is
an empty variable mapping (since start is just an auxiliary method); vn, . . . , v1
are the initial stack elements where v1 corresponds to the object whose method

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

323

Cost Analysis of Object-Oriented Bytecode Programs · 9

(10)bc
m[pc] ≡ newarray d, n ≥ 0, o = newarray(d, n), r 6∈ dom(h)

〈m, pc, lv , n·stk〉·ar ; h ;bc 〈m, pc+1 , lv , r ·stk〉·ar ; h[r 7→o]

(11)bc
m[pc] ≡ aload, r 6= null, o = h(r), 1 ≤ i ≤ o.length, v = o.i

〈m, pc, lv , i·r·stk〉·ar ; h ;bc 〈m, pc+1 , lv , v ·stk〉·ar ; h

(12)bc
m[pc] ≡ astore, r 6= null, o = h(r), 1 ≤ i ≤ o.length

〈m, pc, lv , v·i·r·stk〉·ar ; h ;bc 〈m, pc+1 , lv , stk〉·ar ; h[o.i 7→ v]

(13)bc
m[pc] ≡ arraylength, r 6= null, o = h(r), n = o.length

〈m, pc, lv , r·stk〉·ar ; h ;bc 〈m, pc+1 , lv ,n·stk〉·ar ; h

(14)bc

((m[pc]≡invokevirtual m′ ∧ m′′=lookup(m′, class(h(v0)))) ∨
(m[pc]≡invokenonvirtual m′′)),

v0 6= null, lv ′ = newenv(m′′), ∀i ∈ [0 . . . k]. lv ′[i7→vi]

〈m, pc, lv , vk · · · v1·v0·stk〉·ar ; h ;bc 〈m
′′, 1 , lv ′, ǫ〉·〈m, pc + 1 , lv , stk〉·ar ; h

(15)bc
m[pc] ≡ return

〈m, pc, lv , v·stk〉·〈m′, pc′, lv ′, stk ′〉·ar ; h ;bc 〈m
′, pc′, lv ′, v ·stk ′〉·ar ; h

(16)bc

(m[pc] ≡ ifgt pc′ ∧ (v2 > v1))∨
(m[pc] ≡ iflt pc′ ∧ (v2 < v1)) ∨ (m[pc] ≡ ifeq pc′ ∧ (v2 = v1))

〈m, pc, lv , v1·v2·stk〉·ar ; h ;bc 〈m, pc′, lv , stk〉·ar ; h

(17)bc

(m[pc] ≡ ifgt pc′ ∧ (v2≤v1))∨
(m[pc] ≡ iflt pc′ ∧ (v2≥v1)) ∨ (m[pc] ≡ ifeq pc′ ∧ (v2 6= v1))

〈m, pc, lv , v1·v2·stk〉·ar ; h ;bc 〈m, pc+1 , lv , stk〉·ar ; h

(18)bc
(m[pc] ≡ ifnull pc′, ((r = null ∧ pc′′ = pc′) ∨ (r 6= null ∧ pc′′ = pc+1)))

〈m, pc, lv , r·stk〉·ar ; h ;bc 〈m, pc′′, lv , stk〉·ar ; h

Fig. 3. Operational Semantics of the Bytecode Language (2)

we want to call, and v2, . . . , vn are the actual parameters to that method (v2 the
first parameter); and h is an initial heap. Note that each vi might be an integer,
null or a reference to an object in the initial heap h. A configuration is final iff it
takes the form 〈start, 2, lv , v〉;h where v is the return value of the call at start[1]
and h is the final heap (note that the return instruction increases the program
counter by 1). Execution proceeds deterministically by applying the execution step
corresponding to the instruction in m[pc], and ends when a final configuration is
reached. When there is no rule to apply (e.g., dereferencing a null pointer), we
assume that the execution stops. Thus, executions can be regarded as traces of the
form C0;bcC1;bc · · ·;bcCω, where Cω is a final configuration. Non-terminating
executions have infinite traces.

As usual in Java bytecode [Lindholm and Yellin 1996], we assume that code
is verified prior to execution. This guarantees that the following conditions are
satisfied by any program: (1) addresses in conditional and unconditional jumps are
within the bounds of the method code; (2) execution cannot fall off the end of the
code; (3) if the code refers to a field signature f , then a field with such signature
must be defined either in class(f) or in one of its super classes; (4) if the code refers
to a method signature m in invokenonvirtual then a method with the corresponding
signature must be defined in class(m) (not in its super classes); and (5) the height

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

324

10 · E. Albert et al.

of the operand stack and the types of its elements (reference or integer type) at
each program point are fixed, regardless of the path execution comes from and
(6) the instructions operate on variables of the required type (for instance, add
requires that both operands be integers). Thus, after the verification, the types of
the elements are statically known.

The operational semantics shown in Figures 2 and 3 is quite standard. As an
example, consider rule (8)bc for reading fields: when the instruction at pc is a
getfield f , then the value v corresponding to the field f of the object referred to by
r in h is pushed on the stack (thus resulting in v·stk), and the program counter is
increased by 1 (pc+1).

For the rest of the rules, we just point out that, in the execution step correspond-
ing to method invocation (rule (14)bc), it is assumed that: (1) lookup is defined in
a standard object-oriented fashion, i.e., it looks up for an implementation of the
method in the signature m′ (i.e., removing the name of the class from the signa-
ture), starting from the class of the corresponding object and going iteratively into
its super classes; it fails if it does not find such a method; (2) newenv creates a
new mapping of local variables for the corresponding method, where each variable
is initialized to either 0 or null, depending on its type. Similarly, in rule (7)bc ,
newobject(c) creates a new object of class c by initializing its fields as newenv does,
while, in rule (10)bc , newarray(d, n) creates an array of n elements initialized to 0
or null depending on d.

3. FROM BYTECODE TO THE RULE-BASED REPRESENTATION

The control flow of a program is an essential piece of information in order to reason
about cost. It allows reasoning about all possible paths which might be taken during
the execution. Also, it allows one to group together sequences of instructions which
are always executed as a block, i.e., in a non-dividable fashion: either all or none of
the instructions in the sequence are executed and the instructions are processed in
exactly the order in which they appear in the sequence.

Unlike programs written in high-level, structured programming languages as
Java, bytecode programs feature unstructured control flows, since conditional and
unconditional jumps are allowed instead of the if-then-else, switch and loop con-
structs available in structured programming languages. Reasoning about unstruc-
tured programs is more complicated for both human and automatic analysis. More-
over, in a realistic object-oriented programming language, virtual method invocation
and exception handling make the control flow even more difficult to deal with.

In Section 3.1 we introduce a rule-based structured language which is rich enough
to allow the (de-)compilation of bytecode programs to it (and preserve the infor-
mation about cost), while staying simple enough to develop a precise cost analysis,
since object-oriented features are compiled away and recursion is the only iterative
construct. The compilation of bytecode programs into this language is described in
Section 3.2. The equivalence with the original bytecode is formalized in Section 3.3.
It is important to note that our aim here is not to decompile bytecode back to Java,
but rather to a representation which is as amenable as possible to static analysis.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

325

Cost Analysis of Object-Oriented Bytecode Programs · 11

3.1 The Rule-Based Representation

This section introduces the syntax of the RBR as a simple, structured procedural
language which will be used to develop the cost analysis framework in the rest of
the article. The following key features of the RBR will make the development of
the analysis easier, as they allow the control flow to be simple and explicit:

(1) recursion becomes a kind of iteration;

(2) there is only one form of conditional construct: the use of guarded rules;

(3) there is only one kind of variables, the local variables, and there is no stack;

(4) object-oriented features are gone:
—objects can be simply regarded as records which include an additional field

which contains their type;
—the behaviour induced by dynamic dispatch is compiled into dispatch blocks;

(5) there is no distinction between executing a method and executing a block.

As will be clear later, these choices are not arbitrary. Indeed, they are designed in
order to make the generation of cost relation systems –whose solution is classically
the goal of cost analysis– feasible, and consistent with the program structure. In
order to cover object-oriented features, the language also supports object creation,
field manipulation and arrays.

A rule-based representation consists of a set of (global) procedures. A procedure
p with k input arguments x̄ and a single output argument y is defined by a set of
guarded rules, where each rule is defined according to the following grammar:

rule ::= p(x̄, y) ← g, body.
g ::= true | exp1 op exp2 | type(x, c)

body ::= ǫ | b, body
b ::= x := exp | x := new c | x := y .f | x .f := y | x := newarray(d , y) |

x[i] := y | x := y[i] | x := arraylength(y) | nop(any) | q(x̄, y)
exp ::= x | null | n | x−y | x+y
op ::= > | < | ≤ | ≥ | = | 6=

where p(x̄, y) is the head of the rule, and x̄ = x1, . . . , xk. Note that the last
argument is always the output argument. The identifiers x1, . . . , xk and y (possibly
subscripted or primed) are taken from a valid set of variable names; n is an integer;
i is a non-negative integer; d ∈ C ∪ {int}, q(x̄, y) is a procedure call (by value);
and nop(any) is an auxiliary instruction which takes any instruction in bcInst as
argument, and has no effect on the semantics (but is useful for preserving some
information about the original bytecode program). In the following, we use rrInstr
to denote the set of guards and instructions which can appear in the body of the
rules. Note that though more readable than bytecode, all guards and instructions
correspond to three-address code, as in bytecode, except for calls to procedures (i.e.,
of the form q(x̄, y)).

As it will be described in Section 3.2 below, the class hierarchy of the bytecode
program is used, together with class analysis, in order to generate the required
dispatch blocks. Then in the RBR the class hierarchy is no longer needed for ex-
ecution. For simplicity, it is assumed that there are no two procedures with the

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

326

12 · E. Albert et al.

same name and different number of arguments, and that rules that correspond to
the same procedure uses the same names for their input and output variables. Fur-
thermore, we restrict ourselves to RBR programs which are strictly deterministic,
i.e., the guards for all rules for the same procedure are pairwise mutually exclusive
and the disjunction of all guards is always true (the guards cover all possible cases).
This will always be the case for RBR programs compiled from bytecode programs
as described in Section 3.2 below.

Example 3.1. The following procedure, defined by two guarded rules, imple-
ments the fib method, which computes the n-th number of the Fibonacci series.

fib(n, y) ← n>1, n1 := n−1, fib(n1, y
′),

n2 := n−2, fib(n2, y
′′), y := y′+y′′.

fib(n, y) ← n≤1, y := 1.

Note that the variable y stands for the return value of the method. 2

The next section shows that bytecode programs can be translated into the above
syntax, thus enjoying the five features mentioned previously. Executing an RBR
program still needs a heap and a stack of activation records, similarly to the byte-
code.

3.2 Compiling Bytecode Programs to the Rule-Based Representation

The translation of a bytecode program to a RBR is performed in two steps. First, a
control flow graph is built from the bytecode program, which recovers the structure
of all possible explicit and implicit branching and loops. In the second step, a
procedure is defined for each basic block in the graph, and the operand stack is
flattened by considering its elements as additional local variables.

The notion of control flow graph (CFG) is well-known, and makes it easier to
reason about programs in unstructured languages [Aho et al. 1986]. CFGs are
similar to flow charts, except that they include the notions of calls to and returns
from. A method in the bytecode program is represented as a CFG1, and calls from
a method to another one correspond to calls between graphs.

In order to build the CFG of a method m, with its corresponding instruction
sequence 〈b1, . . . , bn〉, the first step is to partition 〈b1, . . . , bn〉 into a set of basic
blocks. An instruction bj is said to be a predecessor of bi if one of the following
conditions holds: (1) bj=goto i; (2) bj=ifφ i; (3) i=j+1 and bj 6= goto i′. The
following definition introduces the notion of partition into basic blocks.

Definition 3.2. (partition into basic blocks) Given a method m and its instruc-
tion sequence bc(m) = 〈b1, . . . , bn〉, a partition into basic blocks mi1 , . . . ,mik

takes
the form

bi1 , . . . , bf1
︸ ︷︷ ︸

mi1

, bi2 , . . . , bf2
︸ ︷︷ ︸

mi2

, . . . bik
, . . . , bfk

︸ ︷︷ ︸

mik

1In the implementation, a method can be represented by means of a set of graphs, due to the loop
extraction transformation described later in Section 7.1.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

327

Cost Analysis of Object-Oriented Bytecode Programs · 13

where i1=1, fk=n, ij = fj−1+1 and (1) in each basic block mij
, only the instruction

bfj
can be a jump or an invocation; and (2) in each mij

, only the first instruction
bij

can have more than one predecessor. 2

Clearly, if we consider each instruction as a separate block, both conditions above
are satisfied. However, we are interested in obtaining basic blocks which are as large
as possible, resulting in an optimal partition. We can obtain an optimal partition
to basic blocks as follows: the first sequence mi1 starts at address 1 and ends at
f1=min(e, s), where e is the address of the first non-sequential instruction (i.e.,
(un)conditional jump or method invocation), and s is the first address such that
the instruction at address s+1 has one or more predecessors different from bs. The
sequence mi2 is computed similarly starting at i2 = f1+1, and so on. This partition
can be computed by going twice through the bytecode: the first pass computes the
predecessors of each bytecode, and the second one defines the beginning and end
of each sub-sequence.

Due to dynamic method resolution, in the case of invokevirtual m, the actual
method to be called is only known at runtime. The compilation to RBR is made
easier by approximating this information and introducing it explicitly in the CFG.
This is done by adding new blocks, which are called dispatch blocks, containing calls
to the actual methods which might be called at runtime. In addition, the access
to these blocks is guarded by mutually exclusive conditions on the runtime class of
the object whose method is called.

Definition 3.3. (dispatch block) Let m be a method containing a bytecode bi =
invokevirtual m′ and let s be the stack element that contains the receiver. Let C
be a superset of the runtime classes of the objects that s points to. The dispatch
block for c ∈ C is mi:c, and it contains the single instruction invoke(m′′) where
m′′ = lookup(m′, c). 2

Note that the set C in the above definition can be approximated statically by
C = {c | c � class(m ′)}, which is clearly a safe approximation of the set of the
actual classes of the objects that s might point to. In some cases, this might
result in a larger set than the actual one, which in turn affects the corresponding
static analysis precision and performance. Class analysis [Spoto and Jensen 2003]
is usually applied in such cases to reduce this set, as it gives information about
the possible runtime classes of the object whose method is being called. Although
the invokenonvirtual bytecode instruction is different from invokevirtual as it always
corresponds to only one possible method call, in order to simplify the presentation,
it is treated as invokevirtual, and associated to a single dispatch block with true
guard. Note that invoke(m′′) does not appear in the original bytecode; yet, it will
be used to define the compilation to the RBR. Similarly, some instructions are
wrapped with nop. These instructions will not be considered for building execution
paths in the CFG, but only for inferring the cost of the original program.

The notion of CFG is defined below. As regards notation, j = BlockId(i, m)
indicates that the instruction bi in m belongs to the block mj . In addition, for a
given invokevirtual instruction bi, M

m
i denotes the set of its dispatch blocks.

Definition 3.4. (control flow graph) The control flow graph for a method m is
a graph G = 〈N , E〉. The nodes N consist of:

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

328

14 · E. Albert et al.

add
return

C.incr

load 1
push 3

1

add
return

B.incr

load 1
push 2

1

add
return

push 1

A.incr

load 1

1Main.add 1

Main.add 14:B

type(1,C)

15

Main.add

Main.add

load 3
return

invoke(A.incr:(I)I) invoke(B.incr:(I)I) invoke(C.incr:(I)I)

store 3
push 0

push 0
store 4

load 4
load 1
nop(ifgt 17)

store 4

nop(goto 5)

load 3
load 4
add
store 3
load 2
load 4

nop(invokevirtual A:incr)

17

8

Main.add 14:A 14:CMain.add

Main.add

5Main.add

type(1,A)

type(1,B)

¬ gtgt

Fig. 4. The control flow graph of the add example

(1) the basic blocks mi1 , . . . ,mik
of m (represented by their names); and

(2) the dispatch blocks Mm
i corresponding to all invocation instructions bi in m.

Edges in E take the form 〈mi → mj , ϕij〉, where mi and mj are the source and
destination nodes, and ϕij is the Boolean condition labeling this transition. The
set of edges is defined by considering each node mi ∈ N which corresponds to a
(non-dispatch) basic block, whose last instruction is bfi

, as follows:

(1) if bfi
=goto j, then 〈mi → mj , true〉 is in E, and bfi

is annotated as nop(bfi
)

in mi;

(2) if bfi
=ifφ j where φ ∈ {lt, gt, eq, null} and i′=fi + 1 then 〈mi → mj , φ〉 and

〈mi → mi′ ,¬φ〉 are in E, and bfi
is annotated as nop(bfi

) in mi;

(3) if bfi
∈ {invokevirtual m′, invokenonvirtual m′} and i′ = fi + 1, then, for all

mfi:c ∈M
m
fi

, the edges 〈mi→mfi:c, type(n, c)〉 and 〈mfi:c→mi′ , true〉 are in E,
and bfi

is annotated as nop(bfi
) in mi. The guard type(n, c) means that the

runtime class of the object located on the (n+ 1)-th stack element from the top
is c where n is the number of arguments of m′;

(4) otherwise, if bfi
6= return and j=BlockId(fi + 1,m), then 〈mi→mj , true〉 is in

E. 2

Example 3.5. The CFGs for methods Main.add, A.incr, B .incr and C .incr
are depicted in Figure 4. The CFG for Main.add consists of eight nodes, where

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

329

Cost Analysis of Object-Oriented Bytecode Programs · 15

bj comp(bj)

load i st+1 := li
store i li := st

push n st+1 := n

pop nop(pop)
dup st+1 := st

add st−1 := st−1 + st

sub st−1 := st−1 − st

lt st−1 < st

gt st−1 > st

eq st−1 = st

null st = null

¬ lt st−1 ≥ st

¬ gt st−1 ≤ st

bj comp(bj)

¬ eq st−1 6= st

¬ null st 6= null

type(n, c) type(st−n, c)
new c st+1 := new c

getfield f st := st.f

putfield f st−1.f := st

newarray c st := newarray(c, st)
aload st−1 := st−1[st]
astore st−2[st−1] := st

arraylength st := arraylength(st)
invoke m m(st−n, . . . , st, st−n)
return out := st

nop(b) nop(b)

Fig. 5. Compiling bytecode instructions (as they appear in the CFG) to rule-based instructions

(t stands for the height of the stack before executing the bytecode instruction).

Main.add14:A, Main.add14:B and Main.add14:C are dispatch blocks, and the re-
maining ones are basic blocks. Edges indicate that control may flow from the last
instruction in the source node to the first instruction in the destination node.
An edge can be labeled with a guard stating the conditions under which it can
be traversed at runtime. For instance, the fact that the successor of ifgt 17 can
be either the instruction at address 8 or 17 is expressed by two guarded edges
from Main.add5, one to Main.add8 and the other to Main.add17. The invocation
14: invokevirtual A.incr : (I)I is split into three possible runtime instances, captured
by the dispatch blocks Main.add14:A, Main.add14:B and Main.add14:C . Depending
on the runtime type of the object o, whose memory location is stored on the sec-
ond stack element (from top) as indicated by the guards in the edges, only one of
these blocks will be executed. Each one transfers the control to the corresponding
definition of incr. 2

Once the CFGs for all methods are generated, they can be translated into the
rule-based language. A key point in this translation is that the top of the stack
at each program point is known statically, so that stack elements can be treated
as additional local variables. The bytecode instructions in the CFG are compiled
to rule-based expressions comp(bi) as described in Figure 5. In the following def-
inition, given a block mp, comp(mp) is the (comma separated) compilation of its
instructions.

Definition 3.6. (rule-based representation) Let m be a method with local vari-
ables l̄ = l0, . . . , ln, from which l̄′ = l0, l1, . . . , lk with k ≤ n are the formal parame-
ters, where l0 is the this reference. Let CFGm = 〈N , E〉 be its control flow graph.
The rule-based representation of m consists of a set of procedures, each containing
one or more rules, which are obtained as follows:

{m(l̄′, out)← true,m1(l̄, out)}
⋃

mp∈N

translate(mp)

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

330

16 · E. Albert et al.

where translate(mp) is defined as:

{(mp(l̄, s1, . . . , sbeg , out)←true, comp(mp))} ∄〈mp→, 〉∈E

{(mp(l̄, s1, . . . , sbeg , out)←true, comp(mp),mq(l̄, s1, . . . , send , out))} ∃!〈mp→mq, true〉∈E

{(mp(l̄, s1, . . . , sbeg , out)←true, comp(mp),mc
p(l̄, s1, . . . , send , out))}

S

{(mc
p(l̄, s1, . . . , send , out)←comp(φ),mq(l̄, s1, . . . , sbegq, out))

| 〈mp→mq, φ〉 ∈ E}

otherwise

where “beg” and “end” are, respectively, the height of the stack at the beginning
and at the end of block mp and “begq” is the height of the stack at the beginning of
the block mq. 2

The RBR for each method m has an entry procedure (containing a unique rule)
which simply calls the procedure m1 of the first block in its CFG. Sink nodes in
the CFG, represented by the first case of function translate, simply contain com-
piled bytecode instructions but do not have a continuation call. Rules with the
superscript c, introduced in the last case of translate, correspond to continuation
procedures (consisting of the possible continuation rules). They are used to choose
one execution branch when the corresponding node in the CFG has more than one
successor. If there is a single successor (guarded by true), then continuation proce-
dures are avoided by the second case of translate. Also, in the following, mp stands
for a rule name if it is relevant to know that it comes from block p in the CFG.
Otherwise, rules will be simply denoted by p and q.

Example 3.7. Figure 6 shows the RBR obtained from the CFGs in Figure 4.
For readability, local variables have the same name as in the source code, and guards
which are true are omitted. The first rule is the entry procedure of Main.add, which
receives the method arguments as input parameters. The call to Main.add1 from
this rule adds, as parameters, the local variables of the method. Non-continuation
procedures are named as the corresponding blocks in the CFGs. The loop entry cor-
responds to procedure Main.add5, where the bytecodes loading i and n on the stack
are compiled to the assignments s1 := i and s2 := n, respectively. This procedure
calls Main.addc

5 to check the condition of the loop. If s1 > s2 (i.e., i > n in the
program source), then the control exits the loop and calls Main.add17, which assigns
s1 to the return value out and terminates. Otherwise, the loop continues by calling
Main.add8, which first accumulates i on res and then prepares the call to A.incr by
assigning its parameters to the stack variables. Finally, it calls Main.addc

8 to con-
tinue the execution depending on the runtime type of o. The continuation procedure
calls the corresponding dispatch block, named Main.add14:Class, which invokes the
incr instance which matches the guard. Calls to incr receive s1, s2 (which correspond
to variables o and i, respectively) as input arguments, and return s1 as the output
argument to store the (incremented value) of i. The computation continues by call-
ing Main.add15, which stores the top of the stack (i.e., the incremented i returned
by the call to incr) in i, and calls Main.add5 (the loop entry) to proceed with the
next iteration. 2

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

331

Cost Analysis of Object-Oriented Bytecode Programs · 17

Main.add (this, n, o, out)← Main.add1 (this, n, o, res, i, out).
Main.add1 (this, n, o, res, i, out)← s1 := 0, res := s1, s1 := 0, i := s1,

Main.add5 (this, n, o, res, i, out).

Main.add5 (this, n, o, res, i, out)← s1 := i, s2 := n, nop(ifgt 17),

Main.addc
5(this, n, o, res, i, s1, s2, out).

Main.addc
5(this, n, o, res, i, s1, s2, out)← s1 > s2,Main.add17 (this, n, o, res, i, out).

Main.addc
5(this, n, o, res, i, s1, s2, out)← s1 ≤ s2,Main.add8 (this, n, o, res, i, out).

Main.add17 (this, n, o, res, i, out)← s1 := res, out := s1

Main.add8 (this, n, o, res, i, out)← s1 := res, s2 := i, s1 := s1 + s2, res := s1,

s1 := o, s2 := i, nop(invokevirtual A.incr(I)I),

Main.addc
8(this, n, o, res, i, s1, s2, out).

Main.addc
8(this, n, o, res, i, s1, s2, out)← type(s1, A),

Main.add14 :A(this, n, o, res, i, s1, s2, out).

Main.addc
8(this, n, o, res, i, s1, s2, out)← type(s1, B),

Main.add14 :B (this, n, o, res, i, s1, s2, out).

Main.addc
8(this, n, o, res, i, s1, s2, out)← type(s1, C),

Main.add14 :C (this, n, o, res, i, s1, s2, out).

Main.add14 :A(this, n, o, res, i, s1, s2, out)← A.incr (〈s1, s2〉, 〈s1〉),
Main.add15 (this, n, o, res, i, s1, out).

Main.add14 :B (this, n, o, res, i, s1, s2, out)← B .incr (〈s1, s2〉, 〈s1〉),
Main.add15 (this, n, o, res, i, s1, out).

Main.add14 :C (this, n, o, res, i, s1, s2, out)← C .incr (〈s1, s2〉, 〈s1〉),
Main.add15 (this, n, o, res, i, s1, out).

Main.add15 (this, n, o, res, i, s1, out)← i := s1, nop(goto 5),
Main.add5 (this, n, o, res, i, out).

A.incr (this, i, out)← A.incr1 (this, i, out).

A.incr1 (this, i, out)← s1 := i, s2 := 1, s1 := s1 + s2, out := s1.

B .incr (this, i, out)← B .incr1 (this, i, out).
B .incr1 (this, i, out)← s1 := i, s2 := 2, s1 := s1 + s2, out := s1.

C .incr (this, i, out)← C .incr1 (this, i, out).

C .incr1 (this, i, out)← s1 := i, s2 := 3, s1 := s1 + s2, out := s1.

Fig. 6. Rule-based Representation of add. Guards which are true are omitted.

3.3 Equivalence between a Bytecode Program and its corresponding RBR

This section states the equivalence between a bytecode program P and its corre-
sponding rule-based representation Prr obtained as described above. An opera-
tional semantics for RBR is presented, and it is shown that any bytecode trace in
P has a corresponding rule-based trace in Prr . The execution of Prr requires a
heap hrr to allocate and access objects in the same way than P does. The stack
arrr of activation records stores information about the point to which each active
procedure should return the control when its execution terminates. When there is
no confusion, we will omit the subscript rr . An important feature of Prr which
facilitates the design of the subsequent analysis is that, as already mentioned, there
is no distinction anymore between calls to blocks and calls to methods, as they are
both now procedure definitions in Prr . As a consequence, arrr operates at the level
of procedures (while ar works at the level of methods on the bytecode). This means
that a new activation record is created whenever a new procedure is called.

Rules in Figure 7 define an operational semantics for the RBR. The notation for
the local variables mapping lv and the heap h is inherited from the bytecode se-

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

332

18 · E. Albert et al.

(1)rr
b ≡ x := exp, v = eval(exp, lv)

〈p, b·bc, lv〉·ar ; h ;rr 〈p, bc, lv [x 7→ v]〉·ar ; h

(2)rr
b ≡ x := new c, o=newobject(c), r 6∈dom(h)

〈p, b·bc, lv〉·ar ; h ;rr 〈p, bc, lv [x 7→ r]〉·ar ; h[r 7→ o]

(3)rr
b ≡ x := y.f, lv(y) 6= null

〈p, b·bc, lv〉·ar ; h ;rr 〈p, bc, lv [x 7→ h(lv(y)).f]〉·ar ; h

(4)rr
b ≡ x.f := y, lv(x) 6= null,

〈p, b·bc, lv〉·ar ; h ;rr 〈p, bc, lv〉·ar ; h[lv(x).f 7→ lv(y)]

(5)rr

b ≡ x[y] := z, lv(x) 6= null, o = h(lv(x)), v1 = lv(y),

1 ≤ v1 ≤ o.length, v2 = lv(z)

〈p, b·bc, lv〉·ar ; h ;rr 〈p, bc, lv〉·ar ; h[o.v1 7→ v2]

(6)rr
b ≡ x := z[y], lv(z) 6= null, o = h(lv(z)), v = lv(y), 1 ≤ v ≤ o.length

〈p, b·bc, lv〉·ar ; h ;rr 〈p, bc, lv [x 7→ o.v]〉·ar ; h

(7)rr
b ≡ x := arraylength(y), lv(y) 6= null, o = h(lv(y))

〈p, b·bc, lv〉·ar ; h ;rr 〈p, bc, lv [x 7→ o.length]〉·ar ; h

(8)rr
b ≡ x := newarray(c, y) v = lv(y) ≥ 0 o=newarray(c, v) r 6∈dom(h)

〈p, b·bc, lv〉·ar ; h ;rr 〈p, bc, lv [x 7→ r]〉·ar ; h[r 7→ o]

(9)rr
b ≡ nop(any)

〈p, b·bc, lv〉·ar ; h ;rr 〈p, bc, lv〉·ar ; h

(10)rr

b ≡ q(x̄, y), there is a rule q(x̄′, y′):=g, b1, · · · , bk ∈ RBR,

lv ′=newenv(q), ∀i.lv ′(x′i) = lv(xi), eval(g, lv ′) = true

〈p, b·bc, lv〉·ar ; h ;rr 〈q, b1 · · · bk, lv ′〉·〈p[y′, y], bc, lv〉·ar ; h

(11)rr
〈q, ǫ, lv〉·〈p[y′, y], bc, lv ′〉·ar ; h ;rr 〈p, bc, lv ′[y 7→ lv(y′)]〉·ar ; h

Fig. 7. Operational semantics of bytecode programs in rule-based form

mantics. The table lv is indexed by variable names instead of integers, as in Figures
2 and 3. In addition, there is no operand stack, as stack positions have become
local variables. An activation record is of the form 〈p, bc, lv〉, where p is a proce-
dure name, bc is a sequence of instructions and lv the variable mapping. The first
rule (1)rr accounts for all rules in the bytecode semantics which perform operations
on variables (both local and stack variables). The evaluation eval(exp, lv) returns
the evaluation of the arithmetic or Boolean expression exp for the values of the
corresponding variables from lv in the standard way and, for reference variables, it
returns the reference. For well typed programs, the operational semantics always
produces a successor configuration for any configuration which is not final. Essen-
tially, we restrict ourselves to well typed programs since the bytecode programs we
consider are well typed as they are verified (see Section 2.2). Since the program is
well typed, the types of the variables are known statically. One can thus annotate
the variables types at each program point. Instead, for simplicity, we assume that,
given a variable x, static type(x) denotes its static type. Rules (2)rr , (3)rr and
(4)rr deal with objects as expected. Rules (5)rr , (6)rr , (7)rr and (8)rr account for
arrays. The rule (9)rr takes care of ignoring nop-wrapped instructions. The rule
(10)rr (resp., (11)rr) corresponds to calling (resp., returning from) a procedure.
The notation p[y′, y] records the association between the formal and actual return
variables.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

333

Cost Analysis of Object-Oriented Bytecode Programs · 19

An execution in the RBR starts from an initial configuration 〈start, p(x̄, y), lv〉;h
and ends in the configuration 〈start, ǫ, lv ′〉;h′ where:

(1) start is an auxiliary name to indicate an initial configuration, for clarity we use
the same name as in the initial configuration of the bytecode;

(2) p(x̄, y) is a call to the procedure from which we want to start the execution;

(3) h is an initial heap; and

(4) lv is a variable mapping such that dom(lv) = x̄ ∪ {y} and all variables are
initialized to an integer value, null or a reference to an object in h.

The following definition introduces the notion of equivalence between activation
records and configurations of the bytecode, and those of the RBR.

Intuitively, the equivalence between activation records requires that they corre-
spond to the same basic block in the CFG, have equivalent instructions and variables
with exactly the same values. Equivalence of configurations requires configurations
to have equivalent activations records at their top positions and that both heaps
are identical.

Definition 3.8. (activation record and configuration equivalence) A bytecode
activation record a is (cost) equivalent to a rule-based activation record arr , denoted
a ≈ arr , if one of the following conditions holds:

(1) a = 〈start, 1, lv , vt · · · v1〉 and arr = 〈start,m(s̄, s1), lv
′〉 are initial activation

records such that s̄ = 〈s1, . . . , st〉, lv ′(si) = vi for all 1 ≤ i ≤ t, and the
instruction start[1] corresponds to a (non-virtual) call to the method m in the
corresponding bytecode program;

(2) a = 〈start, 2, lv , v〉 and arr = 〈start, ǫ, lv ′〉 are final activation records such
that lv ′(s1) = v;

(3) a = 〈m, pc, lv , vt · · · v1〉 and arr = 〈m, bc, lv ′〉 such that:

(a) bc is the compilation of the bytecode instructions in the block to which m[pc]
belongs, starting from m[pc] until the end of the block (except for the last
instruction in bc when it is a continuation call);

(b) for each local variable li in m, lv(i) = lv ′(li), and, for each stack element
vi where 1 ≤ i ≤ t, lv ′(si) = vi.

A bytecode configuration C=ar ; h and a rule-based configuration RC=arrr ; hrr are
cost equivalent (written C ≈ RC) if the top activation records are equivalent and h
and hrr are “identical”. 2

As we will see later, the cost of an execution step depends only on the values
available in the top activation record, and therefore the above notion of equivalence
is the simplest one that we need to define when two execution steps from a bytecode
and a RBR configuration will cost the same. However, if we start an execution from
equivalent initial configurations, we will show later that at any point during the
execution we will have configurations which are (cost) equivalent. This in turn
implies that the corresponding traces will cost the same.

Definition 3.9. (redundant rule-based configurations) A rule-based configura-
tion 〈id, bc, lv〉 ·ar ;h is redundant if id 6= start, and bc is either an empty sequence
or includes only procedure calls. 2

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

334

20 · E. Albert et al.

The following theorem states the soundness of the RBR transformation, from
the point of view of the equivalence that we have defined above. It amounts to
saying that, given a trace in the bytecode, we can always generate a RBR trace
such that, when removing the redundant configurations, we obtain a sequence of
RBR configurations which are (cost) equivalent to those of the bytecode trace.

Theorem 3.10. (trace equivalence) Consider a bytecode program P and its rule-
based representation Prr . Given a trace t ≡ C0 ;

n
bc Cn of length n≥0 in P , where

C0=〈start, 1, lv0, vt · · · v1〉;h0 is an initial configuration, then there exists a rule-
based trace trr ≡ RC 0 ;

k
rr RC k of length k ≥ n in Prr , such that:

(1) RC 0=〈start,m
′(s̄, s1), lv

′
0〉;h0 where s = 〈s1, . . . , st〉 and lv ′0(si) = vi for all

1 ≤ i ≤ t, where m′ is the method invoked by start[1];

(2) removing redundant configurations from trr results in the sub-trace that consists
of configurations RC ′

i0 , . . . ,RC ′
in

where i0 = 0 < i1 < · · · < in = k (i.e., of
length n) such that Cj ≈ RC ′

ij
for all 0 ≤ j ≤ n.

We say that trr is equivalent to t, denoted t ≈ trr. 2

Proof. see Appendix A.

The other direction of the equivalence, namely that every rule-based trace has
a corresponding bytecode trace, also holds. It is omitted here because it is not
required for the soundness of cost analysis.

4. THE NOTION OF COST AND COST MODEL

For some purposes, such as when reasoning about program correctness, given a
program P , it suffices to know what P computes, i.e., its input–output behaviour.
However, other analyses may also require to know how P performs its computation.
Reasoning about the cost of a program is a clear example of this. It focuses not
only on the result of the computation, but also on some aspects of its history.
Such history is captured to a great extent by its corresponding execution trace.
It is thus natural that our notion of cost model is tightly related to execution
traces. In practical terms, often only some specific features of traces are needed to
reason about cost. Such features are clearly dependent on the resource of interest.
For example, the classical notions of cost used in complexity analysis, such as the
number of execution steps performed or the number of times certain instructions are
executed, only consider a subset of the information provided by traces. In the case
of bytecode programs, the natural choice for measuring execution steps amounts
to counting the number of bytecode instructions executed (i.e., the length of the
trace).

This section formally introduces the notion of cost model of bytecode programs,
which characterizes how the resource consumption due to executing a program can
be computed. To this end, a cost model defines how cost has to be assigned to an
execution step and, by extension, to an entire trace. In general, a cost model can
be viewed as an instrumentation of the program with cost counting instructions
that accumulate the cost in a ghost variable. For example, counting the number of
execution steps can be done by adding an instruction “cost = cost+ 1” after each
instruction in the program. Measuring the memory consumption can be done by

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

335

Cost Analysis of Object-Oriented Bytecode Programs · 21

adding “cost = cost+ size(c)” after each instruction “new c”. This view poses an
important feature of such cost models: they can be defined in terms of the values
of local variables only (in addition to static information like size(c) above) since
they are written in the same language as the program. Therefore, as in the case of
Java and Java bytecode programs, a cost model cannot access a variable in other
activation records (unless it is aliased with a local one). All realistic cost models
fall into this category. Considering the above restrictions, the cost model can be
viewed as a function from bytecode instructions, and dynamic information (local
variables, stack, and heap) to the real numbers. In the following, Local and Stacks
denote, resp., the sets of all local variable tables and operand stacks which meet
the above restrictions. The following definition formalizes the notion of such cost
models.

Definition 4.1. (cost model) A cost model M is a function from

M : bcInstr × Local × Stacks ×Heaps 7→ R

2

Essentially, given an activation record and a corresponding heap, the cost model
can be used to compute a number which represents the amount of resources which
will be consumed by the corresponding execution step. Note that, for simplicity,
we ignore the context in which the bytecode appears (the method), but taking
this information into account is straightforward. Let us see some examples of cost
models, which are indeed implemented in our system (see Section 7).

Example 4.2. The first model, denoted Minst , counts the number of instruc-
tions by giving cost 1 to every configuration, and it is defined asMinst(b, lv , stk , h) =
1 for any b, lv , stk and h. The next model Mheap is used for estimating the heap
consumption [Albert et al. 2007]. It assigns the number of bytes which are allocated
by the next instruction. For instance, the bytecode instruction “newarray int” (res.
“newarray c”) allocates v ∗ size(int) (res. v ∗ size(ref)) bytes in the heap, where
v denotes the length of the array stored on the top of the stack and size(int) (res.
size(ref)) denotes the number of bytes allocated for an integer value (res. reference)
by the corresponding virtual machine, e.g., size(int) = size(ref) = 4:

Mheap(b, lv , stk , h) =

8

>

>

>

>

<

>

>

>

>

:

size(c) m[pc] = new c

v ∗ size(int) b = “newarray int” and stk=v·stk ′

v ∗ size(ref) b = “newarray c” and stk=v·stk ′

0 otherwise

The Mcalls(m′) model is used to count the number of calls to a certain method m′.
It gives cost 1 to a configuration where the next instruction is any non-virtual call
to m′ or a virtual call which is resolved to a call to m′.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

336

22 · E. Albert et al.

Mcalls(m′)(b, lv , stk , h) =

1 b = invokevirtual m′′

m′′ has k arguments
stk = vn · · · vn−k·stk

′

m′ = lookup(m′′, class(h(vn−k)))

1 b = invokenonvirtual m′

0 otherwise

Note that the heap is required in this model to infer the cost. 2

For simplicity, given a configuration C ≡ a · ar ; h, where a = 〈m, pc, lv , stk〉 we
writeM(C) forM(m[pc], lv , stk , h). Then, the cost of an execution step C1 ;bc C2

with respect toM isM(C1), and the cost of a trace t, denotedM(t), is the sum of
the costs of its execution steps. Note that, in order to simplify the representation,
we use M to refer to the cost of a configuration and a trace.

In order to reason about the cost on the RBR, it is also necessary to define cost
models on RBR executions. This is done similarly to Definition 4.1, because of
the tight relation between the bytecode and the RBR language. We use Localrr to
denote the set of all local variable mappings in the RBR.

Definition 4.3. (RBR cost model) A cost modelMrr on the RBR is a function

Mrr : rrInstr × Localrr ×Heaps 7→ R.

2

Example 4.4. As an example, the RBR version ofMheap is defined as follows:

Mrr
heap(b, lv , h) =

size(c) b ≡ x := new c

lv(y) ∗ size(int) b ≡ x := newarray(int, y)

lv(y) ∗ size(c) b ≡ x := newarray(c, y)

0 otherwise

It can be seen that, in addition to the type of the array elements c, the size y of the
array is an explicit argument of the newarray(c, y) instruction of the RBR. 2

The cost of the execution with respect to a cost model Mrr can be defined
similarly to the bytecode version: given an RBR configuration RC ≡ a ·ar ; h where
a = 〈p, b1 · · · bn, lv〉, we write Mrr (RC) for Mrr (b1 · · · bn, lv , h). For simplicity,
if n = 0 we assume cost 0. Now the cost of an execution step RC 1 ;rr RC 2

is Mrr (RC 1), and the cost Mrr (trr) of a trace trr is the sum of the costs of all
execution steps.

In general, given a cost model on the bytecode it is straightforward to define a cost
model on the RBR which is equivalent. For this, the cost model should (1) assign
cost zero to configurations which correspond to procedure calls and return from
such calls, since they do not correspond to bytecode instructions and (2) assign to
instructions marked as nop the cost corresponding to the instruction they contain,
since they do not affect execution but should be taken into account by the cost
model. In addition, it should be observed that different bytecode instructions are

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

337

Cost Analysis of Object-Oriented Bytecode Programs · 23

compiled to similar variable assignments in the RBR (see, e.g., the compilations of
load and store in Figure 5). If the cost model requires one to assign them different
resource consumptions, we can simply use the nop construct available in the RBR
syntax to keep the original bytecode instructions in the RBR and then assign a
corresponding cost to each of them. In order to simplify the presentation, notation
will be abused by denoting both models in the bytecode and the RBR by the same
name M.

Theorem 4.5. (cost equivalence) Consider a bytecode program P and its rule-
based representation Prr , and let M be a cost model (the same name is used for
both bytecode and RBR versions). Given a trace t in P and an equivalent trace trr
in Prr , then M(t) =M(trr). 2

Proof. This theorem is a direct consequence of Theorem 3.10.

5. COST ANALYSIS OF RULE-BASED PROGRAMS

Given a program P and a cost model M, the classical approach to cost analysis,
as proposed by Wegbreit [1975], consists in obtaining a set of Recurrence Relations
(RRs for short) which capture the cost of running P on some input data x w.r.t.M.
As usual, in order to analyze programs which use data structures, in the recurrence
relations, data structures are replaced by their sizes. This section describes how this
approach can be applied to rule-based programs in order to obtain Cost Relation
Systems (CRSs), an extended form of RRs, which describe their costs. In our
approach, each rule in the RBR program results in an equation in the CRS. For
instance, using the Minst cost model, the rule defining Main.add8 in Figure 6
results in the equation:

Main.add8 (this, n, o, res, i) = 〈1, s′1=res〉+
〈1, s′2=i〉+
〈1, s′′1=s′1+s

′

2〉+
〈1, res ′=s′′1 〉+
〈1, s′′′1 =o〉+
〈1, s′′2=i〉+
〈1, true〉+
〈Main.addc

8(this, n, o, res
′, i, s′′′1 , s

′′

2), true〉

In the above equation, the variables are constraint variables that correspond to
those of the corresponding rule, for example s′1 and s′′1 both correspond to values
of s1 but at different program points. Each pair 〈e, ϕ〉 in the right hand side of
the equation corresponds to an instruction in the corresponding rule: e expresses
the cost of executing that instruction and ϕ is the effect of the instruction on the
variables (in terms of linear constraints). The pair in the last line corresponds to
the cost of executing Main.addc

8 on specific input values this, n, o, res ′, i, s′′′1 and s′′2 .
The constraint true in that pair corresponds to the effect of calling Main.addc

8 on
the local variables. Note that the output variable of the rule does not appear in
the equation, as it will be explained later.

Under certain conditions, we can merge the constraints and add the correspond-
ing costs together. For instance, for the above equation, we would obtain:

Main.add8 (this, n, o, res, i) = 〈7, res ′ = res + i , s′′′1 =o, s′′2=i〉+
〈Main.addc

8(this, n, o, res
′, i, s′′′1 , s

′′

2), true〉

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

338

24 · E. Albert et al.

which states that, given values (sizes) for this, n, o, res and i, the cost of exe-
cuting Main.add8 (this, n, o, res , i) is 7 units plus the cost of executing the call
Main.addc

8(this, n, o, res
′, i, s′′′1 , s

′′
2). As we will explain later, it is not always sound

to anticipate constraints.
A cost equation like the one above is generated by the analyzer for each rule in

the RBR, by following the main steps which are explained throughout this section
in detail:

(1) The first step in the analysis is to choose size measures to represent and manip-
ulate information relevant to cost. Program variables are abstracted to their
size. For example, a list can be abstracted to its length, since this can give
information about the cost of traversing it by means of a loop. The notion of
size measure is described in detail in Section 5.1.

(2) Instructions in the original rule are replaced by linear constraints which ap-
proximate the relation between states with respect to the size measures. For
instance, s1 := o is replaced by the constraint s′′′1 =o, which means that, after
the assignment, the size of s1 at that program point (represented by s′′′1) is
equal to the size of o. The result of this step is an abstract program which can
be used to approximate the values of the different variables in concrete traces
with respect to the given size measures. This step corresponds to an abstract
compilation of the RBR, as explained in Section 5.2.

(3) The next step removes output variables from the original rules by inferring the
relation between the input variables and the output variable using input-output
size relations (Section 5.3). Due to this, the output out does not appear in the
above equation.

(4) Finally, the analysis generates a CRS by using the abstract rules to generate
the constraints, and the original rule together with the selected cost model to
generate cost expressions representing the cost of the bytecodes with respect to
the model (Section 5.4). In the example, the cost expressions are the constant
values, which correspond to the number of executed instructions.

CRSs resemble the classical recurrence relations, but they are an extended form
in the sense that allow, in addition, to handle advanced features such as non-
determinism and constraints. These features are needed for a precise cost analysis
of real programs as it will become clear during this section; the differences between
RRs and CRSs will be explained in Section 6.2.

This section needs the introduction of some notation. A linear expression takes
the form q0+q1x1+ · · ·+qnxn, where qi are rational numbers and xi are variables.
A linear constraint (over integers) takes the form l1 op l2, where l1 and l2 are linear
expressions, and op ∈ {=,≤, <,>,≥}. A size relation ϕ is a set of linear constraints,
interpreted as a conjunction. The statement ϕ1 |= ϕ2 indicates that ϕ1 implies ϕ2.
A substitution σ maps (constraints) variables to values in Z, and σ |= ϕ denotes
that σ is a consistent assignment (i.e., a possible solution) for ϕ. Given ϕ1 and ϕ2,
ϕ1 ⊔ϕ2 denotes their convex-hull [Cousot and Halbwachs 1978]. We use a≪c A to
indicate that an entity a is a renamed apart (from c) element of A, i.e., does not
share any variable with the entity c.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

339

Cost Analysis of Object-Oriented Bytecode Programs · 25

5.1 The Notion of Size Measure

As already mentioned, data structures are usually abstracted into their sizes for
the purpose of cost analysis. Beginning with [Wegbreit 1975], a large number of
different size measures or norms have been proposed in the context of cost and
termination analysis over the years (see, e.g., [Bruynooghe et al. 2007] and its
references for an overview of the range of measures used in termination analysis of
logic programs).

The choice of a size measure, in particular for heap structures, heavily depends on
the program to be analyzed. For example, in termination analysis, the norm should
describe some measure which decreases at each loop iteration. If the program input
is a list which is traversed by the program, a typical example of a useful measure
is the length of the list. This measure can often be used for bounding the number
of loop iterations. Similarly, if the input is an array, the array length can often be
used for bounding the number of loop iterations. Finally, if the input is an integer
value, then the actual numerical value is usually a good measure to estimate the
number of iterations of loops with an integer counter. In addition to the previous
examples, other norms for data structures have been defined, such as term-size,
which measures the number of data constructs in a given data structure. It has also
been suggested that size measures counting data constructs of specific (recursive)
types are very useful in practice [Bruynooghe et al. 2007].

In the rest of this paper, the following size measures are used, which in practice
have been proven to be precise enough for a large class of programs.

Definition 5.1. (size measure) Given a configuration RC ≡ 〈p, bc, lv〉 · ar ;h,
the size of x ∈ dom(lv) with respect to a static type stype is defined as:

α(x, stype,RC) =

lv(x) if stype is integer type
path-length(lv(x), h) if stype is reference type
array-length(lv(x), h) if stype is array type

2

The function path-length above corresponds to Definition 5.1 in the previous work
by Spoto et al. [2006b]. It takes a heap h and a reference lv(x) ∈ dom(h), and
returns the length of the maximal path reachable from that reference by derefer-
encing, i.e., following other references stored as fields. The path-length of null is 0
and that of a cyclic data structure is ∞. path-length is useful for both linear and
non-linear data structures. In the case of lists, path-length coincides with list-length.
In the case of trees, it coincides with tree-depth, which has been used in [Debray and
Lin 1993] for the case of logic programs. However, tracking size information in logic
programs is simplified by the fact that size information is downward closed because
variables (i.e., memory locations) cannot be re-assigned different (non-variable)
values in forward execution, as it happens in imperative programming languages.

The choice of a size measure affects abstract compilation, as defined in the next
section, while the following steps of the cost analysis are independent of the size
measure. The only requirement is that its evaluation must be context-independent,
i.e., an object is always measured in the same way independently from its con-
text [Bossi et al. 1991].

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

340

26 · E. Albert et al.

5.2 Abstract Compilation

This section describes how to transform a given rule-based program P into an
abstract program Pα, which can be seen as an abstraction of P with respect to the
chosen size measure α. The translation is based on replacing each instruction by
(linear) constraints which describe its behavior with respect to the size measure.
For example, the instruction x := new c can be replaced by the constraint x=1,
which indicates that the maximal path length reachable from x is 1. The fact that
the formula refers to the path length of variables is due to the previous choice
of the size measure for references. To simplify the presentation, and when it is
clear from the context, the same name is used for the original variables (possibly
primed) and their sizes. That is, given a list l, the name l is also used, in the
abstract compilation, to denote its maximal path length. Letting α denote the size
measure of Definition 5.1, the translation of the instructions in the RBR is depicted
in Figure 8.

An important issue in the presented setting is to be able to obtain relations be-
tween the size of a variable at different program points. For example, in analyzing
x := x+1, the interest can be in the relation “the value of x after the instruction is
equal to the value of x before the instruction plus 1”. This important piece of infor-
mation can be obtained by using a Static Single Assignment (SSA) transformation,
which, together with the abstract compilation, produces the constraint x′=x + 1,
where x and x′ refer to, respectively, the value of x before and after the instruction.
To implement the SSA transformation, a mapping ρ of variable names (as they ap-
pear in the rule) to new variable names (constraint variables) is maintained. Such
mapping is referred to as a renaming. The expression ρ[x 7→ y] denotes the update
of ρ, such that it maps x to the new variable y.

Let us explain in detail the compilation of some instructions in Figure 8. As
already mentioned in Section 5.1, the use of path-length as a size measure for refer-
ence requires extra information in order to obtain precise and sound results in the
abstract compilation of the two instructions involving references: (a) sharing infor-
mation [Secci and Spoto 2005] is required in order to know whether two variables
might point (either directly, by aliasing, or indirectly) to a common region of the
heap; and (b) non-cyclicity information [Rossignoli and Spoto 2006] is required in
order to guarantee that a reference points to a non-cyclic data structure (i.e., that
the length of its longest path is guaranteed to be finite) at some specific program
point. In case (3) in Figure 8, we distinguish two cases depending on the possible
cyclicity of y. If it can be determined that x (before executing the instruction)
does not reference a cyclic data-structure, then we can ensure that ρ(y)>x′, since
the length of the longest path reachable from y is larger than the length of the
longest path reachable from x′ (i.e., y.f). Otherwise, we abstract it to ρ(y)≥x′. In
both cases, it is ensured that x′≥0. Our analysis does not handle numeric fields,
hence, the instruction x := y.f is abstracted to true if f is a numeric field. If the
field is an array, then all we can say about its abstract value is that it is greater
than or equal to zero. This is because arrays are abstracted to their length. We
could mantain two abstractions for such arrays: one for its length and one for its
path-length, but for simplicity we only keep their length abstraction. In case (4),
if a reference field is modified by y.f := x, and x and y do not share, then the

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

341

Cost Analysis of Object-Oriented Bytecode Programs · 27

b bα w.r.t a renaming ρ ρ′

(1) x := exp x′=expα ρ[x 7→ x′]

(2) x := new c x′=1 ρ[x 7→ x′]

(3) x := y.f true

− if f is a numeric field

ρ(y) > x′ ∧ x′ ≥ 0

− if f is a (non-array) reference field and y is non-cyclic ρ[x 7→ x′]

ρ(y) ≥ x′ ∧ x′ ≥ 0

− if f is a (non-array) reference field and y might be cyclic
x′ ≥ 0

− otherwise

(4) x.f := y true

− if f is a numeric field

− S = ∅
∧{v′ ≤ ρ(v) + ρ(y) ∧ v′ ≥ 0 | v ∈ S}
− if f is a (non-array) reference field and y 6∈ SHx

− S = {v | v ∈ SHx, v is not of an array type} ρ[∀v ∈ S.

∧{v′ ≥ 0 | v ∈ S} v 7→ v′]

− otherwise
− S = {v | v ∈ SHx, v is not of an array type}

(5) x := newarray(c, y) x′ = ρ(y) ∧ x′ ≥ 0 ρ[x 7→ x′]

(6) x[i] := y true ρ

(7) x := y[i] true

− if y is an array of integers ρ[x 7→ x′]
x′ ≥ 0

− otherwise

(8) x := arraylength(y) x′ = ρ(y) ∧ x′ ≥ 0 ρ[x 7→ x′]

(9) p(x̄, y) 〈p(ρ(x̄), y′), ϕ1 ∧ ϕ2〉
− Up={v| v ∈ x̄, v might be updated in p } ρ[∀v∈S∪{y}.
− S={v| x ∈ Up, v ∈ SHx and is not an array} v 7→ v′]

− ϕ1= ∧ {v′ ≥ 1 | v ∈ S is definitely not null before call}
− ϕ2= ∧ {v′ ≥ 0 | v ∈ S might be null before call}

(10) type(x, c) x ≥ 1 ρ

(11) exp1 6= exp2 true ρ

(12) exp1 op exp2 expα
1 op expα

2 ρ

(13) nop(any) true ρ

(14) exp exp[null 7→ 0, x 7→ ρ(x)] ρ

(15) true true ρ

Fig. 8. Abstract Compilation of Instructions

length of the maximal path reachable from y and any variable sharing with y might
change. The set SHx denotes the set of variables that might share with x before the
corresponding instruction. This change can be safely described by v′ ≤ ρ(v)+ρ(y),
where v is any variable which might share with x (including x). If x and y share,
then no safe information can be provided, except that the size of the corresponding
reference variables is greater than or equal to 0. Further details on the path-length
analysis can be found in related work [Spoto et al. 2006b] and they are outside the
scope of this article.

In (9), the abstraction of calls to procedures (or methods) requires the computa-
tion of the set of input variables such that the data structures they point to may be
modified during the execution of the invoked procedure, denoted by Up in Figure 8.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

342

28 · E. Albert et al.

This set can be approximated by applying constancy analysis [Genaim and Spoto
2008], which aims at detecting such arguments. The set of updated input variables
(closed by sharing), denoted by S in the figure, is renamed in order to “forget”
them after the call (i.e., not to propagate) the constraints that involved the up-
dated variables before the call to the state. For instance, consider the following call
p(x, z, out) and assume that z is updated during the execution of p. Let ψ be a con-
straint over x and z which holds before the call. Then, a fresh variable z′ must be
used after the call instead of z, i.e., p(x, z′, out), in order to distinguish between the
variable z before and after the call to p. Let us note that the update property refers
to updating heap structures. If only numeric fields are modified, it is not considered
an update and, thus, the length is preserved. When an argument might be updated
during a call, we can still say that the size (after the call) of every variable x that
might share with that argument (including itself) is: (a) greater than or equal to
one if it is guaranteed that x is not null; (b) otherwise, greater than or equal to
0. In the system, we have a simple nullity analysis, as explained in Section 7, that
we can use to verify this condition. Note that for a freshly created object, case
(2), it is always able to say that it is not-null before calling the constructor. The
abstraction of calls can be improved by using shallow variables for the procedure
arguments (specially for constructors). This is a well-known technique that can
improve the precision of OO analysis and therefore of path-length. In general, such
shallow variables come on very high price of performance.

Several instructions are abstracted to true. In this case, no information is pro-
vided. For instance, in array operations, no information is available on the elements
since an array is abstracted to its length. Also, numeric fields are abstracted to true
since a more sophisticated analysis is required to handle them (see [Miné 2006]).
Moreover, non-linear arithmetic such as x ∗ y and x/y would be also abstracted
to true, as linear constraints cannot approximate the behavior without extra infor-
mation. In our system, we apply constant propagation analysis in order to identify
cases where y is constant and therefore improve the precision.

Sharing and non-cyclicity information is precise only if it is computed with respect
to a specific context. Therefore, the soundness of the transformation is guaranteed
under an initial context description which contains sharing and non-cyclicity in-
formation. In practice, if the initial call is a Java-like main method, then such an
initial description is not required, as all data structures are created at runtime,
instead of being provided as an input. In what follows, an initial description of a
context takes the form Q ≡ 〈p(x̄),SH,NC〉 (output variables are ignored), where
SH ⊆ x̄ × x̄ and NC ⊆ x̄. The statement (x, y) ∈ SH means that x and y might
have a common data structure on the heap, and x ∈ NC means that x points to a
non-cyclic data-structure. An initial configuration 〈start, p(x̄, y), lv〉;h is said to be
safely approximated by Q if: (1) if two reference variables x, y ∈ dom(lv) share a
common region on h, then (x, y) ∈ SH; and (2) if a reference variable x ∈ dom(lv)
points to a cyclic data structure, then x 6∈ NC. The information contained in SH
and NC is propagated by means of fixpoint computations, as described by, respec-
tively, Secci and Spoto [2005] and Rossignoli and Spoto [2006]. Essentially, such
analyses provide the information which is required in order to answer the (program
point) queries about sharing and cyclicity in Figure 8.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

343

Cost Analysis of Object-Oriented Bytecode Programs · 29

Definition 5.2. (abstract compilation) Consider a rule r≡ p(x, y)← g, b1, . . . ,
bn, and let ρ1 be the identity renaming over var(r). The abstract compilation of r
with respect to a size measure α is rα ≡ p(x, y′)← ϕ0 | b

α
1 , . . . , b

α
n where:

(1) gα is the abstract compilation of g w.r.t. the renaming ρ1.

(2) ϕ0 = {ρ1(z) = 0 | z ∈ var(r) \ x̄} ∧ gα;

(3) bα
i is the abstract compilation of bi using ρi;

(4) ρi+1, 1≤i≤n, is generated from ρi and bi as shown in Figure 8;

(5) y′ = ρn+1(y)

(6) ρ = 〈ρ1, . . . , ρn+1〉 is the renaming associated to the abstract compilation.

Given a rule-based program P , an initial context description Q and a size measure α,
we denote by Pα the program obtained by abstracting all its rules using the sharing
and cyclicity information obtained when starting from an initial description Q. 2

Recall that in Section 3, for simplicity, we assumed that input and output variables
of each procedure have the same names in all rules that correspond to that proce-
dure. This property is preserved in the abstract compilation for the input variables
(because we start from the identity renaming) but not for the output variable. In
order to simplify the notation, we assume that Pα has been modified such that this
property also holds for the output variable. This is simply done by renaming the
output variable to a new variable that is not used before Pα.

Example 5.3. The rule shown on the left (taken from Figure 6) is abstracted to
the rule which appears on the right.

Main.add8 (this, n, o, res, i, out)← Main.add8 (this, n, o, res, i, ρ9(out))←
{s1=0, s2=0, out=0} |

s1 := res, s′1=res,

s2 := i, s′2=i,
s1 := s1 + s2, s′′1=s′1+s

′

2,

res := s1, res ′=s′′1
s1 := o, s′′′1 =o,
s2 := i, s′′2=i,
nop(invokevirtual A.incr(I)I), true,

Main.addc
8(this, n, o, res, i, s1, s2, out). 〈Main.addc

8(this, n, o, res
′, i, s′′′1 , s

′′

2 , out ′), true〉.

The renaming ρ = 〈ρ1, . . . , ρ9〉 used to generate the abstract rule is:

—ρ1 is the identity renaming over the variables {this, n, o, res, i, s0, s1, s2},

—ρ2 = ρ1[s1 7→ s′1],

—ρ3 = ρ2[s2 7→ s′2],

—ρ4 = ρ3[s1 7→ s′′1],

—ρ5 = ρ4[res 7→ res ′],

—ρ6 = ρ5[s1 7→ s′′′1],

—ρ7 = ρ6[s2 7→ s′′2],

—ρ8 = ρ7,

—ρ9 = ρ8[out 7→ out ′].

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

344

30 · E. Albert et al.

It can be observed that variables which do not appear in the rule head are initiliazed
in the body (first condition in Definition 5.2). As an example, when the abstraction
of s1 := s1+s2 is going to be done, according to the abstract compilation in Figure 8,
we have in the renaming ρ3 the mappings s1 7→ s′1 and s2 7→ s′2 introduced by the
compilation of s1 := res and s2 := i respectively. First, such renaming is applied
on the expression s1+s2 which leads to s′1+s

′
2. Next, the abstract compilation of

the expression (first row in Figure 8) produces s′′1 := s′1 + s′2 and adds the mapping
s1 7→ s′′1 to the renaming ρ3 generating the new renaming ρ4. In the above rule,
the variable o stands for a reference: as it is not updated during the execution of
Main.addc

8, there is no renaming. Note also that we have not added the abstraction
of the guard since it is true. 2

An abstract RBR basically abstracts the behavior of the original program with
respect to the size measure α. Its operational semantics is given by the following
transition system which simply accumulates the constraints (when possible) and
proceeds to execute the calls in the body of the rules:

p(x̄, y)← ϕ | bα
1 , . . . , b

α
n ≪AC Pα, ψ∧ϕ 6|= false

AC=〈〈p(x̄, y), φ〉·bcα, ψ〉;α 〈b
α
1 · · · b

α
n ·φ·bc

α, ψ∧ϕ〉

ψ∧ϕ 6|= false

〈ϕ·bcα, ψ〉;α 〈bc
α, ψ∧ϕ〉

In the leftmost transition rule, a renamed apart abstract rule (w.r.t. AC) is used for
p from Pα, i.e, it does not share any variable with AC . For the sake of simplicity, we
avoid another renaming step, by assuming that the renamed apart rule is retrieved
with the same input x̄ and output y variables that appear in the call.

The rest of this section proves the soundness of the abstract compilation with
respect to the chosen size measure α. Intuitively, we prove that the size of the
variables in a given concrete trace can be observed in a corresponding abstract
trace. For this, we prove that, given a concrete trace, we can generate an abstract
trace of the same length and instantiate it (i.e, give integer values to all constraints
variables using a consistent assignment σ) in such a way that the size of a variable
in the i-th concrete state coincides with the value of the corresponding constraint
variable in the i-th abstract state.

Lemma 5.4. (soundness of abstract compilation) Let Prr be a rule based repre-
sentation for a program P , Q ≡ 〈p(x̄),SH,NC〉 an initial context description and
Pα the corresponding abstract program. Let RC 0≡〈start, b, lv0〉;h such that Q is
a safe description of RC 0, b = p(x̄, y) and dom(lv0) = x̄ ∪ {y}. If RC 0 ;

n
rr RCn,

then there exists an abstract trace AC 0≡〈bα, ϕ0〉 ;
n
α ACn≡〈 , ϕn〉, a partial map

f : var(P)×{0, . . . , n} 7→ var(ACn), and a consistent assignment σ : var(ACn) 7→
Z for ϕn such that: for any RC i = 〈 , , lv i〉·ar i;hi and AC i≡〈 , ϕi〉 (0 ≤ i ≤ n) it
holds that ϕn |= ϕi and ∀z ∈ dom(lv i).α(z, static type(z),RC i) = σ(f(z, i)).

The above lemma states that each (abstract) state AC i is a safe approximation
(w.r.t. the size measure α) of the corresponding activation record in RC i. It is
easy to observe that we can take ϕ0 as the abstraction of RC 0, namely:

ϕ0 =
∧

z∈x̄∪{y}

id(z) = α(z, static type(z),RC 0)

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

345

Cost Analysis of Object-Oriented Bytecode Programs · 31

The partial map, f , is used to relate program variables to their corresponding
constraints variables. This mapping can be constructed (as shown in the proof) by
collecting the renamings (enriched with a state index) of the abstract rules used
during the evaluation. Note that by bα we mean the abstraction of the call b
(as explained in Figure 8) with respect to, for example, the identity renaming over
x̄∪{y}. We use “ ” in order to indicate parts of an entity that we are not interested
in, instead of assigning them names that will not be used. The proof of this lemma
is by induction on the length of the derivation. For the instructions which handle
objects it relies on the soundness of the path-length analysis (Theorem 5.12 by
Spoto et al. [2006b]).

5.3 Input-Output Size Relations

As an important point, CRSs are mathematical relations, in the same way as RRs
are mathematical functions. Hence, they cannot have output variables: instead,
they should receive a set of input parameters and return a number. This step of
the analysis is meant to transform the abstract program obtained in the previous
section into one with an equivalent behavior where output variables do not ap-
pear. The basic idea relies on computing abstract input-output (size) relations in
terms of linear constraints, and using them to propagate the effect of calling a rule.
Essentially, we consider the abstract rules obtained in the previous step to infer
an abstraction (w.r.t. size) of the input-output (“io” in abbreviations) relation of
the program blocks. Concretely, we infer input-output size relations of the form
p(x̄, y)→ ϕ, where ϕ is a constraint describing the relation between the sizes of the
input x̄ and the output y upon exit from p. This information is needed since the
output of one call may be input to another call. For instance, consider the following
abstract rule:

p(x, y′)←{w=0, z=0, y=0} | x>0, z′=x− 1, 〈q(z′, w′), true〉, 〈p(w′, y′), true〉

Assuming that the call q(z′, w′) will generate the constraint z′≥w′, this rule can be
transformed into:

p(x)←{w=0, z=0, y=0} | x>0, z′=x− 1, 〈q(z′), z′ ≥ w′〉, 〈p(w′), true〉

which does not have any output arguments. Note that this transformation makes it
possible to infer x>w′, which is crucial for bounding the number of loop iterations.

The following definition introduces the notion of input-output relations, which
can be seen also as a denotational semantics for the abstract programs of Section 5.2.
For each procedure, it describes the (size) relations between its input and output
values. The definition is based on a semantics operator TP α , which describes how
from a set of input-output relations I, we learn more relations by applying the rules
in the abstract program.

Definition 5.5. (input-output relations) Consider the following operator TP α

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

346

32 · E. Albert et al.

defined as:

TP α(I) =

p(x̄, y)→ ψ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1) r ≡ p(x̄, y)← ϕ | bα
1 , . . . , b

α
n ◦ ρ ∈ P

α

2) ∀1 ≤ i ≤ n, either
2.1) bα

i is a constraint ϕi; or
2.2) bα

i ≡〈qi(w̄i, zi), φ〉 where qi(w̄i, zi)→ ϕ′i ≪r I
and we let ϕi = φ ∧ ϕ′i

3) ψ = (ϕ ∧ ϕ1 ∧ · · · ∧ ϕn)|x̄∪{y}

where the projection ϕ|S removes from ϕ all variables but those in the set S. The
input-output relations of an abstract program Pα, denoted by I(Pα), is defined as
⋃

i∈ω T
i

P α(∅) where T i
P α(I) = TP α(T i−1

P α (I)). 2

As before, we use “qi(w̄i, zi) → ϕ′i ≪r I” to select a renamed apart (w.r.t. r)
element from I and, besides, we retrieve it with the proper variables w̄i and zi in
the head.

Example 5.6. The following input-output relations are obtained from the cor-
responding procedures in the RBR of the running example:

A.incr (this, i, out)→ {out=i+1}
B .incr (this, i, out)→ {out=i+2}
C .incr (this, i, out)→ {out=i+3}

It can be seen that the output variable out is only related to the input variable i in
all cases. This piece of information will be crucial for inferring the cost. 2

The following lemma is a well-known result in the context of logic programming
(see, e.g., [Benoy and King 1997]) which establishes the correctness of input-output
size relations obtained by means of a fix-point computation.

Lemma 5.7. Let Pα be an abstract program. If t ≡ 〈〈p(x̄, y), φ〉, ψ0〉 ;
∗
α 〈ǫ, ψ〉

is an abstract trace, then there exists p(x̄, y)→ ϕ≪t I(P
α) such that ψ |= ϕ. 2

Computing I(Pα) is often impractical, as it might include an infinite number
of objects. However, it can be approximated using abstract interpretation tech-
niques [Cousot and Cousot 1977]. In particular, it can be done by using a convex-
hull operator ⊔ instead of ∪, and incorporating a widening operator to guarantee
the termination of the process [Cousot and Halbwachs 1978]. The only requirement
of our framework is to have a safe approximation of the input-output relations as
the next definition states.

Definition 5.8. (safe approximation of input-output relations) A set A is a
safe approximation of the input-output relations of a program Pα, iff for any a ≡
p(x̄, y)→ ϕ ∈ I(Pα) there exists p(x̄, y)→ ψ ≪a A such that ϕ |= ψ. 2

In addition, for simplicity, for each procedure p we assume that the set A contains
only one input-output relation p(x̄, y) → ψ for p. This can be done by simply
merging all the input-output relations of p using the convex hull operator ⊔.

The following definition describes how to remove the output variables from an
abstract program Pα by using a safe approximation of the input-output relations.
The idea is that, for each call p(w̄, z) in a rule r, the input-output relation p(w̄, z)→
ϕ≪r A is used in order to eliminate z, but still propagate its relation with w̄ which
is generated by the execution of p.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

347

Cost Analysis of Object-Oriented Bytecode Programs · 33

Definition 5.9. Given an abstract program Pα and a safe approximation A of
its input-output behavior, P io denotes the abstract program which is generated from
the rules of Pα, as follows. Each rule r ≡ p(x̄, y)← ϕ | bα

1 , . . . , b
α
n ∈ P

α is replaced
by p(x̄)← ϕ | bio

1 , . . . , b
io
n , where

—if bα
i =〈q(w̄, z), ϕi〉 then bio

i =〈q(w̄), ϕi ∧ ψ〉, where q(w̄, z)→ ψ ≪r A; and

—if bα
i is a constraint then bio

i =bα
i .

Example 5.10. Using the input-output relations shown in Example 5.6, the out-
put variables of the rules Main.add14 :A, Main.add14 :B and Main.add14 :C (defined
in Figure 6) are eliminated as follows:

Main.add14 :A(n, o, res, i, s1, s2)←
true | 〈A.incr (s1, s2), {s

′
1=s2+1}〉, 〈Main.add15 (this, n, o, res, i, s′1), true〉.

Main.add14 :B (n, o, res, i, s1, s2)←
true | 〈B .incr (s1, s2), {s

′
1=s2+2}〉, 〈Main.add15 (this, n, o, res, i, s′1), true〉.

Main.add14 :C (n, o, res, i, s1, s2)←
true | 〈C .incr (s1, s2), {s

′
1=s2+3}〉, 〈Main.add15 (this, n, o, res, i, s′1), true〉.

It can be observed that the above rules contain the essential pieces of information
about the increasing of s2 after executing each implementation of incr. 2

The generated abstract rules can be executed by using the following transition
system. They are identical to the execution of the abstract rules explained in
Section 5.2, except that they do not have output variables:

p(x̄)← ϕ | bio
1 , . . . , b

io
n ≪AC P io, ψ ∧ ϕ 6|= false

AC=〈〈p(x̄), φ〉·bcio , ψ〉;io 〈b
io
1 · · · b

io
n · φ·bc

io , ψ ∧ ϕ〉

ψ ∧ ϕ 6|= false

〈ϕ · bcio , ψ〉;io 〈bc
io , ψ ∧ ϕ〉

In the leftmost rule, we postpone the application of the input-output relation of
constraints φ until the body of p has been executed. This was noted at the beginning
of Section 5 where we commented that merging the constraints together is not
always possible. Indeed, anticipating this relation might be unsound. For example,
if the call to p does not terminate, the cost of the corresponding b1 until bn would
not be considered since φ would be equal to false.

The soundness of this stage is established by the next lemma. Intuitively, it states
that the result (in terms of constraints) of executing the abstract rules without
output variables (but with input-output relations) is a safe approximation of the
execution of the abstract rules with output variables (as defined in Section 5.2).

Lemma 5.11. Let Pα be an abstract program and P io its corresponding pro-
gram generated as in Definition 5.9 with respect to a safe approximation A of
its input-output size relations. Then, If AC 0 ;

n
α ACn is a trace in Pα where

AC 0≡〈〈p(x̄, y), φ〉, ϕ0 〉, then AC ′
0 ;

n
io AC ′

n is an abstract trace in P io such that:
(1) AC ′

0 ≡ 〈〈p(x̄), φ ∧ ψ〉, ϕ0〉 where q(x̄, y) → ψ ≪AC0
A; and (2) for any

ACi≡〈 , ϕi〉 and AC ′
i≡〈 , ϕ

′
i〉 (0 ≤ i ≤ n) it holds that ϕi |= ϕ′i. 2

Note that in the above lemma, the two traces must use the same variables in order
to get such equivalence, otherwise ϕi |= ϕ′i will not hold. This is possible since

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

348

34 · E. Albert et al.

during the execution we can select the corresponding clauses (from Pα and P io)
with same variable names (as shown in the proof).

In practice, the phase of computing the input-output relations can be skipped
and directly approximated by top, namely, “p(x̄, y) → true” can be assumed for
every rule. This is enough to infer the cost of many programs, and results in a
more efficient implementation as it does not require any fix-point computation. As
will be described in Section 7, the presented implementation of this cost analysis
framework allows the user to decide, by means of an option, whether to compute
input-output relations or to take the top approximation.

5.4 Building Cost Relation Systems

This section presents the following step in the proposed approach to cost analysis:
the automatic generation of cost relation systems (CRSs) which capture the com-
putational cost of executing a bytecode method with respect to a cost model of
interest. In this step, CRSs are generated by incorporating symbolic cost expres-
sions into the abstract rules generated in the previous steps. The idea is to use
such cost expressions in order to express the cost of executing rules in the orig-
inal program, with respect to the cost model. The next definition syntactically
characterizes the kind of symbolic cost expressions the presented approach deals
with.

Definition 5.12. (symbolic cost expression) A symbolic cost expression exp is
an expression of the form:

exp ::= n | x | exp op exp | expexp | loga(exp) op ∈ {+,−, /, ∗}

where a is a natural number greater than 1, n is a positive real number and x an
integer variable. 2

In cost analysis, symbolic cost expressions are used for two purposes: (1) to count
the resources we accumulate in the different cost models, thus, to define the cost
relation systems; (2) to describe the closed-form solutions (or upper bounds) of the
cost relation systems. In the above definition, it can already be observed that we
aim at covering a wide range of complexity classes: in addition to polynomial cost
expressions, exponential and logarithmic expressions (and any combination among
them) are also handled. Typically, when we compose the resources consumed by
the different relations, the resulting cost expression must also account for other
complexity classes.

Definition 4.3 needs to be adapted to the symbolic setting, so that, given an in-
struction, a cost model returns a symbolic expression (instead of a constant value)
which denotes the resources the instruction consumes. In the following, Instr de-
notes the set of all instructions, and Exprs denotes the set of all cost expressions
which can be generated using the grammar in Definition 5.12.

Definition 5.13. (symbolic cost model) Let α be the size measure of Defini-
tion 5.1, and let M be a cost model as introduced by Definition 4.3. The pari-
tial map Ms:Instr 7→ Exprs is said to be a symbolic cost model for M iff for
any configuration RC=〈m, b · bc, lv〉 · ar ;h, if e = Ms(b) then e[∀x ∈ var(e) 7→
α(x, static type(x),RC)] =M(b, lv , h). 2

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

349

Cost Analysis of Object-Oriented Bytecode Programs · 35

Intuitively, given a configuration such that b is the next instruction to be executed,
then the evaluation of the symbolic expression thatMs returns for b, must be equal
to applying M on the configuration. Note that cost models which do not depend
only on program variables (and static information) might not have corresponding
symbolic cost models. As explained in Section 4, we are not interested in such cost
models since they are based on information that is not observable by the user. In
principle, we could eliminate such models directly in Definition 4.1, but in order to
keep the definitions simpler, we restrict them at this stage.

Example 5.14. The symbolic version of the Mheap cost model, defined in Ex-
ample 4.4, is defined as follows:

Ms
heap(b) =

size(c) b ≡ x := new c

y ∗ size(int) b ≡ x := newarray(int, y)

y ∗ size(c) b ≡ x := newarray(c, y)

0 otherwise

The main difference is that Example 4.4 uses lv(y), which refers to the concrete
evaluation of y w.r.t. the table of local variables in the current configuration. On
the other hand, the symbolic cost model returns the symbolic cost expression y,
which can be evaluated a posteriori for any particular configuration. 2

At this point, the above definition provide all the elements to introduce cost
relation systems.

Definition 5.15. (cost relation systems) Let Prr be a rule based representation
for a program P . Consider a rule r≡ p(x̄, y) ← g, b1, . . . , bn ∈ Prr , its abstract
compilation with an associated renaming ρ (after eliminating the output variables)
rio ≡ p(x̄) ← ϕ | bio

1 , . . . , b
io
n ∈ P io, and a symbolic cost model Ms. The cost

equation of the rule is req ≡ p(x̄) = ϕ | beq
1 + · · ·+ beq

n , where:

—if bio
i = 〈q(w̄), φ〉, then beq

i = 〈q(w̄), φ〉

—if bio
i = ϕi, where ϕi is the abstract compilation of bi, then beq

i = 〈ρi(Ms(bi)), ϕi〉
where ρi is the i-th renaming in the tuple of renamings ρ.

We denote by Pcr the cost relation system composed by the cost equations obtained
from the rules in P . 2

Essentially, the output of cost analysis is the above CRS, i.e., a set of recursive
equations which have been generated by abstracting the iteration constructs of the
program (loops and recursion), and by inferring size relations between its argu-
ments. Two important issues about the above definition are that: (1) size relations
between the rule variables are associated to the cost equations (at different points)
to describe how the sizes of the data change when the equations are applied; and
(2) guards do not affect the cost: they are simply used to define the applicability
conditions of the equations.

CRSs are powerful tools. They are not limited to any complexity class. For
instance, they can capture the cost of exponential methods which contain several
recursive calls or that of logarithmic methods where the size of the data is halved
with every loop iteration, etc. In principle, there is no restriction on the classes

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

350

36 · E. Albert et al.

Main.add (this, n, o) = 〈Main.add1 (this, n, o, res, i), true〉
Main.add1 (x̄3) = 〈4, res ′=0, i′=0}〉+〈Main.add5 (this, n, o, res ′, i′), true〉
Main.add5 (x̄3) = 〈3, {s′1=i, s

′

2=n}〉+〈Main.addc
5(x̄3, s

′

1, s
′

2), true〉
Main.addc

5(x̄1) = {s1 > s2} | 〈Main.add17 (x̄3), true〉
Main.addc

5(x̄1) = {s1 ≤ s2} | 〈Main.add8 (x̄3), true〉
Main.add17 (x̄3) = 〈2, {y′=res}〉
Main.add8 (x̄3) = 〈7, {res ′=res+i, s′′′1 =o, s′′2=i}〉+

〈Main.addc
8(this, n, o, res

′, i, s′′′1 , s
′′

2), true〉
Main.addc

8(x̄1) = 〈Main.add14 :A(x̄1), true〉
Main.addc

8(x̄1) = 〈Main.add14 :B(x̄1), true〉
Main.addc

8(x̄1) = 〈Main.add14 :C (x̄1), true〉
Main.add14 :A(x̄1) = 〈A.incr (s1, s2), {s

′

1=s2+1}〉+
〈Main.add15 (this, n, o, res, i, s′1), true〉

Main.add14 :B(x̄1) = 〈B .incr (s1, s2), {s
′

1=s2+2}〉+
〈Main.add15 (this, n, o, res, i, s′1), true〉

Main.add14 :C (x̄1) = 〈C .incr (s1, s2), {s
′

1=s2+3}〉+
〈Main.add15 (this, n, o, res, i, s′1), true〉

Main.add15 (x̄2) = 〈2, {i′=s1}〉+〈Main.add5 (this, n, o, res, i′), true〉
A.incr (this, i) = 〈A.incr1 (this, i), true〉
A.incr1 (this, i) = 〈4, {y′ = i+1〉}
B .incr (this, i) = 〈B .incr1 (this, i), true〉
B .incr1 (this, i) = 〈4, {y′ = i+2}〉
C .incr (this, i) = 〈C .incr1 (this, i), true〉
C .incr1 (this, i) = 〈4, {y′ = i+3}〉

x̄1 = 〈this, n, o, res, i, s1, s2〉, x̄2 = 〈this, n, o, res, i, s1〉, x̄3 = 〈this, n, o, res, i〉

Fig. 9. The CRS of the example

of programs whose cost can be represented by means of CRSs. Another feature of
CRSs which make them powerful is that they can be used for counting a variety of
non-trivial notions of resources, such as those mentioned in Section 4.

Example 5.16. Consider the recursive representation in Example 3.7, and the
size relations derived by size analysis (some of them appear in Example 5.6). By
applying Definition 5.15, the CRS in Figure 9 is obtained. Note that the CRS has
been simplified to make it more readable: (1) Some input arguments are written as
x̄1, x̄2 and x̄3 where each x̄i is defined at the bottom of the figure; (2) Constraints
that stem from the implicit variable initialization (to 0 or null) are ignored as in this
example all variables are explicitly initialized before they are used; (3) “true” guards
are omitted; (4) Consecutive pairs 〈e, ϕ〉 are grouped together when possible. For
example, in the equation Main.add8 , we have grouped all pairs that have a constant
cost together as explained before at the beginning of Section 5; (5) Constraints are
simplified, e.g., equalities x = y have been eliminated by unifying the corresponding
variables. 2

The evaluation of CRSs is defined by means of the following rules:

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

351

Cost Analysis of Object-Oriented Bytecode Programs · 37

p(x̄)← ϕ | beq
1 + . . .+ beq

n ≪AC Pcr, ψ∧ϕ 6|= false
AC=〈〈p(x̄), φ〉·bceq , exp, ψ〉;cr 〈b

eq
1 · · · b

eq
n ·〈0, φ〉·bc

eq , exp, ψ∧ϕ〉

ψ ∧ ϕ 6|= false
〈〈e, ϕ〉·bceq , exp, ψ〉;cr 〈bc

eq , e+exp, ψ ∧ ϕ〉

which essentially perform three actions: (1) check the satisfiability of the constraints
(and accumulate them); (2) if it is not a call, add its symbolic cost expression to the
accumulated cost; and (3) proceed to evaluate the next calls in the rule. Observe
that, as in Section 5.3, we delay the application of the effects of executing a call
(i.e., φ) by adding the pair 〈0, φ〉 to be considered after evaluating the call.

The following theorem establishes the soundness of the proposed cost analysis. It
amounts to saying that, given a derivation in a rule-based program with associated
cost a, there exists a derivation in its CRS with the same cost a.

Theorem 5.17. (soundness) Let Prr be a RBR program, Q≡〈p(x̄),SH,NC〉 an
initial context description,M a cost model andMs its corresponding symbolic cost
model. Let Pcr be the cost relation system w.r.t. Ms. Then, if RC 0≡〈start, b, lv0〉
;

n
rr RCn is a trace trr for Prr such that Q is a safe description for RC 0, b = p(x̄, y)

and dom(lv0) = x̄ ∪ {y}, then there exists a trace 〈beq , 0, ϕ0〉 ;
n
cr 〈 , e, ϕn〉 and a

consistent assignment σ : var(ϕn) 7→ Z for ϕn such that eσ=M(trr). 2

Note that by beq we mean the abstraction of the call b (as explained in Figure 8)
with respect to, for example, the identity renaming over x̄∪{y}. Also, the constraint
ϕ0 is basically an over approximation of the initial state RC 0 w.r.t. α. The proof
can be found in Appendix B.

The above theorem together with the equivalence of the bytecode and its RBR
(Theorem 3.10) establish the correctness of our cost analysis of bytecode programs.

6. SIMPLIFYING, SOLVING AND APPROXIMATING COST RELATION SYSTEMS

CRSs can be considered a lingua franca in the sense that they can be used as
the target for cost analysis of any language. They abstract away the particular
language features and are simply an instrumentation of the abstracted version of
the program—which is independent of the programming language in which the
input program to the cost analysis is written—which allows approximating its cost.
In every case, the cost relations inferred by the analysis generally depend on the
cost of other calls (i.e., they are often recursive). Undoubtly, it is useful in practice
to obtain a non-recursive representation of the equations, known as closed-form.
Such a closed-form representation can be a solution for the input size arguments,
or an upper/lower threshold cost, for each relation which approximates its cost. It
is important to note that, in spite of the fact that in the previous steps we use
static analyses which perform over approximations, it is still possible to obtain a
sound lower bound for our CRSs. The intuition is that, given an initial state and its
corresponding concrete trace t, the set of abstract traces in the CRSs corresponds
to many possible concrete traces, but one of them is guaranteed to be t. If we find
a lower bound on the cost among these traces, it is guaranteed to be a lower bound
of all corresponding concrete traces, and therefore of t. For example, consider the
program:

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

352

38 · E. Albert et al.

while (x>0) {

if (*) then x=x-1 else x=x-2

}

The following equation is generated for the above program:

p(x) = {x > 0} | 〈1, x− 2 ≤ x′ ≤ x− 1〉+ 〈p(x′), true〉

from which we can see that x/2 is a lower bound on the number of iterations, i.e.,
we consider traces that decrease x by 2 and not 1. In general, lower bounds might
be not as precise as upper bounds in cases where path-length is used, but it is
ensured to be sound.

This section discusses several practical issues related to simplifying, solving and
approximating the CRSs generated by automatic cost analysis, which are not spe-
cific to bytecode but common to any programming language. A first step to make
the process of solving (or approximating) CRSs simpler and more efficient is to sim-
plify them by restricting them to the subset of input arguments which are relevant
to the cost. In Section 6.1, we describe a technique to carry out this simplification.
Regarding the solving and approximation process itself, in the field of algorithmic
complexity [Wilf 2002], obtaining closed-form solutions for Recurrence Relation Sys-
tems (RRs) is a well studied problem. As CRSs resemble RRs in many aspects, it
has been typically assumed that the output of cost analysis are simply RRs. We
highlight the differences between CRSs and RRs in Section 6.2 and overview the
existing technology to solve both CRSs and RRs in Section 6.3. Explaining the
process of transforming recurrence equations into closed-form is outside the scope
of this article (see, e.g., [Albert et al. 2008a; Bagnara et al.]).

6.1 Restricting Cost Relations to (Subsets of) Input Arguments

In program analysis, it is customary to remove information from the program repre-
sentation, provided the simplified representation preserves the behavior with respect
to the analysis of interest. This reduction, performed at some intermediate step of
the analysis, can lead to improvements (in terms of efficiency or accuracy) in later
steps, and may even be required to make some of them possible at all. In many
cases, the computational overhead due to the reduction is small, compared to the
overall improvements. In the context of cost analysis, one may want to remove from
the program representation information which does not affect the cost, in order to
obtain a smaller and simpler representation which, possibly, helps the next steps
in terms of efficiency and feasibility. In the present framework, this boils down to
removing variables of the RBR which are irrelevant to cost. In general, relevant
variables are those which

(1) affect the abstract control flow of the program: rule arguments which can have
an impact on the cost of the program are those which may affect directly or
indirectly the abstract program guards, i.e., those guards whose abstraction is
different from true;

(2) are relevant to the cost of single steps w.r.t. the cost model, i.e., variables such
that the cost of some instruction depends on them. For instance, the heap
consumption due to a newarray(c, y) instruction is a function of the RBR input
variables c and y, meaning, resp., the type of the data and the array length.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

353

Cost Analysis of Object-Oriented Bytecode Programs · 39

More concretely, consider a block p in a CFG, represented by the rule p(l̄k, out)←
bc, where l̄k is l1, . . . , lk. The cost of this rule is a function of the input variables
l̄k, so that the focus is on minimizing the number n ≤ k of arguments which need
to be taken into account in describing the cost. This can be obtained by only
keeping variables which are relevant to (1) or (2), and propagating their effects
through the RBR according to data and control dependencies. The algorithm to
detect such relevant variables relies on the well-established technique of backward
program slicing [Tip 1995]: variables directly relevant w.r.t. (1) or (2) are taken
as the slicing criterion (i.e., the information which has to be preserved during the
transformation). A variable at some program point is kept in the slice if it can affect
(according to data and/or control dependencies) the criterion. Slicing propagates
dependencies backwards through the RBR, and gets rid of variables which cannot
affect the criterion. The analysis is global, and a standard fixpoint is needed in
order to deal with recursion.

As an example, a variable which is only used as an accumulator (i.e., to keep a
temporary result) does not have any effect on the control flow and, therefore, on
the cost. Also, in many cases, the this reference takes no part in the computation.
Slicing removes such kind of variables. A more detailed description can be found
in [Albert et al. 2008c].

Example 6.1. Consider again the program in Figure 6, and assume that the
chosen cost model implies that the cost of any instruction is constant, i.e., does
not depend on any input variables. Slicing finds out, for example, that n and i are
the relevant input variables of the rule Main.add5 , since (1) “this” is never used
in the computation (2) res is only an accumulator and (3) o is an object involved
in type-guards which, as shown in Figure 8, are abstracted to true. In particular,
note that n and i are relevant since they are compared at the beginning of procedure
Main.addc

5. On the other hand, for the rule Main.add14 :A, the stack variable s1
is also relevant at this point. In fact, s1 is the result of executing incr, and it is
stored in i in rule Main.add15 . Since i is relevant for Main.addc

5, then s1 is also
(indirectly) relevant to the guard in Main.addc

5. Additionally, our system safely
replaces stack variables by the local variables or constants whose value was loaded
on the corresponding stack location in the program whenever possible. This step is
explained later in Section 7.1. 2

This approach does not properly fall in standard program slicing, since its purpose
is not to obtain an executable subset of the program statements. Instead, reducing
the RBR leads to a smaller form where some variables have been removed. As
an important feature of this RBR slicing, any set of relevant variables can be
safely used in order to refine the CRS, even if it is not a superset of the actual
(semantically) relevant variables. In other words, soundness is not required, and
removing useful variables may result, in the worst case, in a less precise outcome
for cost. Once relevant variables are computed for every rule, this information is
used to build a simpler CRS where irrelevant variables have been removed. Thus,
after applying slicing (and stack variable elimination) to the RBR in Figure 6, the
CRS in Figure 10 is obtained, which is considerably more readable than the one in
Example 5.16.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

354

40 · E. Albert et al.

Main.add (n) = 〈Main.add1 (n, i), true〉
Main.add1 (n, i) = 〈4, {i′ = 0}〉+〈Main.add5 (n, i′), true〉
Main.add5 (n, i) = 〈3, true〉+〈Main.addc

5(n, i), true〉
Main.addc

5(n, i) = {i > n} | 〈Main.add17 (n, i), true〉
Main.addc

5(n, i) = {i ≤ n} | 〈Main.add8 (n, i), true〉
Main.add17 (n, i) = 〈2, true〉
Main.add8 (n, i) = 〈7, true〉+〈Main.addc

8(n, i), true〉
Main.addc

8(n, i) = 〈Main.add14 :A(n, i), true〉
Main.addc

8(n, i) = 〈Main.add14 :B(n, i), true〉
Main.addc

8(n, i) = 〈Main.add14 :C (n, i), true〉
Main.add14 :A(n, i) = 〈A.incr (), {s′1 = i+ 1}〉+〈Main.add15 (n, i, s′1), true〉
Main.add14 :B(n, i) = 〈A.incr (), {s′1 = i+ 2}〉+〈Main.add15 (n, i, s′1), true〉
Main.add14 :B(n, i) = 〈A.incr (), {s′1 = i+ 3}〉+〈Main.add15 (n, i, s′1), true〉
Main.add15 (n, i, s1) = 〈2, true〉+〈Main.add5 (n, s1), true〉
A.incr () = 〈A.incr1 (), true〉
A.incr1 () = 〈4, true〉
B .incr () = 〈B .incr1 (), true〉
B .incr1 () = 〈4, true〉
C .incr () = 〈C .incr1 (), true〉
C .incr1 () = 〈4, true〉

Fig. 10. The simplified CRS

6.2 CRSs versus Recurrence Equation Systems

After having simplified the CRS, the natural questions are: (i) is the result of cost
analysis a system of recurrence equations? (ii) can thus we use existing recurrence
equations solvers? (iii) can we obtain a closed-form solution or upper bound of it
which is not recursive? This section tries to answer question (i). Indeed, CRSs have
several important features which are a consequence of being obtained by automatic
program analysis, and which are not present in traditional RRs and pose new
challenges to the solving and approximation processes:

(1) Non-deterministic relations. In contrast to RRs, cost equations for the same
relation do not need to be mutually exclusive. The reason for allowing this is
because cost analysis needs to use size abstractions. Unavoidably, the use of ab-
straction introduces a loss of precision: some guards which make the execution of
the original program deterministic may not be observable when using the size of
arguments instead of their actual values. For instance, in our running example, the
guards type in procedure Main.addc

8 make the procedure to be deterministic in the
RBR. However, after doing the abstract compilation they are not observable any-
more due to the use of the path-length abstraction for objects. Hence, the guards
are lost and the resulting equations for Main.addc

8 make up a non-deterministic
relation to be approximated by a solver.

(2) Size relations. CRS have size relations attached to the cost expressions and,
besides, they can contain inequality constraints. This is essential in order to handle
cost relations automatically obtained from the analysis of realistic programs with
complex data structures, for which size analysis may lose precision. For instance,

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

355

Cost Analysis of Object-Oriented Bytecode Programs · 41

analysis may be able to infer that a given data structure strictly decreases in size
from one iteration to another, but it may be unable to provide the precise reduction.
This typically happens in loops like while (x ! = null){. . . , x = x .next ; }, where a
list (or any other data structure) is traversed and the analyzer can only infer that
variable x decreases from one iteration to another but does not know exactly how
much. For the previous loop, the analyzer infers, by using path-length, the size
relation x>x′, where x′ is the value of x after executing the loop.

(3) Multiple arguments. After restricting CRSs to (a subset of) the input argu-
ments, cost relations can have several arguments that may increase or decrease at
each iteration. Importantly, the maximum number of times a given relation is ex-
ecuted can be a combination of several of its arguments. Most RRs solvers assume
that the number of times a function is executed only depends on one argument
(often a decreasing variable). In our running example, we can only find an upper
bound on the number of iterations that the loop is executed, which is a combination
of variables n and i, concretely “n−i”.

As a result of the first two points above, CRSs are not required to define func-
tions, but rather relations, in the sense that, given concrete values for the input
variables, there may exist multiple results. These differences make existing meth-
ods for solving RRs and computer algebra systems (CAS) sometimes insufficient to
bound CRS.

6.3 Existing Solvers for RRs and CRSs

Algorithms for approximating RRs have been studied by a number of researchers
(see, e.g., the work by Wilf [2002]) and there are several Computer Algebra Sys-
tems (CAS) available (e.g., Mathematica, Maxima, Maple, Matlab, etc.). CAS
are usually powerful tools whose aim is to solve complex recurrences. From an
algebraic perspective, if we ignore the above features of CRS, cost relations would
be cast as a simple class of recurrence equations. However, the recurrence equa-
tions solved by CAS can present a more complex structure. For instance, they
support equations with coefficients to function calls which can be polynomials, e.g.,
p(x) = 2 + x ∗ p(x − 2). Importantly, the equations in CRSs generated from cost
analysis of programs are never in such a complicated form as their structure is
obtained from the structure of the program. As a consequence, when CRSs are
indeed RRs, i.e., they do not present the three features mentioned in Section 6.2,
existing CAS can often find exact solutions for them.

However, as already mentioned, CAS may be insufficient in the sense that they
assume a form of the RRs which does not cover essential features of CRSs. For
instance, the aforementioned CAS are not able to directly solve the CRS obtained
for our running example, as they do not even accept it as an input. In order to
use them, a typical approach for obtaining closed-form upper bounds consists in
converting CRSs into RRs and then use an existing CAS. This requires, among
other things, removing non-determinacy while preserving the worst-case solution.
For this, we need to remove equations from the CRS as well as sometimes to replace
inexact size relations by exact ones. For instance, in our example, we need to
take the worst case cost of the three non-deterministic equations for Main.addc

8.
Considering that the cost of all calls to method incr is 4, then the worst case

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

356

42 · E. Albert et al.

corresponds to rule Main.add14 :A, which increases i by one thus maximizing the
number of iterations in the loop. Still many CAS require a further non-trivial
transformation to have a single decreasing argument in all relations. Neither of
these transformations can be safely done in all cases. In particular, by removing
some equations, we might no longer obtain the worst case and the resulting closed-
form is not guaranteed to correspond to a correct upper bound (see, e.g., the work
by Albert et al. [2008a]). This process typically requires a high degree of human
intervention.

We believe that automatically converting CRSs into the format accepted by CASs
is impractical. Furthermore, even in those cases where CASs can be used, the
solutions obtained are so complicated that they become useless for most practical
purposes, such as those mentioned in Section 1.1. The latter problem was already
identified by [Wegbreit 1975], and is the motivation for PURRS [Bagnara et al.
2005], which focuses on solving CRSs obtained by cost analysis. Indeed, PURRS
has been the first system to provide, in a fully automatic way, non-asymptotic upper
and lower bounds for a wide class of recurrences. It unfortunately also requires RRs
to be deterministic. There is the recent work by Albert et al. [2008a] which provides
an online system http://www.clip.dia.fi.upm.es/Systems/PUBS which infers
upper bounds of CRSs originated from cost analysis. This solver is not tied to any
particular programming language. We have been able to use the system in order to
bound the CRSs obtained from Java bytecode programs without any modification
on the generated CRSs, as we present in the next section. As described by Albert
et al. [2008a], this system generalizes in several ways existing mechanisms, usually
applied manually, for obtaining upper bounds in order to make them applicable to
CRSs which have the distinguishing features mentioned above. Technical details
are described by Albert et al. [2008a].

7. THE COSTA SYSTEM: AN IMPLEMENTATION FOR JAVA BYTECODE

This section describes the design and implementation of COSTA, an abstract
interpretation-based COSt and Termination Analyzer for Java bytecode. The sys-
tem receives as input a bytecode program and (a choice of) a resource of interest
in the form of a cost model, and tries to obtain an upper bound of the resource
consumption of the program. COSTA can deal with the non-trivial notions of
cost mentioned before, i.e., the consumption of the heap, the number of bytecode
instructions executed and the number of calls to user-specified methods. Addition-
ally, COSTA tries to prove termination of the bytecode program which implies the
boundedness of any resource consumption. The termination module is outside the
scope of this article (see previous work [Albert et al. 2008] for details). Experimen-
tal results show that COSTA can deal with non-trivial object oriented programs
which use the Java API. To the best of our knowledge, this system is the first to
provide evidence that cost analysis can be applied to programs written in a realistic
object-oriented programming language, in bytecode form.

7.1 The Architecture of the COSTA System

COSTA [Albert et al. 2008a; 2008b] is implemented in Prolog and uses the Parma
Polyhedra Library (PPL) [Bagnara et al. 2008] for manipulating linear constraints.
COSTA can handle a large subset of the Java bytecode (JBC) language [Lindholm

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

357

Cost Analysis of Object-Oriented Bytecode Programs · 43

JBC

class
analysis

CFG
RBR RBR’

ABS

CRS

SIZE

UB

loop
extract ion

stack variables el imination
constant propagation

static single assignment

nul l i ty
sign slicing

cost
model

CFG
build

RBR
build RBR

opt im

abstract
compilat ion

CRS
build

size
analysis

PUBS
solver

sharing
cyclicity

Fig. 11. Architecture of COSTA

and Yellin 1996]. It differs from the simplified bytecode language used in the for-
malization in several respects: (1) the instruction set includes different variants
of the same instruction, according to the type of the operands (e.g., iload, aload,
etc. in JBC are variants of the load functionality); (2) procedure calls can take
the form invokevirtual for dynamic resolution, invokespecial for special invocation,
and invokestatic for static methods; (3) methods are not forced to have a return
value; (4) exceptions, either explicitly thrown in the code or resulting from seman-
tic violations, are supported. COSTA deals with all these features and basically
follows the analysis steps which are described in the previous sections. As regards
exceptions, it handles internal exceptions (i.e., those associated to bytecodes as
stated in the JVM specification), exceptions which are thrown (bytecode athrow)
and possibly propagated back in methods, as well as finally clauses (even if they are
compiled using the bytecode jsr). Exceptions are handled by adding edges to the
corresponding handlers. When the type of the exception is not statically known, as
it happens when exceptions come from calls to methods, mutually exclusive edges
are generated, which capture all possible instantiations. In order to infer resource
usage, COSTA provides the options of ignoring only internal exceptions, all possible
exceptions or considering them all.

Figure 11 shows the overall architecture of the system. Dashed frames represent
the two main parts of the analysis: (1) transforming the bytecode into a rule-based
representation; and (2) actually performing the cost analysis on the rule-based
program. The input and output to the system are depicted on the left: COSTA
takes a Java bytecode program JBC and a description of the cost model, and yields
as output an upper bound UB for its cost. Rounded boxes correspond to the main
steps of the process (e.g., the one labelled CFG build), while ellipses such as the one
labelled Square boxes, as class analysis, denote auxiliary analyses which allow us to
obtain more precise results or to improve efficiency.

In phase (1), as depicted in the upper half of the figure, the incoming JBC is
transformed into the rule-based representation (RBR) through the construction of
the control flow graph (CFG), as discussed in Section 3. Several techniques make

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

358

44 · E. Albert et al.

this process more efficient and accurate: in particular, class analysis, static single
assignment, loop extraction, constant propagation and stack variables elimination.

Class analysis [Spoto and Jensen 2003] (see also Section 3.2) tries to compute
the set of method instances which can be actually invoked by a virtual call. This
information is particularly useful when building the CFG, since it allows excluding
many method instances (e.g., it can be crucial when the declared class is Object,
as it often happens in libraries). The static single assignment (SSA) transformation
(i.e., rule variables are renamed in order to guarantee that every variable is only
assigned once) of the RBR helps propagate constants through the rules via unifi-
cation. Knowing that a variable is actually a constant at a given program point
can be very useful when performing some operations. For example, it can allow us
to exclude that the second argument of a division is 0 (if a non-zero constant is
propagated at that point), so that the division-by-zero exceptional behavior does
not need to be considered, also it can improve the size abstraction of idiv (when the
divisor is constant) which is crucial for inferring a precise upper-bound for examples
such as binary search. Unification can also remove, in many cases, stack variables
which are only used to perform simple operations, which in turn reduces the size
of the abstract states in the different underlying analyses.

Example 7.1. By unification, the following instruction sequence (in SSA form):

s1 := n, s2 := m, s′1 := s1 + s2, n
′ := s′1

which is obtained from loading two local variables on the stack and storing their
sum in the first argument, is reduced in COSTA to:

n′ := n+m

2

As another important technique worth mentioning, COSTA is able to detect and
extract loops from CFGs. Indeed, when analyzing bytecode, recognizing iterative
structures (usually coming from loops implemented at the source code level) in
the CFG may avoid the loss of information which derives from the unstructured
control flow. In particular, detecting nested loops allows reasoning compositionally,
one loop at a time, so that finding a cost bound from the corresponding equations
is easier, and computing the cost can be done locally in the strongly connected
components. A loop extraction transformation is applied to the initial CFG in
order to separate sub-graphs corresponding to loops. Loop extraction has been well
studied in the area of program decompilation [Allen 1970], but, to the best of our
knowledge, its use in static analysis of Java bytecode is new. COSTA implements
an efficient algorithm [T. Wei and Chen 2007], modified to extract loops which, in
addition to having a single entry, also have a single exit (to avoid multiple return
branches from loops). Whenever a loop is extracted, the corresponding sub-graph
is replaced by a new instruction call loop. Besides, a new CFG is generated for each
sub-graph. Hence, after this step, there is one CFG corresponding to the entry of
the method, and one graph for every loop. Due to the RBR design, calls to loops
are handled in the same way as method calls.

In phase (2), depicted in the lower half of the figure, cost analysis on the rule-
based representation is performed. Abstract compilation, which is helped by a

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

359

Cost Analysis of Object-Oriented Bytecode Programs · 45

number of auxiliary static analyses, prepares the input to size analysis (Section
5). COSTA relies on a series of static analysis techniques, such as sign and nullity
analysis. Such analyses help in statically excluding some specific behaviors of the
program (by removing the corresponding rules): e.g., inferring that a reference o
is not null at some program point allows us to disregard (i.e., not include in the
program representation) the null-pointer-exception which could originate from a
call to o.m. Removing such rules might result in sequences of rules without any
branching and, in such cases, they are grouped together in a single rule.

Moreover, in the case of data structures with pointers, it is sometimes essential to
know whether a pointer refers to a structure with cycles (see Section 5.2): e.g., the
cost of a loop on a cyclic data structure may be unbounded. To this end, COSTA
comes equipped with a sharing analysis and a (non-)cyclicity analysis which uses
the information on sharing variables in order to prove the non-cyclicity of data
structures.

Afterward, COSTA sets up a CRS for the selected cost model (Section 5.4).
The latter is given as an input, selected among the available models. It is also
trivial to define new cost models in the system by just associating a cost to each
bytecode instruction, as pointed out in Section 4. Slicing (Section 6.1) of the RBR
removes variables which are useless in cost analysis. Finally, COSTA integrates the
dedicated upper bound solver PUBS [Albert et al. 2008a], which finds closed-form
solutions for CRSs (Section 6.3).

7.2 Experimental Results

In order to assess the practicality of our approach, we present some experimen-
tal results obtained using COSTA. Though the efficiency and robustness of the
system can be considerably improved, COSTA can already deal with a relatively
large class of JBC programs, and gives reasonable results in terms of precision
and efficiency. We plan to distribute the system as free software soon. Currently,
it can be tried out through a web interface available from the COSTA web site:
http://costa.ls.fi.upm.es.

COSTA allows choosing between several options, by specifying, for instance,

(1) whether the code of external libraries (i.e., methods in the Java API which do
not belong to the benchmark itself, but are called from the methods in the
benchmark) should be also analyzed;

(2) whether auxiliary analyses (sign, nullity, slicing, constant propagation) should
be included, thus possibly improving both precision and performance;

(3) whether input-output size relations have to be computed (Section 5.3);

(4) if exceptions, either explicitly thrown in the code or resulting from semantic
violations, have to be taken into account;

(5) which cost model has to be considered.

The system can deal with most features of JBC. Non-sequential code, dynamic
code generation and reflection are not supported. Currently, COSTA handles byte-
code programs for Java SE 1.4.2 13. However, there is no fundamental reason for
not supporting more recent Java versions and we plan to extend COSTA to also
handle Java 5 and 6 soon. As for native code, i.e., methods not implemented in

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

360

46 · E. Albert et al.

Bench #B #M #C #R #Ro #E

copy 108 4 3 78 56 55

divByTwo 15 1 1 17 15 16

binsearch 68 1 1 31 30 30

fact 14 1 1 11 10 9

arrayReverse 27 1 1 28 24 25

concat 44 1 1 49 43 45

add 105 4 5 32 27 27

merge 170 3 2 89 61 59

power 15 1 1 11 10 9

copy cons 92 5 4 56 34 31

evenDigits 31 2 1 34 30 33

selectOrd 51 1 1 58 55 57

doSum 27 2 1 28 25 19

multiply 58 1 1 75 64 67

hanoi 20 1 1 13 11 9

fibonacci 18 1 1 14 13 11

copy bst 123 6 4 119 73 67

as push 658 7 6 104 70 59

ns pop 666 9 7 132 90 77

nq dequeue 748 8 7 128 90 78

nl prev 1024 10 9 212 140 118

bst find 3470 28 15 543 410 415

Table I. Statistics about the Analysis Process

Java, calls to native methods are shown in upper bounds as symbolic constants,
since the code for those methods is not written in Java and COSTA cannot ana-
lyze them. This could be further improved by providing assertions which describe
the cost of the native method for the different cost models and (optionally) a safe
approximation of their input-output behavior, but do not support it yet.

Table I presents some figures about the benchmark programs used. Column
Bench indicates the name of the benchmark. Each benchmark program has been
analyzed for a particular method as starting point. The analyzer then pulls all
other methods used by the initial method as indicated by class analysis. This
results in loading a number of bytecode instructions, shown in column #B, of
methods, given in column #M, from a number of classes, indicated by #C. The
analyzer then obtains a rule-based representation of the program. Column #R
shows the number of rules in such representation, column #Ro shows then number
of rules in the optimized representation after performing nullity and sign analyses
and some optimizations. The reduction is significant and it is crucial for efficiency
and accuracy of subsequent phases. Finally, #E shows the number of equations in
the final cost relation system.

Both the Java source and the bytecode for all programs used as benchmarks
is available at the COSTA web interface. We consider two sets of benchmarks,
and the benchmarks in each set are presented in increasing complexity order. As
will be seen in Table III, the benchmarks range from constant to exponential
complexity. The first set of benchmarks used, from copy to copy bst, are Java
programs which represent classical examples in complexity analysis. The second

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

361

Cost Analysis of Object-Oriented Bytecode Programs · 47

Bench RBR Opt Ana Size CRS UB Sim Total TR

copy 21 50 66 362 12 82 0 594 8

divByTwo 2 10 7 54 2 10 0 87 5

binsearch 6 30 24 207 4 158 0 430 14

fact 4 6 6 2 0 8 0 28 3

arrayReverse 5 20 24 137 4 37 0 226 8

concat 10 40 74 348 6 111 0 589 12

add 14 23 18 78 2 94 0 228 7

merge 20 77 348 258 13 270 0 986 11

power 0 7 10 5 0 14 0 38 3

copy cons 15 35 50 48 4 49 0 201 4

evenDigits 8 27 12 102 3 22 0 175 5

selectOrd 11 51 68 1556 9 253 0 1948 34

doSum 5 19 11 31 0 13 0 81 3

multiply 15 89 225 2411 16 859 0 3616 48

hanoi 4 8 30 10 0 150 0 202 16

fibonacci 5 9 11 14 0 16 0 55 4

copy bst 30 73 138 513 16 630 0 1399 12

as push 54 59 160 17 14 67 0 372 4

ns pop 58 84 205 27 22 100 0 496 4

nq dequeue 62 82 214 33 22 162 2 577 5

nl prev 104 150 586 47 53 281 0 1220 6

bst find 265 533 1765 838 448 1137 1758 6743 12

Table II. Runtimes of Analysis

set of benchmarks are programs taken from the net.datastructures Java pack-
age [Goodrich et al. 2003], which contains a collection of Java interfaces and classes
that implement fundamental data structures and algorithms. They are accessible
for non-commercial purposes both in source and bytecode form at [Goodrich et al.
2003] and are discussed in detail in [Goodrich and Tamassia 2004]. The reason for
using such programs is that they make intensive use of object-oriented features,
the implementation techniques and the algorithms used are comparable to those
in java.util.*, and they remain reasonably sized and comprehensible. Among all
classes in the net.datastructures package, the ones we have selected as starting
point for our experiments are: ArrayStack, NodeStack, NodeQueue, NodeList, and
BinarySearchTree. In order not to make the experimental table too large, we only
show the analysis results for one method per class. The methods considered are,
respectively, push, pop, dequeue, prev, and find. As Table II shows, the num-
ber of bytecode instructions involved is larger than 650 in all experiments in this
set, reaching 3470 for the bst find benchmark, which involves 28 methods from 15
different classes or interfaces.

Table II shows the runtimes of the different phases of the analysis. All experi-
ments have been performed on an Intel Core 2 Quad Q9300 at 2.5GHz with 1.95GB
of RAM, running Linux 2.6.28-11. Times are in milliseconds and have been com-
puted as the average of five runs. As regards the options for the analysis previously
described, in our experiments we (1) analyze Java API, (2) activate all auxiliary
analyses (3) compute input-output size relations (4) consider all exceptions. Col-
umn RBR shows the time taken to obtain the rule-based representation of the
program. This includes computing the CFGs and performing class analysis. Then,

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

362

48 · E. Albert et al.

Opt indicates the time needed to obtain the optimized rule-based representation.
This includes the times for nullity and sign analyses. Column Ana corresponds
to the time needed by the different preliminary analyses which are required before
performing size analysis, whose time is shown in Column Size. Column CRS is the
time taken to obtain the cost relation system. The time taken to obtain a closed
form solution is shown in UB. Then, a post-processing phase is performed which is
in charge of syntactically simplifying as much as possible the upper bound obtained.
This time is shown in Sim. The total time taken is displayed in Total. Finally,
TR aims at evaluating how the analysis time varies w.r.t. the size of the program
being analyzed. For this, we divide the total analysis time by the number of rules
in the rule-based representation of the program. Thus, this number can be inter-
preted as the average number of milliseconds required to analyze a rule. We argue
that, at least in our experiments, analysis time is acceptable. It ranges from 3 to
48 milliseconds. Interestingly, the analysis time per rule does not seem to increase
significantly with the number of rules. There are important variations though, but
this probably has to do more with other features of the code, such as the number
of loops and whether loops are nested or not. It is important to mention that the
current implementation of several components of the system is not optimized for
efficiency, since the main aim for the time being has been to see whether the ap-
proach allows obtaining useful results. Now that the applicability of the approach
is proved, we are working on more efficient and robust implementations.

It is worth mentioning that Size includes both the time for abstract compila-
tion of instructions and for inferring the input-output size analysis, which can be
rather expensive. As already pointed out in Section 5.3, sometimes such step is
not required in order to infer upper bounds, in particular, when loop guards do not
depend on the return value from a method.

The simplification process also deserves some comments. As it can be seen in
Table II, in most cases the simplification time is negligible. However, it is well
known from the first works on the topic (see e.g. [Wegbreit 1975]), that one of
the important threats to the applicability of cost analysis is that the computed
closed forms can rapidly grow very large. Therefore, it is essential to have a smart
simplification procedure available. Our current simplifier succeeds to significantly
simplify closed-forms. As discussed above, it is not yet optimized for efficiency and
its running time can be important in some cases, as in bst find. We argue that it
is a good investment to have a powerful simplifier since, due to the compositionality
of cost analysis, such simplified closed-forms can later be used for analyses of other
programs.

Table III shows the closed-form upper-bounds computed by COSTA for the
benchmarks shown in the previous tables. In all cases, we show the upper bound
obtained when using the Minst cost model, which counts the number of bytecode
instructions executed (indicated by a In in the last column, M). We also show an-
other upper bound w.r.t. theMheap cost model, which counts the number of bytes
allocated in the heap, but only for those programs which actually contain instruc-
tions for allocating objects or arrays. For the programs for which an upper bound
w.r.t. theMheap cost model is not shown, COSTA obtains zero as upper bound of
their heap consumption.

Note that in Tables I and II we only show one entry per benchmark, regardless of

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

363

Cost Analysis of Object-Oriented Bytecode Programs · 49

Bench Entry UB M

copy copy(A) 228 In

copy copy(A) 52 By

divByTwo divByTwo(A) 6+8*log(2,1+nat(2*A-1)) In

binsearch binarySearch(A,B) 24+24*log(2,1+nat(2*A-1)) In

fact fact(A) 4+9*nat(A) In

arrayReverse arrayReverse(A) 22+14*A In

arrayReverse arrayReverse(A) 4*A By

concat concat(A,B) 37+(11*(A+B)+11*B) In

concat concat(A,B) 4*(A+B) By

add add(A,B,C) 16+18*nat(1+B) In

merge merge(A,B) 26+29*nat(A+B-1) In

merge merge(A,B) 8+8*nat(A+B-1) By

power power(A,B) 4+10*nat(B) In

copy cons copy(A) 23+21*nat(A-1) In

copy cons copy(A) 8+8*nat(A-1) By

evenDigits evenDigits(A) 9+nat(A)*(16+8*log(2,1+nat(2*A-3))) In

selectOrd selectOrd(A) 36+(nat(A-2)*(40+17*nat(A-2))+17*nat(A-2)) In

doSum doSum(A) 6+nat(1+A)*(16+9*nat(1+A)) In

multiply multiply(A,B,C) 52+38*C+58*B+58*B*C+26*B2+26*B2*C In

hanoi hanoi(A,B,C,D) -17+20*pow(2,nat(A)) In

fibonacci fibonacciMethod(A) -13+18*pow(2,nat(A-1)) In

copy bst copy(A) -45+88*pow(2,nat(A-1)) In

copy bst copy(A) -12+24*pow(2,nat(A-1)) By

as push push(A,B) 38+c(fST) In

as push push(A,B) 16+c(fST) By

ns pop pop(A) 36+c(fST) In

ns pop pop(A) 16+c(fST) By

nq dequeue dequeue(A) 31+c(fST) In

nq dequeue dequeue(A) 16+c(fST) By

nl prev prev(A,B) 124+3*c(fST) In

nl prev prev(A,B) 48+3*c(fST) By

bst find find(A,B) 506+(nat(A-3)*(283+5*c(fST))+10*c(fST)) In

bst find find(A,B) 160+(nat(A-3)*(80+5*c(fST))+10*c(fST)) By

Table III. Upper Bounds Computed

whether it is analyzed for one or two cost models. The reason for this is that Table I
is identical for both cost models and the RBR, Opt, Ana, and Size columns in
Table II are also the same. Thus, the only figures which can differ are CRS, UB,
and Sim (and of course Total and TR, which depend on them). However, in all
cases, the difference in run-time is rather small. Thus, we have preferred skipping
this info instead of further cluttering Table II. In the upper bounds shown we use
the function nat(X), which stands for natural and which is defined as nat(X) =
max(0,X). Since we analyze the code of API methods called by the programs, we
are able to obtain upper bounds without symbolic constants for all programs, unless
they access some API method which is native. In our experiments, this is the case
with the fillInStackTrace method from the java.lang.Throwable class, which
in our upper bounds is represented as the symbolic constant c(fST).

We argue that the computed upper bounds are useful since they are both reason-
ably accurate and simple. As can be seen in the table, the upper bounds obtained

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

364

50 · E. Albert et al.

can be constant, as in the case of copy, logarithmic, as in binSearch, linear, as in
arrayReverse, n-log-n, as in evenDigits, quadratic, as in selectOrd, polynomial, as in
multiply, and exponential, as in hanoi.

As regards the second set of experiments, it is worth mentioning that COSTA
has obtained precise upper bounds in all cases. In particular, it has been able to
infer that the first four methods have a constant cost both in time and in memory,
in spite of the relatively large number of methods and classes involved. The fifth
and final experiment is especially relevant since it illustrates how the path-length
abstract domain allows computing precise upper bounds for programs which handle
dynamically allocated, non linear, data structures. The find operation searches for
a key in a binary search tree. It is well-known that the worst case cost of such
search is linear on the height of the tree, as only one branch of the tree can be
explored. This is precisely what the computed upper bound tells us, since A in the
expression nat(A−3)∗ (283+5∗ c(fST)) stands for the height of the corresponding
tree.

8. RELATED WORK

Since the advent of mobile code, the analysis of Java bytecode has become an ac-
tive research area and a number of analysis tools are available. Especially relevant
are the analyses developed on the Soot framework [Vallee-Rai et al. 1999] and the
generic analyzer Julia [Spoto 2005]. Soot is a framework for the development of
analyses for Java bytecode which already includes points-to analysis, purity anal-
ysis, and dynamic data structure analysis, among others. The most similar part
between these systems and COSTA is the transformation of the bytecode into an
intermediate (procedural) representation. Indeed, intermediate representations are
common practice to develop analysis and transformations on JBC. Of relevant im-
portance is BoogiePL [Lehner and Müller 2007] as well. The main differences with
our RBR are: (1) they do not provide a uniform treatment of all kinds of loops by
means of recursion, (2) they do not perform the loop extraction transformation we
propose which is important for compositionality in cost analysis; and (3) the inter-
mediate representation called Shimple in Soot performs SSA, but neither Shimple
nor BoogiePL do stack variable elimination as COSTA does. In our representa-
tion, in one pass, we can eliminate almost all stack variables, which results in a
more efficient subsequent size analysis. The Java bytecode analyzer Julia [Spoto
2005] provides a generic analysis engine for which sharing analysis, class analysis,
non-nullness analysis, information flow analysis, escape analysis, constancy analy-
sis, and static initialisation analysis have been integrated. Neither Julia nor Soot
include a cost analysis, though Julia also contains implementations of some of the
pieces (in particular the class, nullity, sharing and cyclicity analysis) which are
required in the size analysis component, as discussed in Section 5.

Focusing on cost analysis, important effort has been devoted to extend the general
cost analysis framework originating from the work by Wegbreit [1975] to different
languages and programming paradigms. The main objective in this task is to define
a cost analysis framework in which it is possible to generate CRS from the programs
in the corresponding language. Much of the work on automatic cost analysis is in
the context of high-level declarative languages, whose recursive structure simplifies
the process of generating cost relations. In general, these analyses do not con-

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

365

Cost Analysis of Object-Oriented Bytecode Programs · 51

sider languages with a heap, and they do not deal with objects and exceptions as
in our case. Below we review several frameworks defined for the corresponding
programming paradigms.

Cost Analysis in Functional Programming. Early work on cost analysis [Wegbreit
1975; Le Metayer 1988; Rosendahl 1989] was developed for a first order subset of
Lisp. Rosendahl [1989] presented a system based on transforming a program into a
step-counting version which was then analyzed by relying on abstract interpretation.
The result of such analysis was expressed as a CRS which was attempted then
to be transformed into a closed form by relying on a series of source-to-source
transformations. Theoretical advances for analyzing lazy functional languages were
made by Wadler [1988] and Bjerner and Holmstrom [1989]. They used projections
and demand analysis to model a call-by-need reduction strategy of typed lambda
calculus. Still in the context of functional languages, Sands [1995] extends the
technique of cost counting programs mentioned above [Rosendahl 1989; Le Metayer
1988] to higher-order programs. The recent work by Jouannaud and Xu [2006]
describes a complexity analysis for programs extracted from proofs carried out with
the Coq proof assistant. The generated CRSs are solved in this case by relying on
MAPLE. Again, the first transformational part is not required and size analysis
does not have to deal with object-oriented features. Benzinger [2004] presents an
automatic complexity analysis for computing upper bounds on the time complexity
of higher-order Nuprl programs. The analysis derives recursive cost equations which
are passed to Mathematica.

There exist approaches to cost analysis based on a type-and-effect systems [Bar-
toletti et al. 2007; Simões et al. 2006; Vasconcelos and Hammond 2003]. Type-
and-effect systems [Nielson et al. 2005] are a well-known technique for automatic
program analysis. They main difference w.r.t. abstract interpretation approaches
like ours is that they avoid have the implementation of specialised inference en-
gines that may be required by abstract interpretation approaches and they simplify
the construction of the soundness proofs through analogy with similar and well-
understood proofs for the underlying type system. The latest work by Simões et al.
[2006] uses a type-and-effect system based on Hindley-Milner types to expose con-
straints on sized types [Hughes et al. 1996] for higher order, recursive functional
programs, to provide improved quality of cost analysis. Apart from the underly-
ing differences between the considered languages, in contrast to our proposal, this
approach to cost analysis is restricted to linear upper bounds. Besides, the lan-
guage does not support recursion and the analysis is restricted to a cost model that
counts the number of steps. Bartoletti et al. [2007] propose an extension of the
λ-calculus to ensure that resources are correctly used. They also rely on a type and
effect system to over approximate the set of histories of events (i.e., the usage of re-
sources) that a program can generate at runtime. A model-checking tecnique then
validates such approximations. In essence, this work is focused on the enforcement
of resource usage policies, but their techniques cannot be used to generate upper
bounds on the resource usage as our method does.

All in all, we conclude that in functional programming, cost analysis focuses
on dealing with higher-order functions and lazy evaluation. Due to the high-level
and recursive nature of functional programs, the first transformation to obtain a

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

366

52 · E. Albert et al.

rule-based representation is greatly simplified in this setting. Also, size analysis
in functional programming differs from ours as it does not support object-oriented
features.

Cost Analysis in Logic Programming. One of the first cost analysis frameworks
was developed by Debray and Lin [1993] in the context of logic programming. In
this setting, cost analysis needs to consider peculiar features of logic languages,
such as approximating the number of solutions (due to non-deterministic compu-
tations), type and mode inference, and non-failure information. The CASLOG
system [Debray and Lin 1993] was designed to solve CRSs for logic program and it
is currently used in the CiaoPP system [Hermenegildo et al. 2005]. As in functional
programming, obtaining CRSs is simplified by the fact that they already start from
a recursive programming language where recursion is the only form of iteration.
Also, size analysis in logic programming differs from ours as it does not support
object-oriented features. The cost analysis integrated in the CiaoPP system includes
a resource analysis [Navas et al. 2007] based on a size analysis for logic programs
and hence differs fundamentally from ours.

Cost Analysis in Imperative Programming. In the imperative programming pa-
radigm, most of the work has been done by the real-time and embedded systems
community. It has mainly focused on real-time aspects, with major inroads made
in WCET (worst case execution time) analysis, see e.g. [Eisinger et al. 2006], which
is technically different from our cost analysis. There is also work which studies the
relationship between syntactical constructions of programming languages and their
computational complexity [Kristiansen and Jones 2005; Ben-Amram et al. 2008].
These analyses are developed on simple imperative languages which are far from our
bytecode and, in contrast to our work, complexity classes are infered rather than
CRSs. Note that our CRSs are valid not only to infer the complexity class but also
to compute non-asymptotic upper bounds. Marion and Pèchoux [2007] show how to
apply sub-interpretation (firstly used in first order functional programming to deal
with computational complexity) to object-oriented programs without recursion in
order to provide upper bounds on the stack usage. The approach does not follow
the cost analysis framework originating from [Wegbreit 1975] and thus it is not
based on the generation of CRS. Also, it is restricted to polynomial bounds and to
the particular resource of stack usage. More recent work develops cost analyses to
estimate the memory consumption. In particular, Braberman et al. [2008] describe
a technique for Java-like languages which computes symbolic polynomial approxi-
mations of the amount of memory required by a program. The work by Chin et al.
[2008] studies the memory consumption (including both heap space and stack us-
age) of low-level programs which are similar to our bytecode programs. In both
cases, the analyses are less general than ours, both in the kind of properties they
can estimate (specific to memory consumption) and in the kind of upper bounds
that they can generate (polynomial bounds).

Resource Usage Certification. As mentioned in Section 1, resource usage certi-
fication [Crary and Weirich 2000; Aspinall et al. 2005; Hofmann and Jost 2003;
Chander et al. 2005; Niggl and Wunderlich 2006] proposes the use of security prop-
erties involving cost requirements, i.e., that the untrusted code adheres to specific

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

367

Cost Analysis of Object-Oriented Bytecode Programs · 53

bounds on resource consumption. Our work shows, for the first time, that it is
possible to automatically generate resource bounds guarantees, not restricted to
polynomial bounds, for a realistic mobile language. Related work in the context
of Java bytecode includes the work in the MRG project [Aspinall et al. 2005],
which can be considered complementary to ours. MRG focuses on building a proof-
carrying code [Necula 1997] architecture for ensuring that bytecode programs are
free from run-time violations of resource bounds. The cost model which has been
used to develop the analysis is heap consumption, since applications to be deployed
on devices with a limited amount of memory, such as smartcards, must be rejected
if they require more memory than that available. The framework is restricted to
polynomial bounds and to the above cost model, while our cost analysis can infer a
wider set of bounds (including exponential, algorithmic, etc.) and it is parametric
with respect to the cost model. More related work is the one proposed by Cachera
et al. [2005], where a resource usage analysis is presented. Again, this work focuses
on one particular notion of cost, memory consumption, and it aims at verifying that
the program executes in bounded memory by making sure that the program does
not create new objects inside loops, but it does not infer resource usage bounds. The
analysis has been certified by proving its correctness using the Coq proof assistant.

9. CONCLUSIONS AND FUTURE WORK

The presented framework is, to the best of our knowledge, the first automatic ap-
proach to the cost analysis of object-oriented bytecode, i.e., compiled code. The
analysis is based on generating, at compile-time, cost relation systems for an input
bytecode w.r.t. a cost model. Such relations provide useful approximations of the
computational cost, provided an accurate size analysis is used to establish rela-
tionships between arguments. Essentially, the sources of inaccuracy in size analysis
can be: (1) the dependence of the control flow on values which are not captured
by the abstraction, such as non-integer values, numeric fields, multidimensional
arrays, and cyclic data structures; (2) the imprecision in abstracting (non-linear)
arithmetic instructions, and in using domain operations such as widening. In such
cases, cost relations can still be set up, but might be not precise enough to be
useful. Clearly, progress in the area of size analysis for object-oriented languages
will be directly applicable to this cost analysis framework as the size analysis is an
independent component.

Our cost analysis at the level of the rule-based representation is compositional,
e.g., we can analyze one piece of code and then reuse its result. This is because
whenever we call a procedure we always know which procedure we refer to (there are
no virtual calls). When we analyze Java bytecode programs, in general, we cannot
analyze a piece of code without a context because, due to virtual calls, we might
invoke different methods which are defined in those contexts (this is the well-known
problem of call-backs). In order to analyse in a context-independent way, we need
assumptions about the classes that we have in the memory and the possible sharing
and the cyclicity between the data structures. Our experimental results show that
the presented approach is able to obtain useful cost relations for a relatively large
class of object oriented programs which use Java libraries.

We believe that our work opens the door to the application of resource usage
analysis in the context of realistic programming languages like Java bytecode. The

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

368

54 · E. Albert et al.

theoretical framework has already been the basis of two applications of cost analysis,
related to different cost models: (1) inference of the number of executed bytecode
instructions of a series of well known programs used in research on complexity
analysis [Albert et al. 2007b]; and (2) inference of heap consumption of object-
oriented programs which make extensive use of the heap [Albert et al. 2007]. Cost
relations were refined in this case in order to take into account the heap space
which can be safely deallocated by the garbage collector upon exit from a method
(as approximated by an escape analysis [Blanchet 1999]). However, in order to
infer the live heap space, i.e., the maximum of the size of the live data on the
heap during a program’s execution, our cost analysis framework cannot directly be
applied. The reason is that live heap usage is a resource which requires reasoning
on the memory consumed at all program states along an execution, while in our
framework we observe the consumption at the final state only. A live heap space
analysis has been recently proposed in [Albert et al. 2009] which generates cost
relation systems in a different way than us.

The transformation to the rule-based representation is interesting per se and
can be used to develop other kinds of analysis. Indeed, it has been used to prove
the termination of Java bytecode programs [Albert et al. 2008]. Essentially, after
performing size analysis on the rule-based representation, one obtains a constraint
logic program on which it is straightforward to apply existing analysis techniques
and prove termination results. Future work will basically focus on extending both
the theoretical foundations and the practical implementation in order to handle
a larger class of programs, and obtain improvements both in terms of efficiency
and accuracy. For example, one of the most challenging problems is to account
for iterative structures where the number of iterations depends on numeric fields.
Here, an approach working in all cases might not be practical; however, heuristics
may allow us to account for special, simple but quite common cases which can
significantly enlarge the class of analyzable programs. A first step in this direction,
in the context of termination analysis, has been taken in [Albert et al. 2008b].

Acknowledgments

We gratefully thank the anonymous referees for many useful comments and sugges-
tions that greatly helped to improve this article. Preliminary versions of this work
appeared in the Proceedings of ESOP’07 [Albert et al. 2007a], FMCO’07 [Albert
et al. 2008b] and Bytecode’08 [Albert et al. 2008a]. This work was funded in part by
the Information Society Technologies program of the European Commission, Future
and Emerging Technologies under the IST-15905 MOBIUS and IST-231620 HATS
projects, by the Spanish Ministry of Education (MEC) under the TIN-2005-09207
MERIT, TIN-2008-05624 DOVES and HI2008-0153 (Acción Integrada) projects,
and the Madrid Regional Government under the S-0505/TIC/0407 PROMESAS
project.

REFERENCES

Adachi, A., Kasai, T., and Moriya, E. 1979. A theoretical study of the time analysis of programs.
In MFCS, J. Becvár, Ed. Lecture Notes in Computer Science, vol. 74. Springer, 201–207.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1974. The Design and Analysis of Computer
Algorithms. Addison-Wesley.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

369

Cost Analysis of Object-Oriented Bytecode Programs · 55

Aho, A. V., Sethi, R., and Ullman, J. D. 1986. Compilers – Principles, Techniques and Tools.

Addison-Wesley.

Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., and Zanardini, D. 2008. Ter-

mination Analysis of Java Bytecode. In Proceedings of the IFIP International Conference
on Formal Methods for Open Object-based Distributed Systems (FMOODS), G. Barthe and
F. de Boer, Eds. Lecture Notes in Computer Science, vol. 5051. Springer-Verlag, Berlin, Oslo,

Norway, 2–18.

Albert, E., Arenas, P., Genaim, S., and Puebla, G. 2008a. Automatic Inference of Upper

Bounds for Recurrence Relations in Cost Analysis. In Static Analysis, 15th International Sym-
posium, SAS 2008, Valencia, Spain, July 15-17, 2008, Proceedings, M. Alpuente and G. Vidal,
Eds. Lecture Notes in Computer Science, vol. 5079. Springer-Verlag, 221–237.

Albert, E., Arenas, P., Genaim, S., and Puebla, G. 2008b. Dealing with numeric fields in
termination analysis of java-like languages. In 10th Workshop on Formal Techniques for Java-

like Programs, M. Huisman, Ed.

Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. 2007a. Cost Analysis of
Java Bytecode. In 16th European Symposium on Programming, ESOP’07, R. D. Nicola, Ed.
Lecture Notes in Computer Science, vol. 4421. Springer, 157–172.

Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. 2007b. Experiments in
Cost Analysis of Java Bytecode. In ETAPS Workshop on Bytecode Semantics, Verification,

Analysis and Transformation (BYTECODE’07). Electronic Notes in Theoretical Computer
Science, vol. 190, Issue 1. Elsevier - North Holland, 67–83.

Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. 2008a. COSTA: A Cost
and Termination Analyzer for Java Bytecode. In Proceedings of the Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE’08). Electronic Notes in

Theoretical Computer Science. Elsevier, Budapest, Hungary. To appear.

Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. 2008b. COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In Post-proceedings
of Formal Methods for Components and Objects (FMCO’07). Number 5382 in LNCS. Springer-
Verlag, 113–133.

Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. 2008c. Removing Useless

Variables in Cost Analysis of Java Bytecode. In ACM Symposium on Applied Computing (SAC)
- Software Verification Track (SV08). ACM Press, New York, Fortaleza, Brasil, 368–375.

Albert, E., Genaim, S., and Gómez-Zamalloa, M. 2007. Heap Space Analysis for Java Byte-
code. In ISMM ’07: Proceedings of the 6th international symposium on Memory management.
ACM Press, New York, NY, USA, 105–116.

Albert, E., Genaim, S., and Gómez-Zamalloa, M. 2009. Live Heap Space Analysis for Lan-

guages with Garbage Collection. In ISMM’09: Proceedings of the 8th international symposium
on Memory management. ACM Press, New York, NY, USA.

Albert, E., Puebla, G., and Hermenegildo, M. 2008. Abstraction-Carrying Code: A Model
for Mobile Code Safety. New Generation Computing 26, 2 (March), 171–204.

Allen, F. 1970. Control flow analysis. In Proceedings of a symposium on Compiler optimization.
1–19.

Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., and Stark, I. 2005. Mobile Resource
Guarantees for Smart Devices. In Proc. of Workshop on Construction and Analysis of Safe,

Secure and Interoperable Smart Devices (CASSIS), G. Barthe, L. Burdy, M. Huisman, J.-L.
Lanet, and T. Muntean, Eds. LNCS, vol. 3362. Springer, 1–27.

Bagnara, R., Hill, P. M., and Zaffanella, E. 2008. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and software
systems. Science of Computer Programming 72, 1–2, 3–21.

Bagnara, R., Pescetti, A., Zaccagnini, A., and Zaffanella, E. 2005. PURRS: Towards

computer algebra support for fully automatic worst-case complexity analysis. Tech. rep.
arXiv:cs/0512056 available from http://arxiv.org/.

Bagnara, R., Pescetti, A., Zaccagnini, A., Zaffanella, E., and Zolo, T. Purrs: The Parma
University’s Recurrence Relation Solver. http://www.cs.unipr.it/purrs.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

370

56 · E. Albert et al.

Bartoletti, M., Degano, P., Ferrari, G. L., and Zunino, R. 2007. Types and effects for

resource usage analysis. In Foundations of Software Science and Computational Structures,
10th International Conference, FOSSACS 2007. Lecture Notes in Computer Science, vol. 4423.
Springer, 32–47.

Ben-Amram, A. M., Jones, N. D., and Kristiansen, L. 2008. Linear, Polynomial or Exponential?
Complexity Inference in Polynomial Time. In Logic and Theory of Algorithms, 4th Conference
on Computability in Europe, CiE 2008. Lecture Notes in Computer Science, vol. 5028. Springer,

67–76.

Benoy, F. and King, A. 1997. Inferring Argument Size Relationships with CLP(R). In Workshop
on Logic-based Program Synthesis and Transformation (LOPSTR). Lecture Notes in Computer

Science, vol. 1207. Springer-Verlag, 204–223.

Benzinger, R. 2004. Automated Higher-Order Complexity Analysis. Theor. Comput. Sci. 318, 1-

2.

Bjerner, B. and Holmstrom, S. 1989. A Compositional Approach to Time Analysis of First

Order Lazy Functional Programs. In Proc. ACM Functional Programming Languages and
Computer Architecture. ACM Press, 157–165.

Blanchet, B. 1999. Escape Analysis for Object Oriented Languages. Application to Java(TM).

In Conference on Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA’99). ACM, 20–34.

Bossi, A., Cocco, N., and Fabris, M. 1991. Proving termination of logic programs by exploiting
term properties. In TAPSOFT, Vol.2. Lecture Notes in Computer Science, vol. 494. Springer,
153–180.

Braberman, V., Fernández, F., Garbervetsky, D., and Yovine, S. 2008. Parametric Pre-
diction of Heap Memory Requirements. In Proceedings of the International Symposium on
Memory management (ISMM). ACM, New York, NY, USA.

Bruynooghe, M., Codish, M., John P. Gallagher, Genaim, S., and Vanhoof, W. 2007. Termi-
nation analysis of logic programs through combination of type-based norms. ACM Transactions

on Programming Languages and Systems 29, 2 (April).

Cachera, D., Jensen, T., Pichardie, D., and Schneider, G. 2005. Certified memory usage

analysis. In 13th International Symposium on Formal Methods (FM’05). Number 3582 in
LNCS. Springer-Verlag, 91–106.

Chander, A., Espinosa, D., Islam, N., Lee, P., and Necula, G. 2005. Enforcing resource

bounds via static verification of dynamic checks. In ESOP’05. LNCS, vol. 3444. Springer.

Chin, W.-N., Nguyen, H., Popeea, C., and Qin, S. 2008. Analysing Memory Resource Bounds for

Low-Level Programs. In Proceedings of the International Symposium on Memory management
(ISMM). ACM, New York, NY, USA.

Cousot, P. and Cousot, R. 1977. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Fourth ACM Sym-
posium on Principles of Programming Languages. 238–252.

Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear restraints among variables
of a program. In POPL.

Craig, S.-J. and Leuschel, M. 2005. Self-Tuning Resource Aware Specialisation for Prolog. In
PPDP ’05: Proceedings of the 7th ACM SIGPLAN international conference on Principles and
practice of declarative programming. ACM Press, New York, NY, USA, 23–34.

Crary, K. and Weirich, S. 2000. Resource Bound Certification. In POPL’00. ACM, 184–198.

Debray, S. K. and Lin, N. W. 1993. Cost Analysis of Logic Programs. ACM Transactions on

Programming Languages and Systems 15, 5 (November), 826–875.

Eisinger, J., Polian, I., Becker, B., Metzner, A., Thesing, S., and Wilhelm, R. 2006. Auto-

matic identification of timing anomalies for cycle-accurate worst-case execution time analysis.
In Proceedings of IEEE Workshop on Design & Diagnostics of Electronic Circuits & Systems
(DDECS). IEEE Computer Society, 15–20.

Genaim, S. and Spoto, F. 2008. Constancy analysis. In 10th Workshop on Formal Techniques
for Java-like Programs, M. Huisman, Ed.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

371

Cost Analysis of Object-Oriented Bytecode Programs · 57

Goodrich, M. and Tamassia, R. 2004. Data Structures and Algorithms in Java, 3rd ed. John

Wiley.

Goodrich, M., Tamassia, R., and Zamore, R. 2003. The net.datastructures package, version 3.

Available at http://net3.datastructures.net.

Hermenegildo, M., Albert, E., López-Garćıa, P., and Puebla, G. 2005. Abstraction Carrying
Code and Resource-Awareness. In PPDP. ACM Press.

Hermenegildo, M., Puebla, G., Bueno, F., and López-Garćıa, P. 2005. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming 58, 1–2 (October), 115–140.

Hofmann, M. and Jost, S. 2003. Static prediction of heap space usage for first-order functional
programs. In POPL.

Hughes, J., Pareto, L., and Sabry, A. 1996. Proving the correctness of reactive systems using

sized types. In POPL. 410–423.

Jouannaud, J. and Xu, W. 2006. Automatic Complexity Analysis for Programs Extracted from
Coq Proof. ENTCS .

Kristiansen, L. and Jones, N. D. 2005. The flow of data and the complexity of algorithms. In
CiE, S. B. Cooper, B. Löwe, and L. Torenvliet, Eds. Lecture Notes in Computer Science, vol.
3526. Springer, 263–274.

Le Metayer, D. 1988. ACE: An Automatic Complexity Evaluator. ACM Transactions on
Programming Languages and Systems 10, 2 (April), 248–266.

Lehner, H. and Müller, P. 2007. Formal translation of bytecode into BoogiePL. In Bytecode’07.

ENTCS. Elsevier, 35–50.

Lindholm, T. and Yellin, F. 1996. The Java Virtual Machine Specification. Addison-Wesley.

Marion, J.-Y. and Pèchoux, R. 2007. Resource control of object-oriented programs. In In-

ternational LICS affiliated Workshop on Logic and Computational Complexity (LCC 2007).
Wroclaw, Poland.

Miné, A. 2006. Field-sensitive value analysis of embedded c programs with union types and
pointer arithmetics. In LCTES, M. J. Irwin and K. D. Bosschere, Eds. ACM, 54–63.

Navas, J., Mera, E., López-Garćıa, P., and Hermenegildo, M. 2007. User-Definable Resource
Bounds Analysis for Logic Programs. In International Conference on Logic Programming

(ICLP). LNCS, vol. 4670. Springer-Verlag, 348–363.

Necula, G. 1997. Proof-Carrying Code. In Proc. of ACM Symposium on Principles of program-

ming languages (POPL). ACM Press, 106–119.

Nielson, F., Nielson, H. R., and Hankin, C. 2005. Principles of Program Analysis. Springer.
Second Ed.

Niggl, K.-H. and Wunderlich, H. 2006. Certifying Polynomial Time and Linear/Polynomial
Space for Imperative Programs. SIAM J. Comput. 35, 5, 1122–1147.

Puebla, G. and Ochoa, C. 2006. Poly-Controlled Partial Evaluation. In Proc. of 8th ACM-
SIGPLAN International Symposium on Principles and Practice of Declarative Programming

(PPDP’06). ACM Press, 261–271.

Rosendahl, M. 1989. Automatic Complexity Analysis. In Proc. ACM Conference on Functional

Programming Languages and Computer Architecture. ACM, New York, 144–156.

Rossignoli, S. and Spoto, F. 2006. Detecting Non-Cyclicity by Abstract Compilation into
Boolean Functions. In International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI). LNCS, vol. 3855. S-V.

Sands, D. 1995. A näıve time analysis and its theory of cost equivalence. J. Log. Comput. 5, 4.

Secci, S. and Spoto, F. 2005. Pair-sharing analysis of object-oriented programs. In Static
Analysis Symposium (SAS). 320–335.

Simões, H. R., Hammond, K., Florido, M., and Vasconcelos, P. B. 2006. Using intersection
types for cost-analysis of higher-order polymorphic functional programs. In Types for Proofs

and Programs, International Workshop, TYPES 2006. Lecture Notes in Computer Science,
vol. 4502. Springer, 221–236.

Spoto, F. 2005. Julia: A Generic Static Analyser for the Java Bytecode. In Proc. of the 7th
Workshop on Formal Techniques for Java-like Programs, FTfJP’2005. Glasgow, Scotland.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

372

58 · E. Albert et al.

Spoto, F., Hill, P. M., and Payet, E. 2006a. Path-length analysis for object-oriented programs.

In Proc. International Workshop on Emerging Applications of Abstract Interpretation (EAAI).

Spoto, F., Hill, P. M., and Payet, E. 2006b. Path-length analysis of object-oriented programs.

In Proc. International Workshop on Emerging Applications of Abstract Interpretation (EAAI).
Electronic Notes in Theoretical Computer Science. Elsevier.

Spoto, F. and Jensen, T. 2003. Class analyses as abstract interpretations of trace semantics.

ACM Trans. Program. Lang. Syst. 25, 5, 578–630.

T. Wei, J. Mao, W. Z. and Chen, Y. 2007. A new algorithm for identifying loops in decompi-

lation. In SAS’07. LNCS 4634. 170–183.

Tip, F. 1995. A Survey of Program Slicing Techniques. J. of Prog. Lang. 3.

Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., and Co, P. 1999. Soot -
a Java optimization framework. In Proc. of Conference of the Centre for Advanced Studies on

Collaborative Research (CASCON). 125–135.

Vasconcelos, P. and Hammond, K. 2003. Inferring Cost Equations for Recursive, Polymor-

phic and Higher-Order Functional Programs. In Proceedings of the International Workshop
on Implementation of Functional Languages. Lecture Notes in Computer Science, vol. 3145.
Springer-Verlag, 86–101.

Wadler, P. 1988. Strictness analysis aids time analysis. In Proc. ACM Symposium on Principles
of Programming Languages (POPL). ACM Press, 119–132.

Wegbreit, B. 1975. Mechanical Program Analysis. Comm. of the ACM 18, 9.

Wilf, H. S. 2002. Algorithms and Complexity. A.K. Peters Ltd.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

373

Cost Analysis of Object-Oriented Bytecode Programs · 59

PROOFS (added for reviewers’ convenience and to appear in an electronic appendix)

A. EQUIVALENCE BETWEEN A BYTECODE PROGRAM AND ITS CORRESPOND-
ING RBR

A.1 Proof of Theorem 3.10

In this section we prove Theorem 3.10 by induction on the length of the bytecode
trace. We prove that the bytecode and the corresponding RBR traces satisfy a
stronger notion of equivalence which implies the one of Definition 3.8. The new
notion of equivalence is needed in order to define when two configurations have
been obtained using a similar sequence of execution steps. For initial and final
configurations the definition of equivalence remains the same as in Definition 3.8,
i.e., we require the single activation records to be equivalent and that the heap
structures be identical. For non-final configurations, in addition to the requirements
in Definition 3.8, we require that the structure of the configurations satisfies an
additional property that we explain below.

In order to define this additional property, let us first examine the structure of
bytecode configurations. If a bytecode configuration is not initial or final, then it is
of the form C ≡ aj . . . a0;h where j ≥ 1 and for all i < j the activation record ai is of
the form 〈m, pc, lv , stk〉 such that m[pc−1] is an invocation instruction to a method
m′ (resolved to m′ in the case of virtual calls), and the next activation record ai+1

corresponds to the method m′, namely of the form 〈m′, pc′, lv ′, stk ′〉. Now given
an RBR configuration RC ≡ aj′

rr . . . a
0
rr ; hrr, we say that it is equivalent to C,

denoted as before by C ≈ RC , if in addition to the requirements of Definition 3.8,
it holds that j′ ≥ j, and it includes j − 1 activation records ai1

rr , . . . , a
ij−1

rr where
i1 = 0 < i2 < · · · < ij−1 < j such that:

(1) ai1
rr = a0

rr = 〈start[s1, out], ǫ, lv
′
0〉;

(2) for all k, where 0 < k ≤ j − 1, let the bytecode activation record ak be
〈m, pc, lv , vt · · · v1〉 where: m is a method with f local variables (including l0);
the instruction m[pc − 1] is an invocation to m′′ with f ′ arguments (excluding
l0); and suppose that for that specific call the type of the object whose method
we are calling is d. Then the corresponding RBR activation record aik

rr is of
the form 〈mpc−1:d[st−f ′ , out],mpc(l̄, s1, . . . , st−f ′), lv

′〉 where l̄ = 〈l0, . . . , lf−1〉,
such that:

(a) If resolving m′′ w.r.t. the class d results in m′, then there exists a rule that
corresponds to a dispatching block for the invocation m[pc−1] of the form:

mpc−1:d(l̄, s1, . . . , st, out) ← m′(st−f ′ , st, st−f ′),
mpc(l̄, s1, . . . , st−f ′ , out)

(b) for any local variable i (where 0 ≤ i < f) in m we have lv(i) = lv ′(li) and
for any stack element vi in ak (where 1 ≤ i ≤ t) we have lv ′(si) = vi;

(3) any RBR activation record which is not one of {ai1
rr , . . . , a

ij−1

rr , aj
rr} is of the

form 〈p[out , out], ǫ, lv ′′〉.

The idea is that the bytecode activation records have corresponding RBR activa-
tion records, which preserve the order, and that any other RBR activation record

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

374

60 · E. Albert et al.

includes an empty set of instructions and will be used just to propagate the return
value back to the caller site. Note that in the last point above, in addition, all acti-
vation records between any aik

rr and a
ik+1

rr correspond to rules in the same method,
and they have a specific order which corresponds to a path in the corresponding
CFG starting from the initial block. But this property is not really required for
the proof and therefore we omit it. In what follows we refer to this additional
equivalence condition as structural equivalence of configurations.

It is clear that this refined notion of equivalence implies the one of Definition 3.8,
since all conditions mentioned in that definition are included in the new notion of
equivalence. Now we proceed to prove Theorem 3.10 for the structural equivalence
of configurations. The proof is by induction on the length n of the bytecode trace.

Base case. This case is for traces of length 0, i.e., when n = 0. Recall that the
theorem defines the initial states as

—C0=〈start, 1, lv0, vt · · · v1〉;h0

—RC 0=〈start,m
′(s̄, s1), lv

′
0〉;h0, where s = 〈s1, . . . , st〉 and lv ′0(si) = vi for all

1 ≤ i ≤ t;

Moreover, the initial method call at start[1] corresponds to the method from which
the rule m′ is obtained, namely start[1] ≡ invokenonvirtual m′. Therefore, the
traces are equivalent by definition.

Inductive case. Suppose that the theorem holds for bytecode traces of length
n − 1 where n ≥ 1. We demonstrate that, then, it holds for traces of length n.
Let t ≡ C0 ;

n−1
bc Cn−1 ;bc Cn be a bytecode trace of length n. By the induction

hypothesis, there exists an equivalent RBR trace RC 0 ;
k
rr RC k, where k ≥ n − 1

which is equivalent to C0 ;
n−1
bc Cn−1. We show that it is possible to extend this

RBR trace (by at least one transition) and obtain RC 0 ;
k
rr RC k ;

+
rr RC k′ such

that Cn ≈ RC k′ , and RC k′′ is redundant for any k < k′′ < k′, which clearly
implies the equivalence between RC 0 ;

+
rr RC k′ and t. In what follows, we let

Cn−1 ≡ 〈m, pc, lvn−1, vt . . . v1〉 · ar ; hn−1 and RC k ≡ 〈mid1
, bc, lv ′k〉 · arrr ; h

k
rr. We

also assume that m has f local variables and we denote them by the tuple l̄ =
〈l0, . . . , lf−1〉. Our reasoning is done by cases depending on the instruction m[pc].

Case 1: m[pc] ≡ push v. In this case m 6= start, and according to the bytecode op-
erational semantics of Figures 2 and 3, we have Cn ≡ 〈m, pc + 1, lvn, vt+1 · vt · · · v1〉·
ar ; hn where vt+1 = v, lvn = lvn−1 and hn = hn−1. Since Cn−1 ≈ RC k, the se-
quence bc (in RC k) must correspond to the compilation of the instructions in the
block that corresponds to m[pc], starting from the instruction that corresponds to
m[pc] in that block. Therefore, according to the compilation as defined in Sec-
tion 3.2, bc must be of the form b · bc′ where b ≡ st+1 := v. If we start from
RC k and apply one execution step using the operational semantics of Figure 7,
we get RC k+1 ≡ 〈mid1

, bc′, lv ′k+1〉 · arrr ; h
k+1
rr where hk+1

rr = hk
rr and lv ′k+1 agrees

with lv ′k on all values (stack and local variables) except (maybe) for st+1 which is
lv ′k+1(st+1) = v = vt+1. At this point we distinguish two cases:

(1) if m[pc] is not the last instruction in the corresponding block, then bc′ must
correspond to the compilation of the instructions in that block starting from

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

375

Cost Analysis of Object-Oriented Bytecode Programs · 61

the instruction that corresponds to m[pc + 1] (otherwise Cn−1 6≈ RC k), and
therefore RC k+1 is not redundant. Now, since lv ′k+1(si) = vi for all 1 ≤ i ≤
t + 1, and lv ′k+1 and lvn agree on the values of all local variables (because
lv ′k does), then we can conclude that the top activation records of Cn and
RC k+1 are equivalent. Also, it is clear that the structures of Cn and RC k+1

are “identical” to those of Cn−1 and RC k respectively, which means that Cn

and RC k+1 have equivalent structures since Cn−1 and RC k do. Therefore, we
can conclude that Cn ≈ RC k+1 which implies that RC 0 ;

k
rr RC k ;rr RC k+1

is equivalent to C0 ;
n
rr Cn, and therefore the theorem holds for this case.

(2) if m[pc] is the last instruction in the corresponding block, then m[pc +1] is the
first instruction in the block mpc+1. Since “push v” is a sequential instruction,
this case can occur only if the instruction at pc+1 has at least another predeces-
sor different from pc, and therefore, according to the construction of the CFG
in Section 3.2, mid1

has a single out-edge that goes to mpc+1 with true guard.
Then bc′ must consist of the single (continuation) callmpc+1(l̄, s1, . . . , st+1, out)
and therefore RC k+1 is redundant. From the generation of the RBR the single
rule for mpc+1 must have the form:

mpc+1(l̄, s1, . . . , st+1, out)← true, body.

where body corresponds to the compilation of the instructions in block mpc+1

starting from the first instruction which corresponds tom[pc+1]. Now, applying
one execution step to RC k+1 we get a non-redundant configuration RC k+2 ≡
〈mpc+1, body, lv

′
k+2〉·〈mid1

[out , out], ǫ, lv ′k+1〉·arrr ; h
k+2
rr such that hk+2

rr = hk+1
rr

and lv ′k+2(si) = vi for all 1 ≤ i ≤ t + 1 and lv ′k+2(li) = lv ′k+1(li) = lvn(i) for
any local variable 0 ≤ i < f . Therefore, the top activation records of Cn and
RC k+2 are equivalent. Also it is clear that the structures of Cn and RC k+2

are equivalent, which implies that Cn ≈ RC k+2, which in turn implies that
the RC 0 ;

k
rr RC k ;rr RC k+1 ;rr RC k+2 is equivalent to C0 ;

n
rr Cn, and

therefore the theorem holds for this case as well.

For m[pc] ∈ {load i, store i, pop, dup, add, sub, getfield f, aload, arraylength}, i.e., se-
quential instructions that do not modify the heap structure, the proof is identical to
this case, except of course the justification of compiling m[pc] which is straightfor-
ward. For m[pc] ∈ {new c, putfield f, newarray d, astore}, i.e., sequential instructions
that might modify the heap, the proof is also similar, but since the heap hn might
be different from hn−1 we have to show that this change is reflected also when
moving from hk

rr to hk+1
rr (resp. hk+2

rr) , namely hk+1
rr (resp. hk+2

rr) is equivalent
to hn, and therefore the equivalence is maintained. This is done by showing that
by definition (of the compilation) of the corresponding instructions, in bytecode
and RBR, apply the same changes on the corresponding heaps. All these cases are
skipped as the proofs are “identical”.

Case 2: m[pc] ≡ ifgt pc′. In this case m 6= start. Since “ifgt pc′” is a branch-
ing instruction, then the corresponding block mid1

has nop(ifgt pc′) as the last

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

376

62 · E. Albert et al.

instruction, and the corresponding RBR program has the following rules

mc
id1

(l̄, s1, . . . , st, out)← st−1 > st,mpc′(l̄, s1, . . . , st−2, out)
mc

id1
(l̄, s1, . . . , st, out)← st−1 ≤ st,mpc+1(l̄, s1, . . . , st−2, out)

mpc′(l̄, s1, . . . , st−2, out)← true, body1
mpc+1(l̄, s1, . . . , st−2, out)← true, body2

Note that the possible consecutive instruction m[pc′] (resp. m[pc + 1]) is the first
instruction in the corresponding block mpc′ (resp. mpc+1), and moreover, body1
(resp. body2) corresponds to the compilation of the instructions in the block mpc′

(resp. mpc+1) starting from the first instruction which corresponds to m[pc′] (resp.
m[pc + 1]). Now, suppose that st−1 > st in Cn−1, then if we apply one execution
step to Cn−1 we obtain Cn ≡ 〈m, pc

′, lvn, vt−2 · · · v1〉 ·ar ; hn where lvn = lvn−1 and
hn = hn−1. Since Cn−1 ≈ RC k then bc (in RC k) must be of the form:

bc ≡ nop(ifgt pc′),mc
id1

(l̄, s1, . . . , st, out)

Applying three execution steps starting from RC k we get

RCk+1 ≡ 〈mid1
, mc

id1
(l̄, s1, . . . , st, out), lv

′

k+1〉 · arrr ; h
k+1
rr

RCk+2 ≡ 〈m
c
id1

, mpc′ (l̄, s1, . . . , st−2, out), lv ′k+2〉 · 〈mid1
[out , out], ǫ, lv ′k+1〉 · arrr ; h

k+2
rr

RCk+3 ≡ 〈mpc′ , body1, lv ′k+3〉 · 〈m
c
id1

[out , out], ǫ, lv ′k+2〉 · 〈mid1
[out , out], ǫ, lv ′k+1〉 · arrr ; h

k+3
rr

where lv ′k+3(li) = lvn(i), for all local variable 0 ≤ i < f of m and lv ′k+3(si) = vi,
for all 1 ≤ i ≤ t − 2. Therefore the top activation records of Cn and RC k+3 are
equivalent. It is clear that RC k+1 and RC k+2 are redundant, and that Cn ≈ RC k+3

since hk+3
rr = hk+2

rr = hk+1
rr = hk

rr and their structures are based on those of Cn−1

and RC k. Therefore the trace RC 0 ;
k
rr RC k ;rr RC k+1 ;rr RC k+2 ;rr RC k+3

is equivalent to C0 ;
n
rr Cn, and thus the theorem holds for this case. The other

case, st−1 ≤ st, is similar and it uses the other continuation. Also, the cases for
m[pc] ∈ {iflt pc′, ifeq pc′, ifnull pc′} are “identical” to “ifgt pc′” and therefore we
skip them.

Case 3: m[pc] ≡ invokenonvirtual m′ where m = start. This can happen only in
the initial state, therefore pc = 1 and n = 1. By definition C0 ≈ RC 0 and they are
of the form

—C0=〈start, 1, lv0, vt · · · v1〉;h0

—RC 0=〈start,m
′(s̄, s1), lv

′
0〉; h

0
rr where s = 〈s1, . . . , st〉 and lv ′0(si) = vi for all

1 ≤ i ≤ t;

Moreover, the method m′ has t− 1 arguments (t if we count the this reference l0),
and we assume that it has f ′ ≥ t local variables. According to the compilation
of the bytecode method m′ (Section 3.2), the corresponding RBR must have the
following two rules

m′(l0, . . . , lt−1, out)← true,m′

1(l0, . . . , lf ′−1, out)
m′

1(l0, . . . , lf ′−1, out)← true, body1

where body1 corresponds to the compilation of block m′
1 starting from the first

instruction m′[1]. Applying one execution step to C0 we get C1 = 〈m′, 1, lv1, ǫ〉 ·
〈start, 2, lv0, ǫ〉;h1 where h1 = h0, lv1(i) = vi+1 for all 0 ≤ i < t, and lv1(i) = 0

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

377

Cost Analysis of Object-Oriented Bytecode Programs · 63

or lv1(i) = null for all t ≤ i < f ′ (depending on the type). Applying two execution
steps to RC 0 we get:

RC1 = 〈m′,m′
1(l0, . . . , lf ′−1, out), lv ′1〉; 〈start[s1, out], ǫ, lv ′0〉; h

1
rr

RC2 = 〈m′
1, body1, lv

′
2〉 · 〈m

′[out , out], ǫ, lv ′1〉 · 〈start[s1, out], ǫ, lv ′0〉; h
2
rr

where lv ′2(li) = lv ′1(li) = lv1(i) = vi+1 for all 0 ≤ i < t and lv ′2(li) = lv ′1(li) =
lv1(i) = 0 or lv ′2(li) = lv ′1(li) = lv1(i) = null (depending on the type) for all
t ≤ i < f ′. Therefore, the top activation records of C1 and RC 2 are equiva-
lent, and therefore C1 ≈ RC 2 (since h2

rr = h1
rr = h0

rr and they have an equiva-
lent structure). Moreover, the configuration RC 1 is redundant, which implies that
RC 0 ;rr RC 1 ;rr RC 2 is equivalent to C0 ;bc C1. Therefore the theorem holds
for this case.

Case 4: m[pc] ≡ invokevirtual m′′. Suppose that m′′ has f ′ arguments (excluding
the this argument l0), the class of the object whose method is called is d, namely
class(hn−1 (lvn−1 (vt−f ′))) = d , and that resolving m′′ starting from d results in m′

(the actual method that we call) with f ′′ local variables (including l0). Applying
one execution step from Cn−1, we obtain the following bytecode configuration:

Cn ≡ 〈m
′, 1, lvn, ǫ〉 · 〈m, pc + 1, lvn−1, vt−f ′−1 · · · v1〉 · ar ; hn

where lvn(i) = vt−f ′+i for all local variables 0 ≤ i ≤ f ′, and lvn(i) = 0 or lvn(i) =
null for all local variables f ′ < i < f ′′ (depending on the type), and hn = hn−1.
According to the compilation as described in Section 3.2, and since Cn−1 ≈ RC k,
it must be that bc ≡ nop(invokevirtual m′′) ·mc

pc(l̄, s1, . . . , st, out). Moreover, based
on the sound class information that we assumed that is available, the RBR program
must include the following rules:

mc
pc(l̄, s1, . . . , st, out)← type(st−f ′ , d),mpc:d(l̄, s1, . . . , st, out)

mpc:d(l̄, s1, . . . , st, out)← true,m′(st−f ′ , . . . , st, st−f ′),mpc+1(l̄, s1, . . . , st−f ′ , out)
m′(l0, . . . , lf ′ , out)← true,m′

1(l0, . . . , lf ′′−1, out)
m′

1(l0, . . . , lf ′′−1, out)← true, body1

where body1 corresponds to the compilation of the block m′
1, starting from the first

instruction which corresponds to m′[1]. Applying five execution steps starting from
RC k we get:

RCk+1 = 〈mid1
,mc

pc(l̄, s1, . . . , st, out), lv ′k+1〉 · arrr ; h
k+1
rr

RCk+2 = 〈mc
pc,mpc:d(l̄, s1, . . . , st, out), lv ′k+2〉 · 〈mid1

[out , out], ǫ, lv ′k+1〉 · arrr ; h
k+2
rr

RCk+3 = 〈mpc:d,m
′(st−f ′ , . . . , st, st−f ′) ·mpc+1(l̄, s1, . . . , st−f ′ , out), lv ′k+3〉·

〈mc
pc[out , out], ǫ, lv ′k+2〉·

〈mid1
[out , out], ǫ, lv ′k+1〉 · arrr ; h

k+3
rr

RCk+4 = 〈m′,m′
1(l0, . . . , lf ′′−1, out), lv ′k+4〉·

〈mpc:d[st−f ′ , out],mpc+1(l̄, s1, . . . , st−f ′ , out), lv ′k+3〉·
〈mc

pc[out , out], ǫ, lv ′k+2〉·
〈mid1

[out , out], ǫ, lv ′k+1〉 · arrr ; h
k+4
rr

RCk+5 = 〈m′
1, body1, lv

′
k+5〉·

〈m′[out , out], ǫ, lv ′k+4〉·
〈mpc:d[st−f ′ , out],mpc+1(l̄, s1, . . . , st−f ′ , out), lv ′k+3〉·
〈mc

pc[out , out], ǫ, lv ′k+2〉·
〈mid1

[out , out], ǫ, lv ′k+1〉 · arrr ; h
k+5
rr

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

378

64 · E. Albert et al.

Note that RC k+1, RC k+2, RC k+3, and RC k+4 are redundant. Therefore, in order
to prove that RC 0 ;

k+5
rr RC k+5 is equivalent to C0 ;

n
rr Cn, we need to show that

Cn ≈ RC k+5, which holds due to the following points that can be verified using
the corresponding semantics rules:

—lv ′k+5(i) = vt−f ′+i for all local variables 0 ≤ i ≤ f ′, and lv ′k+5(i) = 0 or lv ′k+5(i) =
null for all local variables f ′ < i < f ′′ (depending on the type). Therefore, lv ′k+5

agrees with lvn on the values of all local variables, which together with that fact
that body1 corresponds to the compilation of the block m′

1 starting from m′[1],
implies that the top activation records of RC k+5 and Cn are equivalent.

—lv ′k+3(i) = lvn−1(i) for all variables 0 ≤ i < f , and lv ′k+3(si) = vi for all 1 ≤
i ≤ t − f ′ − 1 (since up to that point local and stack variables are just carried
around in m). This means that, in RC k+5, the corresponding activation record
(the one that has lv ′k+3) agrees on the local variables and stack values with
〈m, pc + 1, lvn−1, vt−f ′−1 · · · v1〉 in Cn. In addition, it is clear that Cn and RC k+5

are structurally equivalent, given that Cn−1 and RC k are structurally equivalent.

The proof for m[pc] ≡ invokenonvirtual m′′, with m 6= start is identical to this case,
so we skip it.

Case 5: m[pc] ≡ return. This case is the one for which we have needed to refine the
notion of equivalence, mainly in order to show that when returning from a method
we can return to an equivalent configuration. The configurations Cn−1 and Cn

must have the form:

Cn−1 ≡ 〈m, pc, lvn−1, vt · · · v1〉 · 〈m′, pc′, lv , v′t′ . . . v
′
1〉 · ar

′; hn−1

Cn ≡ 〈m
′, pc′, lv , v′t′+1 · v

′
t′ . . . v

′
1〉 · ar

′; hn

where vt′+1 = vt (the return value), and hn = hn−1. Moreover, since Cn−1 ≈ RC k,
then the following must hold (by the induction hypothesis):

—RC k ≡ 〈mid1
, out := st, lv

′
k〉 · arrr ; h

k
rr;

—There exists an activation record in arrr of the form

〈m′
pc′−1:d[st′+1, out],m′

pc′(l̄
′, s1, . . . , st′+1, out), lv ′〉

where l̄′ = 〈l0, . . . , lf ′−1〉 is the list of all local variables in m′ (assuming m′ has
f ′ local variables), such that lv ′(li) = lv(i) for all local variables 0 ≤ i < f ′, and
lv ′(si) = v′i for all 1 ≤ i ≤ t′;

—All activation records between the above one and the top activation record are
of the form 〈p[out , out], ǫ, 〉. Let us assume that there are k′ ≥ 0 such activation
records.

The above points necessarily imply that we can apply k′+2 execution steps starting
from RC k, one for the assignment out := vt and k′ + 1 using rule (11)rr, and get
into the following configuration

RC k+k′+2 ≡ 〈mpc′−1:d[st′+1, out],m′
pc′(l̄

′, s1, . . . , st′+1, out), lv ′′〉 · arrr ; h
k+k′+2
rr

where lv ′′ agrees with all values with lv ′ and in addition lv ′′(st−f ′) = vt, and
therefore agrees on all values with lv in Cn. Applying another step we get:

RC k+k′+3 ≡ 〈m
′
pc′−1:d[st′+1, out], body1, lv

′′′〉 · arrr ; h
k+k′+3
rr

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

379

Cost Analysis of Object-Oriented Bytecode Programs · 65

where lv ′′′ is identical to lv ′′, and body1 corresponds to the compilation of the block
m′

pc′ which starts with the instruction m′[pc′], and therefore the top activation
records of Cn and RC k+k′+3 are equivalent. Moreover it is easy to see that Cn and
RC k+k′+3 have an equivalent structure since it is inherited from Cn−1 and RC k,
and also all RC i such that k < i < k + k′ + 3 are redundant which implies that
RC 0 ;

k+k′+3
rr RC k+k′+3 is equivalent to C0 ;

n
bc Cn.

B. CORRECTNESS OF COST ANALYSIS

B.1 Proof of Lemma 5.4

The idea of the proof is to use the renamings that are used during the generation
of the abstract rules, in order to construct the mapping f which relates program
variables to their abstract ones. In order to do this, we attach to the abstract rule
the renamings (ρ) computed in Definition 5.2. Therefore, the abstract rules are
now of the form:

p(x, y′)← ϕ0 | b
α
1 , . . . , b

α
n ◦ 〈ρ1, . . . , ρn+1〉

where 〈ρ1, . . . , ρn+1〉 is the tuple of all renamings that were used during the ab-
stract compilation of that specific rule. In addition, we modify the abstract transi-
tion system that is defined in Section 5.2, in order carry around all corresponding
renamings

p(x̄, y)← ϕ | bα
1 , . . . , b

α
n ◦ 〈ρ1, . . . , ρn+1〉 ≪AC Pα, ψ∧ϕ 6|= false

AC= 〈〈p(x̄, y), φ〉·bcα, ψ, ρ · ρ̄〉;α 〈b
α
1 · · · b

α
n ·φ·bc

α, ψ∧ϕ, ρ1 · · · ρn+1 · ρ̄〉

ψ∧ϕ 6|= false

〈ϕ·bcα, ψ, ρ · ρ̄〉;α 〈bc
α, ψ∧ϕ, ρ̄〉

Clearly, this does not affect the abstract execution since the renamings are only
carried around. The reason for collecting them is just to make the construction
of the mapping f simpler. Note that when selecting a renamed apart abstract
rule, we assume also that the constraints variables in the range of each ρi are also
renamed (exactly as those in the body). Now abstract configurations are of the
form 〈p, bcα, ϕ, ρ̄〉 where ρ̄ is a stack of renamings.

For proving the lemma, we need a notion of structural equivalence in order to
claim that two traces correspond to the same execution. Therefore, in addition
to the requirements in Lemma 5.4, we claim that for each configuration RC ≡
ak · · · a0;h occurring at step number l in the ;rr-trace, it holds:

(1) ai = 〈pi[w
′, w], bci, lv i〉 for 0 ≤ i < k; and

(2) ak = 〈pk, bck, lvk〉.

(3) the corresponding abstract configuration (step l of ;α-trace) has the form

AC ≡ 〈bcα
k · φk · bc

α
k−1 · · ·φ1 · bc

α
0 , ϕ, ρ̄k · · · ρ̄0〉

where for all 0 ≤ i ≤ k

(a) bci ≡ bi:1 · · · bi:ki

(b) bcα
i ≡bα

i:1 · · · b
α
i:ki

;
(c) ρ̄i = ρi:1 · · · ρi:(ki+1);

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

380

66 · E. Albert et al.

(d) for all 1≤j≤ki, bα
i:j is the abstract compilation of bi:j with respect to

ρi:j which generates the new renaming ρi:(j+1) where range(ρi:(j+1)) \
range(ρi:j) 6⊆ vars(ϕ) are fresh variables that do not appear before (i.e.,
in the renaming to the right of ρi:(j+1));

(e) If i < k then ρ(i+1):(ki+1+1)(w
′) = ρi:1(w);

Note that the above requirements are added to those of Lemma 5.4, and therefore
we get a stronger lemma which implies Lemma 5.4. Similarly to the proof of
Theorem 3.10, the need for these requirements stems from the fact that we need
to state that corresponding concrete and abstract configuration are obtained by
executing the same instruction (in the concrete and abstract way), and also that
they will execute the same instruction (in the concrete and abstract way) in future
steps. We prefer to keep the additional requirements only in the proof in order to
simplify the presentation in the paper. Now we proceed with the proof by induction
on the length n of the concrete trace.

We start by explaining how to construct the mapping f at each step: given
RC i = 〈 , , lv i〉 and its corresponding AC i = 〈 , , ρi · ρ̄〉, we define f for the i-th
step variables as f(z, i) = ρi(z), for all z∈dom(lv i). For a trace of n steps, the
function is defined as the union of all mapping for the configurations.

Base Case. If the trace is of length 0, i.e., (n = 0), then:

RC0 ≡ 〈start, p(x̄, y), lv0〉;h0

Now we define:

AC0≡〈〈p(x̄, y
′), φ0〉, ϕ0, id · ρ0〉

where 〈p(x̄, y′), φ0〉 is the abstract compilation of p(x̄, y) with respect to the identity
renaming id , which generates ρ0 as the resulting renaming; and

ϕ0 =
∧

z∈x̄∪{y}

id(z) = α(z, static type(z),RC 0)

Now we define σ as σ(id(z)) = f(z, 0) = α(z, static type(z),RC 0), for all z∈x̄∪{y}.
Clearly σ |= ϕ0, and moreover the structural equivalence conditions hold for these
configurations. Therefore, the lemma holds for the base case.

Inductive case. Now we consider traces of length n + 1 > 0. Assuming that
the lemma holds for all ;rr-traces of length n≥0 (the induction hypothesis), we
show that it also holds for traces that consist of n+1 steps. Consider a ;rr-trace
of length n:

RC0 ≡ 〈start,

b
︷ ︸︸ ︷

p(x̄, y), lv0〉;h0 ;
n
rr

RCn ≡ 〈h, bcn, lvn〉 · arn;hn

By the induction hypothesis, there exists an ;α-trace of the form:

AC0 ≡ 〈b
α, ϕ0, ρ0〉; ;

n
α

ACn ≡ 〈bc
α
n · bc

α, ϕn, ρ̄n〉

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

381

Cost Analysis of Object-Oriented Bytecode Programs · 67

such that the conditions of the lemma are satisfied. Let us analyze how the lemma
extends to all possible ;rr-traces of length n+1 generated from the above concrete
and abstract traces. We reason for all possibles cases of Figure 7:

—Rule (1)rr . In this case

RCn ≡ 〈q, z := exp · bcn+1 , lvn〉 · arn;hn ;rr

RCn+1 ≡ 〈q, bcn+1, lvn+1〉 · arn;hn

where lvn+1 = lvn[z 7→ v] and v = eval(exp, lvn). By the induction hypothesis,
ACn = 〈w = expα · bcα

n+1 · bc
α, ϕn, ρn · ρn+1 · ρ̄〉 and there exists a valuation σ

and mapping f satisfying the conditions of the lemma. Applying one execution
step we get

ACn+1 = 〈bcα
n+1 · bc

α, ϕn+1, ρn+1 · ρ̄〉

where ϕn+1 is w = expα ∧ ϕn. It holds, by the induction hypothesis, that
w = expα is the abstract compilation of z := exp w.r.t. ρn, which generates the
new renaming ρn+1. Hence ρn+1(z) = w. Also by the induction hypothesis, w is
a fresh variable which does not occur in ϕn and dom(σ). Then, let us extend σ
such that:

σ(ρn+1(z)) = α(z, static type,RCn+1)

Since σ |= ϕn, we have to prove only that σ |= w = expα in order to get σ |= ϕn+1.
We distinguish several cases:

—exp is a numeric expression and hence all variables involved in exp are of type
integer. By definition of σ it holds σ(ρn+1(z)) = α(z, static type(z), RCn+1) =
lvn+1(z) = v. Hence σ(w) = v. On the other hand, by applying the induction
hypothesis together with the definition of abstract compilation, expα must
evaluate to v in σ since expα is obtained from exp by changing each program
variable by its corresponding abstract one. Hence σ |= w = expα.

—exp is not numeric. Then it has the form z = null or z = z′ where z and z′ are ei-
ther references or arrays. For the first case, by the definition of abstract compi-
lation, it holds that expα≡0 and also σ(ρn+1(z)) = path-length(lvn+1(z), hn) =
path-length(eval(null, lvn), hn) = 0 . Therefore σ |= w = 0. Suppose now that
exp≡z = z ′, where z and z′ are references. Then expα ≡ ρn+1 (z) = ρn(z ′).
But σ(ρn+1(z)) = path-length(lvn+1(z), hn) = path-length(lvn+1(z

′), hn) =
σ(ρn(z′)), and therefore σ |= w = ρn(z′). For the case of arrays we can
reason similarly.

It is clear that the mapping f as defined at the beginning of the proof satisfies
the conditions of the lemma, and moreover this step does not affect the structural
equivalence and therefore the lemma holds.

—Rule (2)rr . In this case:

RCn ≡ 〈q, z := new c · bcn+1, lvn〉 · arn;hn ;rr

RCn+1 ≡ 〈q, bcn+1, lvn+1〉 · arn;hn[r 7→ o]

where lvn+1 = lvn[z 7→ r], o = newobject(c) and r 6∈ dom(hn). By the induction
hypothesis, we can build a ;α-trace which finishes in the following abstract con-
figuration ACn≡〈w = 1 · bcα

n+1 · bc
α, ϕn, ρn · ρn+1 · ρ̄〉, for which all conditions in

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

382

68 · E. Albert et al.

the lemma holds. Concretely ρn+1(z) is a fresh variable which does not occur in
ϕn and hence we can extend σ so that σ(ρn+1(z)) = 1, i.e. σ(w) = 1. With such
a σ we can execute the following step:

ACn ;α 〈bc
α
n+1 · bc

α, ϕn ∧ w = 1, ρn+1 · ρ̄〉

Also, σ(ρn+1(z)) = α(z, static type(z),RCn+1) since z points to a new object and
therefore α(z, static type(z),RCn+1) = path-length(lvn+1(z), hn[r 7→ o]) = 1. It
is clear that the mapping f as defined at the beginning of the proof satisfies the
conditions of the lemma, and moreover this step does not affect the structural
equivalence and therefore the lemma holds.

—For rules (3)rr and (4)rr , the reasoning is similar to the above but in addition it
is based on the correctness of path-length (Theorem 5.12 in Spoto et al. [2006b]).
Moreover, these instructions do not affect the structural equivalence, and there-
fore the lemma holds.

—For rules (5)rr and (6)rr , (7)rr , it is clear that the instructions do not change the
structural equivalence defined at the beginning of this proof. For (5)rr , the same
σ still satisfies the conditions of the lemma for the n+1 since the abstract values
do no change (updating an array does not change its length), and moreover no
new abstract variables are introduced when compiling this instruction. For (6)rr ,
since an array is abstracted to its length, when accessing an array element all we
can say is that its (path-length) size is non-negative if it is of reference type (which
is clearly an approximation of the concrete one), otherwise no information is
obtained (true). Extending σ such that σ(ρn+1(x)) = α(x, static type(x),RCn+1)
clearly satisfies ϕn+1.

—For rules (7)rr and (8)rr the proof is similar, we explain the one for rule (7)rr .
We have that

RCn ≡ 〈q, z := arraylength(w) · bcn+1, lvn〉 · arn;hn ;rr

RCn+1 ≡ 〈q, bcn+1, lvn+1〉 · arn;hn[r 7→ o]

where lvn+1 = lvn[z 7→ o.length], o = h(lvn(w)) and lvn(w) 6= null. By the
induction hypothesis, we can build a ;α-trace which finishes in the following
abstract configuration

ACn = 〈z′ = w′ ∧ z′≥0 · bcα
n+1 · bc

α, ϕn, ρn · ρn+1 · ρ̄〉

and satisfies the conditions of the lemma. Since z′ = w ∧ z′≥0 is the abstract
compilation of z := arraylength(w) with respect to ρn which generates as new
renaming ρn+1, then it holds that ρn(w) = w′ and ρn+1(z) = z′. By the induction
hypothesis z′ does not occur in ϕn, then we can extend σ so that

σ(z′) = σ(ρn+1(z)) = α(z, static type(z),RCn+1)

We have to prove that σ(z′) = σ(w′) and σ(z′)≥0. But σ(w′) = σ(ρn(w)). And
by the induction hypothesis

σ(w′) = σ(ρn(w)) = α(w, static type(w),RCn) = array-length(lvn(w), hn) = o.length≥0

On the other hand σ(z′) = α(z, static type(z),RCn+1) = lvn+1(z). But lvn+1(z) =
o.length. Hence σ(z′) = σ(w′) and σ(z′)≥0.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

383

Cost Analysis of Object-Oriented Bytecode Programs · 69

—For rules (9)rr , since we abstract the instruction to true and the corresponding
instruction has no effect on the state, then the lemma holds trivially by taking
the valuation σ coming from the induction hypothesis.

—Rule (10)rr . Then

RCn ≡ 〈h, q(z̄, w) · bcn, lvn〉 · arn;hn ;rr

RCn+1 ≡ 〈q, bcn+1, lvn+1〉 · 〈h[w′, w], bcn, lvn〉 · arn;hn

where r≡q(z̄′, w′) ← g′, bc′∈Prr , bc′ = bcn+1, lvn+1 = newenv(q), lvn+1(z̄
′) =

lvn(z̄), eval(g′, lvn+1) = true. By the induction hypothesis, we can build an
abstract derivation AC 0 ;α ACn satisfying the conditions of the lemma, and
hence:

ACn≡〈〈q(ā, b), φn〉 · bc
α
n · bc

α, ϕn, ρn · ρn+1 · ρ̄〉

where 〈q(ā, b), φn〉 is the abstract compilation of q(z̄, w) w.r.t. ρn which generates
the new renaming ρn+1. Hence, according to the rules in Figure 8, it holds that

ρn(z̄) = ā (1)
ρn+1(w) = b

On the other hand, also by the induction hypothesis, there exists a valuation σ
verifying the conditions of the lemma, i.e., for all c∈dom(lvn), σ(ρn(c)) = α(c,
static type(c),RCn) and σ |= ϕn.

Let us take rα≡q(ā, b)← ϕ∧g′α | bc′α ◦ρq
first · ρ̄

q ·ρq
last ≪ACn

Pα. Then, it holds
by construction that:

ϕ = {x = 0 | x∈var(rα)\ā}
ρq
first(z̄

′) = ā (2)

ρq
last(w

′) = b

i.e, ρq
last(w

′) = b = ρn+1(w). By definition of rα, it holds that all variables in rα

different from ā are fresh variables, i.e, they do not appear in ϕn. Hence, we can
extend σ as follows:

σ(ρq
first(c)) = α(c, static type(c),RCn+1)

for all c∈var(r)\z̄′ and it holds that σ |= ϕn. Let us prove now that for all z′i∈z̄
′

it holds that σ(ρq
first(z

′
i)) = α(z′i, static type(c),RCn+1). But:

α(z′i, static type(z′i),RCn+1) = % lvn+1(z
′
i) = lvn(zi)

% and the heap does not change
α(zi, static type(zi),RCn) = % induction hypothesis
σ(ρn(zi)) = % by (1)
σ(ai) = % by (2)
σ(ρfirst(z

′
i))

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

384

70 · E. Albert et al.

Hence we have proven that for all c∈dom(lvn+1) it holds that σ(ρq
first(c)) = α(c,

static type(c),RCn+1).

In order to give the corresponding ;α-step, we have to prove that σ |= ϕ ∧ g′α:

(1) [σ |= ϕ] Let x be any variable in ϕ. By construction of rα we know that there
exists a variable c∈var(r)\z̄′ such that ρq

first(c) = x. By definition of σ it holds

that σ(ρq
first(c)) = α(c, static type(c),RCn+1). But α(c, static type(c),RCn+1)

depends on the value of lvn+1(c) together with hn. But since c6∈z̄′, then
newenv(q) guarantees that lvn+1(c) is either equal to 0 or null depending on
the type of c. For both cases the corresponding abstraction carried out by α
is 0 and hence σ |= x = 0, i.e., σ |= ϕ.

(2) [σ |= g′α]. We distinguish two cases:

—g′ is a numeric guard, i.e., all its variables are of type integer. Let us consider
any variable c in g′. Then ρq

first(c)∈g
′α. By definition, σ(ρfirst(c)) = α(c,

static type(c),RCn+1). But α(c, static type(c),RCn+1) = eval(c, lvn+1) =
lvn+1 (c). Now, since eval(g ′, lvn+1) = true then σ |= g′α.

—g′ contains variables whose static type is either an array or a reference. Then
g′≡c = null or g′≡c = d. For the first case g′α≡ρfirst(c) = 0. By definition
of σ, it holds that σ(ρfirst(c)) = 0. Then σ |= c = null.
Let us consider guards g′ of the form c = d, where c and d are references.
We have that g′α≡ρfirst(c) = ρfirst(d).
Then, by definition of σ, σ(ρfirst(c)) = path-length(lvn+1(c), hn). But since
eval(g ′, lvn+1) = true, then

path-length(lvn+1(c), hn) = path-length(lvn+1(d), hn)

Hence σ(ρfirst(c)) = σ(ρfirst(d)) and the result holds. For the case of arrays
we can follow the same reasoning.

Note that the resulting configuration at step n + 1 still satisfies the structural
equivalence as specified at the beginning of the proof. This holds since in step
n + 1 we add to the concrete trace a sequence of bytecode and to the abstract
one their corresponding abstract formula and the renamings that were used to
generate them.

—Rule (11)rr . Then:

RCn ≡ 〈q, ǫ, lvn〉 · 〈h[w
′, w], bcn+1, lvn+1〉 · arn;hn ;rr

RCn+1 ≡ 〈h, bcn+1, lvn+1[w 7→ lvn(w′)]〉 · arn;hn

By the induction hypothesis it holds that we can build a ;α-trace verifying the
conditions of the lemma and such that:

ACn≡〈φn · bc
α
n+1 · bc

α, ϕn, ρ
q
last · ρn+1 · ρ̄〉

Furthermore, it holds, by the induction hypothesis, that ρq
last(w

′) = ρn+1(w) and
that there exists a valuation σ defined as σ(ρn+1(c)) = α(c, static type(c),RCn),
for all c∈dom(lvn) such that σ |= ϕn. Then we have that:

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

385

Cost Analysis of Object-Oriented Bytecode Programs · 71

(∗)

σ(ρn+1(w)) = % By induction hypothesis
σ(ρq

last(w
′)) = % By induction hypothesis

α(w′, static type(w′),RCn) = % lvn+1(w) = lvn(w′)
% and the heaps are identical

α(w, static type(w),RCn+1)

Let us consider the last activation record RC k, k<n, in which a call to q was the
first instruction to be processed.

RCk ≡ 〈h, q(z̄, w) · bck, lvk〉 · ark;hk

RCk+1 ≡ 〈q, bc
′, lvk+1〉 · 〈h[w

′, w], bck, lvk〉 · ark;hk

where r≡q(z̄′, w′) ← g′, bc′ ∈ Prr , lvk+1(z̄
′) = lvk(z̄), lvk+1 = newenv(q). Note

that dom(lvn+1) = dom(lvk). We have then:

RC 0 ;
k
rr RC k ;rr RC k+1 ;

∗
rr RCn ;rr RCn+1

By the induction hypothesis, we can build a ;α-trace of the form:

AC 0 ;
k
α AC k ;α AC k+1 ;

∗
α ACn

which satisfies the conditions of the lemma. Concretely:

ACk≡〈〈q(ā, b), φk〉 · bc
α
k ·2, ϕk, ρk · ρk+1 · ρ̄k〉

ACk+1≡〈bc
′α · φk · bc

α
k ·2, ϕk+1, ρ

q
first · ρ̄k+1〉

ACn≡〈φk · bc
α
n+1 · bc

α, ϕn, ρ
q
last · ρk+1 · ρ̄〉

where φk≡φn and 〈q(ā, b), φk〉 is the abstract compilation of q(z̄, w) w.r.t. ρk

which generates as new renaming ρk+1 and ρk+1≡ρn+1. Furthermore, ρk+1(z̄) =
a.
Let us distinguish two cases:
—φn≡true. Then by using σ we can give the following ;α-step and compute:

ACn+1≡〈bc
α
n+1 · bc

α, ϕn, ρn+1 · ρ̄〉

Let us prove now that for all c∈dom(lvn+1) it holds that σ(ρn+1(c)) = α(c,
static type(c), RCn+1). To this end, let us consider all possible variables in
such a domain:
—If c is different from z̄ and w, then the result holds trivially since such

variables are not modified by the execution of q and any modification on the
heap done by q does not affect them. Note that this holds since lvk+1 =
newenv(q). Then:

σ(ρk+1(c)) = % by definition
σ(ρk(c)) = % induction hypothesis
α(c, static type(c),RC k) = % not affected by the execution of q
α(c, static type(c),RCn+1)

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

386

72 · E. Albert et al.

—If c = w then we have already proven it in (*)
—Suppose now that c∈z̄, i.e., c = zi. Since φn is true, then the information

in the heaps hn and hk remains the same for such a variables. On the other
hand, we have that lvk(zi) = lvn+1(zi). Hence, σ(ρn+1(zi)) = σ(ρk+1(zi)) =
σ(ρk(zi)). But by the induction hypothesis,

σ(ρk(zi)) = α(zi, static type(zi),RC k)

But according to the argumentation above, we have then:

α(zi, static type(zi),RC k) = α(zi, static type(zi),RCn+1)

—φn 6=true. Then we can argue as in the above case except for those variables in
z̄ which are involved in φn. For such variables zi, we have in φn a constraint
of the form ρk+1(zi)≥0 or ρk+1(zi)≥1, according to the definition of abstract
compilation. Furthermore, by the induction hypothesis ρk+1(zi) are fresh vari-
ables. Thus, we can extend σ as σ(ρk+1(zi)) = α(zi, static type(zi),RCn+1)
and the result holds trivially.

Note that the resulting configuration at step n + 1 still satisfies the structural
equivalence as specified at the beginning of the proof.

B.2 Proof of Lemma 5.11

We will prove this lemma by induction on the length n of the ;α-trace. In what
follows we use φq

io in order to refer to the input-output relation of q, and φq
sh in

order to refer to the formula resulted from the abstract compilation of a call, i.e.,
the information about the variables that might be updated during the execution of
call. We enrich the lemma’s conditions as follows: For all 0≤i≤n:

(1) if AC i = 〈〈q(x̄i, yi), φ
q
sh〉 · bc

α
i , ϕi〉, then AC ′

i = 〈〈q(x̄i), φ
q
sh ∧ φ

q
io〉 · bc

α
i , ϕi ∧ φio〉

where φq
io are the input output size relations for q;

(2) if AC i = 〈ψi · bc
α
i , ϕi〉, then AC ′

i = 〈ψi · bc
io
i , ϕi ∧ φio〉;

(3) if AC i = 〈φq
sh · bc

α
i , ϕi〉 then AC ′

i = 〈φq
sh ∧ φ

q
io · bc

io
i , ϕi ∧ φio〉, where φq

io are
the input output size relations corresponding to the last procedure call q oc-
curring in the ;α-trace.

(4) if AC i = 〈ǫ, ϕi〉, then AC ′
i = 〈ǫ, ϕi ∧ φio〉 and i = n.

where φio corresponds to all input output size relations of all procedures whose
bodies have been completely derived in the ;io-trace before step i.

Base Case (n = 0). Then

AC0≡〈〈p(x̄, y), φp
sh〉, ϕ0〉

AC′
0≡〈〈p(x̄), φ

p
sh ∧ φ

q
io〉, ϕ0〉

and the result holds trivially.

Inductive case (n>0). Let us assume that the result holds for ;α-traces of length
n>0. Let us analyze the step n+1.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

387

Cost Analysis of Object-Oriented Bytecode Programs · 73

AC0 ;
n
α ACn ≡ 〈bc

α, ϕn〉

and by the induction hypothesis:

AC′
0 ;

n
io AC′

n ≡ 〈bc
io , ϕn ∧ φio〉

and the conditions of the lemma are satisfied. Note that if bcα≡ǫ then the result
holds trivially by the induction hypothesis. Let us assume that bcα 6≡ǫ. Now, let us
analyze points (1)...(3) of the statement of the lemma:

(1) Then ACn ≡ 〈〈q(z̄, w), φq
sh〉 · bc

α, ϕn〉 and, by the induction hypothesis

AC ′
n≡〈〈q(z̄), φ

q
sh ∧ φ

q
io〉 · bc

io , ϕn ∧ φio〉

where q(z̄, w) ← ϕ′ | bc′α ◦ ρ ≪AC Pα and q(z̄) ← ϕ′ | bc′αio ≪AC P io. The
n+1-step in the abstract compilation generates:

ACn+1≡〈bc
′α · φq

sh · bc
α, ϕn ∧ ϕ

′〉

where σ is a valuation such that σ |= ϕn ∧ ϕ
′. By the induction hypothesis

ϕn |= ϕn ∧φio . Then we have trivially that σ |= ϕn ∧ϕ′ ∧φio . Then we can give
the following ;io-step:

AC ′
n+1≡〈bc

′αio · φq
sh ∧ φ

q
io · bc

io , ϕn ∧ ϕ
′ ∧ φio〉

and the result holds.

(2) Then ACn ≡ 〈ψn · bc
α, ϕn〉 and, by the induction hypothesis

AC ′
n≡〈ψn · bc

io , ϕn ∧ φio〉

Again, by the induction hypothesis it holds ϕn |= ϕn ∧ φio . If we execute the
;α-step, we get ACn+1 ≡ 〈bc

α, ϕn ∧ ψn〉, where there exists a valuation σ such
that σ |= ϕn ∧ ψn. By using the same σ, we have that σ |= ϕn ∧ ψn ∧ φio .
Hence we can give the corresponding ;io-step in order to compute AC ′

n+1 ≡

〈bcio , ϕn ∧ ψn ∧ φio〉 which states the lemma.

(3) In this case ACn≡〈φ
q
sh · bc

α, ϕn〉, and ACn+1 ≡ 〈bc
α, ϕn ∧ φ

q
sh〉, where σ is a

valuation such that σ |= ϕn ∧ φ
q
sh . By the induction hypothesis, it holds that

AC ′
n≡〈φ

q
sh ∧ φ

q
io · bc

io , ϕn ∧ φio〉 and ϕn ∧ φ
q
sh |= ϕn ∧ φio .

Let us consider now the subtrace corresponding to the corresponding derivation
of q.

〈〈q(z̄, w), φq
sh〉, true〉;

∗
α 〈φ

q
sh , ϕq〉;α 〈ǫ, ϕq ∧ φ

q
sh〉

It holds trivially that ϕn |= ϕq. From Lemma 5.7, it holds that ϕq ∧ φ
q
sh |= φq

io .
By considering σ, we have that σ |= ϕn ∧ φio ∧ φ

q
io ∧ φ

q
sh . Hence we can execute

the corresponding n+1-step in the ;io-trace which satisfies the lemma.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

388

74 · E. Albert et al.

B.3 Proof of Theorem 5.17

This Lemma is an immediate consequence of Lemmas 5.4 and 5.11 together with the
requirements for a symbolic cost model to be valid as described in Definition 5.13.
The main point is that in Lemma 5.4, we have proven that at each point of the
execution, whenever we execute an instruction b in the concrete trace then in the
abstract we will “execute” bα which is the abstract compilation of b with respect
to some renaming ρ. Now since each cost expression is generated from b using the
same ρ (possible renamed apart), then it is guaranteed (by Definition 5.13) that
the cost expression ρ(Ms(b)) is evaluated (in σ of Lemma 5.4) to exactly the cost
of b, and therefore accumulating the cost of the concrete and the abstract trace
results in the same cost.

Submitted to ACM Transactions on Programming Languages

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

389

Resource Usage Analysis and its

Application to Resource Certification

Elvira Albert1, Puri Arenas1, Samir Genaim2,
Germán Puebla2, and Damiano Zanardini2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. Resource usage is one of the most important characteristics
of programs. Automatically generated information about resource usage
can be used in multiple ways, both during program development and
deployment. In this paper we discuss and present examples on how such
information is obtained in COSTA, a state of the art static analysis sys-
tem. COSTA obtains safe symbolic upper bounds on the resource usage
of a large class of general-purpose programs written in a mainstream pro-
gramming language such as Java (bytecode). We also discuss the appli-
cation of resource-usage information for code certification, whereby code
not guaranteed to run within certain user-specified bounds is rejected.

1 Introduction

One of the most important characteristics of a program is the amount of re-
sources that its execution will require, i.e., its resource usage. Typical examples
of resources include execution time, memory watermark, amount of data trans-
mitted over the net, etc. Resource usage information has many applications, both
during program development and deployment. Therefore, automated ways of es-
timating resource usage are quite useful and the general area of resource usage
analysis (or resource analysis for short) has received considerable attention.

Statically estimating the resource usage of realistic programs is far from
trivial. Thus, in the current practice, safe resource usage guarantees are only
available for critical applications with strong resource usage constraints. These
include real-time applications, which are required to execute within a certain
maximum amount of time. Such applications are the subject of Worst Case Exe-
cution Time Analysis (WCET analysis for short), which is a quite active research
area. See e.g. [23]. Unfortunately, WCET analysis for mainstream hardware and
software is extremely complicated. On the hardware side, modern computer ar-
chitectures have multiple memory levels and internal pipelining which make it
rather difficult to predict the execution time of machine instructions. On the
software side, accurately estimating the number of times each program loop
and recursion will execute is a rather complex problem. In order to ease the
situation, on the hardware side, real-time applications often run on embedded

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

390

systems whose timing behaviour is much more predictable. On the software side,
real-time applications are programmed in restricted versions of general languages
such as Real-Time Java or are designed and implemented using special languages
such as Hume [27] and Timber [1], which are rooted in functional programming
and have tool support for performing WCET analysis. Similarly, when strong
memory usage limitations are in place, the programming constructs allowed are
often very restricted, disallowing recursion or, as in the case of JavaCard, even
strongly discouraging the use of dynamic memory allocation after the initializa-
tion phase of the applet.

In this paper we discuss the main techniques used in COSTA [5], a static
analysis system which allows obtaining safe symbolic upper bounds on the re-
source usage of Java bytecode (JBC for short). COSTA follows the classical
approach to static resource analysis proposed in Wegbreit’s seminal work [57]
and which consists of two phases. First, given a program and a cost model, the
analysis produces cost relations (CRs for short). Second, the systems tries to
obtain closed-form upper-bounds for them. The results are symbolic in the sense
that they do not refer to concrete, platform dependent, resources such as ex-
ecution time, but rather they provide platform-independent information. This
has the advantage that the results are applicable to any implementation of the
Java Virtual Machine (JVM) on any particular hardware. It also has the dis-
advantage that the information cannot refer to platform specific resources such
as run-time. The fact that the analysis handles JBC represents that, at least in
principle, it can deal with general-purpose programs written in a mainstream
programming language such as Java and potentially other languages compiled
to JBC. The upper bounds computed by COSTA can then be compared against
user-provided resource usage specifications. This allows automatically rejecting
code not guaranteed to execute within the specified resources.

Note that, unlike COSTA, previous resource analyses based on Wegbreit’s
approach have been formulated on, less widely used, declarative programming
languages [57,35,44,22]. There are very few approaches for imperative program-
ming languages [25] and, unlike COSTA, they are formulated at the source code
level and they do not follow Wegbreit’s approach. However, analyzing compile
code has wider applicability, since it is quite often the case with Java applications
that the code consumer has access to the bytecode, often bundled in jar files,
but no access to the source code, as usual for commercial software and in mobile
code. In the context of mobile code, programming languages which are compiled
to bytecode and executed on a virtual machine are widely used nowadays. This
is the approach used by Java bytecode and .NET. Mobile code was the motiva-
tion for the concept of Proof-Carrying Code [41]: in order for the mobile code
to be verifiable by the user, security properties (including resource usage limita-
tions) must refer to the code available to the user, i.e., the bytecode, so that it
is possible to check the provided proof and verify that the program satisfies the
requirements (e.g., that the code does not require more than a certain amount
of memory, or that it executes in less than a certain amount of time).

2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

391

Among all possible applications of resource analysis, in this work we describe
its application to resource certification, whereby programs are coupled with in-
formation about their resource usage. This information allows deciding whether
the resources used by the program execution are acceptable or not before running
the program. Note that resource usage can be considered a security property of
untrusted mobile code, possibly in the context of proof-carrying code. Programs
whose resource usage is not certified are potentially harmful, since their execu-
tion may require more resources than we are willing to spend or they may even
have monetary cost by executing billable events such as sending text messages or
making http connections on a mobile phone. In fact, mobile devices is one of the
settings where resource certification is more important, because of the limited
computing power typically available on mobile devices.

The rest of the paper is structured as follows. In Section 2 object-oriented
bytecode, in the style of Java bytecode, is briefly described. This is required
to understand the different examples in the paper, which show how resource
analysis of a bytecode program is performed. Then, in Section 3, we describe, by
means of examples, how to obtain CRs from a program and a cost model, whereas
in Section 4 we illustrate how to obtain closed-form upper-bounds for CRs.
Section 5 describes the application of resource analysis to resource certification.
In Section 6 we present an overview on the existing large body of work on
resource analysis. Finally, the conclusions and some venues for future work are
discussed in Section 7.

2 The Context: Object-Oriented Bytecode

In order to simplify the formalization of our analysis, a simple object-oriented
bytecode language is considered, which roughly corresponds to a representative
subset of sequential Java bytecode. We refer to it as simple bytecode. For short,
unless we explicitly mention Java bytecode, all references to bytecode in the
rest of the paper correspond to our simple bytecode. Simple bytecode is able
to handle integers and object creation and manipulation. For simplicity, simple
bytecode does not include advanced features of Java bytecode, such as excep-
tions, interfaces, static methods and fields, access control (e.g., the use of public,
protected and private modifiers) and primitive types besides integers and refer-
ences. Anyway, such features can be easily handled in this framework, as done
in the implementation of the COSTA system.

A bytecode program consists of a set of classes C, partially ordered with
respect to the subclass relation. Each class c ∈ C contains information about
the class it extends, and the fields and methods it declares. Subclasses inherit
all the fields and methods of the class they extend. Each method comes with a
signature m which consists of the class where it is defined, its name and its type.
For simplicity, all methods are supposed to return a value. There cannot be two
methods with the same signature. The bytecode associated to a method m is a
sequence 〈b1, . . . , bn〉 where each bi is a bytecode instruction. Local variables of
a k-ary method are denoted by 〈l0, . . . , ln〉 with n ≥ k−1. In contrast to Java

3

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

392

public static int binarySearch(int[] t, int v, int l, int u) {
int m;
while (l <= u) {

m = (l + u) / 2;
if (t[m] == v) return m;
if (t[m] > v) u = m - 1;
else l = m + 1;

}
return -1;

}

0 : load 2

1 : load 3

2 : ifgt 31

3 : load 2

4 : load 3

5 : add
6 : push 2

7 : div
8 : store 4

9 : load 0

10 : load 4

11 : aload
12 : load 1

13 : ifneq 16

14 : load 4

15 : return

16 : load 0

17 : load 4

18 : aload
19 : load 1

20 : ifleq 26

21 : load 4

22 : push 1

23 : isub
24 : store 3

25 : goto 0

26 : load 4

27 : push 1

28 : add
29 : store 2

30 : goto 0

31 : push -1

32 : return

Fig. 1. A Java source (left) with its corresponding bytecode (right)

source, in bytecode the this reference of instance (i.e., non-static) methods is
passed explicitly as the first argument of the method, i.e., l0 and 〈l1, . . . , lk〉
correspond to the k formal parameters, and the remaining 〈lk+1, . . . , ln〉 are the
local variables declared in the method. For static k-ary methods 〈l0, . . . , lk−1〉 are
used for the formal parameters and 〈lk, . . . , ln〉 for the local variables declared
in the method. Similarly, each field f has a unique signature which consists of
the class where it is declared, its name and its type . A class cannot declare two
fields with the same name. The following instructions are included:

bcInstr ::= load i | store i | push n | pop | dup | add | sub | div
| iflt j | ifgt j | ifleq j | ifeq j | ifneq j | ifnull j | goto j
| new c | getfield f | putfield f
| newarray d | aload | astore | arraylength
| invokevirtual m | invokenonvirtual m | return

Similarly to Java bytecode, simple bytecode is a stack-based language. The
instructions in the first row manipulate the operand stack. The second row con-
tains jump instructions. Instructions in the third row manipulate objects and
their fields, while the fourth row works on arrays. The last row contains instruc-
tions dealing with method invocation. As regards notation, i is an integer which
corresponds to a local variable index, n is an integer or null, j is an integer
which corresponds to an index in the bytecode sequence, c ∈ C, m is a method
signature, and f is a field signature.

We assume an operational semantics which is a subset of the JVM specifica-
tion [37]. The execution environment of a bytecode program consists of a heap
h and a stack A of activation records. Each activation record contains a pro-
gram counter, a local operand stack, and local variables. The heap contains all
objects and arrays allocated during the execution of the program. Each method
invocation generates a new activation record according to its signature. Different
activation records do not share information, but may contain references to the
same objects in the heap.

4

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

393

Example 1. (running example) Figure 1 depicts the bytecode and a possible Java
source (only shown for clarity of the presentation) of our running example. The
Java program implements the binary search of an element v in a sorted array t.
Variables l and u represent two indexes in the array t. If there exists a position
l≤m≤u such that t[m] is equal to v, then m is returned as result. Otherwise the
method returns −1. The table of local variables is indexed from 0 to 4 and it
contains the values of t, v, l, u and m respectively.

The first three instructions check the negation of the loop condition. If the
check succeeds, i.e., the loop condition does not hold, then the body of the loop
is not executed and the control goes to instruction 31, where the constant −1
is returned as the result (instruction 32) of the method. Otherwise the value of
(l+u)/2 is stored in m in instructions 3–8. Then, instructions 9–13 check whether
t[m]! =v holds. It the check fails, meaning that t[m]==v, then instruction 14 is
executed, where variable m is pushed on the stack and returned as result in
15. Otherwise, the execution jumps to line 16, where the second if is checked
(instructions 16, . . . , 20). If t[m]>v then instructions 21, . . . , 24 store the value
of m−1 in u and at instruction 25 the control goes back to the beginning of the
loop, i.e., instruction 0. Otherwise, the value of m+1 (instructions 26, . . . 30) is
assigned to l and, similarly, control returns to instruction 0. 2

3 Cost Analysis: from Bytecode to Cost Relations

This section describes how a bytecode program is analyzed in order to produce
a cost relation system (CRS) which describes its resource consumption. The
analysis consists of a number of steps: (1) the control flow graph of the program
is computed, and afterwards (2) the program is transformed into a rule-based
representation which facilitates the subsequent steps of the analysis without
losing information about the resource consumption; (3) size analysis and abstract
compilation are used to generate size relations which describe how the size of
data changes during program execution; (4) the chosen cost model is applied to
each instruction in order to obtain an expression which represents its cost; (5)
finally, a cost relation system is obtained by joining the information gathered in
the previous steps.

3.1 Control Flow Graph

The control flow graph of a program allows statically considering all possible
paths which might be taken at runtime, which is essential information for study-
ing its cost. Unlike structured languages such as Java, bytecode features un-
structured control flow, due to conditional and unconditional jumps. Reasoning
about unstructured programs is more complicated for both human-made and
automatic analysis. Moreover, the control flow is made even more difficult to
deal with by virtual method invocation and the need to handle exceptions. Each
node of a control flow graph contains a (maximal) sequence of non-branching
instructions, which are guaranteed to be executed sequentially. This amounts

5

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

394

15 : return
14 : load 4

7 : div
8 : store 4

1 : load 3

32 : return

10 : load 4
11 : aload
12 : load 1

l > u

t[m] > v

t[m] <= v

17 : load 4
18 : aload
19 : load 1

0 : load 2
4 : load 3

6 : push 2

9 : load 0

29 : store 2

nop(goto 0)

22 : push 1
23 : sub
24 : store 3

nop(goto 0)

nop(ifgt 31)

31 : push −1

3 : load 2

5 : add

nop(ifneq 16)

16 : load 0

nop(ifleq 26)

26 : load 4
27 : push 1
28 : add

21 : load 4

t[m] == v

l <= u

t[m] != v

binSearch14

binSearch31

binSearch0

binSearch3

binSearch26

binSearch16

binSearch21

[¬ gt]

[¬ gt]

[¬ eq]

[eq]

[gt]

[gt]

Fig. 2. The control flow graph of the running example

to saying that execution always starts at the beginning of the sequence, and
the instructions in the sequence are executed one after the other until the end,
without executing any other piece of code in the meanwhile.

The CFG can be built using standard techniques [2], suitably extended in
order to deal with virtual method invocation. For this, it is essential to perform
class analysis (see e.g. [51] and its references) which allows statically obtaining a
safe approximation of the set of classes to which an object variable may belong
to at runtime. Consider, for example, an object o, and suppose class analysis
determines that a set C contains all classes to which o may belong at a given
program point which contains a call of the form o.m(). Then, such call is trans-
lated into a set of calls o.mc, one for every class c ∈ C where m is defined. This
is obtained by adding new dispatch blocks, containing calls invoke(c.m) to each
implementation of m. Access to such blocks is guarded by mutually exclusive
conditions on the runtime class of o.

Figure 2 shows the CFG of the running example. The graph contains 7
nodes, each composed of non-branching instructions which are always executed
sequentially. All nodes end either in a return instruction (as in binSearch31 and
binSearch14), or in an instruction labeled with nop(), which indicates a condi-
tional or unconditional jump in the original bytecode. Edges corresponding to
conditional jumps are marked with a guard (which appears in brackets in the

6

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

395

figure; for clarity, conditions in the original Java program are also shown with-
out brackets) representing the condition under which the edge can be traversed.
Guards which are true are omitted. Instructions wrapped in a nop() have been
replaced by edges in the CFG, but their place in the code is kept in order to take
into account their costs when generating the corresponding cost relation system,
as will be explained in Section 4 below.

3.2 Rule-based Representation

The rule-based representation (RBR) of a program is rich enough to preserve the
information about cost, while being simple enough to develop a precise cost anal-
ysis, since some advanced features are compiled away, and control flow has been
simplified. It is a structured procedural language with some relevant features:

1. recursion becomes the only iterative construct;
2. guarded rules are the only form of conditional construct;
3. there is only one kind of variables: local variables; and there is no operand

stack (instead, the k-th position in the stack becomes an additional local
variable sk, exploiting the fact that, in Java bytecode, the height of the
stack at each program point can be statically determined);

4. some object-oriented features are no longer present:

– objects can be basically regarded as records including an additional field
which contains their type;

– the behaviour due to dynamic dispatch is compiled into dispatch blocks;
– the language deals with the rest of object-oriented features by supporting

object creation, field manipulation and arrays;

5. methods are represented as collections of related blocks, and executing a
method is equivalent to executing the entry block of its representation.

These design choices help to make the generation of cost relation systems feasible,
and consistent with the program structure. The rule-based representation of
a program consists of a set of (global) procedures, one for each node in the
CFG. Each procedure consists of one or more rules. A rule for a procedure p
with k input arguments x̄ and a (single) output argument y takes the form
p(x̄, y) ← g, body where p(x̄, y) is the head, g is a guard expressing a boolean
condition, and body is (a suitable representation of) the instructions which are
contained in the node.

A guard can be either true, any linear condition about the value of variables
(e.g., x + y > 10), or a type check type(x, c). Every (non-branching) instruction
in the body is represented in a more readable (and closer to source code) syntax
than the original bytecode (Figure 3). E.g., the instruction load i which loads
the i-th local variable li into a new topmost stack variable st+1 is written as
st+1 := li (remember that variables named sk originate from the k-th position
in the stack but they are actually local variables in the RBR). Moreover, add
is translated to st−1 := st−1 + st, where t is the current height of the stack in
the original program, and putfield f is turned into st.f := st. As in the control

7

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

396

bj comp(bj)

load i st+1 := li
store i li := st

push n st+1 := n
pop nop(pop)
dup st+1 := st

add st−1 := st−1 + st

sub st−1 := st−1 − st

lt st−1 < st

gt st−1 > st

eq st−1 = st

null st = null

¬ lt st−1 ≥ st

¬ gt st−1 ≤ st

bj comp(bj)

¬ eq st−1 6= st

¬ null st 6= null

type(n, c) type(st−n, c)
new c st+1 := new c
getfield f. st := st.f
putfield f. st−1.f := st

newarrayc st := newarray(c, st)
aload st−1 := st−1[st]
astore st−2[st−1] := st

arraylength st := arraylength(st)
invoke m m(st−n, . . . , st, st−n)
return out := st

nop(b) nop(b)

Fig. 3. Compiling bytecode instructions (as they appear in the CFG) to rule-
based instructions (t stands for the height of the stack before the instruction).

flow graph, branching instructions such as jumps and calls (which have become
edges in the CFG, but may still be relevant to the resource consumption) are
wrapped into a nop() construct, meaning that they are not executed in the
RBR, but will be taken into account in the following steps of the analysis. RBR
programs are restricted to strict determinism, i.e., the guards for all rules for
the same procedure are pairwise mutually exclusive, and the disjunction of all
such guards is always true.

A CFG can be translated into a rule-based program by building a rule for
every node of the graph, which executes its sequential bytecode, and calls the
rules corresponding to its successors in the CFG. Figure 4 shows the rule-based
program for the CFG of Figure 2. The RBR for the binSearch method has an
entry procedure which simply initializes all local variables and calls binSearch0.
In turn, the body of binSearch0 loads l and u (corresponding to l and u), and
calls its continuation binSearchc

0, that decides which block will be executed next,
depending on the comparison between s1 and s2 (note that the guards of the
continuation rules are mutually exclusive). Procedures which are not continu-
ations are named after the corresponding nodes in the CFG. Note that rules
binSearch26 and binSearch21 contain a call to binSearch0, which is in fact the
loop condition.

An operational semantics can be given for the rule-based representation,
which mimics the bytecode one. In particular, executing an RBR program still
needs a heap and a stack of activation records. The main difference between the
two semantics lies in the granularity of procedures: every method in the bytecode
program has been partitioned into a set of procedures. In spite of this, it can be
proven that any rule-based program is cost-equivalent to the bytecode program
it comes from. Intuitively, cost-equivalence means that no information about the
resource consumption is lost. The main cost-equivalence result states that the

8

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

397

binSearch(t, v, l, u, r)← init vars(m), binSearch0 (t, v, l, u, m, r)
binSearch0(t, v, l, u, m, r)←

s1 := l, s2 := u, nop(if icmpgt 31), binSearchc
0(t, v, l, u, m, s1, s2, r).

binSearchc
0(t, v, l, u, m, s1, s2, r)← s1>s2, binSearch31(t, v, l, u, m, r).

binSearchc
0(t, v, l, u, m, s1, s2, r)← s1≤s2, binSearch3(t, v, l, u, m, r).

binSearch31(t, v, l, u, m, r)← s1 := −1, r := s1.
binSearch3(t, v, l, u, m, r)←

s1 := l, s2 := u, s1 := s1+s2, s2 := 2, s1 := s1/s2, m := s1, s1 := t, s2 := m,
s1 := s1[s2], s2 := v, nop(if icmpne 16), binSearchc

3(t, v, l, u, m, s1, s2, r).
binSearchc

3(t, v, l, u, m, s1, s2, r)← s1=s2, binSearch14(t, v, l, u, m, r).
binSearchc

3(t, v, l, u, m, s1, s2, r)← s1 6=s2, binSearch16(t, v, l, u, m, r).
binSearch14(t, v, l, u, m, r)← s1 := m, r := s1.
binSearch16(t, v, l, u, m, r)←

s1 := t, s2 := m, s1 := s1[s2], s2 := v,
nop(if icmple 26), binSearchc

16(t, v, l, u, m, s1, s2, r).
binSearchc

16(t, v, l, u, m, s1, s2, r)← s1≤s2, binSearch26(t, v, l, u, m, r).
binSearchc

16(t, v, l, u, m, s1, s2, r)← s1>s2, binSearch21(t, v, l, u, m, r).
binSearch26(t, v, l, u, m, r)←

s1 := m, s2 := 1, s1 := s1+s2, v := s1, nop(goto 0), binSearch0(t, v, l, u, m, r).
binSearch21(t, v, l, u, m, r)←

s1 := m, s2 := 1, s1 := s1−s2, u := s1, nop(goto 0), binSearch0(t, v, l, u, m, r).

Fig. 4. RBR of the example (guards which are true are omitted).

execution from cost-equivalent input configurations for a bytecode program and
its RBR leads to (1) non-termination in both cases; or (2) cost-equivalent output
configurations.

3.3 Cost Relations

Given a program P (without loss of generality, it is supposed here that P has
already been translated into its RBR form) and a cost model M, the classical
approach to cost analysis [57] consists in generating a set of recurrence relations
(RRs) which capture the cost (w.r.t.M) of running P on some input. As usual
in this area, data structures are replaced by their sizes in the recurrence rela-
tions. From rule-based programs it is possible to obtain cost relations (CRs), an
extended form of recurrence relations, which approximate the cost of running
the corresponding programs. In the presented approach, each rule in the RBR
program results in an equation in the CRS. Figure 5 shows the cost relation
system (i.e., a system of cost relations) for the running example, where it is easy
to see in the rule names the correspondence with the rule-based representation.
In these equations, variables are in fact constraint variables which correspond to
the sizes of those of the RBR. The right-hand side of an equation consists of an
expression e which gives the cost of executing the body of the rule, and, for sim-
plicity of the subsequent presentation, a linear constraint ϕ which denotes the

9

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

398

(1) binSearch(t, v, l, u) = binSearch0(t, v, l, u, 0)
(2) binSearch0(t, v, l, u, m) = 3 + binSearchc

0(t, v, l, u, m, s1, s2) {s1=l, s2=u}
(3) binSearchc

0(t, v, l, u, m, s1, s2) = binSearch31(t, v, l, u, m) {s1>s2}
(4) binSearchc

0(t, v, l, u, m, s1, s2) = binSearch3(t, v, l, u, m) {s1≤s2}
(5) binSearch31(t, v, l, u, m) = 2
(6) binSearch3(t, v, l, u, m) = 11 + binSearchc

3(t, v, l, u, m′, s1, s2)
n

s2=v, m′ ∈
h

l+u
2 −

1
2 , l+u

2

io

(7) binSearchc
3(t, v, l, u, m, s1, s2) = binSearch16(t, v, l, u, m)

(8) binSearchc
3(t, v, l, u, m, s1, s2) = binSearch14(t, v, l, u, m)

(9) binSearch16(t, v, l, u, m) = 5 + binSearchc
16(t, v, l, u, m, s1, s2) {s2=v}

(10) binSearch14(t, v, l, u, m) = 2
(11) binSearchc

16(t, v, l, u, m, s1, s2) = binSearch26(t, v, l, u, m)
(12) binSearchc

16(t, v, l, u, m, s1, s2) = binSearch21(t, v, l, u, m)
(13) binSearch26(t, v, l, u, m) = 5 + binSearch0(t, v, l′, u, m) {l′=m+1}
(14) binSearch21(t, v, l, u, m) = 5 + binSearch0(t, v, l, u′, m) {u′=m−1}

Fig. 5. CRS of the running example

effect of the body on the variables. An important point to note is that, there are
some cases where the simplification above may be incorrect. We opt by keeping
this simplification in the presentation, though not in the implementation, be-
cause problems are rare and otherwise the presentation gets more complicated.
In more detail, input-output size relations cannot always be merged together in
ϕ. Constraints which originate from input-output relations of procedures called
in the body of the rule cannot be taken into account until after the corresponding
calls. This is because, by merging them, we can no longer distinguish finite fail-
ures from infinite failures. For instance, this happens when we have a procedure,
say p, which never terminates. The input-output relation for p is represented
with the constraint false, indicating that there are no successful executions for
p. Any equation which has a call to p will have ϕ = false. If, by mistake, we take
this false as a finite failure, we would incorrectly discard (part of) this equation
as unreachable, when in reality execution never returns from this equation. In
our running example, this phenomenon does not happen since even after adding
constraints originating from input-output relations, no ϕ becames false.

Finally, note also that the output variable of the rule does not appear in the
equation, as explained below. The generation of a cost equation for a given RBR
rule goes through the following steps.

Size Measures. A size measure is chosen to represent and manipulate informa-
tion relevant to cost, and a variable is abstracted to its size w.r.t. such measure.
For example, (1) an array may be abstracted to its length, since this can typi-
cally give information about the cost of traversing it in a loop; or (2) an object
can be abstracted to the longest path reachable from it (in this case, the size
measure is well-known and is called path-length [52]) in order to describe the

10

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

399

cost of traversing data structures such as trees or linked lists. The choice of a
size measure, in particular for heap structures, heavily depends on the program
to be analyzed, and is intended to represent the maximum amount of relevant
information. E.g., in cost and termination analysis, the measure used to abstract
a piece of data or a data structure should give information about the behavior
of a loop whose exit condition depends, as in the examples above, on the data.

Abstract Compilation. In the presented setting, one important issue is to
capture relations between the size of a variable at different program points. For
example, in analyzing x := x + 1, the interest usually lies in the relation “the
value of x after is equal to 1 plus the value of x before”.

In this steps of the cost analysis, instructions are replaced by linear con-
straints which approximate the relation between states (and, typically, between
different program points) w.r.t. the chosen size measure. For instance, s1 := o is
replaced by s1=o, meaning that, after the assignment, the size of s1 at the cur-
rent program point is equal to the size of o. As another example, x := new c can
be replaced, using the path-length measure, by x=1, meaning that the maximal
path reachable from x after the object creation has length 1.

Importantly, the use of path-length as a size measure for reference requires
extra information in order to obtain precise and sound results in the abstract
compilation of instructions involving references:

(a) sharing information [48] is required in order to know whether two references
may point to a common region of the heap; and

(b) non-cyclicity information [46] is required to guarantee that, at some specific
program point, a reference points to a non-cyclic data structure, i.e., that
the length of its longest path (therefore, the number of iteration on a typical
traversing loop) is guaranteed to be finite.

A slightly more complicated example where non-cyclicity information is used is
represented by a field access x := y.f : in this case

– no linear constraint can be inferred if f is a non-reference field;
– if y is detected as non-cyclic, then the size of x after the assignment can

be guaranteed to be strictly less than the size of y before (since the data
structure pointed by x is now a sub-structure of the one pointed by y);

– if y may be cyclic, then the size of x can only be taken to be not greater
than the size of y (thus basically forbidding to find useful results on x and
y in the following steps, as explained in Section 4).

The result of this abstract compilation is an abstract program which can be used
to approximate the values of variables w.r.t. the given size measure.

Input-Output Size Relations. As mathematical relations, CRs cannot have
output variables: instead, they should receive a set of input parameters and re-
turn a number which represents the cost of the associated computation. This

11

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

400

step of the analysis is meant to transform the abstract program in order to
remove output variables from it. The basic idea relies on computing abstract
input-output (size) relations in terms of linear constraints, and using them to
propagate the effect of calling a procedure. Concretely, input-output size rela-
tions of the form p(x̄, y)→ ϕ are inferred, where ϕ is a constraint describing the
relation between the sizes of the input x̄ and the output y upon exit from p. This
information is needed since the output of one call may be input to another call.
Interestingly, input-output relations can be seen also as a denotational semantics
for the abstract programs previously obtained. Sound input-output size relations
can be obtained by taking abstract rules generated by abstract compilation, and
combine them via a fixpoint computation [13], using abstract interpretation tech-
niques [20] in order to avoid infinite computations.

Example 2. Consider the following RBR rules

incr(this, i, out)← incr1(this, i, out)
incr1(this, i, out)← s1 := i, s2 := 2, s1 := s1 + s2, out := s1

which basically come from the method

int incr(int i) { return i+2; }

All variables relevant to the computation are integers, so that abstract com-
pilation abstracts every variable into itself (due to the choice of the size mea-
sure for numeric variables), and the abstract program looks like (constraints
{s1 = 0, s2 = 0, out = 0} describe the initial values of variables)

incr(this, i, out)← incr1(this, i, out)
incr1(this, i, out)← {s1 = 0, s2 = 0, out = 0} |

s′1 = i, s′2 = 2, s′′1 = s′1 + s′2, out ′ = s′′1

By combining the constraints through the bodies, it can be inferred that the
output value of out is 2 plus the input value of i, which, in the end, is represented
by the input-output size relation

incr(this, i, out)← {out = i + 2}

2

Cost Models. Resource usage analysis is a clear example of a program analysis
where the focus is not only on the input-output behavior (i.e., what a program
computes), but also on the history of the computation (i.e., how the computation
is performed). Since the history of a computation can be normally extracted by
its trace, it is natural to describe resource usage in terms of execution traces.

The notion of a cost model for bytecode programs formally describes how
the resource consumption of a program can be calculated, given a resource of
interest. It basically defines how to measure the resource consumption, i.e., the
cost, associated to each execution step and, by extension, to an entire trace.

12

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

401

In the present setting, a cost model can be viewed as a function from a
bytecode instruction, and dynamic information (local variables, stack, and heap)
to a real number. Such number is the amount of resources which is consumed
when executing the current step in the given configuration. Example 3 below
introduces some interesting cost models which will be used in the next sections.

Example 3. The instructions cost model, denoted Minst , counts the number of
bytecode instructions executed by giving a constant cost 1 to the execution of
any instruction in any configuration: it basically measures the length of a trace.

The heap cost model,Mheap , is used for estimating the amount of memory al-
located by the program for dynamically storing objects and arrays (i.e., its heap
consumption): it assigns to any instruction the amount of memory which it allo-
cates in the current configuration. For instance, newarray int (resp., newarray c)
allocates v ∗ size(int) (resp., v ∗ size(ref)) bytes in the heap, where v denotes
the length of the array (currently stored on the top of the stack), and size(int)
(resp., size(ref)) is the size of an integer (resp., a reference) as a memory area.
2

Generation of Cost Relation Systems. Cost relation in a CRS are generated
by using the abstract rules to build the constraints, and the original rule together
with the selected cost model to generate cost expressions representing the cost of
the bytecodes w.r.t. the model. Consider the cost relations identified by equations
(6), (7) and (8) in the CRS of the running example (Figure 5), reproduced here
for more clarity.

(6) binSearch3(t, v, l, u,m) = 11 + binSearchc

3(t, v, l, u,m′, s1, s2)
{

s2=v,m′ ∈
[

l+u
2 −

1
2 , l+u

2

]}

(7) binSearchc

3(t, v, l, u,m, s1, s2) = binSearch16(t, v, l, u,m)
(8) binSearchc

3(t, v, l, u,m, s1, s2) = binSearch14(t, v, l, u,m)

This excerpt shows that the inferred cost of executing binSearch3 amounts to 11
plus the cost of executing binSearchc

3. In turn, the cost of binSearchc

3 can be either
the cost of binSearch16 or the cost of binSearch14. In this case, cost expressions
(as 11 in (6), or 0, left implicit in (7) and (8)) are simply constant values, which
correspond to the number of executed instructions, since the cost model Minst

has been chosen. That is, eleven instruction are executed in binSearch3 before
calling binSearchc

3, while no instructions are executed before calling binSearch16

or binSearch14 from binSearchc

3. The constraints which appear at the end of
some equations (as in (6); see also the complete CR for more examples) will
be used in the following section. CRs extend recurrence relations in the sense
that they allow to handle advanced features such as non-determinism (see for
instance equations (7) and (8)) constraints, and multiple arguments, which arise
in the cost analysis of realistic programs.

13

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

402

4 From Cost Relations to Closed-Form Upper Bounds

Though cost relations (CRs) are simpler than the programs they originate from,
since all variables have integer type, in several respects they are not as static
as one would expect from the result of a static analysis. First, cost relations
are recursive, so that one may need to iterate for computing their value on a
concrete input. Second, even for deterministic programs, it is well known that the
loss of precision introduced by the size abstraction may result in cost relations
which are non-deterministic. This happens in the above example in the loop
inside binarySearch: since the array t is abstracted to its length, the contents of
the array are lost in the abstraction. In particular, the value of t[m] is unknown
in the CR. Hence, the pairs of Equations 7–8 and 11–12 end up having the
same guards and the evaluation of this CR turns out to be non-deterministic.
In order to find the worst-case cost, one would need to compute and compare
many results. In some cases, the number of results may even be infinite. For both
reasons, it is clear that it is interesting to compute closed-form upper bounds
for the cost relation, whenever this is possible, i.e., upper bounds which are in
non-recursive form. For example, the goal is to infer that the cost of calling
binSearch(t, v, l, u) is 24 ∗ ⌈log2(nat(u− l) + 1)⌉+ 40, where nat(a) = max(a, 0).

Since CRs are syntactically quite close to Recurrence Relations (RRs for
short), in most resource analysis frameworks, it has been assumed that cost
relations can be easily converted into RRs. This has led to the belief that it is
possible to use existing Computer Algebra Systems (CAS for short) for finding
closed forms of the relations generated by resource analysis. As it will be shown,
cost relations are far from RRs , and using CAS to obtain closed-form upper
bounds is, in general, not practical, and requires a considerable amount of human
intervention in many phases.

The main idea in the approach used in the COSTA system is to view CRSs as
programs, and then use semantic-based static-analysis and program-transformations
techniques in order to infer closed-form upper bounds [8]. We first explain the
basic ideas on small examples, then we explain how they can be extended to the
general case.

4.1 Bounds on the Number of Applications of Equations

The first dimension of the problem of obtaining closed-form upper bounds is to
bound the number of recursive calls in each relation, which directly affects the
number of times an equation can be applied. Consider, for example, the following
cost relation:

C(n) = 3 {n ≤ 0}
C(n) = 9 +C(n′) {n > 0, n′ < n}

An evaluation of an initial call C(v), where v is an integer value works as follows:
if v ≤ 0 then we apply the first equation and we accumulate 3 units to the cost,
and if v > 0 then we apply the second equation, which in turn accumulates 9
units to the cost plus the cost of the recursive call C(v′) where v′ is an integer

14

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

403

number such that v′ < v (which corresponds to the constraint n′ < n). Clearly,
if Ir and Ib are, respectively, upper bounds on the number of applications of the
recursive and base-case equations, then 9 ∗ Ir + 3 ∗ Ib is an upper bound on the
corresponding cost. In the above example, in each recursive call the argument
of C decreases at least by 1 (since n′ < n), and therefore the maximum number
of applications of the second equation is Ir = n0, where n0 corresponds to the
(initial) input value, and Ib = 1, since the base-case equation is applied only once.
Note that when n0 is negative, we do not make any recursive call, therefore in
order to capture these cases we define Ir = nat(n0) where nat(a) = max(a, 0).
Putting everything together we obtain that an upper bound for the call C(n0)
is 9 ∗ nat(n0) + 3.

The above example demonstrates that inferring how the values of arguments
change during evaluation plays an important role in bounding the number of
application of each equation. This change might come in different forms, for
example if we change the second equation in the above CR to

C(n) = 8 +C(n′) {n > 0, n′ ≤ n

2 }

then C’s argument decreases by at least half in each recursive call, and there-
fore the maximum number of application of the recursive equation is Ir =
⌈log2(nat(n0) + 1)⌉ which in turn implies that the upper bound would be 8 ∗
⌈log2(nat(n0) + 1)⌉+ 3.

Another important factor that affects the number of applications of the differ-
ent equations is the number of recursive calls in a single equation. For example,
assuming that the recursive equation in the above CR is of the form

C(n) = 7 +C(n′) + C(n′′) {n > 0, n′ < n, n′′ < n}

then the recursive equation would be applied in the worst-case Ir = 2nat(n0) − 1
times, because each call generates 2 recursive calls, and in each call the argument
decreases at least by 1. Note that 2nat(n0) − 1 corresponds to the number of
internal nodes which a complete binary tree of height nat(n0) has. In addition,
unlike the above examples, the base-case equation would be applied in the worst-
case Ib = 2nat(n0) times, and therefore the upper bound would be 7 ∗ (2nat(n0) −
1) + 3 ∗ 2nat(n0).

In general, a CR does not include only two equations as above. It may include
several base cases and/or several recursive equations. In addition, equations are
not necessarily mutually exclusive, which means that at each evaluation step
there are several equations that can be applied. For example, if all three recursive
equations that we have seen above are defined in the same CR, then the upper
bound would be max([7, 8, 9]) ∗ (2nat(n0) − 1) + 3 ∗ 2nat(n0). Note that the worst-
case for the cost of each application is determined by the first equation, which
contributes the largest cost, i.e., 9. The worst case for the number of applications
of the recursive case is determined by the third equation, which has two recursive
calls.

As we explained at the beginning, the problem of bounding the number of
applications of each equation is related to bounding the number of consecutive

15

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

404

recursive calls, which has been extensively studied in the context of termination
analysis. Automatic termination analyzers usually prove that an upper bound
of the consecutive recursive calls exists by proving that there exists a function f
from the loop’s arguments to a well-founded partial order, such that f decreases
in any two consecutive calls. This, in turn, guarantees the absence of infinite
traces, and therefore termination. These functions are usually called ranking
functions. If instead of proving that such function exists we actually compute
one, then we can use it as the upper bound on the number of consecutive calls,
which in turn can be used to bound the number of applications.

4.2 Bounds on the Cost of Equations

In the above examples, in each application the corresponding equation con-
tributes a constant number of cost units. This is not the case in general. For
example, it is common to have a CR of the following form:

C(n) = 3 {n ≤ 0}
C(n) = nat(n + 2)2 +C(n′) {n > 0, n′ ≤ n

2 }

where in the second equation we accumulate a non-constant, i.e., nat(n + 2)2,
number of units in each application. In equations with a non-constant direct cost
expression, a closed-form upper bound can be obtained by considering the worst-
case (the maximum) value that the expression can be evaluated to, multiplied by
the number of applications of the corresponding equation. For example, in the
above equation, the maximum value that the expression (n+2) can be evaluated
to is (n0 + 2), and therefore we would produce the upper bound nat(n0 + 2)2 ∗
⌈log2(nat(n0) + 1)⌉+ 3.

In order to infer the maximum value of non-constant expressions automati-
cally, we first infer invariants (linear relations) between the equation’s variables
and the values which such variables had at the initial call, and then maximize
the expression w.r.t. these values. For the above example we would infer the re-
lation {n0 ≥ n > 0}, from which we can see that the maximum value for n is n0.
This in turn implies that (n0 +2) is the maximum value of (n+2) and therefore
nat(n0 + 2)2 is the maximum value for nat(n + 2)2. Again, if several recursive
equations are involved, we should combine them all using the max operator on
the corresponding expressions, as we have done above.

4.3 The General Case

In all the above examples, a single relation was involved and all recursions were
direct. We refer to such CRs as stand-alone CRs. This is not the case in general.
Instead, in most cases, CRSs consist of several CRs with complex call graphs. In
order to cope with this, we first transform the given CRS into a structured form
with only direct recursions, and incrementally apply the above techniques. We
do so by first applying Partial Evaluation [32], a well-known program transfor-
mation technique, to each of the strongly connected components (SCC) in the

16

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

405

corresponding call graph. By applying partial evaluation starting from a cover
point of the SCC, it is guaranteed that get rid of mutual recursion. After partial
evaluation, there must be at least one stand-alone CR (does not call any other
CR), therefore we can apply the techniques described above in order to solve all
these stand-alone CRs. Substituting the results in their calling contexts results
in more stand-alone CRs that can in turn be solved using the above techniques
again. This process is repeated until there are no more CRs left.

4.4 Obtaining an Upper Bound for the Running Example

The CRS for the running example, shown in Figure 5, contains multiple relations
and includes non-direct recursion, which avoids obtaining a closed-form upper
bound in a compositional way. As explained above, the first step is to transform
the CRS into an equivalent one where we have only direct recursion. The CRS
depicted in Figure 5 has 2 SCCs: the first SCC only has Equation 1, and it is
not recursive; the second SCC contains Equations 2–14 and corresponds to the
loop in binSearch and is therefore recursive. After applying partial evaluation to
the recursive SCC we obtain the following transformed CRS:

(1) binSearch(t, v, l, u) = loop(t, v, l, u, 0)
(2) loopb(t, v, l, u, m) = 5 {l>u}
(3) loopb(t, v, l, u, m) = 16 {l≤u}
(4) loopb(t, v, l, u, m) = 24 + loopb(t, v, l′, u, m′)

{l≤u, m′ ∈ [l+u
2 −

1
2 , l+u

2], l′=m′+1}

(5) loopb(t, v, l, u, m) = 24 + loop(t, v, l, u′, m′)

{l≤u, m′ ∈ [l+u
2 −

1
2 , l+u

2], u′=m′−1}

The recursive SCC has been transformed into Equations 2–5 above. Note that
Equations 3–5 have the same guard (l≤u), which results in a non-deterministic
CR. The reason for this is that Equation 3 corresponds to the case where t[m] ==
v, Equation 4 to the case where t[m] > v and Equation 5 to the case where
t[m] < v. However, the value of t[m] is not observable at the cost relation level
and even though the original program is deterministic, its associated CRS is not.

Solving the above CRS starts by solving the stand-alone CR which consists
in Equations 2–5. Note that Equations 2–3 are the base-cases and 4–5 are the re-
cursive ones. Examining the recursive equations and their attached constraints,
we can automatically infer that the difference between the values of u and l de-
creases logarithmically at each recursive call and, in particular, we can provide
Ir = ⌈log2(nat(u0 − l0) + 1)⌉+ 1 as an upper bound for the number of applica-
tions of the recursive equation. The base-case equations are applied only once.
Therefore the closed-form upper bound is:

loopb(t0, v0, l0, u0,m0) = 24 ∗ (⌈log2(nat(u0 − l0) + 1)⌉+ 1) + 16

This closed form can then be substituted in Equation 1 and after some simplifi-
cation we obtain the following closed-form upper bound for binSearch:

binSearch(t0, v0, l0, u0) = 24 ∗ ⌈log2(nat(u0 − l0) + 1)⌉+ 40

17

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

406

In order to illustrate the use of invariants and the maximization of cost expres-
sions, let us now assume that the method binSearch is used in another method
as follows:

public static int m(int[] t){
int c=0;
int u=t.length;
for (int i=0; i<u;i++)

if (binarySearch(t,i,i,u) != -1) c++;
return c;

}

and that we are interested in inferring closed-form upper bounds for m. We first
build the CRS that corresponds to m. For brevity, we show the CRS after partial
evaluation:

(1) m(t) = 9 + loopm(t, c, u, i) {i=0, u=t, c=0}
(2) loopm(t, c, u, i) = 3 {i≥u}
(3) loopm(t, c, u, i) = 12+binSearch(t, i, i, u)+loopm(t, c, u, i′) {i<u, i′=i+1}
(4) loopm(t, c, u, i) = 13+binSearch(t, i, i, u)+loopm(t, c′, u, i′) {i<u, i′=i+1, c′=c+1}

First we solve the CR loopm (Equations 2–4). We start by substituting the close-
form upper bound of binSearchm in the corresponding calls and we obtain the
following stand-alone CR

loopm(t, c, u, i) = 3 {i≥u}
loopm(t, c, u, i) = 24 ∗ ⌈log2(nat(u− i) + 1)⌉+ 52+loopm(t, c, u, i′) {i<u, i′=i+1}
loopm(t, c, u, i) = 24 ∗ ⌈log2(nat(u− i) + 1)⌉+ 53+loopm(t, c′, u, i′) {i<u, i′=i+1, c′=c+1}

Examining the recursive equations and their attached constraints we automati-
cally infer that the maximum number of applications of the recursive equations
is nat(u0−i0), since i increases by one until it reaches u (which does not change).
Now, in order to infer the closed-form upper bound we need to approximate the
maximum values that log2(nat(u − i) + 1) can be evaluated to. This happens
when u− i is maximal. This occurs for the maximal values of u and the minimal
values of i. Since the invariant that we infer includes i ≥ i0 and u ≤ u0, we can
conclude that u0 − i0 is the maximum value to which u − i can be evaluated.
Therefore the closed-form upper bound for loopm is:

loopm(t0, c0, u0, i0) = nat(u0 − i0) ∗ (24 ∗ ⌈log2(nat(u0 − i0) + 1)⌉+ 53) + 3

Substituting this upper bound in the first equation results in a non-recursive CR
which consists in a single equation:

m(t) = 9 + nat(u− i) ∗ (24 ∗ ⌈log2(nat(u− i) + 1)⌉+ 53) + 3 {i=0, u=t, c=0}

and since in this context we have i = 0 and u = t, we can conclude with the
following closed-form upper bound for m:

m(t) = 24 ∗ nat(t) ∗ ⌈log2(nat(t) + 1)⌉+ 53 ∗ nat(t) + 12)

18

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

407

5 Application to Resource Certification

In order to motivate the interest of resource usage certification or (resource cer-
tification for short), we will start by describing mobile code. Nowadays, the use
of mobile code is widespread. It includes, for example running applets and/or
plug-ins downloaded from the net in a web browser or a mobile phone. The cur-
rent approach to security of mobile code is a combination of static verification
of certain properties, which guarantees a certain level of security, with dynamic
checking, which supervises all operations which are still potentially unsecure af-
ter the static verification. For example, in the Java Virtual Machine, mobile code
is subject to bytecode verification before being executed, while operations such
as array indexing are checked at runtime. Bytecode verification, if successful,
provides a number of guarantees on the program, such as being well typed, with
jumps to existing instructions, etc. Note that if the bytecode verification process
fails, the program is discarded.

Ideally, one would like to extend this model in order to include more so-
phisticated security policies in the static verification part. In particular, and as
already sketched in Section 1, the purpose of resource certification is to consider
resource usage bounds as security policies. This means that prior to executing
a program, it must be guaranteed that the program satisfies a given resource
usage policy. This problem can be formulated in two ways. One is to have an
automatic system which given a program and a resource usage policy answers
yes only if it succeeds to prove that the program satisfies the policy. Alterna-
tively, we can split this process in two steps: first, an automatic system obtains
an upper bound on the resource usage of the program and second, another auto-
matic system, which in what follows we refer to as comparator, checks whether
the computed upper bound is smaller than or equal to the resource usage policy
for any possible input value. We advocate for the second alternative because we
believe it is more flexible: we first use COSTA on the code producer side to infer
upper bounds which are independent of any resource policy and consumer, and
then, on the code consumer side we check whether the upper bound abides by
the policy.

5.1 An Example of Resource Certification

We illustrate through a simple example the fundamental intuition behind re-
source certification. Let us assume a resource usage policy for method m in Fig-
ure 1 that imposes a resource usage policy, which we call policy , on the number
of instructions executed of:

policy=60 ∗ [nat(t)]2 + 120 ∗ nat(t) + 13

COSTA infers the upper bound ub=24∗nat(t)∗⌈log2(nat(t)+1)⌉+53∗nat(t)+12.
The code will be acceptable, provided that policy is guaranteed, i.e., ub≤policy ,
which happens to be the case in our example and that the comparator succeeds
to prove it.

19

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

408

Developing a comparator which handles closed-forms that involve logarith-
mic, exponential, polynomial expressions, etc. is far from trivial. Based on the
ideas in [26], we are currently implementing in COSTA the basics of such com-
parator, but it is still subject of ongoing work.

Also, though in some contexts, especially when considering memory usage,
non-asymptotic policies are to be expected, sometimes it is more reasonable that
the policy is asymptotic. In COSTA, policies are currently non-asymptotic and
handling of asymptotic policies is also subject of ongoing work. Coming back to
our previous example, this would result in a new policy ′ s.t. policy ′=[nat(t)]2. The
comparator should again be able to prove that policy ′ is satisfied by method m.

5.2 Scenarios for Resource Certification

Within the alternative we propose, in which code certification is performed in
two steps, there are several scenarios one could imagine. We now describe three
different ones.

The Consumer-based Scenario In this first scenario, it is the sole respon-
sibility of the mobile code consumer to both obtain an upper bound and to
compare such upper bound with the policy. This scenario is simple, since it does
not involve any further actor, but it is inefficient, since the mobile code has to
be certified separately for every consumer. Also, it may be unfeasible on devices
with limited computing power, such as mobile phones.

The Server-based Scenario In this second scenario, there is an additional
actor which acts as the server of the mobile code. Such server not only dis-
tributes the mobile code. It also computes once and for all an upper bound for
it. Assuming that this server is trusted by the code consumer, the consumer
downloads a bundle which contains both the code and its upper bound. In order
to guarantee that the bundle is actually produced by the trusted server, the bun-
dle is signed using standard Public Key Infrastructure (PKI) techniques. Then,
the code consumer, using the public key of the server, checks that the bundle
is correct and uses the provided upper bound. Similarly, the comparison phase
could also either be outsourced to trusted servers and be accessed using PKI or
be performed locally.

The PCC-based Scenario In this final scenario, the situation is somewhat
intermediate between the two other extremes. The main advantage of the pcc-
based scenario w.r.t. the server-based one is that in the pcc-scenario the server
does not need to be trusted by the code consumer. Unlike the simpler notion
of PKI (which merely guarantees that the code has been produced or approved
by the signing entity, such as a program, person, or organization), now the pcc
server provides an unsigned bundle which contains the code, an upper bound,

20

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

409

and some verifiable evidence3 about the upper bound being correct. Then, the
code consumer has to have an automatic (and efficient) system for verifying that
the provided upper bound is actually valid for the code, by using the provided
evidence.

As it is well know from the proof-carrying code [41] theory, the main advan-
tage of this scenario is that the evidence only needs to be generated once and
the verification process which occurs at the consumer side should be much more
efficient than computing the upper bounds from scratch. Essentially, the hard
work is shifted from the code consumer to the code producer (i.e., the program-
mer and/or the compiler), which now has to not only produce the code, but also
an upper bound and the verifiable evidence which must be bundled with it.

In the case of COSTA, a PCC-based scenario can obtained by using ideas
from Abstraction-Carrying Code [7] (ACC), which proposes to use abstract in-
terpretation as enabling technology for PCC. The main idea in ACC is to use,
at the producer’s side, a fixed point-based static analyzer, in order to automat-
ically infer an abstract model (or simply abstraction) of the mobile code which
can then be used to prove that this code is secure w.r.t. the given policy in a
straightforward way. A simple, easy-to-trust (analysis) verifier at the consumer’s
side could verify the validity of the information on the mobile code. This veri-
fier could be indeed a specialized abstract interpreter whose key characteristic
is that it does not need to iterate in order to reach a fixed point (in contrast
to standard analyzers). Furthermore, as the process of inferring the abstraction
is fully automatic, the analyzer itself could be used at the consumer side, as
discussed in the consumer-based scenario above.

We are currently working on building a PCC infrastructure for COSTA by
following the principles of ACC. Since the analyzer computes several abstrac-
tions of the program (size relations, invariants, ranking functions, etc.) in order
to be able to compute an upper bound, the evidence should in principle contain
the fixed points of multiple analyses. However, depending on the analysis times
and the amount of space required to store its result, for some analyses it may
be more efficient to recompute things on the consumer side than to verify the
evidence provided by the server. Thus, there are still important practical deci-
sions regarding which analyses results to include in the evidence and which to
recompute on the consumer.

In our opinion, regardless of which of the three scenarios are put into practice,
generalized use of resource certification will not be a reality until there are fully
automatic resource analyzers available which are capable of computing accurate
upper bounds for real-life applications. This is the requirement which COSTA
aims at solving. Once this is sufficiently solved, the rest of the infrastructure will
be in place relatively easily.

3 In the original PCC framework, this evidence was called certificate. We prefer avoid-
ing the use of such terminology since it is already rather overloaded.

21

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

410

6 Related Work

In this section, we review related work by focusing first in existing tools developed
for the analysis and transformation of Java bytecode in Section 6.1. Then, in
Section 6.2, we give a brief overview of the features that resource analyses have
on the different programming paradigms and the most interesting aspects of each
of them. Later, in Section 6.3, we compare our system for obtaining closed-form
upper bounds with existing solvers. Finally, in Section 6.5, we summarize the
work on certification of the resource consumption of programs.

6.1 Tools for Analysis of Java Bytecode

Analysis of Java bytecode is currently an active research area with a number of
analysis and transformation tools available. Especially relevant are the analyses
developed on the Soot framework [54] and the Julia generic analyzer [50]. Soot
is a framework for the development of optimizations and analyses for Java byte-
code which already includes points-to, purity, and dynamic data structure anal-
yses, among others. The most similar part between these systems and COSTA
is the transformation of the bytecode into an intermediate (procedural) repre-
sentation. Indeed, intermediate representations are common practice to develop
analysis and transformations on JBC. Of relevant importance is BoogiePL [36]
as well. The main differences with our RBR are: (1) they do not provide a uni-
form treatment of all kinds of loops by means of recursion, (2) they do not
perform the loop extraction transformation we propose, which is important for
compositionality in resource analysis; and (3) the intermediate representation
called Shimple in Soot performs SSA, but neither Shimple nor BoogiePL con-
vert stack variables into local variables as COSTA does. In our representation,
in one pass, we can eliminate almost all variables which originate from stack
variables, which results in a more efficient subsequent size analysis. The Julia
Java bytecode analyzer [50] provides a generic analysis engine for which sharing,
class, non-nullness, information flow, escape, constancy, and static initialisation
analyses have been integrated. Neither Julia nor Soot include a resource analysis,
though Julia also contains implementations of some of the pieces (in particular
the class, nullity, sharing, and cyclicity analyses) which are required in the size
analysis component.

6.2 Resource Analysis for Different Programming Paradigms

Focusing on resource analysis, important effort has been devoted to extend Weg-
breit’s framework [57] to different languages and programming paradigms. The
main objective in this task is to define a resource analysis framework in which it
is possible to generate CRS from the programs in the corresponding language.
As mentioned in Section 1, most of the extensions to Wegbreit’s framework have
taken place in the context of high-level declarative languages, whose recursive
structure simplifies the process of generating cost relations. In general, these
analyses consider languages without a mutable heap, and they do not deal with

22

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

411

objects and exceptions as in our case. We are not aware of any work, apart from
ours, that applies Wegbreit’s framework to imperative languages. Below we re-
view several frameworks defined for the corresponding declarative programming
paradigms.

Cost Analysis in Functional Programming. Early work on resource analysis
[57,35,44] was developed for a first order subset of Lisp. Rosendahl [44] presented
a system based on transforming a program into a step-counting version which
was then analyzed by relying on abstract interpretation. The result of such anal-
ysis was expressed as a CRS which was then attempted to be transformed into a
closed form by relying on a series of source-to-source transformations. Theoreti-
cal advances for analyzing lazy functional languages were made by [56] and [15].
They used projections and demand analysis to model a call-by-need reduction
strategy of typed lambda calculus. Still in the context of functional languages,
the technique of cost counting programs mentioned above [44,35] was extended
in [47] to higher-order programs. Recent work [33] describes a complexity analy-
sis for programs extracted from proofs carried out with the Coq proof assistant.
The generated CRSs are solved in this case by relying on MAPLE. Again, the
first transformational part is not required and size analysis does not have to deal
with object-oriented features. An automatic complexity analysis for computing
upper bounds on the time complexity of higher-order Nuprl programs is pre-
sented in [14]. The analysis derives recursive cost equations which are passed to
Mathematica. In general, in functional programming, resource analysis focuses
on dealing with higher-order functions and lazy evaluation.

Cost Analysis in Logic Programming. One of the first resource analysis frame-
works [22] was developed in the context of logic programming. In this setting,
resource analysis needs to consider peculiar features of logic languages, such as
approximating the number of solutions (due to non-deterministic computations),
type and mode inference, and non-failure information. The CASLOG system [22]
was designed to solve CRSs for logic program and it is currently used in the
CiaoPP system [28]. As in functional programming, obtaining CRSs is simplified
by the fact that they already start from a recursive programming language where
recursion is the only form of iteration. Also, size analysis in logic programming
differs from ours as it does not support object-oriented features. The resource
analysis integrated in the CiaoPP system includes a resource analysis [40] based
on a size analysis for logic programs and hence differs fundamentally from ours.

6.3 Systems for Computing Closed-Form Upper-Bounds

There are two main ways of viewing CRSs which lead to different mechanisms
for finding closed-form upper-bounds. We call the first view algebraic and the
second view transformational. The algebraic one is based on regarding CRSs as
recurrence relations. This view was the first one to be proposed and it is the
one which is advocated for in a larger number of works. It allows reusing the
large existing body of work in solving recurrence relations. Within this view,

23

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

412

two alternatives have been used in previous analyzers. One alternative consists
in implementing restricted recurrence solvers based on standard mathematical
techniques within the analyzer, as done in e.g. [57,22]. The other alternative,
motivated by the availability of powerful computer algebra systems (CASs for
short) such as Mathematica, MAXIMA, MAPLE, etc., consists in connecting the
analyzer with an external solver, as proposed in [56,47,14,6,38].

The transformational view consists in regarding CRSs as (functional) pro-
grams. In this view, closed-form upper-bounds are produced by applying (general-
purpose) program transformation techniques on the CRS [44] until a non-recursive
program is obtained. The transformational view was first proposed in the ACE
system [35], which contained a large number of program transformation rules
aimed at obtaining non-recursive representations. It was also used by Rosendahl
in [44], who later in [45] provided a series of program transformation techniques
based on super-compilation [53] which were able to obtain closed-forms for some
classes of programs.

The need for improved mechanisms for automatically obtaining closed-form
upper-bounds was already pointed out in Hickey and Cohen [29]. A significant
work in this direction is PURRS [10], which has been the first system to provide,
in a fully automatic way, non-asymptotic closed-form upper and lower bounds
for a wide class of recurrences. Unfortunately, and unlike our proposal, it also re-
quires CRSs to be deterministic. The problem with all the approaches mentioned
above is that, though they can be successfully applied for obtaining closed-forms
for CRSs generated from simple programs, they do not fulfill the initial expec-
tations in that they are not of general applicability to CRSs generated from real
programs.

The main motivation for developing the solver [8] that we use in COSTA
was our own experience in trying to apply the algebraic approach on the CRSs
generated by [6]. We argue that automatically converting CRSs into the format
accepted by CASs is unfeasible. Furthermore, even in those cases where CASs
can be used, the solutions obtained are so complicated that they become useless
for most practical purposes. In contrast, our approach can produce correct and
comparatively simple results even in the presence of non-determinism.

6.4 Other Approaches to Cost Analysis

In the imperative programming paradigm, most of the work has been done by
the real-time and embedded systems community. It has mainly focused on real-
time aspects, with major inroads made in WCET analysis, see e.g. [23], which
is technically different from our resource analysis, the main similarity being the
need to infer upper bounds on the number of iterations of loops.

There exist other approaches to resource analysis which are not based on
Wegbreit’s framework. These include analyses based on type-and-effect sys-
tems [11,49,55]. Type-and-effect systems [42] are a well-known technique for
automatic program analysis. They main difference w.r.t. abstract interpretation
approaches like ours is that they avoid having the implementation of specialised

24

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

413

inference engines that may be required by abstract interpretation and they sim-
plify the construction of the soundness proofs through analogy with similar and
well-understood proofs for the underlying type system. The latest work by [49]
uses a type-and-effect system based on Hindley-Milner types to expose con-
straints on sized types [31] for higher order, recursive functional programs, to
provide improved quality of resource analysis. Apart from the underlying dif-
ferences between the considered languages, in contrast to our proposal, this
approach to resource analysis is restricted to linear upper bounds. Besides, the
language does not support recursion and the analysis is restricted to a cost
model that counts the number of steps. The analysis presented in [11] proposes
an extension of the λ-calculus to ensure that resources are correctly used. They
also rely on a type-and-effect system to over approximate the set of histories of
events (i.e., the usage of resources) that a program can generate at runtime. A
model-checking technique then validates such approximations. In essence, this
work is focused on the enforcement of resource usage policies, but their tech-
niques cannot be used to generate upper bounds on the resource usage as our
method does.

There is also work which studies the relationship between syntactical con-
structions of programming languages and their computational complexity [34,12].
These analyses are developed on simple imperative languages which are far from
our bytecode and, in contrast to our work, they cannot be used to compute
non-asymptotic upper bounds.

The work in [39] shows how to apply sub-interpretation (firstly used in first
order functional programming to deal with computational complexity) to object-
oriented programs without recursion in order to provide upper bounds on their
stack usage. This approach is restricted to polynomial bounds and to the par-
ticular resource of stack usage.

More recent work develops resource analyses to estimate the memory con-
sumption. In particular, [16] describes a technique for Java-like languages which
computes symbolic polynomial approximations of the amount of memory re-
quired by a program. The work by [19] studies the memory consumption (in-
cluding both heap space and stack usage) of low-level programs which are simi-
lar to our bytecode programs. In both cases, the analyses are less general than
ours, both in the kind of properties they can estimate (specific to memory con-
sumption) and in the kind of upper bounds that they can generate (polynomial
bounds).

The SPEED system [25,24] is able to automatically compute symbolic com-
plexity bounds of procedures written in C/C++. The basic idea of their method-
ology is to instrument monitor variables to count the number of loop iterations
and then statically compute an upper bound on these counter variables in terms
of programming inputs using invariant generation tools. They allow the user the
possibility of defining some quantitative functions over abstract data-structures
to avoid the need of shape analysis. Besides, SPEED performs some program
transformations to improve the precision of the analysis when inferring bounds

25

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

414

on certain types of loops. Some of these ideas could be applied in order to im-
prove our framework.

6.5 Resource Usage Certification

As already mentioned in Section 5, resource usage certification [21,9,30,18,43]
proposes the use of security properties involving resource requirements, i.e., that
the untrusted code adheres to specific bounds on resource consumption. Related
work in the context of Java bytecode includes the work in the MRG project [9],
which can be considered complementary to ours. MRG focuses on building a
proof-carrying code [41] architecture for ensuring that bytecode programs are
free from run-time violations of resource bounds. The cost model which has
been used to develop the analysis is heap consumption, since applications to be
deployed on devices with a limited amount of memory, such as smartcards, should
be rejected if they require more memory than that available. The framework is
restricted to polynomial bounds and to the above cost model, while our resource
analysis can infer a wider set of bounds (including exponential, algorithmic,
etc.) and it is parametric with respect to the cost model. More related work is
the one proposed by [17], where a resource usage analysis is presented. Again,
this work focuses on one particular notion of cost, memory consumption, and it
aims at verifying that the program executes in bounded memory by making sure
that the program does not create new objects inside loops, but it does not infer
resource usage bounds. The analysis has been certified by proving its correctness
using the Coq proof assistant. Compared to previous work, our system shows,
for the first time, that it is possible to automatically generate resource bounds
guarantees, not restricted to polynomial bounds, for a realistic mobile language.

7 Conclusions and Future Perspectives

In this paper we have illustrated, by means of examples, how the COSTA system
performs resource analysis. The analysis is done in two steps. First, cost relation
systems are generated for an input bytecode w.r.t. a cost model. Such relations
provide useful approximations of the resource usage of the program w.r.t. the
considered cost model, in terms of the size of the input arguments, and provided
an accurate size analysis is used to establish relationships between arguments.
Second, closed-form upper bounds for the cost relation systems are obtained. This
is possible provided that ranking functions are found for all loops which affect
the cost and that accurate invariants are obtained. To the best of our knowledge,
COSTA is the first system to perform fully automatic resource analysis of object-
oriented bytecode and we believe that COSTA opens the door to the application
of resource usage analysis in the context of general purpose applications written
in mainstream programming languages.

Though the efficiency and robustness of the system can be considerably im-
proved, COSTA can already deal with a relatively large class of JBC programs,
and gives reasonable results in terms of precision and efficiency for different

26

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

415

cost models: the number of executed bytecode instructions, heap consumption,
and number of calls to user-specified methods. We plan to distribute the system
as free software soon. Currently, it can be tried out through a web interface
available from the COSTA web site: http://costa.ls.fi.upm.es.

The system can deal with most features of JBC. However, non-sequential
code, dynamic class loading and reflection are not supported. Java API methods
used by programs are analyzed much in the same way as user code, since their
bytecode is available to the analyzer. As for native code, i.e., methods not imple-
mented in Java, calls to native methods are shown in upper bounds as symbolic
constants, since the code for those methods is not written in Java and COSTA
cannot analyze them. This could be further improved by providing assertions
which describe the cost of the native method for the different cost models and
(optionally) a safe approximation of their input-output behavior, but it is not
supported.

In addition to the web interface, COSTA has a command-line interface and an
Eclipse plugin which make interaction with the analyzer quite straightforward,
even during program development. The different interfaces allow customizing
the behaviour of COSTA by modifying the value of several options, including:

1. whether the code of Java API classes should also be analyzed or not;
2. whether auxiliary analyses (sign, nullity, slicing, constant propagation) should

be included, thus possibly improving both precision and performance;
3. whether input-output size relations have to be computed (Section 3.3);
4. if exceptions, either explicitly thrown in the code or resulting from semantic

violations, have to be taken into account;
5. which cost model has to be considered.

Also, although not discussed in this paper, COSTA also performs termination
analysis of Java bytecode programs (see [3]). When COSTA fails to find an upper
bound for a program, sometimes it may be useful to try and find out whether the
program is guaranteed to terminate. Maybe COSTA fails because the program
contains a bug and loops unexpectedly with a non-zero cost associated to each
iteration of the loop. In that case, there exist no upper bound for the program
and there is no way that COSTA can find an upper bound. Although COSTA
results are safe, they are obviously incomplete, since finding an upper bound
is an undecidable problem. This means that there are programs for which it is
possible to find an upper bound, but COSTA fails to find one.

As regards future work, there are plenty of ways in which both the theoretical
foundations and the practical implementation can be improved in order to handle
a larger class of programs, and obtain improvements both in terms of efficiency
and accuracy. On the foundations side, progress in the area of object-oriented
languages of any of the analyses used by the system will be potentially applicable
to COSTA. For example, one of the most challenging problems is to account
for loops and recursion where the number of iterations depends on numeric
fields. Here, an approach working in all cases might not be practical; however,
heuristics may allow us to account for special, simple but quite common cases
which can significantly enlarge the class of analyzable programs. A first step in

27

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

416

this direction, in the context of termination analysis, has been taken in [4]. On
the implementation side, currently, COSTA handles bytecode programs for Java
SE 1.4.2 13 and Java ME. The reason for this is that Java SE 1.4.2 13 is the
version of Java taken as starting point for Java ME and, in particular, for MIDP.
The latter is the profile used by mobile phone applications, i.e., midlets, which
are the main target in the MOBIUS project. However, there is no fundamental
reason for not supporting more recent versions of Java and we plan to extend
COSTA to also handle Java 5 and 6 soon.

Acknowledgments

This work was funded in part by the Information Society Technologies pro-
gram of the European Commission, Future and Emerging Technologies under
the IST-15905 MOBIUS and IST-231620 HATS projects, by the Spanish Min-
istry of Education (MEC) under the TIN-2005-09207 MERIT, TIN-2008-05624
DOVES and HI2008-0153 (Acción Integrada) projects, and the Madrid Regional
Government under the S-0505/TIC/0407 PROMESAS project.

References

1. The Timber Language. http://www.timber-lang.org.
2. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers – Principles, Techniques and

Tools. Addison-Wesley, 1986.
3. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Ter-

mination Analysis of Java Bytecode. In Gilles Barthe and Frank de Boer, editors,
Proceedings of the IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS), volume 5051 of Lecture Notes in
Computer Science, pages 2–18, Oslo, Norway, June 2008. Springer-Verlag, Berlin.

4. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Dealing with numeric fields
in termination analysis of java-like languages. In Marieke Huisman, editor, 10th
Workshop on Formal Techniques for Java-like Programs, July 2008.

5. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. The COSTA System
web site. http://costa.ls.fi.upm.es.

6. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In Rocco De Nicola, editor, 16th European Symposium on Pro-
gramming, ESOP’07, volume 4421 of Lecture Notes in Computer Science, pages
157–172. Springer, March 2007.

7. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code: A Model
for Mobile Code Safety. New Generation Computing, 26(2):171–204, March 2008.

8. Elvira Albert, Puri Arenas, Samir Genaim, and German Puebla. Automatic In-
ference of Upper Bounds for Recurrence Relations in Cost Analysis. In Maŕıa
Alpuente and Germán Vidal, editors, Static Analysis, 15th International Sympo-
sium, SAS 2008, Valencia, Spain, July 15-17, 2008, Proceedings, volume 5079 of
Lecture Notes in Computer Science, pages 221–237. Springer-Verlag, July 2008.

9. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource
Guarantees for Smart Devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Proc. of Workshop on Construction and Analysis of Safe,
Secure and Interoperable Smart Devices (CASSIS), volume 3362 of LNCS, pages
1–27. Springer, 2005.

28

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

417

10. R. Bagnara, A. Pescetti, A. Zaccagnini, and E. Zaffanella. PURRS: Towards com-
puter algebra support for fully automatic worst-case complexity analysis. Technical
report, 2005. arXiv:cs/0512056 available from http://arxiv.org/.

11. M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino. Types and effects for
resource usage analysis. In Foundations of Software Science and Computational
Structures, 10th International Conference, FOSSACS 2007, volume 4423 of Lecture
Notes in Computer Science, pages 32–47. Springer, 2007.

12. Amir M. Ben-Amram, Neil D. Jones, and Lars Kristiansen. Linear, Polynomial or
Exponential? Complexity Inference in Polynomial Time. In Logic and Theory of
Algorithms, 4th Conference on Computability in Europe, CiE 2008, volume 5028
of Lecture Notes in Computer Science, pages 67–76. Springer, 2008.

13. Florence Benoy and Andy King. Inferring Argument Size Relationships with
CLP(R). In Workshop on Logic-based Program Synthesis and Transformation
(LOPSTR), volume 1207 of Lecture Notes in Computer Science, pages 204–223.
Springer-Verlag, August 1997.

14. R. Benzinger. Automated Higher-Order Complexity Analysis. Theor. Comput.
Sci., 318(1-2), 2004.

15. B. Bjerner and S. Holmstrom. A Compositional Approach to Time Analysis of
First Order Lazy Functional Programs. In Proc. ACM Functional Programming
Languages and Computer Architecture, pages 157–165. ACM Press, 1989.

16. V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Parametric Predic-
tion of Heap Memory Requirements. In Proceedings of the International Symposium
on Memory management (ISMM), New York, NY, USA, 2008. ACM.

17. D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified memory usage
analysis. In 13th International Symposium on Formal Methods (FM’05), number
3582 in LNCS, pages 91–106. Springer-Verlag, 2005.

18. A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula. Enforcing resource
bounds via static verification of dynamic checks. In ESOP’05, volume 3444 of
LNCS. Springer, 2005.

19. W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory Resource
Bounds for Low-Level Programs. In Proceedings of the International Symposium
on Memory management (ISMM), New York, NY, USA, 2008. ACM.

20. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principles of Programming Languages, pages 238–252,
1977.

21. K. Crary and S. Weirich. Resource Bound Certification. In POPL’00, pages 184–
198. ACM, 2000.

22. S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs. ACM Transactions
on Programming Languages and Systems, 15(5):826–875, November 1993.

23. Jochen Eisinger, Ilia Polian, Bernd Becker, Alexander Metzner, Stephan Thesing,
and Reinhard Wilhelm. Automatic identification of timing anomalies for cycle-
accurate worst-case execution time analysis. In Proceedings of IEEE Workshop on
Design & Diagnostics of Electronic Circuits & Systems (DDECS), pages 15–20.
IEEE Computer Society, April 2006.

24. B. S. Gulavani and S. Gulwani. A Numerical Abstract Domain Based on Expression
Abstraction and Max Operator with Application in Timing Analysis. In CAV,
LNCS 5123, pages 370–384. Springer, 2008.

25. S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: precise and efficient static
estimation of program computational complexity. In POPL, pages 127–139. ACM,
2009.

29

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

418

26. Sumit Gulwani and Ashish Tiwari. An abstract domain for analyzing heap-
manipulating low-level software. In CAV, 2007.

27. K. Hammond and G. Michaelson. Hume: A domain-specific language for real-time
embedded systems. In Frank Pfenning and Yannis Smaragdakis, editors, Genera-
tive Programming and Component Engineering, Second International Conference,
GPCE 2003, Erfurt, Germany, September 22-25, 2003, Proceedings, volume 2830
of Lecture Notes in Computer Science, pages 37–56. Springer, 2003.

28. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–140,
October 2005.

29. T. Hickey and J. Cohen. Automating program analysis. J. ACM, 35(1), 1988.
30. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order

functional programs. In POPL, 2003.
31. J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems

using sized types. In POPL, pages 410–423, 1996.
32. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-

gram Generation. Prentice Hall, New York, 1993.
33. J. Jouannaud and W. Xu. Automatic Complexity Analysis for Programs Extracted

from Coq Proof. ENTCS, 2006.
34. Lars Kristiansen and Neil D. Jones. The flow of data and the complexity of al-

gorithms. In S. Barry Cooper, Benedikt Löwe, and Leen Torenvliet, editors, CiE,
volume 3526 of Lecture Notes in Computer Science, pages 263–274. Springer, 2005.

35. D. Le Metayer. ACE: An Automatic Complexity Evaluator. ACM Transactions
on Programming Languages and Systems, 10(2):248–266, April 1988.

36. H. Lehner and P. Müller. Formal translation of bytecode into BoogiePL. In Byte-
code’07, ENTCS, pages 35–50. Elsevier, 2007.

37. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison
Wesley, 1996.

38. Beatrice Luca, Stefan Andrei, Hugh Anderson, and Siau-Cheng Khoo. Program
transformation by solving recurrences. In PEPM ’06: Proceedings of the 2006
ACM SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation, pages 121–129, New York, NY, USA, 2006. ACM.

39. J.-Y. Marion and R. Pèchoux. Resource control of object-oriented programs. In
International LICS affiliated Workshop on Logic and Computational Complexity
(LCC 2007), Wroclaw, Poland, 2007.

40. J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-Definable Re-
source Bounds Analysis for Logic Programs. In International Conference on Logic
Programming (ICLP), volume 4670 of LNCS, pages 348–363. Springer-Verlag,
September 2007.

41. G. Necula. Proof-Carrying Code. In Proc. of ACM Symposium on Principles of
programming languages (POPL), pages 106–119. ACM Press, 1997.

42. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
2005. Second Ed.

43. K-H. Niggl and H. Wunderlich. Certifying Polynomial Time and Lin-
ear/Polynomial Space for Imperative Programs. SIAM J. Comput., 35(5):1122–
1147, 2006.

44. M. Rosendahl. Automatic Complexity Analysis. In Proc. ACM Conference on
Functional Programming Languages and Computer Architecture, pages 144–156.
ACM, New York, 1989.

30

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

419

45. M. Rosendahl. Simple driving techniques. In T. Mogensen, D. Schmidt, and I. Hal
Sudborough, editors, The Essence of Computation, volume 2566 of Lecture Notes
in Computer Science, pages 404–419. Springer, 2002.

46. S. Rossignoli and F. Spoto. Detecting Non-Cyclicity by Abstract Compilation into
Boolean Functions. In International Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI), volume 3855 of LNCS. S-V, 2006.

47. D. Sands. A näıve time analysis and its theory of cost equivalence. J. Log. Comput.,
5(4), 1995.

48. S. Secci and F. Spoto. Pair-sharing analysis of object-oriented programs. In Static
Analysis Symposium (SAS), pages 320–335, 2005.

49. H. R. Simões, K. Hammond, M. Florido, and P. B. Vasconcelos. Using intersection
types for cost-analysis of higher-order polymorphic functional programs. In Types
for Proofs and Programs, International Workshop, TYPES 2006, volume 4502 of
Lecture Notes in Computer Science, pages 221–236. Springer, 2006.

50. F. Spoto. Julia: A Generic Static Analyser for the Java Bytecode. In Proc.
of the 7th Workshop on Formal Techniques for Java-like Programs, FTfJP’2005,
Glasgow, Scotland, July 2005.

51. F. Spoto and T. Jensen. Class analyses as abstract interpretations of trace seman-
tics. ACM Trans. Program. Lang. Syst., 25(5):578–630, 2003.

52. Fausto Spoto, Patricia M. Hill, and Etienne Payet. Path-length analysis of object-
oriented programs. In Proc. International Workshop on Emerging Applications of
Abstract Interpretation (EAAI), Electronic Notes in Theoretical Computer Science.
Elsevier, 2006.

53. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3):292–325, 1986.

54. R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java optimization framework. In Proc. of Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON), pages 125–135, 1999.

55. P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Polymor-
phic and Higher-Order Functional Programs. In Proceedings of the International
Workshop on Implementation of Functional Languages, volume 3145 of Lecture
Notes in Computer Science, pages 86–101. Springer-Verlag, September 2003.

56. P. Wadler. Strictness analysis aids time analysis. In Proc. ACM Symposium on
Principles of Programming Languages (POPL), pages 119–132. ACM Press, 1988.

57. B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM, 18(9), 1975.

31

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

420

Heap Space Analysis for Java Bytecode

Elvira Albert
DSIC, Complutense University of

Madrid, Spain
elvira@sip.ucm.es

Samir Genaim
CLIP, Technical University of

Madrid, Spain
samir@clip.dia.fi.upm.es

Miguel Gómez-Zamalloa
DSIC, Complutense University of

Madrid, Spain
mzamalloa@fdi.ucm.es

Abstract
This article presents a heap space analysis for (sequential)
Java bytecode. The analysis generates heap space cost re-
lations which define at compile-time the heap consumption
of a program as a function of its data size. These relations
can be used to obtain upper bounds on the heap space allo-
cated during the execution of the different methods. In addi-
tion, we describe how to refine the cost relations, by relying
on escape analysis, in order to take into account the heap
space that can be safely deallocated by the garbage collector
upon exit from a corresponding method. These refined cost
relations are then used to infer upper bounds on the active
heap space upon methods return. Example applications for
the analysis consider inference of constant heap usage and
heap usage proportional to the data size (including polyno-
mial and exponential heap consumption). Our prototype im-
plementation is reported and demonstrated by means of a se-
ries of examples which illustrate how the analysis naturally
encompasses standard data-structures like lists, trees and ar-
rays with several dimensions written in object-oriented pro-
gramming style.

Categories and Subject Descriptors F3.2 [Logics and
Meaning of Programs]: Program Analysis; F2.9 [Analy-
sis of Algorithms and Problem Complexity]: General; D3.2
[Programming Languages]

General Terms Languages, Theory, Verification, Reliabil-
ity

Keywords Heap Space Analysis, Heap Consumption, Low-
level Languages, Java Bytecode

1. Introduction
Heap space analysis aims at inferring bounds on the heap
space consumption of programs. Heap analysis is more typi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’07, October 21–22, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-893-0/07/0010. . . $5.00

cally formulated at the source level (see, e.g., [24, 17, 25, 19]
in the context of functional programming and [18, 13] for
high-level imperative programming languages). However,
there are situations where one has only access to compiled
code and not to the source code. An example of this is
mobile code, where the code consumer receives code to
be executed. In this context, Java bytecode [20] is widely
used, mainly due to its security features and the fact that
it is platform-independent. Automatic heap space analysis
has interesting applications in this context. For instance, re-
source bound certification [14, 4, 5, 16, 12] proposes the use
of safety properties involving cost requirements, i.e., that the
untrusted code adheres to specific bounds on the resource
consumption. Also, heap bounds are useful on embedded
systems, e.g., smart cards in which memory is limited and
cannot easily be recovered. A general framework for the
cost analysis of sequential Java bytecode has been proposed
in [2]. Such analysis statically generates cost relations which
define the cost of a program as a function of its input data
size. The cost relations are expressed by means of recursive
equations generated by abstracting the recursive structure of
the program and by inferring size relations between argu-
ments. Cost relations are parametric w.r.t. a cost model, i.e.,
the cost unit associated to the bytecode b appears as an ab-
stract value Tb within the equations.

This article develops a novel application of the cost anal-
ysis framework of [2] to infer bounds on the heap space
consumption of sequential Java bytecode programs. In a
first step, we develop a cost model that defines the cost of
memory allocation instructions (e.g., new and newarray) in
terms of the number of heap (memory) units it consumes.
E.g., the cost of creating a new object is the number of heap
units allocated to that object. The remaining bytecode in-
structions do not add any cost. With this cost model, we
generate heap space cost relations which are then used to
infer upper bounds on the heap space usage of the differ-
ent methods. These upper bounds provide information on
the maximal heap space required for executing each method
in the program. In a second step, we refine this cost model
to consider the effect of garbage collection. This is done by
relying on escape analysis [15, 8] to identify those mem-
ory allocation instructions which create objects that will be

105

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

421

garbage collected upon exit from the corresponding method.
With this information available, we can generate heap space
cost relations which contain annotations for the heap space
that will be garbage collected. The annotated cost relations
in turn are used to infer upper bounds on the active heap
space upon exit from methods, i.e., the heap space consumed
and that might not be garbage collected upon exit.

A distinguishing feature of the approach presented in this
article w.r.t. previous type-based approaches (e.g., [5, 17])
is that it is not restricted to linear bounds since the gener-
ated cost relations can in principle capture any complexity
class. Moreover, in many cases, the relations can be simpli-
fied to a closed form solution from which one can glean im-
mediate information about the expected consumption of the
code to be run. The approach has been assessed by means
of a prototype implementation, which originates from the
one of [3]. It should be noted that the examples in [3] are
simple imperative algorithms which did not make use of
the heap, since they were aimed at demonstrating that tradi-
tional complexity schemata can be handled by the cost anal-
ysis of [2]. In contrast, we demonstrate our heap analysis
by means of a series of example applications written in an
object-oriented style which make intensive use of the heap
and which present novel features like heap consumption that
depends on the class fields, multiple inheritance, virtual in-
vocation, etc. These examples allow us to illustrate the most
salient features of our analysis: inference of constant heap
usage, heap usage proportional to input size, support of stan-
dard data-structures like lists, trees, arrays, etc. To the best of
our knowledge, this is the first analysis able to infer arbitrary
heap usage bounds for Java bytecode.

The rest of the paper is structured as follows: Sec. 2
presents an example that illustrates the ideas behind the anal-
ysis. Sec. 3 briefly describes the Java bytecode language.
Sec. 4 defines a cost model for heap consumption and de-
scribes the analysis framework. Sec. 5 demonstrates the dif-
ferent features of the analysis by means of examples. In
Sec.6, we extend our cost model to consider the effect of
garbage collection. Sec. 7 reports on a prototype implemen-
tation and some experimental results. Finally, Sec. 8 con-
cludes and discusses the related work.

2. Worked Example
Consider the Java classes and their corresponding (struc-
tured) Java bytecode depicted in Fig. 1 which define a
linked-list data structure in an object-oriented style, as it
appears in [18]. The class Cons is used for data nodes and
the class Nil plays the role of null to indicate the end of a
list. Both classes define a copy function which is used to
clone the corresponding object. In the case of Nil the copy
method just returns this since it is the last element of the list,
and in the case of Cons it clones the current object and its
successors recursively (by calling the copy method of next).
The rest of this section describes the different steps applied

by the analyzer to approximate the heap consumption of the
program depicted in Fig. 1. Note that the Java program is
provided here just for clarity, the analyzer works directly on
the bytecode which is obtained, for example, by compiling
the Java program.

Step I: In the first step, the analyzer recovers the struc-
ture of the Java bytecode program by building a control
flow graph (CFG) for its methods. The CFG consists of ba-
sic blocks which contain a sequence of non-branching byte-
code instructions, these blocks are connected by edges that
describe the possible flows that originate from the branch-
ing instructions like conditional jumps, exceptions, virtual
method invocation, etc. In Fig. 1, the CFG of the method
Nil.copy consists of the single block BlockNil

0 and the CFG
of the method Cons.copy consists of the rest of the blocks.
BlockCons

0 corresponds to the bytecode of Cons.copy up to
the recursive method call this.next.copy(). Then, depending
on the type of the object stored in this.next the execution is
transferred to either Nil.copy or Cons.copy. This is expressed
by the (guarded) branching to BlockCons

1 and BlockCons
2 .

In both cases, the control returns to BlockCons
3 which corre-

sponds to the rest of the statements.

Step II: In the second step, the analyzer builds an interme-
diate representation for the CFG and uses it to infer infor-
mation about the changes in the sizes of the different data-
structures (or in the values of integer variables) when the
control passes from one part of the program (e.g., a block
or a method) to another part. For example, this step infers
that when Nil.copy or Cons.copy are called recursively, the
length of the list decreases by one. This information is es-
sential for defining the heap consumption of one part of the
program in terms of the heap consumption of other parts.

Step III: In the third step, the intermediate representation
and the size information are used together with the cost
model for heap consumption to generate a set of cost rela-
tions which describe the heap consumption behaviour of the
program. The following equations are the ones we get for the
example in Fig. 1:

Heap Space Cost Equations Size relations

CNil
copy(a) = 0 {a=1}

CCons
copy (a) = C0(a)

C0(a) = size(Cons) + CC0(a, b) {a≥1, b≥0, a=b+1}

CC0(a, b) =

C1(a, b)
C2(a, b)

b̂ ∈ Nil

b̂ ∈ Cons

C1(a, b) = CNil
copy(b) + C3(a) {a=1}

C2(a, b) = CCons
copy (b) + C3(a) {a≥2}

C3(a) = 0

Each of these equations corresponds to a method entry, block
or branching in the CFG. An equation is composed by the
left hand side which indicates the block or the method it
represents, and the right hand side which defines its heap
consumption behaviour. In addition, size relations might be
attached to describe how the data size changes when using
another equation.

106

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

422

abstract class List {
abstract List copy();

}
class Nil extends List {

List copy() {
return this;

}
}
class Cons extends List {

int elem;
List next;
List copy(){

Cons aux = new Cons();
aux.elem = this.elem;
aux.next = this.next.copy();
return aux;

}
}

guard(instanceof(Nil))

3: dup

8: aload_1

9: aload_0

16: aload_1

17: aload_0

resolve_virtual(List,copy)

1: areturn

Nil:copy

Block

Block

Block

Cons

Cons

Nil

0

0: aload_0

Cons:copy

0: new Cons

Block
1

Cons

0

3

7: astore_1

4: invoke Cons.<init>

10: getfield Cons.elem

13: putfield Cons.elem

18: getfield Cons.next

21: invoke Nil.copy

24: putfield Cons.next

27: aload_1

28: areturn

guard(instanceof(Cons))

21: invoke Cons:copy

Cons

2
Block

Figure 1. Java source code and CFG bytecode of example

The equation CNil
copy(a) defines the heap consumption

of Nil.copy in terms of (the size of) its first argument a
which corresponds to its this reference variable (in Java byte-
code the this reference variable is the first argument of the
method). In this case the heap consumption is zero since
the method does not allocate any heap space. The equation
CCons

copy (a) defines the heap consumption of Cons.copy as the
heap consumption of BlockCons

0 using the corresponding
equation C0, which in turn defines the heap consumption as
the amount of heap units allocated by the new bytecode in-
structions, namely size(Cons), plus the heap consumption
of its successors which is defined by the equation CC0. All
other instructions in BlockCons

0 contribute zero to the heap
consumption. Note that in C0, the variable b corresponds to
this.next of Cons.copy and that the size analysis is able to
infer the relation a=b+1 (i.e., the list a is longer than b by
one). The equation CC0 corresponds to the heap consump-
tion of the branches at the end of BlockCons

0 , depending on
the type of b (denoted as b̂) it is equal to the heap consump-
tion of BlockCons

1 or BlockCons
2 which are respectively de-

fined by the equations C1 and C2. The equation C1 defines
the heap consumption of BlockCons

1 as the heap consump-
tion of Nil.copy (since it is called in BlockCons

1) plus the
heap consumption of BlockCons

3 (using the equation C3).
Similarly C2 defines the heap consumption of BlockCons

2 in
terms of the heap consumption of Cons.copy. The equation
C3 defines the heap consumption of BlockCons

3 to be zero
since it does not allocate any heap space.

Step IV: In the fourth step, we can simplify the equations
and try to obtain an upper bound in closed form for the
cost relation by applying the method described in [1]. In
particular, assuming that size(Cons) equals 8 (4 bytes for
the integer field data and 4 bytes for the reference field next),
we obtain the following simplified equations:

Equation Size relations
CNil

copy(a) = 0 {a=1}
CCons

copy (a) = 8 {a=2}
CCons

copy (a) = 8 + CCons
copy (b) {a≥3, b≥1, a=b+1}

and then obtain an upper bound in closed form CCons
copy (a) =

8 ∗ (a− 1).
The main focus of this paper is on the generation of heap

space cost relations, as illustrated in Step III. Steps I and II
are done as it is proposed in [2] and Step IV as it is described
in [1] and hence we will not give many details on how they
are performed in this paper.

3. The Java Bytecode Language
Java bytecode [20] is a low-level object-oriented program-
ming language with unstructured control and an operand
stack to hold intermediate computational results. Moreover,
objects are stored in dynamic memory: the heap. A Java
bytecode program consists of a set of class files, one for each
class or interface. A class file contains information about its
name c ∈ Class Name , the class it extends, the interfaces it
implements, and the fields and methods it defines. In partic-
ular, for each method, the class file contains: a method sig-
nature which consists of its name and its type; its bytecode
bcm = 〈pc0:b0, . . . , pcnm

:bnm〉, where each bi is a bytecode
instruction and pci is its address; and the method’s excep-
tions table. In this work we consider a subset of the JVM [20]
language which is able to handle operations on integers and
references, object creation and manipulation (by accessing
fields and calling methods), arrays of primitive and reference
types, and exceptions (either generated by abnormal execu-
tion or explicitly thrown by the program). For simplicity, we
omit static fields and initializers and primitive types different
from integers. Such features could be handled by making the
underlying abstract interpretation support them by assuming
the worst case approximation for them. Thus, our bytecode
instruction set (bcInst) is:

bcInst ::=
push x | istore v | astore v | iload v | aload v | iconst a
| iadd | isub | imul | idiv | if� pc | goto pc | ireturn | areturn
| return | new Class Name |
| newarray int | anewarray Class Name | iaload | aaload
| iastore | aastore | athrow | dup
| invokevirtual/invokespecial Class Name.Meth Sig
| getfield/putfield Class Name.Field Sig

107

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

423

where � is a comparison operator (ne,le, icmpgt, etc.), v a
local variable, a an integer, pc an instruction address, and x
an integer or the special value null.

4. The Heap Space Analysis Framework
Cost analysis of a low-level object-oriented language such
as Java bytecode is complicated mainly due to its unstruc-
tured control flow (e.g., the use of goto statements rather
than recursive structures), its object-oriented features (e.g.,
virtual method invocation) and its stack-based model. The
recent work of [2] develops a generic framework for the au-
tomatic cost analysis of Java bytecode programs. Essentially,
the complications of dealing with a low-level language are
handled in this framework by abstracting the recursive struc-
ture of the program and by inferring size relations between
arguments. As we have seen in Sect. 2, this analysis frame-
work is based on transforming the Java bytecode program
to an intermediate representation which fits inside the same
setting all possible forms of loops. Then, using this inter-
mediate representation, the analysis infers information about
the change in the sizes of the relevant data structures as the
program goes through its loops (Steps I and II). Finally, this
information is used to set up a cost relation which defines the
cost of the program in terms of the sizes of the corresponding
data structures.

In this section, we present a novel application of this
generic cost analysis framework to infer bounds on the heap
space consumption of sequential Java bytecode programs.
So far, this framework has been only used in [3] to infer the
complexity of some classical algorithms while in this paper
our purpose is completely different: we aim at computing
bounds on the heap usage for programs written in object-
oriented programming style which make intensive use of
the heap. In Sect. 4.1 and Sect. 4.2, we briefly present the
notions of recursive representation and calls-to size-relation
in a rather informal style. Then, we introduce our cost model
for heap consumption and our notion of heap space cost
relation in Sect. 4.3.

4.1 Recursive Representation
Cost relations can be elegantly expressed as systems of re-
cursive equations. In order to automatically generate them,
we need to capture the iterative behaviour of the program
by means of recursion. One way of achieving this is by
computing the CFG of the program. Also, advanced fea-
tures like virtual invocation and exceptions are simply dealt
as additional nodes in the graph. To analyze the bytecode,
its CFG can be represented by using some auxiliary recur-
sive representation (see, e.g., [2]). In this approach, a byte-
code is transformed into a set of guarded rules of the form
〈head ← guard, body〉 where the guard states the applica-
bility conditions for the rule. Rules are obtained from blocks
in the CFG and guards indicate the conditions under which
each block is executed. As it is customary in determinis-

tic imperative languages, guards provide mutually exclusive
conditions because paths from a block are always exclusive
(i.e., alternative) choices.

DEFINITION 4.1 (rec. representation). Consider a block p
in a CFG, which contains a sequence of bytecode instruc-
tions B guarded by the condition Gb and whose successor
blocks are q1, · · · , qn. The recursive representation of p is:

p(l̄, s̄, r)← Gp, B, (q1(l̄, s̄′, r); · · · ; qn(l̄, s̄′, r))

where:

• l̄ is a tuple of variables which corresponds to the method’s
local variables,
• s̄ and s̄′ are tuples of variables which respectively cor-

respond to the active stack elements at the block’s entry
and exit,
• r is a single variable which corresponds to the method’s

return value (omitted if there is not return value),
• Gp and B are obtained from the block’s guard and byte-

code instructions by adding the local variables and stack
elements on which they operate as explicit arguments.

We denote by calls(B) the set of method invocation instruc-
tions within B and by bytecode(B) the other instructions. 2

The formal translation of bytecode instructions in B to calls
within the recursive rules is presented in [2]. In this transla-
tion, it is interesting to note that the stack positions are visi-
ble in the rules by explicitly defining them as local variables.
This intermediate representation is convenient for analysis as
in one pass we can eliminate almost all stack variables which
results in a more efficient analysis.

EXAMPLE 4.2. The rules that correspond to the blocks
BlockCons

0 , BlockCons
1 and BlockCons

2 in Fig. 1 are:

copyCons0 (this, aux, r)←
new(Cons, s0), dup(s0, s1), Cons.<init>(s1),
astore(s0, aux

′), aload(aux′, s′0), aload(this, s
′
1),

getfield(Cons.elem, s′1, s
′′
1),

putfield(Cons.elem, s′0, s
′′
1),

aload(aux′, s′′0), aload(this, s′′′1),
getfield(Cons.next, s′′′′1),
(copyCons1 (this, aux′, s′′0 , s′′′′1 , r) ;

copyCons2 (this, aux′, s′′0 , s′′′′1 , r)).

copyCons1 (this, aux, s0, s1, r)←
guard(instanceof(s1, Nil)),
Nil.copy(s1, s

′
1),

copyCons3 (this, aux, s0, s
′
1, r).

copyCons2 (this, aux, s0, s1, r)←
guard(instanceof(s1, Cons)),
Cons.copy(s1, s

′
1),

copyCons3 (this, aux, s0, s
′
1, r).

The rule copyCons0 is not guarded and has two continuation
blocks, while the other rules are guarded by the type of

108

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

424

the object of s1 (the top of the stack) and have only one
successor. The bytecode instructions were transformed to
include explicitly the stacks elements and the local variables
on which they operate, moreover, all variables are in single
static assignment form. Note that calls to methods take the
same form as calls to blocks, which makes all different forms
of loops to fit in the same setting. 2

4.2 Size Analysis
A size analysis is then performed on the recursive represen-
tation in order to infer the calls-to size-relations between the
variables in the head of the rule and the variables used in
the calls (to rules) which occur in the body for each program
rule. Derivation of constraints is a standard abstract inter-
pretation over a constraints domain such as Polyhedra [2, 3].
Such relations are essential for defining the cost of one block
in terms of the cost of its successors. The analysis is done
by abstracting the bytecode instructions into the linear con-
straints they impose on their arguments, and then computing
a fixpoint that collects calls-to relations.

DEFINITION 4.3 (calls-to size-relations). Consider the rule
in Def. 4.1, its calls-to size-relations are triples of the form

〈p(x̄), p′(z̄), ϕ〉 where p′(z̄) ∈ calls(B) ∪ q1(ȳ) ∪ . . . ∪ qn(ȳ)

The size-relation ϕ is given as a conjunction of linear con-
straints. The tuples of variables x̄, ȳ and z̄ correspond to the
variables of the corresponding block. 2

In Java bytecode, we consider three cases within size re-
lations: for integer variables, size-relations are constraints
on the possible values of variables; for reference variables,
they are constraints on the length of the longest reachable
paths [21], and for arrays they are constraints on the length of
the array. Note that using the path-length notion cyclic struc-
tures are not handled since to guarantee soundness the corre-
sponding references are abstracted to “unknown-length” and
therefore cost that depends on them cannot be inferred.

EXAMPLE 4.4. The calls-to-size relation for the first rule in
Ex. 4.2 is formed by the triples:

〈copyCons0 (this, aux), copyCons1 (this, aux′, s′′0 , s′′′′1 , r), ϕ〉
〈copyCons0 (this, aux), copyCons2 (this, aux′, s′′0 , s′′′′1 , r), ϕ〉

where ϕ includes, among others, the constraint this=s′′′′1 +1
which states that the list that this points to is longer
by one than the list that s′′′′1 points to (s′′′′1 corresponds
to this.next). The meaning of the above relations is ex-
plained in Section 2. Note that the call to the constructor
Cons.<init> is ignored for simplicity. 2

4.3 Heap Space Cost Relations
In order to define our heap space cost analysis, we start by
defining a cost model which defines the cost of memory
allocation instructions (e.g., new, newarray and anewarray)
as the the number of heap (memory) units they consume.
The remaining bytecode instructions do not add any cost.

DEFINITION 4.5 (cost model for heap space). We define a
cost model Mheap which takes a bytecode instruction bc
and returns a positive expression as follows:

Mheap(bc)=

size(Class) if bc=new(Class,)

SPrimType ∗ L if bc=newarray(PrimType,L,)

Sref ∗ L if bc=anewarray(Class,L,)

0 otherwise

where SPrimType and Sref denote, respectively, the heap con-
sumption of primitive types and references. Function size is
defined as follows:

size(O) =

X

F∈Class.field

size(type(F)) if O=Class

SPrimType if O is a primitive type
Sref if O is a reference type

where the type of a field in a Class (i.e., Class.field) can
be either primitive or reference. 2

In Java bytecode, types are classified into primitive (its
size is represented by SPrimType in our model) and reference
types (Sref). In a particular assessment, one has to set the
concrete values for SPrimType and Sref of the JVM imple-
mentation.

For each rule in the recursive representation of the pro-
gram and its corresponding size relation, the analysis gener-
ates the cost equations which define the heap consumption of
executing the block (or possibly a method call) by relying on
the above cost model. A heap space cost relation is defined
as the set of cost equations for each block of the bytecode
(or rule in the recursive representation).

DEFINITION 4.6 (heap space cost relation). Consider a rule
R of the form p(x̄)← Gp, B, (q1(ȳ); · · · ; qn(ȳ)) and let the
linear constraints ϕ be a conjunction of all call-to size-
relations within the rule. The heap space cost equations for
R are generated as follows:

Cp(x̄) =
X

b∈bytecode(B)

Mheap(b) +
X

r(z̄)∈calls(B)

+Cr(z) + Cp cont(ȳ) ϕ

Cp cont(ȳ) = Cq1(ȳ) Gq1

. . .
Cp cont(ȳ) = Cqn(ȳ) Gqn

where Gqi is the guard of qi. The heap space cost relation
associated to the recursive representation of a method is
defined as the set of cost equations for its blocks. 2

When the rule has multiple continuations, it is trans-
formed into several equations. We specify the cost of each
continuation in a separate equation because the guards for
determining the alternative path qi that the execution will
take (with i = 1, . . . , n) are only known at the end of the
execution of the bytecode B; thus, they cannot be evaluated
before B is executed. The guards appear also decorating the
equations. In the implementation, when a rule has only one
continuation, it gives rise to a single equation which contains
the size relation ϕ as an attachment.

109

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

425

Java source code
abstract class Data{

abstract public Data copy();
}
class Polynomial extends Data{

private int deg;
private int[] coefs;
public Polynomial() {

coefs = new int[11];}
public Data copy() {

Polynomial aux = new Polynomial();
aux.deg = deg;
for (int i=0;i<=deg && i<=10;i++)

aux.coefs[i] = coefs[i];
return aux;}}

class Vector3D extends Data{
private int x;
private int y;
private int z;
public Vector3D(int x,int y,int z) {

this.x = x;
this.y = y;
this.z = z;}

public Data copy() {
return new Vector3D(x,y,z);
}
}

class Results{
Data[] rs;
public Results() {

rs = new Data[25];
}

public Results copy() {
Results aux = new Results();
for (int i = 0;i < 25;i++)

aux.rs[i] = rs[i].copy();
return aux;}}

Heap space cost equations
Equation Guard Size rels.

Ccopy(a) = Sref + 25∗Sref + C0(a, 0)
C0(a, i) = Sint + Sref| {z }

size(Polyn)

+11∗Sint + C0(a, j) 〈â.rs[i] ∈ Polyn〉 {i<25, j = i+1}

C0(a, i) = 3∗Sint| {z }
size(V ect3D)

+C0(a, j) 〈â.rs[i] ∈ V ect3D〉 {i<25, j = i+1}

C0(a, i) = 0 {i>=25}

Figure 2. Constant heap space example

EXAMPLE 4.7. The heap space cost equations generated
for the rule copyCons

0 of Ex. 4.2 and the size relation of
Ex. 4.4 are (see Sect. 2):

CCons
0 (this, aux)=size(Cons) + CCCons

0

(this, aux′, s′′0 , s′′′′1){this=s′′′′1 +1, . . .}

CCCons
0 (this, aux′, s′′0 , s′′′′1) =(

CCons
1 (this, aux′, s′′0 , s′′′′1)

CCons
2 (this, aux′, s′′0 , s′′′′1)

ŝ′′′′1 ∈ Nil

ŝ′′′′1 ∈ Cons

The cost of BlockCons
0 is captured by CCons

0 , among all
bytecode instructions in BlockCons

0 , we count only the
creation of the object of class Cons. The continuation of
BlockCons

0 is captured in the relation CCCons
0 , where de-

pending on the type of the object s′′′′1 , we choose between
two mutually exclusive equations CCons

1 or CCons
2 . 2

In addition, the analyzer performs a slicing step, which aims
at removing variables that do not affect the cost. And also
tries to simplify the equations as much as possible by ap-
plying unfolding steps. These steps lead to simpler cost re-
lations. Due to lack of space, during the rest of the paper
we will apply them without giving details on how they were
performed.

5. Example Applications of Heap Space
Analysis

In this section, we show the most salient features of our heap
space analysis by means of a series of examples. All exam-
ples are written in object-oriented style and make intensive
use of the heap. We intend to illustrate how our analysis
is able to deal with standard data-structures like lists, trees
and arrays with several dimensions as well as with multi-
ple inheritance, class fields, virtual invocation, etc. We show
examples which present heap usage which depends propor-
tionally to the data size, namely in some cases it depends on
class fields while in another one on the input arguments. An
interesting point is that heap consumption is, in the differ-
ent examples, constant, linear, polynomial or exponentially
proportional to the data sizes.

For each example, we show the Java source code and
its heap space cost relation. Each relation consists of three
parts: the equations, the guards and the size relations. The
applicability conditions of each equation are defined by the
guards and the size relations. Guards usually provide non-
numeric conditions while size relations provide conditions
on the sizes of the corresponding variables. In addition, size
relations describe how the data changes when the control
moves from one to another part of the program. Since our

110

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

426

Java source code

abstract class List{
abstract public List copy();
}
class Nil extends List{

public List copy() {
return this;

}

class Cons extends List
private Data elem;
private List next;
public List copy() {

Cons aux = new Cons();
aux.elem = this.elem.copy();
aux.next = this.next.copy();
return aux;}

Heap space cost equations
Equation Guard Size rels.

Ccopy(a) =

size(Cons)z }| {
2∗Sref +

this.elem.copy()z }| {
Sint + Sref + 11∗Sint

fi
â.elem ∈ Polyn∧
â.next ∈ Nil

fl
{a = 2}

Ccopy(a) = 2∗Sref + Sint + Sref

+11∗Sint + Ccopy(b)

fi
â.elem ∈ Polyn∧
â.next ∈ Cons

fl
a≥3, b≥2
a>b

ff
Ccopy(a) = 2∗Sref| {z }

size(Cons)

+ 3∗Sint| {z }
this.elem.copy()

fi
â.elem ∈ V ect3D∧
â.next ∈ Nil

fl
{a = 2}

Ccopy(a) = 2∗Sref + 3∗Sint + Ccopy(b)

fi
â.elem ∈ V ect3D∧
â.next ∈ Cons

fl
a≥3, b≥2
a>b

ff

Figure 3. Generic list example

system only deals with integer primitive types, we use the
cost model presented in Sect. 4.3 with the constants Sint

and Sref to denote the basic sizes for integers and reference
types, respectively. Also note that we provide the Java source
code instead of the bytecode just for clarity and space limi-
tations. The analyzer works directly on the bytecode which
can be found in the appendix.

5.1 Constant Heap Space Usage
In the first example we consider a method with constant
heap space usage, i.e., its heap consumption does not de-
pend on any input argument. Fig. 2 shows both the source
code and the heap space cost equations generated by the
analyzer. The program implements a data hierarchy which
will be used throughout the section. It consists of an abstract
class, Data and two subclasses, Polynomial and Vector3D.
The class Polynomial defines a polynomial expression of de-
gree up to 10 with integer coefficients, the coefficients are
stored in the array field coefs and the degree in the integer
field deg. Its copy method returns a deep copy of the corre-
sponding polynomial by creating a new array of 11 integers
and copying the first deg+1 original coefficients. The class
Vector3D represents an integer vector with 3 dimensions.
The class Results stores 25 objects of type Data, which in
execution time will be Polynomial or Vector3D objects. Its
copy method produces a deep copy of the whole structure
where each of the 25 elements is copied by its correspond-
ing copy method (hence dynamically resolved).

The cost equations generated by the analyzer for the
method Results.copy are shown in Fig. 2 (at the bottom left).
The first equation Ccopy(a) defines the heap consumption
of the method in terms of its first argument a which corre-

sponds to the abstraction of its this reference variable (i.e.,
its size). It counts the heap space allocated for the creation of
an object of type Results, namely Sref ; the space allocated
by its constructor, namely 25∗Sref ; and the space allocated
when executing the loop. The heap space allocated by the
loop is captured by C0 and it depends on the type of the
object at the current position of the array (which is spec-
ified in the guards by checking the class of â.rs[i]) such
that the call to its corresponding copy method contributes
Sint + Sref+11∗Sint if it is an instance of Polynomial and
3∗Sint if it is an instance of Vector3D.

As already mentioned, a further issue is how to automat-
ically infer closed form solutions (i.e., without recurrences)
from the generated cost relations. In our examples, we can
directly apply the method of [1] to compute an upper bound
in closed form. However, we will not go into details of this
process as it is not a concern of this paper and we will sim-
ply show the asymptotic complexity that can be directly ob-
tained from such upper bounds. We can observe from the
equations that the asymptotic complexity is O(1), as equa-
tion Ccopy is a constant plus C0, and C0 is called a constant
number of times (in this case 25 times). By assuming that
Sint = 4 and Sref = 4, we can obtain the following upper
bound Ccopy = 4 + 25 ∗ 4 + 25 ∗ 52 = 1404.

5.2 Bounds Proportional to the Input Data Size
For the second example, we consider a generic data structure
of type List. Both the source code and the heap space cost
equations obtained by our analyzer are depicted in Fig. 3.
The list is implemented taking advantage of the polymor-
phism as in the style of the example in Sect. 1, but in this
case the elements of the list are objects extending from Data

111

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

427

Java source code
class Score{

private int gt1, gt2;
public Score() {

gt1 = 0;
gt2 = 0;
}

class Scoreboard{
private Score[][][] scores;

public Scoreboard(int a,int b) {
scores = new Score[a][][];
for (int i = 1;i <= a;i++) {

scores[i-1] = new Score[i][];
for (int j = 0;j < (i-1);j++) {

scores[i-1][j] = new Score[b];
for (int k = 0;k < b;k++)

scores[i-1][j][k] = new Score();}}}}
Heap space cost equations

Equation Guard Size rels.

C<init>(a, b) = a∗Sref + C1(a, b, 1)
C1(a, b, i) = i∗Sref + C2(b, i, 0) + C1(a, b, d) {i≤a, d = i+1}
C1(a, b, i) = 0 {i > a}
C2(b, i, j) = b∗Sref + C3(b, 0) + C2(b, i, d) {j <(i−1), d = j+1}
C2(b, i, j) = 0 {j ≥ (i−1)}
C3(b, k) = 2∗Sint + C3(b, c) {k<b, c = k+1}
C3(b, k) = 0 {k ≥ b}

Figure 4. Multi-dimensional arrays example

(see the classes in Fig. 2) rather than integer primitive types.
The List.copy method returns a deep copy of the list which,
in addition to copying the whole list structure, it copies each
element by using the corresponding Data.copy method (re-
solved at execution time).

At the bottom of Fig. 3, we show the heap space cost
equations our analyzer generates for the method List.copy
of class Cons. The equation Ccopy(a) defines the heap con-
sumption of the whole method in terms of its first argument a
which represents the size of its this reference variable. There
are four equations for Ccopy , two of them (the second and
the fourth one) are recursive and correspond to the case in
which the rest of the list is not empty, i.e., â.next ∈ Cons.
Note that, in such recursive equations, the size analysis is
able to infer the constraint a > b, thus ensuring that re-
cursive calls are made with a strictly decreasing value. The
other two equations are constant and correspond to the base
case (i.e. the rest of the list is empty). This is abstracted in
the size relations with the constraint a = 2. Note that the
heap usage depends on whether we invoke the copy method
of a Polynomial or a Vector3D object. By considering the
worst cases for all equations, we can infer the upper bound
Ccopy(a)≤(5∗Sref +15∗Sint)∗a ≡ O(a) which describes
a heap consumption linear in a, the size of the list.

5.3 Multi-Dimensional Arrays
Let us consider the example in Fig. 4. The class Scoreboard
is instrumental to show how our heap space analysis deals
with complex multi-dimensional array creation. The class
has a 3-dimensional array field. The constructor takes two
integers a and b and creates an array such that: the first
dimension is a; the second dimension ranges from 1 to a;
and the third dimension is b. Each array entry scores[i][j][k]
stores an object of type Score.

At the bottom of Fig. 4 we can see the heap space cost
equations generated by the analyzer for the constructor of
class Scoreboard. The equation C<init>(a, b) represents the
heap space consumption of the constructor where a and b
correspond to the size of its input parameters. It counts the
heap consumed by constructing the first array dimension,
a∗Sref , plus the heap consumption when executing the out-
ermost loop which is represented by the call C1(a, b, 1). The
heap consumption modeled by C1 includes the amount of
heap allocated for the second array dimension in each itera-
tion, i∗Sref , and the consumption of executing the middle
loop which is represented by the call C2(b, i, 0). Note that
size analysis infers that within C1, the value of i increases
by 1 at each iteration (d=i+1) until it converges to a (i≤a).
The equation C2 defines the heap consumption of the mid-
dle loop, which includes the heap allocated for the third ar-
ray dimension, b∗Sref , plus the consumption of executing
the innermost loop which is represented by the call C3(b, 0).
Finally, C3 models the heap space required for creating
b−k Score objects by the innermost loop. In this case, we
can infer the upper bound C<init>(a, b) ≤ (((2∗Sint∗b) +
b∗Sref)∗a + a∗Sref)∗a + a∗Sref ≡ O(b∗a2).

5.4 Complex Data Structures
For the last example, let us consider a more complex tree-
like data structure which is depicted in Fig. 5. The class
MultiBST implements a binary search tree data structure
where each node has an object of type List (from Fig. 3) and
two successors of type MultiBST which correspond to the
right and left branches of the tree. The constructor method
creates an empty tree whose data field is initialized to an
empty list, i.e., an instance of class Nil. The copy method
performs a deep copy of the whole tree by relying on the
copy method of class List.

112

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

428

Java source code
class BST {

private List data;
private MultiBST lc;
private MultiBST rc;
public MultiBST() {

data = new Nil();
lc = null; rc = null; }

public MultiBST copy() {
MultiBST aux = new MultiBST();
aux.data = data.copy();
if (l==null) aux.lc=null; else aux.lc=lc.copy();
if (r==null) aux.rc=null; else aux.rc=rc.copy();
return aux;}}

Heap space cost equations
Equation Guard Size rels.

C(a) = 3∗Sref + D(d) 〈â.lc = null, â.rc = null〉 {a>0, a>d}
C(a) = 3∗Sref + D(d) + C(l) 〈â.lc 6= null, â.rc = null〉 {a>0, a>d, a>l}
C(a) = 3∗Sref + D(d) + C(r) 〈â.lc = null, â.rc 6= null〉 {a>0, a>d, a>r}
C(a) = 3∗Sref + D(d) + C(l) + C(r) 〈â.lc 6= null, â.rc 6= null〉 {a>0, a>d, a>l, a>r}

Figure 5. Multi binary search tree example

The heap space cost equations generated by the analyzer
for the method MultiBST.copy are depicted in Fig. 5 (at the
bottom). The equations defining C(a) represent the heap
space usage of the whole method in terms of the parameter
a, which corresponds to the maximal path-length in the tree.
There are four cases which correspond to the different pos-
sible values for the left and right branches (equal or different
from null). Consider for example the last equation: 3 ∗ Sref

is the heap allocated by the new instruction; D(d) is the
heap consumption for copying an object of type List which
corresponds to Ccopy from Fig. 3; C(l) and C(r) corre-
spond to the heap consumption of copying the left and right
branches respectively. From the cost relation, we infer the
upper bound C(a)≤(3∗Sref+D(a))∗2a where D(a) corre-
sponds to the cost of copying the data field (see Sec. 5.2).

6. Active Heap Space with Garbage
Collection

One of the safety principles in the Java language is ensured
by the use of a garbage collector which avoids errors by the
programmer related to deallocation of objects from the heap.
The aim of this section is to furnish the heap usage cost
relations with safe annotations which mark the heap space
that will be deallocated by the garbage collector upon exit
from the corresponding method. The annotations are then
used to infer heap space upper bounds for methods upon exit.

In order to generate such annotations, we rely on the use
of escape analysis (see, e.g., [8, 15]). Essentially, we as-
sume that the heap allocation instructions new, newarray
and anewarray have been respectively transformed by new
instructions new gc, newarray gc and anewarray gc as
long as it is guaranteed that the lifetime of the correspond-
ing allocated heap space does not exceed the instruction’s
static scope. In this case, the heap space can be safely deal-
located upon exit from the corresponding method. This pre-
processing transformation can be done in a straightforward
way by using the information inferred by escape analysis. In

the following, we refer by transformed bytecode instructions
to the above transformation performed on the heap alloca-
tion instructions. Also, we use gc(H) to denote that the heap
space H will safely be garbage collected upon exit from the
corresponding method (according to escape analysis) and
ngc(H) to denote that it might not be garbage collected.

DEFINITION 6.1. We define a cost model for heap space
with garbage collection which takes a transformed bytecode
instruction bc and returns a positive symbolic expression as:

Mgc
heap(bc)=

ngc(size(Class)) if bc=new(Class,)
gc(size(Class)) if bc=new gc(Class,)

ngc(SPrimType ∗ L) if bc=newarray(PrimType,L,)
gc(SPrimType ∗ L) if bc=newarray gc(PrimType,L,)

ngc(Sref ∗ L) if bc=anewarray(Class,L,)
gc(Sref ∗ L) if bc=anewarray gc(Class,L,)

0 otherwise

where SPrimType, Sref and size() are as in Def. 4.5. 2

The above cost model returns a symbolic positive expres-
sion which contains the annotations gc and ngc as described
above. Therefore, when generating the heap space cost rela-
tions as described in Def. 4.6 w.r.t.Mgc

heap, the cost relations
will be of the following form:

C(x̄) = gc(Hgc) + ngc(Hngc) +
∑

Cr(z) ϕ

where we assume that all symbolic expressions wrapped
by gc (resp. by ngc) are grouped together within each cost
equation and denote the total heap space Hgc that will be
garbage collected (resp. Hngc which might not be) after the
application of such equation.

EXAMPLE 6.2. Suppose we add the following methods
abstract List map(Func o); // List
List map(Func o) { return this; } // Nil
List map(Func o) { // Cons

List tail = this.next.map(o);
Cons head = new Cons();
head.next = tail;
head.elem = o.f(new Integer(this.elem));
return head;

}

113

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

429

respectively to the classes List, Nil and Cons which are
depicted in Fig. 1. The method map clones the corresponding
list structure, but the value of the field elem in the clone is
the result of applying the method o.f on the corresponding
value in the cloned list. Note that the method o.f, takes as
input an object of type Integer, therefore this.elem (which
is of type int) is first converted to Integer by creating a
temporary corresponding Integer object. For simplicity, we
do not give a specific definition for Func, but we assume that
its method f (which is called using o.f) does not allocate
any heap space and that it returns a value of type int. Using
escape analysis, the creation of the temporary Integer object
can be annotated as local to map, therefore we replace the
corresponding new instruction by new gc. Assuming that the
size of an Integer object is 4 bytes, and using the cost model
of Def. 6.1, we obtain the following cost equations:

Equation Size relations
CNil

map(a) =0 {a=1}
CCons

map (a)=gc(4)+ngc(8) {a=2}
CCons

map (a)=gc(4)+ngc(8)+CCons
map (b){a≥3, b≥1, a=b+1}

The symbolic expression gc(4) in the above equations corre-
sponds to the heap space allocated for the temporary Integer
object which can be garbage collected upon exit from map,
and ngc(8) corresponds to the heap space allocated for the
Cons object. As before, a corresponds to the size of the this
reference variable (i.e., the list length) and b to this.next. 2

Using the refined cost relations we can infer different
information about the heap space usage depending on the
interpretation given to the gc and ngc annotations. Let us
first consider the following definitions:

∀ H , gc(H) = 0 and ngc(H) = H (1)

where we do not count the heap space that will be deal-
located upon exit from the corresponding method. By ap-
plying Eq. (1) to a cost relation Cm of a method m, we
can infer an upper bound Ugc

m of the active heap space
upon the exit from m, i.e., the heap space consumed by m
which might not be deallocated upon exit. In this setting,
for the cost relations of Ex. 6.2 we infer the closed form
Ugc

map ≡ CCons
map (a) = 8 ∗ (a − 1). It is important to note

that, in general, such upper bound does not ensure that the
heap space required for executing m does not exceed Ugc

m ,
i.e., it is not an upper bound of the heap usage during the
execution of m but rather only after its execution. Actually,
in this simple example, we can observe already that during
the execution of the method map, if all objects are heap al-
located, we need more than 8 ∗ (a − 1) heap units (as the
objects of type Integer will be heap allocated and they are
not accounted in the upper bound). However, one of the ap-
plications of escape analysis is to determine which objects
can be stack allocated instead of heap allocated in order to
avoid invoking the garbage collector which is time consum-
ing [8]. For instance, in the above example, the objects of

type Integer can be safely stack allocated. When this stack
allocation optimization is performed, then Ugc

m is indeed an
upper bound for the heap space required to execute m.

In order to infer upper bounds for the heap space required
during the execution of m, we define gc and ngc as follows:

∀ H , gc(H) = H and ngc(H) = H (2)

In this case, we obtain the same cost relations as in Def. 4.6
which correspond to the worst case heap usage in which we
do not discount any deallocation by the garbage collector.
In this setting, for the cost relation of Ex. 6.2 we infer the
closed form Umap(a) ≡ CCons

map (a) = 12 ∗ (a− 1).
Analysis for finding upper bounds on the memory high-

watermark cannot be directly done using cost relations as
introducing decrements in the equations requires computing
lower bounds. As a further issue, the active heap space
upper bound, Ugc

m , can be used to improve the accuracy of
the upper bound on the heap space required for executing
a sequence of method calls. For example, an upper bound
of the heap space required for executing a method m1 and
upon its return immediately executing a method m2 can be
approximated by max(Um1 , U

gc
m1

+ Um2) which is more
precise than taking Um1 + Um2 as it takes into account
that after executing m1 we can apply garbage collection and
only then executing m2. This idea is the basis for a post-
processing that could be done on the program in order to
obtain more accurate upper bounds on the heap usage at a
program point level. This is a subject of ongoing research.

7. Experiments
In order to assess the practicality of our heap space analy-
sis, we have implemented a prototype inter-procedural an-
alyzer in Ciao [10] as an extension of the one in [3]. We
still have not incorporated an escape analysis in our imple-
mentation and hence the upper bounds inferred correspond
to those generated using Eq. (2) of Sect. 6. The experiments
have been performed on an Intel P4 Xeon 2 GHz with 4 GB
of RAM, running GNU Linux FC-2, 2.6.9. Table 1 shows
the run-times of the different phases of the heap space anal-
ysis process. The name of the main class to be analyzed is
given in the first column, Benchmark, and its size (the sum
of all its class file sizes) in KBytes is given in the second
column, Size. Columns 3-6 shows the runtime of the differ-
ent phases in milliseconds, they are computed as the arith-
metic mean of five runs: RR is the time for obtaining the
recursive representation (building CFG, eliminating stack el-
ements, etc., as outlined in Sec. 4.1); Size An. is the time for
the abstract-interpretation based size analysis for computing
size relations; Cost is the time taken for building the heap
space cost relations for the different blocks and representing
them in a simplified form; and Total shows the total times
of the whole analysis process. In the last column, Complex-
ity, we depict the asymptotic complexity of the (worst-case)
heap space cost obtained from the cost relations.

114

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

430

Benchmark Size RR Size An. Cost Total Complexity
ListInt 0.86 24 53 7 83 O(n) n ≡ list length
Results 1.31 83 275 15 374 O(1) –
BSTInt 0.48 37 113 5 156 O(2n) n ≡ tree depth
List 1.79 71 207 16 293 O(n) n ≡ list length
Queue 1.93 219 570 24 813 O(n) n ≡ queue length
Stack 1.38 89 643 17 749 O(n) n ≡ stack length
BST 1.43 97 238 14 349 O(2n) n ≡ tree depth
Scoreboard 0.65 280 1539 12 1830 O(a2∗b) {a, b} ≡ input args.
MultiBST 2.35 166 510 34 709 O(n∗2n) n ≡ tree depth

Table 1. Measured time (in ms) of the different phases of cost analysis

Regarding the benchmarks we have used, on one hand,
we have benchmarks implementing some classic data struc-
tures using an object-oriented programming style, which
expose the analyzer’s ability in handling such classical data
structures as well as sophisticated object-oriented program-
ming features. In particular, ListInt, List, Queue, Stack,
BSTInt, BST and MultiBST implement respectively integer
and generic lists, generic queues, generic stacks, integer and
generic binary search trees which allow data repetitions.
On the other hand, we have some benchmarks which expose
more particular issues of heap space analysis, such as Results
which has constant heap space usage and Scoreboard which
presents a multidimensional arrays creation. For all bench-
marks, we have analyzed the corresponding copy method
which performs a deep copy of the corresponding structure.

We can observe in the table that computing size relations
is the most expensive step as it requires a global analysis of
the program, whereas RR and Cost basically involve a single
pass on the code. Our prototype implementation supports the
full instructions set of sequential Java bytecode, however, it
is still preliminary, and there is plenty of room for optimiza-
tion, mainly in the size analysis phase, which in addition as-
sumes the absence of cyclic data structures, which can be
verified using the non-cyclicity analysis [23].

8. Conclusions and Related Work
We have presented an automatic analysis of heap usage for
Java bytecode, based on generating at compile-time cost re-
lations which define the heap space consumption of an in-
put bytecode program. By means of a series of examples
which allocate lists, trees, trees of lists, arrays, etc. in the
heap, we have shown that our analysis is able to infer non-
trivial bounds for them (including polynomial and exponen-
tial complexities). We believe that the experiments we have
presented show that our analysis improves the state of the
practice in heap space analysis of Java bytecode.

Related work in heap space analysis includes advanced
techniques developed in functional programming, mainly
based on type systems with resource annotations (see,
e.g., [24, 17, 25, 19]) and, hence, they are quite different
technically to ours. But heap space analysis is compara-

tively less developed for low-level languages such as Java
bytecode. A notable exception is the work in [11], where
a memory consumption analysis is presented. In contrast
to ours, their aim is to verify that the program executes in
bounded memory by simply checking that the program does
not create new objects inside loops, but they do not infer
bounds as our analysis does. Moreover, it is straightforward
to check that new objects are not created inside loops from
our cost relations. Another related work includes research
in the MRG project [5, 7], which focuses on building a
proof-carrying code [22] architecture for ensuring that byte-
code programs are free from run-time violations of resource
bounds. The analysis is developed for a functional language
which then compiles to a (subset of) Java bytecode and it
is restricted to linear bounds. In [6] the Bytecode Specifica-
tion Language is used to annotate Java bytecode programs
with memory consumption behaviour and policies, and then
verification tools are used to verify those policies.

For Java-like languages, the work of [18] presents a type
system for heap analysis without garbage collection, it is
developed at the level of the source code and based on
amortised analysis (hence it is technically quite different to
our work) and, unlike us, they do not present an inference
method for heap consumption. On the other hand, the work
of [9] deals also with Java source code, it is able to infer
polynomial complexity though it does not handle recursion.

Some works consider explicit deallocation of objects by
decreasing the cost by the size of the deallocated object (see,
e.g., [18, 17]). This approach is interesting when one wants
to observe the heap consumption at certain program points.
However, it cannot be directly incorporated in our cost re-
lations because they are intended to provide a global upper
bound of a method’s execution. Naturally, it should happen
that allocated objects are correctly deallocated and hence our
cost relations would provide zero as (global) upper bound.
Other work which considers cost with garbage collection
is [24]. Unlike ours, it is developed for pure functional pro-
grams where the garbage collection behaviour is easier to
predict as programs do not have assignments.

In the future, we want to extend our work in several direc-
tions. On the practical side, we want to incorporate an escape

115

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

431

analysis to transform the bytecode as outlined in Sect. 6. Re-
garding scalability, it is a question of performance vs. preci-
sion trade-off and depends much on the underlying abstract
domain used by the size analysis. We believe our analysis
would scale without sacrificing precision if an efficient do-
main like octagons is used together with [1]. On the theoret-
ical side, we plan to adapt our analysis to infer upper bounds
on the heap usage at given program points in the presence of
garbage collection. We also would like to develop an analy-
sis which infers upper bounds on the call stack usage.

Acknowledgments
This work was funded in part by the Information Society
Technologies program of the European Commission, Future
and Emerging Technologies under the IST-15905 MOBIUS
project, by the Spanish Ministry of Education (MEC) un-
der the TIN-2005-09207 MERIT project, and the Madrid Re-
gional Government under the S-0505/TIC/0407 PROMESAS
project. S. Genaim was supported by a Juan de la Cierva
Fellowship awarded by MEC.

References
[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic

Inference of Upper Bounds for Cost Equation Systems.
Submitted, 2007.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
Cost analysis of java bytecode. In 16th European Symposium
on Programming, ESOP’07, Lecture Notes in Computer
Science. Springer, March 2007.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
Experiments in Cost Analysis of Java Bytecode. In Proc. of
BYTECODE’07, Electronic Notes in Theoretical Computer
Science. Elsevier - North Holland, March 2007.

[4] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-
Carrying Code. In Proc. of LPAR’04, number 3452 in LNAI,
pages 380–397. Springer-Verlag, 2005.

[5] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and
I. Stark. Mobile Resource Guarantees for Smart Devices. In
CASSIS’04, number 3362 in LNCS. Springer, 2005.

[6] Gilles Barthe, Mariela Pavlova, and Gerardo Schneider.
Precise analysis of memory consumption using program
logics. In Bernhard K. Aichernig and Bernhard Beckert,
editors, SEFM, pages 86–95. IEEE Computer Society, 2005.

[7] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkar-
avska. Automatic Certification of Heap Consumption. In
Proc. of LPAR’04, LNCS 3452, pages 347–362. Springer,
2004.

[8] Bruno Blanchet. Escape Analysis for Javatm: Theory and
practice. ACM Trans. Program. Lang. Syst., 25(6):713–775,
2003.

[9] Victor Braberman, Diego Garbervetsky, and Sergio Yovine.
A static analysis for synthesizing parametric specifications
of dynamic memory consumption. Journal of Object
Technology, 5(5):31–58, 2006.

[10] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-
Garcı́a, and G. Puebla (Eds.). The Ciao System. Ref.
Manual (v1.13). Technical report, C. S. School (UPM),
2006. Available at http://www.ciaohome.org.

[11] D. Cachera, D. Pichardie T. Jensen, and G. Schneider.
Certified memory usage analysis. In FM’05, number 3582 in
LNCS. Springer, 2005.

[12] A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula.
Enforcing resource bounds via static verification of dynamic
checks. In Proc. of ESOP’05, volume 3444 of Lecture Notes
in Computer Science, pages 311–325. Springer, 2005.

[13] W. Chin, H. Nguyen, S. Qin, and M. Rinard. Memory Usage
Verification for OO Programs. In Proc. of SAS’05, LNCS
3672, pages 70–86. Springer, 2005.

[14] K. Crary and S. Weirich. Resource bound certification. In
Proc. of POPL’00, pages 184–198. ACM Press, 2000.

[15] Patricia M. Hill and Fausto Spoto. Deriving Escape Analysis
by Abstract Interpretation. Higher-Order and Symbolic
Computation, (19):415–463, 2006.

[16] M. Hofmann. Certification of Memory Usage. In Theoretical
Computer Science, 8th Italian Conference, ICTCS, volume
2841 of Lecture Notes in Computer Science, page 21.
Springer, 2003.

[17] M. Hofmann and S. Jost. Static prediction of heap space
usage for first-order functional programs. In 30th ACM
Symposium on Principles of Programming Languages
(POPL), pages 185–197. ACM Press, 2003.

[18] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space
Analysis. In 15th European Symposium on Programming,
ESOP 2006, volume 3924 of Lecture Notes in Computer
Science, pages 22–37. Springer, 2006.

[19] J. Hughes and L. Pareto. Recursion and Dynamic Data-
structures in Bounded Space: Towards Embedded ML
Programming. In Proc. of ICFP’99, pages 70–81. ACM
Press, 1999.

[20] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[21] Patricia M.Hill, Etienne Payet, and Fausto Spoto. Path-length
analysis of object-oriented programs. In Proc. EAAI, 2006.

[22] G. Necula. Proof-Carrying Code. In POPL’97. ACM Press,
1997.

[23] S. Rossignoli and F. Spoto. Detecting Non-Cyclicity by
Abstract Compilation into Boolean Functions. In E. A.
Emerson and K. S. Namjoshi, editors, Proc. of the 7th
workshop on Verification, Model Checking and Abstract
Interpretation, volume 3855 of Lecture Notes in Computer
Science, pages 95–110, Charleston, SC, USA, January 2006.
Springer-Verlag.

[24] L. Unnikrishnan, S. Stoller, and Y. Liu. Optimized Live Heap
Bound Analysis. In Proc. of VMCAI’03, Lecture Notes in
Computer Science, pages 70–85. Springer, 2003.

[25] P. Vasconcelos and K. Hammond. Inferring Cost Equations
for Recursive, Polymorphic and Higher-Order Functional
Programs. In IFL, volume 3145 of LNCS. Springer, 2003.

116

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

432

Live Heap Space Analysis for Languages with Garbage Collection

Elvira Albert
Complutense University of Madrid

elvira@sip.ucm.es

Samir Genaim
Complutense University of Madrid

samir.genaim@fdi.ucm.es

Miguel Gómez-Zamalloa
Complutense University of Madrid

mzamalloa@fdi.ucm.es

Abstract
The peak heap consumption of a program is the maximum size
of the live data on the heap during the execution of the program,
i.e., the minimum amount of heap space needed to run the program
without exhausting the memory. It is well-known that garbage col-
lection (GC) makes the problem of predicting the memory required
to run a program difficult. This paper presents, the best of our
knowledge, the first live heap space analysis for garbage-collected
languages which infers accurate upper bounds on the peak heap
usage of a program’s execution that are not restricted to any com-
plexity class, i.e., we can infer exponential, logarithmic, polyno-
mial, etc., bounds. Our analysis is developed for an (sequential)
object-oriented bytecode language with a scoped-memory manager
that reclaims unreachable memory when methods return. We also
show how our analysis can accommodate other GC schemes which
are closer to the ideal GC which collects objects as soon as they be-
come unreachable. The practicality of our approach is experimen-
tally evaluated on a prototype implementation. We demonstrate that
it is fully automatic, reasonably accurate and efficient by inferring
live heap space bounds for a standardized set of benchmarks, the
JOlden suite.

Categories and Subject Descriptors F3.2 [Logics and Meaning
of Programs]: Program Analysis; F2.9 [Analysis of Algorithms
and Problem Complexity]: General; D3.2 [Programming Lan-
guages]

General Terms Languages, Theory, Verification, Reliability

Keywords Live Heap Space Analysis, Peak Memory Consump-
tion, Low-level Languages, Java Bytecode

1. Introduction
Predicting the memory required to run a program is crucial in many
contexts like in embedded applications with stringent space re-
quirements or in real-time systems which must respond to events
or signals within a predefined amount of time. It is widely rec-
ognized that memory usage estimation is important for an accu-
rate prediction of running time, as cache misses and page faults
contribute directly to the runtime. Another motivation is to config-
ure real-time garbage collectors to avoid mutator starvation. Be-
sides, upper bounds on the memory requirement of programs have
been proposed for resource-bound certification [10] where certifi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’09, June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-347-1/09/06. . . $5.00

cates encode security properties involving resource usage require-
ments, e.g., the (untrusted) code must adhere to specific bounds on
its memory usage. On the other hand, automatic memory manage-
ment (also known as garbage collection) is a very powerful and use-
ful mechanism which is increasingly used in high-level languages
such as Java. Unfortunately, GC makes the problem of predicting
the memory required to run a program difficult.

A first approximation to this problem is to infer the total mem-
ory allocation, i.e., the accumulated amount of memory allocated
by a program ignoring GC. If such amount is available it is ensured
that the program can be executed without exhausting the memory,
even if no GC is performed during its execution. However, it is an
overly pessimistic estimation of the actual memory requirement.
Live heap space analysis [18, 5, 8] aims at approximating the size
of the live data on the heap during a program’s execution, which
provides a much tighter estimation. This paper presents a general
approach for inferring the peak heap consumption of a program’s
execution, i.e., the maximum of the live heap usage along its execu-
tion. Our live heap space analysis is developed for (an intermediate
representation of) an object-oriented bytecode language with au-
tomatic memory management. Programming languages which are
compiled to bytecode and executed on a virtual machine are widely
used nowadays. This is the approach used by Java bytecode and
.NET.

Analysis of live heap usage is different from total memory allo-
cation because it involves reasoning on the memory consumed at all
program states along an execution, while total allocation needs to
observe the consumption at the final state only. As a consequence,
the classical approach to static cost analysis proposed by Wegbreit
in 1975 [20] has been applied only to infer total allocation. Intu-
itively, given a program, this approach produces a cost relation sys-
tem (CR for short) which is a set of recursive equations that cap-
ture the cost accumulated along the program’s execution. Symbolic
closed-form solutions (i.e., without recursion) are found then from
the CR. This approach leads to very accurate cost bounds as it is
not limited to any complexity class (infers polynomial, logarithmic,
exponential consumption, etc.) and, besides, it can be used to infer
different notions of resources (total memory allocation, number of
executed instructions, number of calls to specific methods, etc.).
Unfortunately, it is not suitable to infer peak heap consumption be-
cause it is not an accumulative resource of a program’s execution
as CR capture. Instead, it requires to reason on all possible states
to obtain their maximum. By relying on different techniques which
do not generate CR, live heap space analysis is currently restricted
to polynomial bounds and non-recursive methods [5] or to linear
bounds dealing with recursion [8].

Inspired by the basic techniques used in cost analysis, in this
paper, we present a general framework to infer accurate bounds
on the peak heap consumption of programs which improves the
state-of-the-art in that it is not restricted to any complexity class
and deals with all bytecode language features including recursion.
To pursue our analysis, we need to characterize the behavior of

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

433

the underlying garbage collector. We assume a standard scoped-
memory manager that reclaims memory when methods return. In
this setting, our main contributions are:

1. Escaped Memory Analysis. We first develop an analysis to infer
upper bounds on the escaped memory of method’s execution,
i.e., the memory that is allocated during the execution of the
method and which remains upon exit. The key idea is to infer
first an upper bound for the total memory allocation of the
method. Then, such bound can be manipulated, by relying on
information computed by escape analysis [4], to extract from it
an upper bound on its escaped memory.

2. Live Heap Space Analysis. By relying on the upper bounds on
the escaped memory, as our main contribution, we propose a
novel form of peak consumption CR which captures the peak
memory consumption over all program states along the execu-
tion for the considered scoped-memory manager. An essential
feature of our CRs is that they can be solved by using existing
tools for solving standard CRs .

3. Ideal Garbage Collection. An interesting, novel feature of our
approach is that we can refine the analysis to accommodate
other kinds of scope-based managers which are closer to an
ideal garbage collector which collects objects as soon as they
become unreachable.

4. Implementation. We report on a prototype implementation
which is integrated in the COSTA system [2] and experimen-
tally evaluate it on the JOlden benchmark suite. Preliminary
results demonstrate that our system obtains reasonably accurate
live heap space upper bounds in a fully automatic way.

2. Bytecode: Syntax and Semantics
Bytecode programs are complicated for both human and automatic
analysis because of their unstructured control flow, operand stack,
etc. Therefore, it is customary to formalize analyses on interme-
diate representations of the bytecode (e.g., [3, 19, 13]). We con-
sider a rule-based procedural language (in the style of any of the
above) in which a rule-based program consists of a set of proce-
dures and a set of classes. A procedure p with k input arguments
x̄ = x1, . . . , xk and m output arguments ȳ = y1, . . . , ym is de-
fined by one or more guarded rules. Rules adhere to the following
grammar:

rule ::= p(〈x̄〉, 〈ȳ〉) ::=g, b1, . . . , bt

g ::= true | exp1 op exp2 | type(x, c)
b ::= x := exp | x := new ci | x := y.f | x .f := y | q(〈x̄〉, 〈ȳ〉)

exp ::= null | aexp
aexp ::= x | n | aexp−aexp | aexp+aexp | aexp∗aexp | aexp/aexp

op ::= > | < | ≤ | ≥ | = | �=
where p(〈x̄〉, 〈ȳ〉) is the head of the rule; g its guard, which spec-
ifies conditions for the rule to be applicable; b1, . . . , bt the body
of the rule; n an integer; x and y variables; f a field name, and
q(〈x̄〉, 〈ȳ〉) a procedure call by value. The language supports class
definition and includes instructions for object creation, field ma-
nipulation, and type comparison through the instruction type(x, c),
which succeeds if the runtime class of x is exactly c. A class c is
a finite set of typed field names, where the type can be integer or
a class name. The superscript i on a class c is a unique identifier
which associates objects with the program points where they have
been created. The key features of this language are: (1) recursion
is the only iterative mechanism, (2) guards are the only form of
conditional, (3) there is no operand stack, (4) objects can be re-
garded as records, and the behavior induced by dynamic dispatch
in the original bytecode program is compiled into dispatch blocks

class Test {
static Tree m(int n) {

if (n>0) return new
Tree(m(n-1),m(n-1),f(n));

else return null;
}
static int f(int n) {

int a=0,i=n;
while (n>1) {

a += g(n).intValue();
n=n/2;

}
for(; i>1; i=i/2)

a *= h(i).intValue();
return a;

}

static Integer g(int n) {
Integer x=new Integer(n);
return new Integer(x.intValue()+1);

}
static Long h(int n) {

return new Long(n-1);
}

} // end of class Test

class Tree {
Tree l,r;
int d;
Tree(Tree l,Tree r,int d) {

this.l = l;
this.r = r;
this.d = d;

}
}

Figure 1. Java code of running example

(1) m(〈n〉, 〈r〉)::=
n > 0,
s0 := new Tree1;
s1 := n− 1,
m(〈s1〉, 〈s1〉),
s2 := n− 1,
m(〈s2〉, 〈s2〉),
f(〈n〉, 〈s3〉),
init(〈s0, s1, s2, s3〉, 〈〉),
r = s0.

(2) m(〈n〉, 〈r〉)::=
n ≤ 0,
r := null.

(3) f(〈n〉, 〈a〉)::=
a := 0,
i := n,
fc(〈n, a〉, 〈n, a〉),
fd(〈i, a〉, 〈i, a〉).

(4) fc(〈n, a〉, 〈n, a〉)::=
n > 1,
g(〈n〉, 〈s0〉),
intValue1(〈s0〉, 〈s0〉)
a := a + s0,
n := n/2,
fc(〈n, a〉, 〈n, a〉).

(5) fc(〈n, a〉, 〈n, a〉)::=
n ≤ 1.

(6) fd(〈i, a〉, 〈i, a〉)::=
i > 1,
h(〈i〉, 〈s0〉),
intValue2(〈s0〉, 〈s0〉)
a := a ∗ s0,
i := i/2,
fd(〈i, a〉, 〈i, a〉).

(7) fd(〈i, a〉, 〈i, a〉)::=
i ≤ 1.

(8) g(〈n〉, 〈r〉)::=
x := new Integer2,
init1(〈x, n〉, 〈〉),
intValue1(〈x〉, 〈s0〉),
s0 := s0 + 1.
r := new Integer3,
init1(〈r, s0〉, 〈〉).

(9) h(〈n〉, 〈r〉)::=
s0 := n− 1.
r := new Long4,
init2(〈r, s0〉, 〈〉).

(10) init(〈this, l, r, d〉, 〈〉)::=
this.l := l,
this.r := r,
this.d := d.

Figure 2. Intermediate representation of running example.

guarded by a type check, and (5) procedures may have multiple re-
turn values. The translation from (Java) bytecode to the rule-based
form is performed in two steps. First, a control flow graph (CFG)
is built. Second, a procedure is defined for each basic block in the
graph and the operand stack is flattened by considering its elements
as additional local variables. E.g., this translation is explained in
more detail in [3]. For simplicity, our language does not include
advanced features of Java bytecode, such as exceptions, interfaces,
static methods and fields, access control (e.g., the use of public,
protected and private modifiers) and primitive types besides in-
tegers and references. Such features can be easily handled in our
framework and indeed our implementation deals with full (sequen-
tial) Java bytecode.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

434

EXAMPLE 2.1. Fig. 1 depicts our running example in Java, and
Fig. 2 depicts its corresponding rule-based representation where
the procedures are named as the method they represent and “fc”
and “fd” denote intermediate procedures for f . The Java program
is included only for clarity as the analyzer generates the rule-
based representation from the corresponding bytecode only. As
an example, we explain rules (1) and (2) which correspond to
method m. Each rule is guarded by a corresponding condition,
resp. n > 0 and n ≤ 0. Variable names of the form si indicate that
they originate from stack positions. In rule (1), the “new Tree1”
instruction creates an object of type Tree (the superscript 1 is the
unique identifier for this program point) and assigns the variable
s0 to its reference (which corresponds to pushing the reference
on the stack in the original bytecode). Then, the local variable n
is decremented by one and the result is assigned to s1. Next, the
method m is recursively invoked which receives as input argument
the result of the previous operation (s1) and returns its result in
s1. Similar invocations to methods m, f and init follow. In Java
bytecode, constructor methods are named init. In both rules, the
return value is r which in (1) is assigned to the object reference and
in (2) to null. It can be observed that, like in bytecode, all guards
and instructions correspond to three-address code, except for calls
to procedures which may involve more variables as parameters.
The methods intValue1 and init1 belong to class Integer, and
intValue2 and init2 belong to class Long. �

Observe in the example that, in our syntax, with the aim of sim-
plifying the presentation, we do not distinguish between calls to
methods and calls to intermediate procedures. For instance, fc and
fd are intermediate procedures while f is the method. This distinc-
tion can be made observable in the translation phase trivially and,
when needed, we assume such distinction is available.

2.1 Semantics

The execution of bytecode in rule-based form is exactly like stan-
dard bytecode; a thorough explanation is outside the scope of this
paper (see [14]). An operational semantics for rule-based bytecode
is shown in Fig. 3. An activation record is of the form 〈p, bc, tv〉,
where p is a procedure name, bc is a sequence of instructions and
tv a variable mapping. Executions proceed between configurations
of the form A; h, where A is a stack of activation records and h
is the heap which is a partial map from an infinite set of memory
locations to objects. We use h(r) to denote the object referred to
by the memory location r in h and h[r �→ o] to indicate the result
of updating the heap h by making h(r) = o. An object o is a pair
consisting of the object class tag and a mapping from field names
to values which is consistent with the type of the fields.

Intuitively, rule (1) accounts for all instructions in the byte-
code semantics which perform arithmetic and assignment opera-
tions. The evaluation eval(exp, tv) returns the evaluation of the
arithmetic or Boolean expression exp for the values of the cor-
responding variables from tv in the standard way, and for refer-
ence variables, it returns the reference. Rules (2), (3) and (4) deal
with objects. We assume that newobject(ci) creates a new object
of class c and initializes its fields to either 0 or null, depending on
their types. Rule (5) (resp., (6)) corresponds to calling (resp., re-
turning from) a procedure. The notation p[ȳ, ȳ′] records the associ-
ation between the formal and actual return variables. It is assumed
that newenv creates a new mapping of local variables for the corre-
sponding method, where each variable is initialized as newobject
does.

An execution starts from an initial configuration of the form
〈⊥, p(〈x̄〉, 〈ȳ〉), tv〉; h and ends when we reach a final configura-
tion 〈⊥, ε, tv ′〉; h′ where tv and h are initialized to suitable initial
values, tv ′ and h′ include the final values, and⊥ is a special symbol

indicating an initial state. We assume that any object stored in the
initial heap h is reachable from (at least) one of the xi, namely there
are not collectable objects that can removed from h at the initial
state. Note that dom(tv) = dom(tv ′) = x̄ ∪ ȳ. Finite executions
can be regarded as traces S0�S1� · · ·�Sω , denoted S0�

∗Sω ,
where Sω is a final configuration. Infinite traces correspond to non-
terminating executions.

3. Total Memory Allocation Analysis
Let us first define the notion of total memory consumption. We let
size(c) denote the amount of memory required to hold an instance
object of class c, size(o) denotes the amount of memory occupied
by an object o, and size(h) denotes the amount of memory occu-
pied by all objects in the heap h, namely Σr∈dom(h)size(h(r)).
We consider the semantics in Fig. 3 where no GC is performed.
Given a trace t ≡ A1; h1 �∗ An; hn, the total memory allocation
of t is defined as total(t) = size(hn)− size(h1).

In this section, we briefly overview the application of the cost
analysis framework, originally proposed by Wegbreit [20], to total
memory consumption inference of bytecode as proposed in [3]. The
original analysis framework [1] takes as input a program and a cost
modelM, and outputs a closed-form upper bound that describes its
execution cost w.r.t.M. The cost modelM defines the cost that we
want to accumulate. For instance, if the cost model is the number
of executed instructions, M assigns cost 1 to all instructions. The
application of this framework to total memory consumption of
bytecode takes as input a bytecode program and the following cost
model Mt, which is a simplification for our language of the cost
model for heap space usage of [3].

DEFINITION 3.1 (heap consumption cost model [3]). Given a byte-
code instruction b, the heap consumption cost model is defined as

Mt(b) =

j
size(ci) b ≡ x := new ci

0 otherwise

For a sequence of instructions, Mt(b1 · · · bn) = Mt(b1) + · · ·+
Mt(bn). �

3.1 Inference of Size Relations

The aim of the analysis is to approximate the memory consumption
of the program as an upper bound function in terms of its input data
sizes. As customary, the size of data is determined by its variable
type: the size of an integer variable is its value; the size of an array
is its length; and the size of a reference variable is the length of the
longest path that can be traversed through the corresponding object
(e.g., length of a list, depth of a tree, etc.). To keep the presentation
simple, we use the original variable names (possible primed) to
refer to the corresponding abstract (size) variables; but we write the
size in italic font. For instance, let x be a reference to a tree, then x
represents the depth of x. When we need to compute the sizes v̄ of
a given tuple of variables x̄, we use the notation v̄ = α(x̄, tv , h),
which means that the integer value vi is the size of the variable xi in
the context of the variables table tv and the heap h. For instance, if
x is the reference to a tree, we need to access the heap h where the
tree is allocated to compute its depth and obtain v. If x is an integer
variable, then its size (value) can be obtained from the variable table
tv .

Standard size analysis is used in order to obtain relations be-
tween the sizes of the program variables at different program
points. For instance, associated to procedure fc, we infer the size
relation n′ = n/2 which indicates that the value of n decreases by
half when calling fc recursively. We denote by ϕr the conjunction
of linear constraints which describes the relations between the ab-
stract variables of a rule r and refer to [9, 3] for more information.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

435

(1)
b ≡ x := exp, v = eval(exp, tv)

〈p, b·bc, tv〉·A; h � 〈p, bc, tv [x �→ v]〉·A; h

(2)
b ≡ x := new ci, o=newobject(ci), r
∈dom(h)
〈p, b·bc, tv〉·A; h � 〈p, bc, tv [x �→ r]〉·A; h[r �→ o]

(3)
b ≡ x := y.f, tv(y)
= null, o = h(tv(y))
〈p, b·bc, tv〉·A; h � 〈p, bc, tv [x �→ o.f]〉·A; h

(4)
b ≡ x.f := y, tv(x)
= null, o = tv(x)

〈p, b·bc, tv〉·A; h � 〈p, bc, tv〉·A; h[o.f �→ tv(y)]

(5)
b ≡ q(〈x̄〉, 〈ȳ〉), there is a program rule q(〈x̄′〉, 〈ȳ′〉):=g, b1, · · · , bk

such that tv ′=newenv(q), ∀i.tv ′(x′i) = tv(xi), eval(g, tv ′) = true
〈p, b·bc, tv〉·A; h � 〈q, b1 · . . . · bk, tv ′〉·〈p[ȳ, ȳ′], bc, tv〉·A; h

(6) 〈q, ε, tv〉·〈p[ȳ, ȳ′], bc, tv ′〉·A; h � 〈p, bc, tv ′[ȳ �→ tv(ȳ′)]〉·A; h

Figure 3. Operational semantics of bytecode programs in rule-based form

(1) m(n)=size(Tree1)+m(s1)+m(s2)+ {n>0, s0=1,
f(n)+init(s0, s1, s2, s3) s1=n−1, s2=n−1}

(2) m(n)=0 {n≤0}
(3) f(n)=fc(n, a) + fd(i, a′) {a=0, i=n}
(4) fc(n, a)=g(n)+fc(n′, a′) {n>1, n′=n/2}
(5) fc(n, a)=0 {n≤1}
(6) fd(i, a)=h(i)+fd(i′, a′) {i>1, i′=i/2}
(7) fd(i, a)=0 {i≤0}
(8) g(n)=size(Integer2)+size(Integer3) {x=1}
(9) h(n)=size(Long4) {r=1, s0=n−1}
(10) init(this, l, r, d)=0 {}

Figure 4. Total Allocation CR.

3.2 Generation of Cost Relations

In a nutshell, given a bytecode program P , the analysis of [3] pro-
ceeds in three steps: (1) it first transforms it into an equivalent
rule-based program (our work directly starts from such rule-based
form), (2) it infers size relations as explained above, (3) it gener-
ates a CR which describes the total memory consumption of the
program as follows.

DEFINITION 3.2 (total allocation CR [3]). Consider a rule r ≡
p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn and the size relations ϕr computed
for r. We distinguish the subsequence of all calls to procedures
bi1 . . . bik in r, with 1 ≤ i1 ≤ · · · ≤ ik ≤ n and assume
bij = qij(〈x̄ij〉, 〈ȳij〉). Then, the cost equation for r is:

p(x̄) = Mt(g, b1, . . . , bn) + Σk
j=1 qij (x̄ij), ϕr

Given a program P , we denote by SP the cost relation generated
for each rule in P w.r.t. the heap consumption cost model Mt. �

Note that each call in the rule qij(〈x̄ij〉, 〈ȳij〉) has a corresponding
abstract version bα

ij
= qij (x̄ij) where x̄ij are the size abstractions

of x̄ij . The output variables are ignored in the CR as the cost is
a function of the input data sizes, however it should be noted that
the possible effect of output variables on the cost has been already
modeled by the size relation ϕr . For simplicity, the same procedure
name is used to define its associated cost relation, but in italic font.

EXAMPLE 3.3. The CR generated for the rule-based program in
Fig. 2 w.r.t. Mt is depicted in Fig. 4. To simplify the presenta-

tion, we assume that the total heap consumption of all external
methods (init1, intValue1, init2 and intValue2) is 0 and we do
not show them in the equations from now on. Consider, for exam-
ple, equation (4). It states that the memory consumption of exe-
cuting fc(〈n, a〉, 〈n, a〉) is the total memory consumption of exe-
cuting g(〈n〉, 〈r〉) plus the one of fc(〈n′, a′〉, 〈n′, a′〉). The set of
constraints attached to equation (4) includes information on: (1)
how the sizes of the data change when the program moves from
one rule to another, e.g., the constraint n′ = n/2 indicates that
the value of n decreases by half when calling fc recursively; and
(2) numeric conditions (obtained by abstracting the guards) under
which the corresponding rule is applicable, e.g., n > 1 indicates
that the equation can be applied only when n is greater than 1. �

An important observation is that, as discussed in Sec. 1, this analy-
sis approach is intrinsically designed to infer the total cost (memory
allocation in this case) of the program’s execution and not to infer
its peak consumption. This is because the equations accumulate the
cost of all instructions and rules together as it can be observed in
the CR for the example above.

3.3 Closed-Form Upper Bounds

Once the CR is generated, a cost analyzer has to use a CR solver
in order obtain closed-form upper bounds, i.e., expressions without
recurrences. The technical details of this process are not explained
in the paper as our analysis does not require any modification to
such part. In what follows, we rely on the CR solver of [3] (which
can be accessed online through a web interface) to obtain closed-
form upper bounds for our examples. The soundness of the overall
analysis, as stated in the next theorem, requires that the equations
generated as well as their closed-form upper bounds are sound.

THEOREM 3.4 (soundness [3]). Given a procedure p, and a trace
t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 �∗ 〈q, bc, tvn〉·A; hn, then
p(v̄) ≥ total(t) where v̄ = α(x̄, tv1, h1). �

Observe that the trace t in the theorem represents an execution of
procedure p for some specific input data (properly stored in tv1 and
h1) where the first configuration corresponds to calling p and the
last one to returning from that specific call. As already mentioned
in Sec. 3.1, v̄ denotes the size of the input data.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

436

EXAMPLE 3.5. Solving the equations of Fig. 4 results in the fol-
lowing closed-form upper bounds for f , m, g and h:

m(n) = (2nat(n) − 1)∗(f(n)+size(Tree1))
f(n) = log2(nat(n−1)+1)∗(size(Integer2)+size(Integer3))+

log2(nat(n−1)+1)∗size(Long4))
fc(n, a) = log2(nat(n−1)+1)∗(size(Integer2)+size(Integer3))
fd(i, a) = log2(nat(i−1)+1)∗size(Long4))

g(n) = size(Integer2)+size(Integer3)
h(n) = size(Long4)

where the expression nat(l) is defined as max(l, 0) to avoid nega-
tive evaluations. As expected, method m has an exponential mem-
ory consumption due to the two recursive calls, which in turn is
multiplied by the allocation at each iteration (i.e., the consumption
of f plus the creation of a Tree object). The solver indeed substi-
tutes f(n) by its upper bound shown below. The memory consump-
tion of f has two logarithmic parts: the leftmost one corresponds
to the first loop which accumulates the allocation performed along
the execution of g(n), the rightmost one corresponds to the second
loop with the allocation of h(n). �

A fundamental observation is that the above upper bounds on the
memory consumption can be tighter if one considers the effect of
GC. For instance, a more precise upper bound for m can be inferred
if we take into account that the memory allocated by f can be
entirely garbage collected upon return from f . Likewise, the upper
bound for f can be more precise if we take advantage of the fact that
not all memory escapes from g. The goal of the rest of the paper is
to provide automatic techniques to infer accurate bounds by taking
into account the memory freed by scoped-GC.

4. Escaped Memory Upper Bounds
In a real language, GC removes objects which become unreachable
along the program’s execution. Given a configuration A; h, we say
that an object o = h(r) where r ∈ dom(h) is not reachable, if
it cannot be accessed (directly or indirectly) through the variables
table tv of any activation record in A. To develop our analysis, we
assume a scoped-memory manager, which at the level of the source
language, meets these conditions: (1) it reclaims memory only upon
return from methods and, (2) it collects all unreachable objects
which have been created during the execution of the corresponding
method call.

In order to simulate the behavior of such garbage collector at
the level of the corresponding rule-based bytecode, it is enough
to assume that the memory manager reclaims memory only upon
return from procedures that correspond to methods but not from
procedures that correspond to intermediate states like fc and fd. We
use �gc to denote �-transitions with a scoped-memory manager
which meets the two conditions above. In this context, the escaped
memory of a procedure execution is defined as follows. Given a
trace t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 ·A; h1 �∗

gc 〈q, bc, tvn〉 ·A; hn

whose first configuration corresponds to calling p and the last one
to returning from that specific call, the escaped memory of t is
escaped(t) = size(hn) − size(h1), which corresponds to the
amount of memory allocated during the execution of p and still
live in the memory upon exit from p. Our first contribution is an
automatic technique to infer escaped memory upper bounds.

4.1 Inference of Escape Information

We say that an object escapes from a procedure p, in the context
of a scoped-memory manager, if it is created during the execution
of p, and still available in the heap upon exit from p. Note that if
p corresponds to an intermediate procedure, such object might be
unreachable but still has not been garbage collected because GC
is applied only when exiting from procedures that correspond to
methods in the original program. As a preprocessing phase, for

each procedure p, we need to over-approximate the set of allocation
instructions “new ci” that might be executed when calling p and its
transitive calls such that it is guaranteed that all objects they create
are not in memory upon exit from p, i.e., they have been garbage
collected. Recall that an allocation instruction “new ci” is uniquely
identified by the tagged class ci. We use the notation A \B for the
difference on sets.

DEFINITION 4.1 (collectable objects). Given a procedure p, we
denote by collectable(p) the set of all allocation instructions,
identified by their tagged classes, defined as follows.

ci ∈ collectable(p) iff the following conditions hold:

1. “new ci” is a reachable instruction from p;
2. for any trace t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 �∗

gc

〈q, bc, tvn〉 · A; hn, it holds that ∀r ∈ dom(hn) \ dom(h1)
the object hn(r) is not an instance of ci. �

The set of collectable objects can be approximated from the
information computed by escape analysis [15, 4]. The goal of
escape analysis is to determine all program points where an object
is reachable and whether the lifetime of the object can be proven to
be restricted only to the current method. In our implementation, we
use the approach described in [21] which, as our experiments show,
behaves well in practice.

EXAMPLE 4.2. The escape information is computed for all proce-
dures (both methods and intermediate rules) defined in Fig. 2:

collectable(m) = collectable(f) = {Integer2, Integer3, Long4}
collectable(fc) = collectable(g) = {Integer2}
collectable(fd) = collectable(h) = ∅

As an example, the information in the set collectable(f) states that
the objects created with class tags Integer2, Integer3 and Long4

during the execution of f by the transitive calls to g and h, do not
escape from f . Also, collectable(fd) = ∅ means that the object
Long4 created in h might escape from fd. An important observation
is that this object is not reachable upon exit from fd, but since GC is
applied only upon exit from procedures that correspond to methods,
it will be collected only upon exit from f . This issue will be further
discussed in Sec. 6. �

4.2 Upper Bounds on the Escaped Memory

Intuitively, our technique to infer upper bounds on the escaped
memory consists of two steps. In the first step, we generate equa-
tions for the total allocation (exactly as stated in Def. 3.2) which
accumulate symbolic expressions of the form size(ci) to repre-
sent the heap allocation for the instruction new ci, rather than its
concrete allocation size. From these equations, we obtain an up-
per bound for the total memory allocation as a symbolic expression
which contains residual size(ci) sub-expressions. The main nov-
elty is that, in a second step, we tighten up such total allocation
upper bound to extract from it only its escaped memory as follows.
Given a procedure p, and its total heap consumption upper bound
p(x̄), we obtain the upper bound on the escaped memory by replac-
ing expressions of the form size(ci) by 0 if it is guaranteed that all
corresponding objects are not available in the memory upon exit
from p, namely ci ∈ collectable(p). Given an expression exp and
a substitution σ from sub-expressions to values, exp[σ] denotes the
application of σ on exp.

DEFINITION 4.3 (escaped memory upper bound). Given a proce-
dure p, its escape information collectable(p), and its (symbolic)
upper-bound for the total memory allocation p(x̄) = exp, the es-
caped memory upper-bound of p is defined as: p̌(x̄) = exp[∀ci ∈
collectable(p).size(ci) �→ 0]. �

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

437

Observe that, in the above definition, it is required that the set
collectable(p) contains the information for objects created in tran-
sitive calls from p, as stated in Def. 4.1, because escaped memory
upper-bounds for a method p are obtained by using only the in-
formation in collectable(p) and not in any other collectable(q)
with q
= p. This is an essential difference w.r.t. existing work [3]
which does not compute information for transitive calls, but instead
computes the escape information only for the objects which are cre-
ated inside each method (excluding its transitive calls). We obtain
strictly more accurate bounds as the following example illustrates.

EXAMPLE 4.4. Applying Def. 4.3 to the total heap allocation in-
ferred in Ex. 3.5, by using the escape information of Ex. 4.2, results
in the escaped memory upper bounds:

m̌(n) = (2nat(n) − 1)∗size(Tree1) f̌(n) = 0
f̌c(n, a) = log(nat(n−1)+1) ∗ size(Integer3) ǧ(n) = size(Integer3)
f̌d(i, a) = log(nat(i−1)+1) ∗ size(Long4) ȟ(n) = size(Long4)

We can see that the escaped memory upper bound for m does not
accumulate the allocations of Long4 nor Integer2 and Integer3

objects because they do not escape from f . In [3], the allocations
corresponding to Integer3 and Long4 are accumulated because
they escape from the method where these objects have been created.
The problem is that in [3] they are accumulated in the CR and
hence in all upper bounds for methods that transitively invoke g
and h. �

The following theorem states the soundness of our escaped memory
upper bounds.

THEOREM 4.5 (soundness). Given a procedure p, and a trace
t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 ·A; h1 �∗

gc 〈q, bc, tvn〉·A; hn, then
p̌(v̄) ≥ escaped(t) where v̄ = α(x̄, tv1, h1).

Proof.
(sketch) First, by Theorem 3.4, we have the soundness of the
total allocation upper bound p(v̄) ≥ total(t). Second, by the
soundness of escape analysis [4], we know that collectable(p)
gives a safe approximation of the objects that escape from t. Now,
by combining both parts, we have that p̌(v̄) ≥ escaped(t) and,
hence, the soundness of p̌(v̄) follows. �

5. Live Heap Space Analysis
This section presents a novel live heap space analysis for garbage-
collected languages which obtains precise upper bounds including
logarithmic, exponential, etc. complexity classes. Achieving accu-
racy is crucial because live heap bounds represent the minimum
amount of memory required to execute a program.

5.1 The Notion of Peak Consumption

Essentially, given a trace t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 ·A; h1 �∗
gc

〈q, bc, tvn〉 · A; hn, the peak consumption can be defined as
peak(t) = max(size(h2), . . . , size(hn))− size(h1). We decre-
ment size(h1) because the objects created in an outer scope (i.e.,
those in h1) cannot be collected during the execution t, as stated in
condition (2) of scoped-GC in Sec. 4.

Let us illustrate this notion by means of this simple method
“void r() {A; p(); B; q(); C; }” whose memory consumption
is showed in Fig. 5. A, B and C are sequences of instructions that
do not contain any method invocation. We use the notation p̂ to
the note the peak consumption of executing the method p. We can
observe that the peak heap consumption r̂ is the maximal of three
possible scenarios: (1) In the leftmost column, we depict a scenario
where we allocate A and then execute p, thus we add the peak
heap consumption of p. (2) In the next alternative scenario, we
still have A and then return from p’s execution, thus we add the

��

�
�
�
�

�
�
�
�

��

�
�
�

�
�
�

��

�
�
�

�
�
�

A
B

C

p

q
p
q

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
�����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
�����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
�����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
��
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
�����
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

��
��
��
�����
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

��
��
��
��

���
���
���

���
���
������
���
���
���

Live Heap Total Heap

Figure 5. Memory Consumption of simple program

memory escaped upon return from p (i.e., p̌) and we continue until
the execution of q. Hence we add B plus the peak of q. (3) In the
next column, we have A, plus the memory escaped from p, plus
B, plus the memory escaped from q, plus C. Observe that any of
these scenarios may correspond to the actual peak and we need
to infer upper bounds for all of them and then take the maximal.
The rightmost column indicates the upper bound for total allocation
which is clearly much less accurate.

��

�
�
�
�

�
�
�
�

�
�
�
�

h

g

h

g

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
��
��
���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
��
��
���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
��
��
���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
�����

�
�

�
�
�

�
�
�
�
��
��
��
��
�
�
�
�

�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

1 2 3

*l
og

(n
) 1 2 3

*l
og

(n
)

Loop1 Loop2

Figure 6. Memory Consumption of running example

In general the problem is more complicated, e.g., when method
invocations occur within loops. Fig. 6 depicts the actual memory
consumption of the execution of method f in our running example.
Column 1 captures the heap allocation of executing g at the first
iteration of the first loop (defined by procedure fc). Column 2
represents the escaped memory from g plus the next iteration of
the loop where g allocates again ĝ memory and so on. As the loop
in fc is executed log(n) times we have all such possible scenarios
over the tag Loop 1. Then, we start the execution of the second loop
with an initial heap usage of log(n) times the memory escaped
from g. Similarly, at each iteration of the second loop, method
h is invoked which allocates a maximal of memory ĥ and upon
return, we need to consider the escaped memory from h plus the
next execution. As the loop is executed log(n) times, we have all
possible scenarios to the right grouped over the tag Loop 2. The
peak heap allocation of executing f is the maximal of all such
scenarios, namely the maximal between the two scenarios marked
with ∗. The important point is that we need to infer upper bounds
for ĥ, ĝ, ȟ, ĝ and generate as peak heap consumption the expression
f̂ = max(ĝ + (log(n)− 1) ∗ ǧ, ĥ+ (log(n)− 1) ∗ ȟ+ log(n) ∗ ǧ).
Note that, in principle, it could happen that ĝ > (log(n)−1)∗ȟ+ĥ.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

438

5.2 Peak Consumption Cost Relation

We now propose a novel approach for generating CR that, by rely-
ing on the escaped memory bounds, capture the peak heap con-
sumption by considering all possible states of a program’s exe-
cution. Our proposal is based on the following intuition: Let m1

and m2 be two methods, and let m̂1(x̄1) and m̂2(x̄2) be the peak
heap consumption of executing m1 and m2 respectively, then the
peak heap consumption of the two consecutive calls m1; m2 is
max(m̂1(x̄1), m̌1(x̄1) + m̂2(x̄2)). The following definition gen-
eralizes this idea for an arbitrary sequence of statements.

DEFINITION 5.1 (peak consumption CR). Consider a rule r ≡
p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn and its corresponding size relations
ϕr . Then, its peak consumption equation is p̂(x̄) = T (b1, . . . , bn), ϕr

where T is defined as follows:
T (b1, . . . , bn)::=8<
:

0 if n = 0
max(q̂(x̄1), q̌(x̄1) + T (b2, . . . , bn)) if b1= q(〈x̄1〉, 〈ȳ1)〉 is a call
Mt(b1) + T (b2, . . . , bn) if b1 is an instruction

Given a program P , we denote by ŜP the peak consumption cost
relation generated for each rule in P . �

In the above definition, it can be observed that, in the second
case, we generate two possible scenarios not only for methods,
but also for intermediate procedures. These scenarios correspond
to either the peak of the first procedure call or to the escaped
memory from the first procedure call plus the peak of the rest
of the instructions sequence. Considering the two scenarios at the
level of procedures (no only of methods) allows us to gain further
accuracy in situations, like in the method f , in which intermediate
procedures correspond to loops which contain method invocations.
The next example illustrates this point.

EXAMPLE 5.2. The peak consumption CR ŜP of the rule-based
program is different from the one in Fig. 4 in equations (1), (3), (4)
and (6) which are now as follows:

(1) m̂(n) =size(Tree1)+max(m̂(s1), m̌(s1)+max(m̂(s2),

m̌(s2)+max(f̂(n), f̌(n)+ ˆinit(s0, s1, s2, s3))))

(3) f̂(n) =max(f̂c(n, a), f̌c(n, a)+f̂d(i, a′))
(4) f̂c(n, a) =max(ĝ(n), ǧ(n)+f̂c(n′, a′))
(6) f̂d(i, a) =max(ĥ(i), ȟ(i)+f̂d(i′, a′))

with the same constraints as those of Fig. 4. We can now replace the
escaped memory upper bounds ǧ, ȟ, m̌ and f̌ by the ones in Ex. 4.4.
As an optimization, we do not apply the transformation to the last
call in the rules, for instance, to the call to init in equation (1),
since trivially ˆinit ≥ ˇinit. Observe that in equation (3) we have
applied also two possible scenarios to the intermediate procedure
fc which does not correspond to a method by introducing the max
operator. This is essential to keep the two possible peaks (marked
with “*” in the figure) separate instead of accumulating both of
them, which would lead to a larger, less accurate upper bound.
Besides, it is sound w.r.t. scoped-GC because the corresponding
escaped memory bounds for f̌c and f̌d are obtained by considering
that GC takes place upon method’s return only.

The most important point is that equation (4) accurately cap-
tures the memory consumption of all scenarios in Loop 1 of Fig. 6
and equation (6) captures those in Loop 2 to the right of the figure,
as it will become clear after solving the equations in Ex. 5.3. �

An important feature of our CR ŜP is that they can still be solved
by relying on a standard upper bound solver for CR produced
by cost analysis like the one in [3]. The only adjustment is that
our CR use the max operator which is frequently not supported.
This is handled by a further preprocessing which transforms one
equation that uses max into an equivalent set of equations that

do not use max by creating nondeterministic equations whenever
we have max. In particular, an equation of the form p(x̄) =
A + max(B, C), ϕ is translated into the two equations p(x̄) =
A + B, ϕ and p(x̄) = A + C, ϕ. Since an upper bound solver
looks for an upper bound for all possible paths, it is guaranteed
that this transformation simulates the effect of the max operator.
Nested max are translated iteratively. For instance, the translation
of equation (1) in Ex. 5.2, results in the following equations:

m̂(n) = size(Tree1)+m̂(s1), ϕ1

m̂(n) = size(Tree1)+m̌(s1)+m̂(s2), ϕ1

m̂(n) = size(Tree1)+m̌(s1)+m̌(s2)+f̂(n), ϕ1

m̂(n) = size(Tree1)+m̌(s1)+m̌(s2)+f̌(n)+ ˆinit(s0, s1, s2, s3), ϕ1

EXAMPLE 5.3. Solving the transformed equations results in the
following closed-form upper bounds:

m̂(n) = 2nat(n)∗size(Tree1) + f̂(n)

f̂(n) = max(f̂c(n, a), f̌c(n, a) + f̂d(n, a′))
f̂c(n, a)= (log(nat(n−1)+1) + 1) ∗ size(Integer3) + size(Integer2)

f̂d(i, a) = (log(nat(i−1)+1) + 1) ∗ size(Long4)
ĝ(n) = size(Integer2) + size(Integer3)

ĥ(n) = size(Long4)

We can observe that the peak bound for f accurately captures the
maximal of the two scenarios in the figure: (1) f̂c(n, a) corre-
sponds to the leftmost column of Fig. 6 (since ǧ is size(Integer3)
which is accumulated log(n)−1 times and ĝ(n) is size(Integer2)+

size(Integer3) and (2) f̌c(n, a) + f̂d(n, a′) corresponds to the
rightmost column where, as expected, we accumulate log(n) − 1
times the escaped size(Long4) object plus an additional one which
is the peak consumption of h (and nothing escapes from fc).

It is fundamental to observe the difference between the above
live heap space bound for m and the total allocation computed
in Ex. 3.5. In our live bound, since the allocation required by f
can be entirely garbage collected upon exit from f , the required
heap is not proportional to the number of times that f is invoked
(i.e., exponential on n) but rather the memory required for a single
execution of f . �

The following theorem states that the upper bounds computed by
our analysis are sound, i.e., for any input values, they evaluate to a
larger value than the actual peak consumption.

THEOREM 5.4 (soundness). Given a procedure p, and a trace
t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 �∗

gc 〈q, bc, tvn〉·A; hn then
p̂(v̄) ≥ peak(t) where v̄ = α(x̄, tv1, h1). �

6. Approximating the Ideal Garbage Collector
In this section, we show how the analysis of Sec. 5 can be refined
to consider other GC schemes and, in particular, to get closer to
the ideal GC manager where objects are collected as soon as they
become unreachable. For instance, the peak consumption upper
bound inferred in Ex. 5.3 for f is accurate when using a scope-
GC scheme, since all objects created inside the loops are collected
only upon exit from f . However, it is clearly inaccurate for an ideal
GC scheme, since the lifetime of each object created in f is limited
to one iteration of the corresponding loop, and therefore f can be
executed in constant heap space.

Luckily, we can take advantage of scopes in the rule-based rep-
resentation in order to infer accurate upper bounds for such GC
schemes without modifying our analysis. In Def. 4.1 the effect of
GC is considered only on exit from procedures that correspond to
methods, this is essential in order to obtain safe upper bounds for
scoped-GC, since in the original language GC is assumed to be ap-
plied upon exit from method scopes. However, the rule-based lan-
guage distinguishes scopes that correspond to code fragments (in

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

439

the original program) smaller than methods, e.g., fc and fd respec-
tively correspond to the first and second loop of f . Considering the
effect of GC on exit from these (non-method) smaller scopes cor-
responds to applying more often GC than in the original language,
and therefore getting closer to the ideal GC. In order to support this,
we need to compute the set of collectable objects for blocks exactly
as we do for methods in Def. 4.1. Let us see an example.

EXAMPLE 6.1. If we apply GC upon exit from fc, then the col-
lectable objects are collectable(fc) = {Integer2, Integer3}, and
hence f̌c(n, a) = 0. Observe that in Ex. 4.2 collectable(fc) con-
tains only Integer3. This in turn improves the peak consumption
for f to f̂(n) = max(f̂c(n, a), f̂d(n, a′)), which is clearly more
precise than the one in Ex. 5.3. �

Interestingly, the above upper-bound can be even further im-
proved in order to obtain one which is as close as possible to the
ideal behavior. Consider Rule (6) in Fig. 2 which corresponds to
the second loop in f . The object created in h, and escaped to the
calling context, becomes unreachable immediately after executing
intValue2. Thus, if we separate the loop’s body into a separate pro-
cedure f ′d, we make this behavior observable to our analysis. This
can be done by transforming the rules associated to the loops as
follows:

(4) fc(〈n, a〉, 〈n, a〉)::=
f′c(〈n, a〉, 〈n, a〉).
fc(〈n, a〉, 〈n, a〉).

f′c(〈n, a〉, 〈n, a〉)::=
n > 1,
g(〈n〉, 〈s0〉),
intValue1(〈s0〉, 〈s0〉)
a := a + s0,
n := n/2.

(6) fd(〈i, a〉, 〈i, a〉)::=
f′d(〈i, a〉, 〈i, a〉).
fd(〈i, a〉, 〈i, a〉).

f′d(〈i, a〉, 〈i, a〉)::=
i > 1,
h(〈i〉, 〈s0〉),
intValue2(〈s0〉, 〈s0〉)
a := a ∗ s0,
i := i/2.

Now the peak consumption equations for fc and fd are:

f̂c(n, a) = max(f̂ ′c(n, a), f̌ ′c(n, a) + f̂c(n
′, a′)) {n>1, n′=n/2}

f̂c(n, a) = 0 {n≤1}
f̂d(i, a) = max(f̂ ′d(i, a), f̌ ′d(i, a) + f̂d(i′, a′)) {i>1, i′=i/2}
f̂d(i, a) = 0 {i≤1}
f̂ ′c(n, a) = size(Integer2) + size(Integer3)

f̂ ′d(i, a) = size(Long4)

and, since f̌ ′c(n, a)=f̌ ′d(i, a)=0, solving them results in

f̂c(n, a)=size(Integer2)+size(Integer3)

f̂d(i, a)=size(Long4)

which in turn improves the upper bound of f to

f̂(n) = max(size(Integer2) + size(Integer3), size(Long4))

which is indeed the minimal amount of memory required in order
to execute f in the presence of an ideal GC.

In order to support such transformations, one should guide the
transformation from the bytecode to the rule-based program by the
information previously computed on the lifetime of the different
objects. Such analysis should give us indications about when it is
profitable to make smaller scopes. Currently, we do this transfor-
mation only for scopes that correspond to loops. Also, it should be
noted that there is an efficiency versus accuracy trade-off here, as
we generate more equations in this case which thus will be more ex-
pensive to solve. Note that the same ideas are useful for supporting
region-based memory management. The idea is to infer regions and
use this information to separate the scopes, such that the exit from
scopes coincides with the removal of the corresponding region.

7. Experiments
In this section, we assess the practicality of our proposal on real-
istic programs, the standardized set of benchmarks in the JOlden
suite [12]. This benchmark suite was first used by [7] in the context
of memory usage verification for a different purpose, namely for
checking memory adequacy w.r.t. given specifications, but there
is no inference of upper bounds as our analysis does. It has been
also used by [5] for our same purpose, i.e., the inference of peak
consumption. However, since [5] does not deal with memory-
consuming recursive methods, the process is not fully automatic
in their case and they have to provide manual annotations. Also,
they require invariants which sometimes have to be manually pro-
vided. In contrast, our tool is able to infer accurate live heap upper
bounds in a fully automatic way, including logarithmic and expo-
nential complexities.

The first column of Table 1 contains the name of the benchmark.
For most examples, we analyze the method main which transitively
requires the analysis of the majority of the methods in the package.
Only in those benchmarks whose name appears in two different
rows, we do not analyze the main but rather all those methods
invoked within the main that we succeed to analyze. In partic-
ular, benchmarks Health(cV), Health(gR), Bh(cTD), Bh(eB),
Voronoi(cP), and Voronoi(b) correspond, respectively, to methods
createVertex, getResults, createTreeData, expandBox,
createPoints, and buildDelaunayTriangulation in the cor-
responding packages. In benchmark Bh, we cannot obtain an up-
per bound for the method stepSystem which is invoked within
main. The reason is that this method contains a loop whose termi-
nation condition does not depend on the size of the data struc-
ture, but rather on the particular value stored at certain loca-
tions within the data structure. In general, it is complicated to
bound the number of iterations of this kind of loops. Basically,
the same situation happens in the method simulate of bench-
mark Health. In Voronoi, we are able to analyze all methods when
they are not connected together. Unfortunately, we cannot ana-
lyze the main which, first invokes the method createPoints
which returns an object point and then invokes the method
point.buildDelaunayTriangulation on such object. The
problem is that the upper bound of buildDelaunayTriangu-
lation depends on the size of the object point returned by
createPoints and the size analysis is not able to propagate such
relation. It should be noted that, in these three cases, the limita-
tions are not related to our proposal in this paper but to external
components which can be independently improved.

The second and third columns in the table show, respectively,
the upper bounds for total allocation and for live heap space usage.
Note that the cost model we use for the experiments substitutes the
symbolic expressions size(Obj) by their corresponding numeri-
cal values, so that the system can perform mathematical simplifica-
tions. In particular, the size of primitive types is 1, 2, 4, etc. bytes
respectively for byte, char, int, etc.; the size of a reference is set
to 4 bytes; and the size of an object is the sum of the sizes of all its
fields (including those inherited).1

Let us first explain the examples Tsp, Bisort, Health, TreeAdd,
Perimeter and Voronoi which follow a similar pattern. Basically,
they contain methods (in rule-based form) which have this shape
p(X) ::= alloc(k), p(Y1), . . . , p(Yn), i.e., a certain allocation k is
accumulated by several recursive calls to the method. The size of
the arguments in the recursive calls decrease by half in examples
Tsp, Bisort and Voronoi and there are two recursive calls. Thus,
their resulting upper bounds are linear. In benchmarks Health,
Perimeter and TreeAdd, the size of the argument decreases by a
constant; the first two examples contain 4 recursive calls and the

1 This is just an estimation. The sizes depend on the particular JVM

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

440

Bench Total Allocation Upper Bounds Live Heap Space Upper Bounds

Mst
nat(A+1)*nat(A

4
) +

33*nat(A+1) + 8

nat(A+1) + 8 + max(nat(A+1)2 + 18*nat(A+1) + nat(A
4
) + 72,

nat(A+1)*nat(A
4
) + 25*nat(A+1) + 2*nat(A

4
) + 48)

Em3d
2*nat(D-1)*(32+nat(B)) + 2*nat(B)
+ 16*nat(C) + 2*nat(D) + 89

max(4*nat(B) + nat(C) + 2*nat(D) + 2*nat(D-1) + 153,
4*nat(B) + max(16,nat(C)) + 2*nat(D) + 2*nat(D-1) + 153),
(34 + nat(B))*nat(D-1) + 6*nat(B) + 3*nat(D) + 313)

Bisort 4*nat(A) + 12*nat(B-1) + 52 max(4*nat(A),12*nat(B-1) + 36)

Tsp 46*nat(2*B-1) + 138 28*nat(2*B-1) + 84

Power 258544 5992

Health(cV) 104*4nat(A) + 416 104*4nat(A) + 416

Health(gR) 28*4nat(A−1) + 36 28*4nat(A−1) + 36

TreeAdd 40*2nat(B−1) + 4*nat(A) + 76 24*2nat(B−1) + 60

Bh(cTD) 96*nat(B) + 128 92*nat(B) + nat(B-1) + 308

Bh(eB) 96 92

Perimeter 56*4nat(B) + 4*nat(A) + 128 56*4nat(B) + 112

Voronoi(cP) 20*nat(2*A-1) + 60 20*nat(2*A-1) + 60

Voronoi(b) 88*2nat(A−1) + 8 88*2nat(A−1) + 8

Table 1. Upper bounds for Total Allocation and Live Heap Usage

latter one 2 recursive calls. Thus, their resulting upper bounds are
exponential. The upper bounds for live heap and total heap for
the methods in Health and Voronoi are the same. This happens
because the analyzed methods are encharged of creating the data
structures and there is no memory that can be garbage collected. In
the remaining examples, the method main first calls the method
parseCmdLine which creates a (linear) number of objects that
do not escape to the main and, then, calls other methods that
construct (and modify) a data structure which escapes to the main.
The fact that some memory can be garbage collected explains that
the live heap bounds are smaller than the total allocation. Tsp
is interesting because some auxiliary Double objects are created
during the execution of the methods uniform and median which
do not escape from such methods and hence the difference between
the live bound and the total allocation is bigger.

Benchmark Power has a constant memory consumption. Its live
bound is much smaller than the total allocation because many ob-
jects are created by the constructor of Lateral which become un-
reachable and hence can be garbage collected. In the examples Mst
and Em3d, most of the memory is allocated during the construc-
tion of a graph and all such memory cannot be garbage collected.
As before, the live bound is slightly smaller because of the memory
created by parseCmdLine which can be entirely garbage collected.
Finally, the methods analysed for the benchmark Bh also create a
number of auxiliary objects that can be garbage collected and the
live heap bounds become tighter than the total allocation.

It is not easy to compare our upper bounds with those obtained
by [5] since the cost models are different (we count sizes of ob-
jects as explained above while they count number of objects), they
consider a region-based memory model while our analysis is devel-
oped for a scope-based model and, besides, for recursive methods
(which occur in most benchmarks) [5] requires manual annotations
that are not shown in their paper. In spite of these differences, as ex-
pected, our upper bounds coincide with those of [5] asymptotically
(i.e., by ignoring the coefficients and constants).

An interesting experimentation that we plan to do for future
work is to compare our upper bounds with actual observed values.
This is however a rather complicated task. Note that it would
require choosing particular inputs, and the memory consumption
of the program could highly vary depending on such choice. We
are confident about the positive results since, as we saw above, our
UBs are coherent with those in [5], which in turn have already been
compared to actual observed values.

8. Related Work
There has been much work on analyzing program cost or resource
complexities, but the majority of it is on time analysis (see, e.g.,
[22]). Analysis of live heap space is different because it involves
explicit analysis of all program states. Most of the work of memory
estimation has been studied for functional languages. The work in
[11] statically infers, by typing derivations and linear program-
ming, linear expressions that depend on functional parameters
while we are able to compute non-linear bounds (exponential, log-
arithmic, polynomial). The technique is developed for functional
programs with an explicit deallocation mechanism while our tech-
nique is meant for imperative bytecode programs which are better
suited for an automatic memory manager. The techniques proposed
in [18, 17] consist in, given a function, constructing a new function
that symbolically mimics the memory consumption of the former.
Although these functions resemble our cost equations, their com-
puted function has to be executed over a concrete valuation of pa-
rameters to obtain a memory bound for that assignment. Unlike our
closed-form upper bounds, the evaluation of that function might
not terminate, even if the original program does. Other differences
with the work by Unnikrishnan et al. are that their analysis is de-
veloped for a functional language by relying on reference counts
for the functional data constructed, which basically count the num-
ber of pointers to data and that they focus on particular aspects of
functional languages such as tail call optimizations.

For imperative object-oriented languages, related techniques
have been recently proposed. Previous work on heap space anal-
ysis [3] cannot be used to infer upper bounds on the maximum live
memory as their cost relation systems are generated to accumulate
cost, as explained in Sec. 3. Their refinement to infer escaped mem-
ory bounds is strictly less precise than ours as explained in Sec. 4,
besides, there is no solution there to infer peak consumption. Later
work improves [3] by taking garbage collection into account. In
particular, for an assembly language, [8] infers memory resource
bounds (both stack usage and heap usage) for low-level programs
(assembly). The approach is limited to linear bounds, they rely on
explicit disposal commands rather than on automatic memory man-
agement. In their system, dispose commands can be automatically
generated only if alias annotations are provided. For a Java-like
language, the approach of [5] infers upper bounds of the peak con-
sumption by relying on an automatic memory manager as we do.
They do not deal with recursive methods and are restricted to poly-
nomial bounds. Besides, our approach is more flexible as regards
its adaptation to other GC schemes (see Sec. 6). We believe that

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

441

our system is the first one to infer upper bounds on the live heap
consumption which are not restricted to simple complexity classes.

9. Conclusions and Future Work
We have presented a general approach to automatic and accurate
live heap space analysis for garbage-collected languages. As a first
contribution, we propose how to obtain accurate bounds on the
memory escaped from a method’s execution by combining the
total allocation performed by the method together with informa-
tion obtained by means of escape analysis. Then, we introduce a
novel form of peak consumption cost relation which uses the com-
puted escaped memory bounds and precisely captures the actual
heap consumption of programs’ execution for garbage-collected
languages. Such cost relations can be converted into closed-form
upper bounds by relying on standard upper bound solvers. For the
sake of concreteness, our analysis has been developed for object-
oriented bytecode, though the same techniques can be applied to
other languages with garbage collection. We first develop our anal-
ysis under a scoped-memory management which reclaims mem-
ory on method’s return. The amount of memory required to run a
method under such model can be used as an over-approximation
of the amount required to run it in the context of an ideal garbage
collection which frees objects as soon as they become dead. We
also show how to approximate such ideal behavior with our anal-
ysis. For future work, we also plan to consider how to adapt our
techniques to region based memory management [16, 6].

Finally, the idea developed in Sec. 5 can be used to estimate
other (non accumulative) resources which require to consider the
maximal consumption of several execution paths. For example, it
can be used to estimate the maximal height of the frames stack
as follows. Given a rule r ≡ p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn, where
bi1 . . . bik are the calls in r, with 1 ≤ i1 ≤ · · · ≤ ik ≤ n and
bij = qij(〈x̄ij〉, 〈ȳij〉), its corresponding equation would be

p(x̄) = max(1 + qi1(x̄ij), . . . , 1 + qi1(x̄ik)) ϕr

which takes the maximal height from all possible call chains. Each
“1” corresponds to a single frame created for the corresponding
call. Note that in this setting, tail call optimization can be also
supported, by using an analysis that detects calls in tail position,
and then replace their corresponding 1’s by 0’s. This is a subject
for future work.

Acknowledgments
This work was funded in part by the Information Society Technolo-
gies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS and IST-231620 HATS
projects, by the Spanish Ministry of Education (MEC) under the
TIN-2005-09207 MERIT ,TIN-2008-05624 DOVES and HI2008-
0153 (Acción Integrada) projects, and the Madrid Regional Gov-
ernment under the S-0505/TIC/0407 PROMESAS project.

References
[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.

Cost Analysis of Java Bytecode. In Rocco De Nicola, editor, 16th
European Symposium on Programming, ESOP’07, volume 4421 of
Lecture Notes in Computer Science, pages 157–172. Springer, March
2007.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
COSTA: Design and Implementation of a Cost and Termination
Analyzer for Java Bytecode. In Post-proceedings of Formal Methods
for Components and Objects (FMCO’07), number 5382 in LNCS,
pages 113–133. Springer-Verlag, October 2008.

[3] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis
for Java Bytecode. In ISMM ’07: Proceedings of the 6th international

symposium on Memory management, pages 105–116, New York, NY,
USA, October 2007. ACM Press.

[4] Bruno Blanchet. Escape Analysis for Object Oriented Languages.
Application to Java(TM). In Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’99),
pages 20–34. ACM, November 1999.

[5] V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Para-
metric Prediction of Heap Memory Requirements. In Proceedings of
the International Symposium on Memory management (ISMM), New
York, NY, USA, 2008. ACM.

[6] Sigmund Cherem and Radu Rugina. Region analysis and transfor-
mation for java programs. In David F. Bacon and Amer Diwan,
editors, Proceedings of the 4th International Symposium on Memory
Management, ISMM 2004, Vancouver, BC, Canada, October 24-25,
2004, pages 85–96. ACM, 2004.

[7] W.-N. Chin, H. H. Nguyen, S. Qin, and M. C. Rinard. Memory Usage
Verification for OO Programs. In Proc. of SAS’05, volume 3672 of
LNCS, pages 70–86, 2005.

[8] W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory
Resource Bounds for Low-Level Programs. In Proceedings of the
International Symposium on Memory management (ISMM), New
York, NY, USA, 2008. ACM.

[9] P. Cousot and N. Halbwachs. Automatic Discovery of Linear
Restraints among Variables of a Program. In ACM Symposium on
Principles of Programming Languages (POPL), pages 84–97. ACM
Press, 1978.

[10] K. Crary and S. Weirich. Resource bound certification. In POPL’00.
ACM Press, 2000.

[11] M. Hofmann and S. Jost. Static prediction of heap space usage for
first-order functional programs. In ACM Symposium on Principles of
Programming Languages (POPL), 2003.

[12] JOlden Suite Collection.
http://www-ali.cs.umass.edu/DaCapo/benchmarks.html.

[13] H. Lehner and P. Müller. Formal translation of bytecode into
BoogiePL. In Bytecode’07, ENTCS, pages 35–50. Elsevier, 2007.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[15] Y. G. Park and B. Goldberg. Escape analysis on lists. In PLDI, pages
116–127, 1992.

[16] Mads Tofte and Jean-Pierre Talpin. Region-based memory manage-
ment. Inf. Comput., 132(2):109–176, 1997.

[17] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Automatic Accurate
Live Memory Analysis for Garbage-Collected Languages. In Proc.
of LCTES/OM, pages 102–111. ACM, 2001.

[18] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized Live Heap
Bound Analysis. In Proc. of VMCAI’03, volume 2575 of LNCS, pages
70–85, 2003.

[19] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co. Soot - a Java optimization framework. In CASCON’99, pages
125–135, 1999.

[20] B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM,
18(9), 1975.

[21] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI, pages
131–144. ACM, 2004.

[22] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström. The worst-
case execution-time problem - overview of methods and survey of
tools. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

442

Constancy Analysis

Samir Genaim and Fausto Spoto

1 CLIP, Technical University of Madrid (UPM), Spain
2 Università di Verona, Italy

samir@clip.dia.fi.upm.es, fausto.spoto@univr.it

Abstract. A reference variable x is constant in a piece of code C if the
execution of C does not modify the heap structure reachable from x.
This information lets us infer purity of method arguments, an important
ingredient during the analysis of programs dealing with dynamically al-
located data structures. We define here an abstract domain expressing
constancy as an abstract interpretation of concrete denotations. Then
we define the induced abstract denotational semantics for Java-like pro-
grams and show how constancy information improves the precision of
existing static analyses such as sharing, cyclicity and path-length.

1 Introduction

A major difference between pure functional/logic programming and imperative
programming is that the latter uses destructive updates. That is, data structures
are mutable: they are built and later modified. This can be both recognized as
a superiority of imperative programming, since it allows one to write faster and
simpler code, and as a drawback, since if two variables share a data structure
then a destructive update to the data reachable from one variable may affect the
data reachable from the other. This often leads to subtle programming bugs.

It is hence important to control what a method invocation modifies. Some
methods do not modify the data structures reachable from their parameters.
Others only modify those reachable from some but not all parameters. Namely,
some parameters are constant or read-only, others may be modified. If all pa-
rameters of a method are constant, the method is pure [10]. Knowledge about
purity is important since pure methods can be invoked in any order, which lets
compilers apply aggressive optimizations; pure methods can be used in program
assertions [7]; they can be skipped during many static analyses or more precisely
approximated than other methods. This results in more efficient and more pre-
cise analyses. For instance, sharing analysis [11] can safely assume that sharing
is not introduced during the execution of a pure method. In general, all static
analyses tracking properties of the heap benefit from information about purity.

For these reasons, software specification has found ways of expressing purity
of methods and constant parameters. The notable example is the Java Modeling
Language [7], which uses the assignable clause to specify those heap positions
that might be mutated during the execution of a method. Those clauses are
manually provided and used by many static analyzers, such as ESC/Java [6]

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

443

and ChAsE [4]. However, those tools do not verify the correctness of the user-
provided assignable clauses, or use potentially incorrect verification techniques.
A formally correct verification technique is defined in [14], but has never been
implemented. In [10] a formally correct analysis for purity is presented, it is
based on a preliminary points-to and escape analysis, and an implementation
exists and has been applied to some small size examples. In [8] a correct and
precise algorithm for statically inferring the reference immutability qualifiers of
the Javari language has been presented. The algorithm has been implemented
in the Javarifier tool.

In this paper, we investigate an alternative technique aiming at determining
which parameters of a method are constant. We use abstract interpretation [5]
and perform a static analysis over the reduced product of the sharing domain
in [11] (the sharing component) and a new abstract domain expressing the set
of variables bound to data structures mutated during the execution of a piece
of code (the purity component). The use of reduced product is justified since
the sharing component helps the purity component during a destructive update,
by identifying which variables share the updated data structure and hence lose
their purity; conversely, the sharing component uses the purity component during
method calls, since only variables sharing with non-pure parameters of a method
m can be made to share during the execution of m.

Our technique is sometimes less precise than [10], since it does not use the
field names (i.e., we do not keep information on which field has been updated,
but rather that a field has been updated). However, it is implemented in a com-
pletely flow-sensitive and context-sensitive fashion, which improves its precision.
Moreover, it is expressed in terms of Boolean formulas implemented through bi-
nary decision diagrams, resulting in fast analyses scaling to quite big programs.
Our contributions are hence: (1) a definition of the reduced product of sharing
and purity; (2) its application to large programs; (3) a comparison of the preci-
sion of sharing analysis alone with that of sharing analysis in reduced product
with purity; and (4) an evaluation of the extra precision induced by the pu-
rity information during static analyses tracking properties of the heap, namely,
possible cyclicity of data structures [9] and path-length of data structures [13].

The paper is organized as follows: Section 2 defines the syntax and semantics
of a simple Object-Oriented language; Section 3 develops our constancy analysis
for that language; Section 4 provides an experimental evaluation.

2 Our Simple Object-Oriented Language

This section presents syntax and denotational semantics of a simple Object-
Oriented language that we use through the paper. Its commands are normalized
versions of corresponding Java commands: the language supports reference and
integer types; in method calls, only syntactically distinct variables can be actual
parameters, which is a form of normalization and does not prevent them from
being bound to shared data-structures at run-time; in assignments, the left hand
side is either a variable or the field of a variable; Boolean conditions are kept

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

444

generic, they are conditions that are evaluated to either true or false; iterative
constructs, such as the while loop, are not supported since they can be imple-
mented through recursion. These assumptions are only for the sake of clear and
simple presentation and can be relaxed without affecting subsequent results. A
program has a set of variables V (including out and this) and a finite poset of
classes K. The commands of the language are

com ::= v := c | v := w | v := new κ | v := w + z | v := w.f | v.f := w |
v := v0.m(v1, . . . , vn) | if e then com1 else com2 | com1 ;com2

v, w, z, v0, v1, . . . , vn ∈ V are distinct variables, c ∈ Z ∪ {null}, κ ∈ K and e
is a Boolean expression. The signature of a method κ.m(t1, . . . , tp):t refers to a
method called m expecting p parameters of type t1, . . . , tp ∈ K ∪ {int}, respec-
tively, returning a value of type t and defined in class κ with a statement

t m(w1:t1, . . . , wn:tn) with {wn+1:tn+1, . . . , wn+m:tn+m} is com,

where w1, . . . , wn, wn+1, . . . , wn+m ∈ V are distinct, not in {out , this} and have
type t1, . . . , tn, tn+1, . . . , tn+m ∈ K∪{int}, respectively. Variables w1, . . . , wn are
the formal parameters of the method and wn+1, . . . , wn+m are its local variables.
The method also uses a variable out of type t to store its return value. For
a given method signature m = κ.m(t1, . . . , tp) : t, we define mb = com, mi =
{this, w1, . . . , wn}, mo = {out}, ml = {wn+1, . . . , wn+m} and ms = mi∪mo∪ml.
Classes might declare fields of type t ∈ K ∪ {int}.

We use a denotational semantics, hence compositional, in the style of [15].
However, we use a more complex notion of state, which assumes an infinite set of
locations. Basically, a state is a pair which consists of a frame and a heap, where
a frame maps variables to values and a heap maps locations to objects. Note
that since we assume a denotational semantics, a state has a single frame, rather
than an activation stack of frames as it is required in operational semantics.
We let L denote an infinite set of locations, and let V denotes the set of values
Z∪L∪ {null}. A frame over a finite set of variables V is a mapping that maps
each variable in V into a value from V; a heap is a partial map from L into
objects. An object is a pair that consists of its class tag κ and a frame that maps
its fields (identifiers) into values from V; we say that it belongs to class κ or has
class κ. Given a class κ, we assume that newobj(κ) return a new object where
its fields are initialized to 0 or depending on their types. If φ is a frame and
v ∈ V , then φ(v) is the value of variable v. If µ is a heap and ` ∈ L, then µ(`)
is the object bound in µ to `. If o is an object, then o.tag denotes its class and
o.φ denotes its frame; if f is a field of o, then sometimes we use o.f to refer to
(or set) its value instead of going through its frame.

Definition 1 (computional state). Let V denotes the set of variables in scope
at a given program point p. The set of possible states at p is

ΣV =

〈φ, µ〉
∣∣∣∣∣∣
1. φ is a frame over V and µ is a heap
2. rng(φ) ∩ L ⊆ dom(µ)
3. ∀` ∈ dom(µ). rng(µ(`).φ) ∩ L ⊆ dom(µ)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

445

Conditions 2 and 3 guarantee the absence of dangling pointers. Given σ =
〈φ, µ〉 ∈ ΣV , we use φσ and µσ to refer to its frame and heap respectively. ut

Now we define the notion of Denotations which are the input/output semantics
of a piece of code. Basically they are mappings from states to states which
describe how the input state is changed when the corresponding code is executed.
Interpretations are a special case of denotations which provide a denotation for
each method in terms of its input and output variables.

Definition 2. A denotation δ from V to V ′ is a partial function from ΣV to
ΣV ′ . We often refer to δ(σ) = σ′ as (σ, σ′) ∈ δ. The set of denotations from V
to V ′ is ∆(V ,V ′). An interpretation ι maps methods to denotations and is such
that ι(m) ∈ ∆(mi,mi ∪mo) for each method m = κ.m(t1, . . . , tp) : t in the given
program. The set of all possible interpretations is written as I. ut

The denotational semantics associates a denotation to each command of the
language. Let V denotes a set of variables. Let ι ∈ I. We define the denotation
for commands CιV J K : com 7→ ∆(V ,V), as their input/output behaviour:

CιV Jv:=cK= {(σ, σ[φσ(v) 7→ c]) | σ ∈ ΣV }
CιV Jv:=wK= {(σ, σ[φσ(v) 7→ φσ(w)]) | σ ∈ ΣV }

CιV Jv:=new κK= {(σ, σ[µσ(`) 7→ newobj(κ)]) | σ ∈ ΣV , ` 6∈ dom(µσ)}
CιV Jv:=w + zK= {(σ, σ[φσ(v) 7→ φσ(w) + φσ(z)]) | σ ∈ ΣV }
CιV Jv:=w.fK= {(σ, σ[φσ(v) 7→ µσφσ(w).f]) | σ ∈ ΣV , φσ(w) 6= null}
CιV Jv.f :=wK= {(σ, σ[µσφσ(v).f 7→ φσ(w)]) | σ ∈ ΣV , φσ(v) 6= null}

CιV
s
if e then com1

else com2

{
=
{(σ, σ′) ∈ CιV Jcom1K | σ |= e ≈ true}∪
{(σ, σ′) ∈ CιV Jcom2K | σ |= e ≈ false}

CιV Jcom1; com2K= {(σ, σ′′) | (σ, σ′) ∈ CιV Jcom1K ∧ (σ′, σ′′) ∈ CιV Jcom2K}

The denotation for a method call CιV Jv:=v0.m(v1, . . . , vp)K should consider the
denotation ι(m) (where m is the called method) and extend it to fit in the calling
scope and update the variable v. Assume the method signature is m(t1, . . . , tp):t,
and that we have a lookup procedure L that, for any given σ ∈ ΣV , fetches the
actual method that is called depending on the run-time class of v0. Then the
method call denotation is defined as follows:(σ, 〈φσ[v 7→ φ′′σ(out)], µ′′σ〉)

∥∥∥∥∥∥∥∥
1. σ ∈ ΣV , φσ(v0) ∈ dom(µσ);
2. m = L(v0, σ, m(t1, . . . , tp):t);
3. (σ′, σ′′) ∈ ι(m);
4. µσ ≡ µ′σ,∀0≤i≤p. φσ(vi) = φ′σ(wi)

The concrete denotational semantics of a program is the least fixpoint of the
following transformer of interpretations [3].

Definition 3 (Denotational semantics). The denotational semantics of a
program P is defined as

⋃
i≥0

T iP (ι0) , i.e. the least fixed point of TP where TP is:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

446

TP (ι) =

(m,X)

∥∥∥∥∥∥
1. m ∈ P
2. σ ∈ Σms ,∀v ∈ ml. φσ(v) = 0 or φσ(v) = null
3. X = {(σ|mi , σ′|mi∪mo) | (σ, σ′) ∈ Cιms

q
mb

y
}

and ι0 = {(m, ∅) | m ∈ P} and ∀ι1, ι2 ∈ I the union ι1 ∪ ι2 is defined as
{(m,X1 ∪X2) | m ∈ P, (m,X1) ∈ ι1, (m,X2) ∈ ι2} ut

3 Constancy Analysis

We want to design an analysis to infer definite information about constant data
structures. This can be done by tracking data structures that are not modified
(definite information), or by tracking data structures that might be modified
(may information). We follow the latter approach as we believe it easier. In
addition, we want to analyze methods in a context independent way, and later
adapt the result to any calling context.

Example 1. Consider the following method:

A m(x:A, y:A) with {} is y:=y.next; x.next:=y; out:=y;

The only command that might modify the heap structure is “x.next:=y”. Note
that “y:=y.next” does not affect the heap structure but rather changes the
heap location stored in y. This method might be called in different contexts
where the actual parameters: (1) do not have any common data structure; or
(2) have a common data structure. In the first case, “x.next:=y” might modify
only the data structure pointed by the first argument. In the second case, it
might modify a common data structure for x and y, and therefore we say that
both arguments might be modified. We describe this behaviour by the Boolean
formula x̌ ∧ (y̌ ↔ x̌·y), which is interpreted as: (1) in any calling context, the
data structure the first argument points to when the method is called might be
modified by the method (expressed by x̌); and (2) the data structure that the
second argument points to when the method is called, might be modified by
the method (expressed by y̌) iff x and y might share a data structure when the
method is called (expressed by x̌·y).

ut

We define now the set of reachable heap locations from a given reference
variable, which we need to define the notion of constant heap structure.

Definition 4 (reachable heap locations). Let µ be a heap. The set of lo-
cations reachable from ` ∈ dom(µ) is L(µ, `) = ∪{Li(µ, `) | i ≥ 0} where
L0(µ, `) = rng(µ(`).φ) ∩ L and Li+1(µ, `) = ∪{rng(µ(`′)) ∩ L | `′ ∈ Li(µ, `)}.
The set of reachable heap locations from v in σ ∈ ΣV , denoted LV (σ, v), is
{φσ(v)} ∪ L(µσ, φσ(v)) if φσ(v) ∈ dom(µσ); and the empty set otherwise. ut

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

447

Definition 5 (constant reference variable). A reference variables v ∈ V is
constant with respect to a denotation δ, denoted c(v, δ), iff for any (σ1, σ2) ∈ δ all
locations in LV (σ1, v) are constant with across δ, namely ∀` ∈ LV (σ1, v), µσ1(`)
and µσ2(`) have the same class tag and agree on their reference field values. ut

The definition above considers modifications of fields of reference type only. The
reason for concentrating on reference fields is that we have developed this analysis
for a specific need which requires tracking updates only in the shape of the data
structure (see Section 4). Tracking updates of integer fields can simply done
by modifying the above definition to consider those updates. In what follows,
a modification of a variable stands for a modification of the shape of the heap
structure reachable from that variable.

Definition 6 (common heap location). x, y ∈ V have a common heap loca-
tion (share) in a state σ ∈ ΣV if and only if LV (σ, x) ∩ LV (σ, y) 6= ∅ ut

We define now an abstract domain which captures a set of variables that might
be modified by a concrete denotation.

Definition 7 (update abstract domain). The update abstract domain UV
is a partial order 〈℘(V),⊆〉. Its concretization function γV :UV → ∆(V ,V ′) is
defined as γV (X) = {δ | ∀v ∈ V. ¬c(v, δ)→ (v ∈ X)}. ut

As we have seen in Example 1, information about possible sharing between
variables is important for a precise constancy analysis. There are many ways for
inferring such information. Here, we use the pair-sharing domain [11]. Moreover,
constancy information improves the precision of method calls in pair sharing
analysis. This is because the execution of a method m can introduce sharing
between non-constant parameters only. Hence we design an analysis over the
(reduced) product of the update domain UV and of the pair-sharing domain SHV ,
denoted by SH×UV . Informally, the pair sharing domain abstracts an element
s ∈ ℘(ΣV) to a set sh of symmetric pairs of the form (x, y) where x, y ∈ V . If
(x, y) ∈ sh then x and y might share in s, and if (x, y) 6∈ sh then they cannot
share, so that if (x, x) 6∈ sh then x must be null in s. In what follows, instead
of saying might share we simply say share.

Figure 1 defines abstract denotations for our simple language over SH×UV .
They are Boolean functions corresponding to the elements of SH×UV . For a
piece of code C, the Boolean variables:

– x̌·y and x̂·y indicate if x and y share before and after executing C, respec-
tively. Since pair sharing is symmetric, x̌·y and ˇy·x are equivalent Boolean
variables; and

– x̌ and x̂ indicate if x is modified with respect to its value before and after C
(by the program execution), respectively.

Each abstract denotation is defined in terms of a Boolean function ϕ∧ψ, where ϕ
propagates (forward) sharing information and ψ propagates (backwards) update
information. In what follows we explain the meaning of each abstract denotation:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

448

AιV Jv:=nullK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ ϕ1

−ϕ1 = (∧{¬x̂·v | x ∈ V })
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=wK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ ϕ1 ∧ ϕ2

−ϕ1 = ∧{x̂·v ↔ ˇx·w | x ∈ V \{v}}
−ϕ2 = ˇw·w ↔ v̂·v
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=new κK = ϕ ∧ ψ
−ϕ = Idsh(V \{v}) ∧ v̂·v ∧ ϕ1

−ϕ1 = (∧{¬x̂·v | x ∈ V \ {v}})
−ψ = Idu(V \{v}) ∧ (v̌ ↔ ∨{ ˇv·y ∧ ŷ | y ∈ V \{v}})

AιV Jv:=w.fK = AιV Jv:=wK
AιV Jv.f :=wK = ϕ ∧ ψ

−ϕ = ∧{x̂·y ↔ x̌·y ∨ (ˇx·w ∧ y̌·v) | x, y ∈ V }
−ψ = {x̌↔ ˇv·x ∨ x̂ | x ∈ V }

AιV Jif e . . .K = AιV Jc1K ∨ AιV Jc2K
AιV Jc1; c2K = AιV Jc1K ◦ AιV Jc2K

AιV Jv:=v0.m(v1, . . . , vp)K = φ ∧ ϕ ∧ ψ
φm = ∨{ι(m) | m might be called }
φ = φm[si 7→ vi, out 7→ v, this 7→ v0]
ϕ = ∧{x̂·y ↔ x̌·y ∨ ϕ1 | x, y ∈ V \{v0, . . . , vp}}
ϕ1 = ∨{(ˇx·vi ∧ ˇy·vj ∧ ˆvi·vj ∧ (v̌i ∨ v̌j)) | i, j ∈ {0, . . . , p}}
ψ = ψ1 ∧ (v̌ ↔ ψ3 ∨ ψ2(v))
ψ1 = ∧{x̌↔ x̂ ∨ ψ2(x) | x ∈ V \{v, v0, . . . , vp}}
ψ2(x) = ∨{(ˇx·vi ∧ v̌i) | i ∈ {0, . . . , p}}
ψ3 = {x̌·y ∧ ŷ | y ∈ V \{v}}

Fig. 1. Abstract Denotations over SH×UV

– AιV Jv:=nullK: (SH) sharing between x, y ∈ V \{v} is preserved (Idsh(V \{v}));
and nothing can share with v after C (ϕ1). (U) x ∈ V \{v} is modified before
C iff it is modified after C, and v is modified before C iff it shares with some
y before C and y is modified after C.

– AιV Jv:=wK: (SH) sharing between x, y ∈ V \{v} is preserved (Idsh(V \{v}));
since v becomes an alias for w then v can share with x ∈ V \{v} after C iff
x shares with w before C (ϕ1); and v can share with itself after C (i.e., not
null) iff w shares with itself before C (ϕ2). (U) the same as for “v:=null”.

– AιV Jv:=new κK: the same as AιV Jv:=nullK except that v shares with itself
after executing the statement.

– AιV Jv:=w.fK: the same as AιV Jv:=wK since the analysis is field insensitive.
– AιV Jv.f :=wK: (SH) x, y ∈ V share after C iff before C, they shared or x

shared with w and y with v; (U) x ∈ V is modified before C, iff it shares
with v before C or x is modified after C.

– AιV Jif e . . .K: combines the branches through logical or.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

449

– AιV Jc1; c2K: combines AιV Jc1K and AιV Jc2K. This is simply done by matching
the output variables of the first denotation with the input variables of the
second denotation.

– AιV Jv:=v0.m(v1, . . . , vp)K: (1) First we fetch the abstract denotations of all
methods that might be called, and we combine them through logical or into
φm; (2) Assuming that the method denotations use si 6= vi for the i-th formal
parameter, we rename all sharing information by changing each si into vi
and out into v. We get φ. (3) We add sharing information for variables which
are not in V \{v, v0, . . . , vp}. The sharing component ϕ states that x and y
might share after the call iff they shared before (i.e. x̌·y) or they shared with
arguments vi and vj where vi and vj share after the call, and either vi or vj
has been modified (expressed by ϕ1); (4) We add the constancy information
which states that x ∈ V \{v} is modified before iff it is modified after, or
if it shares with a variable that is modified by the method. For v it is a
bit different since we exclude the case that if v is modified after then it is
modified before, since we possibly assign to it a new reference.

The abstract denotation for a method:

t m(w1:t1, . . . , wn:tn) with wn+1:tn+1, . . . , wn+m:tn+m is com,

is then defined as φm = ∃V ′. AιV JcomK ∧ ϕ1 ∧ ϕ2 where:

– S = {s1, . . . , sn} such that S ∩ms = ∅, and V = ms ∪ S
– ϕ1 = {¬x̌·y | x ∈ ml ∪ {out}, y ∈ ms}
– ϕ2 = { ˇsi·x↔ ˇwi·x | 1 ≤ i ≤ n, x ∈ mi}
– V ′ = {x̌·y, x̂·y, x̌, x̂ | x 6∈ S ∪ {this, out}, y ∈ V } ∪ { ˇout}

The idea is that we: (1) extend ml to V in order to include shallow variable
si for each method argument wi; (2) compute AιV JcomK; (3) add ϕ1 which in-
dicates that local variables are initialized to null; (4) add ϕ2 which creates
the connection between the shallow variables and the actual parameters; (5)
eliminate all local information by removing the Boolean variables V ′. The ab-
stract denotational semantics can be then defined similar to the concrete one in
Definition 3, where the initial method summaries are false ans summaries are
combined (during the fixpoint iterations) using the logical or ∨.

Example 2. Applying the above abstract semantics to the method defined in
Example 1 results in a Boolean formula whose constancy component is (ˇthis↔

ˆthis) ∧ x̌ ∧ (y̌ ↔ (x̌·y ∨ ŷ)). For simplicity we ignore the part of φm that talks
about sharing.

4 Experiments

We show here some experiments with our domain for sharing and constancy
analysis. They have been performed with the Julia analyzer [12] on a Linux

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

450

Program M
Sharing Non-Cyclicity

T P T P

JLex 446 1595 (2324) 34.30% (34.84%) 506 (415) 34.03% (35.21%)

JavaCup 933 5707 (6486) 22.24% (23.76%) 853 (953) 59.23% (76.13%)

Kitten 2131 20976 (27824) 17.90% (19.11%) 2538 (3177) 36.34% (41.13%)

jEdit 3206 47408 (49356) 21.12% (21.28%) 4969 (5963) 43.49% (47.50%)

Julia 4028 79199 (129562) 9.71% (10.25%) 8014 (12018) 33.40% (38.17%)

Fig. 2. The effect of the purity component on Sharing and Non-Cyclicity. (M) number
of methods; (T) run-time in milliseconds excluding preprocessing; (P) precision.

machine based on a 64 bits dual core AMD Opteron processor 280 running
at 2.4Ghz, with 2 gigabytes of RAM and 1 megabyte of cache, by using Sun
Java Development Kit version 1.5. All programs have been analyzed including
all library methods that they use inside the java.lang.* and java.util.*
hierarchies.

Figure 2 compares sharing analysis alone with sharing analysis in reduced
product with constancy (Section 3), and its effect on non-cyclicity analysis [9].
In each column, numbers in parentheses correspond to the analysis using the
reduced product. For each program, it reports the number of methods analyzed,
including the libraries, and time and precision of the corresponding analysis
with and without constancy. For sharing, the precision is the amount of pairs of
variables of reference type that are proved not to share at the program points
preceding the update of an instance field, the update of an array element or
a method call. This is sensible since there is where sharing analysis is used
by subsequent analyses. That figure suggests that the constancy component
slightly improves the precision of sharing analysis. However, the importance
of constancy is shown when we consider its effects on a static analysis that
uses constancy information. This is the case of non-cyclicity analysis, which
finds variables bound to non-cyclical data structures [9]. Figure 2 shows that
the computation of cyclicity analysis after a simple sharing analysis leads to
less precise results than the same computation after a sharing and constancy
analysis. Here, precision is the number of field accesses that read the field of a
non-cyclical object. This is sensible since there is where non-cyclicity is typically
used.

The importance of constancy analysis becomes more apparent when it sup-
ports a static analysis that uses constancy, sharing and cyclicity information.
This is the case of path-length [13]. It approximates the length of the maximal
path of pointers one can follow from each variable. This information is the basis
of a termination [1] and resource bound analyses [2] for programs dealing with
dynamic data structures. Figure 3 shows the effects of constancy on path-length
and termination analysis (available in [12]) of a set of small programs that do
not use libraries except for java.lang.Object. Times are in milliseconds and
precision is the number of methods proved to terminate. Constancy information

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

451

Program M T P

Init 10 102 (140) 8 (8)

List 11 624 (512) 6 (11)

Diff 5 6668 (9040) 5 (5)

Hanoi 7 548 (868) 7 (7)

BTree 7 306 (415) 6 (7)

BSTree 10 234 (273) 9 (10)

Virtual 11 357 (418) 10 (11)

ListInt 11 767 (507) 6 (11)

Program M T P

Nested 4 324 (447) 4 (4)

Double 5 270 (268) 5 (5)

FactSum 6 169 (178) 6 (6)

Sharing 7 309 (501) 6 (7)

Factorial 5 102 (196) 5 (5)

Ackermann 5 1308 (1732) 5 (5)

BubbleSort 5 871 (951) 5 (5)

FactSumList 8 278 (703) 7 (8)

Fig. 3. The effect of the purity information on Termination analysis. (M) number of
methods; (T) run-time in milliseconds excluding preprocessing; (P) precision.

results in proving that all terminating methods terminate (only 2 methods of
Init are not proved to terminate: they actually diverge). Without constancy
information, many terminating methods are not proved to terminate.

These experiments suggest that constancy information contributes to the
precision of sharing, cyclicity, path-length and hence termination analysis. Com-
puting constancy information with sharing requires more time than computing
sharing alone (Figure 2). Performing other analyses by using the constancy in-
formation increases the times further (Figures 2 and 3). Nevertheless, this is
justified by the extra precision of the results.

5 Acknowledgments

This work of Samir Genaim was funded in part by the Information Society Tech-
nologies program of the European Commission, Future and Emerging Technolo-
gies under the IST-15905 MOBIUS project, by the Spanish Ministry of Educa-
tion (MEC) under the TIN-2005-09207 MERIT project, the Madrid Regional
Government under the S-0505/TIC/0407 PROMESAS project, and a Juan de
la Cierva Fellowship awarded by the Spanish Ministry of Science and Educa-
tion. The authors would like to thank the anonymous referees for their useful
comments.

References

1. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Ter-
mination Analysis of Java Bytecode. In Gilles Barthe and Frank de Boer, editors,
Proceedings of the IFIP International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS), Lecture Notes in Computer Science,
Oslo, Norway, June 2008. Springer-Verlag, Berlin. To appear.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
java bytecode. In Rocco De Nicola, editor, 16th European Symposium on Pro-
gramming, ESOP’07, volume 4421 of Lecture Notes in Computer Science, pages
157–172. Springer, March 2007.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

452

3. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics Approach:
Theory and Applications. Journal of Logic Programming, 19-20:149–197, 1994.

4. N. Cataño and M. Huisman. Chase: A Static Checker for JML’s Assignable Clause.
In L. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopadhyay, editors, Proc. of
the 4th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’03), volume 2575 of Lecture Notes in Computer Science,
pages 26–40. Springer, 2003.

5. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’77), pages 238–252, 1977.

6. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended Static Checking.
Technical Report 159, COMPAQ Systems Research Center, 1998.

7. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML. Technical
Report 96-06p, Iowa State University, 2001.

8. Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of refer-
ence immutability. In ECOOP 2008 — Object-Oriented Programming, 22nd Eu-
ropean Conference, Paphos, Cyprus, July 9–11, 2008.

9. S. Rossignoli and F. Spoto. Detecting Non-Cyclicity by Abstract Compilation
into Boolean Functions. In E. A. Emerson and K. S. Namjoshi, editors, Proc. of
Verification, Model Checking and Abstract Interpretation, volume 3855 of Lecture
Notes in Computer Science, pages 95–110, Charleston, SC, USA, January 2006.

10. A. Salcianu and M. C. Rinard. Purity and Side Effect Analysis for Java Programs.
In R. Cousot, editor, Proc. of the 6th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’05), volume 3385 of Lecture
Notes in Computer Science, pages 199–215, Paris, France, 2005. Springer.

11. S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs. In
C. Hankin, editor, Proc. of Static Analysis Symposium (SAS), volume 3672 of
Lecture Notes in Computer Science, pages 320–335, London, UK, September 2005.

12. F. Spoto. The julia Static Analyser. profs.sci.univr.it/∼spoto/julia, 2008.
13. F. Spoto, P. M. Hill, and E. Payet. Path-Length Analysis for Object-Oriented

Programs. In Proc. of Emerging Applications of Abstract Interpretation, Vienna,
Austria, March 2006. profs.sci.univr.it/∼spoto/papers.html.

14. F. Spoto and E. Poll. Static Analysis for JML’s assignable Clauses. In G. Ghelli,
editor, Proc. of FOOL-10, the 10th ACM SIGPLAN International Workshop on
Foundations of Object-Oriented Languages, New Orleans, Louisiana, USA, January
2003. ACM Press. Available at www.sci.univr.it/∼spoto/papers.html.

15. G. Winskel. The Formal Semantics of Programming Languages. The MIT Press,
1993.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

453

Efficient Context-Sensitive Shape Analysis
with Graph Based Heap Models

Mark Marron1, Manuel Hermenegildo1,2, Deepak Kapur1, and Darko Stefanovic1

1University of New Mexico
{marron,kapur,darko}@cs.unm.edu

2 Technical University of Madrid and IMDEA-Software
herme@fi.upm.es

Abstract. The performance of heap analysis techniques has a significant impact
on their utility in an optimizing compiler. Most shape analysis techniques perform
interprocedural dataflow analysis in a context-sensitive manner, which can result
in analyzing each procedure body many times (causing significant increases in
runtime even if the analysis results are memoized). To improve the effectiveness
of memoization (and thus speed up the analysis) project/extend operations are
used to remove portions of the heap model that cannot be affected by the called
procedure (effectively reducing the number of different contexts that a proce-
dure needs to be analyzed with). This paper introduces project/extend operations
that are capable of accurately modeling properties that are important when an-
alyzing non-trivial programs (sharing, nullity information, destructive recursive
functions, and composite data structures). The techniques we introduce are able
to handle these features while significantly improving the effectiveness of mem-
oizing analysis results (and thus improving analysis performance). Using a range
of well known benchmarks (many of which have not been successfully analyzed
using other existing shape analysis methods) we demonstrate that our approach
results in significant improvements in both accuracy and efficiency over a base-
line analysis.

1 Introduction

Recent work on shape analysis techniques [25,28,1,14,15,9,8] has resulted in a number
of techniques that are capable of accurately representing the properties (connectivity,
interference, and shape) that are needed for a range of optimization and parallelization
applications. However, the computational cost of performing these analyses has limited
their applicability. A significant component of the analysis runtime is due to the need to
perform a context-sensitive interprocedural analysis, where each procedure body may
be analyzed multiple times (once for each different calling context).

The practice of using a memo-table to avoid recomputing analysis results and the use
of a project operation to remove portions of the heap that cannot affect or be affected by
the called procedure are standard techniques for minimizing the number of times each
function needs to be analyzed during interprocedural dataflow analysis [2,17,16,19]. The
two major goals of the project operation are improving the effectiveness of memoizing
analysis results by removing portions of the heap that could cause spurious inequalities

L. Hendren (Ed.): CC 2008, LNCS 4959, pp. 245–259, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

454

246 M. Marron et al.

between calling contexts and preventing the loss of precision that occurs when recursive
procedures use a summary representation for multiple out-of-scope references (e.g. local
reference variables with the same name but that exist in different call frames).

The project operation for heap models and the utility of locality axioms have been
analyzed in a number of papers [22,21,7,12,4]. These techniques use variations on the
notion of a frame rule as presented in [11,20] and identify a number of features of the
project operation that are of particular importance for interprocedural analysis using
heap domains. A major distinction is made between the projection operation in cutpoint-
free cases, where there are no pointers that cross from a section of the heap that is
unreachable from the procedure arguments into a section of the heap that is reachable
from the procedure arguments, and cases where such pointers may exist.

This paper presents a method for using cutpoints to support interprocedural heap
analysis. We then use the technique to quickly analyze (10’s of seconds) programs that
are larger (by a factor of 2-4) and more varied (in terms of data structures and algo-
rithms) than any other analysis technique to date. Our first contribution is the reformu-
lation of the project/extend operations in [21] so that they can be used in a graph based
(as opposed to an access path based) heap model which allows us to use a very com-
pact and efficient representation of heap connectivity. Our second contribution is the
extension of the original approach to handle two classes of programatic events that are
critical to analyzing real world programs, analyzing programs that involve non-trivial
sharing and composite data structures [1,15] and propagating nullity test information
from callee to caller scope. Finally we use the results of the heap analysis to drive the
parallelization of a range of benchmarks (several of which have not been successfully
analyzed/parallelized using shape information) achieving an average parallel speedup
of 1.69 on a dual-core machine.

2 Example Code

To develop intuition about the mechanism and purpose of project/extend operations
we look at a simple function (Figure 1) that illustrates the basic functioning of the
project/extend operations and the propagation of nullity information from the callee to
the caller scope. Our lists are made of objects of type LNode, each LNode object has
two fields, a nx field which refers to the next element in the list and a field f which
stores a boolean.

LNode LInit(LNode l)
if(l == null)

return;

tin = l.nx;
LInit(tin);
l.f = true;

Fig. 1. Recursive List Initialize

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

455

Efficient Context-Sensitive Shape Analysis 247

Accurately analyzing the initialization method (LInit) requires the analysis to propa-
gate information inferred about cutpoints in the callee scope back into the caller scope.
If the analysis is unable to use the l == null test in the callee scope to infer that
l.nx is null in the caller scope then the analysis will not be able to infer that after
the method returns the argument list is either null or must have the true value in all
the f fields.

3 Heap Model

We model the concrete heap as a labeled, directed multi-graph (V,E) where each vertex
v ∈V is an object in the store or a variable in the environment, and each labeled directed
edge e ∈ E represents a pointer between objects or a reference from a variable to an
object. Each edge is given a label that is an identifier from the program, an edge (a,b) ∈
E labeled with p, we use the notation a

p−→ b to indicate that a points to the object b via
the field name (or identifier) p.

A region of memory ℜ is a subset of the objects in memory, with all the pointers that
connect these objects and all the cross-region pointers that start or end at an object in
this region. Formally, let C ⊆V be a subset of objects, and let Pi = {p | ∃a,b ∈C,a

p−→ b}
and Pc = {p | ∃a ∈C,x �∈C,a

p−→ x∨x
p−→ a} be respectively the set of internal and cross-

region pointers for C. Then a region is the tuple (C,Pi,Pc). For a region ℜ = (C,Pi,Pc)
and objects a,b ∈ C, we say a and b are connected in ℜ if they are in the same weakly-
connected component of the graph (C,Pi). Objects a and b are disjoint in ℜ if they are
in different weakly-connected components of the graph.

3.1 Abstract Heap Model

The underlying abstract heap domain is a graph where each node represents a region
of the heap or a variable and each edge represents a set of pointers or a variable target.
The nodes and edges are augmented with additional instrumentation predicates. The
abstract domain evaluates the predicates using a 3-valued semantics: predicates are ei-
ther definitely true, definitely false, or unknown [25]. Our analysis tracks the following
set of instrumentation predicates. Our choice of predicates is influenced by common
predicates tracked in previous papers on shape analysis [5,24,28,20].

Types. For each type t in the program, there is an instrumentation predicate (also written
t) that is true at a concrete heap node if any concrete object represented by the node may
have type t.

Linearity. Each abstract node has a linearity that represents whether it represents at
most one concrete node (linearity 1) or any set of 0 or more concrete nodes (written #).

Abstract Layout. To track the connectivity and shape of the region a node abstracts, the
analysis uses abstract layout predicates Singleton, List, Tree, MultiPath, or Cycle. The
Singleton predicate states that there are no pointers between any of the objects repre-
sented by an abstract node. The List predicate is similar to the inductive List predicate

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

456

248 M. Marron et al.

in separation logic [20]. The other predicates correspond to the definitions for Trees,
Dags, and Cycles in the literature, for the formal definitions see [14].

Interference. The heap model uses two properties to track the potential that two refer-
ences can reach the same memory location in the region that a node represents.

The first property is for references that are represented by different edges in the heap
model. Given the concretization function γ and two edges e1,e2 that are incoming edges
to the node n, the predicate that defines inConnected in the abstract domain is: e1,e2 are
inConnected with respect to n if it is possible that ∃r1 ∈ γ(e1)∧∃r2 ∈ γ(e2)∧∃a,b ∈
γ(n) s.t. (r1 refers to a)∧ (r2 refers to b)∧ (a, b connected). For improved precision
we also track may and must aliasing (e1,e2 are inConnected and a = b) between the
references the edges abstract (must aliasing is only meaningful if the edge represents
a single references, see [15] for an approach that generalizes must-aliasing to sets of
references).

The second property is for the case where the references are represented by the same
edge. To model this the interfere property is introduced. An edge e represents interfering
references if there may exist references r1,r2 ∈ γ(e) such that the objects that r1,r2

refer to are connected/aliased. A three-element lattice, np < ip < ap, np for edges with
all non-interfering references and ip for potentially interfering references and ap for
potentially aliasing references, is used to represent the interference property.

The Heap Graph. Each node in the graph either represents a region of the heap or a
variable. The variable nodes are labeled with the variable that they represent. Nodes
representing the concrete heap regions contain a record that tracks the types of the
concrete objects that the node represents (types), the number of objects (either 1 or #)
that may be in the region (count), and the abstract layout of a node (layout). Each node
also tracks the connectivity relation between pairs of incoming edges. A binary relation
connR is used to track the inConnected relation. Although the connectivity relation is
a property of the nodes, for readability in the figures we associate the information with
the edges. Thus, each node is represented as a record of the form [types layout
count].

As in the case of the nodes, each edge contains a record that tracks additional in-
formation about the edge. The offset component indicates the offsets (labels) of the
references that are abstracted by the edge. The number of references that the edge may
represent is tracked with the maxCut property. The interfere property tracks the possi-
bility that the edge represents references that interfere. Finally, we have a field connto
which is a list of all the other edges/variables that the edge may be connected to accord-
ing to the connR relation (we add a (!) for the edges in the list that represent references
which may alias and a (∼) if the edges represent single references that must alias). To
simplify the figures if the connto field is empty we omit it entirely from the record in
the figure. Since the variable edges always represent single references and the offset
label is implicitly the name of the variable the record simply contains the connR infor-
mation or is omitted entirely if the connR relation is empty. To simplify the discussion
of the examples each edge also has a unique label. The pointer edges in the figures are
represented as records {label offset maxCut interfere connto}.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

457

Efficient Context-Sensitive Shape Analysis 249

The abstract heap domain is restricted via a normal form [14,15]. The normal form
ensures that the heap graph remains finite, and that equality comparisons are efficient.
The local data flow analysis is performed using a Hoare (Partially Disjunctive) Power
Domain [13,26] over these graphs. Interprocedural analysis is performed in a context-
sensitive manner and the procedure analysis results are memoized. At each call/return
site the portion of the heap graphs passed to the call are joined into a single graph. The
design of the join operation is such that, in general, information lost in the join can be
recovered when needed later in the program. The decision to perform joins at call sites
(programs tend to have uniform expectations of the portion of the heap passed to and
returned from calls) and to perform the join only on the portion of the heap passed to the
called method results in very little loss of precision while ensuring the abstract model
remains compact.

Abstract Call Stack. Our concrete model for the call stack is a function Sm : (LV×N)
→
O, where LV is the set of local variable names and N represents the depth in the call
sequence (main is at depth 1) and O is the set of all live objects. Thus, the pair (v,4)
refers to the value of the variable v in the scope of the 4th call frame.

To represent the concrete call stack we introduce stack variables which represent the
values of local variables on the stack (for a variation on this approach see [22]). In our
extension each stack variable summarizes all the possible targets (in a given graph) for
a given variable name on the stack. Given a variable name v and a heap graph G we
define a variable name v’ for use in the abstract domain (we will select a better naming
scheme in Section 4) where: v’ is the abstraction of all the variables in the call stack,
∃i ∈ N, node n ∈ G, object on s.t. on ∈ γ(n)∧Sm(v, i) = on.

By associating the set of stack locations that are abstracted with the set of tar-
gets in a given abstract heap graph, we can naturally partition the stack variables
along with the heap graphs. Since each stack variable is associated with only the val-
ues on the stack that point into a region of the heap represented by the given heap
graph, it is straightforward to partition and join them when partitioning the heap
graphs.

Thus, during the local analysis the heap graph represents the portion of the pro-
gram heap that is visible from the local variables and is augmented with some num-
ber of stack variables and cutpoint variables which relate variable values and the heap
in the caller scope to the portions of the heap reachable from callee scope local
variables.

For efficiency and in order to ensure analysis termination the naming scheme we
choose will result in situations where multiple cutpoint (or stack) edges are given the
same name. This may result in some amount of information loss (particularly with re-
spect to reachability and aliasing). To minimize the loss that occurs we introduce an
instrumentation domain for the stack/cutpoint variable edges, nameColl = {pdj, pua,
pa}. Where pdj indicates a cutpoint/stack name representing (a single edge) or edges
where the edges do not represent any pairwise connected references, pua indicates a
name representing multiple edges where there are no pairwise aliases, while pa is the
indicates the name represents edges that they may have pairwise aliasing. Thus, the cut-
point variable edges are represented with records {maxCut interfere connto
nameColl} (stack variables are not used in this example).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

458

250 M. Marron et al.

4 Stack Variables, Cutpoint Labels

When performing the project operation in heaps with cutpoints we need to name the
stack variables as well as the cutpoint edges. We use a simple technique for the stack
variables: given a variable name v defined in the caller function fcaller we use the
name $fcaller*v to represent this variable in the callee scope. This naming scheme
can create false dependencies on the local scope names unless the variable information
is normalized during the comparisons of entries in the memo-table.

Naming edges that cross the cutpoints is more complex since we need to balance the
accuracy of the analysis with the potential of introducing spurious differences resulting
from isomorphic (or nearly so) cutpoint edges being given different names. For the
renaming of the cutpoint edges we assume that special names for the arguments to the
function have been introduced. The first pointer parameter is referred to by the special
variable name p1 and the ith pointer argument is referred to by the variable pi.

Figure 2(c) shows a recursive call to LInit where the special argument name p1
has been added to represent the value of the first argument to the function. In this figure
the edge e1 is a cutpoint edge since it starts in the portion of the heap that is unreachable
from the argument variables and ends in a portion of the heap that is reachable from the
argument variables (this differs slightly from the definition for cutpoints in [21] but
allows us to handle edges uniformly).

For each cutpoint edge we generate a pair of names: one is used in the unreachable
section of the heap graph and one in the reachable section, which allows an abstract heap
model to represent both incoming and outgoing cutpoint edges that are isomorphic and
exist in the same abstract heap component without loss of precision.

If we are adding a cutpoint for the method call fcaller and the edge e, which is a
cutpoint, starting at n and ending at n′, and has edge label fe. We can find the shortest
path (f1 . . . fk) from any of the pi variables to n′ (using lexographic comparison on
the path names to break ties). Using the pi argument variable and the path (f1 . . . fk)
we derive the cutpoint basename = fcaller*pi*f1*. . .*fk*fe We compute a
pair of static names (unreachN, reachN) where unreachN = $basename- and reachN
= $basename+. In Figure 2(d) the cutpoint name $p1+ (for brevity we simply label
the cutpoint with the pi variable) is used to represent the endpoint of the cutpoint edge
in the reachable component of the heap and $p1- to track a dummy node associated
with the cutpoint edge in the unreachable component of the heap.

5 Example

The example program, Figure 1, recursively initializes the f fields in a linked list to the
value true. Figure 2(a) shows the abstract heap model at the entry of the first call to
the procedure (for simplicity we ignore any caller scope variables).

In Figure 2(a), variable l refers to a node that represents LNode objects (types =
{LNode}, abbreviated to LN), that represents a region with no internal connections
(Layout = S), which contains a single object (count = 1), and where all the incoming
edges represent disjoint pointers (the connto lists on the edges are omitted). In this
figure we also have that the elements in the list have unknown truth values in the f

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

459

Efficient Context-Sensitive Shape Analysis 251

(a) Heap at Initial Call (b) After tin = l.nx (c) Cross Edge 1st Call

(d) Split Cross Edge 1st Call (e) Into 1st Recursive Call (f) Cross Edge 2nd Call

(g) Split Cross Edge 2nd Call (h) Fix Point / Base Return (i) Merge 2nd Call Return

(j) Patched Cross Edges (k) Merge 1st Call Return (l) Return 1st Recursive Call

Fig. 2. Recursive Calls

fields (f=?). There is a single edge out of this node representing pointers stored in
the nx field of the object represented by the node. This edge represents a single pointer
(maxCut = 1) and all the pointers are non-interfering (interfere = np). Finally, this edge
refers to a node that also represents LNode objects but may represent many of these
objects (count = #) and, since the Layout value is List, we know that the objects may be
connected in a list-like shape. Since there is a single incoming edge and it represents a
single pointer, we can safely assume that this edge refers to the head of the list structure.

Figure 2(b) shows the abstract heap model just after executing the statement tin =
l.nx. Since we know that e1 refers to the head element of the list from Figure 2(a) we
replaced the single List-shaped node with a node representing the unique head element
and a node representing the tail of the list. Since the head element is unique we set the
count of this new node to 1. Additionally, the only possible layout for a node of count 1
is Singleton. Finally, if a node represents a single object then all the outgoing field edges

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

460

252 M. Marron et al.

can each represent a single pointer. Thus, we set the outgoing edge to have a maxCut =
1. Also note that after the load the analysis has determined that tin and e1 must alias
(indicated by the ∼e1 and ∼tin entries in the connectivity lists).

Figure 2(c) shows the state of the abstract heap at the entry of the project procedure.
The special name p1 has been added to represent the value of the first pointer argument
to the function and we have added a dotted line to indicate the reachable and unreachable
portions of the heap. Note that the edge e1 is a cutpoint edge according to our definition.

The result of the project operation is shown in Figure 2(d). The e1 edge, which was
a cutpoint edge for the call, has been remapped to a dummy node and the static cutpoint
names $p1- and $p1+ (for brevity we omit the procedure name and edge labels from
the static names) have been introduced at the dummy node and at the target of this edge
in the reachable section. Since this cutpoint edge only represents the single cutpoint
edge generated in this call frame nameColl = pdj. Also note that the analysis has
determined that the formal parameter p1 must alias the cutpoint edge $p1+.

Figure 2(e) shows the resulting abstract heap that is passed into the callee scope for
analysis. Since all the local variables in the caller scope either did not refer to nodes in
the callee reachable section or are dead after the call return we do not have to give them
stack names and can remove them entirely from the heap model. Figure 2(f) shows the
abstract heap at the entry to the project function for the second recursive call. Again
we have a cutpoint edge e2. Note that the reachable cutpoint label, $p1+ introduced in
the previous call is now in the unreachable portion of the heap, thus ($p1+) does not
conflict with the unreachable name added in this call ($p1-). The result of the project
operation is shown in Figure 2(g).

Figure 2(h) shows the eventual fixpoint approximation (above the dotted line) of
the analysis of this function and also the base case return value (below the dotted line).
Notice in the base case return value we were able to determine that the test l == null
implies that l must be null and since we preserved must alias information through the
cutpoint introduction we can infer that l must alias $p1+, which implies the cutpoint
edge ($p1+) must also be null. Thus, the analysis can infer that on return the cutpoint
edge is either null or is non-null and refers to some list in which all the f fields have
been set to true (f=t in the figure).

In Figure 2(i) we show how the fixpoint approximation for the reachable section
of the heap is recombined with the unreachable section of the heap using the extend
operation. After the recombination we get the abstract heap model shown in Figure 2(j).
In Figure 2(i) we have unioned the graphs and are ready to patch up the cutpoint cross
edge information. The static name $p1+ in the reachable portion of the heap has been
used to compute the associated unreachable name ($p1-). Then the algorithm identifies
the edge associated with the dummy node referred to by $p1- (e2) and remapped this
edge to end at the target of $p1+ (tin has been nullified since it is dead).

Figure 2(k) shows the extend operation at the return from the first recursive call
which is similar to the situation in the second recursive call. The resulting abstract heap
is shown in Figure 2(l) which can be joined with the result of the base case test and then
completes the analysis of the method. As desired, the analysis has determined that the
recursive list initialize procedure preserves the list shape of the argument list and that
all of the f fields in the list have been set to true (f=t in the figures).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

461

Efficient Context-Sensitive Shape Analysis 253

6 Project and Extend Algorithms

Project. We assume that before the projectHeap function is invoked all of the special
argument variable names have been added to the heap model. This allows projectHeap
(Algorithm 1 below) to easily compute the section of the heap model that is reachable
in the callee procedure and then compute the set of nodes that comprise the unreachable
portion of the heap model.

Algorithm 1. projectHeap
input : h: the heap model to be partitioned
output: hr, hu: the reachable and unreachable partitions, snu, ncs: the static names used and

newly created
reachNodes ← set of nodes reachable from args;
unreachNodes ← set of nodes unreachable from args;
crossEdges ← set of edges that start in unreachNodes and end in reachNodes;
snu ← /0;
ncs ← /0;
foreach edge e in crossEdges do

(sn, isnew) ← procCrossEdge(h, e, reachNodes);
snu.add(sn);
if isnew then ncs.add(sn);

hu ← subgraph of h on the nodes unreachNodes ∪ {dummy nodes from procCrossEdge};
hr ← subgraph of h on the nodes reachNodes;
return (hr, hu, snu, ncs);

For each edge that crosses from the unreachable section into the reachable section
we add a pair of static names to represent the edge (Algorithm 2). Since the heap model
stores a number of domain properties in each edge, we create a dummy node and remap
the edge to end at this node. Then, the unreachN static name is set to refer to this dummy
node. In the reachable portion of the heap graph we simply set the reachN static name
to refer to the target of the cross edge.

When adding the reachN static name to the reachable section of the heap graph the
name may or may not already be present in the heap graph. If the name is not present
then we add it to the static name map and for later use we note that this is the call where
the name is introduced. Otherwise a name collision has occurred and we must mark
the edges representing the possible cutpoints appropriately (for simplicity we mark all
the edges). If there may be aliasing we note that the cutpoints from different frames
may have aliasing targets (pa) and similarly if the new cutpoint edge may be connected
with an existing cutpoint edge we mark them as being pairwise connected (pua). The
functions makeEdgeForUnreachCutpoint and makeEdgeForReachCutpoint are used to
produce edges to represent the cutpoint (based on the static name and the cutpoint edge
properties) in the unreachable and reachable portions of the heap.

Once all of the cutpoint edges have been replaced by the required static names, the
heap can be transformed into the unreachable version (where all the nodes in the reach-
able section and all the variables/static names that only refer to reachable nodes have

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

462

254 M. Marron et al.

been removed) and the reachable version (where the nodes in the unreachable section
and the associated names have been removed).

Algorithm 2. procCrossEdge
input : h: the heap, e: the cross edge, reachNodes: set of reachable nodes
output: rsn: the name used, isnew: true if rsn a new name
ne ← the node e ends at;
ni ← new dummy node;
(ursn, rsn) ← genStaticNamePairForEdge(h, e);
eu ← makeEdgeForUnreachCutpoint(e, ursn);
set endpoint of eu to ni;
add eu as an edge for ursn;
er ← makeEdgeForReachCutpoint(e, rsn);
set endpoint of er to ne;
remap the endpoint of e to ni;
if the name rsn exists and has edges pointing to a node in reachNodes then

rsnes ← {e′|e′ is an edge for the cutpoint var rsn};
add er as an edge for rsn;
if er is inConnected with an edge in rsnes then set edges in rsnes and er to pua;
if er may alias with an edge in rsnes then set edges in rsnes and er to pa;
return (rsn, false);

else
add the name rsn to h;
add er as an edge for rsn;
return (rsn, true);

Extend. After the call return we need to rejoin the unreachable portion of the heap that
we extracted before the procedure call entry with the result we obtained from analyzing
the callee procedure. This is done by looking at each of the static names that was used
to represent a cutpoint edge and reconnecting as required. Then, each of the newly
introduced cutpoint names can be removed from the heap model. The pseudo-code to
do this is shown in Algorithm 3.

This algorithm merges all edges with the same reachable cutpoint name so that there
is at most one target edge for a given cutpoint name in the reachable heap hr (this sim-
plifies the algorithm and is in our experience is quite accurate). The algorithm then pairs
up the two cutpoint names and remaps the edge we saved in the unreachable section to
the target node in the reachable section subject to a number of tests to propagate sharing
information (the nullity information is propagated due to the fact that the dummy node
and all incoming edges are always removed but the foreach loop on the targets of ursn
does not execute since the target set is empty). The er.nameColl = pua test is true if this
edge represents sets of pointers that do not have pairwise aliases. Thus, we mark the
newly remapped edge and er as pairwise unaliased. Similarly, the er.nameColl = pdj
test is true if this edge represents cutpoint/stack edges that are pairwise disjoint. Thus,
we mark the newly remapped edge and er as pairwise disjoint.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

463

Efficient Context-Sensitive Shape Analysis 255

Algorithm 3. extendHeap
input : hr, hu: the reachable and unreachable partitions, snu, ncs: the static names used and

newly created
output: h: the joined heap model
h ← new heap();
h.heapGraph ← mergeGraphs(hr .heapGraph, hu.heapGraph);
foreach static name sn in snu do

ursn ← reachNameToUnreachName(sn);
nr ← the target of sn in hr.nameMap;
foreach node nu that is a target of ursn in hu.nameMap do

er ← the single incoming edge to nu;
remap er to end at the target of nr ;
er .interfere = er.interfere � nr .interfere;
if er.nameColl = pua then set er and nr as unaliased;
if er.nameColl = pdj then set er and nr as disjoint;

hu.removeNodeAllEdges(target of ursn);
hu.unmapStaticName(ursn);
if sn in ncs then hr .unmapStaticName(sn);

h.nameMap ← mergeNameMaps(hr .nameMap, hu.nameMap);
return h

The major components of this algorithm are the separation of the mergeGraphs ac-
tion from the mergeNameMaps action and the elimination of the static cutpoint edge
names that were introduced for this call.

The mergeGraphs function computes the union of the graph structures that represent
the abstract heap objects, while the mergeNameMaps function computes the union of
the name maps (which are maps from the stack/variable/cutpoint names to the nodes in
the graph structure that represent them). This separation allows the algorithm to nullify
the names created for this call which prevents the propagation of unneeded cutpoint
edge targets to the caller scope. The function unmapStaticName is used to eliminate a
given static name from the abstract heap model name map.

Example Name Collision. The introduction of the nameColl domain minimizes the pre-
cision loss that occurs when a cutpoint or stack variable name collision occurs. Figure 3
shows an example of such a situation. In this figure we show part of a heap where the
edges e2 and e3 are both cutpoint edges and they do not represent any pairwise aliasing
pointers (no ! in the connTo lists) although they each represent sets of pointers that may
alias, interfere = ap.

In this example our naming scheme will result in e2 and e3 being represented with
the same cutpoint name. However, our method will mark this cutpoint edge as nameColl
= pua (Figure 3(b)). This means that on return the extend algorithm will set the edges
that are mapped to this cutpoint as being pairwise unaliased (Figure 3(c)) as desired.
Thus, even though there was a name collision for the cutpoints we avoided (in this case
completely) the loss of sharing information about the heap.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

464

256 M. Marron et al.

(a) Colliding Names (b) To Same Cutpoint (c) PUA on Return

Fig. 3. Name Collision

7 Experimental Results

The proposed approach has been implemented and the effectiveness and efficiency of
the analysis have been evaluated on the source code for programs from a variation of the
Jolden [3,18] suite and several programs from SPEC JVM98 [27] (raytrace, modified
to be single threaded, db and compress). The analysis algorithm is written in C++ and
was compiled using MSVC 8.0. The parallelization benchmarks were run using the Sun
1.6 JVM. All runs are from our 2.8 GHz PentiumD machine with 1 GB of RAM.

We ran the analysis with the project/extend operations enabled (the Project column)
and disabled (the No-Project column) and recorded the analysis time, the average num-
ber of times a method needed to be analyzed, and used the resulting shape information to
parallelize the programs, shown in Figure 4. The results indicate that the project/extend
operations have a significant impact on the performance of the analysis, reducing the
number of contexts that each function needs to be analyzed in (on average reducing the
number of contexts by a factor of 4.3) which results in a substantial decrease in analysis
times (by a factor of 18.4). As expected this reduction becomes more pronounced as
the size and complexity of the benchmarks increases, in the case of raytrace the anal-
ysis time without the project/extend operation is impractically large (772.6 seconds)
but when we use the project/extend operations the analysis time is reduced to 35.11
seconds.

We used the shape information from the analysis to drive the parallelization of the
benchmarks by using multiple threads in loops and calls, resulting in the speedup
columns in Figure 4. Given the shape information produced by the analysis it is straight
forward to compute what parts of the heap are read and written by a loop body or method
call and thus which loops and calls can be executed in parallel (in raytrace we treated
the memoization of intersect computations as spurious dependencies). Once the anal-
ysis identified locations that could be parallelized we inserted calls to a simple thread
pool (since our current work is focused on the analysis this is done by hand but can
be fully automated [6,23,10]). In 8 of 9 benchmarks that are suitable for shape driven
parallelization (compress, db and mst do not have any data structure operations that are
amenable to shape driven parallelization) we achieve a promising speedup, averaging a
factor of 1.69 over the benchmarks.

Our experimental results show that the information provided by the analysis can be
effectively used (in conjunction with existing techniques) to drive the parallelization of
programs. To the best of our knowledge this analysis is the only shape analysis that
is able to provide the information required to perform shape driven parallelization for
five of these benchmarks (em3d, health, voronoi, bh and raytrace). Given the speed with

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

465

Efficient Context-Sensitive Shape Analysis 257

Benchmark Info No-Project Project
Benchmark Stmt Method Time Avg Cont. Speedup Time Avg Cont. Speedup
bisort 260 13 0.86s 10.6 1.00 0.28s 1.9 1.72
em3d 333 13 0.12s 2.5 1.75 0.08s 1.8 1.75
mst 457 22 0.06s 3.2 NA 0.04s 3.0 NA
tsp 510 13 1.51s 22.4 1.84 0.17s 7.0 1.84
perimeter 621 36 54.57s 105.9 1.00 2.97s 50.2 1.00
health 643 16 3.24s 12.9 1.00 2.26s 4.2 1.76
voronoi 981 63 20.89s 61.4 1.00 2.67s 37.2 1.68
power 1352 29 5.71s 26.8 1.93 0.17s 1.3 1.93
bh 1616 51 8.64s 32.8 1.75 2.68s 7.3 1.75
compress 1102 41 0.29s 2.9 NA 0.18s 2.2 NA
db 1214 30 0.94s 3.7 NA 0.68s 2.8 NA
raytrace 3705 173 772.60s 293.1 1.00 35.11s 15.6 1.76
Overall 12794 523 869.43s 48.2 1.36 47.29s 11.2 1.69

Fig. 4. The Stmt and Method columns list the number of statements and methods for each bench-
mark. The columns for the No-Project and Project variations of the analysis list: the analysis time
in seconds, the average number of times each method was analyzed and parallel speedup achieved
on a 2 core 2.8 GHz PentiumD processor.

which the analysis is able to produce the information needed for the parallelization
and the consistent parallel speedup that is obtained in the benchmarks (1.69 over all
of the benchmarks and 1.77 if we exclude the benchmark mst), we find the results
encouraging.

Of particular interest is the raytrace benchmark. This program is 2-4 times larger than
any benchmarks used in the related work, builds and traverses several heap structures
that have significant sharing between components. It also makes heavy use of virtual
methods and recursion. This benchmark presents significant challenges in terms of the
complexity and size of the program as well as in terms of the range of heap structures
that need to be represented in order to accurately and efficiently analyze the program.
Our analysis is able to manage all of these aspects and is able to produce a precise
model of the heap (allowing us to obtain a speedup of 1.76 using heap based paralleliza-
tion techniques). Further, the analysis is able to produce this result while maintaining a
tractable analysis runtime.

8 Conclusion

We presented and benchmarked project/extend operations for a store-based heap model
that is capable of precisely representing a range of shape, connectivity and sharing prop-
erties. The project and extend operations we introduced are designed to minimize the
analysis time by reducing the number of unique calling contexts for each function and to
minimize the imprecision introduced by the collisions that occur between stack/cutpoint
names.

Our experimental results using the project/extend operations are very positive. The
analysis was able to efficiently analyze benchmarks that build and manipulate a variety

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

466

258 M. Marron et al.

of data structures. Our benchmark set includes a number of kernels that were originally
designed as challenge problems for automatic parallelization (the Jolden suite) and sev-
eral benchmarks from the SPEC JVM98 suite (including a single threaded version of
raytrace). Our experimental results demonstrate that the project/extend operations are
effective in minimizing the number of contexts that need to be analyzed (on average a
factor of 4.3 reduction), improving analysis accuracy (seen as improved parallelization
results, in 4 out of 12 benchmarks) and substantially reducing the analysis runtime (by
a factor of nearly 20). Our heap analysis was also able to provide sufficient information
to successfully parallelize the majority of benchmarks we examined, including several
that cannot be successfully analyzed/parallelized using other proposed shape analysis
methods.

Acknowledgments

This work is supported under subcontract R7A824-79200004 from the Los Alamos
Computer Science Institute and Rice University and by the National Science Founda-
tion (grant 0540600). Manuel Hermenegildo is also supported by the Prince of Asturias
Chair at UNM, and projects MEC-MERIT, CAM-PROMESAS, and EU-MOBIUS.

References

1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang, H.: Shape
analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

2. Bruynooghe, M.: A Practical Framework for the Abstract Interpretation of Logic Programs.
J. Log. Program 10, 91–124 (1991)

3. Cahoon, B., McKinley, K.S.: Data flow analysis for software prefetching linked data struc-
tures in Java. In: PACT (2001)

4. Chong, S., Rugina, R.: Static analysis of accessed regions in recursive data structures. In:
Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 463–482. Springer, Heidelberg (2003)

5. Ghiya, R., Hendren, L.J.: Is it a tree, a dag, or a cyclic graph? A shape analysis for heap-
directed pointers in C. In: POPL (1996)

6. Ghiya, R., Hendren, L.J., Zhu, Y.: Detecting parallelism in C programs with recursive data
structures. In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 159–173. Springer, Hei-
delberg (1998)

7. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with separated heap ab-
stractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260. Springer, Heidelberg
(2006)

8. Gulwani, S., Tiwari, A.: An abstract domain for analyzing heap-manipulating low-level
software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 379–392.
Springer, Heidelberg (2007)

9. Guo, B., Vachharajani, N., August, D.: Shape analysis with inductive recursion synthesis. In:
PLDI (2007)

10. Hendren, L.J., Nicolau, A.: Parallelizing programs with recursive data structures. IEEE
TPDS 1(1) (1990)

11. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In:
POPL (2001)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

467

Efficient Context-Sensitive Shape Analysis 259

12. Jeannet, B., Loginov, A., Reps, T.W., Sagiv, S.: A relational approach to interprocedural
shape analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 246–264. Springer,
Heidelberg (2004)

13. Manevich, R., Sagiv, S., Ramalingam, G., Field, J.: Partially disjunctive heap abstraction. In:
Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279. Springer, Heidelberg (2004)

14. Marron, M., Kapur, D., Stefanovic, D., Hermenegildo, M.: A static heap analysis for shape
and connectivity. In: Almási, G.S., Caşcaval, C., Wu, P. (eds.) KSEM 2006. LNCS, vol. 4382,
pp. 345–363. Springer, Heidelberg (2007)

15. Marron, M., Majumdar, R., Stefanovic, D., Kapur, D.: Dominance: Modeling heap structures
with sharing. Tech. report, CS Dept., Univ. of New Mexico (August 2007)

16. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: POPL
(2004)

17. Muthukumar, K., Hermenegildo, M.V.: Compile-time derivation of variable dependency us-
ing abstract interpretation. J. Log. Program (1992)

18. Modified Jolden Benchmarks (August 2007), http://www.cs.unm.edu/∼marron
19. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg

(1999)
20. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS (2002)
21. Rinetzky, N., Bauer, J., Reps, T.W., Sagiv, S., Wilhelm, R.: A semantics for procedure local

heaps and its abstractions. In: POPL (2005)
22. Rinetzky, N., Sagiv, S.: Interprocedural shape analysis for recursive programs. In: Wilhelm,

R. (ed.) CC 2001. LNCS, vol. 2027, pp. 133–149. Springer, Heidelberg (2001)
23. Rugina, R., Rinard, M.C.: Automatic parallelization of divide and conquer algorithms. In:

PPOPP (1999)
24. Sagiv, S., Reps, T.W., Wilhelm, R.: Solving shape-analysis problems in languages with de-

structive updating. In: POPL (1996)
25. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In: POPL

(1999)
26. Smyth, M.B.: Power domains and predicate transformers: A topological view. In: Dı́az, J.

(ed.) ICALP 1983. LNCS, vol. 154, pp. 662–675. Springer, Heidelberg (1983)
27. Standard Performance Evaluation Corporation. JVM98 Version 1.04 (August 1998),

http://www.spec.org/osg/jvm98/jvm98/doc/index.html
28. Wilhelm, R., Sagiv, S., Reps, T.W.: Shape analysis. In: Watt, D.A. (ed.) CC 2000. LNCS,

vol. 1781, pp. 1–17. Springer, Heidelberg (2000)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

468

Identification of Logically Related Heap Regions

Mark Marron1 Deepak Kapur2 Manuel Hermenegildo1

1IMDEA-Software (Madrid, Spain)
2University of New Mexico (New Mexico, USA)

{mark.marron, manuel.hermenegildo}@imdea.org, kapur@cs.unm.edu

Abstract
This paper introduces a novel set of heuristics for identifying logi-
cally related sections of the heap such as recursive data structures,
objects that are part of the same multi-component structure, and re-
lated groups of objects stored in the same collection/array. When
combined with lifetime properties of these structures, this infor-
mation can be used to drive a range of program optimizations in-
cluding pool allocation, object co-location, static deallocation, and
region-based garbage collection. The technique outlined in this pa-
per also improves the efficiency of the static analysis by providing
a compact normal form for the abstract models (speeding the con-
vergence of the static analysis).

We focus on two techniques for grouping parts of the heap.
The first is a technique for identifying recursive data structures in
object-oriented programs based on connectivity and type informa-
tion. The second technique is a method for grouping objects that
make up the same composite structure and that allows us to par-
tition the objects stored in a collection/array into groupsbased on
a similarity relation. We provide a parametric component in the
similarity relation to support specialized analysis applications (e.g.
numeric analysis of object fields). Using theEm3d andBarnes-Hut
benchmarks from the JOlden suite we show how these grouping
methods can be used to identify various types of logical structures
and enable the application of many region-based optimizations.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages (program
analysis)

General Terms Languages, Performance, Verification

1. Introduction
Identifying and grouping logically related parts of the program
heap in an abstract program model is useful both to client opti-
mization applications (which can use the information to perform
pool allocation, object co-location, static deallocation, etc.) and in
improving the performance of the static data flow analysis (provid-
ing a normal form which speeds the convergence of the analysis).
This paper presents a novel set of grouping heuristics for identify-
ing and grouping these regions in a manner that supports a wide
range of client applications and that can be used in practiceto pro-
duce an efficient static analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’09 June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-347-1/09/06. . . $5.00

Research on object allocation and memory layout has used
the notions of logically related structures to improve the spatial
locality of objects with similar temporal accesses via techniques
such as pool allocation [16, 4] and object co-location [12, 8]. Other
applications which use logically related sections of the heap have
focused on improving the efficiency of garbage collection. The
most direct application is static deallocation of regions or data
structures [16, 5, 13]. There has also been work [15] on using
region information to reduce the pause times of garbage collection
by only performing the collection on portions of heap that are likely
to contain many dead objects. Similar approaches (when combined
with heap based read/write information) can also be used to support
parallel garbage collection by statically identifying which parts of
the heap can be safely collected without concern for the mutator.

The techniques listed above use a variety of approaches for
identifying region information that is later used in the optimization
phase. The techniques range from simple grouping via the points-to
partitions computed using a Steensgaard style analysis [26, 14] to
more sophisticated approaches as done in [16, 17, 13]. However, as
these techniques are based on points-to style analyses or use limited
amounts of context/flow sensitivity they cannot precisely model
many properties (sharing and shape) of data structures thatare used
extensively in object oriented programs. The technique in this paper
offers a significantly higher degree of precision for identifying
regions than these approaches and can be used directly to improve
the effectiveness of many region based memory optimizations.

In addition to being useful for a range of optimization tech-
niques the region identification technique we present in this paper
can be used to improve the performance of various static analysis
techniques. This is achieved by using the region identification to
define a normal form for the abstract models, reducing the height
of the abstract lattice. This use of a normal form can be seen as a
pseudo-widening operation used to transform a domain of infinite
height (e.g, linked lists of size 0,1. . .∞) into a finite height lattice
(e.g, linked lists that are of size 0,1,2, or some unknown lengthω).
There are two parts to this normalization that we address in this
paper. The first is the compression of recursive structures of poten-
tially unbounded size, such as lists or trees, into finite representa-
tions. The second is the grouping of objects that make up composite
data structures or partitioning objects stored in a collection/array
based on asimilarity relation.

While the concept of computing normal forms for heap rep-
resentations is not novel to this paper —symbolic access paths
in [7], normalization/merge in [19, 18, 3, 6, 21], and the append
left/right rules in [1, 28] or similar rules for inductive synthesis
in [11]— the heuristics we use to accomplish this are significantly
more general than what has been used in previous work. In partic-
ular the formalization applies to any type of recursive datastruc-
ture (as opposed to just lists or trees [1, 28, 19, 11]) and recursive
data structures that are part of larger composite structures (such as
in [1, 21]). The heuristics in this work can precisely model multi-

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

469

component structures with shared components which cannot be
handled by [1, 28, 19]). Finally these heuristics support more effec-
tive grouping of the contents of collections (arrays or collections
from java.util) than is possible with the methods described
in [3, 23, 10] (and which are left out in most other approaches).

We begin with a brief introduction of the parametric labeled
storage shape graph (lssg) model, Section 2, that we use to illus-
trate the main contributions of this paper. These contributions as
described in Sections 3 and 4 are:

• A method for identifying and grouping recursive data struc-
tures.

• A method for grouping objects that form multi-object compos-
ite structures.

• A parametric approach to grouping the contents of arrays/col-
lections.

Finally, in Section 6 we use theEm3d andBarnes-Hut bench-
marks from the well known JOlden suite to illustrate the results of
the region analysis and how this information can be used to support
some of the optimizations mentioned above.

2. Concrete Heap and Labeled Shape Graph
We begin by reviewing the abstract graph model that we build on
in this work (although the concepts presented in this paper can be
applied in other approaches such as those that rely on separation
logic [1, 11, 28]). In previous work [21, 22, 23] this model is
used to precisely perform shape and sharing analysis on a range of
Java programs. While the properties discussed therein are critical
to precisely analyzing these programs (and similarly the region
identification method presented in this paper is critical tothe results
in these papers), we do not need all of this information in order
to perform region identification and grouping. Thus, to simplify
the discussion and to focus on the novel concepts in this paper we
present a simplified version of the model.

2.1 Concrete Semantics

To analyze a program we first transform (via a modified compiler
frontend) the Java 1.4 source into a semantically equivalent pro-
gram in a simpler to analyze core language. This intermediate lan-
guage is statically typed, has method invocations, conditional con-
structs, exception handling and the standard looping statements.
The state modification and expressions cover the standard range
of program operations: load, store, and assignment along with log-
ical, arithmetic, and comparison operators. During this transfor-
mation step we also load in our specialized standard libraryim-
plementations, so we can analyze programs that use classes from
java.util , java.lang , andjava.io .

The semantics of memory are defined in the usual way, using
an environment, mapping variables into values, and a store,map-
ping addresses into values. We refer to the environment and the
store together as the concrete heap, which is treated as a labeled,
directed multi-graph(V,O,R) where eachv∈V is a variable, each
o∈O is an object on the heap and eachr ∈ R is a reference (either
a variable reference or a pointer between objects). The set of ref-
erencesR⊆ (V ∪O)×O×L whereL is the set of storage location
identifiers (a variable name in the environment, a field identifier
for references stored in objects, or an integer offset for references
stored in arrays/collections).

A region of memoryℜ = (C,P,Rin,Rout) consists of a subset
C⊆ O of the objects in the heap, all the pointersP = {(a,b, p) ∈
R | a,b∈C∧ p∈ L} that connect these objects, the references that
enter the regionRin = {(a,b, r)∈R| a∈ (V∪O)\C∧b∈C∧r ∈L}
and references exiting the regionRout = {(a,b, r) ∈ R | a∈C∧b∈
O\C∧ r ∈ L}.

2.2 Storage Shape Graph Abstraction

Our abstract heap domain is based on thestorage shape graph[3]
approach. Anabstract storage graphis a tuple of the form(V̂, N̂, Ê),
whereV̂ is a set of abstract nodes representing the variables,N̂ is
a set of abstract nodes (each of which abstracts a regionℜ of the
heap), and̂E⊆ (V̂ ∪ N̂)× N̂× L̂ are the graph edges, each of which
abstracts a set of pointers, andL̂ is a set of abstract storageoffsets
(variable names, field offsets or the special offset? for references
stored in arrays/collections). We extend this definition with a set of
additional relationŝU that further restrict the set of concrete heaps
that each shape graph abstracts. Thelabeled storage shape graphs
(lssg), which we refer to simply asabstract graphs, are tuples of
the form(V̂, N̂, Ê,Û).

DEFINITION 1 (Valid Concretization of alssg). A given concrete
heap h is avalid concretizationof a labeled storage shape graph
g if there are functionsΠv,Πo,Πr such that the following hold:

• Πv : V 7→ V̂ , Πo : O 7→ N̂ andΠr : R 7→ Ê are functions (andΠv
is 1–1).

• h,Πv,Πo, andΠr satisfy all the relations in̂U.
• h,Πv,Πo, andΠr are connectively consistentwith g.

Where h,Πv,Πo,Πr are connectively consistentwith g if:

• ∀ o1,o2 ∈O s.t.(o1,o2, p)∈R,∃ e∈ Ê s.t. e= Πr ((o1,o2, p)),
e starts atΠo(o1), ends atΠo(o2), and e.offset= p.

• ∀ v∈V, o∈ O s.t.(v,o,v) ∈ R,∃ e∈ Ê s.t. e= Πr((v,o,v)), e
starts atΠv(v), ends atΠo(o), and e.offset= v.

To check if a given concrete heaph and mapsΠv,Πo,Πr satisfy
a given relation inÛ we need to look at the pre-images of the
nodes and edges in the abstract graphg under the mapsΠv,Πo,Πr .
We use the notationh ↓g e to indicate the set of references in the
concrete heaph that are in the pre-image ofe under the maps.
Similarly, we useh ↓g n, to indicate the region of the heap that
is the pre-image ofn under the maps.

2.3 Label Relations (inÛ)

Type. For thetyperelation, we add a relation(n,{τ1, . . . ,τk}) (we
use the shorthandn.type= {τ1, . . . ,τk}) to Û for each node inN̂,
whereτ j are types in the program and say:h,Πv,Πo,Πr satisfies
(n,{τ1, . . . ,τk}) iff {typeof (o) |objecto∈ h↓g n}⊆ {τ1, . . . ,τk}.

Linearity. The linearity relation is used to track the number of
objects in the region abstracted by a given node or the number
of references abstracted by a given edge. Thelinearity property
has 2 values: 1 indicating a cardinality of[0,1] or ω indicating a
cardinality of[0,∞). Given a noden whereh↓g n= (C,P,Rin,Rout)
then:

|C| ∈

{

[0,1] if n.linearity = 1
[0,∞) if n.linearity = ω

Similarly for an edgee whereh ↓g e= {r1, . . . , r j} then:

|{r1, . . . , r j}| ∈

{

[0,1] if e.linearity = 1
[0,∞) if e.linearity = ω

Abstract Layout. To approximate the shape of the structures present
in the region that a node abstracts, the analysis usesabstract layout
properties{(S)ingleton, (L)ist, (T)ree, (D)ag, and (C)ycle}. The
(S)ingletonproperty states that there are no pointers between any
of the objects abstracted by the node, given a noden whereh ↓g
n = (C,P,Rin,Rout) thenP = /0. The other properties correspond to
the standard definitions for list, tree, DAG, and cyclic structures in
the literature [9, 21, 1].

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

470

(a) Concrete List, Length 3 or More (b) Abstraction with Regions Identified

Figure 1: A Linked List and Desired Abstraction with RegionsIdentified

2.4 Sample Heap and Abstract Graph Model.

Figure 1 shows a linked list of length 3 or more (left) and the
representation of this list in the abstract domain with the objects
that represent it grouped into regions (right). In the abstract domain
each edge is labeled with a unique identifier, an abstract storage
offset, and alinearity label. The nodes are labeled with a unique
identifier, atypelabel, alinearity label and alayout label.

In Figure 1b we see that the variablel refers to node 1 which
represents a single (linearity is 1) ListNode (LN) object at the head
of the linked list. There is a single edge (edge 2) out of the node
representing the single (againlinearity 1) nx (next) pointer, which
ends at node 2. This node represents the tail of the list (the self n
edge and(L)ist layout) which may contain many objects (linearity
is ω).

Partitioning the list into these two nodes captures severalimpor-
tant attributes. First we have kept the head of the list (which may be
modified though the variablel) distinct, giving more opportunities
to the analysis for precisely modeling the effects of later program
statements. Next, the grouping has produced a compact represen-
tation for the list structure which has a substantial impacton the
efficiency of the analysis. Finally, we have grouped all of the ob-
jects that make up the list into two nodes (the head and the tail,
nodes 1 and 2) and as we will see later if there are other unre-
lated lists in the program (and the analysis can determine that they
are unrelated) the abstraction will generate separate nodes for each
of these lists. Thus, the information needed by the various opti-
mization techniques we are interested in is preserved (objects in
the same structures are grouped together while disjoint structures
in the concrete heap are kept separate in the abstract model).

3. Recursive Components
The first contribution in this paper is a generalized method for iden-
tifying parts of the abstract heap graph that may represent asingle
recursive data structure and how these parts should be grouped to-
gether (e.g. using multiple nodes to represent the head and tail sec-
tions of the linked list). The basic approach of identifyingpoten-
tially recursive structures is a straightforward examination of the
type information and connectivity properties of the program based
on recursive field paths [7, 21, 1, 19]. However, there are a number
of subtle but important modifications that are needed to maintain
the desired level of precision in the results when dealing with non-
trivial object-oriented programs.

3.1 Statically Recursive Types

We can identify the types in a program that may be recursive by
looking at the type graph for the program. Thisstatic program type
graphhas a node for each type that is declared and for each pair of
typesτ,τ ′ there is an edge fromτ to τ ′ if τ has a field of type (or
supertype)τ ′. From this construction we can identify types that are
recursive (based on the static type information) as follows:

DEFINITION 2 (Statically Recursive Types).For a given program
and typesτ,τ ′:

1. τ,τ ′ are statically recursiveiff in the static program type graph
(τ 6= τ ′ ∧ τ,τ ′ are in the same strongly connected component)
∨ (τ = τ ′ and there is a self edge).

2. τ is a statically recursivetype iff ∃τ ′ s.t. τ,τ ′ are statically
recursive.

In much of the past work on region identification [21, 7, 19, 1,
11] this static type information has been used (in various ways)
to determine if two objects are part of the same recursive data
structure. However, this can result in overly approximate region
identification in three important classes of heap structures. Below
we describe these and how we can modify our concept of recursive
structures to characterize them.

3.2 Safe Nodes

In order to accurately simulate the effects of various program state-
ments it is critical to precisely model the targets of variable refer-
ences. Consider removing an element from a linked list wherewe
have multiple variables pointing into the same list structure. In or-
der to preserve the listness property after the removal we must keep
track of the relative positions of the variable references into the list
structure and the effects of the assignment statements on the objects
referred to by the variables. Thus, even though all of these objects
make up the same recursive list structure, we want to use multiple
nodes to represent it (one for each location in the list that is being
modified in addition to nodes for the tail or other segments).

To identify these important objects which need to be modeled
independently we introduce the notion ofsafe nodes(which is
similar to the notion ofinterrupting nodesin [19]). We say a
node is safe if it represents an interesting point in a recursive data
structure (a point where the program is accessing a specific node
in the data structure via a variable, as in the above example,or a
non-recursive data structure pointing into specific locations in the
recursive structure) and we keep these nodes distinct from any other
recursive components.

If we have a recursive data structure and we store references
to important points in it via another data structure we want to be
able to maintain the relations between these specific pointsin a
data structure. This is a generalization of maintaining theprecise
locations of variable references into a recursive data structure. This
is important to analyzing situations of the form: a method returns a
Pair object containing two references toListNode objects and
we want to remove all the elements in the list between thefirst
andsecond entries of thePair . If the analysis does not maintain
the order relation between the targets of thefirst andsecond
reference fields in the list structure we cannot accurately model
the effects of the remove operation (e.g., we would conservatively
assume that the target of thesecond field could come before the
target of thefirst field in the list).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

471

Figure 2: Safe Nodes Example

(a) Recursive Types But No Complete Structure

(b) Recursive Types With Complete Structure

Figure 3: Recursive Types and Complete Structures

DEFINITION 3 (Safe Node).A node n issafe if it is a node with
the(S)ingleton layoutand either of the following hold:

1. ∃ variable v that refers to n.
2. ∃ edge e s.t. e starts at a node ns where∀τs ∈ ns.type,τ ∈

n.type ,τs,τ are notstatically recursive.

Figure 2 shows a simple example of the two ways a node is
considered safe (represents an interesting point in the heap). In
this figure we have node 1 which issafe since it is referred to
directly by a variable. More interestingly we have nodes 2, 3which
both representLN objects and arestatically recursivebut are also
pointed to by thePair object which isnot statically recursivewith
theLN type. Thus according to our definition of safe nodes, nodes
1, 2 are considered safe and will not be merged.

3.3 Connectivity Awareness

Consider a program with the object typesτ1, τ2, τ3 which are
mutually recursive on thenx field. If we have the abstract heap
graph in Figure 3a we can see that the 2nd and 3rd nodes in the list
are statically recursive according to the definitions abovebut it is
not complete. That is although typesτ2 andτ3 are recursive each
no object of a given type appears multiple times. Figure 3b shows
a similar structure but in this case the 2nd and 3rd nodes in the list
are statically recursive. Since the typeτ2 appears multiple times (in
node 2 and 3) these two nodes form a complete structure thus we
want to replace this set of nodes with a single summary node.

To distinguish between these two cases we perform a connectiv-
ity aware detection of the recursive structures which takesconnec-
tivity and multiplicity into account ensuring that we only consider
two nodes as being recursive if they are part of acomplete recursive

Figure 4: Recursive Cycle

structure. This ensures only nodes that are in repeating and unin-
teresting parts of a recursive data structure are grouped together.

DEFINITION 4 (Complete Recursive Structure).Two nodes n,n′

are part of acomplete recursive structureif:

∃ edge e from n to n′, ∃nτ and a path from n′ to nτ s.t. none of
n,n′,nτ or the nodes on the path aresafe, and n.type∩nτ .type 6= /0.

3.4 Recursive vs. Back Pointers.

Many programs use back pointers causing the above definition
to identify any cyclic structure as recursive, since trivially every
node can reach itself and thus every type appears multiple times.
This causes the grouping of cycles in the graph into single nodes
with the layout (C)ycle, which can lead to substantial imprecision.
Figure 4 shows an example of such a heap. We can see that even
though the abstract heap structure is finite, the back edge will
cause our recursive component definition to group the 2nd and
3rd nodes into the same recursive component. To address this and
similar problems that arise when distinguishing between bounded
and unbounded structures when cyclic structures are present, we
modify the recursive definition to ignore back edges.

3.5 Recursive Node Definition

Given the above scenarios and the proposed solutions for handling
them we get the following final definition for determining if two
nodes are recursive (that is they represent part of the same poten-
tially recursive data structure on the heap).

DEFINITION 5 (Recursive Nodes).Given the functiondepthwhich
returns the depth of a node in the abstract heap graph, nodes n, n′

(where n6= n′) are recursiveif:

∃ edge e from n to n′, neither of n,n′ are safeand ∃nτ s.t. there
is a (possibly empty) pathψr = 〈(ns

1,n
e
1) . . . (n

s
k,n

e
k)〉 from n′ to nτ

s.t.∀(ns
i ,n

e
i) ∈ ψr ,depth(ns

i) < depth(ne
i) (wheredepthis the depth

of the node in the graph),∀(ns
i ,n

e
i), neither nsi or ne

i is safe and,
n.type∩nτ .type 6= /0.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

472

4. Composite Components and Array/Collection
Grouping

The second contribution of this paper is a method to identifycom-
posite structures and equivalence classes of the objects stored in
arrays or collections, which has not been studied as extensively as
the problem of identifying recursive structures. The approach pre-
sented in this paper is based on the definition of a parametricpred-
icate for determining if two nodes representequivalentregions of
the heap. The method presented in this section is based on theiden-
tification of heap regions based on connectivity information (and
is sufficient for most optimization applications) as well asa para-
metric component which allows for the predicate to be tailored to
support other applications as well (for example if we are using a
numeric domain we can extend it to keep objects in an array with
non-zero values in a given field distinct from objects that must have
a zero in this field).

We introduce a notion ofequivalenceof two nodes that captures
our intuition of when two nodesn,n′ abstract similar regions of the
concrete heap. Since theequivalencepredicate is used to determine
the maximum number of out edges each node may have, we can im-
prove efficiency by minimizing the number of equivalence classes
created by this relation. The tradeoff between precision and perfor-
mance that we have found to be acceptable is determined by the
following conditions: (1) are all the types represented by the nodes
non-recursive (or may both nodes represent recursive types) and (2)
what variables can access the objects in the regions abstracted by
the nodes?

4.1 Recursive Similarity

Two nodes arerecursive similar if they both abstract all non-
recursive types or they both may abstract objects with recursive
types. An example of why this is important is the common con-
struction of k-ary trees using arrays/collections to hold either a re-
cursive subtree or a non-recursive (with respect to the internal tree)
leaf object.

DEFINITION 6 (Recursive Similarity).Given nodes n,n′ and the
statically recursivetype information, n,n′ are recursive similariff
either of the following holds:

1. ∃τ ∈ n.type,τ ′ ∈ n′.types.t.τ,τ ′ are statically recursive.
2. (6 ∃τ ∈ n.type,τ is statically recursive)∧ (6 ∃τ ′ ∈ n′.type,τ ′ is

statically recursive)

An example of where this heuristic applies is shown in Fig-
ure 5a. In this figure we have two types of objectsτ,κ which both
inherit from the superclassµ (a common way to build a tree struc-
ture in Object-Oriented Programing). The classτ is specialized to
represent the internal tree structure (via the fieldsl andr) which
point to objects of typeµ. The classκ is the non-recursive leaf
class which contains some value and may be referred to by multi-
ple τ tree nodes.

In this case we want to make sure that not only do we distinguish
the root node of the tree as well as the left and right sub-trees (which
are preserved by the recursive structure identification heuristics in
Section 3) but we also want to make sure that the analysis keeps the
objects representing the internal tree structure in a disjoint region
from the objects representing the leaf objects. Otherwise we would
end up merging nodes 2 and 4, as they are both pointed to by an
edge withoffsetl (highlighted in red if color is available) that starts
at node 1 (Def. 8). This would result in aDAG region in node 2 and
a loss of the overall tree structure as shown in Figure 5b.

At the other end of the range of possible similarity relations,
if we were to ensure that regions with differing types were al-
ways kept separate the analysis would build unacceptably large tree

(a) Internal Tree and Leaves In Disjoint Regions

(b) Without Use of Recursive Similarity

Figure 5: Recursive Similarity

structures for many programs. For example a compiler may have a
large number of classes that inherit from anExpression base
class which appear in the parse tree structure and are treated uni-
formly by the program. If we maintained an abstract graph node
for each of these types the tree would have a very large branch-
ing factor (and potentially depth) causing substantial performance
degradation in the analysis.

4.2 Reference Similarity

If we have two nodesn,n′ and the objects abstracted in the region
by n are all stored in an arrayA and all the objects in the region
abstracted byn′ are stored in arrayA and a second arrayB then it
is reasonable to assume that the programmer has partitionedthese
objects differently for some reason. Thus, we want to preserve this
information by keeping the nodes distinct, we show this situation in
Figure 6. We can ensure that the information on which collections
and variables refer to which sets of objects is maintained byusing
the following definition ofreference similarity.

DEFINITION 7 (Reference Similarity).We say two nodes n,n′ are
reference similar if given the set of in edges to n, Ein = {en

1 . . .en
k},

the set of in edges to n′, E′in = {en′
1 . . .en′

k }, and the set of variables
that can reach node n, Vr = {vn

1 . . .vn
r }, the set of variables that can

reach node n′, V′r = {vn′
1 . . .vn′

s }, the following holds:

({e.offset| e∈ Ein}= {e′.offset| e′ ∈ E′in})∧ (Vr = V ′r)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

473

Figure 6: Nodes 2, 3 Not Reference Similar (based on variable
reachability)

This definition ensures that if two nodes are treated differently
with respect to the types of objects they are stored in or the variables
that reach them then they are kept separate. In Figure 6 nodes2 and
3 are notreference similarsince node 2 is reachable from variable
A while node 3 is reachable from both variablesA andB.

4.3 Parametric Node Equivalence

In addition to using the structural information provided bythe re-
cursive similarandreference similarrelations we can also provide
a parametric component to the grouping operation to supportthe
needs of more specific types of analysis. For example if we are
checking a program to ensure that all file reads are exceptionfree
we want to distinguishInputStream objects that are open from
those that are closed even if we have an array of such objects.
Similarly if we are interested in checking locking properties we al-
ways want to distinguish between objects that are locked andthose
that are unlocked. Thus our definition allows parametric similarity
properties to support specialized analyses that depend on precisely
tracking differences of specific properties of interest forthe objects
in the program.

DEFINITION 8 (Equivalent Nodes/Edges).Given the above defini-
tions we defineedge equivalence. Given a node n and two out edges
e,e′ which start at node n and end at nodes ne and ne′ respectively
we say e,e′ are equivalentif:

1. e.offset= e′.offset
2. ne,ne′ are recursive similar
3. ne,ne′ are reference similar
4. ne,ne′ are equivalent for all parametric similarity relations

5. Region Identification and Grouping
Using the above definitions for identifying recursive structures,
composite structures and grouping the contents of collections/ar-
rays we define the method for constructing the logically related
regions. Once we have identified a set of nodes that representa
logically related region, based on our region predicates, we need to
replace them with a single node thatsafelyapproximates the prop-
erties of the nodes in the set.

5.1 Component Summarization

Before we present the complete region identification/normalization
algorithm we describe how the summary nodes are computed.
To simplify the computation we perform the summarization ina
pairwise manner. When summarizing two nodes,n andn′, there are
three possibilities. The first is that there are no edges between the
nodes, there are only edges in one direction between nodes (fromn
to n′ or n′ to n, but not both) and when there are edges fromn to n′

and fromn′ to n.

If there are no edges between the nodes we use themerge-
NoEdgemethod to compute the summary representation. This
method is a simple component-wise operation where the updated
type label is the union of the twotypesets, thelinearity value is
ω and thelayout is the max (the most general) of the twolayout
labels. The case where there are edges fromn to n′ and fromn′ to n
(mergeBothWay) is similar except we always assume thelayout of
the summary node is(C)ycle(while this is in general a significant
over approximation we have found that the infrequency with which
it is used makes this an acceptable definition).

ThemergeOneWayoperation (Algorithm 1) on a pair of nodes
that have connecting edges is more complicated. In particular we
need to account for the fact that the edge(s) connecting nodesn and
n′ will affect the layoutof the new summary node.

Algorithm 1 : mergeOneWay

input : graphg, n,n′ nodes,ebt set of edges fromn to n′

n.types← n.types∪ n′.types;
n.linearity← ω;
n.layout← combineLayout(n.layout,n′.layout,ebt);
remap all edges incident ton′ to be incident ton;
deleteNode(g, n′);

The algorithmcombineLayout(l , l ′,ebt), is based on a case anal-
ysis of thelayout that results from the possible combinations of
the layoutsfor n, n′ along with the total number of pointers repre-
sented byebt [20]. We enumerate the possible combinations of the
ebt edges and thelayout labels and then for each case we use the
semantics of the edge andlayout properties to determine the most
generallayout type that may result from this particular case. For
example if we have two(S)ingletonnodes connected by an edge of
linearity 1 then the most generallayout for a node that summarizes
these nodes and the edge is a(L)ist.

To merge two arbitrary nodesn,n′ we use Algorithm 2 which
selects the appropriate method for merging two nodes based on the
existence of edges between them.

Algorithm 2 : mergeNode

input : noden,n′, graphg
if ∃ edges from n to n′ and n′ to n then

mergeBothWay(g, n, n′);
else if∃ edges from n to n′ then

mergeOneWay(g, n, n′, {e | e from n to n′});
else if∃ edges from n′ to n then

mergeOneWay(g, n′, n, {e | e from n′ to n});
else

mergeNoEdge(g, n′, n);

5.2 Region Identification/Normalization Algorithm

Once we have the above methods for computing summary nodes
for a pair of nodes in the graph we can define the final region iden-
tification algorithm. The resulting region grouped model isalso a
convenient normal form ensuring that the static analysis terminates
as the infinite set oflabeled storage shape graphsis a finite set
under the normal form (recursive structures are represented by a
bounded number of nodes and each node has a bounded number of
out edges, for space we omit a formal proof).

The algorithm is a straightforward iterative identification of
pairs of nodes/edges that should be grouped and the replacement
of these structures by a summary representation until a fixpoint
is reached. After this method terminates the abstract graphmodel
will have all the logically related regions identified and grouped
according to the characterizations in Sections 3 and 4.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

474

Algorithm 3 : groupRegions

input : graphg
while g is changingdo

while ∃ node n with edges e,e′ s.t. e6= e′ ∧ e,e′ are
equivalent edgesdo

mergeNode(target ofe, target ofe′, g);
e.linearity← ω;
deleteEdge(g, e′);

while ∃ nodes n,n′ that are recursivedo
mergeNode(g, n, n′);

6. Case Study and Experimental Evaluation
In this section we look at two case studies that illustrate how the
heuristics presented above allow the analysis to group heapobjects
into regions and how this information can be used to drive a range
of memory management optimizations. Both benchmarks are taken
from a version of the JOlden [2] suite.

6.1 Em3d

The first program we look at isEm3d which computes electro-
magnetic field values in a 3–dimensional space by constructing
a list of ENode objects, each representing an electric field value
and a second list ofENode objects, each of which represents a
magnetic field value. To compute how the electric/magnetic field
value for a givenENode object is updated at each time step the
computeNewValue method uses an array ofENode objects
from the opposite field and performs a convolution of these field
values and a scaling vector, updating the current field valuewith
the result. The main computation code is shown below:

vo id compute () {
f o r (i n t i = 0 ; i < t h i s . eNodes . s i z e () ; ++ i)

eNodes . ge t (i) . computeNewValue () ;

f o r (i n t i = 0 ; i < t h i s . hNodes . s i z e () ; ++ i)
hNodes . ge t (i) . computeNewValue () ;

}

vo id computeNewValue (){
f o r (i n t i = 0 ; i < f romCount ; i ++)

va lue −= c o e f f s [i] ∗ fromNodes [i] . va lue ;
}

Figure 7 shows the heap structure that is constructed by the
program and that is used in the main computation algorithm. To aid
clarity we placed dashed lines around the composite structures that
represent the magnetic field (in blue if color is available) and the
electric field (in green). Variablethis points to a single object of
typeBiGrph , which is the data structure that encapsulates all the
objects of interest. TheBiGrph object has 2 fields, thehNodes
field pointing to aVector of ENode objects that make up the
magnetic field and, theeNodes field pointing to aVector of
ENodeobjects that make up the electric field. Each of theseENode
objects has an array offloats and an array ofEnode objects
from the opposite field that are used to update the value of the
field on each iteration of the field value computation loop. The
region analysis identification techniques have precisely grouped
all of the heap components in the program into the composite
electric/magnetic field structures and even though the overall heap
structure is cyclic the analysis has precisely resolved thebipartite
graph structure. We note that in this example the definition of
safe nodesdue to non-recursive in edges is critical to ensuring
the analysis resolves the heap into a bi-partite structure instead of
merging many of the nodes into a single cyclic region.

While the heap is not further modified after construction, and
thus there are no opportunities for improved memory collection,

the above computation loop is an excellent candidate for altering
memory layout to improve spatial locality of the memory accesses.
This can be done statically by determining that the lifetimes of the
ENode objects are bounded by the lifetime of theVector they
are stored in. Then at allocation time we can co-locate theENode
objects with theVector [8]. Or we can use this information to
provide support for the runtime reallocation of theENode (and
perhapsENode[] or float[]) objects into contiguous memory
pools based on the electric/magnetic structures they are in[12]. Our
simple hand implementation of these optimizations on this bench-
mark resulted in approximately a 7-10% performance improve-
ment, indicating that the information provided by the analysis is
able to support sophisticated program transformations resulting in
non-trivial performance improvements.

6.2 Barnes-Hut

Thebh program performs a gravitational interaction simulation on
a set of bodies (theBody objects) using afast-multipoletech-
nique with a space decomposition tree. The tree is represented us-
ing Cell objects each of which has aVector containing refer-
ences to otherCell objects or references to theBody objects. The
program also keeps twoVector objects for accessing the bod-
ies,bodyTab andbodyTabRev . The positions (pos), velocities
(vel) and acceleration (acc) values of the bodies are represented
with composite structures consisting of aMathVector object and
a double[] .

Using a common OOP idiom theCell andBody objects both
inherit from an abstractNode class. Thus, if we did not use the
concept ofrecursive similarityto distinguish between references in
theVector collection to the recursiveCell objects which make
up the tree structure and the non-recursive leafBody objects the
analysis would end up grouping the tree and the leaf objects into
the same region. However, by distinguishing regions based on their
recursive similaritythe analysis has ensured that the tree structure
and the leaf objects are grouped into different regions.

Figure 8 shows the abstract heap model built and used in
the stepSystem method of the benchmark (the listing below),
where the space decomposition tree is recomputed (themakeTree
method), the body-body interactions are computed (the loopwith
thehackGravity method), and the new acceleration information
is propagated (thevprop method).

pub l i c vo id s te pSys te m (){
r o o t = n u l l ;
makeTree (n s t e p) ;

I t e r a t o r<Body> b i = bodyTabRev . i t e r a t o r () ;
whi le (b i . hasNext ())

b i . ne x t () . ha c kGra v i t y (r s i z e , r o o t) ;

vprop (bodyTabRev , n s t e p) ;
}

As we can see in Figure 8 the region identification algorithm
is able to correctly identify and group all the major components
in the overall heap structure. The space decomposition treeis
grouped into the region represented by node 17 (although theanal-
ysis has overly conservatively assumed the structure may have a
(C)yclic layout) while the leafBody objects are represented sep-
arately by node 14. The analysis has also grouped the composite
MathVector /double[] structures and has maintained the sep-
aration of these structures when they abstract distinct structures and
are stored in different types or in different fields.

Thebh program has many opportunities to apply the optimiza-
tions discussed in the introduction. In particular the information
computed by the analysis in this paper enables opportunities that
could not be previously exploited due to a lack of sufficiently pre-
cise region identification.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

475

Figure 7: Abstract Heap inEm3d

Figure 8: Abstract Heap inbh

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

476

The first possible optimization is the use of pool allocation[16]
for the space decomposition tree (node 17) which is allocated in the
makeTree method and then becomes dead at theroot = null
assignment on the next loop iteration. By pool allocating this we
can collect the entire tree as one block instead of requiringthe GC
algorithm to traverse and collect each node in the tree one object
at a time (reducing the number of objects that the garbage collector
needs to reclaim by about 11%) and increasing the spatial locality
of the accesses to the tree (which improves the performance of the
program by 3-4% percent).

Given the structure of the heap, the two phases of compu-
tation and the limited pointer writes during thehackGravity
method we can profitably apply parallel and region based collec-
tion [15]. This allows us to reduce the GC overhead by collecting
deadMathVector objects in the regions for theacc , vel , and
pos fields while thenewAcc values are being computed in the
hackGravity method. Similarly we can collect objects in the
space decomposition tree andnewAcc field regions while the mu-
tator is in thevprop method. This parallel, region-specific collec-
tion greatly reduces the GC pause times while only requiringthe
collector/mutator to lock once on entry to these methods.

If we includesharing information as described in [22] we can
determine that thedouble[] (where the size of the arrays is a
small compile time constant) stored in theMathVector objects
are never shared betweenMathVector objects and thus are good
candidates for co-location [12, 8]. This has the beneficial effect of
increasing the data locality and removing many redundant loads
resulting in a 12% reduction in the runtime of the single threaded
program, as well as reducing the size of theMathVector /Array
composite structure object by a pointer (and the overhead ofan
array), resulting in a 37% reduction in memory usage.

Finally, if we again use the sharing information in [22] we can
statically determine when each of theMathVector /double[]
objects becomes dead and can insert explicit collection code for
them [13]. This transformation reduces the number of objects that
the GC needs to collect by a factor of about 52% (since these
objects are immutable there are many of these created for each body
object). If we perform this optimization with the pool allocation of
the space decomposition tree then all of the objects can be collected
statically eliminating the need for the collector entirely.

These transformations allow for the efficient collection (by col-
lecting individual objects or entire pools) of all the dead objects cre-
ated during this main computation portion and for the location of
temporally related objects into contiguous parts of memory. Thus,
this benchmark demonstrates how the precision of the regionanal-
ysis presented in this paper enables the application of a number of
powerful program optimizations that reduce the memory require-
ments, reduce garbage collection costs, and to improve the perfor-
mance of the program.

6.3 Experimental Evaluation.

We have implemented a shape analyzer based on the region iden-
tification methods and instrumentation properties presented in this
paper and evaluated the effectiveness and efficiency of the analy-
sis on programs from SPECjvm98 [25] and a version of the JOlden
suite. The JOlden suite contains pointer-intensive kernels that make
use of recursive procedures, inheritance, and virtual methods. We
modified the suite to use modern Java programming idioms. The
benchmarksraytrace anddb are taken from SPECjvm98.

The analysis algorithm was written in C++ and compiled using
MSVC 8.0. The analysis was run on a 2.6 GHz Intel quad-core
machine with 4 GB of RAM (although memory consumption never
exceeded 120 MB).

For each of the benchmarks we provide a brief description
of some of the major structures/features that are in the program.

Benchmark LOC Description Analysis Time
bisort 560 Tree w/ Mod 0.26s
mst 668 Cycle w/ Struct. 0.12s
tsp 910 Tree to Cycle 0.15s
em3d 1103 Bipartite Graph 0.31s
perimeter 1114 Tree w/ Parent Ptr 0.91s
health 1269 Tree w/ Mod 1.25s
voronoi 1324 Cycle w/ Struct 1.80s
power 1752 Lists of Lists 0.36s
bh 2304 N-Body Sim w/ Mod 1.84s
db 1985 Shared/Mod Arrays 1.42s
raytrace 5809 Shared/Cycle/Tree 37.09s

Figure 9: LOC is for the normalized program representation in-
cluding library stubs required by the analysis. Analysis Time is the
analysis time for the analysis in seconds.

We mention the major data structures used (Trees, Lists of Lists,
Cycles, etc.) and if the program heavily modifies the data structures
(w/ Mod). Some of the benchmarks have slightly more nuanced
structures —mst andvoronoi which build globally cyclic structures
that have significant local structure,bh which has a complex space-
decomposition tree and sharing relations, andraytrace which builds
a large multi-component structure which has cyclic structures, tree
structures, and substantial sharing throughout. We also note thattsp
and voronoi begin with tree structures and process them building
up a final cyclic structure during the program. These benchmarks
thus exercise a wide range of features in the analysis based on the
types of structures built, modification of these structures, sharing
of the structures, use of multi-component structures, and the use of
arrays/collections.1

As our interest in this paper is primarily in the developmentof
a heap analysis that can support a range of memory management
and optimization techniques rather than in the performanceof a
specific GC method we focus on the cost of running the analysis
to produce the region information. We note that the region infor-
mation produced for all of the benchmarks is similar in quality to
the results in the case studies (thus many of the same optimizations
could be applied) and that the runtimes are on the order of seconds
even for programs likebh andraytrace which make use of complex
data structures, a number of classes fromjava.util /java.io
and have nontrivial amounts of sharing between data structures.

7. Related Work
There has been a significant amount of work on developing static
techniques to improve the allocation [16, 4], layout [12] and collec-
tion [16, 5, 13, 15] of memory in object oriented programs. These
techniques have introduced a variety of methods for computing re-
gion information based on static partitions computed usinga range
of points-to analyses and are capable of scaling to large programs.
However, the imprecision of fixed partitioning and flow insensitiv-
ity in parts of the analysis limits their ability to precisely analyze
many programs that destructively rearrange regions and limits the
ability to disambiguate components of larger composite structures
(i.e. the 2 distinct regions ofENode objects in the overall cyclic
heap structure inEm3d or disambiguating theBody objects from
the space decomposition tree inBarnes-Hut). Thus the performance
improvement achieved by the optimizations proposed in these pa-
pers, while good, is limited by the precision of the analysisresults.

Other recent heap analysis work has focused on the precise
modeling of destructive updates and their effect on the structure

1 Seewww.software.imdea.org/ ˜ marron/ for benchmark code,
examples of the analysis results, and an executable analysis demo.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

477

of the heap, TVLA [19, 18, 27, 24], separation logic based ap-
proaches [1, 28, 11]. While these techniques can model, witha very
high degree of precision, many complex heap operations theycur-
rently impose limitations that make region analysis infeasible for
many programs. In particular the current formulations are restricted
to programs that manipulate lists (or trees) and restrict the amount
of sharing between regions. As Separation Logic and TVLA are
general purpose frameworks/logics the work in these paperscould
be extended as described in this work. However, to the best ofour
knowledge this extension has not been done. Thus, many of the
benchmarks examined in this paper currently cannot be analyzed
with these methods, includingbh, em3d, voronoi, andraytrace, all
of which have substantial opportunities for the application of vari-
ous region based optimizations.

8. Conclusion
The analysis presented in this paper presents an important develop-
ment in applying shape analysis techniques to real world programs
as it can precisely and efficiently deal with the types of datastruc-
tures and programmatic events that occur in realistic programs. In
particular the formalization applies to any type of recursive data
structures (as opposed to just lists or trees, and it supports com-
posite data structures that have non-trivial sharing between them),
it can precisely model many types of structures which are merged
in simpler points-to style approaches, and it supports moreprecise
grouping of the contents of collections (arrays or collections from
java.util) than is possible with other methods.

Our experiments demonstrate that the proposed region identifi-
cation method can be used to precisely and efficiently identify and
group logically related regions of the heap (recursive datastruc-
tures, composite structures composed of multiple objects and the
contents of arrays/collections). Further our case studiesdemon-
strate that the results of the analysis can be effectively used to
support memory allocation/layout/collection optimization applica-
tions. Based on these results we believe that the proposed approach
presents a basis for a heap analysis that can be used in practice
to provide detailed heap information for a range of optimization
applications that rely on region information and we are currently
working on improving the practicality of the analysis by develop-
ing on techniques to scale it to larger programs.

Acknowledgements.We would like to thank the reviewers for
their comments and suggestions. This work was funded in partby
EU projects FETHATSand 06042-ESPASS, Spanish Ministry of
Science and Industry projects TIN-2008-05624DOVESand FIT-
340005-2007-14, and CAM project S-0505/TIC/0407PROMESAS.
This work was also funded via NSF awards CCF-0541315, CNS-
0831462, and CCF-0540600.

References
[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies,

and H. Yang. Shape analysis for composite data structures. In CAV,
2007.

[2] B. Cahoon and K. S. McKinley. Data flow analysis for software
prefetching linked data structures in Java. InPACT, 2001.

[3] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers
and structures. InPLDI, 1990.

[4] S. Cherem and R. Rugina. Region analysis and transformation for
Java programs. InISMM, 2004.

[5] S. Cherem and R. Rugina. Compile-time deallocation of individual
objects. InISMM, 2006.

[6] S. Chong and R. Rugina. Static analysis of accessed regions in
recursive data structures. InSAS, 2003.

[7] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In PLDI, 1994.

[8] J. Dolby and A. Chien. An automatic object inlining optimization
and its evaluation. InPLDI, 2000.

[9] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? A
shape analysis for heap-directed pointers in C. InPOPL, 1996.

[10] S. Gulwani and A. Tiwari. An abstract domain for analyzing heap-
manipulating low-level software. InCAV, 2007.

[11] B. Guo, N. Vachharajani, and D. August. Shape analysis with
inductive recursion synthesis. InPLDI, 2007.

[12] S. Z. Guyer and K. S. McKinley. Finding your cronies: static analysis
for dynamic object colocation. InOOPSLA, 2004.

[13] S. Z. Guyer, K. S. McKinley, and D. Frampton. Free-me: a static
analysis for automatic individual object reclamation. InPLDI, 2006.

[14] B. Hackett and R. Rugina. Region-based shape analysis with tracked
locations. InPOPL, 2005.

[15] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based garbage
collection. InOOPSLA, 2003.

[16] C. Lattner and V. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In
PLDI, 2005.

[17] C. Lattner, A. Lenharth, and V. S. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the realworld. In
PLDI, 2007.

[18] T. Lev-Ami and S. Sagiv. TVLA: A system for implementingstatic
analyses. InSAS, 2000.

[19] R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate
abstraction and canonical abstraction for singly-linked lists. In
R. Cousot, editor,VMCAI, 2005.

[20] M. Marron. Modeling the heap: A practical approach. Phd. thesis,
University of New Mexico, 2008.

[21] M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo. A static
heap analysis for shape and connectivity. InLCPC, 2006.

[22] M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic, and
D. Kapur. Sharing analysis of arrays, collections, and recursive
structures. InPASTE, 2008.

[23] M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur. Heap
analysis in the presence of collection libraries. InPASTE, 2007.

[24] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. InPOPL, 1999.

[25] Standard Performance Evaluation Corporation. JVM98 Version 1.04,
August 1998. http://www.spec.org/jvm98.

[26] B. Steensgaard. Points-to analysis in almost linear time. InPOPL,
1996.

[27] R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. InCC, 2000.

[28] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. OHearn. Scalable shape analysis for systems code. InCAV, 2008.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

478

Precise Set Sharing Analysis
for Java-Style Programs

Mario Méndez-Lojo1 and Manuel V. Hermenegildo1,2

1 University of New Mexico (USA)
2 Technical University of Madrid (Spain)

Abstract. Finding useful sharing information between instances in obj-
ect-oriented programs has recently been the focus of much research.
The applications of such static analysis are multiple: by knowing which
variables definitely do not share in memory we can apply conventional
compiler optimizations, find coarse-grained parallelism opportunities, or,
more importantly, verify certain correctness aspects of programs even
in the absence of annotations. In this paper we introduce a framework
for deriving precise sharing information based on abstract interpreta-
tion for a Java-like language. Our analysis achieves precision in various
ways, including supporting multivariance, which allows separating differ-
ent contexts. We propose a combined Set Sharing + Nullity + Classes
domain which captures which instances do not share and which ones are
definitively null, and which uses the classes to refine the static informa-
tion when inheritance is present. The use of a set sharing abstraction
allows a more precise representation of the existing sharings and is cru-
cial in achieving precision during interprocedural analysis. Carrying the
domains in a combined way facilitates the interaction among them in the
presence of multivariance in the analysis. We show through examples and
experimentally that both the set sharing part of the domain as well as
the combined domain provide more accurate information than previous
work based on pair sharing domains, at reasonable cost.

1 Introduction

The technique of Abstract Interpretation [8] has allowed the development of so-
phisticated program analyses which are at the same time provably correct and
practical. The semantic approximations produced by such analyses have been
traditionally applied to high- and low-level optimizations during program compi-
lation, including program transformations. More recently, promising applications
of such semantic approximations have been demonstrated in the more general
context of program development, such as verification and static debugging.

Sharing analysis [14,20,26] aims to detect which variables do not share in
memory, i.e., do not point (transitively) to the same location. It can be viewed
as an abstraction of the graph-based representations of memory used by certain
classes of alias analyses (see, e.g., [31,5,13,15]). Obtaining a safe (over-) approx-
imation of which instances might share allows parallelizing segments of code,

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 172–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

479

Precise Set Sharing Analysis for Java-Style Programs 173

improving garbage collection, reordering execution, etc. Also, sharing informa-
tion can improve the precision of other analyses.

Nullity analysis is aimed at keeping track of null variables. This allows for
example verifying properties such as the absence of null-pointer exceptions at
compile time. In addition, by combining sharing and null information it is pos-
sible to obtain more precise descriptions of the state of the heap.

In type-safe, object-oriented languages class analysis [1,3,10,22], (sometimes
called type analysis) focuses on determining, in the presence of polymorphic calls,
which particular implementation of a given method will be executed at run-
time, i.e., what is the specific class of the called object in the hierarchy. Multiple
compilation optimizations benefit from having precise class descriptions: inlining,
dead code elimination, etc. In addition, class information may allow analyzing
only a subset of the classes in the hierarchy, which may result in additional
precision.

We propose a novel analysis which infers in a combined way set sharing, nul-
lity, and class information for a subset of Java that takes into account most of its
important features: inheritance, polymorphism, visibility of methods, etc. The
analysis is multivariant, based on the algorithm of [21], which allows separating
different contexts, thus increasing precision. The additional precision obtained
from context sensitivity has been shown to be important in practice in the anal-
ysis of object-oriented programs [30].

The objective of using a reduced cardinal product [9] of these three abstract
domains is to achieve a good balance between precision and performance, since
the information tracked by each component helps refine that of the others. While
in principle these three analyses could be run separately, because they interact
(we provide some examples of this), this would result in a loss of precision or
require an expensive iteration over the different analyses until an overall fix-
point is reached [6,9]. In addition note that since our analysis is multivariant,
and given the different nature of the properties being tracked, performing anal-
yses separately may result in different sets of abstract values (contexts) for each
analysis for each program point. This makes it difficult to relate which abstract
value of a given analysis corresponds to a given abstract value of another anal-
ysis at a given point. At the other end of things, we prefer for clarity and
simplicity reasons to develop directly this three-component domain and the op-
erations on it, rather than resorting to the development of a more unified domain
through (semi-)automatic (but complex) techniques [6,7]. The final objectives of
our analysis include verification, static debugging, and optimization.

The closest related work is that of [26] which develops a pair-sharing [27]
analysis for object-oriented languages and, in particular, Java. Our description
of the (set-)sharing part of our domain is in fact based on their elegant for-
malization. The fundamental difference is that we track set sharing instead of
pair sharing, which provides increased accuracy in many situations and can
be more appropriate for certain applications, such as detecting independence for
program parallelization. Also, our domain and abstract semantics track addition-
ally nullity and classes in a combined fashion which, as we have argued above, is

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

480

174 M. Méndez-Lojo and M.V. Hermenegildo

prog ::= class decl∗

class decl ::= class k1 [extends k2] decl∗ meth decl∗

meth decl ::= vbty (tret|void) meth decl∗ com
vbty ::= public | private
com ::= v = expr | v.f = expr

| decl | skip
| return expr | com;com
| if v (== |! =) (null|w) com else com

decl ::= v:t
var lit ::= v | a
expr ::= null | new k | v.f | v.m(v1, . . . vn) | var lit

Fig. 1. Grammar for the language

particularly useful in the presence of multivariance. In addition, we deal directly
with a larger set of object features such as inheritance and visibility. Finally, we
have implemented our domains (as well as the pair sharing domain of [26]), in-
tegrated them in our multivariant analysis and verification framework [17], and
benchmarked the system. Our experimental results are encouraging in the sense
that they seem to support that our contributions improve the analysis precision
at reasonable cost.

In [23,24], the authors use a distinctness domain in the context of an abstract
interpretation framework that resembles our sharing domain: if two variables
point to different abstract locations, they do not share at the concrete level.
Their approach is closer to shape analysis [25] than to sharing analysis, which
can be inferred from the former. Although information retrieved in this way
is generally more precise, it is also more computationally demanding and the
abstract operations are more difficult to design. We also support some language
constructs (e.g., visibility of methods) and provide detailed experimental results,
which are not provided in their work.

Most recent work [28,18,30] has focused on context-sensitive approaches to
the points-to problem for Java. These solutions are quite scalable, but flow-
insensitive and overly conservative. Therefore, a verification tool based on the
results of those algorithms may raise spurious warnings. In our case, we are able
to express sharing information in a safe manner, as invariants that all program
executions verify at the given program point.

2 Standard Semantics

The source language used is defined as a subset of Java which includes most of its
object-oriented (inheritance, polymorphism, object creation) and specific (e.g.,
access control) features, but at the same time simplifies the syntax, and does
not deal with interfaces, concurrency, packages, and static methods or variables.
Although we support primitive types in our semantics and implementation, they
will be omitted from the paper for simplicity.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

481

Precise Set Sharing Analysis for Java-Style Programs 175

class Element {
int value;
Element next;}

class Vector {
Element first;

public void add(Element el) {
Vector v = new Vector();
el.next = null;
v.first = el;
append(v);

}
}

public void append(Vector v) {

if (this != v) {
Element e = first;
if (e == null)

first = v.first;
else {

while (e.next != null)
e = e.next;

e.next = v.first;
}

}
}

Fig. 2. Vector example

The rules for the grammar of this language are listed in Fig. 1. The skip
statement, not present in the Java standard specification [11], has the expected
semantics. Fig. 2 shows an example program in the supported language, an
alternative implementation for the java.util.Vector class of the JDK in which
vectors are represented as linked lists. Space constraints prevent us from showing
the full code here,1 although the figure does include the relevant parts.

2.1 Basic Notation

We first introduce some notation and auxiliary functions used in the rest of the
paper. By �→ we refer to total functions; for partial ones we use →. The powerset
of a set s is P(s); P+(s) is an abbreviation for P(s) \ {∅}. The dom function
returns all the elements for which a function is defined; for the codomain we
will use rng. A substitution f [k1 �→ v1, . . . , kn, �→ vn] is equivalent to f(k1) =
v1, . . . , f(kn) = vn. We will overload the operator for lists so that f [K �→ V]
assigns f(ki) = vi, i = 1, . . . , m, assuming |K| = |V | = m. By f |−S we denote
removing S from dom(f). Conversely, f |S restricts dom(f) to S. For tuples
(f1, . . . , fm)|S = (f1|S , . . . , fm|S). Renaming in the set s of every variable in S

by the one in the same position in T (|S| = |T |) is written as s|TS . This operator
can also be applied for renaming single variables. We denote by B the set of
Booleans.

2.2 Program State and Sharing

With M we designate the set of all method names defined in the program. For
the set of distinct identifiers (variables and fields) we use V . We assume that V
also includes the elements this (instance where the current method is executed),

1 Full source code for the example can be found in
http://www.clip.dia.fi.upm.es/∼mario

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

482

176 M. Méndez-Lojo and M.V. Hermenegildo

and res (for the return value of the method). In the same way, K represents
the program-defined classes. We do not allow import declarations but assume
as member of K the predefined class Object.

K forms a lattice implied by a subclass relation ↓: K → P(K) such that if
t2 ∈ ↓t1 then t2 ≤K t1. The semantics of the language implies ↓Object = K.
Given def : K × M �→ B, that determines whether a particular class provides
its own implementation for a method, the Boolean function redef : K × K ×
M �→ B checks if a class k1 redefines a method existing in the ancestor k2:
redef(k1, k2, m) = true iff ∃k s.t. def(k, m), k1 ≤K k<K k2.

Static types are accessed by means of a function π : V �→ K that maps variables
to their declared types. The purpose of an environment π is twofold: it indicates
the set of variables accessible at a given program point and stores their declared
types. Additionally, we will use the auxiliary functions F (k) (which maps the
fields of k ∈ K to their declared type), and typeπ(expr), which maps expressions
to types, according to π.

The description of the memory state is based on the formalization in [26,12].
We define a frame as any element of Frπ = {φ | φ ∈ dom(π) �→ Loc ∪ {null}},
where Loc = I

+ is the set of memory locations. A frame represents the first level
of indirection and maps variable names to locations except if they are null. The
set of all objects is Obj =

{
k � φ | k ∈ K, φ ∈ FrF (k)

}
. Locations and objects

are linked together through the memory Mem = {μ | μ ∈ Loc �→ Obj}. A new
object of class k is created as new(k) = k � φ where φ(f) = null ∀f ∈ F (k).
The object pointed to by v in the frame φ and memory μ can be retrieved via
the partial function obj(φ�μ, v) = μ(φ(v)). A valid heap configuration (concrete
state φ � μ) is any element of Σπ = {(φ � μ) | φ ∈ Frπ, μ ∈ Mem}. We will
sometimes refer to a pair (φ � μ) with δ.

The set of locations Rπ(φ � μ, v) reachable from v ∈ dom(π) in the particular
state φ � μ ∈ Σπ is calculated as Rπ(φ � μ, v) = ∪

{
Ri

π(φ � μ, v)
∣
∣ i ≥ 0

}
, the

base case being R0
π(φ � μ, v) = {(φ(v))|Loc} and the inductive one Ri+1

π (φ �
μ, v) = ∪

{
rng(μ(l).φ))|Loc | l ∈ Ri

π(φ � μ, v)
}
. Reachability is the basis of two

fundamental concepts: sharing and nullity. Distinct variables V = {v1, . . . , vn}
share in the actual memory configuration δ if there is at least one common
location in their reachability sets, i.e., shareπ(δ, V) is true iff ∩n

i=1Rπ(δ, vi) = ∅.
A variable v ∈ dom(π) is null in state δ if Rπ(δ, v) = ∅. Nullity is checked by
means of nilπ : Σπ×dom(π) �→ B, defined as nilπ(φ�μ, v) = true iff φ(v) = null.

The run-time type of a variable in scope is returned by ψπ : Σπ×dom(π) �→ K,
which associates variables with their dynamic type, based on the information
contained in the heap state: ψπ(δ, v) = obj(δ, v).k if nilπ(δ, v) and ψπ(δ, v) =
π(v) otherwise. In a type-safe language like Java runtime types are congruent
with declared types, i.e., ψπ(δ, v) ≤K π(v) ∀v ∈ dom(π), ∀δ ∈ Σπ. Therefore,
a correct approximation of ψπ can always be derived from π. Note that at the
same program point we might have different run-time type states ψ1

π and ψ2
π

depending on the particular program path executed, but the static type state is
unique.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

483

Precise Set Sharing Analysis for Java-Style Programs 177

Denotational (compositional) semantics of sequential Java has been the sub-
ject of previous work (e.g., [2]). In our case we define a simpler version of
that semantics for the subset defined in Sect. 2, described as transformations
in the frame-memory state. The descriptions are similar to [26]. Expression
functions EI

π�� : expr �→ (Σπ �→ Σπ′) define the meaning of Java expres-
sions, augmenting the actual scope π′ = π[res �→ typeπ(exp)] with the tem-
poral variable res. Command functions CI

π�� : com �→ (Σπ �→ Σπ) do the
same for commands; semantics of a method m defined in class k is returned
by the function I(k.m) : Σinput(k.m) → Σoutput(k.m). The definition of the re-
spective environments, given a declaration in class k as tret m(this : k, p1 :
t1 . . . pn : tn) com, is input(k.m) = {this �→ k, p1 �→ t1, . . . , pn �→ tn} and
output(k.m) = input(k.m)[out �→ tret].

Example 1. Assume that, in Figure 2, after entering in the method add of the
class Vector we have an initial state (φ0 � μ0) s.t. loc1 = φ0(el) = null. After
executing Vector v = new Vector() the state is (φ1 � μ1), with φ1(v) = loc2,
and μ1(loc2).φ(first) = null. The field assignment el.next = null results in
(φ2 � μ2), verifying μ2(loc1).φ(next) = null. In the third line, v.first = el
links loc1 and loc2 since now μ3(loc2).φ(first) = loc1. Now v and el share,
since their reachability sets intersect at least in {loc1}. Finally, assume that
append attaches v to the end of the current instance this resulting in a memory
layout (φ4 � μ4). Given loc3 = obj((φ4 � μ4)(this)).φ(first), it should hold that
μ4(. . . μ4(loc3).φ(next) . . .).φ(next) = loc2. Now this shares with v and therefore
with el, because loc1 is reachable from loc2.

3 Abstract Semantics

An abstract state σ ∈ Dπ in an environment π approximates the sharing, nullity,
and run-time type characteristics (as described in Sect. 2.2) of set of concrete
states in Σπ. Every abstract state combines three abstractions: a sharing set
sh ∈ DSπ, a nullity set nl ∈ DN π, and a type member τ ∈ DT π, i.e., Dπ =
DSπ × DN π × DT π.

The sharing abstract domain DSπ ={{v1, . . . , vn} | {v1, . . . , vn} ∈ P(dom(π)),
∩n

i=1Cπ(vi) = ∅} is constrained by a class reachability function which retrieves
those classes that are reachable from a particular variable: Cπ(v) = ∪{Ci

π(v) | i ≥
0}, given C0

π(v) =↓π(v) and Ci+1
π (v) = ∪{rng(F (k)) |k ∈ Ci

π(v)}. By using class
reachability, we avoid including in the sharing domain sets of variables which
cannot share in practice because of the language semantics. The partial order
≤DSπ

is set inclusion.
We define several operators over sharing sets, standard in the sharing litera-

ture [14,19]. The binary union � : DSπ × DSπ �→ DSπ, calculated as S1 �
S2 = {Sh1 ∪ Sh2 | Sh1 ∈ S1, Sh2 ∈ S2} and the closure under union ∗ : DSπ �→
DSπ operators, defined as S∗ = {∪SSh | SSh ∈ P+(S)}; we later filter their re-
sults using class reachability. The relevant sharing with respect to v is shv =
{s ∈ sh | v ∈ s}, which we overloaded for sets. Similarly, sh−v ={s ∈ sh | v /∈ s}.
The projection sh|V is equivalent to {S | S = S′ ∩ V, S′ ∈ sh}.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

484

178 M. Méndez-Lojo and M.V. Hermenegildo

SEI
π�null�(sh, nl, τ) = (sh, nl′, τ ′)
nl′ = nl[res �→ null]
τ ′ = τ [res �→ ↓object]

SEI
π�new k�(sh, nl, τ) = (sh′, nl′, τ ′)
sh′ = sh ∪ {{res}}
nl′ = nl[res �→ nnull]
τ ′ = τ [res �→ {κ}]

SEI
π�v�(sh, nl, τ) = (sh′, nl′, τ ′)
sh′ = ({{res}} � shv) ∪ sh−v

nl′ = nl[res �→ nl(v)]
τ ′ = τ [res �→ τ (v)]

SEI
π�v.f�(sh, nl, τ) =

{
⊥ if nl(v) = null
(sh′, nl′, τ ′) otherwise

sh′ = sh−v ∪
⋃

{P+(s|−v ∪ {res}) � {{v}} | s ∈ shv}
nl′ = nl[res �→ unk, v �→ nnull]
τ ′ = τ [res �→↓ F (π(v)(f))]

SEI
π�v.m(v1, . . . , vn)�(sh, nl, τ) =

{
⊥ if nl(v) = null
σ′ otherwise

σ′ = SEI
π�call(v, m(v1, . . . , vn))�(sh, nl′, τ)

nl′ = nl[v �→ nnull]

Fig. 3. Abstract semantics for the expressions

The nullity domain is DN π = P(dom(π) �→ NV), where NV = {null, nnull,
unk}. The order ≤NV of the nullity values (null ≤NV unk, nnull ≤NV unk)
induces a partial order in DN π s.t. nl1 ≤DNπ

nl2 if nl1(v) ≤NV nl2(v) ∀v ∈
dom(π). Finally, the domain of types maps variables to sets of types congruent
with π: DT π= {(v, {t1, . . . , tn}) ∈ dom(π) �→ P(K) | {t1, . . . , tn} ⊆↓π(v)}.

We assume the standard framework of abstract interpretation as defined in [8]
in terms of Galois insertions. The concretization function γπ : Dπ �→ P(Σπ) is
γπ(sh, nl, τ) = {δ ∈ Σπ | ∀V ⊆ dom(π), shareπ(δ, V) and �W, V ⊂ W ⊆ dom(π)
s.t. shareπ(δ, W) ⇒ V ∈ sh, and Rπ(δ, v) = ∅ if nl(v) = null, and Rπ(δ, v) =
∅ if nl(v) = nnull, and ψπ(δ, v) ∈ τ(v) , ∀v ∈ dom(π)}.

The abstract semantics of expressions and commands is listed in Figs. 3 and
4. They correctly approximate the standard semantics, as proved in [16]. As
their concrete counterparts, they take an expression or command and map an
input state σ ∈ Dπ to an output state σ′ ∈ Dσ

π′ where π = π
′
in commands and

π
′
= π[res �→ typeπ(expr)] in expression expr. The semantics of a method call

is explained in Sect. 3.1. The use of set sharing (rather than pair sharing) in the
semantics prevents possible losses of precision, as shown in Example 2.

Example 2. In the add method (Fig. 2), assume that σ = ({{this, el} , {v}},
{this/nnull, el/nnull, v/nnull}) right before evaluating el in the third line (we
skip type information for simplicity). The expression el binds to res the location
of el, i.e., forces el and res to share. Since nl(el) = null the new sharing is sh′ =
({{res}}�shel)∪sh−el = ({{res}}�{{this, el}})∪{{v}} = {{res, this, el} , {v}}.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

485

Precise Set Sharing Analysis for Java-Style Programs 179

SCI
π�v=expr�σ = ((sh′|−v)|vres, nl′|vres, τ

′′ |−res)
τ

′′
= τ ′[v �→ (τ ′(v) ∩ τ ′(res))]

(sh′, nl′, τ ′) = SEI
π�expr�σ

SCI
π�v.f=expr�σ = (sh

′′
, nl

′′
, τ ′)|−res

sh
′′

=

⎧
⎨

⎩

⊥ if nl′(v) = null
sh′ if nl′(res) = null
shy ∪ sh′

−{v,res} otherwise
nl

′′
= nl′[v �→ nnull]

shy = (
⋃

{P(s|−v ∪ {res}) � {{v}} | s ∈ sh′
v} ∪⋃

{P(s|−res ∪ {v}) � {{res}} | s ∈ sh′
res})∗

(sh′, nl′, τ ′) = SEI
π�expr�σ

SCI
π� if v==null com1

else com2

�σ =

⎧
⎨

⎩

σ′
1 if nl(v) = null

σ′
2 if nl(v) = nnull

σ1
 σ2 if nl(v) = unk

σ′
i = SCI

π�comi�σ
σ1 = SCI

π�com1�(sh|−v, nl[v �→ null], τ [v �→↓π(v)])
σ2 = SCI

π�com2�(sh, nl[v �→ nnull], τ)

SCI
π� if v==w com1

else com2

�(sh, nl, τ) =

⎧
⎨

⎩

σ′
1 if nl(v) = nl(w) = null

σ′
2 if sh|{v,w} = ∅

σ′
1
 σ′

2 otherwise
σ′

i = SCI
π�comi�(sh, nl, τ)

SCI
π�com1;com2�σ = SCI

π�com2�(SCI
π�com1�σ)

Fig. 4. Abstract semantics for the commands

In the case of pair-sharing, the transfer function [26] for the same initial state
sh = {{this, el} , {v, v}} returns sh′p = {{res, el}, {res, this} , {this, el} , {v, v}},
which translated to set sharing results in sh′′ = {{res, el}, {res, this} , {res, this,
el}, {this, el} , {v}}, a less precise representation (in terms of ≤DSπ) than sh′.

Example 3. Our multivariant analysis keeps two different call contexts for the
append method in the Vector class (Fig. 2). Their different sharing informa-
tion shows how sharing can improve nullity results. The first context corre-
sponds to external calls (invocation from other classes), because of the public
visibility of the method: σ1 = ({{this} , {this, v} , {v}}, {this/nnull, v/unk} ,
{this/ {vector} , v/ {vector}}). The second corresponds to an internal (within
the class) call, for which the analysis infers that this and v do not share:
σ2 = ({{this} , {v}}, {this/nnull, v/unk} , {this/ {vector} , v/ {vector}}). In-
side append, we avoid creating a circular list by checking that this = v. Only
then is the last element of this linked to the first one of v. We use com to rep-
resent the series of commands Element e = first; if (e==null)...else..
and bdy for the whole body of the method. Independently of whether the in-
put state is σ1 or σ2 our analysis infers that SCI

π�com�σ1 = SCI
π�com�σ2 =

({{this, v}}, {this/nnull, v/nnull}, {this/ {vector} , v/ {vector}}) = σ3. How-
ever, the more precise sharing information in σ2 results in a more precise analysis

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

486

180 M. Méndez-Lojo and M.V. Hermenegildo

Algorithm 1. Extend operation
input : state before the call σ, result of analyzing the call σλ

and actual parameters A
output: resulting state σf

if σλ = ⊥ then
σf = ⊥

else
let σ = (sh, nl, τ), and σλ = (shλ, nlλ, τλ), and AR = A ∪ {res}

star = (shA ∪ {{res}})∗

shext = {s | s ∈ star, s|AR ∈ shλ}
shf = shext ∪ sh−A

nlf = nl[res �→ nlλ(res)]
τf = τ [res �→ τλ(res)]
σf = (shf , nlf , τf)

end

of bdy, because of the guard (this!=v). In the case of the external calls,
SCI

π�bdy�σ1= SCI
π�com�σ1 � SCI

π�skip�σ1= σ1 �σ3 = σ1. When the entry state
is σ2, the semantics at the same program point is SCI

π�bdy�σ2= SCI
π�com�σ2

= σ3 < σ1. So while the internal call requires v = null to terminate, we cannot
infer the final nullity of that parameter in a public invocation, which might finish
even if v is null.

3.1 Method Calls

The semantics of the expression call(v, m(v1, . . . , vn)) in state σ = (sh, nl, τ) is
calculated by implementing the top-down methodology described in [21]. We will
assume that the formal parameters follow the naming convention F in all the im-
plementations of the method; let A = {v, v1, . . . , vn} and F = dom(input(k.m))
be ordered lists. We first calculate the projection σp = σ|A and an entry state
σy = σp|FA. The abstract execution of the call takes place only in the set of classes
K = τ(v), resulting in an exit state σx =

⊔
{SCI

π�k′.m�σy |k′ = lookup(k, m), k ∈
K}, where lookup returns the body of k’s implementation of m, which can be
defined in k or inherited from one of its ancestors. The abstract execution of
the method in a subset K ⊆ ↓π(v) increases analysis precision and is the ul-
timate purpose of tracking run-time types in our abstraction. We now remove
the local variables σb = σx|F∪{out} and rename back to the scope of the caller:
σλ = σb|A∪{res}

F∪{out}; the final state σf is calculated as σf = extend(σ, σλ, A). The
extend : Dπ × Dπ × P(dom(π)) �→ Dπ function is described in Algorithm 1.

In Java references to objects are passed by value in a method call. Therefore,
they cannot be modified. However, the call might introduce new sharing between
actual parameters through assignments to their fields, given that the formal
parameters they correspond to have not been reassigned. We keep the original
information by copying all the formal parameters at the beginning of each call,

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

487

Precise Set Sharing Analysis for Java-Style Programs 181

as suggested in [23]. Those copies cannot be modified during the execution of
the call, so a meaningful correspondence can be established between A and F .

We can do better by realizing that analysis might refine the information about
the actual parameters within a method and propagating the new values discov-
ered back to σf . For example, in a method foo(Vector v){if v!=null skip
else throw null}, it is clear that we can only finish normally if nlx(v) = nnull,
but in the actual semantics we do not change the nullity value for the corre-
sponding argument in the call, which can only be more imprecise. Note that the
example is different from foo(Vector v){v = new Vector}, which also finishes
with nlx(v) = nnull. The distinction over whether new attributes are preserved
or not relies on keeping track of those variables which have been assigned inside
the method, and then applying the propagation only for the unset variables.

Example 4. Assume an extra snippet of code in the Vector class of the form if
(v2!=null) v1.append(v2) else com, which is analyzed in state σ = ({{v1} ,
{v2}}, {v1/nnull, v2/nnull}, {v1/ {vector} , v2/ {vector}}). Since we have nul-
lity information, it is possible to identify the block com as dead code. In con-
trast, sharing-only analyses can only tell if a variable is definitely null, but never
if it is definitely non-null. The call is analyzed as follows. Let A = {v1, v2}
and F = {this, v}, then σp = σ|A = σ and the entry state σy is σ|FA =
({{this} , {v}} , {this/nnull, v/nnull} , {this/ {vector} , v/ {vector}}). The only
class where append can be executed is Vector and results (see Example 3) in an
exit state for the formal parameters and the return variable σb = ({{this, v}} ,
{this/nnull, v/nnull, out/null}, {this/ {vector} , v/ {vector} , out/ {void}}),
which is further renamed to the scope of the caller obtaining σλ = ({{v1, v2}} ,
{v1/ nnull, v2/nnull, res/null}, {v1/ {vector} , v2/ {vector} , res/ {void}}).
Since the method returns a void type we can treat res as a primitive (null)
variable so σf = extend(σ, σλ, {v1, v2}) = ({{v1, v2}} , {v1/nnull, v2/nnull, res/
null}, {v1/ {vector} , v2/ {vector} , res/{void}}).
Example 5. The extend operation used during interprocedural analysis is a point
where there can be significant loss of precision and where set sharing shows its
strengths. For simplicity, we will describe the example only for the sharing com-
ponent; nullity and type information updates are trivial. Assume a scenario
where a call to append(v1,v2) in sharing state sh = {{v0, v1} , {v1} , {v2}} re-
sults in shλ = {{v1, v2}}. Let A and AR be the sets {v1, v2} and {v1, v2, res}
respectively. The extend operation proceeds as follows: first we calculate star
as (shA ∪ {{res}})∗ = (sh ∪ {{res}})∗ = ({{v0, v1} , {v1} , {v2} , {res}})∗ =
{{v0, v1} , {v0, v1, v2} , {v0, v1, v2, res} , {v0, v1, res} , {v1} , {v1, v2} , {v1, v2, res} ,
{v1, res} , {v2} , {v2, res} , {res}}, from which we delete those elements whose
projection over AR is not included in shλ, obtaining shext = {{v0, v1, v2} ,
{v1, v2}}. The resulting sharing component is the union of that shext with
sh−A = ∅, so shf1 = shext = {{v0, v1, v2} , {v1, v2}}.

When the same sh and shλ are represented in their pair sharing versions
shp = {{v0, v1} , {vo, v0} , {v1, v1} , {v2, v2}} and shp

λ = {{v1, v2} , {v1, v1} , {v2,
v2}}, the extend operation in [26] introduces spurious sharings in shf because of
the lower precision of the pair-sharing representation. In this case, shp

f2 = (sh ∪

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

488

182 M. Méndez-Lojo and M.V. Hermenegildo

shp
λ)∗A = {{v0, v1} , {v0, v2} , {v1, v2} , {v0, v0} , {v1, v1} , {v2, v1}}. This informa-

tion, expressed in terms of set sharing, results in shf2 = {{v0, v1} , {v0, v2} , {v0,
v1, v2}, {v1, v2} , {v0} , {v1} , {v2}}, which is much less precise that shf1.

4 Experimental Results

In our analyzer the abstract semantics presented in the previous section is evalu-
ated by a highly optimized fixpoint algorithm, based on that of [21]. The algorithm
traverses the program dependency graph, dynamically computing the strongly-
connected components and keeping detailed dependencies on which parts of the
graph need to be recomputed when some abstract value changes during the anal-
ysis of iterative code (loops and recursions). This reduces the number of steps and
iterations required to reach the fixpoint, which is specially important since the al-
gorithm implements multivariance, i.e., it keeps different abstract values at each
program point for every calling context, and it computes (a superset of) all the
calling contexts that occur in the program. The dependencies kept also allow re-
lating these values along execution paths (this is particularly useful for example
during error diagnosis or for program specialization).

We now provide some precision and cost results obtained from the imple-
mentation in the framework described in [17] of our set-sharing, nullity, and
class (SSNlTau) analysis. In order to be able to provide a comparison with the
closest previous work, we also implemented the pair sharing (PS) analysis pro-
posed in [26]. We have extended the operations described in [26], enabling them
to handle some additional cases required by our benchmark programs such as
primitive variables, visibility of methods, etc. Also, to allow direct comparison,
we implemented a version of our SSNlTau analysis, which is referred to simply
as SS, that tracks set sharing using only declared type information and does not
utilize the (non-)nullity component. In order to study the influence of tracking
run-time types we have implemented a version of our analysis with set sharing
and (non-)nullity, but again using only the static types, which we will refer to
as SSNl. In these versions without dynamic type inference only declared types
can affect τ and thus the dynamic typing information that can be propagated
from initializations, assignments, or correspondence between arguments and for-
mal parameters on method calls is not used. Note however that the version that
includes tracking of dynamic typing can of course only improve analysis results
in the presence of polymorphism in the program: the results should be identical
(except perhaps for the analysis time) in the rest of the cases. The polymorphic
programs are marked with an asterisk in the tables.

The benchmarks used have been adapted from previous literature on either
abstract interpretation for Java or points-to analysis [26,24,23,29]. We added
two different versions of the Vector example of Fig. 2. Our experimental results
are summarized in Tables 5, 6, and 7.

The first column (#tp) in Tables 5 and 6 shows the total number of program
points (commands or expressions) for each program. Column #rp then pro-
vides, for each analysis, the total number of reachable program points, i.e., the

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

489

Precise Set Sharing Analysis for Java-Style Programs 183

PS SS
#tp #rp #up #σ t #rp #up #σ t %Δt

dyndisp (*) 71 68 3 114 30 68 3 114 29 -2
clone 41 38 3 42 52 38 3 50 81 55
dfs 102 98 4 103 68 98 4 108 68 0
passau (*) 167 164 3 296 97 164 3 304 120 23
qsort 185 142 43 182 125 142 43 204 165 32
integerqsort 191 148 43 159 110 148 43 197 122 10
pollet01 (*) 154 126 28 276 196 126 28 423 256 30
zipvector (*) 272 269 3 513 388 269 3 712 1029 164
cleanness (*) 314 277 37 360 233 277 37 385 504 116

overall 1497 1330 167 2045 1299 1330 167 2497 2374 82.75

Fig. 5. Analysis times, number of program points, and number of abstract states

SSNl SSNlTau
#tp #rp #up #σ t %Δt #rp #up #σ t %Δt

dyndisp (*) 71 61 10 103 53 77 61 10 77 20 -33
clone 41 31 10 34 100 92 31 10 34 90 74
dfs 102 91 11 91 129 89 91 11 91 181 166
passau (*) 167 157 10 288 117 18 157 10 270 114 17
qsort 185 142 43 196 283 125 142 43 196 275 119
integerqsort 191 148 43 202 228 107 148 43 202 356 224
pollet01 (*) 154 119 35 364 388 98 98 56 296 264 35
zipvector (*) 272 269 3 791 530 36 245 27 676 921 136
cleanness (*) 314 276 38 383 276 38 266 48 385 413 77

overall 1497 1294 203 2452 2104 61.97 1239 258 2227 2634 102.77

Fig. 6. Analysis times, number of program points, and number of abstract states

number of program points that the analysis explores, while #up represents the
(#tp − #rp) points that are not analyzed because the analysis determines that
they are unreachable. It can be observed that tracking (non-)nullity (Nl) reduces
the number of reachable program points (and increases conversely the number
of unreachable points) because certain parts of the code can be discarded as
dead code (and not analyzed) when variables are known to be non-null. Track-
ing dynamic types (Tau) also reduces the number of reachable points, but, as
expected, only for (some of) the programs that are polymorphic. This is due
to the fact that the class analysis allows considering fewer implementations of
methods, but obviously only in the presence of polymorphism.

Since our framework is multivariant and thus tracks many different contexts at
each program point, at the end of analysis there may be more than one abstract
state associated with each program point. Thus, the number of abstract states
inferred is typically larger than the number of reachable program points. Column
#σ provides the total number of these abstract states inferred by the analysis.
The level of multivariance is the ratio #σ/#rp. It can be observed that the simple

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

490

184 M. Méndez-Lojo and M.V. Hermenegildo

PS SS
#sh %sh #sh %sh

dyndisp (*) 640 60.37 435 73.07
clone 174 53.10 151 60.16
dfs 1573 96.46 1109 97.51
passau (*) 5828 94.56 3492 96.74
qsort 1481 67.41 1082 76.34
integerqsort 2413 66.47 1874 75.65
pollet01 (*) 793 89.81 1043 91.81
zipvector (*) 6161 68.71 5064 80.28
cleanness (*) 1300 63.63 1189 70.61

overall 20363 73.39 15439 80.24

Fig. 7. Sharing precision results

set sharing analysis (SS) creates more abstract states for the same number of
reachable points. In general, such a larger number for #σ tends to indicate more
precise results (as we will see later). On the other hand, the fact that addition
of Nl and Tau reduces the number of reachable program points interacts with
precision to obtain the final #σ value, so that while there may be an increase in
the number of abstract states because of increased precision, on the other hand
there may be a decrease because more program points are detected as dead code
by the analysis. Thus, the #σ values for SSNl and SSNlTau in some cases
actually decrease with respect to those of PS and SS.

The t column in Tables 5 and 6 provides the running times for the different
analyses, in milliseconds, on a Pentium M 1.73Ghz, 1Gb of RAM, running Fedora
Core 4.0, and averaging several runs after eliminating the best and worst values.
The %Δt columns show the percentage variation in the analysis time with respect
to the reference pair-sharing (PS) analysis, calculated as Δdom%t = 100∗(tdom−
tPS)/tPS . The more complex analyses tend to take longer times, while in any
case remaining reasonable. However, sometimes more complex analyses actually
take less time, again because the increased precision and the ensuing dead code
detection reduces the amount of program that must be analyzed.

Table 7 shows precision results in terms of sharing, concentrating on the SP
and SS domains, which allow direct comparison. A more usage-oriented way of
measuring precision would be to study the effect of the increased precision in
an application that is known to be sensitive to sharing information, such as, for
example, program parallelization [4]. On the other hand this also complicates
matters in the sense that then many other factors come into play (such as, for
example, the level of intrinsic parallelism in the benchmarks and the paralleliza-
tion algorithms) so that it is then also harder to observe the precision of the
analysis itself. Such a client-level comparison is beyond the scope of this paper,
and we concentrate here instead on measuring sharing precision directly.

Following [6], and in order to be able to compare precision directly in terms
of sharing, column #sh provides the sum over all abstract states in all reachable
program points of the cardinality of the sharing sets calculated by the analysis.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

491

Precise Set Sharing Analysis for Java-Style Programs 185

For the case of pair sharing, we converted the pairs into their equivalent set
representation (as in [6]) for comparison. Since the results are always correct,
a smaller number of sharing sets indicates more precision (recall that � is the
power set). This is of course assuming σ is constant, which as we have seen is not
the case for all of our analyses. On the other hand, if we compare PS and SS,
we see that SS has consistently more abstract states than PS and consistently
lower numbers of sharing sets, and the trend is thus clear that it indeed brings
in more precision. The only apparent exception is pollet01 but we can see that
the number of sharing sets is similar for a significantly larger number of abstract
states.

An arguably better metric for measuring the relative precision of sharing is
the ratio %Max = 100∗ (1−#sh/(2#vo −1)) which gives #sh as a percentage of
its maximum possible value, where #vo is the total number of object variables
in all the states. The results are given in column %sh. In this metric 0% means
all abstract states are � (i.e., contain no useful information) and 100% means all
variables in all abstract states are detected not to share. Thus, larger values in
this column indicate more precision, since analysis has been able to infer smaller
sharing sets. This relative measure shows an average improvement of 7% for SS
over PS.

5 Conclusions

We have proposed an analysis based on abstract interpretation for deriving pre-
cise sharing information for a Java-like language. Our analysis is multivariant,
which allows separating different contexts, and combines Set Sharing, Nullity,
and Classes: the domain captures which instances definitely do not share or are
definitively null, and uses the classes to refine the static information when in-
heritance is present. We have implemented the analysis, as well as previously
proposed analyses based on Pair Sharing, and obtained encouraging results: for
all the examples the set sharing domains (even without combining with Nullity
or Classes) offer more precision than the pair sharing counterparts while the
increase in analysis times appears reasonable. In fact the additional precision
(also when combined with nullity and classes) brings in some cases analysis time
reductions. This seems to support that our contributions bring more precision
at reasonable cost.

Acknowledgments

The authors would like to thank Samir Genaim for many useful comments to
previous drafts of this document. Manuel Hermenegildo and Mario Méndez-Lojo
are supported in part by the Prince of Asturias Chair in Information Science and
Technology at UNM. This work was also funded in part by the Information So-
ciety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS project, by the Spanish Ministry of

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

492

186 M. Méndez-Lojo and M.V. Hermenegildo

Education under the TIN-2005-09207 MERIT project, and the Madrid Regional
Government under the PROMESAS project.

References

1. Agesen, O.: The cartesian product algorithm: Simple and precise type inference of
parametric polymorphism. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp.
2–26. Springer, Heidelberg (1995)

2. Alves-Foss, J. (ed.): Formal Syntax and Semantics of Java. LNCS, vol. 1523.
Springer, Heidelberg (1999)

3. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
Proc. of OOPSLA 1996, SIGPLAN Notices, October 1996, vol. 31(10), pp. 324–341
(1996)

4. Bueno, F., Garćıa de la Banda, M., Hermenegildo, M.: Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Programming.
ACM Transactions on Programming Languages and Systems 21(2), 189–238 (1999)

5. Burke, M.G., et al.: Carini, Jong-Deok Choi, and Michael Hind. In: Pingali, K.K.,
et al. (eds.) LCPC 1994. LNCS, vol. 892, pp. 234–250. Springer, Heidelberg (1995)

6. Codish, M., et al.: Improving Abstract Interpretations by Combining Domains.
ACM Transactions on Programming Languages and Systems 17(1), 28–44 (1995)

7. Cortesi, A., et al.: Complementation in abstract interpretation. ACM Trans. Pro-
gram. Lang. Syst. 19(1), 7–47 (1997)

8. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of
POPL 1977, pp. 238–252 (1977)

9. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
Sixth ACM Symposium on Principles of Programming Languages, San Antonio,
Texas, pp. 269–282 (1979)

10. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static class hierarchy analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952,
pp. 77–101. Springer, Heidelberg (1995)

11. Gosling, J., et al.: Java(TM) Language Specification, 3rd edn. Addison-Wesley
Professional, Reading (2005)

12. Hill, P.M., Payet, E., Spoto, F.: Path-length analysis of object-oriented programs.
In: Proc. EAAI 2006 (2006)

13. Hind, M., et al.: Interprocedural pointer alias analysis. ACM Trans. Program. Lang.
Syst. 21(4), 848–894 (1999)

14. Jacobs, D., Langen, A.: Accurate and Efficient Approximation of Variable Aliasing
in Logic Programs. In: 1989 North American Conference on Logic Programming,
MIT Press, Cambridge (1989)

15. Landi, W., Ryder, B.G.: A safe approximate algorithm for interprocedural pointer
aliasing (with retrospective). In: McKinley, K.S. (ed.) Best of PLDI, pp. 473–489.
ACM Press, New York (1992)

16. Méndez-Lojo, M., Hermenegildo, M.: Precise Set Sharing for Java-style Programs
(and proofs). Technical Report CLIP2/2007.1, Technical University of Madrid
(UPM), School of Computer Science, UPM (November 2007)

17. Méndez-Lojo, M., Navas, J., Hermenegildo, M.: A Flexible (C)LP-Based Approach
to the Analysis of Object-Oriented Programs. In: 17th International Symposium
on Logic-based Program Synthesis and Transformation (LOPSTR 2007) (August
2007)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

493

Precise Set Sharing Analysis for Java-Style Programs 187

18. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized Object Sensitivity for
Points-to and Side-effect Analyses for Java. In: ISSTA, pp. 1–11 (2002)

19. Muthukumar, K., Hermenegildo, M.: Determination of Variable Dependence Infor-
mation at Compile-Time Through Abstract Interpretation. In: 1989 North Amer-
ican Conference on Logic Programming, October 1989, pp. 166–189. MIT Press,
Cambridge (1989)

20. Muthukumar, K., Hermenegildo, M.: Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In: 1991 Inter-
national Conference on Logic Programming, June 1991, pp. 49–63. MIT Press,
Cambridge (1991)

21. Navas, J., Méndez-Lojo, M., Hermenegildo, M.: An Efficient, Context and Path
Sensitive Analysis Framework for Java Programs. In: 9th Workshop on Formal
Techniques for Java-like Programs FTfJP 2007 (July 2007)

22. Palsberg, J., Schwartzbach, M.I.: Object-oriented type inference. In: OOPSLA, pp.
146–161 (1991)

23. Pollet, I.: Towards a generic framework for the abstract interpretation of Java.
PhD thesis, Catholic University of Louvain, Dept. of Computer Science (2004)

24. Pollet, I., Le Charlier, B., Cortesi, A.: Distinctness and sharing domains for static
analysis of java programs. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
Springer, Heidelberg (2001)

25. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL 1999 (1999)

26. Secci, S., Spoto, F.: Pair-sharing analysis of object-oriented programs. In: SAS, pp.
320–335 (2005)

27. Søndergaard, H.: An application of abstract interpretation of logic programs: occur
check reduction. In: Duijvestijn, A.J.W., Lockemann, P.C. (eds.) Trends in Infor-
mation Processing Systems. LNCS, vol. 123, pp. 327–338. Springer, Heidelberg
(1981)

28. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: PLDI, pp. 387–400 (2006)

29. Streckenbach, M., Snelting, G.: Points-to for java: A general framework and an
empirical comparison. Technical report, University Passau (November 2000)

30. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI, pp. 131–144. ACM Press, New York (2004)

31. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C pro-
grams. In: PLDI, pp. 1–12 (1995)

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

494

Towards Execution Time Estimation in
Abstract Machine-Based Languages ∗

E. Mera 1

1 Complutense University of Madrid
edison@fdi.ucm.es

P. Lopez-Garcia2,3

2 IMDEA-Software
3 CSIC

pedro.lopez.garcia@imdea.org

M. Carro4, M. Hermenegildo2,4,5

4 Technical U. of Madrid
5 U. of New Mexico

{mcarro, herme}@fi.upm.es

Abstract
Abstract machines provide a certain separation between platform-
dependent and platform-independent concerns in compilation.
Many of the differences between architectures are encapsulated in
the specific abstract machine implementation and the bytecode is
left largely architecture independent. Taking advantage of this fact,
we present a framework for estimating upper and lower bounds on
the execution times of logic programs running on a bytecode-based
abstract machine. Our approach includes a one-time, program-
independent profiling stage which calculates constants or functions
bounding the execution time of each abstract machine instruction.
Then, a compile-time cost estimation phase, using the instruction
timing information, infers expressions giving platform-dependent
upper and lower bounds on actual execution time as functions of
input data sizes for each program. Working at the abstract machine
level makes it possible to take into account low-level issues in
new architectures and platforms by just reexecuting the calibration
stage instead of having to tailor the analysis for each architec-
ture and platform. Applications of such predicted execution times
include debugging/verification of time properties, certification of
time properties in mobile code, granularity control in parallel/dis-
tributed computing, and resource-oriented specialization.

Categories and Subject Descriptors D.4.8 [Performance]: Mod-
eling and prediction;
F.3.2 [Semantics of Programming Languages]: Program analysis;
D.1.6 [Programming Techniques]: Logic programming

General Terms Languages, performance

Keywords Execution Time Estimation, Cost Analysis, Profiling,
Resource Awareness, Cost Models, Logic Programming.

∗ The authors have been partially supported by EU projects 215483 S-Cube,
IST-15905 MOBIUS, Spanish projects ITEA2/PROFIT FIT-340005-2007-
14 ES PASS, ITEA/PROFIT FIT-350400-2006-44 GGCC, MEC TIN2005-
09207-C03-01 MERIT/COMVERS, Comunidad de Madrid project S-
0505/TIC/0407 PROMESAS. Manuel Hermenegildo is also partially funded
by the Prince of Asturias Chair in Information Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’08, July 15–17, 2008, Valencia, Spain.
Copyright c© 2008 ACM 978-1-60558-117-0/08/07. . . $5.00

1. Introduction
Cost analysis has been studied for several declarative languages (7;
16; 11; 13). In logic programming previous work has focused on
inferring upper (12; 11) or lower (13; 8) bounds on the cost of
programs, where such bounds are functions on the size (or values)
of input data. This approach captures well the fact that program
execution cost in general depends on input data sizes. On the other
hand the results of these analyses are given in terms of execution
steps. While this measure has the advantage of being platform
independent, it is not straightforward to translate such steps into
execution time.

Estimation of worst case execution times (WCET) has received
significant attention in the context of high-level imperative pro-
gramming languages (24). In (18; 6) a portable WCET analysis
for Java is proposed. However, the WCET approach only provides
absolute upper bounds on execution time (i.e., bounds that do not
depend on program input arguments) and often requires annotating
loops manually.

Our objective is to infer automatically more precise bounds on
execution times that are in general functions that depend on input
data sizes. In (19) a static analysis was proposed in order to in-
fer such platform-dependent time bounds in logic programs. This
approach is based on a high-level analysis of certain syntactic char-
acteristics of the program clause text (sizes of terms in heads, sizes
of terms in bodies, number of arguments, etc.). Although promising
experimental results were obtained, the predicted execution times
were not very precise. In this paper we propose a new analysis
which, in order to improve the accuracy of the time predictions,
on one hand takes into account lower level factors and on the other
makes the model richer by directly taking into account the inher-
ently variable cost of certain low-level operations.

Regarding the choice of this lower level, rather than trying for
example to model directly the characteristics of the physical pro-
cessor, as in WCET, and given that most popular logic program-
ming implementations are based on variations of the Warren ab-
stract machine (WAM) (23; 1), we chose to model cost at the
level of abstract machine instructions. Abstract machines have been
used as a basic implementation technique in several programming
paradigms (functional, logic, imperative, and object-oriented) (14)
with the advantage that they provide an intermediate layer that sep-
arates to a certain extent the many low-level details of real (hard-
ware) machines from the higher-level language, while at the same
time making compilation easier. This property can be used to facil-
itate the design of our framework.

Within this setting, we present a new framework for the static
estimation of execution times of programs. The basic ideas in our
approach follow:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

495

1. Measure the execution time of each of the instructions in a
lower-level LB (bytecode) language (or approximate it with a
function if it depends on the value of an argument) in some
specific abstract machine implementation when executed on a
given processor / O.S.

2. Make the information regarding instruction execution time
available to the timing analyzer. This is, in our proposal, done
by means of cost assertions (written in a suitable assertion
language) which are stored in a module accessible to the com-
piler/analyzer.

3. Given a concrete program P written in the source languageLH ,
compile it into LB and record the relationship between P and
its compiled counterpart.

4. Automatically analyze program P , taking into account the in-
struction execution time (determined in item 1 above) to infer a
cost function CP . This function is an expression which returns
(bounds on) the actual execution time of P for different input
data sizes for the given platform.

Points (1) and (2) are performed in a one-time profiling phase,
independent from program P , while the rest are performed once
for each P in the static (compile-time) cost analysis phase. We
would like to point out that, in general, the basic ideas underlying
our work can be applied to any language LH as long as (i) cost
estimation can be derived for programs written in LH , (ii) the
translation of LH to some other (usually lower-level) language LB

is accessible, and (iii) the execution time of the instructions in LB

can be timed accurately enough. We will, however, focus herein on
logic languages, so that we assumeLH to be a Prolog-like language
and LB some variant of the WAM bytecode.

The proposed framework has been implemented as part of the
CiaoPP (17) system in such a way that any abstract machine prop-
erly instrumented can be analyzed. To the best of our knowledge,
this is the first attempt at providing a timing analysis producing
upper- and lower-bound time functions based on the cost of lower-
level machine instructions.

2. Mappings Between Program Segments and
Bytecodes

Let OpSet = {b1, b2, . . . , bn} be the set of instructions of the ab-
stract machine under consideration. We assume that each instruc-
tion is defined by a numeric identifier and its arity, i.e., bi ≡ fi/ni,
where fi is the identifier and ni the arity. Each program is compiled
into a sequence of expressions of the form f(a1, a2, . . . , an) where
f is the instruction name and the ai’s are its arguments. For con-
ciseness, we will use Ii to refer to such expressions. The sequences
of expressions into which a program is compiled are generally en-
coded using bytecodes. In the following we will often refer to se-
quences of abstract machine instructions or sequences of bytecodes
simply as “bytecodes.”

Let C be a clause H :- L1, . . . , Lm. Let E(C) be a function that
returns the sequence of bytecodes resulting from the compilation
of clause C:

E(C) =< I1, I2, . . . , Ip >

Let E(C, H) be a function that maps the clause head H to the
sequence of bytecodes in E(C) starting from the beginning up to
the first call/execute instruction or to the end of the sequence
E(C) if there are no more call/execute instructions (i.e., to the
end of the bytecode sequence resulting from the compilation of
clause C). LetE(C, Li) be the function that maps literal Li of clause
C to the sequence of bytecodes in E(C) which start at the call
bytecode instruction corresponding to this literal and up to the next
call/execute instruction or to the end of the sequence E(C) if

append([], X, X).
append/3/1: try me else append/3/2

allocate
get constant([],A0)

E(C1, H
1) get variable(V0,A1)

get value(V0,A2)
deallocate
proceed

append([X|Xs], Y, [X|Zs]) :-
append/3/2: trust me

allocate
get variable(V0,A0)
set variable(V1)
set variable(V2)
set variable(V3)
get list(V1,V3)
set variable(V4)
unify variable(V2,V4)
unify variable(V0,V3)

E(C2, H
2) set variable(V5,A1)

get variable(V6,A2)
set variable(V7)
set variable(V8)
get list(V1,V8)
set variable(V9)
unify variable(V7,V9)
unify variable(V6,V8)
put value(V2,A0)
put value(V5,A1)
put value(V7,A2)
deallocate

append(Xs, Y, Zs).

E(C2, L
2
1) execute append/3

Table 1. Sequences of bytecodes assigned to clause heads and
body literals of the clauses C1 and C2 of predicate append by the
functions E(C, H) and E(C, L).

there are no more call/execute instructions. If] represents the
concatenation of sequences of bytecodes, then:

E(C) = E(C, H)
]

(

m]
i=1

E(C, Li))

Note that functions E(C, H) and E(C, Li) do not necessarily
return the bytecodes that one would normally associate to the clause
head H and literal Li respectively. Instead, the definition of those
functions associates the instructions corresponding to argument
preparation for a given call with the (success of the) previous
call (or head). This is to cater for the fact that, in the context of
backtracking, the WAM argument preparation occurs only one time
per call to a literal, even if such call is retried more times before
failing definitively. As a result, the cost of argument preparation
for a given call/execute instruction needs to be associated with
the previous literal to that call/execute, in order not to count it
every time the call is retried.

Table 1 shows how predicate append/3 is compiled into byte-
codes, and identifies the result of calling the E(C, H) and E(C, Li)
functions for each clause head and body literal. H1 represents the
head of the first clause (C1), and H2 and L21 the head of the second
(recursive) clause (C2) and the first literal in such clause body (the
only body literal).

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

496

3. Modeling the Execution Time of Instructions
We define a function t(I) (the timing model), which takes a byte-
code instruction I and returns another function which estimates the
execution time for it depending on the input data sizes of the byte-
code. This is similar to the approach described in (5), where, how-
ever, t(I) was a constant.

In many cases we can assume that the time to execute a bytecode
is constant. However there are some instructions for which this does
not hold because their definitions involve loops. In many of these
cases the timing model consists of an initial constant time t0 plus
another additional constant time titer to cater for the cost of each
iteration, and a simple linear model can be used: t0 + n × titer .
Consider for example the unify void n instruction, which pushes
n new unbound cells on the heap (1), and whose execution time is a
linear function on n. In some other cases instructions have different
execution times depending on the (fixed) values a given argument
can take from some finite set. In such cases, execution time is an
arbitrary function on the argument. Specific constants are assigned
for each possible argument value by means of profiling (Section 5).

Since the cost of a given instruction is different when it succeeds
and when it fails, we will have two costs for each instruction that
can fail: one for the success case and another for the failure case. Fi-
nally, and besides lower-level factors such as cache behavior, there
are some additional variable factors (such as, e.g., the length of
dereferencing chains) which may affect execution times. These fac-
tors are in principle not impossible to cater for via a combination
of static and dynamic analysis, but, given the additional complica-
tion involved, we will ignore them herein and explore what kind of
precision of timing prediction can be achieved with this first level
of approximation.

Another factor that we are not taking into account at this mo-
ment is garbage collection (GC). GC makes programs run slower,
which, at profiling time, increases the (estimated) cost of every
instruction. Therefore, turning it off at profile time (which gives
a smaller estimation of instruction cost) is safe when finding out
lower bounds: if the program whose execution time is to be pre-
dicted is run with GC turned on, then it would run slower w.r.t. an
execution with GC turned off (as it was when profiling), and the
estimated bounds will still be lower bounds, albeit more conserva-
tive. An inverse reasoning applies to upper bounds, and the tech-
nique herein presented is equally valid. However, for the sake of
simplicity, we have taken all the measurements (both for profiling
and executions to be predicted) with GC disconnected.

4. Static Cost Analysis
We now present the compile-time component of our combined
framework: the static cost analysis. This analysis has been imple-
mented and integrated in CiaoPP (17).

4.1 Overview of the Approach
Since the work done by a call to a recursive procedure often de-
pends on the “size” of its input, knowing this size is a prerequisite
to statically estimate such work. Our basic approach is as follows:
given a call p, an expression Φp(n) is statically computed that (i)
is relatively simple to evaluate, and (ii) it approximates Timep(n),
where Timep(n) denotes the cost (in time units) of computing p
for an input of size n on a given platform. Various measures are
used for the “size” of an input, such as list-length, term-size, term-
depth, integer-value, etc. It is then evaluated at run-time, when the
size of the input is known, yielding (upper or lower) bounds on the
execution time required by the computation of the call on a given
platform. In the following we will refer to the compile-time com-
puted expressions Φp(n) as cost functions.

Certain program information (such as, for example, input/out-
put modes and size metrics for predicate arguments) is first au-
tomatically inferred by other analyzers which are part of CiaoPP
and then provided as input to the size and cost analysis. The tech-
niques involved in inferring this information are beyond the scope
of this paper —see, e.g., (17) and its references for some exam-
ples. Based on this information, our analysis first finds bounds on
the size of input arguments to the calls in the body of the predicate
being analyzed, relative to the sizes of the input arguments to this
predicate, using the inferred metrics. The size of an output argu-
ment in a predicate call depends in general on the size of the input
arguments in that call. For this reason, for each output argument
we infer an expression which yields its size as a function of the
input data sizes. To this end, and using the input-output argument
information, data dependency graphs (namely the argument depen-
dency graph and the literal dependency graph) are used to set up
difference equations whose solution yields size relationships be-
tween input and output arguments of predicate calls. The argument
dependency graph is a directed acyclic graph used to represent the
data dependency between argument positions in a clause body (and
between them and those in the clause head). The literal dependency
graph is constructed from the argument dependency graph (group-
ing nodes) and represents the data dependencies between literals.

The information regarding argument sizes is then used to set up
another set of difference equations whose solution provides bound
functions on predicate calls (execution time). Both the size and cost
difference equations must be solved by a difference equation solver.
Although the operation of such solvers is beyond the scope of the
paper, our implementation does provide a table-based solver which
covers a reasonable set of difference equations such as first-order
and higher-order linear difference equations in one variable with
constant and polynomial coefficients,1 divide and conquer differ-
ence equations, etc. In addition, the system allows the use of ex-
ternal solvers (such as, e.g., Purrs (4), Mathematica, Matlab, etc.)
and is currently being extended to interface with other interesting
solvers that have been recently developed (2). Note also that, since
we are computing upper/lower bounds, it suffices to compute up-
per/lower bounds on the solution of a set of difference equations,
rather than an exact solution. This allows obtaining an approximate
closed form when the exact solution is not possible.

4.2 Estimating the Execution Time of Clauses and Predicates
Our cost analysis approach is based on that developed in (12; 11)
(for estimation of upper bounds on resolution steps) and further
extended in (13) (for lower bounds). More recently, in (19) the
analysis was extended to work with vectors of cost components,
with each component considering a known aspect that affects the
total cost of the program. In these approaches the cost of a clause
can be bounded by the cost of head unification together with the
cost of each of its body literals. For simplicity, the discussion that
follows is focused on the estimation of upper bounds. We refer the
reader to (13) for details on lower-bounds cost analysis.

Consider a predicate defined by r clauses C1 , . . . , Cr . We take
into account that a given clause Ck will be tried only if clauses
C1 , . . . , Ck−1 fail to yield a solution. Consider clause Ck defined as
Hk :- Lk

1 , . . . , L
k
m . Because of backtracking, the number of times a

literal will be executed depends on the number of solutions of the
previous literals. Assume that n is a vector such that each element
corresponds to the size of an input argument to clause Ck and that
each ni, i = 1 . . .m, is a vector such that each element corresponds
to the size of an input argument to literal Lk

i . Assume also that
τ(Hk , n) is the execution time needed to resolve the head Hk of

1 Note that it is always possible to reduce a system of linear difference
equations to a single linear difference equation in one variable.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

497

the clause Ck with the literal being solved, SolsLkj is the number of

solutions literal Lk
j can generate, and β(Lk

i , ni) the time needed to
prepare the call to literal Lk

i in the body of the clause Ck . Because
of space constraints, we refer the reader to (11; 13) for details about
the algorithms used to estimate the number of solutions that a literal
can generate, and the sizes of input arguments. Then, an upper
bound CostCk (n) on the cost of clause Ck (assuming all solutions
are required) can be expressed as:

CostCk (n) ≤ τ(Hk , n)+
mP

i=1

(
Q
j≺i

SolsLkj
(nj))(β(Lk

i , ni) + CostLki
(ni))

Here we use j ≺ i to denote that Lk
j precedes Lk

i in the literal
dependency graph for the clause Ck (described in Section 4.1). We
have that:

τ(Hk , n) = δk (n) +
X

I∈E(Ck ,Hk)

t(I)(n)

where δk (n) denotes the execution time necessary to determine
that clauses C1 , . . . , Ck−1 will not yield a solution and that Ck

must be tried: the function δk obviously takes into account the
type and cost of the indexing scheme being used in the underlying
implementation. Also:

β(Lk
i , ni) =

X
I∈E(C,Lki)

t(I)(ni), i = 1, · · · ,m

with E(C, Lk
i) and t(I) defined as in Sections 2 and 3 respectively.

A difference equation is set up for each recursive clause, whose
solution (using as boundary conditions the execution times of non-
recursive clauses) is a function that yields the execution time of a
clause. The execution time of a predicate is then computed from
the execution time of its defining clauses. Since the number of
solutions which will be required from a predicate is generally not
known in advance, a conservative upper bound on the execution
time of a predicate can be obtained by assuming that all solutions
are needed, and, thus, all clauses are executed and the execution
time of the predicate will be the sum of the execution times of
its defining clauses. When the clauses of a predicate are mutually
exclusive, a more precise estimation of the execution time of such
a deterministic predicate can be obtained as the maximum of the
execution times of the clauses it is composed of.

Note that our approach allows defining via assertions the execu-
tion time of external predicates, which can then be used for mod-
ular composition. This includes also predicates for which the code
is not available or which are even written in a programming lan-
guage that is not supported by the analyzer. In addition, assertions
also allow describing by hand the execution time of any predicate
for which the automatic analysis infers a value that is not accurate
enough, and this can be used to prevent inaccuracies in the auto-
matic inference from propagating. The description of the assertion
language used is out of the scope of this paper, and we refer the
reader to (21) for details.

5. Estimating Instruction Execution Times via
Profiling

In this section we will see how data regarding the expected execu-
tion time of each instruction in the abstract machine (Section 3) can
be accurately measured in a realistic environment.

5.1 Instruction Profiling
Profiling aims at calculating a function t(I) for each bytecode in-
struction I . An approach is to instrument the WAM implementa-
tion so that time measures are taken and recorded at appropriate

while (op != END) { /∗ WAM emulation loop ∗/
...
record profile info (op); /∗ op is the current bytecode ∗/

switch(op) {
...

}
...

op = get next op();
}

Figure 1. A simple WAM emulation loop instrumented.

points in the execution (18). In practice, a number of issues have
to be taken into account in order to obtain accurate enough mea-
surements. These include the selection of the places where the in-
strumentation code will be inserted, how to minimize the effects of
such instrumentation on the execution (not only execution time but
also, e.g., cache behavior), and how to work around the complex in-
struction scheduling performed by modern processors, which may
lead to large variance in the results, especially since we aim at mea-
suring very small fragments of code.

A first approximation is to add profiling-related calls in desig-
nated parts of the bytecode interpreter main loop. Figure 1 shows
a piece of code illustrating this. The record profile info(op)
operation records the start time for the bytecode op. The end time is
processed when the next opcode is fetched. The data for each byte-
code is maintained in memory during execution (and in raw form
in order to impact execution as little as possible) and later saved to
an external file.

A benchmark-based analysis is also proposed in (18), which
describes how the instrumented code can be reused effectively on
various platforms without modifying it, and how the execution time
of a specific set of bytecodes can be measured.

However, the methods mentioned above have drawbacks. For
example, the first one (instrumenting the main loop) depends on
the existence of very precise, non-intrusive, low-overhead timing
operations which, unfortunately, are not always available in all plat-
forms. Portable O.S. calls, besides having a typically high associ-
ated overhead, are in general not accurate enough for our purposes.
Even if a very fast timing operation is available (which is not the
case in platforms such as mobile and embedded devices), its intro-
duction may affect the behavior of the machine being analyzed if
the abstract machine loop is very optimized. For example, if the
new code changes register and variable allocation, program behav-
ior will be affected in unforeseen ways.

We will, however, use an instrumented loop like that of Figure 1
to count the number of bytecodes executed in a calibration step.

5.2 Measuring Time Accurately
In order to do portable time measurements in platforms where high
resolution timing is difficult or impossible to achieve, workarounds
have to be used. The approach that we have followed is based on
using synthetic benchmarks which on purpose repeatedly execute
the instructions under estimation for a large enough time, and
later divide the total execution time by the number of times the
instructions were executed. A complication in this process is that
it is in general not possible to run a single instruction repeatedly
within the abstract machine, since the resulting sequence would not
be legal and may “break” the abstract machine, run out of memory,
etc. In general, more complex sequences of instructions must be
constructed and repeated instead.

Therefore, the approach we have followed involves designing
a set of legal programs which cover all the bytecode instructions,

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

498

Programs Instructions Trace
c1 5 :- c1 5 0. 00 : execute 01 00 : execute 01
c1 5 0 :- c1 5 1. 01 : execute 02 01 : execute 02
c1 5 1 :- c1 5 2. 02 : execute 03 02 : execute 03
c1 5 2 :- c1 5 3. 03 : execute 04 03 : execute 04
c1 5 3 :- c1 5 4. 04 : execute 05 04 : execute 05
c1 5 4 :- c1 5 5. 05 : execute 06 05 : execute 06
c1 5 5. 06 : proceed 06 : proceed
c1 0 :- c1 0 0. 01 : execute 02 01 : execute 02
c1 0 0. 02 : proceed 02 : proceed

Table 2. Programs used in order to get the execution time of the
execute instruction.

relate the execution time of these programs with the individual
instruction execution times with a system of equations, and solving
such a system.

5.3 Getting Instruction Execution Time
We now discuss how to set up calibration programs in order to get
the cost of bytecodes. In this section, and in order to simplify the
discussion, we deal with those bytecodes whose execution time
is bound by a constant. In the following section we extend our
technique to manage instructions whose execution time is unbound.

Let Ci, i = 0, 1, . . . , n be a set of synthetic calibration pro-
grams, each of them returning the execution time of a block of code.
Each Ci, which we will refer to as calibrator, is generated in such a
way that it repeats such block a given number of times, say r. Let us
assume, for example, that we want to calibrate the WAM instruction
“execute” when it does not fail and that we want to repeat its exe-
cution 5 times (i.e., r = 5). Table 2 shows a set of programs which
can be used to calibrate this WAM instruction. Columns Instruc-
tions and Trace show the WAM code as generated by the compiler
and the sequence of instructions executed when running the pro-
gram starting from the first clause respectively. In general, in our
approach, rather than a concrete program, calibrators are program
generation templates which take r as an input and return, e.g., the
programs in Table 2 for that value of r. The actual calibration pro-
gram includes an entry point which calls the programs in Table 2
and returns the value of the execution time of the execute instruc-
tion, subtracting the time spent in the entry calls (e.g., c1 5 for
Table 2). In this case the calibration time is easy to compute as the
difference between the execution time of c1 5 and c1 0 divided
by r. The result of the calibration should ideally be invariant with
respect to r; in practice this is however not true due, among other
factors, to timing imprecision. Thus, r needs to be determined for
each case: it has to be a large enough value to ensure stability of
the time measured by the calibrator for the particular platform and
the method used to measure time, but not excessively large, as this
would make calibration impractical.

In some cases we cannot isolate the behavior of only one byte-
code. This is specially the case in the calibrators of instructions
which alter the program flow, such as call, proceed, trust me,
try me else, retry me else, allocate, deallocate. It is also
the case when measuring the cost of failure for any of the instruc-
tions which can fail (generally the get and unify instructions).
All these instructions need to be always executed together with
other bytecodes in order to make the calibration program legal. As
a result, and due to interactions between the costs of the different
instructions, the equations are not as easy to configure in all cases
as the simple case for the execute instruction above.

As a simple example, the calibrator that returns the cost of call
and the proceed instructions uses the programs in Table 3 (where
we have turned off the optimization of register / variable allocation
in the compiler for simplicity). In order to be able to separate the

Programs Instructions Trace
c2 5 :- 00 : allocate 00 : allocate

c 5, 01 : call 09 01 : call 09
c 5, 02 : call 09 09 : proceed
c 5, 03 : call 09 02 : call 09
c 5, 04 : call 09 09 : proceed
c 5, 05 : call 09 03 : call 09
c 5, 06 : call 09 09 : proceed
c 5. 07 : deallocate 04 : call 09

08 : execute 09 09 : proceed
05 : call 09

c 5. 09 : proceed 09 : proceed
06 : call 09
09 : proceed
07 : deallocate
08 : execute 09
09 : proceed

c2 0 :- 00 : allocate 00 : allocate
c 0, 01 : call 04 01 : call 04
c 0. 02 : deallocate 04 : proceed

03 : execute 04 02 : deallocate
03 : execute 04

c 0. 04 : proceed 04 : proceed

Table 3. Programs used to get the execution time of the call and
proceed instructions.

cost of call and proceed an idea might be to find a calibrator that
isolates the cost of proceed by itself and subtract from the value
given by the calibrator for call and proceed and obtain the cost
of call. However, that is in general not possible since in all legal
calibrators proceed and call must always appear combined with
other bytecodes. In general we need to set up a system of equations
in which the known values are the costs given by our calibrators
and the unknown values are the costs of the individual bytecodes.
Such equations can be configured automatically, by executing the
calibration programs in a special version of the WAM with the
bytecode dispatch loop instrumented as in Figure 1 so that the
profiler keeps an account of the executed bytecodes.

Let ci, 0 ≤ i ≤ n, be the time calibrator Ci has returned, and
let βj , 0 ≤ j ≤ m, m ≥ n, be the cost of a bytecode Bj , distin-
guishing between the case of a fail or a success in the execution of
such bytecode. In other words, Bj ∈ I × {fail , success}, where I
the set of all possible bytecodes and fail and success represent the
failure or success of the execution of a bytecode. We can then set
up the following system of equations:

c1 = a11β1 + a12β2 + · · ·+ a1mβm

c2 = a21β1 + a22β2 + · · ·+ a2mβm

. . .
cn = an1β1 + an2β2 + · · ·+ anmβm

(1)

which we can rewrite such using matrix notation:

C = AB (2)

where B = (βi) is the vector of execution times for the bytecodes.
In order to obtain B we ideally need to configure as many calibra-
tors as bytecodes. Finding a solution to this system of equations re-
quires, in principle, independence among the equations (i.e., there
is no other linear independent equation but those in (1)), and to have
as many equations as variables. However, that is not always possi-
ble due to dependencies between the number of times a bytecode is
executed. For example, in the WAM under analysis, the following
invariant holds:

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

499

PROPOSITION 1. For any program, the number of times re-
try me else is called plus the number of times trust me is called
is equal to the number of failures.

This holds since a failure always causes backtracking to the next
choice point, which always implies executing either a retry me else
or a trust me instruction. As the coefficients aij in the equation
above are precisely the number of times every bytecode is exe-
cuted, it turns out that, for a given execution, some coefficients are
dependent on some other coefficients, therefore breaking the initial
independence assumption: the system of equations is underdeter-
mined and it does not have a unique solution.

For this reason, since the coefficients aij where obtained by
summarizing legal programs (i.e., the calibrators), and they will be
affected by the linear dependency mentioned above, the undeter-
mined system (2) will not have a unique solution. However, note
that when several bytecodes in a block must be executed together
(because of constraints in the WAM compilation and execution
scheme) knowing the execution time of each of them in isolation
is not needed: knowing the total execution time of the whole block
is enough. This intuitive idea can be formalized and generalized
with the following result:

PROPOSITION 2. Given a set of n calibration programs Ci, that
define n linear independent equations with βi variables (corre-
sponding to the m bytecodes, with both success and failure cases
included), if we have that for all programs there exist m−n linear
independent relationships between the number of bytecodes that
are always fulfilled, then the estimated execution time is invariant
with respect to the choice of any arbitrary element of the solution
set of such linear system.

Proof : Let B be an arbitrary solution of C = AB. Let X be a
vector which represents the number of times each bytecode has
been executed for a given program. The estimated execution time is
E = XTB, i.e., the sum of the time for each bytecode multiplied
by the number of times it has been executed.

By linear algebra, and considering that each calibrator defines a
linear independent equation, we have that the range of A is n, and
the kernel (or nullspace) of A is given by the set of all λ such that
Aλ = 0, a vector space of dimension m− n (0 represents the null
vector of dimension n). In other words, we have that:

C = AB = AB + 0 = AB +Aλ = A(B + λ) (3)

Then,B+λ is a solution of (2), and it is also a representative of the
solution set of such equation system. What we should prove now
is that XT (B + λ) = XTB, that is, canceling common terms and
transposing the equations:

λTX = 0 (4)

On the other hand, we have a set ofm−n = k linear dependencies
between the number of bytecodes executed of the form:

0 = v11x1 + v12x2 + · · ·+ v1mxm

0 = v21x1 + v22x2 + · · ·+ v2mxm

. . .
0 = vk1x1 + vk2x2 + · · ·+ vkmxm

Or, rewriting them using matrices:

0 = V X (5)

The result of multiplying an arbitrary vector d by V is a vector
µT = (dV) and for the equation above, it follows that µTX = 0.

But note that the rows of A were obtained executing a program
that meets the linear dependencies too, that is, µTAT = 0. Trans-
posing, we have:

Aµ = 0 (6)

For this reason, we can see that as λ, µ is a member of the kernel
of A, and considering the uniqueness of the kernel of a matrix, and
that µ is an element of a space of dimension m−n, we can choose
µ such that λ = µ, that is, we can express λ as the product (dV)T ,
as result of basic theorems of linear algebra. Therefore, we have
that:

λTX = µTX = (dV)X = d(V X) = d(0) = 0 (7)

2

Then, the method we follow to select a representative solution
B is simply to complete the equation systems with m − n arbi-
trary equations in order to make them become determined. Such
equations should be selected in such a way that the βi values be
positive, for example, by setting the cost to 0 as the time of the
bytecodes that are faster, avoiding negative solutions.

5.4 Dealing with unbound instructions
We now consider the case of bytecode instructions whose execution
time depends on the specific values that certain parameters can
take at run time. In such cases the accuracy of our analysis can
be increased by taking advantage of static term-size analysis and
the addition of cost-related assertions for such instructions. Such
assertions make it possible to introduce ad-hoc functions giving the
size of the input parameters of the bytecode.

In fact, our system is able to deal with several metrics (e.g.,
value, length, size, depth, ...) as shown in (12; 11; 13), but for
brevity, in the following paragraphs we will describe an example
unifying lists.

Let us take, the instruction unify variable(V, W) and let us
assume that we want to calculate an upper bound for its execution
time upon success and for the case where the two arguments to
unify are lists of numbers. We assume that an upper bound to the
execution time is proportional to the number of iterations necessary
to scan the lists. The timing model for such instruction is thus
K1 + K2 ∗ length(V), because if the instruction succeeds, the
length of both V and W should be equal. The value of constants
K1 andK2 is calculated by setting up two benchmarks which unify
lists of different length l1 and l2. If the cost of unify variable
for these two list lengths is, respectively, B1 and B2, then we set
up the following system of linear equations:

B1 = K1 +K2 × l1
B2 = K1 +K2 × l2 (8)

Note that B1 and B2 can be added to the system of equations (2)
to get its values in one step, and later, we solve K1 and K2 in the
system of linear equations (6).

6. Experimental results
In order to evaluate the techniques presented so far we need to
choose a concrete bytecode language and an implementation of its
abstract machine to execute and profile with. As mentioned before,
the de-facto target abstract machine for most Prolog compilers is
the WAM (23; 1) or one of its derivatives. In order to evaluate
the feasibility of the approach we have chosen a relatively simple
WAM design, which is quite close to the original WAM definition.
It is based on (9), but has been ported from Java to C/C++ to
achieve similar performance of other Prolog systems. The use of a
relatively simple abstract machine allows evaluating the technique
while avoiding the many practical complications present in modern
implementations, such as having complex instructions resulting
from merging other, simpler ones, or specializations of instruction
and argument combinations. This of course does not preclude the
application of our technique to the more complex cases.

In our concrete abstract machine, we have considered 42 equa-
tions for 43 bytecodes, differentiating the success and failure cases.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

500

As we have seen in Proposition ??, there exists a linear relationship
between the number of bytecodes that a program will call which
can be stated as:

0 = x30 + x38 − x13 − x15 − x17 − x22 − x41

−x43 − x49 − x50 − x51 − x52 − x53

where the xi represent the number of times the bytecode tagged as
βi has been executed for any program being analyzed (see Tables 4
and 6).

By Proposition 1, we are free to select any arbitrary solution of
the linear system. The proposed solution has been found by setting
arbitrarily the cost of fail to zero. Then, our set of linear equations,
discarding those whose calibrators are composed only with one
bytecode, is as follows:

0 = β13 c01 = β01 + β07

c20 = β20 + β33 + β43 c09 = β09 + β24

c11 = β01 + β11 + 2β28 + β30 c15 = β15 + β38

c46 = β01 + 2β28 + β30 + β50 c17 = β17 + β30

c42 = β01 + 2β27 + β30 + β52 c07 = β07 + β24

c22 = β01 + β22 + β23 + β30 c29 = β01 + β17 + β30

c34 = β01 + β23 + β30 + β35 c37 = β17 + β38

c36 = β01 + 2β28 + β30 + β37 c38 = β07 + β24 + β39

c40 = β01 + β23 + β30 + β41 c19 = β19 + β33

c43 = β01 + β27 + β28 c13 = β01 + β13 + β30

+β30 + β49

c49 = β01 + 2β19 + 2β27 c51 = β01 + 2β20

+β30 + 2β31 + 2β33 + β51 +β30 + 2β31 + β53

(9)
Solving this linear system we get:

β01 = c29 − c17
β07 = −c29 + c17 + c01
β09 = −c29 + c17 + c09 − c07 + c01
β11 = −2c27 − c13 + c11
β13 = 0
β15 = −c37 + c29 + c15 − c13
β17 = c29 − c13
β19 = c19 − c32
β20 = −c44 − c32 + c20
β22 = −c23 + c22 − c13
β24 = c29 − c17 + c07 − c01
β30 = −c29 + c17 + c13
β35 = c34 − c23 − c13
β37 = c36 − 2c27 − c13
β38 = c37 − c29 + c13
β39 = c38 − c07
β41 = c40 − c23 − c13
β49 = c43 − c27 − c26 − c13
β50 = c46 − 2c27 − c13
β51 = c49 − 2c30 − 2c26 − 2c19 − c13
β52 = c42 − 2c26 − c13
β53 = c51 + 2c44 + 2c32 − 2c30 − 2c20 − c13

(10)

The leftmost column of Tables 4 and 6 summarizes the cali-
bration data for the instructions of our WAM implementation. For
brevity, we actually only show those being used in the examples
tested, although we have calibrated all of them. In the second col-
umn there is a tag that is the variable name in the linear equations
system. In the examples we deal with a subset of Prolog which
only has operations on integers, atoms, lists, and terms. Likewise,
we obviate issues like modules or syntactic sugar which can be
dealt with at the Prolog level. A few additional built-in predicates
are required to have a minimal functionality including write/1,
consult/1, etc. They are profiled separately and their timing is
given to the system through assertions. This is also a valid solution
in order to be able to analyze larger programs.

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

allocate β01 29 366 1055
arith add β02 29 489 1438
arith div β03 29 580 1541
arith mod β04 29 641 1553
arith mul β05 28 519 1468
arith sub β06 28 519 1438
call β07 11 183 261
cut β08 13 183 581
deallocate β09 7 305 142
execute β12 15 152 574
get constant atom β14 38 518 1211
get constant int β16 28 396 1157
get level β18 28 213 1054
get list β19 20 275 763
get struct β20 52 642 1766
get value β21 43 488 1457
get variable β23 43 549 1658
proceed β24 17 61 699
put a constant atom β25 20 122 594
put a constant int β26 20 122 506
put constant atom β27 37 274 1085
put constant int β28 37 274 997
put value β29 21 183 910
retry me else β30 33 336 999
set constant atom β31 26 213 861
set constant int β32 25 183 767
set variable β33 29 213 850
trust me β38 29 336 973
try me else β39 30 457 1132
unequal β40 21 244 1021
unify variable(nvar,var) β42 35 396 1309
unify variable(var,nvar) β43 35 397 1309
unify variable(int,int) β44 32 275 1179
unify variable(atm,atm) β46 44 427 1413

unify variable(
str(1),str(1)) β47 77 885 2560

unify variable(
list(1),list(1)) β45 96 1068 3291

unify variable(
list(100),list(100)) β48 4062 42511 217975

Table 4. Timing model for the WAM instructions. Cost of byte-
codes when they succeed.

The experiments were made on the following representative
platforms:

• UltraSparc-T1, 8 cores x 1GHz (4 threads per core), 8GB of
RAM, SunOS 5.10.

• Intel Core Duo 1.66GHz, 2GB of RAM, Ubuntu Linux 7.04.
• Nokia N810. 400MHz processor, 128MB of RAM, Internet

Tablet OS, Maemo Linux based OS2008 51.3

In order to reduce noise in the data because of spurious results,
we have repeated each experiment 20 times and present the lowest
results. In the calibration step 1000 repetitions were made (i.e., r =
1000). When possible, the tests were performed with the machines
in single-user mode, stopping unnecessary processes. System tasks
such as garbage collection, which, as mentioned before, is not
considered in our model at the moment, were turned off.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

501

Platform Timing Model (ns)
Intel 44 + 40.62 ∗ length(X)
N810 427 + 425.11 ∗ length(X)
Sparc 1413 + 2179.75 ∗ length(X)

Table 5. Timing model given by a linear function, for
unify variable(X,Y) when the arguments are lists of integers,
and the instruction does not fail.

Bytecode Tag Intel N810 Sparc
(ns) (ns) (ns)

fail β13 0 0 0
get constant atom β15 32 457 1256
get constant int β17 26 366 1169
get value β22 25 244 1106
unequal β41 11 61 651
unify variable β43 121 1065 3867

unify variable(
const1,const2)
const1 6= const2

β49 41 154 697

unify variable(int,int) β50 122 1035 3830
unify variable(

list(1),list(1)) β51 338 3227 12229

unify variable(atm,atm) β52 127 1126 4282
unify variable(

str(1),str(1)) β53 223 2381 9239

Table 6. Timing model for the WAM instructions. Cost of byte-
codes when they fail.

Tables 4 and 6 show the timing model for this WAM and the
architectures studied. In the benchmarks used the is/2 instruc-
tion is compiled into basic operations over pairs of numbers. The
table shows the corresponding instructions named arith *. We
also have separated the cost of the instructions put constant,
get constant when they are called for an atom or an integer.
Note however, that their cost is very similar in most cases, but
this will still help to reduce errors in the estimation. For the
unify variable instruction we have also included calibrations
for several cases depending on the type and size of the input argu-
ments in order to increase precision. In other cases, as mentioned
in 5.4, the execution time of this instruction is not bounded by any
a-priori known constant. Since, as also shown in Section 5.4, in our
implementation it is possible to use functions instead of constants
as timing model for a given instruction, in this table we include in
the calibrations two data points for the case when the arguments
are lists of integers, and for lists of size (length) 1 and 100 (β45

and β48 in Table 4). The value for an empty list is the same as for
unifying any two equal atoms, i.e., β46 in Table 4. Table 5 shows
the resulting timing model for unify variable using these values
to fit our linear model for this instruction.

Using the timing model shown in Tables 4, 5, and 6, we have
performed some experiments with a series of programs on the three
platforms (Intel, N810, and Sparc) in order to assess the accuracy
of our technique for estimating execution times. The results of
these experiments are shown in Tables 8 (Intel), 9 (N810), and 10
(Sparc).

Column Pr. No. lists the program identifiers, whose associa-
tion with the programs and the input data sizes used is shown in
Table 7. Column Cost App. indicates the type of approximation
of the automatically inferred cost functions which estimate exe-
cution times (as a function on input data size): upper bound (U),
lower bound (L), or exact (E). Such cost functions are shown in
column Cost Function for the three different platforms considered

No. Program Data size
1 append(+A,+,-) x=length(A)=150
2 evalpol(+A,+X,-) x=length(A)=100
3 fib(+N,-) x=N=16
4 hanoi(+N,+,+,+,-) x=N=8
5 nreverse(+L,-) x=length(L)=83
6 palindro(+A,-) x=length(A)=9
7 powset(+A,-) x=length(A)=11
8 list diff(+L,+D,-) x=length(L)=65

y=length(D)=65
9 list inters(+L,+D,-) x=length(L)=65

y=length(D)=65
10 substitute(+A,+B,-) x=term size(A)=67

y=term size(B)=80
11 derive(+E,+,-) x=term size(E)=75

Table 7. List of program examples used in the experimental as-
sessment.

in our experiments. The variables x and y represent the sizes of the
input arguments to the programs which are relevant for the infer-
ence of the cost functions. The type of approximation directly de-
pends on the one used by the static analysis described in Section 4
for estimating the number of executed instructions (as a function
on input data size). The value E means that the lower and upper
bound cost functions are the same, and thus, since the analysis is
safe, this means that the exact cost function was inferred. Using
the cost functions shown in column Cost Function, and in order
to assess their accuracy, we have also estimated execution times
for particular input data for each program and compared them with
the observed execution times. These execution times are shown in
columns Est. and Obs. respectively. Column D. shows the relative
harmonic difference between the estimated and the observed time 2.
The source of inaccuracies in the execution time estimations of our
technique come mainly from two sources: the timing model (which
gives the execution time estimation of bytecodes, as shown in Ta-
bles 4 and 6)) and the static analysis (described in Section 4, which
estimates the number of times that the bytecodes are executed, de-
pending on the input data size). Since we are interested in iden-
tifying the source(s) of inaccuracies, we have also introduced the
column Prf. It shows the result of estimating execution times using
the timing model and assuming that the static analysis was perfect
and obtained a function which provides the exact number of times
that the bytecodes are executed. This obviously represents the case
in which all loss of accuracy must be assigned to the timing model.
The “perfect” cost model is obtained from an actual execution by
instrumenting the profiler so that it records the number of times
each instruction is executed for the application and the particular
input data. Column Pr.D. shows the relative harmonic difference
between Prf. and the observed execution time Obs.

The upper part of Tables 8, 9, and 10, up to the double line
corresponds to examples where an exact cost function for the num-
ber of executed bytecodes was automatically inferred by the static
analysis (note that, as expected, the values Est. and Prf. are the
same). We can see that with an exact static analysis, the estimated
execution times Est. are quite precise, which in turn supports the
accuracy of our timing model.

It is particularly interesting to compare these results with those
which were obtained using a variety of higher-level models in (19).
Table 11 provides the standard deviation of the four high-level
models of (19) as well as that of the abstract machine-based model
presented in this paper, for the Intel platform and our set of bench-

2 rel harmonic diff(x, y) = (x− y)(1/x + 1/y)/2.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

502

Pr. Cost. Intel (µs)
No. App. Cost Function Est. Prf. Obs. D. % Pr.D. %

1 E 0.73x+ 0.21 110 110 113 -2.4 -2.4
2 E 0.69x+ 0.19 69 69 71 -2.3 -2.3
3 E 0.69 · 1.6x + 0.21(−0.62)x − 0.72 1525 1525 1576 -3.3 -3.3
4 E −0.0042 · 2x + 0.73x · 2x − 0.86 1501 1501 1589 -5.7 -5.7
5 E 0.37x2 + 0.49x+ 0.12 2569 2569 2638 -2.7 -2.7
6 E 0.36 · 2x + 0.37x · 2x − 0.24 1875 1875 2027 -7.8 -7.8
7 E 0.91 · 2x + 0.87x− 0.6 1868 1868 1931 -3.3 -3.3
8 L 0.66x+ 0.2 43 68 81 -67.2 -17.8

U 0.78xy + 1.7x+ 0.4 3414 3569 3640 -6.4 -2.0
9 L 0.83x+ 0.2 54 79 91 -54.6 -14.8

U 0.78xy + 1.7x+ 0.4 3414 3694 4011 -16.2 -8.2
10 L 2x 135 142 124 8.6 13.7

U 1.4xy + 1.4y + 6.1x+ 4.1 7922 2937 2858 120.6 2.7
11 L 2.9x 216 138 111 72.3 22.5

U 3x+ 3 226 216 162 34.0 29.5

Table 8. Observed and estimated execution time with cost functions, Intel platform (microseconds).

Pr. Cost. N810 (µs)
No. App. Cost Function Est. Prf. Obs. D. % Pr.D. %
1 E 7.8x+ 2.7 1169 1169 1037 12.0 12.0
2 E 7.8x+ 2.7 786 786 641 20.6 20.6
3 E 8.3 · 1.6x + 2.5(−0.62)x − 8.4 18333 18333 14496 23.7 23.7
4 E 0.74 · 2x + 7.8x · 2x − 10 16095 16095 16144 -0.3 -0.3
5 E 3.9x2 + 5.7x+ 1.6 27247 27247 28381 -4.1 -4.1
6 E 4.4 · 2x + 3.9x · 2x − 2.9 20167 20167 20416 -1.2 -1.2
7 E 9.5 · 2x + 10x− 6 19517 19517 19653 -0.7 -0.7
8 L 7.3x+ 2.8 474 744 640 -30.4 15.1

U 8.2xy + 19x+ 5.5 35849 37162 29266 20.4 24.1
9 L 8.7x+ 2.8 569 839 732 -25.4 13.7

U 8.2xy + 19x+ 5.5 35849 38076 29907 18.2 24.4
10 L 21x 1399 1475 1068 27.3 32.9

U 15xy + 15y + 64x+ 43 85893 30375 25543 153.3 17.4
11 L 29x 2190 1423 854 108.7 53.3

U 30x+ 30 2306 2193 1342 56.8 51.1

Table 9. Observed and estimated execution time with cost functions, Nokia N810 platform (microseconds).

Model Deviation
High Level 1 51.17 %

2 31.06 %
3 21.48 %
4 58.45 %

Abs. Machine 4.72 %

Table 11. Comparison between the higher level models and the
abstract machine-based model, on the Intel platform.

marks. It can be observed that the results obtained with the abstract
machine-based model are more than five times better on the same
platform than those obtained using the higher-level models.

With the abstract machine-based model, and for this type of pro-
grams we believe that the remaining error comes simply from the
accumulated loss of accuracy of the bytecode instruction profiling
and expect that making the timing model more precise will increase
precision even further.

The lower part of Tables 8, 9, and 10 shows programs for
which there is no unique value for Timep(n), where Timep(n)
(as described in Section 4.1) denotes the cost (in time units) of

computing a call to program p for an input of size n on a given
platform. The reason is that for such programs, the number of
instructions executed does not only depend on the input data sizes,
but also depends on other characteristics of the input data (e.g., their
actual values). Thus, for a given data size, there are actual lower
and upper bounds for the cost of the program calls. For this reason,
the two observed execution times shown in column Obs. for each
program have been obtained by running the program with the input
data, of the size specified in Table 7, that yield the actual lower and
upper bounds to the execution times for such size. In this case, the
static analysis infers approximations to such actual lower and upper
bound cost functions (L and U respectively). These predictions
are understandably much less accurate in these cases than those
in the first part of the table, but still reasonable. In any case, lower
bounds and upper bounds tend to be reasonably smaller or bigger
than the observed execution times respectively. In general, for the
programs in the lower part of the tables with big (absolute) values
for D., the (absolute) value for Pr.D. is reasonably small. This
means that, in those cases, most of the inaccuracy in the estimation
of execution times (Est.) comes from the static analysis, which
does not approximate actual lower and upper bound cost functions
accurately enough, and that the timing model used for predicting

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

503

Pr. Cost. Sparc (µs)
No. App. Cost Function Est. Prf. Obs. D. % Pr.D. %
1 E 26x+ 7.4 3906 3906 4670 -18.0 -18.0
2 E 25x+ 7.1 2543 2543 2985 -16.1 -16.1
3 E 26 · 1.6x + 7.8(−0.62)x − 27 56828 56828 59120 -4.0 -4.0
4 E 1.2 · 2x + 26x · 2x − 33 53504 53504 63156 -16.7 -16.7
5 E 13x2 + 17x+ 4.3 90973 90973 109849 -19.0 -19.0
6 E 13 · 2x + 13x · 2x − 8.5 66400 66400 78980 -17.4 -17.4
7 E 32 · 2x + 32x− 22 66224 66224 78151 -16.6 -16.6
8 L 24x+ 7.1 1574 2458 2991 -68.7 -19.7

U 27xy + 62x+ 14 118269 123733 129951 -9.4 -4.9
9 L 30x+ 7.1 1940 2824 3394 -58.9 -18.5

U 27xy + 62x+ 14 118269 127378 133703 -12.3 -4.8
10 L 68x 4545 4821 4634 -1.9 4.0

U 48xy + 48y + 207x+ 140 277175 101779 111829 103.8 -9.4
11 L 95x 7104 4628 4038 59.6 13.7

U 98x+ 98 7454 7147 6081 20.5 16.2

Table 10. Observed and estimated execution time with cost functions, Sparc platform (microseconds).

the execution time of bytecodes is reasonably precise. Thus, we
believe that using a better static analysis for inferring cost functions
which take into account other characteristics of the input data,
besides their sizes, would significantly improve the predictions. In
any case, there is always a reasonable slack in the precision of the
estimations due to the timing measurements and the timing model.

7. Conclusions and Future Work
We have developed a framework for estimating upper and lower
bounds on the execution times of logic programs running on a
bytecode-based abstract machine. We have shown that working
at the abstract machine level allows taking into account low-level
issues without having to tailor the analysis for each architecture and
platform, and allows obtaining more accurate estimates than with
previous approaches, including comparatively accurate upper and
lower bound estimations of execution time.

Although the framework has been presented in the context of
logic programs, we believe the technique can easily be applied to
other languages. This adaptation of the approach, while certainly
not trivial, to some extent would actually imply some simplifica-
tion, since backtracking does not need to be taken into account.
For example, analyses have been recently developed for Java byte-
code (3) which infer the number of execution steps using simi-
lar techniques to those used in logic programming (12; 11; 13).
Such analyses could be adapted, following the techniques presented
herein, to take into account the bytecode timing information and
would then be able to estimate actual execution time for Java pro-
grams. Appropriate cost models for Java bytecode are already being
developed in (22).

We believe that the more accurate execution time estimates that
can be obtained with our technique can be very useful in several
contexts including parallelism, compilation, real-time applications,
pervasive systems, etc. More concretely, increased timing preci-
sion can improve the effectiveness of resource/granularity control
in parallel/distributed computing. This belief is based on previous
experimental results, where it appeared that, even if improved pre-
cision in timing estimates is not essential, it does yield increased
speedups. Also, the inferred cost functions can be used to develop
automatic program optimization techniques. For example, they can
be used for performing self-tuning specialization which compares
statically the estimated execution time of different specialized ver-
sions (10).

Given that our experimental results are encouraging with re-
spect to actually being able to find more accurate upper and lower
bounds to program execution times, the approach may eventually
also be used for verification (or falsification) of timing constraints,
as in, for example, real-time systems, which was not possible in
an accurate way with previous approaches. In fact, our approach
(which can be adapted to take also into account destructive assign-
ment, as in (20)) can potentially be used to solve a common prob-
lem in current WCET static analysis, where only constant WCET
bounds (i.e., non dependent on input data sizes) are inferred. These
bounds are not always appropriate since the WCET of a given pro-
gram often depends on several input parameters, and using an ab-
solute bound, covering all possible situations (i.e., all possible val-
ues or sizes of input), produces only a very gross over approxima-
tion (15). Substituting the estimated costs of the bytecodes by the
actual worst-case costs of the instructions and using our approach,
the WCET is expressed as a cost function parameterized by the size
or values of input arguments, providing tighter WCET approxima-
tions. On the other hand, WCET work has produced more accurate
(but, unfortunately, non-freely available) timing models which take
into account many low-level parameters (such as cache behavior,
pipeline state, etc.) which we have abstracted away in our work. It
is clear that a combination of both techniques might be very useful
in practice.

References
[1] H. Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction.

MIT Press, 1991.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference
of Upper Bounds for Recurrence Relations in Cost Analysis. In Proc.
of Static Analysis Symposium (SAS), LNCS. Springer-Verlag, July
2008. To appear.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost
analysis of java bytecode. In R. D. Nicola, editor, 16th European Sym-
posium on Programming, ESOP’07, volume 4421 of Lecture Notes in
Computer Science, pages 157–172. Springer, March 2007.

[4] R. Bagnara, A. Pescetti, A. Zaccagnini, E. Zaffanella, and
T. Zolo. Purrs: The Parma University’s Recurrence Relation Solver.
http://www.cs.unipr.it/purrs.

[5] I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-Level Analysis
of a Portable Java Byte Code WCET Analysis Framework. In Proc.
7th International Conference on Real-Time Computing Systems and
Applications, pages 39–48, Dec. 2000.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

504

[6] I. Bate, G. Bernat, and P. Puschner. Java virtual-machine support
for portable worst-case execution-time analysis. In 5th IEEE Inter-
national Symposium on Object-oriented Real-time Distributed Com-
puting, Washington, DC, USA, Apr. 2002.

[7] R. Benzinger. Automated higher-order complexity analysis. Theor.
Comput. Sci., 318(1-2), 2004.

[8] F. Bueno, P. López-Garcı́a, and M. Hermenegildo. Multivariant Non-
Failure Analysis via Standard Abstract Interpretation. In 7th Inter-
national Symposium on Functional and Logic Programming (FLOPS
2004), number 2998 in LNCS, pages 100–116, Heidelberg, Germany,
April 2004. Springer-Verlag.

[9] S. Buettcher. Warren’s Abstract Machine - A Java Implementation.
http://www.stefan.buettcher.org/cs/wam/index.html.

[10] S.-J. Craig and M. Leuschel. Self-tuning resource aware specialisation
for Prolog. In PPDP ’05: Proceedings of the 7th ACM SIGPLAN
international conference on Principles and practice of declarative
programming, pages 23–34, New York, NY, USA, 2005. ACM Press.

[11] S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM
Transactions on Programming Languages and Systems, 15(5):826–
875, November 1993.

[12] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity
Analysis in Logic Programs. In Proc. of the 1990 ACM Conf. on
Programming Language Design and Implementation, pages 174–188.
ACM Press, June 1990.

[13] S. K. Debray, P. López-Garcı́a, M. Hermenegildo, and N.-W. Lin.
Lower Bound Cost Estimation for Logic Programs. In 1997 Inter-
national Logic Programming Symposium, pages 291–305. MIT Press,
Cambridge, MA, October 1997.

[14] S. Diehl, P. Hartel, and P. Sestoft. Abstract machines for program-
ming language implementation. Future Generation Computer Sys-
tems, 16(7):739–751, 2000.

[15] A. Ermedahl, J. Gustafsson, and B. Lisper. Experiences from Indus-
trial WCET Analysis Case Studies. In R. Wilhelm, editor, Proc. Fifth
International Workshop on Worst-Case Execution Time (WCET) Anal-
ysis, Palma de Mallorca, July 2005.

[16] G. Gómez and Y. A. Liu. Automatic time-bound analysis for a higher-
order language. In PEPM. ACM Press, 2002.

[17] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garcı́a. Inte-
grated Program Debugging, Verification, and Optimization Using Ab-
stract Interpretation (and The Ciao System Preprocessor). Science of
Computer Programming, 58(1–2):115–140, October 2005.

[18] E. Y.-S. Hu, A. J. Wellings, and G. Bernat. Deriving java virtual
machine timing models for portable worst-case execution time anal-
ysis. In On The Move to Meaningful Internet Systems 2003: OTM
2003Workshops, volume 2889 of LNCS, pages 411–424. Springer, Oc-
tober 2003.

[19] E. Mera, P. López-Garcı́a, G. Puebla, M. Carro, and M. Hermenegildo.
Combining Static Analysis and Profiling for Estimating Execution
Times. In Ninth International Symposium on Practical Aspects
of Declarative Languages, number 4354 in LNCS, pages 140–154.
Springer-Verlag, January 2007.

[20] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Customizable Re-
source Usage Analysis for Java Bytecode. Technical report, Univer-
sity of New Mexico, Department of Computer Science, UNM, January
2008. Submitted for publication.

[21] J. Navas, E. Mera, P. López-Garcı́a, and M. Hermenegildo. User-
Definable Resource Bounds Analysis for Logic Programs. In 23rd In-
ternational Conference on Logic Programming (ICLP 2007), volume
4670 of LNCS, pages 348–363. Springer-Verlag, September 2007.

[22] G. Román-Dı́ez and G. Puebla. Java bytecode timing cost models.
Technical Report CLIP12/2007.0, Technical University of Madrid,
School of Computer Science, UPM, December 2007.

[23] D. Warren. An Abstract Prolog Instruction Set. Technical Report
309, Artificial Intelligence Center, SRI International, 333 Ravenswood
Ave, Menlo Park CA 94025, 1983.

[24] R. Wilhelm. Timing analysis and timing predictability. In F. S.
de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, editors,
Formal Methods for Components and Objects, Third International
Symposium, FMCO 2004, Leiden, The Netherlands, November 2 - 5,
2004, Revised Lectures, volume 3657 of Lecture Notes in Computer
Science, pages 317–323. Springer, 2004.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

505

Customizable Resource Usage Analysis

for Java Bytecode

Jorge Navas,1 Mario Méndez-Lojo,1 Manuel V. Hermenegildo1,2

1 Dept. of Computer Science, University of New Mexico (USA)
2 Dept. of Computer Science, Tech. U. of Madrid (Spain) and IMDEA-Software

Abstract. Automatic cost analysis of programs has been traditionally studied in
terms of a number of concrete, predefined resources such as execution steps, time, or
memory. However, the increasing relevance of analysis applications such as static de-
bugging and/or certification of user-level properties (including for mobile code) makes
it interesting to develop analyses for resource notions that are actually application-
dependent. This may include, for example, bytes sent or received by an application,
number of files left open, number of SMSs sent or received, number of accesses to a
database, money spent, energy consumption, etc. We present a fully automated anal-
ysis for inferring upper bounds on the usage that a Java bytecode program makes
of a set of application programmer-definable resources. In our context, a resource is
defined by programmer-provided annotations which state the basic consumption that
certain program elements make of that resource. From these definitions our analysis
derives functions which return an upper bound on the usage that the whole program
(and individual blocks) make of that resource for any given set of input data sizes.
The analysis proposed is independent of the particular resource. We also present some
experimental results from a prototype implementation of the approach covering an
ample set of interesting resources.

1 Introduction

The usefulness of analyses which can infer information about the costs of computations is
widely recognized since such information is useful in a large number of applications including
performance debugging, verification, and resource-oriented specialization. The kinds of costs
which have received most attention so far are related to execution steps as well as, sometimes,
execution time or memory (see, e.g., [21, 28, 29, 16, 8, 17, 32] for functional languages, [30, 7,
15, 34] for imperative languages, and [13, 12, 14, 26] for logic languages). These and other
types of cost analyses have been used in the context of applications such as granularity
control in parallel and distributed computing (e.g., [23]), resource-oriented specialization
(e.g., [10, 27]), or, more recently, certification of the resources used by mobile code (e.g., [11,
4, 9, 3, 18]). Specially in these more recent applications, the properties of interest are often
higher-level, user-oriented, and application-dependent rather than (or, rather, in addition
to) the predefined, more traditional costs such as steps, time, or memory. Regarding the
object of certification, in the case of mobile code the certification and checking process is
often performed at the bytecode level [22], since, in addition to other reasons of syntactic
convenience, bytecode is what is most often available at the receiving (checker) end.

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

506

We propose a fully automated framework which infers upper bounds on the usage that
a Java bytecode program makes of application programmer-definable resources. Examples
of such programmer-definable resources are bytes sent or received by an application over a
socket, number of files left open, number of SMSs sent or received, number of accesses to a
database, number of licenses consumed, monetary units spent, energy consumed, disk space
used, and of course, execution steps (or bytecode instructions), time, or memory. In our
context, resources are defined by programmers by means of annotations. The annotations
defining each resource must provide for some user-selected elements corresponding to the
bytecode program being analyzed (classes, methods, variables, etc.), a value that describes
the cost of that element for that particular resource. These values can be constants or, more
generally, functions of the input data sizes. The objective of our analysis is then to statically
derive from these elementary costs an upper bound on the amount of those resources that
the program as a whole (as well as individual blocks) will consume or provide.

Our approach builds on the work of [13, 12] for logic programs, where cost functions are
inferred by solving recurrence equations derived from the syntactic structure of the program.
Also, most previous work deals only with concrete, traditional resources (e.g., execution
steps, time, or memory). The analysis of [26] is parametric but it is designed for Prolog
and works at the source code level, and thus cannot be applied to Java bytecode due to
particularities like virtual method invocation, unstructured control flow, assignment, the fact
that statements are low-level bytecode instructions, the absence of backtracking (which has a
significant impact on the method used in [26]), etc. More importantly, the presentation of [26]
is descriptive in contrast to the concrete algorithm provided herein. In [1], a cost analysis is
described that does deal with Java bytecode and is capable of deriving cost relations which
are functions of input data sizes. However, while the approach proposed can conceptually
be adapted to infer different resources, for each analysis developed the measured resource is
fixed and changes in the implementation are needed to develop analyses for other resources.
In contrast, our approach allows the application programmer to define the resources through
annotations in the Java source, and without changing the analyzer in any way. In addition,
the presentation in [1] is again descriptive, while herein we provide a concrete, memo table-
based analysis algorithm, as well as implementation results.

2 Overview of the Approach

We start by illustrating the overall approach through a working example. The Java program
in Fig. 1 emulates the process of sending text messages within a cell phone. The source code is
provided here just for clarity, since the analyzer works directly on the corresponding bytecode.
The phone (class CellPhone) receives a list of packets (SmsPacket), each one containing a
single SMS, encodes them (Encoder), and sends them through a stream (Stream). There
are two types of encoding: TrimEncoder, which eliminates any leading and trailing white
spaces, and UnicodeEncoder, which converts any special character into its Unicode(\uxxxx)
equivalent. The length of the SMS which the cell phone ultimately sends through the stream
depends on the size of the encoded message.

A resource is a fundamental component in our approach. A resource is a user-defined
notion which associates a basic cost function with some user-selected elements (class, method,
statement) in the program. This is expressed by adding Java annotations to the code. The

2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

507

import java . net . URLEncoder ;

public class CellPhone {

SmsPacket sendSms (SmsPacket smsPk ,
Encoder enc ,
Stream stm) {

i f (smsPk != null) {
St r ing newSms = enc . format (smsPk . sms) ;
stm . send (newSms) ;
smsPk . next=sendSms (smsPk . next , enc , stm) ;
smsPk . sms = newSms ;

}
return smsPk ;
}
}
class SmsPacket{

St r ing sms ;
SmsPacket next ;

}

interface Encoder{
St r ing format (St r ing data) ;

}
class TrimEncoder implements Encoder{

@Cost ({” cents ” , ”0”})
@Size (” s i z e (r e t)<=s i z e (s) ”)
public St r ing format (St r ing s){

return s . tr im () ;
}

}
class UnicodeEncoder implements Encoder{

@Cost ({” cents ” , ”0”})
@Size (” s i z e (r e t)<=6∗ s i z e (s) ”)
public St r ing format (St r ing s){

return URLEncoder . encode (s) ;
}

}
abstract class Stream{

@Cost ({” cents ” , ”2∗ s i z e (data) ”})
native void send (St r ing data) ;

}

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.ne(r1,null,void)
Builtin.gtf(r1,sms,r6)

Builtin.asg(r4,r5)

Builtin.eq(r1,null,void)
Builtin.asg(null,r5)

Builtin.gtf(r1,next,r8)
CellPhone.sendSms(r0,r8,r2,r3,r9,r10)
Builtin.stf(r1,next,r10,r1_1)
Builtin.stf(r1_1,sms,r7,r4)

Encoder.format(r2, r6, r7)
Stream.send(r3,r7,void)

Stream.send(r0,r1,r2)

Encoder.format(r0,r1,r2)

Builtin.asg(r3,r2)
java.net.URLEncoder.encode(r1,r3)

Encoder.format(r0,r1,r2)

java.lang.String.trim(r1,r3)
Builtin.asg(r3,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

@Cost({"cents","0"}) @Cost({"cents","0"})

@Cost({"cents","2*size(r1)"})

@Size("size(r2)<=size(r1)") @Size("size(r2)<=6*size(r1)")

Fig. 1. Motivating example: Java source code and Control Flow Graph

objective of the analysis is to approximate the usage that the program makes of the resource.
In the example, the resource is the cost in cents of a dollar for sending the list of text
messages, since we will assume for simplicity that the carrier charges are proportional (2
cents/character) to the number of characters sent. This domain knowledge is reflected by
the user in the method that is ultimately responsible for the communication (Stream.send),
by adding the annotation @Cost({"cents","2*size(data)"}). Similarly, the formatting of
an SMS done in any implementation of Encoder.format is free, as indicated by the @Cost-

({"cents","0")}) annotation. The analysis understands these resource usage expressions
and uses them to infer a safe upper bound on the total usage of the program.

Step 1: Constructing the Control Flow Graph. In the first step, the analysis translates
the Java bytecode into an intermediate representation building a Control Flow Graph (CFG).
Edges in the CFG connect block methods and describe the possible flows originated from
conditional jumps, exception handling, virtual invocations, etc. A (simplified) version of the
CFG corresponding to our code example is also shown in Fig. 1.

The original sendSms method has been compiled into two block methods that share the
same signature: class where declared, name (CellPhone.sendSms), and number and type
of the formal parameters. The bottom-most box represents the base case, in which we re-

3

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

508

turn null, here represented as an assignment of null to the return variable r5; the sibling
corresponds to the recursive case. The virtual invocation of format has been transformed
into a static call to a block method named Encoder.format. There are two block meth-
ods which are compatible in signature with that invocation, and which serve as proxies for
the intermediate representations of the interface implementations in TrimEncoder.format

and UnicodeEncoder.format. Note that the resource-related annotations have been carried
through the CFG and are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationships. The algorithm
infers in this phase size relationships between the input and the output formal parameters
of every block method. For now, we can assume that size of (the contents of) a variable is
the maximum number of pointers we need to traverse, starting at the variable, until null is
found. The following equations are inferred by the analysis for the two CellPhone.sendSms

block methods :

Sizer5

sendSms(sr0
, 0, sr2

, sr3
) ≤ 0

Sizer5

sendSms(sr0
, sr1

, sr2
, sr3

) ≤ 7× sr1
− 6 + Sizer5

sendSms(sr0
, sr1

− 1, sr2
, sr3

)

The size of the returned value r5 is independent of the sizes of the input parameters this,
enc, and stm (sr0

, sr2
and sr3

respectively) but not of the size sr1
of the list of text messages

smsPk (r1 in the graph). Such size relationships are computed based on dependency graphs,
which represent data dependencies between variables in a block, and user annotations if
available. In the example in Fig. 1, the user indicates that the formatting in Unicode-

Encoder results in strings that are at most six times longer than the ones received as input
@Size("size(ret)<=6*size(s)"), while the trimming in TrimEncoder returns strings that
are equal or shorter than the input (@Size("size(ret)<=size(s)")). The equation system
shown above is approximated by a recurrence solver included in our analysis in order to
obtain the closed form solution Sizer5

sendSms(sr0
, sr1

, sr2
, sr3

) ≤ 3.5× s2
r1
− 2.5× sr1

.

Step 3: Resource Usage Analysis. In the this phase, the analysis uses the CFG, the data
dependencies, and the size relationships inferred in previous steps to infer a resource usage
equation for each block method in the CFG (possibly simplifying such equations) and obtain
closed form solutions (in general, approximated –upper bounds). Therefore, the objective of
the resource analysis is to statically derive safe upper bounds on the amount of resources
that each of the block methods in the CFG consumes or provides. The result given by our
analysis for the monetary cost of sending the messages (CellPhone.sendSms) is

CostsendSms(sr0
, 0, sr2

, sr3
) ≤ 0

CostsendSms(sr0
, sr1

, sr2
, sr3

) ≤ 12× sr1
− 12 + CostsendSms(sr0

, sr1
− 1, sr2

, sr3
)

i.e., the cost is proportional to the size of the message list (smsPk in the source, r1 in the
CFG). Again, this equation system is solved by a recurrence solver, resulting in the closed
formula CostsendSms(sr0

, sr1
, sr2

, sr3
) ≤ 6× s2

r1
− 6× sr1

.

3 Intermediate program representation

Analysis of a Java bytecode program normally requires its translation into an intermediate
representation that is easier to manipulate. In particular, our decompilation (assisted by the
Soot [31] tool) involves elimination of stack variables, conversion to three-address statements,
static single assignment (SSA) transformation, and generation of a Control Flow Graph

4

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

509

(CFG) that is ultimately the subject of analysis. The decompilation process is an evolution
of the work presented in [25], which has been successfully used as the basis for other (non
resource-related) analyses [24]. Our ultimate objective is to support the full Java language but
the current transformation has some limitations: it does not yet support reflection, threads,
or runtime exceptions. The following grammar describes the intermediate representation;
some of the elements in the tuples are named so we can refer to them as node.name.

CFG ::= Block+

Block ::= (id:N,sig:Sig,fpars:Id+,annot:expr∗,body:Stmt∗)
Sig ::= (class:Type,name:Id,pars:Type+)
Stmt ::= (id:N,sig:Sig,apars:(Id|Ct)+)
V ar ::= (name:Id, type:Type)

The Control Flow Graph is composed of block methods. A block method is similar to a Java
method, with some particularities: a) if the program flow reaches it, every statement in it
will be executed, i.e, it contains no branching; b) its signature might not be unique: the CFG
might contain several block methods in the same class sharing the same name and formal
parameter types; c) it always includes as formal parameters the returned value ret and, unless
it is static, the instance self-reference this; d) for every formal parameter (input formal
parameter) of the original Java method that might be modified, there is an extra formal
parameter in the block method that contains its final version in the SSA transformation
(output formal parameter); e) every statement in a block method is an invocation, including
builtins (assignment asg, field dereference gtf, etc.), which are understood as block methods
of the class Builtin.

As mentioned before, there is no branching within a block method. Instead, each con-
ditional if cond stmt1 else stmt2 in the original program is replaced with an invocation
and two block methods which uniquely match its signature: the first block corresponds to
the stmt1 branch, and the second one to stmt2. To respect the semantics of the language, we
decorate the first block method with the result of decompiling cond, while we attach cond

to its sibling. A similar approach is used in virtual invocations, for which we introduce as
many block methods in the graph as possible receivers of the call were in the original pro-
gram. A set of block methods with the same signature sig can be retrieved by the function
getBlocks(CFG, sig).

User specifications are written using the annotation system introduced in Java 1.5 which,
unlike JML specifications, has the very useful characteristic of being preserved in the byte-
code. Annotations are carried over to our CFG representation, as can be seen in Fig. 1.

Example 1 We now focus our attention on the two block methods in Fig. 1, which are the
result of (de)compiling the CellPhone.sendSms method. Input formal parameters r0, r1,
r2, r3 correspond to this, smsPk, enc, and stm, respectively. In the case of r1, the contents
of its fields next and sms are altered by invoking the stf and accessed by invoking the
gtf (abbreviation for setfield and getfield, respectively) builtin block methods. The
output formal parameter r4 contains the final state of r1 after those modifications. The value
returned by the block methods is contained in r5. Space reasons prevent us from showing
any type information in the CFG in Fig 1. In the case of Encoder.format, for example,
we say that there are two blocks with the same signature because they are both defined
in class Encoder, have the same name (format) and list of types of formal parameters
{Encoder,String,String}.

5

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

510

resourceAnalysis (CFG, r e s) {

CFG← c l a s sAna l y s i s (CFG)

mt← i n i t i a l i z e (CFG)

dg←dataDependencyAnalysis (CFG,mt)

for (SCC: SCCs)

// in reverse t opo l o g i c a l order

mt←genSizeEqs (SCC,mt ,CFG, dg)

mt←genResourceUsageEqs (SCC, res ,mt ,CFG)

return mt

}

normalize (Eqs) {

for (s i z e r e l a t i o n p ≤ e1 : Eqs)

do

i f (exp r e s s i on s appears in e1

and s ≤ e2 ∈Eqs)

r ep l a c e ocur rence s o f s in e1 with e2

while the re i s change

return Eqs

}

Fig. 2. Generic resource analysis algorithm and normalization.

4 The resource usage analysis framework

We now describe our framework for inferring upper bounds on the usage that the Java
bytecode program makes of a set of resources defined by the application programmer, as
described before. The algorithm in Fig 2 takes as input a Control Flow Graph in the format
described in the previous section, including the user annotations that assign elementary costs
to certain graph elements for a particular resource. The user also indicates the set of resources
to be tracked by the analysis. Without loss of generality we assume for conciseness in our
presentation a single resource.

A preliminary step in our approach is a class hierarchy analysis [5, 24], aimed at simplify-
ing the CFG and therefore improving overall precision. Then, another analysis is performed
over the CFG to extract data dependencies, as described below. The next step is the decom-
position of the CFG into its strongly-connected components. After these steps, two different
analyses are run separately on each strongly connected component: a) the size analysis, which
estimates parameter size relationships for each statement and output formal parameters as a
function of the input formal parameter sizes (Sec. 4.1); and b) the actual resource analysis,
which computes the resource usage of each block method in terms also of the input data sizes
(Sec. 4.2). Each phase is dependent on the previous one.

The data dependency analysis is a dataflow analysis that yields position dependency

graphs for the block methods within a strongly connected component. Each graph G = (V,E)
represents data dependencies between positions corresponding to statements in the same
block method, including its formal parameters. Vertexes in V denote positions,

Fig. 3.

and edges (s1, s2) ∈ E denote that s2 is dependent on s1

(s1 is a predecessor of s2). We will assume a predec func-
tion that takes a position dependency graph, a statement,
and a parameter position and returns its nearest prede-
cessor in the graph. Fig. 3 shows the position dependency
graph of the TrimEncoder.format block method.

4.1 Size analysis

We now show our algorithm for estimating parameter size relations based on the data de-
pendency analysis, inspired by the original ideas of [13, 12]. Also, we provide a concrete
algorithm for performing the analysis, rather than the more descriptive presentations of the

6

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

511

related work discussed previously. Our goal is to represent input and output size relation-
ships for each statement as a function defined in terms of the formal parameter sizes. Unless
otherwise stated, whenever we refer to a parameter we mean its position.

The size of an input is defined in terms of measures. By measure we mean a function
that, given a data structure, returns a number. Our method is parametric on measures,
which can be defined by the user and attached via annotations to parameters or classes.
For concreteness, we have defined herein two measures, int for integer variables, and the
longest path-length [1] ref for reference variables. The longest path-length of a variable is
the cardinality of the longest chain of pointers than can be followed from it. More complex
measures can be defined to handle other data types such as cyclic structures, arrays, etc.
The set of measures will be denoted by M.

The size analysis algorithm is given in pseudo-code in Fig. 4; its main steps are:

1. Assign an upper bound to the size of every parameter position of all statements, including
formal parameters, for all the block methods with the same signature (genSigSize).

2. For a given signature, take the set of size inequations returned by (1) and rename each
size relation in terms of the sizes of input formal parameters (normalize).

3. Repeat the first step for every signature in the same strongly-connected component
(genSizeEqs).

4. Simplify size relationships by resolving mutually recursive functions, and find closed form
solutions for the output formal parameters (genSizeEqs).

Intermediate results are cashed in a memo table mt, which for every parameter position
stores measures, sizes, and resource usage expressions defined in the L language:

〈expr〉 ::= 〈expr〉〈bin op〉〈expr〉 | (
P

|
Q

)〈expr〉

| 〈expr〉〈expr〉 | lognum〈expr〉 | −〈expr〉
| 〈expr〉! | ∞ | num
| size([〈measure〉,]arg(r num))

〈bin op〉 ::= + | − | × | / | %
〈measure〉 ::= int | ref | . . .

The size of the parameter at position i in statement stmt, under measure m, is referred to
as size(m, stmt, i). We consider a parameter position to be input if it is bound to some data
when the statement is invoked. Otherwise, it is considered an output parameter position. In
the case of input parameter and output formal parameter positions, an upper bound on that
size is returned by getSize (Fig. 4). The upper bound can be a concrete value when there is
a constant in the referred position, i.e., when the val function returns a non-infinite value:

Definition 1. The concrete size value for a parameter position under a particular measure

is returned by val : M×Stmt×N → L, which evaluates the syntactic content of the actual

parameter in that position:

val(m, stmt, i) =

n if stmt.aparsi is an integer n and m=int
0 if stmt.aparsi is null and m=ref
∞ otherwise

If the content of that input parameter position is a variable, the algorithm searches the
data dependency graph for its immediate predecessor. Since the intermediate representation
is in SSA form, the only possible scenarios are that either there is a unique predecessor

7

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

512

genSizeEqs (SCC,mt ,CFG, dg) {

Eqs← ∅|SCC|

for (s i g : SCC)

Eqs [s i g]←genS igS i z e (s ig ,mt ,SCC,CFG, dg)

So l s← recEqsSo lver (s imp l i fyEqs (Eqs))

for (s i g :SCC)

i n s e r t (mt , size , s i g , So l s [s i g])

return mt

}

genSigSize (s ig ,mt ,SCC,CFG, dg) {

Eqs← ∅

BMS←getBlocks (CFG, s i g)

for (bm:BMs)

Eqs←Eqs ∪ genBlockSize (bm,mt ,SCC, dg)

return normal ize (Eqs)

}

genBlockSize (bm,mt ,SCC, dg) {

Eqs← ∅

for (stmt :bm. body)

I←stmt input parameter p o s i t i o n s

Eqs←Eqs ∪ genInS ize (stmt , I ,mt , dg)

Eqs←Eqs ∪ genOutSize (stmt ,mt ,SCC)

K← bm output formal parameter p o s i t i o n s

Eqs←Eqs ∪ genInS ize (bm,K,mt , dg)

return Eqs

}

genInSize (elem , Pos ,mt , dg) {

Eqs← ∅

for (pos : Pos)

m← lookup (mt , measure , elem . s ig , pos)

s←ge tS i z e (m, elem . id , pos , dg)

Eqs←Eqs ∪ {size (m, elem . id , pos)≤s}

return Eqs

}

genOutSize (stmt ,mt ,SCC) {

{i1, . . . , il} ← stmt input p o s i t i o n s

s i g←stmt . s i g

{mi1
, . . . ,mil

} ←{ lookup (mt , measure , s i g , i 1) , . . . ,

lookup (mt , measure , s i g , i l)}

{s i1
, . . . ,s il

} ← {size (mi1
, stmt . id , i 1) , . . . ,

size (mil
, stmt . id , i l)

Eqs← ∅

O← stmt output parameter p o s i t i o n s

for (o :O)

mo ← lookup (mt , measure , s i g , o)

i f (s i g /∈SCC)

S i z euser ← A
o
sig(s i1

, . . . ,s il
)

S i z ealg′ ←max(lookup (mt , size , s i g , o))

S i z ealg ←S i z ealg′ (s i1
, . . . ,s il

)

S i z e o ←min(S i z euser , S i z ealg)

else

S i z e o ← Sizeo
sig(mo,s i1

, . . . ,s il
)

Eqs←Eqs ∪ {size (mo , stmt . id , o)≤ S i z e o}

return Eqs

}

getSize (m, id , pos , dg) {

r e s u l t←val (m, id , i)

i f (r e s u l t 6=∞)

return r e s u l t

else

i f (∃(elem , posp) ∈ predec (dg , id , pos))

mp ← lookup (mt , measure , elem . s ig , posp)

i f (m=mp)

return size (mp , elem . id , posp)

return ∞

}

Fig. 4. The size analysis algorithm

whose size is assigned to that input parameter position, or there is none, causing the input
parameter size to be unbounded (∞).

Consider now an output parameter position within a block method, case covered in
genOutSize (Fig. 4). If the output parameter position corresponds to a non-recursive invoke
statement, either a size relationship function has already been computed recursively (since
the analysis traverses each strongly-connected component in reverse topological order), or it
is provided by the user through size annotations. In the first case, the size function of the out-
put parameter position can be retrieved from the memo table by using the lookup operation,
taking the maximum in case of several size relationship functions, and then passing the input
parameter size relationships to this function to evaluate it. In the second scenario, the size
function of the output parameter position is provided by the user through size annotations,
denoted by the A function in the algorithm. In both cases, it will able to return an explicit
size relation function.

8

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

513

Example 2 We have already shown in the CellPhone example how a class can be annotated.
The Builtin class includes the assignment method asg, annotated as follows:

public class Bu i l t i n {

@Size{” s i z e (r e t)<=s i z e (o) ”}
public stat ic native Object asg (Object o) ;

// . . . r e s t of annotated b u i l t i n s
}

which results in equation A1
asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0) .

If the output parameter position corresponds to a recursive invoke statement, the size
relationships between the output and input parameters are built as a symbolic size function.
Since the input parameter size relations have already been computed, we can establish each
output parameter position size as a function described in terms of the input parameter sizes.

At this point, the algorithm has defined size relations for all parameter positions within
a block method. However, those relations are either constants or given in terms of the imme-
diate predecessor in the dependency graph. The algorithm rewrites the equation system such
that we obtain an equivalent system in which only formal parameter positions are involved.
This process, called normalization, is shown in Fig. 2

After normalization, the analysis repeats the same process for all block methods in the
same strongly-connected component (SCC). Once every component has been processed, the
analysis further simplifies the equations in order to resolve mutually recursive calls among
block methods within the same SCC in the simplifyEqs procedure.

In the final step, the analysis submits the simplified system to a recurrence equation
solver (recEqsSolver, called from genSizeEqs) in order to obtain approximated upper-bound
closed forms. The interesting subject of how the equations are solved is beyond the scope of
this paper (see, e.g., [33]). Our implementation does provide a dedicated implementation (an
evolution of the solver of the Caslog system [12]) which covers a reasonable set of recurrence
equations such as first-order and higher-order linear recurrence equations in one variable
with constant and polynomial coefficients, divide and conquer recurrence equations, etc. In
addition, the system has interfaces to external solvers such as Purrs [6] or Mathematica.

Example 3 We now illustrate the definitions and algorithm with an example of how the
size relations are inferred for the two CellPhone.sendSms block methods (Fig. 1), using
the ref measure for reference variables. We will refer to the k-th occurrence of a statement
stmt in a block method as stmtk, and denote CellPhone.sendSms, Encoder.format, and
Stream.send by sendSms, format, and send respectively. Finally, we will refer to the size of
the input formal parameter position i, corresponding to variable ri, as sri

.
The main steps in the process are listed in Fig. 5. The first block of rows contains the

most relevant size parameter relationship equations for the recursive block method, while
the second block of rows corresponds to the base case. These size parameter relationship
equations are constructed by the analysis by first following the algorithm in Fig. 4, and then
normalizing them (expressing them in terms of the input formal parameter sizes sri

). Also, in
the first block of rows we observe that the algorithm has returned 6× size(ref, format, 1)
as upper bound for the size of the formatted string, max(lookup(mt, size, format, 2)). The
result is the maximum of the two upper bounds given by the user for the two implementations
for Encoder.format since TrimEncoder.format eliminates any leading and trailing white

9

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

514

Size parameter relationship equations (normalized)

size(ref, ne, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, ne, 1) ≤ val(ref, ne, 1) ≤ 0
size(ref, gtf1, 0) ≤ size(ref, ne, 0) ≤ sr1

size(ref, gtf1, 2) ≤ A2
gtf (ref, size(ref, gtf1, 0),) ≤ sr1 − 1

size(ref, format, 1) ≤ size(ref, gtf1, 2) ≤ sr1 − 1
size(ref, format, 2) ≤ max(lookup(mt, size, format, 2))(size(ref, format, 2))

≤ max(sr1, 6× sr1)(sr1
− 1)

≤ 6× (sr1 − 1)
size(ref, send, 1) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)
size(ref, gtf2, 0) ≤ size(ref, gtf1, 0) ≤ sr1

size(ref, gtf2, 2) ≤ A2
gtf (ref, size(ref, gtf2, 0),) ≤ sr1 − 1

size(ref, sendSms, 1) ≤ size(ref, gtf2, 2) ≤ sr1 − 1
size(ref, sendSms, 5) ≤ Sizer5

sendSms(ref, , size(ref, sendSms, 1), ,)
≤ Sizer5

sendSms(ref, sr0, sr1 − 1, sr2, sr3)
size(ref, stf1, 0) ≤ size(ref, gtf2, 0) ≤ sr1

size(ref, stf1, 2) ≤ size(ref, sendSms, 5) ≤ Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf1, 3) ≤ A3
stf (ref, size(ref, stf1, 0), , size(ref, stf1, 2))

≤ sr1 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 0) ≤ size(ref, stf1, 3) ≤ sr1 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 2) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)
size(ref, stf2, 3) ≤ A3

stf (ref, size(ref, stf2, 0), , size(ref, stf2, 2))
≤ 7× sr1 − 6 + Sizer5

sendSms(ref, sr0, sr1 − 1, sr2, sr3)
size(ref, asg, 0) ≤ size(ref, stf2, 3)

≤ 7× sr1 − 6 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, asg, 1) ≤ A1
asg(ref, size(ref, asg, 0))

≤ 7× sr1 − 6 + Sizer5
sendSms(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, eq, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, eq, 1) ≤ val(ref, eq, 1) ≤ 0
size(ref, asg, 0) ≤ val(ref, asg, 0) ≤ 0
size(ref, asg, 1) ≤ A1

asg(ref, size(ref, asg, 0)) ≤ 0

Output parameter size functions for builtins (provided through annotations)

A2
gtf(ref, size(ref, gtf, 0),) ≤ size(ref, gtf, 0)− 1
A1

asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0)
A3

stf(ref, size(ref, stf, 0), , size(ref, stf, 2)) ≤ size(ref, stf, 0) + size(ref, stf, 2)

Simplified size equations and closed form solution

Sizer5
sendSms(ref, sr0, sr1, sr2, sr3) ≤

0 if sr1 = 0
7× sr1 − 6 + Sizer5

sendSms(ref, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Sizer5
sendSms(ref, sr0, sr1, sr2, sr3) ≤ 3.5× s2

r1 − 2.5× sr1

Fig. 5. Size equations example

spaces (thus the output is at most as bigger as the input), whereas UnicodeEncoder.format
converts any special character into its Unicode equivalent (thus the output is at most six
times the size of the input), a safe upper bound for the output parameter position size is
given by the second annotation.

10

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

515

genResourceUsageEqs (SCC, res ,mt ,CFG) {

Eqs← ∅|SCC|

for (s i g :SCC)

Eqs [s i g]←genSigRU (s ig , res ,mt ,SCC,CFG)

So l s← recEqsSo lver (s imp l i fyEqs (Eqs))

for (s i g :SCC)

i n s e r t (mt , cost ,max(So l s [s i g]))

return mt

}

genSigRU(s ig , res ,mt ,SCC,CFG) {

Eqs← ∅

BMs←getBlocks (CFG, s i g)

for (bm:BMs)

body←bm. body

Costbody ← 0

for (stmt : body)

Coststmt ←genStmtRU(stmt , res ,mt ,SCC)

Costbody ←Costbody + Coststmt

Costbm ←genBlockRU(bm, res ,mt)

Eqs←Eqs ∪ {Costbm ≤Costbody}

}

genStmtRU(stmt , res ,mt ,SCC) {

{i1, . . . , ik} ← stmt input parameter p o s i t i o n s

{si1
, . . . , sik

} ←

{max(lookup (mt , size , stmt . s ig , i 1)) , . . . ,

max(lookup (mt , size , stmt . s ig , i k))}

i f (stmt . s i g /∈ SCC)

Costuser ← Astmt.sig (res , s i1
, . . . , s ik

)

Costalg′ ← lookup (mt , cost , res , stmt . s i g)

Costalg ←Costalg′ (s i1
, . . . , s ik

)

return min(Costalg , Costuser)

else return Cost (stmt . s ig , res , s i1
, . . . , s ik

)

}

genBlockRU(bm, res ,mt) {

{i1, . . . , il} ← bm input formal parameter p o s i t i o n s

{si1
, . . . , sil

} ←

{ lookup (mt , size ,bm. id , i 1) , . . . ,

lookup (mt , size ,bm. id , i l)

return Cost (bm. id , res , s i1
, . . . , s il

)

}

Fig. 6. The resource usage analysis algorithm

In the particular case of builtins and methods for which we do not have the code, size
relationships are not computed but rather taken from the user @Size annotations. These
functions are illustrated in the third block of rows. Finally, in the fourth block of rows we
show the recurrence equations built for the output parameter sizes in the block method and
in the final row the closed form solution obtained.

4.2 Resource usage analysis

The core of our framework is the resource usage analysis, whose pseudo code is shown in Fig 6.
It takes a strongly-connected component of the CFG, including the set of annotations which
provide the application programmer-provided resources and cost functions, and calculates
an resource usage function which is an upper bound on the usage made by the program of
those resources. The algorithm manipulates the same memo table described in Sec. 4.1 in
order to avoid recomputations and access the size relationships already inferred.

The algorithm is structured in a very similar way to the size analysis (which also allows us
to draw from it to keep the explanation within space limits): for each element of the strongly-
connected component the algorithm will construct an equation for each block method that
shares the same signature representing the resource usage of that block. To do this, the
algorithm will visit each invoke statement. There are three possible scenarios, covered by
the genStmtRU function. If the signatures of caller and callee(s) belong to the same strongly-
connected component, we are analyzing a recursive invoke statement. Then, we add to the
body resource usage a symbolic resource usage function, in an analogous fashion to the case
of output parameters in recursive invocations during the size analysis.

The other scenarios occur when the invoke statement is non-recursive. Either a resource
usage function Costalg for the callee has been previously computed, or there is a user anno-

11

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

516

tation Costusr that matches the given signature, or both. In the latter case, the minimum
between these two functions is chosen (i.e., the most precise safe upper bound assigned by
the analysis to the resource usage of the non-recursive invoke statement).

Example 4 The call (sixth statement) in the upper-most CellPhone.sendSms block method
matches the signature of the block method itself and thus it is recursive. The first four
parameter positions are of input type. The upper-bound expression returned by genStmtRU

is Cost
sendSms

($, sr0, sr1−1, sr2, sr3). Note that the input size relationships were already normalized

during the size analysis. Now consider the invocation of Stream.send. The resource usage
expression for the statement is defined by the function Asend($, , 6×(sr1−1)) since the input
parameter at position one is at most six times the size of the second input formal parameter,
as calculated by the size analysis in Fig. 5. Note also that there is a resource annotation
@Cost({"cents","2*size(r1)"}) attached to the block method describing the behavior of
Asend and yielding the expression Costuser = 12×(sr1−1). On the other hand, the absence of
any callee code to analyze –the original method is native– results in Costalg = ∞. Then, the
upper bound obtained by the analysis for the statement is min(Costalg, Costuser) = Costuser.

At this point, the analysis has built a resource usage function (denoted by Costbody) that
reflects the resource usage of the statements within the block. Finally, it yields a resource
usage equation of the form Costblock ≤ Costbody where Costblock is again a symbolic resource
usage function built by replacing each input formal parameter position with its size relations
in that block method. These resource usage equations are simplified by calling simplifyEqs and,
finally, they are solved calling recEqsSolver, both already defined in Sec. 4.1. This process yields
an (in general, approximate, but always safe) closed form upper bound on the resource usage
of the block methods in each strongly-connected component. Note that given a signature the
analysis constructs a closed form solution for every block method that shares that signature.
These solutions approximate the resource usage consumed in or provided by each block
method. In order to compute the total resource usage of the signature the analysis returns
the maximum of these solutions yielding a safe global upper bound.

Example 5 The resource usage equations generated by our algorithm for the two sendSms

block methods and the “$” resource (monetary cost of sending the SMSs) are listed in
Fig. 7. The computation is partially based on the size relations in Fig. 5. The resource
usage of each block method is calculated by building an equation such that the left part
is a symbolic function constructed by replacing each parameter position with its size (i.e.,
Cost

sendSms
($, sr0, sr1, sr2, sr3) and Cost

sendSms
($, sr0, 0, sr2, sr3)), and the rest of the equation consists of

adding the resource usage of the invoke statements in the block method. These are calculated
by computing the minimum between the resource usage function inferred by the analysis and
the function provided by the user. The equations corresponding to the recursive and non-
recursive block methods are in the first and second row, respectively. They can be simplified
(third row) and expressed in closed form (fourth row), obtaining a final upper bound for the
charge incurred by sending the list of text messages of 6× s2

r1 − 6× sr1.

5 Experimental results

We have completed an implementation of our framework, and tested it for a representative set
of benchmarks and resources. Our experimental results are summarized in Table 1. Column

12

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

517

Resource usage equations

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ min(

∞
z }| {

lookup(mt, cost, $, ne),

@Cost(”cents”,”0”)=0
z }| {

Ane($, sr1,))

+min(

∞
z }| {

lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0
z }| {

Agtf ($, sr1,))

+min(

0
z }| {

lookup(mt, cost, $, format)(, sr1 − 1),

∞
z }| {

Aformat($, , sr1 − 1))

+min(

∞
z }| {

lookup(mt, cost, $, send),

@Cost(”cents”,”2∗size(r1)”)=12×(sr1−1)
z }| {

Asend($, , 6× (sr1 − 1))

+min(

∞
z }| {

lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0
z }| {

Agtf ($, sr1,)) + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3)

+min(

∞
z }| {

lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0
z }| {

Astf ($, sr1, ,))

+min(

∞
z }| {

lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0
z }| {

Astf ($, sr1, ,))

+min(

∞
z }| {

lookup(mt, cost, $, asg),

@Cost(”cents”,”0”)=0
z }| {

Aasg($,))

≤ 12× (sr1 − 1) + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3)

Cost
sendSms

($, sr0, 0, sr2, sr3) ≤ min(

∞
z }| {

lookup(mt, cost, $, eq) ,

@Cost(”cents”,”0”)=0
z }| {

Aeq($, 0,))

+ min(lookup(mt, cost, $, asg)
| {z }

∞

, Aasg($, 0))
| {z }

@Cost(”cents”,”0”)=0

≤ 0

Simplified resource usage equations and closed form solution

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤

0 if sr1 = 0
12 ∗ sr1 − 12 + Cost

sendSms
($, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ 6× s2
r1 − 6× sr1

Fig. 7. Resource equations example

Program provides the name of the main class to be analyzed. Column Resource(s) shows
the resource(s) defined and tracked. Column ts shows the time (in milliseconds) required
by the size analysis to construct the size relations (including the data dependency analysis
and class hierarchy analysis) and obtain the closed form. Column tr lists the time taken
to build the resource usage expressions for all method blocks and obtain their closed form
solutions. t provides the total times for the whole analysis process. Finally, column Resource
Usage Func. provides the upper bound functions inferred for the resource usage. For space
reasons, we only show the most important (asymptotic) component of these functions, but
the analysis yields concrete functions with constants.

Regarding the benchmarks we have covered a reasonable set of data-structures used in
object-oriented programming and also standard Java libraries used in real applications. We
have also covered an ample set of application-dependent resources which we believe can
be relevant in those applications. In particular, not only have we represented high-level
resources such as cost of SMS, bytes received (including a coarse measure of bandwidth, as

13

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

518

Program Resource(s) ts tr t Resource Usage Func.

BST Heap usage 250 22 367 O(2n) n ≡ tree depth

CellPhone SMS monetary cost 271 17 386 O(n2) n ≡ packets length

Client Bytes received and 391 38 527 O(n) n ≡ stream length
bandwidth required O(1) —

Dhrystone Energy consumption 602 47 759 O(n) n ≡ int value

Divbytwo Stack usage 142 13 219 O(log2(n)) n ≡ int value

Files Files left open and 508 53 649 O(n) n ≡ number of files
Data stored O(n×m) m ≡ stream length

Join DB accesses 334 19 460 O(n×m) n, m ≡ records in tables

Screen Screen width 388 38 536 O(n) n ≡ stream length

Table 1. Times of different phases of the resource analysis and resource usage functions.

a ratio of data per program step), and files left open, but also other low-level (i.e., bytecode
level) resources such as stack usage or energy consumption. The resource usage functions
obtained can be used for several purposes. In program Files (a fragment characteristic of
operating system kernel code) we kept track of the number of file descriptors left open. The
data inferred for this resource can be clearly useful, e.g., for debugging: the resource usage
function inferred in this case (O(n)) denotes that the programmer did not close O(n) file
descriptors previously opened. In program Join (a database transaction which carries out
accesses to different tables) we decided to measure the number of accesses to such external
tables. This information can be used, e.g., for resource-oriented specialization in order to
perform optimized checkpoints in transactional systems. The rest of the benchmarks include
other definitions of resources which are also typically useful for verifying application-specific
properties: BST (a generic binary search tree, used in [2] where a heap space analysis for
Java bytecode is presented), CellPhone (extended version of program in Figure 1), Client

(a socket-based client application), Dhrystone (a modified version of a program from [20]
where a general framework is defined for estimating the energy consumption of embedded
JVM applications; the complete table with the energy consumption costs that we used can be
found there), DivByTwo (a simple arithmetic operation), and Screen (a MIDP application
for a cellphone, where the analysis is used to make sure that message lines do not exceed
the phone screen width). The benchmarks also cover a good range of complexity functions
(O(1), O(log(n), O(n), O(n2) . . . , O(2n), . . .) and different types of structural recursion such
as simple, indirect, and mutual. The code for these benchmarks and a demonstrator are
available at http://www.cs.unm.edu/~jorge/RUA.

6 Conclusions

We have presented a fully-automated analysis for inferring upper bounds on the usage that
a Java bytecode program makes of a set of application programmer-definable resources. Our
analysis derives a vector of functions, one for each defined resource. Each of these functions
returns, for each given set of input data sizes, an upper bound on the usage that the whole
program (and each individual method) make of the corresponding resource. Important novel
aspects of our approach are the fact that it allows the application programmer to define the
resources to be tracked by writing simple resource descriptions via source-level annotations,
as well as the fact that we have provided a concrete analysis algorithm and report on an

14

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

519

implementation. The current results show that the proposed analysis can obtain non-trivial
bounds on a wide range of interesting resources in reasonable time. Another important aspect
of our work, because of its impact on the scalability, precision, and automation of the analysis,
is that our approach allows using the annotations also for a number of other purposes such
as stating the resource usage of external methods, which is instrumental in allowing modular
composition and thus scalability. In addition, our annotations allow stating the resource
usage of any method for which the automatic analysis infers a value that is not accurate
enough to prevent inaccuracies in the automatic inference from propagating. Annotations
are also used by the size and resource usage analysis to express their output. Finally, the
annotation language can also be used to state specifications related to resource usage, which
can then be proved or disproved based on the results of analysis following, e.g., the scheme
of [19] thus finding bugs or verifying (the resource usage of) the program.

References

1. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Bytecode.
In ESOP, LNCS 4421, pages 157–172. Springer, 2007.

2. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis for Java Bytecode. In
ISMM ’07: Proceedings of the 6th international symposium on Memory management, pages 105–
116, New York, NY, USA, October 2007. ACM Press.

3. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc. of LPAR’04,
volume 3452 of LNAI. Springer, 2005.

4. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource Guarantees
for Smart Devices. In CASSIS’04, LNCS 3362, pages 1–27. Springer-Verlag, 2005.

5. David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function calls. Proc.
of OOPSLA’96, SIGPLAN Notices, 31(10):324–341, October 1996.

6. R. Bagnara, A. Pescetti, A. Zaccagnini, E. Zaffanella, and T. Zolo. Purrs: The Parma Univer-
sity’s Recurrence Relation Solver. http://www.cs.unipr.it/purrs.

7. I. Bate, G. Bernat, and P. Puschner. Java virtual-machine support for portable worst-case
execution-time analysis. In 5th IEEE Int’l. Symp. on Object-oriented Real-time Distributed
Computing, Apr. 2002.

8. R. Benzinger. Automated Higher-Order Complexity Analysis. Theor. Comput. Sci., 318(1-2),
2004.

9. Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George C. Necula. Enforcing
resource bounds via static verification of dynamic checks. In European Symposium on Program-
ming (ESOP), number 3444 in LNCS, pages 311–325. Springer-Verlag, 2005.

10. S.J. Craig and M. Leuschel. Self-Tuning Resource Aware Specialisation for Prolog. In Proc. of
PPDP’05, pages 23–34. ACM Press, 2005.

11. K. Crary and S. Weirich. Resource bound certification. In POPL’00. ACM Press, 2000.

12. S. K. Debray and N. W. Lin. Cost analysis of logic programs. TOPLAS, 15(5), 1993.

13. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs.
In Proc. PLDI’90, pages 174–188. ACM, June 1990.

14. S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower Bound Cost Estimation
for Logic Programs. In ILPS’97. MIT Press, 1997.

15. J. Eisinger, I. Polian, B. Becker, A. Metzner, S. Thesing, and R. Wilhelm. Automatic identi-
fication of timing anomalies for cycle-accurate worst-case execution time analysis. In Proc. of
DDECS. IEEE Computer Society, 2006.

15

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

520

16. G. Gómez and Y. A. Liu. Automatic Time-Bound Analysis for a Higher-Order Language. In Pro-
ceedings of the Symposium on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM). ACM Press, 2002.

17. B. Grobauer. Cost recurrences for DML programs. In Int’l. Conf. on Functional Programming,
pages 253–264, 2001.

18. M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Abstraction Carrying Code and
Resource-Awareness. In PPDP. ACM Press, 2005.

19. M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preproces-
sor). Science of Computer Programming, 58(1–2):115–140, October 2005.

20. Sébastien Lafond and Johan Lilius. Energy consumption analysis for two embedded java virtual
machines. J. Syst. Archit., 53(5-6):328–337, 2007.

21. D. Le Metayer. ACE: An Automatic Complexity Evaluator. TOPLAS, 10(2), 1988.
22. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1996.
23. P. López-Garćıa, M. Hermenegildo, and S. K. Debray. A Methodology for Granularity Based

Control of Parallelism in Logic Programs. J. of Symbolic Computation, Special Issue on Parallel
Symbolic Computation, 21:715–734, 1996.

24. M. Méndez-Lojo and M. Hermenegildo. Precise Set Sharing Analysis for Java-style Programs.
In 9th International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI’08), number 4905 in LNCS, pages 172–187. Springer-Verlag, January 2008.

25. M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Approach to the
Analysis of Object-Oriented Programs. In 17th International Symposium on Logic-based Program
Synthesis and Transformation (LOPSTR’07), August 2007.

26. J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-definable resource bounds
analysis for logic programs. In ICLP, LNCS, 2007.

27. G. Puebla and C. Ochoa. Poly-Controlled Partial Evaluation. In Proc. of PPDP’06, pages
261–271. ACM Press, 2006.

28. M. Rosendahl. Automatic Complexity Analysis. In Proc. ACM Conference on Functional
Programming Languages and Computer Architecture, pages 144–156. ACM, New York, 1989.

29. D. Sands. A näıve time analysis and its theory of cost equivalence. J. Log. Comput., 5(4), 1995.
30. Lothar Thiele and Reinhard Wilhelm. Design for time-predictability. In Perspectives Workshop:

Design of Systems with Predictable Behaviour, 2004.
31. R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java opti-

mization framework. In Proc. of Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), pages 125–135, 1999.

32. P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Polymorphic and
Higher-Order Functional Programs. In IFL, volume 3145 of LNCS. Springer, 2003.

33. H. S. Wilf. Algorithms and Complexity. A.K. Peters Ltd, 2002.
34. R. Wilhelm. Timing analysis and timing predictability. In Proc. FMCO, LNCS. Springer-Verlag,

2004.

16

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

521

Bytecode 2009 Preliminar Version

User-Definable Resource Usage

Bounds Analysis for Java Bytecode

Jorge Navas1,4

1School of Computing
National University of Singapore

Republic of Singapore

Mario Méndez-Lojo2,4

2Department of Computer Science
University Texas at Austin

Austin, TX (USA)

Manuel V. Hermenegildo3,4,5

3IMDEA-Software, Madrid (Spain),
Departments of Computer Science

4University of New Mexico, Albuquerque, NM (USA)
and 5Technical University of Madrid, Madrid (Spain).

Abstract

Automatic cost analysis of programs has been traditionally concentrated on a reduced number of resources
such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as
static debugging and/or certification of user-level properties (including for mobile code) makes it interesting
to develop analyses for resource notions that are actually application-dependent. This may include, for
example, bytes sent or received by an application, number of files left open, number of SMSs sent or
received, number of accesses to a database, money spent, energy consumption, etc. We present a fully
automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of
application programmer-definable resources. In our context, a resource is defined by programmer-provided
annotations which state the basic consumption that certain program elements make of that resource. From
these definitions our analysis derives functions which return an upper bound on the usage that the whole
program (and individual blocks) make of that resource for any given set of input data sizes. The analysis
proposed is independent of the particular resource. We also present some experimental results from a
prototype implementation of the approach covering a significant set of interesting resources.

1 Introduction

The usefulness of analyses which can infer information about the costs of com-

putations is widely recognized since such information is useful in a large num-

ber of applications including performance debugging, verification, and resource-

oriented specialization. The kinds of costs which have received most attention so

far are related to execution steps as well as, sometimes, execution time or memory

(see, e.g., [27,34,36,20,9,21,40] for functional languages, [38,8,19,42] for imperative

languages, and [17,16,18,32] for logic languages). These and other types of cost

analyses have been used in the context of applications such as granularity control

in parallel and distributed computing (e.g., [29]), resource-oriented specialization

(e.g., [13,33]), or, more recently, certification of the resources used by mobile code

(e.g., [14,6,12,5,22]). Specially in these more recent applications, the properties of

interest are often higher-level, user-oriented, and application-dependent rather than

1 Email: navas@comp.nus.edu.sg
2 Email: marioml@ices.utexas.edu
3 Email: herme@fi.upm.es

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

522

(or, rather, in addition to) the predefined, more traditional costs such as steps, time,

or memory. Regarding the object of certification, in the case of mobile code the cer-

tification and checking process is often performed at the bytecode level [28], since,

in addition to other reasons of syntactic convenience, bytecode is what is most often

available at the receiving (checker) end.

We propose a fully automated framework which infers upper bounds on the usage

that a Java bytecode program makes of application programmer-definable resources.

Examples of such programmer-definable resources are bytes sent or received by

an application over a socket, number of files left open, number of SMSs sent or

received, number of accesses to a database, number of licenses consumed, monetary

units spent, energy consumed, disk space used, and of course, execution steps (or

bytecode instructions), time, or memory. A key issue in approach is that resources

are defined by programmers and by means of annotations. The annotations defining

each resource must provide for some relevant user-selected elements corresponding

to the bytecode program being analyzed (classes, methods, variables, etc.), a value

that describes the cost of that element for that particular resource. These values can

be constants or, more generally, functions of the input data sizes. The objective of

our analysis is then to statically derive from these elementary costs an upper bound

on the amount of those resources that the program as a whole (as well as individual

blocks) will consume or provide.

Our approach builds on the work of [17,16] for logic programs, where cost func-

tions are inferred by solving recurrence equations derived from the syntactic struc-

ture of the program. Most previous work deals only with concrete, traditional

resources (e.g., execution steps, time, or memory). The analysis of [32] also allows

program-level definition of resources, but it is designed for Prolog and works at the

source code level, and thus is not directly applicable to Java bytecode due to partic-

ularities like virtual method invocation, unstructured control flow, assignment, the

fact that statements are low-level bytecode instructions, the absence of backtracking

(which has a significant impact on the method used in [32]), etc. Also, the presen-

tation of [32] is descriptive in contrast to the concrete algorithm provided herein.

In [2], a cost analysis is described that does deal with Java bytecode and is capa-

ble of deriving cost relations which are functions of input data sizes. The authors

also presented in [3] an experimental evaluation of the approach. This approach is

generic, in the same sense as, e.g., [16], in that both the conceptual framework and

its implementation allow adaptation to different resources. However, this is done

typically in the implementation. Our approach is interesting in that it allows the

application programmer to define the resources through annotations directly in the

Java source, and without changing the analyzer code or tables in any way. Also,

without claiming it as any significant contribution of course, we provide for im-

plementation convenience a somewhat more concrete, algorithmic presentation, in

contrast to the more descriptive approach of previous work (including [17,16,32,2,3],

etc.).

2 User-Defined Resources: Overview of the Approach

A resource is a fundamental component in our approach. A resource is a user-defined

notion which associates a basic cost function with some user-selected elements (class,

2

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

523

import java . net . URLEncoder ;

public class CellPhone {

SmsPacket sendSms (SmsPacket smsPk ,
Encoder enc ,
Stream stm) {

i f (smsPk != null) {
St r ing newSms = enc . format (smsPk . sms) ;
stm . send (newSms) ;
smsPk . next=sendSms (smsPk . next , enc , stm) ;
smsPk . sms = newSms ;

}
return smsPk ;
}
}
class SmsPacket{

St r ing sms ;
SmsPacket next ;

}

interface Encoder{
St r ing format (S t r ing data) ;

}
class TrimEncoder implements Encoder{

@Cost ({ ” cent s ” , ”0” })
@Size (” s i z e (r e t)<=s i z e (s) ”)
public St r ing format (S t r ing s){

return s . tr im () ;
}

}
class UnicodeEncoder implements Encoder{

@Cost ({ ” cent s ” , ”0” })
@Size (” s i z e (r e t)<=6∗ s i z e (s) ”)
public St r ing format (S t r ing s){

return URLEncoder . encode (s) ;
}

}
abstract class Stream{

@Cost ({ ” cent s ” , ”2∗ s i z e (data) ” })
native void send (St r ing data) ;

}

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.ne(r1,null,void)
Builtin.gtf(r1,sms,r6)

Builtin.asg(r4,r5)

Builtin.eq(r1,null,void)
Builtin.asg(null,r5)

Builtin.gtf(r1,next,r8)
CellPhone.sendSms(r0,r8,r2,r3,r9,r10)
Builtin.stf(r1,next,r10,r1_1)
Builtin.stf(r1_1,sms,r7,r4)

Encoder.format(r2, r6, r7)
Stream.send(r3,r7,void)

Stream.send(r0,r1,r2)

Encoder.format(r0,r1,r2)

Builtin.asg(r3,r2)
java.net.URLEncoder.encode(r1,r3)

Encoder.format(r0,r1,r2)

java.lang.String.trim(r1,r3)
Builtin.asg(r3,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

@Cost({"cents","0"}) @Cost({"cents","0"})

@Cost({"cents","2*size(r1)"})

@Size("size(r2)<=size(r1)") @Size("size(r2)<=6*size(r1)")

Fig. 1. Motivating example: Java source code and Control Flow Graph

method, statement) in the program. This is expressed by adding Java annotations

to the code. The objective of the analysis is to approximate the usage that the

program makes of the resource.

We start by illustrating the overall approach through a working example. The

Java program in Fig. 1 emulates the process of sending text messages within a

cell phone. This example is not intended to be realistic, but rather a small piece

of code that illustrates a number of aspects of the approach. The source code is

provided here just for clarity, since the analyzer works directly on the corresponding

bytecode. The phone (class CellPhone) receives a list of packets (SmsPacket), each

one containing a single SMS, encodes them (Encoder), and sends them through a

stream (Stream). There are two types of encoding: TrimEncoder, which eliminates

any leading and trailing white spaces, and UnicodeEncoder, which converts any

special character into its Unicode(\uxxxx) equivalent. The length of the SMS

which the cell phone ultimately sends through the stream depends on the size of

the encoded message.

In the example, the resource is the cost in cents of a dollar for sending the

list of text messages. We will assume for the sake of discussion that the carrier

charges are proportional to the number of characters sent, and at 2 cents/char-

acter. This is reflected by the user in the method that is ultimately respon-

sible for the communication (Stream.send), by adding the annotation @Cost-

({"cents","2*size(data)"}). Similarly, the formatting of an SMS made in

3

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

524

any implementation of Encoder.format is free, as indicated by the @Cost-

({"cents","0")}) annotation (the actual system allows defining overall cost de-

faults but we express them here explicitly). The analysis then processes these local

resource usage expressions and uses them to infer a safe upper bound on the total

(global) usage of the defined resources made by the program.
As illustrated by the example, these Java annotations allow defining the re-

sources to be tracked (which is done by simply mentioning them in the annota-
tions) and to provide cost functions for the built-in and external (library) blocks
that are relevant to the particular resource (i.e., which affect the usage of such re-
source). They also allow defining data size relations among arguments and defining
and declaring size measures. The resource usage expressions are defined using the
following language (which we will call L):

〈expr〉 ::= 〈expr〉〈bin op〉〈expr〉 | (
P

|
Q

)〈expr〉

| 〈expr〉〈expr〉 | lognum〈expr〉 | −〈expr〉

| 〈expr〉! | ∞ | num

| size([〈measure〉,]arg(r num))

〈bin op〉 ::= + | − | × | / | %

〈measure〉 ::= int | ref | . . .

We now summarize the fundamental steps of the analysis:

Step 1: Constructing the Control Flow Graph.

In the first step, the analysis translates the Java bytecode into an intermediate

representation building a Control Flow Graph (CFG). Edges in the CFG connect

block methods and describe the possible flows originated from conditional jumps,

exception handling, virtual invocations, etc. A (simplified) version of the CFG

corresponding to our code example is also shown in Fig. 1.

The original sendSms method has been compiled into two block methods that

share the same signature: class where declared, name (CellPhone.sendSms), and

number and type of the formal parameters. The bottom-most box represents the

base case, in which we return null, here represented as an assignment of null to

the return variable r5; the sibling corresponds to the recursive case. The virtual

invocation of format has been transformed into a static call to a block method

named Encoder.format. There are two block methods which are compatible

in signature with that invocation, and which serve as proxies for the intermedi-

ate representations of the interface implementations in TrimEncoder.format and

UnicodeEncoder.format. Note that the resource-related annotations have been

carried through the CFG and are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationships.

The algorithm infers in this phase size relationships between the input and the

output formal parameters of every block method. We assume that the size of (the

contents of) a linked structure pointed to by a variable is the maximum number

of pointers we need to traverse, starting at the variable, until null is found. The

following equations are inferred by the analysis for the two CellPhone.sendSms

block methods (with sri
we denote the size of input formal parameter position i,

corresponding to variable ri):

4

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

525

Sizer5
sendSms(sr0 , 0, sr2 , sr3) ≤ 0

Sizer5
sendSms(sr0 , sr1 , sr2 , sr3) ≤ 7× sr1 − 6 + Sizer5

sendSms(sr0 , sr1 − 1, sr2 , sr3)

The size of the returned value r5 is independent of the sizes of the input param-

eters this, enc, and stm (sr0 , sr2 and sr3 respectively) but not of the size sr1 of the

list of text messages smsPk (r1 in the graph). Such size relationships are computed

based on dependency graphs, which represent data dependencies between variables in

a block, and user annotations if available. In the example in Fig. 1, the user indicates

that the formatting in UnicodeEncoder results in strings that are at most six times

longer than the ones received as input @Size("size(ret)<=6*size(s)"), while the

trimming in TrimEncoder returns strings that are equal or shorter than the input

(@Size("size(ret)<=size(s)")). In this case the equations provide implicitly the

size measure (i.e., that the size of a string is its length). The equation system shown

above is approximated by a recurrence solver included in our analysis in order to

obtain the closed form solution Sizer5
sendSms(sr0 , sr1 , sr2 , sr3) ≤ 3.5× s2

r1
− 2.5× sr1 .

This is a reasonable bound given that we have not specified a maximum size for

each string.

Step 3: Resource Usage Analysis.

In this phase, the analysis uses the CFG, the data dependencies, and the size

relationships inferred in previous steps to infer a resource usage equation for each

block method in the CFG (possibly simplifying such equations) and obtain closed

form solutions (in general, approximated –upper bounds). Therefore, the objective

of the resource analysis is to statically derive safe upper bounds on the amount

of resources that each of the block methods in the CFG consumes or provides.

The result given by our analysis for the monetary cost of sending the messages

(CellPhone.sendSms) is

CostsendSms(sr0 , 0, sr2 , sr3) ≤ 0

CostsendSms(sr0 , sr1 , sr2 , sr3) ≤ 12× sr1 − 12 + CostsendSms(sr0 , sr1 − 1, sr2 , sr3)

i.e., the cost is proportional to the size of the message list (smsPk in the source, r1

in the CFG). Again, this equation system is solved by a recurrence solver, resulting

in the closed formula CostsendSms(sr0 , sr1 , sr2 , sr3) ≤ 6× s2
r1
− 6× sr1 .

3 Intermediate program representation

Analysis of a Java bytecode program normally requires its translation into an inter-

mediate representation that is easier to manipulate. In particular, our decompilation

(assisted by the Soot [39] tool) involves elimination of stack variables, conversion to

three-address statements, static single assignment (SSA) transformation, and gen-

eration of a Control Flow Graph (CFG) that is ultimately the subject of analysis.

Note that in this representation loops are converted into recursive blocks. The de-

compilation process is an evolution of the work presented in [31], which has been

successfully used as the basis for other (non resource-related) analyses [30]. Our

ultimate objective is to support the full Java language but the current transforma-

5

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

526

tion has some limitations: it does not yet support reflection, threads, or runtime

exceptions. The following grammar describes the intermediate representation; some

of the elements in the tuples are named so we can refer to them as node.name.

CFG ::= Block+

Block ::= (id:N,sig:Sig,fpars:Id+,annot:expr∗,body:Stmt∗)

Sig ::= (class:Type,name:Id,pars:Type+)

Stmt ::= (id:N,sig:Sig,apars:(Id|Ct)+)

V ar ::= (name:Id, type:Type)

The Control Flow Graph is composed of block methods. A block method is similar

to a Java method, with some particularities: a) if the program flow reaches it,

every statement in it will be executed, i.e, it contains no branching; b) its signature

might not be unique: the CFG might contain several block methods in the same

class sharing the same name and formal parameter types; c) it always includes

as formal parameters the returned value ret and, unless it is static, the instance

self-reference this; d) for every formal parameter (input formal parameter) of the

original Java method that might be modified, there is an extra formal parameter in

the block method that contains its final version in the SSA transformation (output

formal parameter); e) every statement in a block method is an invocation, including

builtins (assignment asg, field dereference gtf, etc.), which are understood as block

methods of the class Builtin.

As mentioned before, there is no branching within a block method. Instead, each

conditional if cond stmt1 else stmt2 in the original program is replaced with an

invocation and two block methods which uniquely match its signature: the first

block corresponds to the stmt1 branch, and the second one to stmt2. To respect

the semantics of the language, we decorate the first block method with the result of

decompiling cond, while we attach cond to its sibling. A similar approach is used in

virtual invocations, for which we introduce as many block methods in the graph as

possible receivers of the call were in the original program. A set of block methods

with the same signature sig can be retrieved by the function getBlocks(CFG, sig).

User specifications are written using the annotation system introduced in Java

1.5 which, unlike JML specifications, has the very useful characteristic of being

preserved in the bytecode. Annotations are carried over to our CFG representation,

as can be seen in Fig. 1.

Example 1 We now focus our attention on the two block methods in Fig. 1, which

are the result of (de)compiling the CellPhone.sendSms method. The input formal

parameters r0, r1, r2, r3 correspond to this, smsPk, enc, and stm, respectively. In

the case of r1, the contents of its fields next and sms are altered by invoking the

stf and accessed by invoking the gtf (abbreviation for setfield and getfield,

respectively) builtin block methods. The output formal parameter r4 contains the

final state of r1 after those modifications. The value returned by the block methods

is contained in r5. Space reasons prevent us from showing any type information

in the CFG in Fig 1. In the case of Encoder.format, for example, we say that

there are two blocks with the same signature because they are both defined in

class Encoder, have the same name (format) and the same list of types of formal

parameters {Encoder,String,String}.

6

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

527

resourceAnalysis (CFG, r e s) {
CFG← c l a s sAna l y s i s (CFG)
A l i a s e s← a l i a sAna l y s i s (CFG)
mt← i n i t i a l i z e (CFG)
dg←dataDependencyAnalysis (CFG, Al ia se s ,mt)
for (SCC: SCCs)

// in reve r s e t o p o l o g i c a l order
mt←genSizeEqs (SCC,mt ,CFG, dg)
mt←genResourceUsageEqs (SCC, res ,mt ,CFG)

return mt
}

normalize (Eqs) {
for (s i z e r e l a t i o n p ≤ e1 : Eqs)

do
i f (exp r e s s i on s appears in e1

and s ≤ e2 ∈Eqs)
r ep l a c e ocur r ence s o f s in e1 with e2

while the re i s change
return Eqs
}

Fig. 2. Generic resource analysis algorithm and normalization.

4 The resource usage analysis framework
We now describe our framework for inferring upper bounds on the usage that the

Java bytecode program makes of a set of resources defined by the application pro-

grammer, as described before. The algorithm in Fig 2 takes as input a Control

Flow Graph in the format described in the previous section, including the user an-

notations that assign elementary costs to certain graph elements for a particular

resource. The user also indicates the set of resources to be tracked by the analysis.

Without loss of generality we assume for conciseness in our presentation a single

resource.

A preliminary step in our approach is a class hierarchy analysis [15,30], aimed at

simplifying the CFG and therefore improving overall precision. More importantly,

we also require the existence of an alias analysis [35,26,11], whose results are used

by a third phase (described below) in which data dependencies between variables

in the CFG are inferred. The next step is the decomposition of the CFG into

its strongly-connected components. After these steps, two different analyses are

run separately on each strongly connected component: a) the size analysis, which

estimates parameter size relationships for each statement and output formal param-

eters as a function of the input formal parameter sizes (Sec. 4.1); and b) the actual

resource analysis, which computes the resource usage of each block method in terms

also of the input data sizes (Sec. 4.2). Each phase is dependent on the previous one.

The data dependency analysis is a dataflow analysis that yields po-

sition dependency graphs for the block methods within a strongly con-

nected component. Each graph G = (V, E) represents data depen-

dencies between positions corresponding to statements in the same block

method, including its formal parameters. Vertexes in V denote positions,

CellPhone.TrimEncoder.format(1 , 2 , 3)

java.lang.String.trim(1 , 2)

Builtin.asg(1 , 2)

Fig. 3:

and edges (s1, s2) ∈ E denote that s2 is depen-

dent on s1 (s1 is a predecessor of s2). We will

assume a predec function that takes a position

dependency graph, a statement, and a parame-

ter position and returns its nearest predecessor in

the graph. Fig. 3 shows the position dependency

graph of the TrimEncoder.format block method.

4.1 Size analysis

We now show our algorithm for estimating parameter size relations based on the

data dependency analysis, inspired by the original ideas of [17,16]. Our goal is

7

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

528

to represent input and output size relationships for each statement as a function

defined in terms of the formal parameter sizes. Unless otherwise stated, whenever

we refer to a parameter we mean its position.

The size of an input is defined in terms of measures. By measure we mean a

function that, given a data structure, returns a number. Our method is parametric

on measures, which can be defined by the user and attached via annotations to

parameters or classes. For concreteness, we have defined herein two measures, int for

integer variables, and the longest path-length [37,2] ref for reference variables. The

longest path-length of a variable is the cardinality of the longest chain of pointers

than can be followed from it. More complex measures can be defined to handle

other data types such as cyclic structures, arrays, etc. The set of measures will be

denoted by M.

The size analysis algorithm is given in pseudo-code in Fig. 4; its main steps are:

(i) Assign an upper bound to the size of every parameter position of all statements,

including formal parameters, for all the block methods with the same signature

(genSigSize).

(ii) For a given signature, take the set of size inequations returned by (i) and

rename each size relation in terms of the sizes of input formal parameters

(normalize).

(iii) Repeat the first step for every signature in the same strongly-connected com-

ponent (genSizeEqs).

(iv) Simplify size relationships by resolving mutually recursive functions, and find

closed form solutions for the output formal parameters (genSizeEqs).

Intermediate results are cached in a memo table mt, which for every parameter

position stores measures, sizes, and resource usage expressions defined in the L

language.

The size of the parameter at position i in statement stmt, under measure m, is

referred to as size(m, stmt, i). We consider a parameter position to be input if it

is bound to some data when the statement is invoked. Otherwise, it is considered

an output parameter position. In the case of input parameter and output formal

parameter positions, an upper bound on that size is returned by getSize (Fig. 4).

The upper bound can be a concrete value when there is a constant in the referred

position, i.e., when the val function returns a non-infinite value:

Definition 4.1 The concrete size value for a parameter position under a particular

measure is returned by val : M× Stmt × N → L, which evaluates the syntactic

content of the actual parameter in that position:

val(m, stmt, i) =

n if stmt.aparsi is an integer n and m=int

0 if stmt.aparsi is null and m=ref

∞ otherwise

If the content of that input parameter position is a variable, the algorithm

searches the data dependency graph for its immediate predecessor. Since the inter-

mediate representation is in SSA form, the only possible scenarios are that either

8

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

529

genSizeEqs (SCC,mt ,CFG, dg) {

Eqs← ∅|SCC|

for (s i g : SCC)
Eqs [s i g]←genS igS i z e (s ig ,mt ,SCC,CFG, dg)

So l s← r ecEqsSo lver (s imp l i f yEqs (Eqs))
for (s i g :SCC)

i n s e r t (mt , size , s i g , So l s [s i g])
return mt
}

genSigSize (s ig ,mt ,SCC,CFG, dg) {
Eqs← ∅
BMs←getBlocks (CFG, s i g)
for (bm:BMs)

Eqs←Eqs ∪ genBlockSize (bm,mt ,SCC, dg)
return normal ize (Eqs)
}

genBlockSize (bm,mt ,SCC, dg) {
Eqs← ∅
for (stmt :bm. body)

I←stmt input parameter p o s i t i o n s
Eqs←Eqs ∪ genInS ize (stmt , I ,mt , dg)
Eqs←Eqs ∪ genOutSize (stmt ,mt ,SCC)

K← bm output formal parameter p o s i t i o n s
Eqs←Eqs ∪ genInS ize (bm,K,mt , dg)
return Eqs
}

genInSize (elem , Pos ,mt , dg) {
Eqs← ∅
for (pos : Pos)

m← lookup (mt , measure , elem . s ig , pos)
s←g e tS i z e (m, elem . id , pos , dg)
Eqs←Eqs ∪ {size (m, elem . id , pos)≤s}

return Eqs
}

genOutSize (stmt ,mt ,SCC) {
{i1, . . . , il} ← stmt input p o s i t i o n s
s i g←stmt . s i g
{mi1 , . . . ,mil

} ←{ lookup (mt , measure , s i g , i 1) , . . . ,
lookup (mt , measure , s i g , i l)}

{s i1 , . . . ,s il
} ← {size (mi1 , stmt . id , i 1) , . . . ,

size (mil
, stmt . id , i l)

Eqs← ∅
O← stmt output parameter p o s i t i o n s
for (o :O)

mo ← lookup (mt , measure , s i g , o)
i f (s i g /∈SCC)

S i z euser ← Ao
sig(s i1 , . . . ,s il

)

S i z ealg′ ←max(lookup (mt , size , s i g , o))

S i z ealg ←S i z ealg′ (s i1 , . . . ,s il
)

S i z e o ←min(S i z euser , S i z ealg)
else

S i z e o ← Sizeo
sig(mo,s i1 , . . . ,s il

)

Eqs←Eqs ∪ {size (mo , stmt . id , o)≤ S i z e o}
return Eqs
}

getSize (m, id , pos , dg) {
r e s u l t←val (m, id , i)
i f (r e s u l t 6=∞)

return r e s u l t
else

i f (∃(elem , posp) ∈ predec (dg , id , pos))
mp ← lookup (mt , measure , elem . s ig , posp)
i f (m=mp)

return size (mp , elem . id , posp)
return ∞
}

Fig. 4. The size analysis algorithm

there is a unique predecessor whose size is assigned to that input parameter position,

or there is none, causing the input parameter size to be unbounded (∞).

Consider now an output parameter position within a block method, case covered

in genOutSize (Fig. 4). If the output parameter position corresponds to a non-recursive

invoke statement, either a size relationship function has already been computed re-

cursively (since the analysis traverses each strongly-connected component in reverse

topological order), or it is provided by the user through size annotations. In the

first case, the size function of the output parameter position can be retrieved from

the memo table by using the lookup operation, taking the maximum in case of several

size relationship functions, and then passing the input parameter size relationships

to this function to evaluate it. In the second scenario, the size function of the out-

put parameter position is provided by the user through size annotations, denoted

by the A function in the algorithm. In both cases, it will able to return an explicit

size relation function.

Example 2 We have already shown in the CellPhone example how a class can be

annotated. The Builtin class includes the assignment method asg, annotated as

follows:

public class Bu i l t i n {

@Size{” s i z e (r e t)<=s i z e (o) ”}
public stat ic native Object asg (Object o) ;

9

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

530

// . . . r e s t o f annotated b u i l t i n s
}

which results in equation A1
asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0) .

If the output parameter position corresponds to a recursive invoke statement, the

size relationships between the output and input parameters are built as a symbolic

size function. Since the input parameter size relations have already been computed,

we can establish each output parameter position size as a function described in

terms of the input parameter sizes.

At this point, the algorithm has defined size relations for all parameter positions

within a block method.

However, those relations are either constants or given in terms of the immediate

predecessor in the dependency graph. The algorithm rewrites the equation system

such that we obtain an equivalent system in which only formal parameter positions

are involved. This process, called normalization, is shown in Fig. 2

After normalization, the analysis repeats the same process for all block methods

in the same strongly-connected component (SCC). Once every component has been

processed, the analysis further simplifies the equations in order to resolve mutually

recursive calls among block methods within the same SCC in the simplifyEqs procedure.

In the final step, the analysis submits the simplified system to a recurrence

equation solver (recEqsSolver, called from genSizeEqs) in order to obtain approximated

upper-bound closed forms. The interesting subject of how the equations are solved

is beyond the scope of this paper (see, e.g., [41]). Our implementation does provide

a simple built-in solver (an evolution of the solver of the Caslog system [16]) which

covers a reasonable set of recurrence equations such as first-order and higher-order

linear recurrence equations in one variable with constant and polynomial coeffi-

cients, divide and conquer recurrence equations, etc. However, it also includes an

interface to the Parma Polyhedra Library [7] (and previously to other tools such

as Mathematica, Matlab, etc.). Work is also under way to interface with the quite

interesting solver of [1].

Example 3 We now illustrate the definitions and algorithm with an example of

how the size relations are inferred for the two CellPhone.sendSms block methods

(Fig. 1), using the ref measure for reference variables. We will refer to the k-th oc-

currence of a statement stmt in a block method as stmtk, and denote CellPhone.-

sendSms, Encoder.format, and Stream.send by sendSms, format, and send re-

spectively. Finally, as mentioned before, we refer to the size of the input formal

parameter position i, corresponding to variable ri, as sri
.

The main steps in the process are listed in Fig. 5. The first block of rows

contains the most relevant size parameter relationship equations for the recursive

block method, while the second block of rows corresponds to the base case. These

size parameter relationship equations are constructed by the analysis by first fol-

lowing the algorithm in Fig. 4, and then normalizing them (expressing them in

terms of the input formal parameter sizes sri
). Also, in the first block of rows we

observe that the algorithm has returned 6 × size(ref, format, 1) as upper bound

for the size of the formatted string, max(lookup(mt, size, format, 2)). The result is

10

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

531

Size parameter relationship equations (normalized)

size(ref, ne, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, ne, 1) ≤ val(ref, ne, 1) ≤ 0

size(ref, gtf1, 0) ≤ size(ref, ne, 0) ≤ sr1

size(ref, gtf1, 2) ≤ A2
gtf

(ref, size(ref, gtf1, 0),) ≤ sr1 − 1

size(ref, format, 1) ≤ size(ref, gtf1, 2) ≤ sr1 − 1

size(ref, format, 2) ≤ max(lookup(mt, size, format, 2))(size(ref, format, 2))

≤ max(sr1, 6× sr1)(sr1
− 1)

≤ 6× (sr1 − 1)

size(ref, send, 1) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)

size(ref, gtf2, 0) ≤ size(ref, gtf1, 0) ≤ sr1

size(ref, gtf2, 2) ≤ A2
gtf

(ref, size(ref, gtf2, 0),) ≤ sr1 − 1

size(ref, sendSms, 5) ≤ Sizer5
sendSms

(ref, , size(ref, sendSms, 1), ,)

≤ Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf1, 0) ≤ size(ref, gtf2, 0) ≤ sr1

size(ref, stf1, 2) ≤ size(ref, sendSms, 5) ≤ Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf1, 3) ≤ A3
stf

(ref, size(ref, stf1, 0), , size(ref, stf1, 2))

≤ sr1 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 0) ≤ size(ref, stf1, 3) ≤ sr1 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, stf2, 2) ≤ size(ref, format, 2) ≤ 6× (sr1 − 1)

size(ref, stf2, 3) ≤ A3
stf

(ref, size(ref, stf2, 0), , size(ref, stf2, 2))

≤ 7× sr1 − 6 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, asg, 0) ≤ size(ref, stf2, 3)

≤ 7× sr1 − 6 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, asg, 1) ≤ A1
asg(ref, size(ref, asg, 0))

≤ 7× sr1 − 6 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3)

size(ref, eq, 0) ≤ size(ref, sendSms, 1) ≤ sr1

size(ref, eq, 1) ≤ val(ref, eq, 1) ≤ 0

size(ref, asg, 0) ≤ val(ref, asg, 0) ≤ 0

size(ref, asg, 1) ≤ A1
asg(ref, size(ref, asg, 0)) ≤ 0

Output parameter size functions for builtins (provided through annotations)

A2
gtf(ref, size(ref, gtf, 0),) ≤ size(ref, gtf, 0)− 1

A1
asg(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0)

A3
stf(ref, size(ref, stf, 0), , size(ref, stf, 2)) ≤ size(ref, stf, 0) + size(ref, stf, 2)

Simplified size equations and closed form solution

Sizer5
sendSms

(ref, sr0, sr1, sr2, sr3) ≤

(

0 if sr1 = 0

7× sr1 − 6 + Sizer5
sendSms

(ref, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Sizer5
sendSms

(ref, sr0, sr1, sr2, sr3) ≤ 3.5× s2
r1 − 2.5× sr1

Fig. 5. Size equations example

the maximum of the two upper bounds given by the user for the two implementa-

tions for Encoder.format since TrimEncoder.format eliminates any leading and

trailing white spaces (thus the output is at most as bigger as the input), whereas

UnicodeEncoder.format converts any special character into its Unicode equivalent

(thus the output is at most six times the size of the input), a safe upper bound for

the output parameter position size is given by the second annotation.

In the particular case of builtins and methods for which we do not have the

code, size relationships are not computed but rather taken from the user @Size

annotations. These functions are illustrated in the third block of rows. Finally,

in the fourth block of rows we show the recurrence equations built for the output

11

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

532

genResourceUsageEqs (SCC, res ,mt ,CFG) {

Eqs← ∅|SCC|

for (s i g :SCC)
Eqs [s i g]←genSigRU (s ig , res ,mt ,SCC,CFG)

So l s← r ecEqsSo lver (s imp l i f yEqs (Eqs))
for (s i g :SCC)

i n s e r t (mt , cost ,max(So l s [s i g]))
return mt
}

genSigRU(s ig , res ,mt ,SCC,CFG) {
Eqs← ∅
BMs←getBlocks (CFG, s i g)
for (bm:BMs)

body←bm. body
Costbody ← 0
for (stmt : body)

Coststmt ←genStmtRU(stmt , res ,mt ,SCC)
Costbody ←Costbody + Coststmt

Costbm ←genBlockRU(bm, res ,mt)
Eqs←Eqs ∪ {Costbm ≤Costbody}

}

genStmtRU(stmt , res ,mt ,SCC) {
{i1, . . . , ik} ← stmt input parameter p o s i t i o n s
{si1 , . . . , sik

} ←
{max(lookup (mt , size , stmt . s ig , i 1)) , . . . ,
max(lookup (mt , size , stmt . s ig , i k))}

i f (stmt . s i g /∈ SCC)
Costuser ← Astmt.sig (res , s i1 , . . . , s ik

)
Costalg′ ← lookup (mt , cost , res , stmt . s i g)

Costalg ←Costalg′ (s i1 , . . . , s ik
)

return min(Costalg , Costuser)
else return Cost (stmt . s ig , res , s i1 , . . . , s ik

)
}

genBlockRU(bm, res ,mt) {
{i1, . . . , il} ← bm input formal parameter p o s i t i o n s
{si1 , . . . , sil

} ←
{ lookup (mt , size ,bm. id , i 1) , . . . ,

lookup (mt , size ,bm. id , i l)
return Cost (bm. id , res , s i1 , . . . , s il

)
}

Fig. 6. The resource usage analysis algorithm

parameter sizes in the block method and in the final row the closed form solution

obtained.

4.2 Resource usage analysis

The core of our framework is the resource usage analysis, whose pseudo code is

shown in Fig 6. It takes a strongly-connected component of the CFG, including the

set of annotations which provide the application programmer-provided resources and

cost functions, and calculates a resource usage function which is an upper bound on

the usage made by the program of those resources. The algorithm manipulates the

same memo table described in Sec. 4.1 in order to avoid recomputations and access

the size relationships already inferred.

The algorithm is structured in a very similar way to the size analysis (which

also allows us to draw from it to keep the explanation within space limits): for

each element of the strongly-connected component the algorithm will construct an

equation for each block method that shares the same signature representing the

resource usage of that block. To do this, the algorithm will visit each invoke state-

ment. There are three possible scenarios, covered by the genStmtRU function. If the

signatures of caller and callee(s) belong to the same strongly-connected component,

we are analyzing a recursive invoke statement. Then, we add to the body resource

usage a symbolic resource usage function, in an analogous fashion to the case of

output parameters in recursive invocations during the size analysis.

The other scenarios occur when the invoke statement is non-recursive. Either a

resource usage function Costalg for the callee has been previously computed, or there

is a user annotation Costusr that matches the given signature, or both. In the latter

case, the minimum between these two functions is chosen (i.e., the most precise safe

upper bound assigned by the analysis to the resource usage of the non-recursive

invoke statement) or a warning is issued.

Example 4 The call (sixth statement) in the upper-most CellPhone.sendSms

12

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

533

Resource usage equations

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ min(

∞
z }| {

lookup(mt, cost, $, ne),

@Cost(”cents”,”0”)=0
z }| {

Ane($, sr1,))

+min(

∞
z }| {

lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0
z }| {

Agtf ($, sr1,))

+min(

0
z }| {

lookup(mt, cost, $, format)(, sr1 − 1),

∞
z }| {

Aformat($, , sr1 − 1))

+min(

∞
z }| {

lookup(mt, cost, $, send),

@Cost(”cents”,”2∗size(r1)”)=12×(sr1−1)
z }| {

Asend($, , 6× (sr1 − 1))

+min(

∞
z }| {

lookup(mt, cost, $, gtf),

@Cost(”cents”,”0”)=0
z }| {

Agtf ($, sr1,)) + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3)

+min(

∞
z }| {

lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0
z }| {

Astf ($, sr1, ,))

+min(

∞
z }| {

lookup(mt, cost, $, stf),

@Cost(”cents”,”0”)=0
z }| {

Astf ($, sr1, ,))

+min(

∞
z }| {

lookup(mt, cost, $, asg),

@Cost(”cents”,”0”)=0
z }| {

Aasg($,))

≤ 12× (sr1 − 1) + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3)

Cost
sendSms

($, sr0, 0, sr2, sr3) ≤ min(

∞
z }| {

lookup(mt, cost, $, eq) ,

@Cost(”cents”,”0”)=0
z }| {

Aeq($, 0,))

+ min(lookup(mt, cost, $, asg)
| {z }

∞

, Aasg($, 0))
| {z }

@Cost(”cents”,”0”)=0

≤ 0

Simplified resource usage equations and closed form solution

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤

(

0 if sr1 = 0

12 ∗ sr1 − 12 + Cost
sendSms

($, sr0, sr1 − 1, sr2, sr3) if sr1 > 0

Cost
sendSms

($, sr0, sr1, sr2, sr3) ≤ 6× s2
r1 − 6× sr1

Fig. 7. Resource equations example

block method matches the signature of the block method itself and thus it is re-

cursive. The first four parameter positions are of input type. The upper-bound

expression returned by genStmtRU is Cost
sendSms

($, sr0, sr1−1, sr2, sr3). Note that the input

size relationships were already normalized during the size analysis. Now consider

the invocation of Stream.send. The resource usage expression for the statement

is defined by the function Asend($, , 6 × (sr1 − 1)) since the input parameter at

position one is at most six times the size of the second input formal parameter, as

calculated by the size analysis in Fig. 5. Note also that there is a resource anno-

tation @Cost({"cents","2*size(r1)"}) attached to the block method describing

the behavior of Asend and yielding the expression Costuser = 12 × (sr1 − 1). On

the other hand, the absence of any callee code to analyze –the original method is

native– results in Costalg = ∞. Then, the upper bound obtained by the analysis

for the statement is min(Costalg, Costuser) = Costuser.

At this point, the analysis has built a resource usage function (denoted by

Costbody) that reflects the resource usage of the statements within the block. Fi-

nally, it yields a resource usage equation of the form Costblock ≤ Costbody where

Costblock is again a symbolic resource usage function built by replacing each input

formal parameter position with its size relations in that block method. These re-

source usage equations are simplified by calling simplifyEqs and, finally, they are solved

calling recEqsSolver, both already defined in Sec. 4.1. This process yields an (in gen-

13

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

534

eral, approximate, but always safe) closed form upper bound on the resource usage

of the block methods in each strongly-connected component. Note that given a

signature the analysis constructs a closed form solution for every block method that

shares that signature. These solutions approximate the resource usage consumed in

or provided by each block method. In order to compute the total resource usage of

the signature the analysis returns the maximum of these solutions yielding a safe

global upper bound.
Example 5 The resource usage equations generated by our algorithm for the two

sendSms block methods and the “$” resource (monetary cost of sending the SMSs)

are listed in Fig. 7. The computation is partially based on the size relations in Fig. 5.

The resource usage of each block method is calculated by building an equation such

that the left part is a symbolic function constructed by replacing each parameter

position with its size (i.e., Cost
sendSms

($, sr0, sr1, sr2, sr3) and Cost
sendSms

($, sr0, 0, sr2, sr3)), and

the rest of the equation consists of adding the resource usage of the invoke statements

in the block method. These are calculated by computing the minimum between the

resource usage function inferred by the analysis and the function provided by the

user. The equations corresponding to the recursive and non-recursive block methods

are in the first and second row, respectively. They can be simplified (third row) and

expressed in closed form (fourth row), obtaining a final upper bound for the charge

incurred by sending the list of text messages of 6× s2
r1 − 6× sr1.

5 Experimental results

We have completed an implementation of our framework (in Ciao [10], using com-

ponents from CiaoPP [23], and with help from the Soot tool [39], as mentioned

before), and tested it for a representative set of benchmarks and resources. Our

experimental results are summarized in Table 1. Column Program provides the

name of the main class to be analyzed. Column Resource(s) shows the resource(s)

defined and tracked. Column ts shows the time (in milliseconds) required by the size

analysis to construct the size relations (including the data dependency analysis and

class hierarchy analysis) and obtain the closed form. Column tr lists the time taken

to build the resource usage expressions for all method blocks and obtain their closed

form solutions. t provides the total times for the whole analysis process. Finally,

column Resource Usage Func. provides the upper bound functions inferred for

the resource usage. For space reasons, we only show the most important (asymp-

totic) component of these functions, but the analysis yields concrete functions with

constants.

Regarding the benchmarks we have covered a reasonable set of data-structures

used in object-oriented programming and also standard Java libraries used in real

applications. We have also covered an ample set of application-dependent resources

which we believe can be relevant in those applications. In particular, not only have

we represented high-level resources such as cost of SMS, bytes received (including

a coarse measure of bandwidth, as a ratio of data per program step), and files left

open, but also other low-level (i.e., bytecode level) resources such as stack usage or

energy consumption. The resource usage functions obtained can be used for several

purposes. In program Files (a fragment characteristic of operating system kernel

14

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

535

Program Resource(s) ts tr t Resource Usage Func.

BST Heap usage 250 22 367 O(2n) n ≡ tree depth

CellPhone SMS monetary cost 271 17 386 O(n2) n ≡ packets length

Client Bytes received and 391 38 527 O(n) n ≡ stream length

bandwidth required O(1) —

Dhrystone Energy consumption 602 47 759 O(n) n ≡ int value

Divbytwo Stack usage 142 13 219 O(log2(n)) n ≡ int value

Files Files left open and 508 53 649 O(n) n ≡ number of files

Data stored O(n×m) m ≡ stream length

Join DB accesses 334 19 460 O(n×m) n, m ≡ records in tables

Screen Screen width 388 38 536 O(n) n ≡ stream length

Table 1
Times of different phases of the resource analysis and resource usage functions.

code) we kept track of the number of file descriptors left open. The data inferred for

this resource can be clearly useful, e.g., for debugging: the resource usage function

inferred in this case (O(n)) denotes that the programmer did not close O(n) file

descriptors previously opened. In program Join (a database transaction which

carries out accesses to different tables) we decided to measure the number of accesses

to such external tables. This information can be used, e.g., for resource-oriented

specialization in order to perform optimized checkpoints in transactional systems.

The rest of the benchmarks include other definitions of resources which are also

typically useful for verifying application-specific properties: BST (a generic binary

search tree, used in [4] where a heap space analysis for Java bytecode is presented),

CellPhone (extended version of program in Figure 1), Client (a socket-based client

application), Dhrystone (a modified version of a program from [25] where a general

framework is defined for estimating the energy consumption of embedded JVM

applications; the complete table with the energy consumption costs that we used

can be found there), DivByTwo (a simple arithmetic operation), and Screen (a

MIDP application for a cellphone, where the analysis is used to make sure that

message lines do not exceed the phone screen width). The benchmarks also cover

a good range of complexity functions (O(1), O(log(n), O(n), O(n2) . . . , O(2n), . . .)

and different types of structural recursion such as simple, indirect, and mutual.

6 Conclusions

We have presented a fully-automated analysis for inferring upper bounds on the

usage that a Java bytecode program makes of a set of application programmer-

definable resources. Our analysis derives a vector of functions, one for each defined

resource. Each of these functions returns, for each given set of input data sizes, an

upper bound on the usage that the whole program (and each individual method)

make of the corresponding resource. Our approach allows the application program-

mer to define the resources to be tracked by writing simple resource descriptions

via source-level annotations, The current results suggest that the proposed analysis

can obtain non-trivial bounds on a wide range of interesting resources in reasonable

time. Our approach allows using the annotations also for a number of other pur-

poses such as stating the resource usage of external methods, which is instrumental

in allowing modular composition and thus scalability. In addition, our annotations

allow stating the resource usage of any method for which the automatic analysis

infers a value that is not accurate enough to prevent inaccuracies in the automatic

15

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

536

inference from propagating. Annotations are also used by the size and resource

usage analysis to express their output. Finally, the annotation language can also

be used to state specifications related to resource usage, which can then be proved

or disproved based on the results of analysis following, e.g., the scheme of [24,5,22]

thus finding resource bugs or verifying the resource usage of the program.

Acknowledgments: This work was funded in part by the Prince of Asturias Chair

in Information Science and Technology at UNM, EU projects FP6 FET IST-15905

MOBIUS, IST-215483 SCUBE, and 06042-ESPASS, Ministry of Science projects

TIN-2008-05624 DOVES, TIN2005-09207-C03 MERIT-COMVERS, Ministry of In-

dustry project FIT-340005-2007-14, and CAM project S-0505/TIC/0407 PROME-

SAS. Thanks also to Pedro López Garćıa for comments on drafts of this paper.

References

[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper Bounds for Recurrence
Relations in Cost Analysis. In SAS, LNCS 5079, pages 221–237, 2008.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Bytecode. In
ESOP, LNCS 4421, pages 157–172. Springer, 2007.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Experiments in Cost Analysis of Java
Bytecode. In ETAPS Workshop on Bytecode Semantics, Verification, Analysis and Transformation
(BYTECODE’07), volume 190, Issue 1 of Electronic Notes in Theoretical Computer Science, pages
67–83. Elsevier - North Holland, July 2007.

[4] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis for Java Bytecode. In ISMM ’07:
Proceedings of the 6th international symposium on Memory management, pages 105–116, New York,
NY, USA, October 2007. ACM Press.

[5] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc. of LPAR’04, volume
3452 of LNAI. Springer, 2005.

[6] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource Guarantees for Smart
Devices. In CASSIS’04, LNCS 3362, pages 1–27. Springer-Verlag, 2005.

[7] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete set of
numerical abstractions for the analysis and verification of hardware and software systems. Science of
Computer Programming, 72(1–2):3–21, 2008.

[8] I. Bate, G. Bernat, and P. Puschner. Java virtual-machine support for portable worst-case execution-
time analysis. In 5th IEEE Int’l. Symp. on Object-oriented Real-time Distributed Computing, Apr.
2002.

[9] R. Benzinger. Automated Higher-Order Complexity Analysis. Theor. Comput. Sci., 318(1-2), 2004.

[10] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla (Eds.). The
Ciao System. Ref. Manual (v1.13). Technical report, C. S. School (UPM), 2006. Available at
http://www.ciaohome.org.

[11] Michael G. Burke, Paul R. Carini, Jong-Deok Choi, and Michael Hind. Flow-insensitive interprocedural
alias analysis in the presence of pointers. In LCPC, pages 234–250, 1994.

[12] Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George C. Necula. Enforcing resource
bounds via static verification of dynamic checks. In European Symposium on Programming (ESOP),
number 3444 in LNCS, pages 311–325. Springer-Verlag, 2005.

[13] S.J. Craig and M. Leuschel. Self-Tuning Resource Aware Specialisation for Prolog. In Proc. of
PPDP’05, pages 23–34. ACM Press, 2005.

[14] K. Crary and S. Weirich. Resource bound certification. In POPL’00. ACM Press, 2000.

[15] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented Programs Using
Static Class Hierarchy Analysis. In ECOOP, pages 77–101, 1995.

[16] S. K. Debray and N. W. Lin. Cost analysis of logic programs. TOPLAS, 15(5), 1993.

16

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

537

[17] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs. In
Proc. PLDI’90, pages 174–188. ACM, June 1990.

[18] S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower Bound Cost Estimation for
Logic Programs. In ILPS’97. MIT Press, 1997.

[19] J. Eisinger, I. Polian, B. Becker, A. Metzner, S. Thesing, and R. Wilhelm. Automatic identification
of timing anomalies for cycle-accurate worst-case execution time analysis. In Proc. of DDECS. IEEE
Computer Society, 2006.

[20] G. Gómez and Y. A. Liu. Automatic Time-Bound Analysis for a Higher-Order Language. In Proceedings
of the Symposium on Partial Evaluation and Semantics-Based Program Manipulation (PEPM). ACM
Press, 2002.

[21] B. Grobauer. Cost recurrences for DML programs. In Int’l. Conf. on Functional Programming, pages
253–264, 2001.

[22] M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Abstraction Carrying Code and Resource-
Awareness. In PPDP. ACM Press, 2005.

[23] M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor).
Science of Comp. Progr., 58(1–2), 2005.

[24] M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor).
Science of Computer Programming, 58(1–2):115–140, October 2005.

[25] Sébastien Lafond and Johan Lilius. Energy consumption analysis for two embedded java virtual
machines. J. Syst. Archit., 53(5-6):328–337, 2007.

[26] William Landi and Barbara G. Ryder. A safe approximate algorithm for interprocedural pointer
aliasing. In PLDI, 1992.

[27] D. Le Metayer. ACE: An Automatic Complexity Evaluator. TOPLAS, 10(2), 1988.

[28] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1996.

[29] P. López-Garćıa, M. Hermenegildo, and S. K. Debray. A Methodology for Granularity Based Control
of Parallelism in Logic Programs. J. of Symbolic Computation, Special Issue on Parallel Symbolic
Computation, 21:715–734, 1996.

[30] M. Méndez-Lojo and M. Hermenegildo. Precise Set Sharing Analysis for Java-style Programs. In 9th
International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’08),
number 4905 in LNCS, pages 172–187. Springer-Verlag, January 2008.

[31] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Approach to the Analysis
of Object-Oriented Programs. In 17th International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’07), August 2007.

[32] J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-definable resource bounds analysis for
logic programs. In ICLP, LNCS, 2007.

[33] G. Puebla and C. Ochoa. Poly-Controlled Partial Evaluation. In Proc. of PPDP’06, pages 261–271.
ACM Press, 2006.

[34] M. Rosendahl. Automatic Complexity Analysis. In Proc. ACM Conference on Functional Programming
Languages and Computer Architecture, pages 144–156. ACM, New York, 1989.

[35] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for Java using annotated
constraints. In Conference on Object-Oriented, pages 43–55, 2001.

[36] D. Sands. A näıve time analysis and its theory of cost equivalence. J. Log. Comput., 5(4), 1995.

[37] F. Spoto, P.M. Hill, and E. Payet. Path-length analysis of object-oriented programs. In EAAI’06,
ENTCS. Elsevier, 2006.

[38] Lothar Thiele and Reinhard Wilhelm. Design for time-predictability. In Perspectives Workshop: Design
of Systems with Predictable Behaviour, 2004.

[39] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java optimization
framework. In Proc. of Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON), pages 125–135, 1999.

[40] P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Polymorphic and Higher-
Order Functional Programs. In IFL, volume 3145 of LNCS. Springer, 2003.

[41] H. S. Wilf. Algorithms and Complexity. A.K. Peters Ltd, 2002.

[42] R. Wilhelm. Timing analysis and timing predictability. In Proc. FMCO, LNCS. Springer-Verlag, 2004.

17

MOBIUS Deliverable D2.7 Report on Advanced Resource Policies

538

	Executive Summary
	Version Control
	1 Introduction
	2 Polyhedral Analysis of Java Bytecode for Certificate Generation
	3 Improvements in the development of RAJA
	4 Safety Guarantees from Explicit Resource Management
	5 Static Resource Analysis of Java bytecode
	A Copies of Publications
	Result certification for relational program analysis
	A provably correct stackless intermediate representation for Java bytecode
	Certification using the Mobius base logic
	Efficient type-checking for amortised heap-space analysis
	Membership checking in greatest fixpoints revisited
	Monitoring external resources in Java MIDP
	Safety guarantees from explicit resource management
	Resource analysis for iterative Java programs via lattice-point enumeration in polytopes
	Deciding extensions of the theories of vectors and bags
	Termination analysis of Java bytecode
	Termination and cost analysis with COSTA and its user interfaces
	Closed-form upper-bounds in static cost analysis
	Automatic inference of upper bounds for recurrence relations in cost analysis
	Cost analysis of object-oriented bytecode programs
	Resource usage analysis and its application to resource certification
	Heap space analysis of Java bytecode
	Live heap space analysis for languages with garbage collection
	Constancy analysis
	Efficient context-sensitive shape analysis with graph based heap models
	Identification of logically related heap regions
	Precise set sharing analysis for Java-style programs
	Towards execution time estimation in abstract machine-based languages
	Customizable resource usage analysis for Java bytecode
	User-definable resource usage bounds analysis for Java bytecode

