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Executive Summary:
Byte Code Level Specification Language and Program Logic

This document describes the results of the work within Task 3.1 of the MOBIUS project. The main challenge
of the task was to create a core formalism for specification and verification of bytecode programs. We present
here a specification language for sequential Java bytecode (BML) and two verification condition generators.
All these components are related to the associated program logic, the MOBIUS base logic, which provides
the basis for the MOBIUS PCC infrastructure.

The program logic has been proved sound w.r.t. a formal operational semantics of sequential Java
bytecode, which has also been developed as part of Task 3.1. The operational semantics and the MOBIUS
base logic have been completely formalised (in Coq), as has the soundness proof of the MOBIUS base logic
w.r.t. the operational semantics.

The specification language BML for Java bytecode is the bytecode-level cousin of the specification lan-
guage JML for Java source code. It provides a syntax comprehensible to programmers, but this syntax has
a lot of the syntactic sugar and thus is not the most convenient for use in a program logic or theorem prover.
Therefore, the MOBIUS base logic works with a desugared format of specifications instead.

While the MOBIUS base logic is well-suited for expressing the semantics of BML specifications and
proving soundness w.r.t. the operational semantics, it is not optimal for the (semi-)automated verification of
programs with theorem provers. Therefore, we have also developed variants of the MOBIUS base logic, so-
called verification condition generators (or VC generators for short), which are geared towards this. The first
of these verification condition generators is essentially a weakest precondition calculus for the MOBIUS base
logic. The second of these does not work directly on Java bytecode, but uses BoogiePL as an intermediate
language for representing programs. Both VC generators have been proved sound w.r.t. the MOBIUS base
logic. (In fact, the second VC generator was proved sound w.r.t. the first.) The reason to develop the second
VC generator is that it is easier to support in tools. Also, it allows interoperability with the Spec# initiative
at Microsoft research, which also uses BoogiePL as an intermediate language, but for C# programs.
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Chapter 1

Introduction

The main challenge for Task 3.1 of the MOBIUS project (Byte Code Specification and Verification) was
to create a core formalism for specification and proof development for bytecode programs, the MOBIUS
base logic. This logic provides the foundation of the proof-carrying code (PCC) infrastructure that will be
developed within the project.

Formal verification at the level of the bytecode language has several advantages over the standard
approach at the source code level. In particular (1) often applications on small devices are developed
directly in the low-level language to achieve better optimisation. (2) Proofs concerning bytecode programs
can lead to a speed-up in JIT compilation [46]. (3) Java programs are distributed in the bytecode form,
which, combined with a formal analysis framework, allows one to develop a PCC infrastructure — one of
the main goals of the MOBIUS project. (4) The existence of such a framework enables software distributors
to certify programs they do not have the source code for.

The most challenging aspect of the work was to provide a sound and reliable formal basis for a logic
of programs for a low-level programming language of such a big size. The logic has to be expressive
enough to be used to compile specifications regarding functional and non-functional properties of source
code programs into specifications for the corresponding bytecode level programs, but also to prove properties
of bytecode programs directly. The major challenge in developing a logic for bytecode is that the program
is unstructured and can contain arbitrary jumps. In the context of MOBIUS, functional properties of high-
level programs, i.e. formulae asserting the correctness of code, are expected to be primarily expressed in
JML. Non-functional properties, i.e. intensional properties such as resource consumption or the absence of
unintended information flow, are expressed using program analysis formalisms, (mostly type systems, but
also abstract interpretation). Hence, a pragmatic design requirement of the MOBIUS base logic was to
admit the representation of both kinds of specification styles in a natural way.

Within the task, two different aspects of a logic to reason about bytecode programs have been studied.
The first aspect deals with the specification language used and in particular with the kind of properties
that one needs to express about bytecode. This results in the proposal of the Bytecode Modeling Language
(BML). The second aspect deals with the verification of bytecode programs. Different verification techniques
have been developed, all of which are proved sound w.r.t. a more basic verification technique and, in the
end, an operational semantics.

All critical parts of the logic and verification techniques have been proved sound with the Coq proof
assistant.

1.1 Overview

This section gives a general description of the different results that have been achieved within this task.
Figure 1.1 shows the different formalisms and how they relate to each other. The dashed arrows denote
embeddings (i.e. translations that give the meaning for the higher level constructs in terms of lower level
constructs), the solid arrows denote soundness results (i.e. they include theorems which state that proofs in
the higher level formalism can be rephrased as corresponding proofs in the lower level formalism).

Bicolano is the formal description of the Java Virtual Machine semantics. The MOBIUS base logic has
been proved sound w.r.t. this operational semantics.

The MOBIUS base logic allows one to write properties about bytecode as logical properties. This is
expressive, but complicated. Therefore, the first line of work has concentrated on the development of an

11
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Deep embedding
of assertions

to BoogiePL
via translation
VC generation

VC generator
for MOBIUS

base logic

Bicolano −
a JVM model

Bytecode
Modeling
Language

base logic
MOBIUS

Figure 1.1: The organisation of the components developed in Task 3.1. The boxes denote particular for-
malisms developed. The dashed edges denote embeddings, the solid edges denote soundness results.

appropriate specification language for bytecode programs. We studied the kind of properties that one would
like to express about bytecode and developed a dedicated expression language for this. On top of this,
we developed BML (Bytecode Modeling Language), the bytecode-level cousin of the specification language
JML [34] for Java source code. While BML provides a convenient syntax for writing specifications, it is
not the most convenient for use in a program logic or theorem prover. Therefore we decided to develop the
MOBIUS base logic separately, so that the verification can be done on a desugared format of specifications
instead (logical predicates, which are a shallow embedding of BML in the logical language of a theorem
prover).

While the MOBIUS base logic is well-suited for expressing the semantics of BML specifications and
proving soundness w.r.t. the operational semantics, it is not optimal for the (semi-)automated verification
of programs with theorem provers. Therefore, the second line of research focused on developing variants
of the MOBIUS base logic, so-called verification condition generators (or VC generators for short), which
are geared towards (semi-)automated verification of programs with theorem provers. The first of these
verification condition generators works directly on bytecode. It is essentially a weakest precondition version
of the MOBIUS base logic. The second of these does not work directly on Java bytecode, but uses BoogiePL
[21] as an intermediate language for representing programs. Both VC generators have been proved sound:
the latter w.r.t. the former, and the former w.r.t. the MOBIUS base logic. The reason for this second VC
generator is that it is easier to support in tools. Also, it allows to reuse several tools that are developed
within the Spec# initiative at Microsoft research, which also uses BoogiePL as an intermediate language,
but for C# programs.

The Bicolano operational semantics, the MOBIUS base logic, the first VC generator, and their re-
spective soundness proofs have been completely formalised in Coq. The expression language for bytecode
(section 4.2) has been formalised using the Isabelle proof assistant. The full Coq development can be found
at http://mobius.inria.fr/bicolano.

The remainder of this chapter gives a more detailed overview of the different components that make up
the results of this task.

12
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1.1.1 Bicolano — a model of the Java Virtual Machine

The Java bytecode language is executed by a Java Virtual Machine (JVM). In order to provide an infras-
tructure to reason about Java bytecode programs, it is necessary to have a formal model of the machine
and the bytecode language. Therefore, within the MOBIUS project, we have developed Bicolano, a Coq
formalisation of the considerable part of the virtual machine semantics. At first, this semantics has been
formulated as a small step semantics, closely following the official Java Virtual Machine specification [38]
provided by Sun. Bicolano describes the execution of a bytecode program after the linking phase and covers
directly 72 out of 147 bytecode instructions mentioned in Sun’s specification. In the formalisation, we have
made a few simplifications. The most significant one is that the semantics covers single-threaded behaviour
only (a more detailed description of the simplifications is presented in section 2.2).

Subsequently, a big step semantics has been formulated in order to ease the reasoning based on the
structure of programs. This big step semantics has been proved sound with regard to the small step
semantics, to assure the correctness of further developments. Further, the consistency of the semantics
description has been double-checked by a separate team within the project. All formalisations have been
done with the Coq proof assistant.

The Bicolano semantics of the JVM is also used in other parts of the project to prove the correctness
of the different static analyses that are developed. It has already been used to prove the correctness of an
information flow analysis for bytecode in Task 2.1.

1.1.2 MOBIUS base logic

The formal verification of Java bytecode programs requires a formalism which defines a precise format
of expressions to describe program properties and proof rules to manipulate them. We developed such a
formalism, the MOBIUS base logic, which allows one to describe the properties of Java bytecode programs
in terms of pre-, postconditions and invariants. Several of the requirements for the development of the logic
came from experiences with specification and verification using JML; this resulted in particular in the need
to reason about local annotations. The assertions in the logic can relate the state before and after the
execution of a bytecode fragment and can use the full strength of the native logic of the proof assistant in
which the proof development is carried out (in our case the extended calculus of constructions from Coq).
Proof rules have been provided to establish the correctness of assertions that describe program properties.

The requirements for the development of the logic arose from specification and verification experience
using JML, and from the necessity to admit natural representations of type systems and other program
analysis formalisms. The first issue resulted in particular in the possibility to reason about local annotations
(assert, assume), including annotations that refer to the initial state of a method invocation. The second
issue resulted in a judgement form that admits proof rules that reflect the compositionality of type systems.
Finally, the correct interpretation of JML annotations as well as the interpretation of many type systems
apply to terminating and non-terminating computations. Extending partial-correctness logics, the MOBIUS
logic therefore includes a mechanism for reasoning about infinite program executions. This mechanism takes
the form of invariants that are required to be satisfied by all states that arise throughout a computation.

The logic has been formalised and proved correct w.r.t. the Bicolano semantics, using the Coq proof
assistant, and represents a central component of the MOBIUS architecture. It is used to formulate the
semantics of the Bytecode Modeling Language (BML) and also as a basis to prove the correctness of the
verification techniques implemented in the MOBIUS tool set. Finally, it will form the basis for the generation
of proof certificates.

1.1.3 Specification language for bytecode

The MOBIUS base logic provides the full power of higher order logic to express properties about bytecode
programs. This is very expressive, but has the disadvantage that it is a complex language. Therefore,
we developed a specification language especially tailored to bytecode. We did this development in two
steps: first we identified an appropriate expression language to state properties about bytecode, and then
we developed BML, a full specification language for bytecode.

Deep embedding of assertions The form of BML assertions is technically quite far from the assertions in
the MOBIUS base logic. In particular, the former describe properties of programs in the class file format,
while the latter describe properties after the linking of the program has been completed. In this light it
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is desirable to introduce a more direct translation from the specification language to the environment of
a proof checker in which the syntactical constructs of BML are modelled as algebraic data types. This
resulted in a deep embedding of assertions of the MOBIUS base logic, which makes it easier to map BML
predicates into the MOBIUS base logic. The deep embedding thus bridges the gap between the assertions
in the MOBIUS base logic and BML predicates. Still, the translation from BML to the deep embedding is
not trivial, because it must perform linking, so that the program and its annotations are in a form that is
appropriate for the MOBIUS base logic.

A reformulation of the MOBIUS base logic as a deep embedding makes sense not only due to more
straightforward treatment of the classfiles linking. There is evidence that proofs for deep embeddings are
smaller [54]. More importantly, it is more straightforward to redefine the logic in other proof assistants or
prover logics when it is deeply embedded. In case a logic is formulated as the deep embedding, one can also
formulate the properties of the logic at the meta-level and take advantage of meta-level operations that can
be defined in a proof checker to manipulate the formulae of the logic.

Bytecode Modeling Language JML is a widely-used specification language for Java source code. The Byte-
code Modeling Language (BML) is developed as a bytecode variation of most of the basic JML constructs.
We believe that BML allows one to specify the behaviour of a program in such a way that it is understandable
for bytecode programmers.

One of the results of this task was to define a precise description of the intuitive meaning associated
with the BML constructs derived from JML. For this, we define a mapping of BML predicates to the deeply
embedded expressions of the MOBIUS base logic and subsequently, a mapping for full BML specifications
into judgements of the MOBIUS base logic.

This precisely defined specification language will be used by the MOBIUS tool set. It is expected that
programmers will be able to write their specifications in BML and that BML will serve as a format to which
JML expressions will be compiled by the proof transforming compiler developed in Workpackage 4.

1.1.4 Verification techniques for bytecode programs

VC Generator for MOBIUS base logic The basic idea of the weakest precondition calculus is that the
postcondition of an instruction together with the semantics of the instruction gives rise to the weakest
formula that guarantees that the postcondition holds. Thus, if one can show that the actual precondition
implies this weakest precondition, one can be sure that the postcondition will be established. This idea forms
the basis for a verification condition generator: using the weakest precondition calculus, one computes a set
of proof obligations that ensure that the program’s postcondition will be established. This VC Generator
is closely linked to the MOBIUS base logic, by a straightforward transformation of the proof rules into a
wp-calculus.

The soundness of the VC Generator is proved in Coq with respect to the formalisation of the MOBIUS
base logic.

VC generation via translation to BoogiePL BoogiePL is a programming language in the flavour of Dijkstra’s
guarded command language. Additionally, it provides a labelled jump construct which makes it more
appropriate for (unstructured) bytecode. It uses very few programming constructs and a rich language
of expressions that controls the behaviour of the programs. This has the advantage that it is easy to
develop many independent proving back-ends for the verification tool set. Moreover, BoogiePL enables the
generation of verification conditions the size of which is linear in the length of the BoogiePL program [7, 26].
This is important for efficient verification.

We define a translation of annotated bytecode programs into the BoogiePL language. This non-trivial
translation is shown to be sound by showing that any program that can be proved correct after translation
into BoogiePL, also can be proved correct as a bytecode program directly. The proof is done by relating the
expressions in BoogiePL to the expressions in the weakest precondition calculus for bytecode.

The obtained results allow one to use the BoogiePL back-end in order to obtain sound results with
respect to the MOBIUS base logic.
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1.2 Task 3.1 within MOBIUS

The formalisms developed within Task 3.1 will be used and extended in many other parts of the project.
Figure 1.2 displays the dependencies that are currently foreseen. For each task we briefly list the particular
activities that depend on this task.

Task 3.2 Task 3.3 Task 3.5 Task 3.6
+ Bicolano
+ Base logic

+ Bicolano + data flow in + tools
+ proper

synchr.
base logic

WP 5
+ case studies

Task 3.1

WP 4
+ certificates

Figure 1.2: The tasks within the MOBIUS project that depend on Task 3.1.

Task 3.2 will extend the Java bytecode semantics Bicolano to take into account the resource usage
for the Java Virtual Machine. This task will also extend the MOBIUS base logic with constructs that
will enable specification and verification of resource policies and information flow properties. Task 3.3
plans to extend the Bicolano semantics with multi-threading. This will be used to reason about properly
synchronised programs. Task 3.5 proposes to look for synergy effects that result from the combination of
the type-based verification with the approach based on the logic, in particular type-based analyses will
be embedded in the MOBIUS base logic. The tools developed in the Task 3.6 will be using the BML
specification language and the verification formalisms developed in the current task. The certificates format
as developed in Workpackage 4 will be based on the MOBIUS base logic. The tools developed in Task 3.6
and Workpackage 4 will be used in the case studies done in Workpackage 5, thus this workpackage indirectly
also depends on Task 3.1.

1.3 Running example

For a better understanding of the results presented in this document, we consider a single example1 that
will be used to illustrate the different formalisms. Figure 1.3 contains the Java source code together with
the JML specification of the example.

The example consists of an abstract class Bill that provides a universal implementation of certain
billing functionality. The class has a method produceBill, which calculates the aggregate cost for a series
of investments. The produceBill method uses an abstract method roundCost which gives the cost of a single
investment round. This method is abstract, because the implementation may depend on the communication
facilities that are specific to a particular mobile device on which the code will be executed.

The class has one object invariant:

//@ invariant sum >= 0;

which describes the property of the field of the class which collects the value of the bill. It says that the
field sum is non-negative at entry or exit from each method in the class. The method roundCost has one
postcondition:

//@ ensures 0 <= \result && \result <= x;

1In order to make the presentation clear, we had to make the example relatively small as the bytecode representation of
programs tends to be very long and the representatnion of the bytecode in proof assistants’ logics even longer.
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abstract class Bill {

private int sum;

//@ invariant sum >= 0;

//@ ensures 0 <= \result && \result <= x;

abstract int roundCost(int x) throws Exception;

//@ requires n > 0;

//@ ensures sum <= \old(sum) + n * (n + 1) / 2;

public boolean produceBill(int n) {

int i;

try{

//@ loop_invariant 0 < i && i <= n + 1 &&

//@ 0 <= sum && sum <= \old(sum) + (i - 1) * i / 2;

for (i = 1; i <= n; i++) {

this.sum = this.sum + roundCost(i);

}

return true;

} catch (Exception e) {

return false;

}

}

}

Figure 1.3: The source code of the class Bill

which expresses the fact that the cost of the round should not be greater than the sequence number of the
round. The other method, produceBill, has both a precondition and a postcondition. The precondition:

//@ requires n > 0;

says that the parameter n, which describes the number of rounds for which we calculate the bill, must be
positive. This is coupled with the postcondition:

//@ ensures sum <= \old(sum) + n * (n + 1) / 2;

which describes that the value of the object field sum after the calculation of the bill should be less than or
equal to the pre-state value of sum, increased by the number n * (n + 1) / 2. In order to make possible
the verification of the for loop in the body of the method produceBill, we add a loop invariant:

//@ loop_invariant 0 < i && i <= n + 1 &&

//@ 0 <= sum && sum <= \old(sum) + (i - 1) * i / 2;

which is very similar to the postcondition of the method, but it describes intermediate computations in
terms of the loop variable i. This loop invariant is valid for a particular semantics in which its value is
checked at the entry to the loop (i.e. before the entry condition is checked, but in all runs of the loop except
the first one after the loop control variable is increased). Notice that the loop invariant combined with the
exit condition of the loop gives exactly the postcondition of the method.

Figure 1.4 presents the compiled version of the class Bill. First we see the code of the implicit constructor
Bill() followed by the abstract method roundCost for which there is no code. The last chunk of the
bytecode listing presents the produceBill method. Notice that the for-loop from the original source code
is organised between the lines labelled from 2 to 24. The exit condition of the loop is checked in the lines
labelled by 22–24.

Example in the task formalisms We suggest the reader to glimpse at all the pieces of the example first
and then to go to the technical descriptions of particular contributions of the deliverable and study specific
renderings of the example more throughly in the course of the descriptions.
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abstract class Bill extends java.lang.Object{

Bill();

Code:

0: aload_0

1: invokespecial #1; //Method java/lang/Object."<init>":()V

4: return

abstract int roundCost(int);

throws java/lang/Exception

public boolean produceBill(int);

Code:

0 iconst_1

1 istore_2 //initialisation of i, at location 2, to 1

2 goto 22 (+20)

5 aload_0

6 aload_0

7 getfield #24 <Bill.sum>

10 aload_0

11 iload_2 //i as a parameter to roundCost

12 invokevirtual #26 <Bill.roundCost> //roundCost is invoked

15 iadd

16 putfield #24 <Bill.sum>

19 iinc 2 by 1 //i++

entry loop:

22 iload_2

23 iload_1 //the parameter n is at location 1

24 if_icmple 5 (-19) //the loop exit condition is checked

27 iconst_1

28 ireturn

29 astore_3 //the code to handle exception

30 iconst_0

31 ireturn

Exception table:

from to target type

0 28 29 Class java/lang/Exception

}

Figure 1.4: The bytecode of the class Bill
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To make this effort easier we provide here a reference to places where the example is continued: in
subsection 2.3.5 on page 30 in case of Bicolano, in section 3.8 on page 42 in case of the MOBIUS base
logic, in section 4.2.4 on page 60 and section 4.3 on page 62 in case of the deep embedding of assertions, in
subsection 4.1.1 on page 49 in case of BML, in section 5.1.4 on page 67 in case of the Basic VC Generator,
and finnally in section 5.2.3 on page 70 in case of the VC generator for BoogiePL.
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Chapter 2

Bicolano — a model of the Java Virtual Machine

Java Virtual Machine (JVM) with its bytecode language is one of the main programming languages consid-
ered in the MOBIUS project. The soundness of all the formal techniques envisioned in several parts of the
project requires a formal specification of JVM. This specification is formalised in the Coq proof assistant
and is called Bicolano.

Bicolano is situated at the bottom of the trusted base of the MOBIUS project. It is a formal description
of the Java Virtual Machine (JVM), giving a rigorous mathematical description of Java bytecode program
executions. It closely follows the official description of the JVM [38] as provided by Sun. Since the correctness
of Bicolano is not formally provable, the close connection with the official specification is essential to gain
trust in the specification.

This requirement results in two important design decisions for Bicolano. First, we propose a small step
semantics to relate consecutive JVM states during program execution, as it is done in the official description.
Second, to describe the JVM we try to keep the same level of detail as in the official description. Nevertheless
some simplifications have been made with respect the official documentation, some of which are motivated
by the fact that we concentrate on the CLDC platform.

Section 2.1 explains the restrictions that arise from the CLDC platform, and section 2.2 then lists
all simplifications that we make. The overall Bicolano architecture is presented in section 2.3. Finally,
appendix A gives a more detailed overview of the Bicolano specification; this should provide the necessary
information to prove correctness of a formal analysis w.r.t. the JVM.

2.1 Restrictions arising from the CLDC platform

The main focus of the MOBIUS project is on mobile devices. The primary Java configuration for such devices
is the Connected Limited Device Configuration (CLDC) [52]. This configuration has several restrictions that
allow us to simplify the formalisation of the JVM.

CLDC is defined as a Java 2 Micro Edition (J2ME) configuration. This has several important implica-
tions, in particular it means that the specification should apply to all Java realisations on mobile devices
and the features included in the configuration must be applicable to many kinds of devices. However, for
real devices extensions are often defined as profiles or platform-specific extensions.

A J2ME configuration specification always defines a subset of the Java technology features provided by
J2SE. Therefore, the CLDC specification should be considered together with the J2SE specifications of the
Java language [27] and the JVM [38] and whenever there is no explicit description in the CLDC specification
the feature should be interpreted to be defined as in the general purpose language and machine.

Here we generally refrain from discussing issues related to the API specifications presented in the MIDP
specification [51] and other J2ME profile specifications.

Finalization The Java programming language allows to define so-called finalization code, which is executed
just before the object is destroyed by the garbage collector. This allows to return to the operating system
all the resources that were claimed during the construction and life-time of the object. The specification
of CLDC does not allow the use of the instance Object.finalize method, thus the applications which are
written for CLDC should not rely on this feature. Since the finalize methods are called asynchronously,
without any specified order and in an unspecified thread [?, §2.17.7], this restriction allows us to avoid many
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complications for the JVM specification. In addition, one also does not have to consider the synchronisation
problems inherently connected with the static System.runFinalizersOnExit method.

Exceptions and errors The Java language specification defines so-called asynchronous exceptions. These
are exceptions that can occur at any moment of the program execution, as the result of

• an invocation of the stop method in Thread or ThreadGroup, or

• JVM internal errors (subclasses of VirtualMachineError1).

The CLDC configuration excludes the stop method from the Thread class and the whole ThreadGroup class
so only internal errors can trigger these asynchronous exceptions.

Virtual machine errors (defined as a subclass of the VirtualMachineError class) are serious errors which
should never be caught by an application. For the CLDC configuration, the only specified subclass of the
VirtualMachineError class is OutOfMemoryError. If other errors occur, the implementors of a JVM for a
mobile device can decide to either halt in an implementation-specific manner or to throw an error of the
nearest CLDC-supported class that is a superclass of the error class that would have been thrown otherwise.
Thus, all errors other than OutOfMemoryError are signalled to the application as a VirtualMachineError

or cause the halting of the application. Except from these errors all other asynchronous exceptions are
forbidden.

The set of errors that can occur in CLDC applications possible contains in addition the following classes:

• java.lang.Error,

• java.lang.NoClassDefFoundError.

All the other errors are not allowed.

Class loaders and reflection The Java language defines reflection primitives which allow to access and
manipulate the program which currently operates. These reflection features are only included in a very
limited way in the CLDC/MIDP specifications.

The main restriction concerns class loaders. The specification of CLDC forbids the use of user-defined
class loaders. The security requirements imply that a CLDC-conforming JVM must have a single built-in
class loader that cannot be overridden, replaced, or reconfigured.

Moreover, the operation of the class loader is further restricted as described on page 21 in subsection
Class file format and class loading of the current section.

Threads Virtual machines that conform to CLDC implement multi-threading in a restricted way, in par-
ticular they do not implement thread groups and daemon threads.

A thread group is a grouping primitive that allows to perform certain similar operations on multiple
threads organised in blocks. On CLDC-based devices this has to be arranged by explicit use of collections.

A daemon thread is a special kind of thread which is not taken into account when the decision whether
the application can be exited is taken — the application must exit when all its non-daemon threads cease
their existence either by the normal or exceptional exit from the run method.

Minor restrictions of the CLDC configuration w.r.t. muli-threading include:

• it is not possible to print the stack of the current thread (this feature is removed to reduce the
footprint),

• it is not possible to interrupt threads (no stop method),

• there is no nanosecond timer support,

• there is no definition of access rights for threads,

• there is no class loader field,

• it is not possible to wait for the death of another thread for a fixed amount of time, and

1As specified in the J2SE API specification [1], the subclasses of VirtualMachineError are InternalError,
OutOfMemoryError, StackOverflowError, and UnknownError.
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• it is not possible to change the name of a thread.

Note, that these restrictions mostly are consequences of other restrictions.

Class file verification Class file verification as is done by traditional Java bytecode verifiers is considered to
be too expensive for mobile devices. Thus a new verification procedure has been developed, based on adding
special StackMap attributes to the class files during the development stage. These additional attributes
contain information about the size of the method frame and the stack, together with information about
the types of the values both in the frame and on the stack. The presence of these attributes speeds up the
verification process. The lack of these attributes or inconsistencies in their contents cause the machine to
reject the class file.

The new verification process is supposed to give the same guarantees as the original one, namely the
type system of the JVM is not violated and memory will not get corrupted. What is more, the additional
attributes are simply ignored by the conventional Java Virtual Machine.

The CLDC verifier requires that all subroutines in the bytecode are inlined (which is not an easy task
[3]). This means that none of the bytecode instructions jsr, jsr_w, ret, and wide ret can occur in the
actual bytecode files generated for the platform.

Native functions The standard JVM with its Java Native Invocation (JNI) framework allows to extend
the functionality of the Java language with new features that are available to the operating system. In fact,
much of the functionality in the standard library is made available through this technology.

However, for CLDC-based devices the application programmer cannot extend the functionality of the
language by downloading new libraries that access native features which are not provided by the primarily
available CLDC implementation, device profiles, or by the manufacturer-specific classes.

Class file format and class loading The CLDC specification allows certain simplifications and optimisations
to the class file format. The following attributes can be ignored by a CLDC implementation:

• the Synthetic attribute [?, §4.7.6] that mark fields that are not explicitly mentioned in the source
code file,

• the SourceFile attribute [?, §4.7.7] that specifies how information about the source file of the class
can be obtained,

• the LineNumberTable attribute [?, §4.7.8] that is used by debuggers to obtain the relation between
line numbers in the source file and the bytecode instructions,

• the LocalVariableTable attribute [?, §4.7.9] that is used by debuggers to obtain the values of local
variables during the execution of a method, and

• the Deprecated attribute [?, §4.7.10] that marks the deprecated members of an object.

In addition, also the consistency of the InnerClass attribute need not be checked.
As these attributes might not be available, this has certain consequences for the development of the

CLDC and MIDP libraries. In particular, none of the deprecated J2SE methods is reported in the CLDC
specification.

A Java application that conforms to the CLDC specification can load application classes and resources
only from its own Java Archive (JAR) file. This ensures that applications from different JAR archives
cannot share code or fixed data (like icons or default lists of certificates). It is also the case that a third-
party application cannot access or modify the private of protected parts of the classes supplied by the
manufacturer of the device (i.e. classes belonging to the CLDC, supported profiles or manufacturer-specific
classes). Moreover, it is not possible to change the class file lookup order in any CLDC application.

2.2 Coverage of the specification with respect to the JVM

Bicolano makes several simplifications with respect to the official JVM semantics. Before describing the
Bicolano specification in more detail, we first list these restrictions and motivate them. A detailed comparison
of the Bicolano semantics with the actual JVM specification is presented in appendix A.
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A post-linking view Bicolano only handles complete programs and hence is not able to deal with dynamic
linking. This choice simplifies the specification considerably, because a large part of the description in the
official Sun specification is related to linking.

Hence, we assume that a parser has read a bundle of class files and successfully checked that it constitutes
a complete program. This check implies that each time a class name appears in the program, there exists a
class with the corresponding name. The same holds for interfaces, fields and methods. Thus, Bicolano only
describes the behaviour of a complete program, and any incomplete program should have been rejected by
the parser.

In a class file, bytecode instructions refer to constants using symbolic information stored in a table (one
per method) named constant pool. Again for simplicity, we rely on the parser to inline this symbolic table,
and Bicolano does not handle constant pools. Such an inlining would not be possible if we did not consider
programs post-linking.

Class initialisation Static initialisation of classes is not handled by the current version of Bicolano, since in
the JVM it is done via the objects of type Class and reflection mechanisms, which are missing from Bicolano.
However, some preliminary work to model static class initialisation in Bicolano as closely as possible to the
JVM specification has already started. This includes adding an attribute to the class model to specify the
initialisation state of the class (Uninitialised, InInitialisation, Initialised or InitError), making
suitable changes to the small step semantics of instructions which could trigger class initialisation (such as
invokestatic, getstatic, and new) and defining a mechanism to track initialisation of classes (and their
superclasses) using the JVM method stack.

Currently, we restrict ourselves to a simple semantics, only allowing initialisation of a field by a constant.
Class initialisation should be studied further at a later time in the MOBIUS project.

Subroutines Bicolano does not handle subroutines. Instead, we require that source code has been compiled
without using subroutines. If it has not, the use of an inlining algorithm is necessary [3]. Recall that in the
CLDC platform subroutines cannot be used (see section 2.1).

The semantic consequence of this choice is that there is no returnAddress value.

Numerical values Bicolano makes some restrictions on JVM numerical values that it specifies.

First of all, we omit 64 bits values (double and long). This is essentially for simplification of the
specification: the management of 64 bits values is complex because local variables only store 32 bits values,
and 64 bits values occupy two consecutive local variables. This would require to add a notion of valid index
to the JVM specification. Moreover some instructions (for example dup) have a different meaning depending
on the size of the elements on top of the dynamic operand stack.

Second, Bicolano does not model float numbers, as it is not a priority for the MOBIUS project to
prove properties of programs that manipulate floats. However, floating numbers could be added, using an
axiomatisation of the IEEE 754 standard.

2.3 Bicolano architecture

This section gives an overview of Bicolano. Figure 2.1 presents the global architecture of the development. At
the core of Bicolano is the axiomatic base that describes the notion of program, and specifies the semantic
domains and machine arithmetic that we use. We use the Coq module system to model these different
components. The operational semantics is defined on top of this axiomatic base. We define a small step and
a big step semantics, and we prove equivalence between these. Finally, to show that the axiomatisations
that we use are consistent, we give possible concrete instantiations of the different modules that allow to
represent particular bytecode programs.

2.3.1 Axiomatic base

As said, at the core of the Bicolano specification are the axiomatisations of program syntax (file Program.v),
semantic domains (file Domain.v) and machine arithmetic (file Numeric.v). The latter specifies all necessary
numerical operations, conversions between different numeric types etc.
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Domain.v Numeric.v

Semantic domains Machine arithmetic

Axiomatic base

Program with lists

ImplemProgramWithList.v

Operational semantics

ImplemDomain.v ImplemNumeric.v

Semantic domains Machine arithmetic

Implementation

Program with maps

ImplemProgramWithMap.v

Equivalence proof

EquivSmallAndBigStep.v

Small step

SmallStep.v

Big step

BigStep.v

Program syntax

Program.v

Figure 2.1: Bicolano architecture
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Program syntax The syntax of a JVM program is modelled abstractly, using signatures of the Coq module
system. This gives rise to cleaner separation of concerns in the formalisation of the semantics. The whole
set of axioms is put in a module type named PROGRAM. This axiomatisation is based on various abstract data
types:

Parameter Program :Set.

Parameter Class : Set.

Parameter Interface : Set.

Parameter Var : Set.

Parameter Field : Set.

Parameter Method : Set.

Parameter BytecodeMethod : Set.

Parameter ExceptionHandler : Set.

Parameter MethodSignature : Set.

Parameter FieldSignature :Set.

Parameter PC : Set.

Note that some notions, such as methods and fields, are modelled in two forms: the standard form and the
signature form. Such a distinction is necessary because bytecode instructions do not contain direct pointers
to methods or fields.

Each abstract type has a list of accessors to manipulate them. We group the accessors of a given type
in the same sub-module type. Here we give an example of Program accessors:

(∗ ∗ Contents o f a Java program ∗ )
Module Type PROG_TYPE.

(∗ ∗ a c c e s s o r to a c l a s s from i t s q u a l i f i e d name ∗ )
Parameter class : Program → ClassName → option Class.

Definition defined_Class (p:Program) (cl:Class) :=

class p (CLASS.name cl) = Some cl.

Parameter name_class_invariant1 : ∀ p cn cl ,

class p cn = Some cl → cn = CLASS.name cl.

(∗ ∗ a c c e s s o r to an i n t e r f a c e from i t s q u a l i f i e d name ∗ )
Parameter interface : Program → InterfaceName → option Interface.

Definition defined_Interface (p:Program) (i:Interface) :=

interface p (INTERFACE.name i) = Some i.

Parameter name_interface_invariant1 : ∀ p cn cl ,

interface p cn = Some cl → cn = INTERFACE.name cl.

End PROG_TYPE.

Declare Module PROG : PROG_TYPE.

Notice that the Program structure contains several internal invariants like name_class_invariant1. These
are properties that we require to hold for any instantiation of the module, and that can be assumed in the
operational semantics.

The axiomatisation of programs ends with a list of definitions using the previous notions such as subtyping
and method lookup.

Semantic domains Semantic domains are axiomatised in a module type named SEMANTIC_DOMAIN. Each
sub-domain is specified in a sub-module type. For example, the set of local variables is specified as follows.

Module Type LOCALVAR.

Parameter t : Set.

Parameter get : t → Var → option value.

Parameter update : t → Var → value → t.

Parameter get_update_new : ∀ l x v, get (update l x v) x = Some v.

Parameter get_update_old : ∀ l x y v,

x<>y → get (update l x v) y = get l y.

End LOCALVAR.

Declare Module LocalVar : LOCALVAR.
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The most complex axiomatisation of this file concerns heap. It is based on the work of Bannwart and
Müller [5]:

Module Type HEAP.

Parameter t : Set.

Inductive AddressingMode : Set :=

| StaticField : FieldSignature → AddressingMode

| DynamicField : Location → FieldSignature → AddressingMode

| ArrayElement : Location → Int.t → AddressingMode.

Inductive LocationType : Set :=

| LocationObject : ClassName → LocationType

| LocationArray : Int.t → type → LocationType.

Parameter get : t → AddressingMode → option value.

Parameter update : t → AddressingMode → value → t.

Parameter typeof : t → Location → option LocationType.

Parameter new : t → Program → LocationType → option (Location * t).

...

The abstract type of heaps (called t inside the module type HEAP) has two accessors get and typeof and
two modifiers update and new. These functions are based on the notions of AddressingMode and LocationType.
AddressingMode gives the kind of entry in the heap: a field signature for static fields, a location together
with a field signature for field values of objects, and a location together with an integer for the element of an
array. The definition get gives access to the value attached to an indicated address. The definition typeof

gives the type associated with a location (if there is any). This type is either a class name for objects or a
length and a type of elements for arrays. The definition update allows to modify a value at a given address.
Finally, the definition new allows to allocate a new object or a new array.

2.3.2 Operational semantics

Bicolano proposes two different operational semantics: a small step and a big step. Equivalence between
these two semantics is formally proved.

Small step semantics The small step semantics follows exactly the reference semantics given in the official
specification. It consists of an elementary relation named step between states of the virtual machine. A
standard state is of the form (St h (Fr m pc s l) sf) where h is a heap; (Fr m pc s l) is the current frame
composed of the current method m, the current program point pc, the local variables l and the operand stack
s; and finally sf is the call stack. An exceptional state is of the form (StE h (FrE m pc loc l) sf) where
all elements are similar to those found in a standard state, except the location of the exception object loc,
which replaces the operand stack. Exceptional states occur when an exception is thrown, but control has
not yet reached the corresponding exception handler.

The step relation is given by an inductive relation. We give here a fragment describing the semantics of
the putfield instruction.

Inductive step (p:Program) : State.t → State.t → Prop :=

...

| putfield_step_ok : ∀ h m pc pc’ s l sf f loc cn v,

instructionAt m pc = Some (Putfield f) →
next m pc = Some pc’ →
Heap.typeof h loc = Some (Heap.LocationObject cn) →
defined_field p cn f →
assign_compatible p h v (FIELDSIGNATURE.type f) →

step p (St h (Fr m pc (v::( Ref loc )::s) l) sf)

(St (Heap.update h (Heap.DynamicField loc f) v) (Fr m pc’ s l) sf)

| putfield_step_NullPointerException : ∀ h m pc s l sf f v h’ loc ’,

instructionAt m pc = Some (Putfield f) →
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Heap.new h p

(Heap.LocationObject (javaLang ,NullPointerException )) = Some (loc ’,h’) →

step p (St h (Fr m pc (v::Null::s) l) sf)

(StE h’ (FrE m pc loc ’ l) sf)

...

The definition of this relation closely follows the definition given in the official specification. Together with
the axiomatisation presented above, it forms the trusted base of Bicolano.

Big step semantics Since JVM states contain a frame stack to handle method invocations, it is often
convenient to use an equivalent semantics where method invocations are performed in one big step transition
for showing the correctness of static analyses and program logics. Therefore we introduce a new semantics
relation:

IntraStep (p:Program) : Method →IntraNormalState →IntraNormalState + ReturnState →Prop

This relation denotes transitions of a method between two internal states, i.e. JVM states that only contain
one frame (instead of a frame stack), or between an internal state and a return state, i.e. a pair of a heap
and a final result (a JVM value or an exception object in case of termination by an uncaught exception).

The definition of IntraStep depends on four different relations:

• NormalStep (p:Program) : Method →IntraNormalState →IntraNormalState →Prop

which defines the normal step relation without method calls or exception throwing;

• ExceptionStep (p:Program) : Method →IntraNormalState →IntraExceptionState →Prop

which defines the step in which an exception is thrown;

• CallStep (p:Program) : Method →IntraNormalState →Method*(OperandStack.t*LocalVar.t) →Prop

which defines the step in which a method is called; and

• ReturnStep (p:Program) : Method →IntraNormalState →ReturnState →Prop

which defines the step in which a method terminates normally.

We show a fragment of NormalStep, specifying the behaviour of the putfield instruction:

| putfield : ∀ h m pc pc ’ s l f loc cn v,

instructionAt m pc = Some (Putfield f) →
next m pc = Some pc ’ →
Heap.typeof h loc = Some (Heap.LocationObject cn) →
defined_field p cn f →
assign_compatible p h v (FIELDSIGNATURE.type f) →

NormalStep p m(pc ,(h,(v::(Ref loc)::s),l))

(pc ’,(Heap.update h (Heap.DynamicField loc f) v,s,l))

These relations are combined to express the three different kinds of steps that can occur:

• exec_intra for steps inside the method:

Inductive exec_intra (p:Program) (m:Method) : IntraNormalState →
IntraNormalState → Prop :=

| exec_intra_normal : ∀ s1 s2 ,

NormalStep p m s1 s2 →
exec_intra p m s1 s2

| exec_exception : ∀ pc1 h1 h2 loc2 s1 l1 pc ’,

ExceptionStep p m (pc1 ,(h1,s1,l1)) (h2,loc2) →
CaughtException p m (pc1 ,h2,loc2) pc’ →
exec_intra p m (pc1 ,(h1,s1,l1))

(pc ’,(h2,Ref loc2:: OperandStack.empty ,l1)).

• exec_return for steps that end the current execution of the method:
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Inductive exec_return (p:Program) (m:Method) : IntraNormalState →
ReturnState → Prop :=

| exec_return_normal : ∀ s h ov ,

ReturnStep p m s (h,Normal ov) →
exec_return p m s (h,Normal ov)

| exec_return_exception : ∀ pc1 h1 h2 loc2 s1 l1 ,

ExceptionStep p m (pc1 ,(h1,s1,l1)) (h2,loc2) →
UnCaughtException p m (pc1 ,h2,loc2) →
exec_return p m (pc1 ,(h1,s1,l1)) (h2,Exception loc2).

• exec_call to perform a call and directly use the corresponding result:

Inductive exec_call (p:Program) (m:Method) :

IntraNormalState → ReturnState → Method → IntraNormalState →
IntraNormalState+ReturnState → Prop :=

| exec_call_normal : ∀ m2 pc1 pc1 ’ h1 s1 l1 os l2 h2 bm2 ov ,

CallStep p m (pc1 ,(h1,s1,l1 )) (m2 ,(os,l2)) →
METHOD.body m2 = Some bm2 →
next m pc1 = Some pc1 ’ →
exec_call p m

(pc1 ,(h1,s1,l1))

(h2,Normal ov)

m2

(BYTECODEMETHOD.firstAddress bm2 ,(h1,OperandStack.empty ,l2))

(inl _ (pc1 ’,(h2,cons_option ov os,l1)))

| exec_call_caught : ∀ m2 pc1 pc1 ’ h1 s1 l1 os l2 h2 loc bm2 ,

CallStep p m (pc1 ,(h1,s1,l1 )) (m2 ,(os,l2)) →
METHOD.body m2 = Some bm2 →
CaughtException p m (pc1 , h2, loc) pc1 ’ →
exec_call p m

(pc1 ,(h1,s1,l1))

(h2,Exception loc)

m2

(BYTECODEMETHOD.firstAddress bm2 ,(h1,OperandStack.empty ,l2))

(inl _(pc1 ’,(h2,Ref loc::nil ,l1)))

| exec_call_uncaught : ∀ m2 pc1 h1 s1 l1 os l2 h2 loc bm2 ,

CallStep p m (pc1 ,(h1,s1,l1 )) (m2 ,(os,l2)) →
METHOD.body m2 = Some bm2 →
UnCaughtException p m (pc1 , h2, loc) →
exec_call p m

(pc1 ,(h1 ,s1 ,l1))

(h2 ,Exception loc)

m2

(BYTECODEMETHOD.firstAddress bm2 ,(h1,OperandStack.empty ,l2))

(inr _ (h2 ,Exception loc)).

IntraStep is then defined as a case distinction, using the previous relations.

Inductive IntraStep (p:Program) :

Method → IntraNormalState → IntraNormalState + ReturnState → Prop :=

| IntraStep_res :∀ m s ret ,

exec_return p m s ret →
IntraStep p m s (inr _ ret)

| IntraStep_intra_step:∀ m s1 s2 ,

exec_intra p m s1 s2 →
IntraStep p m s1 (inl _ s2)

| IntraStep_call :∀ m m’ s1 s’ ret ’ r,

exec_call p m s1 ret ’ m’ s’ r →
TransStep_l (IntraStep p m’) s’ (inr _ ret ’) →
IntraStep p m s1 r.

For the method call case, a recursive call to the transitive closure of IntraStep (obtained with the help
of TransStep_l) is exploited to link the initial state of the method called and its return value.
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The definition of IntraStep is exploited to define several transitive closures which covey the idea of the
big step semantics. IntraStepStar is the definition of the transitive closure of the internal step semantics
relation IntraStep.

Definition IntraStepStar p m s r := TransStep_l (IntraStep p m) s r

The actual big step reduction definition BigStep uses the transitive closure above to relate the internal state
with the return state:

Definition BigStep p m s ret := IntraStepStar p m s (inr _ ret).

As we discuss here the transitive closures, it is worth describing the Reachable relation which holds if from
one state in a particular method we can reach another state in another method.

Definition Reachable P M s s’ :=

exists M’, ClosReflTrans (ReachableStep P) (M,s) (M’,s’).

The definition of reachable states differs slightly from the big step definitions above as it is reflexive and
uses a separate definition of a single step, ReachableStep, in case a method call is executed:

Inductive ReachableStep (P:Program) :

(Method*IntraNormalState)→ (Method*IntraNormalState) → Prop :=

| ReachableIntra : ∀ M s s’,

IntraStep P M s (inl _ s’) →
ReachableStep P (M,s) (M,s’)

| Reachable_invS : ∀ M pc h os l M’ os ’ l’ bm ’,

CallStep P M (pc ,(h,os,l)) (M’,(os’,l’)) →
METHOD.body M’ = Some bm ’ →
ReachableStep P (M, (pc ,(h,os,l)))

(M’, (BYTECODEMETHOD.firstAddress bm ’,(h,OperandStack.empty ,l’))).

Proof of equivalence We have formally proved the correctness of the big step semantics with respect to
the reference small step semantics, by showing that the notion “evaluation of method m in program p from
states s terminates with the final value ret” coincides in both semantics. To achieve this result we have to
relate the transitive closures of the two semantics. This result is stated in theorem Equiv_SmallStep_BigStep:

Theorem Equiv_SmallStep_BigStep : ∀ P m s ret sf,

BigStep P m s ret

⇔
IntraBigStep_from_SmallStep P sf m s ret.

IntraBigStep_from_SmallStep is the definition of the big step judgement in terms of the small step
relation: the transitive closure of step without going below the initial call stack and terminating with a
return instruction or an uncaught exception in the same initial call stack.

Inductive IntraBigStep_from_SmallStep (P:Program) (sf:CallStack.t) (m:Method) :

IntraNormalState → ReturnState → Prop :=

| IntraBigStep_from_SmallStep_value : ∀ h1 pc1 l1 s1 h2 pc2 s2 l2 sr ,

step_closure_prefix_sf P

(St h1 (Fr m pc1 s1 l1) sf)

(St h2 (Fr m pc2 s2 l2) sf) →
ReturnStep P m (pc2 ,(h2,s2,l2)) sr →
IntraBigStep_from_SmallStep P sf m (pc1 ,(h1,s1,l1)) sr

| IntraBigStep_from_SmallStep_exception : ∀ h1 pc1 l1 s1 h2 pc2 loc2 l2 ,

step_closure_prefix_sf P

(St h1 (Fr m pc1 s1 l1) sf)

(StE h2 (FrE m pc2 loc2 l2) sf) →
UnCaughtException P m (pc2 ,h2,loc2) →
IntraBigStep_from_SmallStep P sf m (pc1 ,(h1,s1,l1)) (h2,Exception loc2).

It is worth mentioning that the equivalence theorem does not reference BigStep directly, but it uses just
the expansion of its definition.
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Module Bill.

...

Definition produceBillInstructions : list (PC*Instruction) :=

(0%N, Const INT 1%Z)::

(1%N, Vstore Ival 2%N)::

(2%N, Goto 20%Z)::

(5%N, Vload Aval 0%N)::

(6%N, Vload Aval 0%N)::

(7%N, Getfield Bill.sumFieldSignature)::

(10%N, Vload Aval 0%N)::

(11%N, Vload Ival 2%N)::

(12%N, Invokevirtual Bill.roundCostSignature)::

(15%N, Ibinop AddInt)::

(16%N, Putfield Bill.sumFieldSignature)::

(19%N, Iinc 2%N 1%Z)::

(22%N, Vload Ival 2%N)::

(23%N, Vload Ival 1%N)::

(24%N, If_icmp LeInt (-19)%Z)::

(27%N, Const INT 1%Z)::

(28%N, Vreturn Ival)::

(29%N, Vstore Aval 3%N)::

(30%N, Const INT 0%Z)::

(31%N, Vreturn Ival)::

nil

.

Definition produceBillHandlers : list ExceptionHandler :=

(EXCEPTIONHANDLER.Build_t (Some java_lang_Exception.className) 0%N 29%N 29%N)::

nil

.

Definition produceBillBody : BytecodeMethod := BYTECODEMETHOD.Build_t

produceBillInstructions

produceBillHandlers

4 (* max # of locals *)

4 (* max operand stack size *)

.

Definition produceBillMethod : Method := METHOD.Build_t

produceBillSignature

(Some produceBillBody)

false (* final *)

false (* static *)

false (* native *)

Public (* visibility *)

.

Definition class : Class := CLASS.Build_t

className

(Some java_lang_Object.className)

nil

(sumField::nil)

(_init_Method::roundCostMethod::produceBillMethod::nil)

false (* final *)

false (* public *)

true (* abstract *)

.

End Bill.

Figure 2.2: A fragment of the translation to Bicolano for the class Bill
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2.3.3 Implementations of module interfaces

To show that the axiomatisation in the core of Bicolano is consistent, we give implementations of the different
parts. We currently propose two different implementations of the program syntax; one is based on lists and
the other on efficient maps. The first allows a more readable program format while the second provides a
more efficient manipulation of programs.

We also provide implementations of the semantic domains and machine arithmetic axiomatisation. These
are currently incomplete, but should be completed during the rest of the MOBIUS project.

2.3.4 Bytecode verification in the JVM

As a part of the linking phase of bytecode, the JVM performs several additional checks to ensure several
wellformedness properties of the linked program (the properties are described in [?, §4.8]). This process
is called bytecode verification in the JVM2. Since the properties that are guaranteed by the bytecode
verification in the JVM are important and simplify many proof developments, we decided to describe them
as a part of Bicolano even though their checking formally belongs to the linking phase.

As in the JVM specification, the constraints that are enforced are divided into two groups: static and
structural. Each of them is encapsulated in a separate Coq module. The static constraints are relatively
simple syntactic restrictions, while the structural constraints require a control flow analysis of the loaded
program. This control flow analysis keeps track of

• the depth of the operand stack;

• the types of the elements on the operand stack;

• whether the cells of a local array are initialised;

• the type of elements in the initialised cells of arrays; and

• the program pointer (to associate the data with particular bytecode program points).

2.3.5 Running example

Appendix B gives the full translation of the running example in the list format mentioned above. Figure 2.2
shows an interesting fragment of the translation. The class representation defined at the bottom of the
figure consists of the name of the class, the superclass representation, the list of interfaces implemented
by the class, the list of the class fields, the list of the class methods, the indication that the class is not
final (the first false), the indication that the class is not public (the second false), and the indication that
the class is abstract (true). The figure also contains the definition of the method produceBillMethod.
The constructor for methods (METHOD.Build_t) takes as parameters the signature of the method, its body
and several modifiers of the definition (e.g. public). The definition of the method body uses the list of
instructions (produceBillInstructions), the list of exception handlers (produceBillHandlers), and some
auxiliary information about the number of local variables and the maximal size of the operand stack.

2Notice that there is a terminology clash here between the standard Java community meaning of bytecode verification,
and the verification whether a bytecode program adheres to its specification, as we will develop within the MOBIUS project.
Therefore, in this document we explicitly use the term bytecode verification in the JVM to denote the operation done by the
JVM and bytecode verification to denote the verification of a bytecode program w.r.t. its specification.
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Chapter 3

MOBIUS base logic

The MOBIUS base logic is a formal program logic for expressing general functional and non-functional
properties of JVM programs. Its consistency is justified with respect to the Bicolano operational semantics
presented in chapter 2. We first outline the requirements imposed on the logic by the specification formalisms
and proof-generating mechanisms that are envisioned to be part of the MOBIUS framework as well as by
the security and resource policies which we aim to certify. We then introduce a form of judgements that
extends partial-correctness logics by a mechanism for reasoning about non-terminating program executions
and present a corresponding proof system. We include a description of the proof of soundness with respect to
the Bicolano semantics where the formal interpretation of judgements makes the earlier informal explanation
of their meaning precise. Finally, we conclude with the presentation of the running example. The technical
part of the presentation (i.e. the material conveyed in sections 3.3 to 3.7) is based on a representation of the
program logic in the theorem prover Coq (using a shallow embedding of assertions) and a formalisation of
its soundness proof w.r.t. the Bicolano formalisation.

3.1 Requirements

Two aims governed the design of the MOBIUS logic. Firstly, logic-based verification as pursued in Work-
package 3 is based on the Java Modeling Language (JML, [34]), or its bytecode equivalent, the Bytecode
Modeling language (BML, see section 4.1). Consequently, the format of assertions and judgements, and the
formulation of proof rules, are required to be defined in a way that admits a smooth translation of BML
specifications. Two specification constructs were identified as being of particular importance:

• code annotations at intermediate program points, interpreted as assertions that should be valid when-
ever the annotated program point is visited;

• the possibility to refer to the initial values of object fields in method post-conditions and intermediate
program annotations through the specification keyword \old.

In addition to the representation of specification constructs, a further requirement consists of the ability to
justify verification strategies associated with JML/BML (verification condition generators, WP-calculi, . . . )
w.r.t. the MOBIUS base logic formalism.

The second group of requirements stems from the work in Workpackage 2, where type systems and
other program analysis frameworks are being developed that analyse intensional code properties such as
information flow safety and resource consumption. In order to be able to communicate the results of these
analyses from code producer to code consumer using PCC-based technology (considered in Workpackage 4),
it is necessary to express the code invariants that define the soundness property of the analyses in the program
logic. In particular, an efficient method to validate type-based certificates at the consumer side is obtained
if the typing judgements are given interpretations in the program logic in such a way that the syntax-
directedness of typing rules can be reflected in derived proof rules for the program-logic interpretations.
Consequently, the judgement format of the program logic needs to satisfy two requirements:

• the interpretation of the judgement at a program point pc within a JVM program must refer to the
program execution from pc onwards irrespectively of the way the program execution happened to
arrive at pc;
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• the proof rules must be formulated in such a way that the hypotheses refer to the control flow suc-
cessors, as typing judgements for composite expressions depend upon typing judgements for their
subexpressions.

Both requirements result from the syntax-directedness of typing systems where type judgements describe the
behaviour independent of surrounding code and typing rules are oriented so that hypothetical judgements
concern subexpressions.

Finally, a requirement from both logic-based verification and type-based verification concerns the ability
to reason about non-terminating program executions. In fact, the above-mentioned interpretation of JML-
annotations at intermediate program points applies even if the continued execution of the enclosing method
fails to terminate. In case of type systems, the extension of interpretations to non-terminating executions
strengthens the property that is guaranteed by a typing judgement. In fact, while many syntactic soundness
proofs (e.g. proofs based on big-step operational judgements and subject-reduction theorems) fail to consider
non-terminating executions, the type systems the soundness of which is proved often admit a stronger notion
of soundness that does include non-terminating executions.

The constraint to consider non-terminating executions makes program logics that interpret judgements
as partial or total correctness assertions insufficient. The MOBIUS base logic therefore includes invariants,
i.e. assertions that constrain all executions of a program phrase.

Another point worth noting is the apparent conflict between the JML requirement that assertions should
be able to refer to the initial state of method invocation and the type-motivated requirement that judgements
only refer to the program continuation. The MOBIUS logic satisfied both requirements by including initial
states in all assertion forms but interpreting judgements as mandated by the interpretation of type systems.

We now give a brief overview of the MOBIUS logic before describing selected technical details in the
ensuing sections. All notions in the remainder of this chapter are formulated with respect to an arbitrary
but fixed program, which we denote by P . Method identifiers m are of the form m = (C,M) where C
is a class name and M a method name, while program points pc = (m, l) combine method identifiers and
instruction labels. Finally, the initial label of method m is denoted by initm.

3.2 Overview of the logic

Global specification and verification structure The verification of a Bicolano-represented JVM program is
formulated and carried out with respect to a method specification table M that associates with each method
identifier m of the program

• a method specification S = (R, T,Φ), comprising a precondition R, a postcondition T , and a method
invariant Φ;

• a local specification table G, i.e. a context of local proof assumptions;

• a local annotation table Q that collects the (optional) assertions associated with labels in m.

Informally, an entry M(m) = ((R, T,Φ),G,Q) is to be understood as follows.

The tuple (R, T ) constitutes a partial-correctness specification, i.e. the postcondition T (s0, t) is expected
to hold whenever an execution of m with initial state s0 that satisfies R(s0) terminates, where t is the
final state. As in VDM [30], the additional dependency of T on s0 eliminates the necessity of introducing
auxiliary variables. Method executions that do not terminate satisfy T trivially.

The tuple (R,Φ) constitutes a method invariant: assertion Φ(s0, s) is expected to hold for any state s
that arises during the (terminating or non-terminating) execution of m with initial state s0 satisfying R(s0).
This interpretation includes states arising in sub-frames, i.e. in invocations of further methods m′ initiated
during the execution of m.

The annotation table Q is a finite partial map from labels occurring in m to assertions Q(s0, s). If
label l is annotated by Q, then Q(s0, s) will be expected to hold for any state s encountered at program
point (m, l) during a terminating or non-terminating execution of m with initial state s0 satisfying R(s0).
Annotations are mostly of method-internal interest as the code structure is of little meaning outside the
method definition.

Finally, the proof context G collects proof assumptions that may be used during the verification of the
method. It consists of a finite partial map from labels in m to the components (A,B, I) of local proof
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judgements G,Q ` {A} pc {B} (I), to be described in due course. In order to avoid faulty assumptions to be
included in G, the complete verification of a program requires each entry in G to be justified, in the following
way.

Given a program P with specification M, the verification task consists of showing that M is justified.
For each entry M(m) = (S,G,Q), we need to show that:

1. The body bm of m satisfies the method specification. This amounts to deriving the judgement G,Q `
{A0}m, initm {B0} (I0) where the assertion A0, B0, and I0 are extracted from S (see below).

2. The proof context G is justified. As entries in G may be accessed in the proof of item (1) by means of
an axiom rule, the verification of G prevents the insertion of invalid proof assumptions by a malevolent
proof producer.

The precise formulation of what constitutes a verified program will be given in section 3.6.3 below.

Local verification The verification of method bodies uses judgements of the form G,Q ` {A} pc {B} (I).
Here,

1. A is a (local) precondition, i.e. a predicate A(s0, s) that relates the state s at program point pc (i.e. the
state prior to executing the instruction at that program point) to the initial state s0 of the current
method invocation.

2. B is a (local) postcondition, i.e. a predicate B(s0, s, t) that relates the state s at pc to the initial state
s0 and the final state t of the current method invocation, provided the execution of the current method
invocation terminates.

3. I is a (local) invariant, i.e. a predicate I(s, s′) that relates the state s at pc to any future state
encountered during the continued execution of the current method, including those arising in sub-
frames.

4. G is the proof context which may be used to store recursive proof assumptions, as needed e.g. for the
verification of loops.

Additionally, if pc = (m, l) and Q(l) = Q, then the judgement G,Q ` {A} pc {B} (I) implicitly also mandates
that Q(s0, s) holds for all states s encountered at l, where s0 is as before.

The core of our program logic is a proof system for judgements G,Q ` {A} pc {B} (I), comprising
syntax-directed proof rules and logical rules. Syntax-directed rules are essentially of the form1:

G,Q ` {A1} pc1 {B1} (I1) · · · G,Q ` {An} pcn {Bn} (In) φ1 · · ·φk
G,Q ` {A} pc {B} (I),

where pc1, . . . pcn are the control flow successors of pc and the φi are side conditions governing the appli-
cability of a rule or relating components of the hypothetical judgements to components of the concluding
judgement. In logical rules, all assumptions are side conditions.

In the remainder of this chapter, we describe some details of the logic. We describe the syntactic format
of the various assertion forms, define the semantic interpretation of judgements, discuss the structure of
the proof system, present some selected proof rules, and outline the soundness proof. In order to keep the
text readable, we give a simplified presentation that glosses over various technicalities. The reader who is
interested in the mathematical details is referred to the reference implementation of the logic, which we have
carried out in the theorem prover Coq w.r.t. the Bicolano operational semantics2.

1For technical reasons, the hypothetical judgements actually are of a different form, G,Q ` 〈Ai〉 pci 〈Bi〉 (Ii), as described in
section 3.6. In this brief overview (section 3.2) we gloss over this fact although the difference between the two forms is important
for the soundness property.

2Available at http://mobius.inria.fr/bicolano.
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3.3 Format of assertions and judgements

3.3.1 States

The above informal description of the logic mentions different kinds of states, namely initial states, states
at program program points, and terminal states. Our presentation expresses the difference between these
categories by using the following three types, where S denotes the type of stores (in JVM parlance: collection
of local registers), H the type of object heaps, O the type of operand stacks, and V that of JVM values.

Initial states s0 ∈ InitState = S ×H
represent states before the first instruction of a method has been executed. Initial states are used in
partial method specifications, method invariants, as well as in annotations, local pre- and postcondi-
tions, and invariants.

Local states s ∈ LocalState = O × S ×H
contain all components of a JVM state and occur at intermediate program points, namely in annota-
tions, local pre- and postconditions, and in invariants.

Terminal states t ∈ TermState = Vr ×H
contain a return value and a heap, and occur in partial-correctness method specifications and in local
postconditions. Here, a return value is either a proper value v ∈ V, or an exceptional return value (an
address representing the location of the exception object in the heap), or the empty value (value of
type void).

In addition to improving readability, the introduction of these categories introduces a basic discipline which
governs the state components to which assertions may refer. For s0 = (S,H) we write state(s0) = ([ ], S,H)
for the local state that extends s0 with an empty operand stack.

3.3.2 Assertions

As mentioned before, judgements relate a program point pc = (m, l) to a context G, a precondition A, a
postcondition B, and an invariant I, and implicitly refer to an optional annotation Q. These assertion forms
are of the following types.

Local assertions of type A ≡ (InitState × LocalState)→ Prop
occur as preconditions A and annotations Q, and relate the current state to the initial state of the
current frame.

Postconditions B ∈ B = (InitState × LocalState × TermState)→ Prop
relate the current state to the initial and final state of a (terminating) execution of the current frame.

Invariants I ∈ I = (LocalState × LocalState)→ Prop
relate the current state to a local state of the same frame or a subframe of the current frame.

3.3.3 Specifications

The behaviour of a method is specified by the following kinds of assertions

S ∈ MethSpec = MethPre ×MethPost ×MethInv

R ∈ MethPre = (InitState)→ Prop

T ∈ MethPost = (InitState × TermState)→ Prop

Φ ∈ MethInv = (InitState × LocalState)→ Prop

Method preconditions R are predicates on initial states. Following the partial-correctness regime, precon-
ditions do not guarantee termination.

Method postconditions T constrain the behaviour of terminating executions of the method and thus relate
their initial and final states.
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Method invariants Φ specify the behaviour of terminating and non-terminating executions of a method by
relating initial states and local states. Semantically, a method invariant Φ will be required to hold for
all states that arise throughout the execution of a method, including those occurring in dynamically
created subframes.

As was mentioned already in section 3.2, a program specification is given by a table M that associates
with each method a method specification S, a local specification table G, and a local annotation table Q.

3.4 Interpretation of assertions and judgements

The interpretation of proof judgements is defined with the help of various operational notions, all formulated
with respect to a method m. In order to simplify the presentation we use (s, l) ⇒∗ (s′, l′) to denote the
transitive and reflexive closure of the single-step relation (also used if s is an initial state), (s, l) ⇓ t to
denote the big-step execution (completion of ⇒∗ until the end of the current frame), and (s, l) (s′, l′) to
denote the reflexive and transitive closure of the single-step relation which descends into subframes. These
correspond to the Bicolano relations IntraStepStar , BigStep, and Reachable as follows3:

(s, l)⇒∗ (s′, l′) ::= ∃n. IntraStepStar P m n (s, l) inl(s′, l′),

(s0, l)⇒∗ (s′, l′) ::= (state(s0), l)⇒∗ (s′, l′),

(s, l) ⇓ t ::= BigStep P m (s, l) t,

(s, l) (s′, l′) ::= Reachable P m n (s, l) inl(s′, l′).

Definition 3.4.1 A proof judgement is valid, notation |=Q {A}m, l {B} I, if s0, initm ⇒∗ (s, l) and A(s0, s)
implies

• if (s, l) ⇓ t then B(s0, s, t);

• if (s, l) (s′, l′) then I(s, s′);

• if (s, l)⇒∗ (s′, l′) and Q(l′) = Q then Q(s0, s
′).

A program is valid for program specification M if all method specifications in M are valid, i.e. if for all
m, R, T , Φ, and G, and Q, M(m) = ((R, T,Φ),G,Q) implies |=Q {A}m, initm {BT } IΦ, where

A = λ (s0, s). R(s0) ∧ s = state(s0),

BT = λ (s0, s, t). s = state(s0)→ T (s0, t), and

IΦ = λ (s, r). ∀ s0. s = state(s0)→ Φ(s0, r).

3.5 Assertion transformers

In order to simplify the presentation of the proof rules, we define operators that relate assertions occur-
ring in judgements of adjacent instructions. These assertion transformers resemble WP-operators, but are
separately defined for preconditions, postconditions, and invariants.

For basic instructions (arithmetic operations, object manipulations, etc.) the operators for normal
(i.e. non-exceptional) execution relate the assertions for a single step from label l to its successor label l′4:

PRE (m, l, l′, A)(s0, r) = ∃ s. NormalStep(m, (l, s), (l′, r)) ∧A(s0, s)

POST (m, l, l′, B)(s0, r, u) = ∀ s. NormalStep(m, (l, s), (l′, r))→ B(s0, s, u)

INV (m, l, l′, I)(r, u) = ∀ s. NormalStep(m, (l, s), (l′, r))→ I(s, u)

Roughly speaking, the precondition PRE (m, l, l′, A) holds for a state r at label l′ if r can be reached from l, s
in a single step for some s satisfying A. Similar readings may be given to the transformers for postconditions
and invariants.

3The relations IntraStepStar ,BigStep and Reachable are explained in section 2.3.2 on page 27.
4The explanation of the NormalStep relation is on page 26.
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Further operators PRE e(·, ·, ·, ·), POST e(·, ·, ·, ·), and INV e(·, ·, ·, ·) capture exceptional behaviour of
basic instructions, but have been omitted from this presentation.

For the instruction Invokestatic, the non-exceptional transformers mediate between the assertions that
enclose the execution of a method call.

PRE sinv (R, T,A,N) =
λ s0 s. ∃ O S h H O′ w.

|O′| = N ∧ s = (w :: O,S, h) ∧ A s0 (O′++O,S,H) ∧
(R (frame(O′++O,N), H)
→ T (frame(O′++O,N), H) (h,w))

POST sinv (R, T,B,N) =
λ s0 s t. ∀ O S h H O′ w.

|O′| = N → s = (w :: O,S, h)→
(R (frame(O′++O,N), H)→ T (frame(O′++O,N), H) (h,w))
→ B s0 (O′++O,S,H) t

INV sinv (R, T, I,N) =
λ s t. ∀ O S h H O′ w.

|O′| = N → s = (w :: O,S, h)→
(R (frame(O′++O,N), H)→ T (frame(O′++O,N), H) (h,w))
→ I (O′++O,S,H) t

In contrast to the transformers for the basic instructions, the effect of the instruction of interest is calculated
from the method specification, not the operational semantics. The expression frame(O′++O,N) denotes the
initial register store of the new frame. This is obtained by popping the arguments O′ from the operand stack
O′++O and assigning them to the local variables 1, . . . , N , where N is the number of formal parameters of
the invoked method. The implication R(·, ·)→ T (·, ·) represents the satisfaction of the (partial-correctness)
method specification by the initial and final states of the invoked method. Again, we elide the definition of
assertion transformers for exceptional behaviour.

Similar assertion transformers have been defined for the Invokevirtual instruction, for normal behaviour,
exceptional behaviour that arises during the execution of the invoked method and cannot be handled locally,
and exceptional behaviour that prevents the method invocation from being initiated due to the presence of
a Null reference in the argument position for the object reference (NullPointerException).

3.6 Proof rules

We now turn to the proof rules. The proof system has two judgement forms, G,Q ` {A} pc {B} (I) and G,Q `
〈A〉 pc 〈B〉 (I). The former one can be considered the more fundamental one — this is also the one used in the
definition of verified programs (section 3.6.3 below), the syntactic counterpart to valid programs as defined
in section 3.4 above. Both judgement forms associate a program point with a precondition, a postcondition,
and an invariant, relative to a proof context G. Contexts are finite maps which associate triples (A′, B′, I ′)
with further program points pc′, and are primarily used to store recursive proof assumptions during the
verification of loops. The motivation for using two judgement forms stems from the interaction between the
rules that alter the flow of control inside a method frame (principally conditional and unconditional jumps,
but also all instructions that may throw exceptions) and the rule AX that extracts such assumptions from
G. We will motivate the distinction between the two formats after having introduced the rules.

3.6.1 Syntax-directed rules

We start with the syntax-directed rules. These are oriented in such a way that the conclusion is an un-
constrained judgement and proof hypotheses refer to successor instructions. Thus, their application during
proof search or verification follows the flow of control.

Basic instructions We define a single rule for specifying the behaviour of basic instructions, such as instruc-
tions that access local variables or merely manipulate the operand stack (including arithmetic operations)
as well as instructions for object creation and manipulation, exception raising, and unconditional jumps:
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basic(m, l) ≡ P (m, l) ∈
{

Iload x, Istore x, . . .Const t z, Ibinop o, . . . ,New C,
Getfield F,Putfield F,Getstatic F,Putstatic F, . . . ,Athrow,Goto l′

}
.

Ignoring exceptions for a moment, and denoting the immediate control flow successor of l in m by
nextm(l), the preliminary rule

basic(m, l) ∀ s0 s. A s0 s→ I s s
∀Q. Q(l) = Q→ (∀ s0 s. A s0 s→ Q s0 s)

∀ l′. nextm(l) = l′ → G,Q ` 〈PRE (m, l, l′, A)〉m, l′ 〈POST (m, l, l′, B)〉 (INV (m, l, l′, I))

G,Q ` {A}m, l {B} (I)

contains as hypothesis a judgement for the successor instruction the assertions of which are related to the
main assertions by the assertion transformers for normal termination. In addition, side conditions ensure
that the invariant I and any local annotation Q are satisfied in any state reaching label l. Satisfaction
of I in later states and satisfaction of local annotations Q′ of later program points are guaranteed by the
judgement for nextm(l).

In order to capture the exceptional behaviour of basic instructions the implemented rule extends the
above preliminary rule by the hypothesis

∀ l′ e. l′ ∈ handlem(l, e)→ G,Q ` 〈PRE e(m, l, e, A)〉m, l′ 〈POST e(m, l, e, B)〉 (INV e(m, l, e, I)) (3.1)

and the side condition

∀ s0 s h a e. ExceptionStep(m, (s, l), (h, a))→ typeOf (h, a) = e→
(∀ l′.¬l′ ∈ handlem(l, e))→ A s0 s→ B s0 s (h, a).

(3.2)

Hypothesis (3.1) covers exceptions that can be handled locally. Similarly to the hypothesis for normal
behaviour, the derivability of a judgement is required for the label l′ at which the execution continues.
Dynamically, this label l′ is determined by the (dynamic) type of the thrown exception object e. In order
to capture all possible labels of this kind, the hypothesis is applied to all labels that are associated with l in
the handler table for m, which we denote by handlem. As the flow of control remains in the same frame, the
assertions in the judgement for l′ are related to those in the judgement for l by some appropriate assertion
transformers. In this case, the transformers model the effect of raising and handling the exception.

Exceptions that cannot be handled locally are propagated to the enclosing method frame, i.e. the current
method frame is terminated. Therefore, the side condition (3.2) requires the method specification B to hold
with respect to any state in which the (dynamic) type of the exception has no entry in the handler table,
where the dynamic type is obtained by retrieving the object at location a in the heap that resulted from
the attempt to execute the instruction at l.

Thus, the final rule for basic instructions is

basic(m, l) ∀ s0 s. A s0 s→ I s s
∀Q. Q(l) = Q→ (∀ s0 s. A s0 s→ Q s0 s)

∀ l′ e. l′ ∈ handlem(l, e)→
G,Q ` 〈PRE e(m, l, e, A)〉m, l′ 〈POST e(m, l, e, B)〉 (INV e(m, l, e, I))

∀ s0 s h a e. ExceptionStep(m, (s, l), (h, a))→ typeOf (h, a) = e→
(∀ l′.¬l′ ∈ handlem(l, e))→ A s0 s→ B s0 s (h, a)

∀ l′. nextm(l) = l′ → G,Q ` 〈PRE (m, l, l′, A)〉m, l′ 〈POST (m, l, l′, B)〉 (INV (m, l, l′, I))

G,Q ` {A}m, l {B} (I).
(INSTR)

Conditional jumps In Bicolano, jump destinations are calculated from an offset and the current label,
where the offset is encoded in the instruction. For simplicity, we omit this detail in the presentation (though
not in the formalisation) and use the jump label directly.

P (m, l) = If comp l′ ∀ s0 s. A s0 s→ I s s
∀Q. Q(l) = Q→ (∀ s0 s. A s0 s→ Q s0 s)

G,Q ` 〈PRE (m, l, l′, A)〉m, l′ 〈POST (m, l, l′, B)〉 (INV (m, l, l′, I))
∀ l′′. nextm(l) = l′′ → G,Q ` 〈PRE (m, l, l′′, A)〉m, l′′ 〈POST (m, l, l′′, B)〉 (INV (m, l, l′′, I))

G,Q ` {A}m, l {B} (I).
(IF)

No exceptions can be raised by these instructions.
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Method invocation and return We present the rules for static and virtual method invocation and Ireturn.

The second side condition of the rule for the invocation of static methods,

P (m, l) = Invokestatic m′ |params(m′)| = N

M(m′) = ((R, T,Φ),G′,Q′) ∀ s0 s. A s0 s→ I s s

∀Q. Q(l) = Q→ (∀ s0 s. A s0 s→ Q s0 s)

∀ s0 O′ O S H t. |O′| = N → A s0 (O′++O,S,H)→
(R(frame(O′++O,N), H)→ Φ (frame(O′++O,N), H) t)→
I (O′++O,S,H) t

G,Q ` 〈PRE sinv (R, T,A,N)〉m,nextm(l) 〈POST sinv (R, T,B,N)〉 (INV sinv (R, T, I,N))

∀ l′ e. l′ ∈ handlem(l, e)→ G,Q ` 〈PRE e
sinv (R, T,A,N, l, e)〉

m, l′

〈POST e
sinv (R, T,B,N, l, e)〉

(INV e
sinv (R, T, I,N, l, e))

∀ s0 O O′ S H h a e. A s0(O′++O,S,H)→ |O′| = N →
(R (frame(O′++O,N), H)→ T (frame(O′++O,N), H) (a, h))→
typeOf (h, a) = e→ (∀ l′.¬l′ ∈ handlem(l, e))→
B s0 (O′++O,S,H)(a, h)

G,Q ` {A}m, l {B} (I),
(INVS)

extracts the length N of the formal list of parameters of the invoked method m′ from the program repre-
sentation, while the third side condition extracts the specification for m′ from the table M. The forth and
fifth side conditions are as before, while side condition

∀ s0 O
′ O S H t. |O′| = N → A s0 (O′++O,S,H)→

(R(frame(O′++O,N), H)→ Φ (frame(O′++O,N), H) t)→
I (O′++O,S,H) t

enforces that the caller’s invariant I is satisfied w.r.t. the state prior to the method invocation and any
internal state t. The invariant is required to be satisfied whenever the local precondition of the invoking
instruction holds and the satisfaction of the callee’s method invariant Φ w.r.t. the callee’s initial state and
t follows from the satisfaction of the callee’s method precondition.

The hypothetical judgement

G,Q ` 〈PRE sinv (R, T,A,N)〉m,nextm(l) 〈POST sinv (R, T,B,N)〉 (INV sinv (R, T, I,N))

relates the assertions associated with the program point of the invocation and its successor using the trans-
formers defined in the previous section, while the remaining two side conditions deal with exceptions that
arise during the execution of the invoked method but are not handled inside the callee’s frame. The first
side condition treats the case where such an exception is handled by the caller, i.e. the handler table of m
associates a continuation label l′ with the method invocation’s label l and the type of the raised exception.
The second side condition treats the case where the caller’s handler table does not provide a means for
dealing with the exception and the caller’s frame is terminated.

The rule for virtual method invocations,
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P (m, l) = Invokevirtual m′ |params(m′)| = N

M(m′) = ((R, T,Φ),G′,Q′) ∀ s0 s. A s0 s→ I s s

∀Q. Q(l) = Q→ (∀ s0 s. A s0 s→ Q s0 s)

∀ s0 O′ O S H t a. |O′| = N → A s0(O′++(Ref a) :: O,S,H)→(
R(frame(O′++(Ref a) :: O, 1 +N), H)
→ Φ(frame(O′++(Ref a) :: O, 1 +N), H) t

)
→

I (O′++(Ref a) :: O,S,H) t

G,Q ` 〈PRE vinv (R, T,A,N)〉m,nextm(l) 〈POST vinv (R, T,B,N)〉 (INV vinv (R, T, I,N))

∀ l′ e. l′ ∈ handlem(l, e)→ G,Q ` 〈PRE e
vinv (R, T,A,N, l, e)〉

m, l′

〈POST e
vinv (R, T,B,N, l, e)〉

(INV e
vinv (R, T, I,N, l, e))

∀ s0 O O′ S H a′ h a e. A s0 (O′++(Ref a′) :: O,S,H)→ |O′| = N →(
R (frame(O′++(Ref a′) :: O, 1 +N), H)
→ T (frame(O′++(Ref a′) :: O, 1 +N), H) (a, h)

)
→

typeOf (h, a) = e→ (∀ l′.¬l′ ∈ handlem(l, e))→
B s0 (O′++(Ref a′) :: O,S,H)(a, h)

∀ s0 O′ O S H h a. A s0 (O′++Null :: O,S,H)→ |O′| = N →
new(H,NullPointerException) = (a, h)→

(
(∀ l′.¬l′ ∈ handlem(l,NullPointerException))
→ B s0 (O′++Null :: O,S,H)(a, h)

)
∧

∀ l′. l′ ∈ handlem(l,NullPointerException)

→ G,Q ` 〈PRENullPointerException
vinv (A,N)〉

m.l′

〈POSTNullPointerException
vinv (B,N)〉

(INV NullPointerException
vinv (I,N))




G,Q ` {A}m, l {B} (I),

(INVV)

is similar but contains a further hypothesis that deals with a NullPointerException. The specification ex-
tracted from the table M is the one associated with the statically identified method. The soundness result
therefore requires that specifications of overriding methods refine the specifications of the overridden meth-
ods conservatively (behavioural subtyping).

Finally, the rule for Ireturn essentially links the local precondition A with the local postcondition B,
mediated by the effect of executing the return instruction:

P (m, l) = Ireturn ∀ s0 s. A s0 s→ I s s
∀Q. Q(l) = Q→ (∀ s0 s. A s0 s→ Q s0 s)

∀ s0 s. A s0 s→ ∀t. ReturnStep(m, (s, l), t)→ B s0 s t

G,Q ` {A}m, l {B} (I).
(IRETURN)

The rules for the other return instructions are similar.

3.6.2 Logical rules

The logical rules terminate the verification of a loop by accessing a recursive assumption (rule AX), limit
the growth of assertions (rules of consequence, one for each judgement form), and mediate between the
judgement forms (rule INJECT). As is the case in traditional program logics, the rules of consequence allow
preconditions to be strengthened, while postconditions and invariants may be weakened.

G,Q ` 〈A′〉 l 〈B′〉 (I ′) ∀ s0 s A s0 s→ A′ s0 s
∀ s0 s t.B′ s0 s t→ B s0 s t ∀ s r. I ′ s r → I s r

G,Q ` 〈A〉m, l 〈B〉 (I),
(CONSEQ-T)

39



MOBIUS Deliverable D3.1 Byte Code Level Specification Language and Program Logic

G,Q ` {A′} l {B′} (I ′) ∀ s0 s A s0 s→ A′ s0 s
∀ s0 s t.B′ s0 s t→ B s0 s t ∀ s r. I ′ s r → I s r

G,Q ` {A}m, l {B} (I),
(CONSEQ-F)

G,Q ` {A}m, l {B} (I)

G,Q ` 〈A〉m, l 〈B〉 (I),
(INJECT)

G(m, l) = A,B, I ∀ s0 s. A s0 s→ I s s
∀Q. Q(l) = Q→ (∀ s0 s. A s0 s→ Q s0 s)

G,Q ` 〈A〉m, l 〈B〉 (I).
(AX)

3.6.3 Verified programs

The verification of P with respect to a method specification table M and an annotation table Q proceeds
by proving the following property VerifiedProg .

VerifiedProg ≡ ∀ m R T Φ G Q. M(m) = ((R, T,Φ),G,Q)→
G,Q ` {λ (s0, s). R(s0) ∧ s = state(s0)}

m, initm
{λ (s0, s, t). s = state(s0)→ T (s0, t)}
(λ (s, r). ∀ s0. s = state(s0)→ Φ(s0, r))

∧ ∀ l A B I. G(l) = (A,B, I)→ G,Q ` {A}m, l {B} (I)
∧ ∀ m′ S′ G′ Q′. M(m′) = ((R′, T ′,Φ′),G′,Q′)→

classOf (m′) ≤ classOf (m)→ overrides(m′,m)→(
((∀ s0 s.R

′ s0 → T ′ s0 s)→ (∀ s0 s.R s0 → T s0 s)) ∧
((∀ s0 s.R

′ s0 → Φ′ s0 s)→ (∀ s0 s.R s0 → Φ s0 s))

)
.

The first condition requires that all method specifications in M are justified by derivations for (the initial
labels of) their method bodies. Note the similarity of this clause with the assertions in the definition of valid
programs. Similarly, the second condition mandates that all entries of G be backed up by derivations for
the respective code blocks. Typically, the proof contexts G will be provided as part of the PCC certificate
communicated together with the code. Finally, the third clause enforces that the specification table obeys
the restrictions of behavioural subtyping (abbreviated: BST), i.e. the specifications of methods in subclasses
imply the specifications of identically named methods in super-classes. By the virtue of bytecode verification,
the dynamic type of an object on which a virtual method will be invoked is guaranteed to be a subclass
of the statically identified type. In the definition, the notation classOf (m) denotes the (Bicolano-defined)
class name identifying the class in which method m is defined and ≤ denotes the sub-class relationship.

3.6.4 Discussion of the judgement forms

In order to motivate the introduction of two judgement forms, suppose for a moment that all judgements
are of the form G,Q ` 〈A〉 pc 〈B〉 (I). For an instruction at program point pc suppose that G contains
the entry G(pc) = (A,B, I) and suppose that when the verification process reaches pc, we indeed wish to
justify G,Q ` 〈A〉 pc 〈B〉 (I). Then, the verification may conclude by rule AX. For a complete verification,
however, the assumptions in G also need to be justified. What this justification consists of is expressed
in the definition of verified programs: discharging an assumption G(pc) = (A,B, I) requires us to prove
G,Q ` 〈A〉 pc 〈B〉 (I). Thus, in a proof system with only one form of judgements, any assumed context entry
could be discharged trivially, by using the axiom rule, and the code block the initial instruction of which is
referred in the assumption would never be inspected! Clearly, such a logic would be unsound. We see three
possible solutions:

Solution 1: Instead of introducing a general axiom rule, one could have more specific axiom rules. As one
of the main places where assumptions are used are jumps, one might introduce, for example, the rule
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P (m, l) = Goto l′ G(m, l′) = (A,B, I)

G,Q ` 〈A〉m, l 〈B〉 (I)
(AX-GOTO)

where the context entry refers to the target of the jump instruction. Thus, the justification of con-
textual assumptions would be forced to inspect the code block starting at the destination of the jump
instruction. However, we would need similar proof rules for at least all instruction forms that may
alter the flow of control and all their possible control flow successors. In the case of the JVM bytecode
language, this would increase the number of rules significantly as all instructions that may throw an
exception would need to be considered, each one with all its handlers.

Solution 2: Alternatively, one could alter the definition of verified programs by requiring that G,Q `
〈A〉m, l′ 〈B〉 (I) be derivable whenever G(m, l) = (A,B, I) holds and P (m, l) = Goto l′. Similarly,
ignoring assertion transformers for a moment, one would require G,Q ` 〈A〉m, l′ 〈B〉 (I) to be deriv-
able whenever G(m, l) = (A,B, I) holds and P (m, l) = If0 Eq l′, and likewise for all cases where an
instruction may transfer the flow of control from l to l′. Like the first solution, this proposal appears
perfectly possible, but not well suited in the presence of exceptions, as nearly all instruction forms
may transfer the flow of control in such a fashion.

Solution 3: Finally, the chosen solution uses two judgement forms to separate the usage of an assumption
from its justification. The axiom rule can only be used to derive judgements of the form that is required
in the hypothesis of the syntax-directed rules, G,Q ` 〈A〉 pc 〈B〉 (I). In contrast, the definition of
verified programs requires us to discharge an assumption G(pc) = (A,B, I) by exhibiting a proof of
G,Q ` {A} pc {B} (I). Such a proof cannot simply consist of an application of the rule AX, but will
necessarily end (modulo applications of the rule CONSEQ-F) in a syntax-directed rule. Consequently,
the justification of an assumption is forced to inspect the corresponding code block, eliminating the
possibility to insert arbitrary (incorrect) assumptions. In order to chain together a sequence of syntax-
directed rules, we introduce a further rule, INJECT, that turns a derivation of G,Q ` {A} pc {B} (I)
into one of G,Q ` 〈A〉 pc 〈B〉 (I) — but of course, no rule is given for the conversion in the opposite
direction.

3.7 Proof of soundness

The soundness property of the program logic guarantees that verified programs are valid. The core of the
proof of this property is a soundness result for local judgements G,Q ` {A} pc {B} (I), i.e. a proof that the
derivability of such a judgement entails the validity |=Q {A} pc {B} I.

Traditionally, formalised soundness proofs of program logics have been performed using an auxiliary
notion of relativised validity, where a judgement is only required to hold for operational judgements up to
a certain derivation height. The soundness proof then proceeds by induction on the axiomatic semantics,
where in the case of recursive program structures (procedure calls, jumps) the usage of the height index
ensures that hypothetical assumptions become available. General validity is then obtained by universally
quantifying over the height index [4, 42].

The soundness proof of the MOBIUS base logic follows a different approach that avoids the notion of
relativised validity. Instead, a syntax-directed family of judgement forms is introduced in such a way that
for each instruction form there is only one matching judgement form. Each judgement form comes with
precisely one introduction rule the hypotheses and side conditions of which are identical to those of the
rules presented in section 3.6. Additionally, the rule of consequence is inlined. For example, the rule for the
judgement form for basic instructions, G,Q `Basic 〈A〉m, l 〈B〉 (I), is
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basic(m, l) ∀ s0 s. A s0 s→ I s s
∀Q. Q(l) = Q→ (∀ s0 s. A s0 s→ Q s0 s)

∀ l′. nextm(l) = l′ →
G,Q ` 〈PRE (m, l, l′, A)〉m, l′ 〈POST (m, l, l′, B)〉 (INV (m, l, l′, I))

∀ l′ e. l′ ∈ handlem(l, e)→
G,Q ` 〈PRE e(m, l, e, A)〉m, l′ 〈POST e(m, l, e, B)〉 (INV e(m, l, e, I))

∀ s0 s h a e. ExceptionStep(m, (s, l), (h, a))→ typeOf (h, a) = e→
(∀ l′.¬l′ ∈ handlem(l, e))→ A s0 s→ B s0 s (h, a).

∀ s0 s A′ s0 s→ A s0 s ∀ s0 s t.A s0 s→ B s0 s t→ B′ s0 s t
∀ s r. I s r → I ′ s r

G,Q `Basic 〈A′〉m, l 〈B′〉 (I ′),
(INSTR-SD)

and the rule for judgement form for conditionals, G,Q `If 〈A〉m, l 〈B〉 (I), is

P (m, l) = If comp l′ ∀ s0 s. A s0 s→ I s s
∀Q. Q(l) = Q→ (∀ s0 s. A s0 s→ Q s0 s)

G,Q ` 〈PRE (m, l, l′, A)〉m, l′ 〈POST (m, l, l′, B)〉 (INV (m, l, l′, I))
∀ ′′. nextm(l) = l′′ → G,Q ` 〈PRE (m, l, l′′, A)〉m, l′′ 〈POST (m, l, l′′, B)〉 (INV (m, l, l′′, I))
∀ s0 s A′ s0 s→ A s0 s ∀ s0 s t.A s0 s→ B s0 s t→ B′ s0 s t ∀ s r. I s r → I ′ s r

G,Q `If 〈A′〉m, l 〈B′〉 (I ′).
(IF-SD)

In both cases, the rules differ from their counterparts in section 3.6.1 only by the inclusion of the side
conditions of the consequence rule.

The following auxiliary lemma may now be proved by induction on the axiomatic semantics.

Lemma 3.7.1 Let P satisfy VerifiedProg w.r.t. M, M(m) = (S,G,Q), and G,Q ` 〈A〉m, l 〈B〉 (I). Then,
there is an instruction ins such that P (m, l) = ins and G,Q `kind 〈A〉m, l 〈B〉 (I) hold, where kind is the
unique kind of ins, i.e. Basic for basic instructions, If for conditionals etc.

From this, the soundness result can be proved by induction on the operational judgement.

Theorem 3.7.1 (Soundness) Let P satisfy VerifiedProg w.r.t. M. Then G,Q ` 〈A〉m, l 〈B〉 (I) implies |=Q

{A}m, l {B} I.

By rule INJECT, Lemma 3.7.1 and Theorem 3.7.1 also hold if G,Q ` 〈A〉m, l 〈B〉 (I) is replaced by
G,Q ` {A}m, l {B} (I).

3.8 Running example

We conclude the exposition of the MOBIUS logic by describing the verification of the example program,
based on a formalised verification carried out in a proof assistant. We first give the assertions corresponding
to the specification formulae given in Figure 1.3. Then we outline the structure of the verification.

3.8.1 Translation of the specification

The formulae defining the specification of the class Bill are collected in Figure 3.1, and are motivated as
follows.

All methods of class Bill are required to satisfy the field invariant of sum. The fact that the content of
this field w.r.t. the current object is non-negative prior to executing a method is expressed by the predicate
ObjPreBill . The definition of this formula makes use of the auxiliary formula ObjInvBill and the shorthand
H(a.sum) that stands for the Bicolano-defined heap access to the field with signature sum of the object at
location a in H. The object post-condition is ObjPostBill . Together, ObjPreBill and ObjPostBill represent a
skeleton that forms the basis of all (partial-correctness) method specifications of methods in class Bill.

The abstract method roundCost extends the generic method specification by asserting that the result
value is bounded by the input value, which in turn may be assumed to be non-negative. The specification
consists of three parts, namely a (trivial) method pre-condition, a method post-condition that links initial
state and final state by universally quantifying over the location of the parent object and the input value,
and a (trivial) method invariant.
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Formula Definition

ObjPreBill a (S,H) S(0%N) = Ref(a) ∧ObjInvBill a H

ObjInvBill a H ∃ sum. H(a.sum) = Int(sum) ∧ 0 ≤ sum
ObjPostBill a (v,H) ObjInvBill a H

rcPre a x (S,H) ObjPreBill a (S,H) ∧ S!1%N = x ∧ 0 ≤ x
rcPost a x (v,H) ObjPostBill a (v,H) ∧ (∃ res.v = Int(res) ∧ 0 ≤ res ∧ res ≤ x)

roundCostSpec

 λ s0. T rue,
λ s0 t. ∀ a x. rcPre a x s0 → rcPost a x t,
λ s0 s.∀ a x. rcPre a x s0 → True


pbPre a n N (S,H) ObjPreBill a (S,H) ∧ S(1%N) = Int(n) ∧ 0 < n ∧H(a.sum) = Int(N)

pbPost a n N (v,H)
ObjPostBill a (v,H) ∧
(∃ sum. H(a.sum) = Int(sum) ∧ 2 ∗ sum ≤ 2 ∗N + n ∗ (n+ 1))

produceBillSpec

 λ s0. T rue,
λ s0 t. ∀ a n N. pbPre a n N s0 → pbPost a n N t,
λ s0 s. ∀a n N. pbPre a n N s0 → True


loopInv a n N (O,S,H)

∃ i sum. S(2%N) = Int(i) ∧ S(1%N) = Int(n) ∧
S(0%N) = Ref(a) ∧H(a.sum) = Int(sum) ∧
0 < i ∧ i ≤ n+ 1 ∧ 0 ≤ sum ∧ 2 ∗ sum ≤ 2 ∗N + (i− 1) ∗ i

SpecEL

 λ s0 s. ∀ a n N. pbPre a n N s0 → loopInv a n N s,
λ s0 s t. ∀ a n N. (pbPre a n N s0 ∧ loopInv a n N s)→ pbPost a n N t,
λ s r. True


Gpb [((Bill, produceBill), 22) 7→ SpecEL]

Grc emp

Qpb, Qrc emp

M [produceBill 7→ (produceBillSpec,Gpb,Qpb),
roundCost 7→ (roundCostSpec,Grc,Qrc)]

Figure 3.1: Translation of the specification for the class Bill into formulae of the base logic
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The structure of the main method of interest, produceBill, is similar. We first define formulae represent-
ing pre- and postconditions. These are parametrised by values that are subsequently universally quantified
over in the method specification. In case of the method produceBill, the parameters are the location of
the parent object, the value of the input parameter, and the initial value of the field sum.

The loop invariant asserts that the loop counter, i, is non-negative and bounded by n+ 1 as well as that
the current value sum of the field sum is non-negative and satisfies the functional condition stipulated in
Figure 1.3. The association of this loop invariant with instruction 22 (label entry loop) is achieved by the
definition of a corresponding entry, SpecEL, in the table of proof assumptions for the method produceBill,
Gpb. The first component of SpecEL ensures that the loop invariant is proved whenever we extract the
assumption from G. This is (see below) the case at the end of the verification of the initial code fragment
(loop header) and at the end of the verification of the code fragment starting at label 22, in the branch
where the loop exit condition is not yet validated after an iteration of the loop. The occurrence of loopInv
in the second component allows us to exploit the invariant during the verification of the segment with the
initial label 22.

The proof context for the abstract method roundCost and the tables of further annotations for both
methods are defined to be the empty maps. Finally, the method specification table M associates both
specifications with their respective methods.

3.8.2 Verification process

The overall aim of the verification process is to establish the verified-program property. Unfolding the
definition given in section 3.6.3, we see that we need to justify all entries in the two proof contexts (trivial
in the case of Grc, and Gpb has only one entry), justify both method specifications (trivial in the case of
roundCost as this method does not have a method body), and verify the behavioural-subtyping condition
(trivial as there are no further classes). Essentially, we are thus left with just two subgoals:

• Gpb,Qpb ` {λ (s0, s). produceBillSpec1(s0) ∧ s = state(s0)}
(Bill, produceBill), 0
{λ (s0, s, t). s = state(s0)→ produceBillSpec(s0, t)}
(λ (s, r). ∀ s0. s = state(s0)→ produceBillSpec(s0, r))

and

• Gpb,Qpb ` {SpecEL1} (Bill, produceBill), 22 {SpecEL2} (SpecEL3),

where the indices point out to the respective components of the specification triples produceBillSpec and
SpecEL.

We commence with the second goal. The verification is initiated by an application of the rule INSTR, as
the first instruction to be verified is the basic instruction iload 2. The first three resulting side conditions
may be discharged easily (the fact that the instruction is a basic instruction has already been observed,
the other two conditions are trivial by the definition of produceBillSpec3 and Qpb). Hence, only5 the side
condition

Gpb,Qpb ` 〈PRE (m, 22, 23,SpecEL1)〉m, 23 〈POST (m, 22, 23,SpecEL1)〉 (INV (m, 22, 23,SpecEL1))

remains, where m abbreviates (Bill, produceBill). Unfolding neither the formulae SpecELi nor the as-
sertion transformers, we immediately apply the rule INJECT and then INSTR again, as the instruction
at label 23 is another basic instruction. Continuing in this syntax-directed manner, we finally arrive at a
goal referring again to the instruction 22, in the positive branch of the conditional. At this point, we apply
the rule CONSEQ-T and then the rule AX, thus extracting the specification SpecEL from the context and
closing the loop. Of the three verification conditions resulting from the application of the consequence rule,
the first one requires us to establish SpecEL1 for the final state of an iteration, assuming the satisfaction of
the transformed version of SpecEL1 for its initial state. Here, the transformation consists of the repeated
application of the PRE operator and one application of the PRE vinv operator due to the instruction at
label 12. In the other side conditions, the implications to be proved are in the opposite direction, due to

5In order to simplify the presentation, the verification was carried out using a formalisation that does not include the
modelling of exceptions. We thus disregard all issues relating to exceptions in our discussion, and in particular instructions 29
to 31.
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the covariance of postconditions and invariants. For example, we have to prove the postcondition for the
massaged version of SpecEL2 from the satisfaction of the unmodified form of the same formula w.r.t. the
loop-final (and method-final) state. All side conditions may be discharged by unfolding the specification
formulae given in Figure 3.1 and by using some basic arithmetic properties. The same applies to the side
conditions resulting from the path involving the negative branch of the conditional. As this path does not
visit any instruction with an entry in Gpb, it continues until the end of method is reached and the side
conditions refer to a final state together with the formula pbPost .

Having thus verified the code segment with the initial label 22, we verify the method body (the last
remaining subgoal) in a similar way. Starting with an application of the rule INSTR (the instruction at the
label 0 is basic), we again obtain two paths. The first path follows the positive branch of the conditional and
is terminated by the axiom rule (protected by an application of CONSEQ-T) at the instruction labelled with
22, while the second path follows the negative branch of the conditional and terminates with the instruction
at 28. An alternative to the above translation of the JML specification is to attach the (translation of the)
loop invariant to the instruction at the label 5. This requires a slight modification of the formula loopInv ,
namely the replacement of the term i ≤ n + 1 by i ≤ n, and results in a less efficient verification process
as instructions 22 to 31 are visited in both verifications. Under the PCC perspective, the choice to attach
formulae to this or that program point (and how to obtain the formulae from JML specifications) is up
to the proof producer, as the proof context G would naturally form a part of the producer-communicated
certificate that guides the verification process.
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Chapter 4

Specification language for bytecode

To express properties of bytecode programs it is convenient to employ a language that uses the notations
and keywords the programmer is used to. Bytecode Modeling Language (BML) is a proposal of such a
language. BML is based on another specification language — the Java Modeling Language (JML) — which
has proved to be useful in specifying realistic industrial examples and finding errors in them. But where
JML allows to specify source code level programs, BML is designed to specify bytecode level programs.

To define the semantics of a BML specification in terms of the MOBIUS base logic, as an intermediate
step we propose a deeply embedded assertion language which encloses both the syntax of BML and the syntax
of assertions in the MOBIUS base logic. This intermediate step allows us to provide a smooth translation
between the BML specifications embedded in the Java class files and the post-linking representation of
programs in the MOBIUS base logic and Bicolano. The deep embedding of assertions also makes it easier to
adapt the MOBIUS base logic to another proving environment and to use meta-level facilities of a theorem
prover to ease the verification process.

Section 4.1 presents BML, and it explains how BML specifications can be stored in the class file. Sec-
tion 4.2 then defines the deep embedding of the assertion language. Finally, section 4.3 shows how the deep
embedding is used to map BML specifications into judgements of the MOBIUS base logic.

4.1 The Bytecode Modeling Language

Over the last few years, JML has become the de facto specification language for Java source code programs.
Different tools exist that allow to validate, verify or generate JML specifications (see [16] for an overview).
Several case studies have demonstrated that JML can be used to specify realistic industrial examples, and
that the different tools allow to find errors in the implementations (see e.g. [15]). One of the reasons for its
success is that JML uses a Java-like syntax. Specifications are written using preconditions, postcondition,
class invariants and other annotations, where the different predicates are side-effect-free Java expressions,
extended with specification-specific keywords (e.g. logical quantifiers and a keyword to refer to the return
value of a method). Other important factors for the success of JML are its expressiveness and flexibility. In
Deliverable D1.2 we show how JML can be used (and extended) to express the different security requirements
that have been identified to be of interest for the project.

Therefore, to specify Java bytecode programs, we define a variation of JML, which is especially tailored
to bytecode. This section presents this specification language, which we call BML, short for Bytecode
Modeling Language. BML is designed to be the counterpart of JML at bytecode level. It allows to compile
specifications at source code level into specifications at bytecode level, basically by compiling the source
code predicates into bytecode predicates and leaving all other parts of the specification unchanged.

Below, we will first present the syntax of BML, discuss its relation with JML and give a specification
example. We will also propose a format in which BML specifications can be stored in the appropriate class
files (just as JML specifications can be written as special comments in the Java source code).

The semantics of BML specifications can be described in terms of the MOBIUS base logic. The next
section proposes a deep embedding of an assertion language. This deep embedding gives a meaning to BML
predicates, which is then used in section 4.3 to define a translation of BML specifications into judgements
of the MOBIUS base logic.

We assume the reader is familiar with JML, its syntax and its semantics. For a detailed overview of JML
we refer to its reference manual [34]. Where necessary, we refer to the appropriate sections of this manual.
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primary-suffix := ( [expression-list] )
| [ expression ]

primary-expr ::= #natural % reference in the constant pool
| lv[natural] % local variable
| length(expression) % array length
| cntr % counter of the operand stack
| st(additive-expr) % stack expressions
| constant | super
| true | false | this | null
| (expression)
| jml-primary

store-ref-expression := store-ref-name [store-ref-name-suffix]
store-ref-name := #natural % reference in the constant pool

|super | this
store-ref-name-suffix := (store-ref-expression)

| [spec-array-ref-expr]

Figure 4.1: Grammar for BML predicates and specification expressions

4.1.1 A short overview of the Bytecode Modeling Language

Syntax of BML Basically, BML has the same syntax as JML with two exceptions:

1. specifications are not written directly in the program code, they are added as special attributes to the
bytecode; and

2. the grammar for expressions only allows bytecode expressions.

With respect to the expression syntax, this means concretely that field names, class names etc. are
replaced by constants, using the constant pool, while registers are used to refer to local variables. In addition,
we can use stack expressions and the stack counter to describe intermediate states of a computation. These
will typically only appear in intermediate assertions, we do not use them in method specifications. Finally,
we add a special expression length(a), denoting the length of array a. Since the source code expression
a.length is compiled into a special bytecode instruction arraylength, we also need a special specification
construct for this at bytecode level.

BML contains equivalent constructs for all specification constructs of JML Level 0 (see [?, §2.9]), which
defines the features that should be understood and checked by all JML tools. In addition, it contains several
constructs from JML level 1, that we find important to be able to write meaningful specifications for the
example applications studied in the MOBIUS project. These constructs are:

• static invariants;

• object and static history constraints; and

• loop variants (using the decreasing keyword).

At the moment, the use of pure methods is not part of the BML grammar, as there is still ongoing research
on the exact semantics of method calls used in specifications. However, we believe that if the theoretical
issues have been settled, eventually the MOBIUS tool set should support this, both at source code and at
bytecode level. Finally, experiences with verification of realistic case studies have shown that it is beneficial
to have a special clause loop-modifies, which is specified together with the loop invariant. This clause
specifies which variables may be modified by a loop (as an assignable clause does for a method). This
loop-modifies clause allows to write concise specifications, and to efficiently generate proof obligations
using a weakest precondition calculus.

Since the bytecode and BML specifications are two separate entities, they should be parsed independently.
Concretely this means that the grammar of BML is similar to the grammar of type specifications, method
specifications and data groups of JML [?, §A.5, A.6, A.7], restricted to the constructs in JML level 0,
plus the constructs of JML level 1 mentioned, but with the changes to the grammar for predicates and
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{| requires lv[1] > 0

ensures #24 <= \old(#24) + lv[1] * (lv[1] + 1) / 2 |}

0 iconst_1

1 istore_2 //initialisation of i, at location 2, to 1

2 goto 22 (+20)

5 aload_0

6 aload_0

7 getfield #24 <Bill.sum>

10 aload_0

11 iload_2 //i as a parameter to roundCost

12 invokevirtual #26 <Bill.roundCost> //roundCost is invoked

15 iadd

16 putfield #24 <Bill.sum>

19 iinc 2 by 1 //i++

{| loop_invariant 0 < lv[2] && lv[2] <= lv[1] + 1 &&

0 <= #24 && #24 <= \old(#24) + (lv[2] - 1) * lv[2]/2 |}

entry loop:

22 iload_2

23 iload_1 //the parameter n is at location 1

24 if_icmple 5 (-19) //the loop exit condition is checked

27 iconst_1

28 ireturn

29 astore_3 //the code to handle exception

30 iconst_0

31 ireturn

Figure 4.2: Bytecode together with BML specification for method produceBill in class Bill

specification expressions, as mentioned above. Figure 4.1 displays the most interesting part of this grammar
for predicates and specification expressions, defining the syntax for primary expressions, primary suffixes,
store-ref expressions and store-ref expressions (see appendix C for a short explanation of the syntax notation
and the full grammar of predicates and specification expressions). Primary expressions, followed by zero or
more primary suffixes, are the most basic form of expressions, formed by identifiers, bracketed expressions
etc. Store ref expressions (followed by zero or more store ref suffixes) are the expressions that can be used
in an assignable clause.

As mentioned above, all identifiers are replaced by references to the constant pool (a number, preceded
by the symbol #) or to local registers. The local register lv[0] of a non-static method always contains the
implicit argument this, the other registers contain the parameters and the local variables declared inside
a method body. As explained above, we add special keywords to be able to express properties about the
length of an array, the current stack counter (cntr), and to refer to an element on the stack (st(e), where
e is some arithmetic expression). In BML, a field access is written as a function application. For example,
suppose we have the source code qualified expression obj.f, where obj is the first parameter of a method,
and f is a field of this object. This becomes #n(lv[1]) in BML, where n is the index in the constant pool
to the field constant reference denoting the field f, while lv[1] is the register in the local variable array in
which the parameter obj is stored. Therefore the grammar for primary-suffixes and store-ref-name-suffixes
does not provide any grammar for qualified expressions.

In JML, many special keywords are preceded by the symbol \, to ensure that they will not clash with
variable names. For BML, we do not have to worry about this: all variable names are replaced by references
to the constant pool or local variable registers. Therefore, the new keywords are written without a special
preceding symbol. However, for convenience, we keep the symbol for keywords that are also JML keywords.

Finally, statement annotations are described as a special attribute, mapping line numbers to annotations.
To parse these annotations, we reuse the relevant parts of the grammar for statements and annotation
statements [?, §A.9].

Type checking of the specification can be done in the obvious way, using the type information stored in
the constant pool.

Example To show a typical BML specification, Figure 4.2 presents the BML version of the specification
of method produceBill of the running example (see Figure 1.3 on page 16 for the JML specification).
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Notice that the field sum has been assigned the number 24 in the constant pool. Further, lv[1] denotes the
parameter n, and lv[2] denotes the local variable i.

The class invariant gives rise to the following BML specification (stored in the class file as a special
user-specific attribute, as explained below):

invariant: #24 >= 0

Evaluation of BML expressions When defining the evaluation of BML expressions, a subtle point that has
to be taken into account is the fact that at bytecode level no explicit boolean values are used, they are
encoded as integers (but variables can still be of type boolean — this information is used by the BCV).
Thus, to make sure that expressions such as \result == \exists i. i >= 0 are correctly evaluated, the
evaluation of the quantified expression is wrapped up by a conditional function, returning 1 if the condition
is true, 0 otherwise.

4.1.2 Encoding BML specifications in the class file format

To store BML specifications together with the bytecode that it specifies, we need a way to encode them in
the class file format. We do this using so-called user-specific attributes for Java class files.

Recall that a class file contains all the information related to a single class or interface, i.e. its class
name, interfaces implemented by the class, its super class and the methods and fields it declares. The Java
Virtual Machine Specification [38] prescribes the mandatory elements of the class file: the constant pool, the
field information and the method information. The constant pool is the table which is used to construct the
runtime constant pool upon class or interface creation. This will serve for loading, linking and resolution of
references used in the class. The JVM specification allows to add user-specific information to the class file
([?, §4.7.1]), by defining user-specific attributes, following the structure prescribed by the JVM specification.
We use these to encode the BML specifications. For each class, we add the following global user-specific
attributes:

• lists of the model and ghost fields used in the specification1; if a model or a ghost field is dereferenced
in the specification, then a constantFieldRef is added to the constant pool as the Java compiler would
do for any dereferenced Java field;

• a list of the class invariants (both static and object); and

• a list of the history constraints (both static and object).

In order to describe the binary format of BML attributes we follow The Java Virtual Machine Speci-
fication [?, §4] and use a C-like structure notation. The lists of model and ghost fields have the following
definition:

Ghost˙Field˙attribute {
u2 attribute˙name˙index;
u4 attribute˙length;
u2 fields˙count;
{ u2 access˙flags;

u2 name˙index;
u2 descriptor˙index;
} fields[fields˙count];

}
This should be understood as follows: the name of the attribute is given as an index into the constant

pool. This constant pool entry will be representing a string (either "Model_Field" or "Ghost_Field").
Next we have the length of the attribute, which should be 2 + 6*fields˙count (the number of fields stored
in the list). The fields table then stores all ghost and model fields. For each field we store its access flags
(e.g. public or private), and the name index and descriptor index, both referring to the constant pool.
The first must be a string, representing the (unqualified) name of the variable, the latter is a field descriptor,

1Note that the current version of the MOBIUS base logic does not support model and ghost fields, however, this will be
included in Task 3.2.

50



MOBIUS Deliverable D3.1 Byte Code Level Specification Language and Program Logic

containing e.g. type information. The information as u2 and u4 specifies the size of the attribute, 2 and 4
bytes, respectively.

In a similar way, we specify the format for the attributes containing the list of class invariants and history
constraints. The type of invariants and history constraints is specified by the type entry: when it is 1 the
invariant (or history constraint) is defined over objects, when it is 0 the invariant (or constraint) is static.

JMLClassInvariant˙attribute {
u2 attribute˙name˙index;
u4 attribute˙length;
u2 invariant˙count;
{ u1 type;

formula invariant;
} invariants[invariant˙count];
}

JMLHistoryConstraints˙attribute {
u2 attribute˙name˙index;
u4 attribute˙length;
u2 history˙constr˙count;
{ u1 type;

formula constraint;
} history˙constr[history˙constr˙count];

}
The JVM specification prescribes that the table with method information at least contains the code of

each method. We add attributes for the method specification, a table with set statements, a table with
assert statements, a table with assume statements and a table with loop specifications. The attribute with
the lightweight behaviour specifications is formatted as follows (heavyweight behaviour specifications are
handled similarly):

JMLMethod˙attribute {
u2 attribute˙name˙index;
u4 attribute˙length;
formula requires˙formula;
u2 spec˙count;
{ formula spec˙requires˙formula;

u2 assignable˙count;
formula assignable[assignable˙count];
formula ensures˙formula;
u2 exsures˙count;
{ u2 exception˙index;

formula exsures˙formula;
} exsures[exsures˙count];
} spec[spec˙count];

}
The global requires formula is the disjunction of all preconditions in the different specification cases

of the method. For each specification case, we then have a precondition (spec˙requires˙formula), a list of
assignable expressions, a postcondition (ensures˙formula) and a list of exceptional postconditions (stored in
the exsures attribute). If a clause is not explicitly specified, its default value will be stored here. Notice
that for each list of elements we get two attributes: one to store the number of elements, and one attribute
actually containing the elements.

The tables with set, assert and assume statements are very similar. For each statement we use index to
denote the point in the bytecode to which the statement is associated. For the set statement, expression
e1 is a ghost variable, e2 denotes the expression that will be assigned to e1. For the assert and assume
statements, the formula predicate is the predicate that is supposed to hold at this point in the program
execution. We only give the format for the assert statement table here, the assume statement table is similar.

Set˙attribute {
u2 attribute˙name˙index;
u4 attribute˙length;
u2 set˙count;
{ u2 index;

expression e1;
expression e2;
} set[set˙count];

}

Assert˙attribute {
u2 attribute˙name˙index;
u4 attribute˙length;
u2 assert˙count;
{ u2 index;

formula predicate;
} assert[assert˙count];
}
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Finally, loop specifications consist of the following elements: an index to the bytecode instruction that
corresponds to the entry of the loop, a list of variables that may be modified by the loop, a loop invariant,
and a decreases clause, which is the loop variant, i.e. the expression that allows to prove termination of
the loop. If the specification does not contain a loop variant, we indicate this, using a special tag for the
decreases clause. This gives the following attribute format.

JMLLoop˙specification˙attribute {
u2 attribute˙name˙index;
u4 attribute˙length;
u2 loop˙count;
{ u2 index;

u2 modifies˙count;
formula modifies[modifies˙count];
formula invariant;
expression decreases;
} loop[loop˙count];
}

4.2 Deep embedding of assertions

In this section we introduce a language of assertions which encompasses both BML predicates and the syntax
of assertions of the MOBIUS base logic, as presented in chapter 3. Expressions defined by the grammar of
our language are called deep or deeply embedded, whereas higher order logic expressions of the MOBIUS
base logic encoded in a theorem prover are called shallow.

We have formalised the deep expression language as a datatype in Isabelle [43], and our presentation
of the grammar and derived constructs is influenced by Isabelle’s style of definitions. We will use syntax
translations whenever it seems reasonable.

4.2.1 Motivation

There are at least three reasons for which the language of deep expressions has been designed. First, the
deep embedding language serves as a bridge between BML and the (shallow) MOBIUS base logic, formalised
in a theorem prover. If one wishes to verify a BML specification, one can translate this specification into a
specification in the MOBIUS base logic and then verify this specification using the proof rules of the logic.
The deep embedding makes this translation smooth, since it encompasses both constructs from BML and
the MOBIUS base logic. Given a BML specification and a constant pool, one obtains the deeply embedded
assertions using a simple, almost one-to-one, translation procedure. The semantic evaluation functions, as
we will define, then map the deeply embedded assertions into higher order logic expressions for the shallow
base logic.

Second, the deep embedding language is richer than BML. In particular, it allows to construct ex-
pressions over stacks, stores, and heaps as entities, whereas in BML one accesses them by single elements
— the n-th element in the case of stacks, variables in the case of stores and fields in the case of heaps.
For instance, in the deep embedding language one can express that the current heap is not empty by
Not (Eq currentHeap emptyHeap). Such a property cannot be expressed in BML. Moreover, we plan to
extend our deep embedding language with constructs such as a fixed point operator, that will enable us to
express the reachability relation for addresses in a given heap.

Third, the deep embedding approach can help for on-device proof checking. So far we have not defined
a language of proof rules, that is we do not consider a deeply embedded version of the MOBIUS base
logic. However, developing such a program logic might be of interest for on-device proof checking. This will
require a “small” system of proof rules, designed especially for MOBIUS verification, rather than installation
of a general purpose theorem prover. The deep embedding language is the first step towards a standalone
MOBIUS prover.

The rest of this section describes the syntax and semantics of deep expressions, respectively. We also
show how the predicates in the BML specification of the running example (see Figure 4.2) are mapped into
assertions of the deep embedding language.
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When defining the syntax, we first discuss typing of expressions and the way we refer to state components.
The latter are first related with the MOBIUS base logic, by recalling the definition of the different kinds
of states (initial, at-a-program-counter, terminal) and assertions, and then defined in the deep embedding
language. We also discuss differences in the base logic and BML interpretations of “temporal” operations,
such as the \old operator and lookup of stacks, stores, and heaps. We show how we handle this in the
deep embedding language. Then we define the substitution-into-state-parameter operation, which models
application of an assertion to state parameters. Finally, we define deep assertion transformers which are the
syntactic counterparts of the assertion transformers of the shallow base logic.

The semantics of deep expressions is defined as an evaluation function. We define the main evaluation
function and its versions for different sorts of assertions: pre- and postconditions, invariants, etc. We prove
that evaluation commutes with substitution. We also briefly sketch how one could prove soundness of a
program logic with deep assertions.

4.2.2 Syntax of the deep embedding language

Types To design a language of deep expressions, one needs to take into account the types coming from the
MOBIUS base logic, such as booleans, integers, operand stacks, stores, heaps, addresses, objects, program
values, return values (which are either program values or references to exception handlers). In the deep
embedding language one could have considered a collection of mutually recursive grammars, where each
grammar defines expressions of a particular type above. However, large mutually recursive definitions
handicap proof search.

Instead, we consider one main grammar of the language. It defines raw deep expressions which are
either of one of the types above (and thus well-typed) or ill-typed. The grammar does not perform any
type-checking service itself. Well-typedness of an expression is checked on the semantical level by the
evaluation function, which only returns Some value of the appropriate type if the expression is well-typed,
and returns not defined, i.e. None, otherwise (see section 4.2.3). Additionally, we can also define a pure
type-checking function for expressions and contexts, which is an abstraction of the evaluation function.

The types above are referred to not only in the semantics of expressions but also in the syntax. In
particular, the universal and existential quantifiers in the language have to be typed, otherwise it is not
possible to define their evaluation correctly. Therefore, we define an auxiliary grammar for type tags:

type tag := boolean | integer | address | object
| val | stack | store | heap
| exception | retval | class | lab

State components Recall that an assertion in the MOBIUS base logic is a predicate over states and a state
may be of one of three sorts:

• initial s0 ∈ InitState = S ×H,

• local s ∈ LocalState = O × S ×H,

• terminal t ∈ TermState = Vr ×H,

where S, H, O, Vr denote state components — stores, heaps, operand stacks — and return values, respec-
tively. Assertions can be of any of the following types:

• local assertions A of type A = (InitState × LocalState)→ Prop,

• postconditions B ∈ B = (InitState × LocalState × TermState)→ Prop,

• invariants I ∈ I = (LocalState × LocalState)→ Prop,

• method preconditions R ∈ MethPre = (InitState)→ Prop,

• method postconditions T ∈ MethPost = (InitState × TermState)→ Prop,

• method invariants Φ ∈ MethInv = (InitState × LocalState)→ Prop.
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Thus, tuples of state components are parameters of assertions. To present these parameters in the deep
embedding language we introduce standard names for state components:

state component := st0 | h0 (initial state)
| ops1 | st1 | h1 (state at some p. counter)
| ops11 | st11 | h11 (state at some next p. counter)
| rv | th (terminal state)

where st0 and h0 denote the initial store and heap at an entry point of a given method; ops1 , st1 , and h1 ,
are the operand stack, store and heap at some program counter inside the method body; ops11 , st11 , and
h11 are the operand stack, store and heap at a next program counter; and rv , and th are the return value
and the heap at a return point of the method.

Note, that when a state component occurs in a base logic assertion as λ-bound, in the deep embedding
it will be replaced, according to its position in the binding, by the standard name from the grammar above,
while the λ-binder itself will be ignored.

As we will show below, this allows us to define a deep version of the assertion transformers (as presented
in section 3.5). This will be a major ingredient for defining a deep version of the MOBIUS base logic, as we
plan to do as future work2.

Logical variables Logical variables are used when quantifiers are introduced. Note, that since BML speci-
fications do not have free logical (non-program) variables, they are mapped onto deep expressions without
free logical variables.

We use de Bruijn levels to represent them. With this scheme the variable bound by the outermost
quantifier is denoted by 0. A variable bound by the quantifier which is in the scope of the outermost one,
is called 1, etc. For instance, the formula ∀ x. (∃ y. x > y) ∧ (∃ z. x < z) is presented as ∀ 0. (∃ 1. 0 >
1) ∧ (∃ 1. 0 < 1). The advantage that this scheme has over the more popular of de Bruijn’s schemes
(de Bruijn indices) is that the variable bound by a given quantifier is represented in the same way wherever
it appears in the scope of this quantifier. The disadvantage of de Bruijn levels (which de Bruijn indices do
not have) is that the bound variables in a term may need to be renumbered when it is substituted into a
different term.3

In the grammar of the language logical variables are declared by the constructor LVnat. We have not
defined substitutions for logical variables yet. However, one will need them once we extend the language of
deep expressions to a deep logic.

Evaluation time of expressions The MOBIUS base logic has more general expressions over stacks, stores
and heaps than BML. In BML the operators over stacks and stores always refer to the current stack, store
or heap. In contrast, operands — stacks, stores and heaps — in the MOBIUS base logic are arbitrary, in
particular empty, or constructed from others.

In addition, the base logic and BML also have different approaches to express evaluation depending on
time, i.e. looking up the content of a variable, heap, or stack either “now”, in the current state, or “before”,
in some earlier state. The MOBIUS base logic approach may be called an absolute time scale, since one has
direct access to the current, previous and initial state via parameters ops1, h1, s0, h0 etc.

BML has a special construct to refer to earlier time ticks: \old, which indicates that an expression is
evaluated in the initial state of the method (as mentioned at the beginning of the previous chapter).

We use the MOBIUS base logic point of view, but to make the translation from BML predicates into the
language of deep expressions transparent, the language contains an Old constructor, and explicit constructors
currentStack, currentStore and currentHeap. The latter allow us to define several derived lookups
that correspond to the BML semantics. The evaluation of these constructors will depend on an argument
representing the time (indicating in which state is the expression to be evaluated). Based on the absolute
time scale of the MOBIUS base logic, we define the following grammar for time:

time := init | middle 1 | middle 11 | ret

2Eventually one might even be interested in a full deeply embedded logic, that is a logic where proof rules are syntactic
objects themselves.

3See, for instance, http://math.boisestate.edu/∼ holmes/babydocs/node26.html for more detail.
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The full grammar of the deep expression language Let java-literal denote strings of symbols representing
boolean and integer constants in Java. The grammar of the language of deep expressions is defined below.
Note that this is an Isabelle style grammar definition, where n-ary constructors are used to define each
language construct.

expr := (* Boolean and integer constants *)
| TT | FF
| Number java-literal
| ProgramVariable java-literal
| ClassName java-literal
| FieldName java-literal

(* Constants for lambda-bound in the MOBIUS base logic stacks, stores, heaps *)
| MV state component

(* Logical Variables *)
| LV nat

(* Operations and relations over integers *)
| Unary UnOp expr
| Binary BinOp expr expr
| Rel BinRel expr

(* Polymorphic equality *)
| Eq expr expr

(* Logical connectives *)
| Not expr | And expr expr
| Or expr expr | Impl expr expr
| ForAll type tag expr | Exists type tag expr

(* Constructs arising from BML *)
| Typeof expr | Old expr
| Fresh expr | This

(* Constructs for adaptation to BML *)
| currentStack | currentStore | currentHeap

(* Operations over stacks, stores, heaps *)
| Cntr expr | LookUpStack expr expr | Push expr expr
| emptyStore | LookUpStore expr expr | UpdateStore expr expr expr
| emptyHeap | LookUpHeap expr expr expr | UpdateHeap expr expr expr expr expr

(* Get the current program counter *)
| currentLab

(* Get the next program counter *)
| nextLab

(* The MOBIUS base logic NormalStep (M, (l, (ops, s, h)), (l1, (ops1, s1, h1))) *)
| NormalStepL Method expr expr expr expr expr expr expr expr

(* Construtors for program and return values *)
| nulladdr | ProgVal expr | noexc | ExVal expr

In addition, we have the following auxiliary grammars:

UnOp := uminus

BinOp := plus | minus | mult | div | remainder
BinRel := less | greater | lesseq | greatereq

Note that the language constructs marked as arising from BML are specific for BML. The operations and
relations and logical connectives are in the intersection of the MOBIUS base logic and BML.
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There are several constructs in BML the semantics of which is less general than the semantics of the
related deep embedding constructs. In BML expressions such as cntr, st(e) and lookup of fields or local
variables is always evaluated w.r.t. the current stack, store and heap. In contrast, in the deep embedding
language, the related constructors Cntr, LookUpStack, LookUpStore and LookUpHeap can be evaluated
w.r.t. any stack, store or heap — this is an explicit parameter of the constructor.

For the sake of transparency, we define these BML constructs as abbreviations in the language of deep
expressions, using the corresponding deep constructors:

• CntrBML := Cntr (currentStack),

• LookUpStackBML exnat := LookUpStack (currentStack) exnat,

• LookUpStoreBML exx := LookUpStore (currentStore) exx,

• LookUpHeapBML exa f := LookUpHeap (currentHeap) exa f.

For example, the translation “BML × Constant pool −→ Deep Expressions” maps the BML local vari-
able lookup of x to LookUpStoreBML (ProgramVariable x), and the field lookup of sum of class Bill to
LookUpHeapBML This (FieldName Bill.sum).

Recall the different kinds of shallow base logic assertions: local assertions, postconditions and invari-
ants, method preconditions, postconditions and invariants. The syntactic structure of expressions of these
sorts and their semantic evaluation functions are essentially the same, but they differ in the types of state
components to which they are applicable. We define these different sorts of assertions on top of the main
grammar:

exprLocAssn := LocAssnTag expr
exprPost := PostTag expr
exprInv := InvTag expr
exprMethPre := MethPreTag expr
exprMethPost := MethPostTag expr
exprMethInv := MethInvTag expr

Evaluation functions for the assertion kinds above will be defined using one main evaluation function.
We also introduce explicit tags for the different kinds of assertions:

assn tag := locAssn | post | inv | methPre | methPost | methInv

Substitutions In the base (shallow) logic assertions can be applied to state components. We use a syntactic
substitution of state components to represent this in the language of deep expressions. The substitution
function subst: expr→ state components→ expr→ expr is defined as a primitive recursive function in the
usual way.

In addition, we need an auxiliary function incDeBruijn: expr → nat → expr, which when applied to
a deep expression deepA and natural number n increments the de Bruijn levels of the logical variables in
deepA by n.

For example, the shallow expression

λ (s0, h0) (ops1, s1, h1). ∃ h. A (s0, h) (ops1, s1, h1) −→ (...)

has the following deep representation:

Exists heap (Impl (subst (incDeBruijn deepA 1) h0 (LV 0)) (...)).

As mentioned above, there is no explicit λ-binding of the state components in the deep embedding
language. One logical variable of type heap is introduced and bound by the existential quantifier. This
variable automatically gets the name LV 0 as it is the outermost bound variable. It corresponds to h in
the shallow example. To model the application of h to the expression A, h0 is substituted by LV 0 in the
deep expression deepA. The introduction of this fresh variable requires increments of all the variables in the
original expression deepA by 1.
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Deep assertion transformers In the shallow base logic, assertion transformers are defined to relate assertions
for adjacent instructions. This allows the rules of the logic to be formulated so that assertions in the
conclusions are unconstrained, i.e. a rule always can be applied directly to derive a judgement in a backward-
style manner. Judgements occurring as premises involve assertions that are notationally constrained, and
relate to the conclusions’ assertions via uniform constructions.

These assertion transformers can be encoded in the deep expression language. For example, the assertion
transformer PRE: Method×Label×Label×A → A, which relates an assertion to the weakest precondition
from a judgement of the operational semantics, is defined as follows (spelling out the complete definition):

PRE (m, l, l′, A)
(
(s0, h0), (ops1, s1, h1)

)
≡∃ (ops, s, h).

NormalStep (m, (l, (ops, s, h)), (l′, (ops1, s1 , h1))) ∧
A ((s0, h0), (ops, s, h))

In the language of deep expressions it is defined as follows:

deepPRE : Method→ exprLocAssn→ exprLocAssn

deepPRE MB (LocAssnTag expr) =
(LocAssnTag (Exists stack (Exists store (Exists heap

(And (NormalStepL MB currentLab (LV 0) (LV 1) (LV 2)
nextLab (MV ops1) (MV s1) (MV h1))

(subst (subst (subst (incDeBruijn expr 3) ops1 (LV 0)) s1 (LV 1)) h1 (LV 2))
)))))))

4.2.3 Semantics of the deep embedding language

To define the meaning of expressions in the language of assertions in terms of the MOBIUS base logic, we
define appropriate evaluation functions. The evaluation function for an expression of the main grammar has
the following arguments:

• an assertion type,

• a current program counter,

• the next program counter,

• a current time point,

• different state components,

• a de Bruijn logical environment.

The de Bruijn logical environment le of type env is a list of logical values of the sum type LVal, where:

LVal := BO bool | INTG int | AD (Addr option) | OB object
| PV V | OS O | ST S | HP H
| EC Ref | RV Vr | CL class | LB Label
| JV java-literal

where EC Ref denotes a reference to an exception handler.
Such an environment represents the list of values for the free variables, where the head of the list is the

value of the variable LV 0, the next element is the value of LV 1, etc.
The main evaluation function

eval : expr→ assn tag→ Label→ Label→ time→ S → H → O → S → H → O →
S → H → Vr → H→ env→ (LVal option)

is defined in the usual way as a primitive recursive function on expressions. We will give several of its
defining equations, to illustrate the most interesting aspects of its definition. For boolean constants the
evaluation is trivial:

eval TTassnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH le =
(Some (BO True))
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The explanation about state components above gives the intuition for the evaluation of the state com-
ponent constructors:

eval (MV c) assnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH le =
case c of

s0⇒ (case assnType of
inv⇒ None
| ⇒ Some (ST S0 ))

. . .
| th⇒ (case assnType of

post⇒ Some (HP TH )
| methPost⇒ Some (HP TH )
| ⇒ None )

The evaluation of logical variables is straightforward, one should just keep in mind the order of logical
variables in the environment (see also the evaluation of the universal quantifier later):

eval (LV i) assnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH le =
(if (i¡(length le ))
then (Some (le[i] ))
else None )

The evaluation of the currentLab constructor is trivial:

eval currentLab assnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH le =
Some (LB l )

The NormalStepL constructor is evaluated using the NormalStep relation from the MOBIUS base logic,
that is used to define the assertion transformers in section 3.5.

eval (NormalStepLMb exl exl’ exos exs exh exll exoss exss exhh )
assnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH le =

(case (eval exl assnType l l’ tick S0 H0 OPS1 S1 H1
OPS11 S11 H11 RV TH le ) of Some vl⇒

(case vl of LB l⇒
...
(case (eval exos assnType l l’ tick S0 H0 OPS1 S1 H1

OPS11 S11 H11 RV TH le ) of Some vos⇒
(case vos of OS STACK⇒

(case (eval assnType exs l l’ tick S0 H0 OPS1 S1 H1
OPS11 S11 H11 RV TH le ) of Some vst⇒

(case vst of ST STORE⇒
...
(Some (BO (NormalStep (Mb, (l, (STACK, STORE , HEAP )),

(l’, (STACK1, STORE1, HEAP1 ))))))))

An expression with the universal quantifier ForAll tp ex evaluates to Some boolean value if for all
well-typed values of the bound variable the expression expr evaluates to some boolean value. Otherwise
ForAll tp ex evaluates to None. The expression ForAll tp ex evaluates to Some (BO True), if and only if
for all well-typed values of the bound variable the expression expr evaluates to Some (BO True):
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eval (ForAll tp ex )assnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH le =
if (∀ lval. ∃ b.((get type lval = tp ) −→

(eval ex assnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH (le@[lval] ) =
Some (BO b ))))

then (if (∀ lval.(get type lval = tp ) −→
(eval ex assnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH (le@[lval] ) =

Some (BO True ))))
then Some (BO True ))
else Some (BO False )))

else None

The auxiliary function get store: time → Store → Store → Store → (Store option) shows how the time
parameter tick is used.

get store init S0 S1 S11 = Some S0
get store middle 1 S0 S1 S11 = Some S1
get store middle 11 S0 S1 S11 = Some S11
get store ret S0 S1 S11= None

This function is used, for instance, to evaluate currentStore:

eval currentStore assnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 W TH le =
(case(get store tick S0 S1 S11 )of

Some S⇒ Some (ST S )
| None⇒ None)

Thus, nullary constructors currentStack, currentStore and currentHeap evaluate to the correspond-
ing state parameters from the list S0, . . . , TH depending on the value of the argument tick.

Next we show how the time argument is used to evaluate Old ex; the recursive call ensures that ex is
evaluate in the initial state:

eval (Old ex )assnType l l’ tick S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH le =
eval ex assnType l l’ init S0 H0 OPS1 S1 H1 OPS11 S11 H11 RV TH le

The evaluation functions for the different assertions are defined via the main evaluation function. For
instance, for local assertions we define:

eval localassn: exprLocAssn→ Label→ Label→ (LocalAssn option)

eval localassn (LocAssnTag assn) l l’ =
if (∀s h opss ss hh. ∃ b.

(eval assn locAssn l l’ middle 1 s h opss ss hh [] [] [] (RV (RVal nullref )) [] [] =
Some (BO b )))

then Some (λ(s, h) (opss, ss, hh).
(case eval assn locAssn l l’ middle 1 s h opss ss hh

[] [] [] (RV (RVal nullref ))[] []) of
Some (BO b)⇒ b

| ⇒ False))
else None

Towards soundness Similarly to the proof rules of the shallow logic with judgements {A} C, M, l {B} (I ),
one might define rules where preconditions, postconditions and invariants are in the language of assertions:
{deepA} C, M, l {deepB} (deepI ). These rules would involve the deep assertion transformers as deepPRE,
defined above, to describe the premises of the proof rules.

We present here a possible way the soundness theorem could be proved for program logic rules with deeply
embedded Hoare quadruples. First, evaluate the deep triples in a given rule to their shallow counterparts.
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Suppose for instance, that to prove the rule for basic bytecode instructions one has

eval localassn deepA = Some A
eval post deepB = Some B
eval inv deepI = Some I

for the conclusion and
eval localassn (deepPRE MB deepA) = Some A’
eval post (deepPOST MB deepB) = Some B’
eval localassn (deepINV MB deepI) = Some I’

for the hypothesis. Next, apply the shallow rule in backward manner, where {A} C, M, l {B} (I ) is in the
conclusion; this rule can be applied if one has

{PRE (M, l, l’, A)} C, M, l’ {POST (M, l, l’, B)} (INV (M, l, l’, I))

as a hypothesis. To obtain this hypothesis one proves the following three lemmas:

PRE (M, l, l’, A) ≡ A’
POST (M, l, l’, B) ≡ B’
INV (M, l, l’, B) ≡ I’

Alternatively one can use the rule of consequence, in which case it would suffice to prove the following
weaker statements:

PRE (M, l, l’, A)→ A’
B’→ POST (M, l, l’, B)
I’→ INV (M, l, l’, B)

4.2.4 Running example

The predicates in the BML specification of the running example (see Figure 4.2) can be translated into
expressions in the deep expression language. The method specification of the method produceBill reads
as follows:

{| requires lv[1] > 0

ensures #24 <= \old(#24) + lv[1] * (lv[1] + 1) / 2 |}

Recall, that the BML local variable lv[0], denoting this, and lv[1], denoting the method parameter,
are mapped onto expressions lv0, lv1 respectively which are the abbreviations for (ProgramVariable lv[0])
and (ProgramVariable lv[1]). The translation reads the entry #24 from the given constant pool and finds
that it corresponds to the field sum of the class Bill.

So, the BML requires-clause is represented as

MethPreTag ((LookUpStoreBML lv1 ) > 0) (4.1)

where we use e > e′ instead of Rel greater e e’ to improve readability.

In JML method parameters in the postcondition are by default considered to be evaluated in the initial
store and heap. The ensures-clause of the example is therefore represented as:

MethPostTag ((LookUpHeapBML (Old(This)) (FieldNameBill.sum )
≤
(Old (LookUpHeapBML This (FieldNameBill.sum )) + (Old (LookUpStoreBML lv1 ))∗
((Old (LookUpStoreBML lv1 ))+ 1 ) div 2 )

(4.2)

Again, to improve readability we use some syntax translations — “1” and “2” are in fact Number 1
and Number 2, the infix ex + ex’ denotes Binary plus ex ex’, and similarly for the comparisons <,≤,
multiplication ∗, and division div.

Finally, the method’s loop invariant reads as follows:
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loop_invariant 0 < lv[2] && lv[2] <= lv[1] + 1 &&

0 <= #24 && #24 <= \old(#24) + (lv[2] - 1) * lv[2]/2

As will be explained in the next section, loop invariants will give rise to appropriate local assertions.
Therefore, this expression gets translated into the following assertion in the deep expression language (again
using obvious syntax translations):

LocAssnTag 0 ¡ (LookUpStoreBML lv2 )
∧
((LookUpStoreBML lv2 ) ≤ (Old (LookUpStoreBML lv1 ))+ 1 )
∧
(0 ¡ (LookUpHeapBML This (FieldName Bill.sum)))
∧
((LookUpHeapBML This (FieldName Bill.sum)) ≤

(Old(LookUpHeapBML This (FieldName Bill.sum ))+
(((LookUpStoreBML lv2) - 1 ) ∗ (LookUpStoreBML lv2 )) div 2 ))

(4.3)

4.3 Embedding BML in the MOBIUS base logic

In the previous section, we showed how BML predicates can be mapped into expressions of the deep expres-
sion language and in turn, how these expressions can be mapped into assertions for the (shallow) MOBIUS
base logic. Given these mappings, we are now ready to define how complete BML specifications can be
translated into judgements of the MOBIUS base logic.

As in JML, a BML specification can contain the following constructs:

• class specifications, namely invariants and history constraints;

• method specifications, consisting of preconditions (requires clause), normal postconditions (ensures
clause), exceptional postconditions (signals clause), and frame conditions (assignable clause);

• statement annotations, in particular the assert, assume, and set annotations, that can occur at any
point in the program text, and loop invariants, loop frame conditions, and loop variants, that are
associated to loop blocks.

Above we have described how BML predicates can be embedded into expressions of the deeply embedded
expression language. Here we define how the different specification constructs can be embedded into a
judgement of the form G,Q ` {A} pc {B} (I) of the MOBIUS base logic.

Class specifications For invariants and history constraints, the BML semantics corresponds to the JML
semantics. Thus, any class invariant or constraint can be translated into appropriate pre- and postconditions
for the relevant methods (taking the visibility modifiers into account). We follow this semantics for JML [?,
§8] and do not discuss it further in this document.

Method specifications BML preconditions directly correspond to the preconditions of the MOBIUS base
logic judgements (using the embedding in the deeply embedded expression language). The normal and
exceptional postconditions are combined into a single postcondition, specifying with a case distinction which
conditions should hold if the state is normal or exceptional, respectively. Frame conditions should also be
added to the postconditions, specifying explicitly which variables are allowed to be changed. Since in the
deep embedding (and the shallow predicates in the MOBIUS base logic) one can specify properties over the
whole heap, this can be expressed directly: all locations that are not mentioned in the frame condition of
the method (evaluated in the prestate of the method) should be unchanged.

In JML and also in BML it is possible to write several method specifications for a single method. A
standard procedure exists for desugaring these into a single method specification [47]. We use this approach
in our translation.
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Statement annotations The treatment of assert annotations is simple, they are transformed directly into
program annotations.

For assume annotations, different interpretations are possible: either the assume statement adds some
additional information that is supposed to be added to the properties that are already known for a particular
program point or the assume statement corresponds to a local precondition for the remaining statements.
In the latter case they have to be sufficiently strong to prove correctness of all the remaining program code.
We are currently investigating these different interpretations and which would be the most appropriate for
our work.

At the moment, the MOBIUS base logic does not have the ghost variables; it is future work to add these.
To specify assignments to ghost variables, set annotations are used. Therefore, it only makes sense to map
set annotations into the MOBIUS base logic, once it has ghost variables. In JML, set annotations occur
in the program text. In BML, they are described in a special set annotation table, which associates them
to a particular instruction. The latter approach will probably also be followed in the MOBIUS base logic,
i.e. there will be a set annotations table. It is still to be decided whether the set annotations associated to
a particular instruction are an unordered set or whether we will actually specify a sequence of instructions
(currently in BML it is described as an unordered set).

Similar to assert annotations, loop invariants also directly become program annotations of the appro-
priate program point.

Loop variants can be transformed into a sequence of assert and set annotations, after introducing ap-
propriate ghost variables. This transformation can be done at the level of BML, after which we can use the
mapping of set and assert annotations into the MOBIUS base logic. The transformation of the BML speci-
fication basically proceeds as follows. Let variant be the expression declared in the decreases clause. We
declare ghost variables loop_init (initially set to true) and loop_variant (the preliminary initialisation
of which is not essential). If l is the program point where we enter the loop, then at that point we add an
assertion

//@ assert !loop_init ==> (0 <= variant && variant < loop_variant);

followed by:

//@ set loop_init = false;

//@ set loop_variant = variant;

This ensures that every time the loop entry point l is reached again, the decrease of the loop variant is
checked. Only a path that goes through the loop can set loop_init to false.

For mapping loop frame conditions, we use again the fact that in the deep expression language we can
express properties of the heap. Thus, we again make a transformation into a sequence of assert and set
statements. We declare ghost variables to remember the old heap and all locations mentioned in the loop
frame condition, and a ghost variable loop_init as above. Then we assert at the entry point of the heap
that if loop_init does not hold, any location that is not mentioned in the loop frame condition should
remain unchanged. Notice that this assertion cannot be directly expressed in BML, but it can be expressed
in the deep expression language. Finally, in the MOBIUS base logic we add appropriate ghost variable
updates to remember the old heap and the locations of the loop frame condition when the loop was first
entered.

Running example Consider again the BML specification of the class Bill in Figure 4.2. We have already
shown above how the different predicates can be translated into the deep expression language. Let us use
γPRE, γPOST and γINV for expressions (4.1), (4.2) and (4.3), respectively. Let us further assume that I is the
deep expression encoding the class invariant #24 >= 0, i.e.

I = LookUpHeapBML This (FieldName Bill .sum) ≤ 0.

If we map the BML specification into the MOBIUS base logic, this will result in the following judgement:

G,Q ` {MethPreTag(I) ∧ γPRE} pc {MethPostTag(I) ∧ γPOST} (true).

Finally, the local annotation table Q will contain a single entry: from instruction 22 (loop entry point) to
γINV.
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Chapter 5

Verification techniques for bytecode programs

The use of verification condition (VC) generators makes the automation of proof easier. They compute
formulae using the specification of a program in such a way that the validity of these formulae implies the
validity of the program with respect to its specifications.

We present here two VC generators. The first one, described in section 5.1, generates verification
condistions in a direct way, i.e. it works on the bytecode programs and transforms formulae directly using
the semantic rules of the bytecode language expressed in a weakest precondition calculus derived from
MOBIUS base logic. The second VC generator, described in section 5.2, works with BoogiePL as an
intermediate programming language and program logic. The main advantages of the second VC generator
are that it makes possible to reuse the tools developed within the Spec# platform and gives a clear method
for generation of verification conditions the size of which is proportional to the size of the original program.
The second VC generator is related to the MOBIUS base logic by a soundness proof w.r.t. the first verification
generator.

5.1 Verification Condition Generator for MOBIUS base logic

In this section we present a formalisation of a verification condition generator (VC generator) using shallowly
embedded assertions. We first define the VC generator and prove the correctness of the VC generator up to
the MOBIUS base logic (i.e. if all conditions generated by the VC generator are satisfied then there exists
a derivation in the MOBIUS base logic for the program and its specification). The soundness proof of the
MOBIUS base logic implies the soundness of the VC generator. We also give a direct soundness proof of
the VC generator.

The major differences with the MOBIUS base logic are:

• The VC generator does not deal with method invariants Φ, we plan to add methods invariants in the
VC generator later. This should normally be done without any major difficulty.

• In the MOBIUS base logic a proof context associates a triple (A,B, I) to a program point, where A
is a local precondition B a local postcondition and I a local invariant. The local specification table
of a method can be seen as the proof context G of the MOBIUS base logic, but for the VC generator
the local specification table contains only local preconditions (the local postcondition is always the
postcondition of the method, and the VC generator does not currently deal with global invariants).

• In the MOBIUS base logic at least one derivation rule is used for each instruction of the program,
to be able to prove its correctness. The VC generator is simply a strategy to automatically apply
rules of the MOBIUS base logic. It generates a condition corresponding to the conjunction of the
side-conditions needed by the MOBIUS base logic rules. Furthermore, it tries to automatically remove
some side-conditions when they are trivially provable.

5.1.1 Overview of the VC generator

The verification condition generator is defined for annotated programs.

• An annotated program is a triple (p, subclass,MST ), where p is a JVM program (as represented in
Bicolano), subclass is a boolean function over pairs of class names of p (i.e. a decidable version of the
subclass relation of p), and MST is the method specification table of p.
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• A method specification table is a partial mapping from methods to pairs of global method specifications
(the precondition and the postcondition of the method) and local specification tables of the method.

• A local specification table is a partial mapping from program points to assertions (predicates over
initial state and current state) that should be understood as the precondition of the program point.

AnnotProg = p ∗ subclass ∗MST
subclass = ClassName ∗ ClassName → bool

MST = M 7→ MethodPre ∗MethodPost ∗ LMS
LMS = PC 7→ LocalPre

MethodPre = InitState → Prop
MethodPost = InitState ∗ TermState → Prop

LocalPre = InitState ∗ LocalState → Prop

In the sequel we write p for an annotated program (p, subclass,MST ), and we will write p.subclass for the
second component of (p, subclass,MST ) and p.MST for the third one.

The definition of the VC generator is based on two basic, mutually dependent functions:

wpi : AnnotProg →M→ PC → LocalPre
wpl : AnnotProg →M→ PC → LocalPre

The function wpi p m pc computes the weakest precondition of a program point pc in an annotated program p
and a method m without using the local specification table (at that point). Intuitively the function computes
the weakest precondition of all successors of pc (using the function wpl) and then uses the different results
and the semantics of the instruction at pc to compute the weakest precondition of the instruction at pc. The
function wpl p m pc does the same, but also uses the local specification table of the method m directly: if
the program point pc is annotated with the precondition A then the weakest precondition of pc (computed
by wpl) is A, else the weakest precondition of pc is wpi p m pc. We will define these two functions in the
next section.

Essentially, the function wpi assumes the role of the judgement MST ,LMS ` {•} pc {•} (•) in the
MOBIUS base logic, and the function wpl assumes the role of MST ,LMS ` 〈•〉 pc 〈•〉 (•).

With the use of these two functions, we can define the notion of certified methods and certified programs.

Definition 5.1.1 (Certified methods) Given an annotated program p, a precondition R, a postcondition T
and a local specification table S, a method m is certified if p.MST (m) = (R, T,S) and the following property
holds:

certifiedMethod p S m ≡
(∀(s0, s). R s0 → wpl p m initm (s0, state(s0))) ∧

∧
S(pc)=A ∀(s0, s). A(s0, s)→ wpi p m pc (s0, s).

In other words, a method is certified if its precondition implies the weakest precondition of the starting
point of the method and for all annotations A of an annotated point pc in m, A implies the weakest
precondition of the instruction at pc. Assume that only pc1 and pc2 are annotated (with A1 and A2) then
certifiedMethod p S m reduces to

(∀(s0, s). R s0 → wpl p m initm(s0, state(s0)))
∧ (∀(s0, s). A1(s0, s)→ wpi p m pc1 (s0, s))
∧ (∀(s0, s). A2(s0, s)→ wpi p m pc2 (s0, s)).

Definition 5.1.2 (Certified programs) An annotated program p is certified whenever the following property
holds:

certifiedProg p ≡
∧

p.MST (m)=(R,T,S)

certifiedMethod p S m.

This definition, similarly as the definition of certified methods, is reducible which has the advantage that the
Coq system can compute the result of the VC generator. This can be observed when a proof of correctness
for a particular bytecode method is conducted in Coq — the formulae generated by the WP generator show
up automatically in appropriate proof steps.
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5.1.2 Weakest precondition of instructions

The weakest precondition (WP) of instructions can be seen as a symbolic execution. Instead of computing
a result, the symbolic execution computes a weakest precondition which intuitively corresponds to the
conjunction of the side-conditions of the MOBIUS base logic. The WP tries to simplify and to reduce the
number of side-conditions of the MOBIUS base logic, in particular the side-conditions corresponding to
exception cases.

In the MOBIUS base logic, the rule (INSTR), corresponding to basic instructions, contains two side-
conditions:

• (3.1) an exception is thrown and caught by the handler,

• (3.2) an exception is thrown and uncaught.

These two side-conditions quantify over all exceptions that can be handled or not at that position. But
most of the basic instructions cannot throw exceptions. In that case, these two conditions can simply
be removed. Furthermore, the exceptions that are possibly thrown by basic instructions as well as their
exception handlers are known statically (runtime exceptions). So, we can statically decide if the exception is
caught by a handler or uncaught. This means that at least one of these two side-conditions can be removed.

A problem is that in the Bicolano semantics whether an exception is caught or not is defined by a
(inductive) predicate

pc′ ∈ handlem(pc, e)

which is not executable. Here, we need a decidable function, this is why we require a subclass relation in
an annotated program. This allows us to write a function lookuphandlers m pc cn returning pc′, when
pc′ ∈ handlem(pc, e), or ⊥ otherwise.

Assertion transformers

In order to simplify the presentation of the weakest precondition rules, we first define some operators. The
definitions are implicitly parametrised by an annotated program p, a method m and a function wpl.

• wpnext pc: computes the WP of the successors of pc if they exist (in Bicolano, the next function is a
partial function, some program points do not have any successors).

wpnext pc =

{
wpl pc′ if nextm(pc) = pc′,
λ (s0, s). True if nextm(pc) = ⊥.

The case nextm(pc) = ⊥ never occurs if the program is well formed.

• wpExc pc loc cn h l s0 computes the WP of a program point pc when an exception stored at location
loc of a class cn is thrown, h is the current heap and l are local variables.

wpExc pc loc cn h l s0 =

{
m.T (s0, (h, loc)) if lookuphandlers m pc cn = ⊥,
wpl pc′ (s0, (h, loc :: ∅, l)) if lookuphandlers m pc cn = pc′.

If the exception is not caught (lookuphandlers returns ⊥) then the current method returns the ex-
ception. In that case the WP is the postcondition of m (m.T ) applied to the initial state s0 and
the return state (h, loc). If the exception is caught (lookuphandlers returns pc′), the next state is
(pc′, (h, loc :: ∅, l)) (i.e. the code pointer becomes pc′, the heap and local variables are unchanged, the
stack is cleared). So the WP resulting is the WP of pc′ applied to the initial state s0 and the state at
pc′: (h, loc :: ∅, l).

• wpJvmExc pc e h l s0 computes the WP of a program point pc when the JVM exception e is thrown.

wpJvmExc pc e h l s0 =
∀h′ loc. new h p (javaLang, e) = (loc, h′)→ wpExc pc loc (javaLang, e) h′ l s0.

When an instruction throws a JVM exception e, a fresh object of class name (javaLang, e) is allocated,
after this allocation the heap is h′ and loc is a reference to the newly allocated object representing
the exception. In these cases, we enrich the WP with two fresh variables h′ and loc together with a
hypothesis characterising these two variables as a function of the current heap (h).
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• wpNull pc = wpJvmExc pc NullPointerException.

• wpCond C T F = (C → T ) ∧ (¬C → F ). This definition is used when the semantics performs a test.

• wpJvmCond C T pc e h l s0 = wpCond C T (wpJvmExc pc e h l s0). Most of the instructions that throw
a runtime exception e perform a test C, if the test is true then the execution continues normally (T is
morally the WP of the next instruction), else the runtime exception e is thrown.

Remark: It is very simple to modify this definition so that the WP excludes runtime exceptions, just
use the following definition:

wpJvmCond C T pc e h l s0 = C ∧ (C → T )

It is trivially correct up to the first definition since if this proposition is satisfied then the false branch
of the conditional can never appear.

• wpBound i length T pc = wpJvmCond(0 ≤ i < length) T pc ArrayIndexOutOfBoundsException. This
definition is used for instructions that access an array (load or store values).

Weakest precondition of instructions: wpi

The function wpi expects three arguments: the program counter pc, the initial state s0 and the “symbolic”
current state s. As above, the definition is implicitly parametrised by an annotated program p, a method
m and by a function wpl. The goal of this function is to compute the WP of a program point pc in the
program p and method m.

The function proceeds by case analysis on the instruction at label pc and on the state s. Intuitively
the function computes the WP of all possible successors of pc (that is a predicate over initial state and
local state) and then applies each result to their corresponding state (i.e. the state derived from s after the
execution of the instruction).

We do not give the entire definition of the function wpi, but just some examples to give the intuition:

• If the current instruction is AconstNull and the current state is s = (h, os, l), the JVM pushes the
Null value on top of the operand stack and jumps to the next instruction. The function wpi does the
same: first it computes the WP of the next instruction and then applies this to the corresponding
state (expressed as a function of s).

wpi pc (s0, (h, os, l)) = wpnext pc (s0, (h,Null :: os, l)) if m.(pc) = AconstNull .

• If the current instruction is Getfield f , we have to distinguish two cases:

– s = (h,Null :: os, l), in that case the object we try to access is a null pointer, the semantics of
the JVM throws a NullPointerException, so we use the predefined function wpNull:

wpi pc (s0, (h,Null :: os, l)) = wpNull pc h l s0.

– s = (h, loc :: os, l), the object is not a null pointer, the semantics accesses the field f of the
reference loc, pushes it on top of the operand stack and jumps to the next instruction. So the
resulting state is (h, v :: os, l) where v is value of the field f of loc. The WP simply introduces a
new variable v, adds the hypothesis characterising v and proceeds as previously:

wpi pc (s0, (h, loc :: os, l)) =
∀(i, t). typeof(h, loc) = LocationArray(i, t)→ wpnext pc (s0, (h, i :: os, l)).

• If the instruction is If0 cmp o, the function applies the function wpCond to the condition and to the
WP of both successors:

wpi pc (s0, (h, i :: os, l)) = wpCond (i cmp 0) (wpl (pc + 0) (s0, (h, os, l))) (wpnext pc (s0, (h, os, l))).

• If the instruction is Return, the WP is simply the postcondition of m applied to the return state:

wpipc (s0, (h, v :: os, l)) = m.post (s0, (h, v)).
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It is now easy to define the function wpl:

wpl pc =

{
A if S.(pc) = A,
wpi pc if S.(pc) = ⊥

with p.MST (m) = (R, T,S).

5.1.3 Correctness of the VC generator

Theorem 5.1.3 (Correctness of the VC generator) For each annotated program p and method m, such that
the proof obligation generated by the VC generator is satisfied (i.e. a proof of certifiedProg p exists)
and p.MST (m) = (R, T,S) we have that if the proposition wpl p m pc (s0, s) is valid and the state (pc, s)
evaluates to:

• the state (pc′, s′), then the proposition wpl p m pc′ (s0, s
′) is valid,

• the return state (h, rv), then the proposition T (s0, (h, rv)) is valid.

The first item should be understood as a “subject reduction” property, while the second is the property we
want about the VC generator: if the evaluation of the method terminates then the postcondition is satisfied.
Using the definition of certifiedProg and certifiedMethod, it is trivial to prove that if we start the
evaluation of a method in a initial state satisfying its precondition, the result (if the function terminates)
satisfies the postcondition.

Correctness of the VC generator up to the MOBIUS base logic

To prove the correctness of the VC generator up to the MOBIUS base logic, we first need to translate the
annotation table of the VC generator to the annotation table of the MOBIUS base logic. The differences
between the two are that annotation tables of the MOBIUS base logic contain information for the method
invariants and a local annotation table. To complete the annotation table of the VC generator, we use the
trivial “true” proposition and we set the local annotation table to empty.

Theorem 5.1.4

• If the proposition ∀(s0, s). wpl p m pc (s0, s) is valid then there exists a derivation of

MST ,LMS ` 〈(wpl p m pc)〉 pc 〈m.post〉 (True).

• If the proposition ∀(s0, s). wpi p m pc (s0, s) is valid then there exists a derivation of

MST ,LMS ` {(wpl p m pc)} pc {m.post} (True).

• If the proposition certifiedProg p is provable then p is verifiable in the MOBIUS base logic.

5.1.4 Running example

With the help of the running example we present now the way the VC generator works. To use the VC
generator we first must define the method specification table of the Bill program. We start with the method
specification for the roundCost method:

Definition roundCostPre (s0:InitState) := True.

Definition roundCostPost (s0:InitState) (t:ReturnState) :=

let (l0, h0) := s0 in

let (ht,vt) := t in

(forall (am:Heap.AdressingMode) (v:value),

Heap.get h0 am = Some v -> Heap.get ht am = Some v)

/\

match vt with

| Normal res =>
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forall x, LocalVar.get l0 1%N = Some (Num (I x)) ->

exists n, res = Some (Num (I n)) /\ 0 <= n <= x

| Exception loc =>

Heap.typeof ht loc = Some (Heap.LocationObject java_lang_Exception.className)

end.

Definition roundCostSpec := (roundCostPre, roundCostPost, empty).

The roundCost method has no precondition which is modelled by a predicate function (roundCostPre)
which associates to any initial state s0 the proposition “true”. What does the postcondition of the method
say? It is a predicate over the initial state and return state: it decomposes the initial state into the initial
local variables (l0) and the initial heap (h0) (resp.). Similarly, the terminal state (t) is decomposed into
the final heap (ht) and the result (vt). The first proposition says that the method does not modify values
contained in the initial heap. The second one describes the result: if the result is a value then the value (n)
is between 0 and the initial value of the argument of the method (x). Otherwise, if the method returns with
an exception, then the exception has the type Exception. Finally, the specification of the virtual method
is a triple composed of its precondition, postcondition and the empty local method specification (since the
method is abstract and its body need not be specified).

Now, let us define the precondition of the produceBill method:

Definition mk_produce_bill_pre (s0:R.InitState) loc (n sum:Int.t) :=

let (l0,h0) := s0 in

l0 = mk_bill_var loc n

/\ Heap.get h0 (Heap.DynamicField loc Bill.sumFieldSignature) = Some (Num (I sum))

/\ 0 <= sum

/\ sum + (n*(n+1))/2 < Int.half_base.

Definition produce_bill_pre (s0:R.InitState) :=

exists loc, exists n, exists sum, mk_produce_bill_pre s0 loc n sum.

The precondition says that there exist three values (loc, n, sum) such that the initial local variables contain
the loc at position 0 and the integer n at position 1. The identifier sum represents the value of the sum field
of the reference loc. This value should be positive and the last condition ensures that there is no overflow
(this is important for a proof of the postcondition).

The postcondition of the method is the following:

Definition produce_bill_post (s0:R.InitState) (t:ReturnState) :=

let (l0, h0) := s0 in

let (ht,vt) := t in

forall loc n sum, mk_produce_bill_pre s0 loc n sum ->

(forall (am:Heap.AdressingMode) (v:value),

am <> (Heap.DynamicField loc Bill.sumFieldSignature) ->

Heap.get h0 am = Some v -> Heap.get ht am = Some v)

/\ (exists sum’,

Heap.get ht (Heap.DynamicField loc Bill.sumFieldSignature) =

Some (Num (I sum’))

/\ 0 <= sum’ <= sum + (n*(n+1))/2)

/\ match vt with

| Normal _ => True

| Exception _ => False

end.

It expresses that for all triples (loc, n, sum) satisfying the precondition of the method, the method does not
modify the heap (except the sum field of the reference loc), after execution of the method this field contains
a positive value sum’ less than the initial value of the field plus the expression (n ∗ (n + 1))/2). The last
condition ensures that the method does not raise an exceptions.

Since the body of the method contains a loop we need to give its invariant. This invariant is a local
annotation of the method (a predicate over the initial state and the current state):
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Definition produce_bill_invariant (s0:R.InitState) (s:R.LocalState) :=

let (l0,h0) := s0 in

let (h,s,l) := s in

exists loc, exists n, exists sum0, exists sum, exists i,

mk_produce_bill_pre s0 loc n sum0

/\ (forall (am:Heap.AdressingMode) (v:value),

am <> (Heap.DynamicField loc Bill.sumFieldSignature) ->

Heap.get h0 am = Some v -> Heap.get h am = Some v)

/\ l = LocalVar.update (mk_bill_var loc n) 2 (Num (I i))

/\ 1 <= i <= n + 1

/\ Heap.get h (Heap.DynamicField loc Bill.sumFieldSignature) = Some (Num (I sum))

/\ 0 <= sum <= sum0 + ((i-1)*i)/2.

It tells that there exists some value satisfying the precondition of the method, a current value (sum) for the
sum field and a current value (i) of the variable i from the source program (at position 2 in the bytecode).
The current heap is the same as the initial heap except that the sum field contains now the value sum, which
is specified. The values of the local variables at positions 0 and 1 have not been modified, the value i is
between 0 and the initial value of the variable n plus one.

Finally, the specification of the produceBill method is a triple composed of its precondition, postcon-
dition, and the local annotation table which associates the invariant with the program point 22 (the entry
point of the loop).

To obtain the correctness of the produceBill method the following Coq lemma should be proved:

Lemma produce_bill_correct:

certifiedMethod annoProg Bill.produce_billMethod produce_bill_spec.

where annoProg is the annotated version of the Bill program (associating the two specifications to the two
methods). A script with a Coq proof of the lemma is presented in Appendix D.

5.2 VC generation via translation to BoogiePL

In this section we present a translation of annotated sequential bytecode to the BoogiePL language. With
an implementation of such a translation it is possible to generate small verification conditions that can be
checked efficiently with automatic theorem provers like Simplify.

In Task 3.6 of the Mobius project, BoogiePL will be used as an intermediate step when generating
verification conditions. A translator from source code to BoogiePL as well as a translator from bytecode to
BoogiePL will be part of the Mobius tool suite.

First, we give a brief overview of BoogiePL and sketch a logic for it. We then introduce the translation and
illustrate it by a presentation of how it works for the running example. Finally, we present the soundness
theorem of the translation with respect to the direct VC generation from annotated bytecode. As the
formalisation of this translation is carried out on paper only, we present the description of the translation
in a more detailed way.

5.2.1 Overview of BoogiePL

BoogiePL [21] is an intermediate language for imperative programming languages that enables generation
of efficiently checkable verification conditions. It has a simple type system containing the basic types int,
bool, ref, and any, together with a predefined literal null of type ref. Additionally, BoogiePL has a basic
type name which can be used to type field-names for example. It is also possible to define new types in
BoogiePL.

In the global name space we can define variables, constants, axioms, uninterpreted functions, and the
implementations of procedures, where the BoogiePL commands can be used. The background theory (e.g. the
axiomatic heap model presented in subsection 5.2.4) is described with the use of the first four kinds of
definitions.

Procedures of BoogiePL can contain specifications for preconditions, postconditions, and modifies clauses.
In our translation, we do not make use of this feature as you can formalise those specifications directly with
the use of assume and assert constructs. The implementation of a procedure contains a declaration of
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all local variables at the beginning, followed by blocks of BoogiePL commands. A block has an ID and
a non-deterministic goto at the end, which specifies all possible blocks that can follow in the control flow
graph of the BoogiePL program.

The idea of BoogiePL is to have a very small set of operations that are used to transform an imperative
language with specifications to verification conditions. Namely, we have an assignment statement, a call
statement and most importantly, we have an assume, assert, and a havoc statement. For example, ”havoc
var” removes any information about variable var by assigning an arbitrary value to it. In other words:
after the command ”havoc var”, var can contain any value that is allowed by its type.

5.2.2 A logic for BoogiePL

Barnett and Leino defined a WP-calculus for a passive BoogiePL without back-edges in it’s control flow graph
[7]. Here, ”passive” means that the program is converted to a single assignment form and all assignments are
replaced by assumptions. Additionally, all back-edges are removed and the loop invariant is appropriately
asserted or assumed depending on the position in the BoogiePL code.

We define a logic for an non-passive version of BoogiePL without back-edges. It means that we still
have assignment statements as well as havoc statements, but in the course of the translation we eliminate
the back-edges from the control flow graph. We assume that the statements of the resulting BoogiePL
representation are numbered. We use the term ”position” to refer to the number of a BoogiePL statement
(this corresponds to pc for bytecode).

We define the following operations on positions:

• initmbpl
yields the first position of a method body.

• position(m, pc) yields the position of the first BoogiePL statement in the translation of the bytecode
instruction at program counter pc. If pc is None, this function returns post_X. This allows us to use
position together with the function lookuphandlers which is described in the VC generator section
(5.1). to get the desired behaviour. This informatin can be gathered during translation.

• stmt(bpl,m, pos) yields the BoogiePL statement at the position pos for a given BoogiePL program bpl
and a method m.

We use positions to define a wp function for BoogiePL. This function computes the weakest precondition
from a given position to the end of the BoogiePL code chunk in the first argument:

wpb : BoogiePLProg ×Method× Position→ LocalPre

The function is defined as follows:

wpb(bpl,m, pos) ≡
match stmt(bpl,m, pos) with
— assume P:

P =⇒ wpb(bpl,m, pos+ 1)
— assert P:

P ∧ wpb(bpl,m, pos+ 1)
— x := e:

wpb(bpl,m, pos+ 1)[e/x]
— havoc x:
∀v.wpb(bpl,m, pos+ 1)[v/x]

— return:
true

— goto pos1..posn:∧
i:=1..n

wpb(bpl,m, posi)

5.2.3 Running example in BoogiePL

In the following sections, we will use the running example to clarify the translation of bytecode into BoogiePL.
Listing 5.1 shows the translation of the method produceBill(). The variable declaration part starting in
the line 5 is abbreviated to present only one variable declaration. The original bytecode instructions are
shown as comments on the right hand side of the first line of the corresponding BoogiePL text.
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1 procedure Bill .produceBill(param0: ref, param1: int) returns ( result : int );
2 modifies heap;
3

4 implementation Bill.produceBill(param0: ref, param1: int) returns ( result : int){
5 var stack0r: ref ... // further variable declarations omitted
6

7 init :
8 //Save old heap
9 old heap := heap;

10

11 reg0r := param0;
12 reg1i := param1;
13

14

15 //Free requires
16 assume param0 6= null;
17 assume typ(rval(param0)) == Bill;
18 assume alive(rval(param0),heap);
19

20 goto pre;
21

22 pre:
23 //Class Invariant :
24 assume toint(get(heap, instvar(param0, Bill.sum))) ≥ 0;
25 //Precondition:
26 assume param1i > 0;
27

28 //Translation of first instruction starts here
29 //bytecode program:
30 stack0i := 1; //0: iconst 1
31 reg2i := stack0i ; //1: istore 2
32 assert 0 < reg2i ∧ reg2i ≤ reg1i + 1 ∧ //Loop invariant //2: goto 22
33 0 ≤ toint(get(heap, instvar(param0, Bill.sum))) ∧
34 toint(get(heap, instvar(param0, Bill.sum))) ≤
35 toint(get(old heap, instvar(param0, Bill.sum))) + (reg2i−1)∗reg2i/2;
36 goto block 22;
37

38 block 5:
39 stack0r := reg0r; //5: aload 0
40 stack1r := reg0r; //7: aload 0
41 assert stack1r 6= null; //9: getfield sum
42 stack1i := toint(get(heap, instvar(stack1r, Bill .sum)));
43 stack2r := reg0r; //10: aload 0
44 stack3i := reg2i ; //11: iload 2
45 arg0r := stack2r; //12: invokevirtual roundCost
46 arg1i := stack3i ; //p.MST(target) = (target R,target T, )
47 pre heap := heap;
48 havoc heap;
49 assert true //target R (pre heap, args)
50 goto block 12 Normal, block 12 Exception;
51

52 block 12 Exception:
53 havoc stack0r;
54 assume alive(rval(stack0r ), heap);
55 assume typ(rval(stack0r)) � java.lang.Exception
56 assume true; //target T (pre heap, args) (heap, (Exception stack0r))
57 goto block 29;
58

59 block 12 Normal:
60 havoc stack2i;
61 assume (stack2i ≤ arg1i); //target T (pre heap, args) (heap, (Normal stack2i))
62 stack1i := stack1i + stack2i; //15: iadd
63 assert stack0r 6= null; //16: putfield sum
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64 heap := update(heap, instvar(stack0r, Bill .sum), ival (stack1i ));
65 reg2i := reg2i + 1; //19: iinc 2, 1
66 assert reg2i ≤ reg1i + 1 ∧ //Loop Invariant
67 toint(get(heap, instvar(param0, Bill.sum))) ≤
68 toint(get(old heap, instvar(param0, Bill.sum))) + (reg2i−1)∗reg2i/2;
69 return; //Backedge removed
70

71 block 22:
72 havoc stack0r, ... //all variables of local state
73 assume reg2i ≤ reg1i + 1 ∧ //Loop Invariant
74 toint(get(heap, instvar(param0, Bill.sum))) ≤
75 toint(get(old heap, instvar(param0, Bill.sum))) + (reg2i−1)∗reg2i/2;
76 stack0i := reg2i ; //22: iload 2
77 stack1i := reg1i ; //23: iload 1
78 goto block 24 True, block 24 False ; //24: if icmple 5
79

80 block 24 True:
81 assume stack0i > stack1i;
82 goto block 5;
83

84 block 24 False :
85 assume stack0i ≤ stack1i;
86 stack0i := 1; //27: iconst 1
87 result := stack0i ; //28: ireturn
88 goto post;
89

90 block 29: //Catch block
91 reg3r := stack0r; //29: astore 3
92 stack0i := 0; //30: iconst 0
93 result := stack0i ; //31: ireturn
94 goto post;
95

96 post:
97 //Postcondition
98 assert toint(get(heap, instvar(param0, Bill.sum))) ≤
99 toint(get(old heap, instvar(param0, Bill.sum))) + param1i ∗ (param1i+1) / 2;

100 //Class Invariant
101 assert toint(get(heap, instvar(param0, Bill.sum))) ≥ 0;
102 return;
103

104 post X:
105 //Exceptional Postcondition
106 assert true
107 //Class Invariant
108 assert toint(get(heap, instvar(param0, Bill.sum))) ≥ 0;
109 return;
110 }

Listing 5.1: The running example translated to BoogiePL

5.2.4 Foundations of the translation

In this section we describe the general setting for the translation of bytecode to BoogiePL. This includes a
brief description of the way method specifications are handled, the information about bytecode properties
that we assume to know, and a description of the way the operand stack, the registers, and the heap are
modelled in BoogiePL.

Method specifications

We consider translating a sufficiently richly annotated program. Especially, we have loop-invariants defined
as a local assertion at the first instruction of the loop header. The form of annotations corresponds to the
form of annotations used in the previous chapters.
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The Method Specification Table (MST) gives us the pre- and postcondition as well as the local anno-
tations for each label of the bytecode program. In this translation we use the following mapping for the
specifications:

p.MST (m) = (R, T, S).

Information on the bytecode

We can safely assume that our input bytecode passed the bytecode verifier and thus we can rely on the
following:

1. For every instruction, the height of the operand stack is known.

2. For every program point, the height of the possible operand stack at the point is delimited by
MaxStackSize, which is fixed for every method separately.

3. For every program point and possible stack, the smallest common supertype of all possible values in
a stack position is known.

4. The control flow graph of the method is known.

Using this information, we can introduce helper functions which support our translation. The functions
isEdge and isEdgeTarget allow us to translate the bytecode sequentially, while getStackHeight and getStack-
Type free us from keeping track of the stack contents. The functions isBackEdge and isBackEdgeTarget
give us information about the location of back-edges in the control flow graph. In the BoogiePL translation,
back-edges are eliminated by the use of local annotations (see [7]).

• getStackHeight : Program→Method→ PC → Int
Returns the height of the operand stack at the given program counter location.

• getStackType : Program→Method→ PC → Int→ Type
Returns the smallest common super-type of all possible values at a given program counter location
and a given stack position.

• isEdgeTarget : Program→Method→ PC → Boolean
Returns true iff the given program counter location is the start of a block in the control flow graph.

• isEdge : Program→Method→ PC → PC → Boolean
Returns true iff there is an edge between two given program counter locations in the control flow
graph.

• isBackEdgeTarget : Program→Method→ PC → Boolean
Returns true iff there is a back-edge to the given program counter location.

• isBackEdge : Program→Method→ PC → PC → Boolean
Returns true iff there is a back-edge from a given program counter location to a given program counter
location.

Operand stack

The JVM operand stack is modelled by a set of BoogiePL variables of the form stackit, where i denotes the
depth of the stack and t is the type of the stack element, which can be either i for integers or r for object
references. If the type is not known (e.g. for the instruction dup, the operation is done on both integer and
reference variables.

Line 62 of the running example shows how iadd is translated to BoogiePL when we have 3 elements on
the stack.

62 stack1i := stack1i + stack2i; //15: iadd
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Registers

Registers (which represent the local variables) are treated similarly to stack elements. We use variables
regit to represent the i-th register when its type is primitive or object reference.

These two lines from the running example show how register and stack operations are translated. One
can see that the stack grows from 0 to the current height of the stack.

76 stack0i := reg2i ; //22: iload 2
77 stack1i := reg1i ; //23: iload 1

Heap

We use the heap model described in [44], translated to a BoogiePL representation. In this model, the heap
is described by a variable of the type Store and accessed through functions. Its behaviour is given by a set
of axioms over these functions.

In case of the operand stack and the registers, it is convenient to use the basic types int and ref of
BoogiePL. In case of the heap axiomatisation, this is not sufficient, as those types are not translated into
the verification conditions. Therefore, we have to find a way not to loose the information about the type of
a variable passed to the heap.

This can be done by introducing a type Value. A value represents either an integer (type $int) or a
reference type. Functions are provided to map these types to BoogiePLint and ref types and vice versa.

Instance variables (locations) are qualified through an object reference and a field identifier. Boo-
giePLname constants are used to model field identifiers, as we will see in an example later on.

type Store;

function IsClassType(name) returns (bool); //Boogie ’ref’ type
function IsValueType(name) returns (bool); //Boogie ’int’ type

//Define $int as the only non reference type
const $int: name;
axiom IsValueType($int);

type Value;

function ival ( int) returns (Value);
axiom (∀ x1: int , x2: int :: ival (x1) == ival(x2) ⇐⇒ x1 == x2);
axiom (∀ v: Value :: ival (toint(v)) == v);

function toint(Value) returns ( int );
axiom (∀ x: int :: toint( ival (x)) == x);

// ... Accordingly for functions ’ rval ’ and ’ toref ’

Listing 5.2: The main types of the heap model

Access to the heap is provided through five functions. Their meanings are given in the comments.

// Return the heap after storing a value in a field .
function update(Store, InstVar, Value) returns (Store);

// Returns the heap after an object of the given type has been allocated.
function add(Store, name) returns (Store);

// Returns the value stored in a field .
function get(Store, InstVar) returns (Value);

// Returns true if an object referenced by a value is alive in a given heap.
function alive (Value, Store) returns (bool);

// Returns a newly allocated object of the given type.
function new(Store, name) returns (Value);

Listing 5.3: The accessing functions of the heap model
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The rules governing the behaviour of the heap are expressed by axioms, in the global space of a BoogiePL
file that results from the translation.

We can see these rules in action in lines 41 and 42 of the running example that correspond to the
translation of the getfield instruction. The reference in stack1r is fed together with the field identifier
Bill.sum to instvar. This function gives us the location which is used to get the content of it with the
function get. In the last step, the returned value has to be converted to an integer by toint.

41 assert stack1r 6= null; //9: getfield sum
42 stack1i := toint(get(heap, instvar(stack1r, Bill .sum)));

5.2.5 The main concepts of the translation

Conditional branches

Conditional branches generate a non-deterministic goto to two successor blocks that assume the condition
to be true or false. The true-block is then connected to the branch target while the false-block is connected
to the block that starts with the instruction immediately following the conditional branch instruction.

We can see this setup in the running example in lines 78 to 85.

78 goto block 24 True, block 24 False ; //24: if icmple 5
79

80 block 24 True:
81 assume stack0i > stack1i;
82 goto block 5;
83

84 block 24 False :
85 assume stack0i ≤ stack1i;

It is worth pointing out that the values of stack0i and stack1i are not destroyed by the havoc instruction
after the assume statements. It is possible to omit this step as the translation function guarantees that the
values in the stack cannot be read before they are overwritten.

Method calls

Method calls are translated so that the precondition of the method is asserted before the call and the
postconditions are assumed after that. The latter is done in such a way that the normal and exceptional
method termination is taken into account. This is realized by a goto instruction which jumps to the
code which assumes the normal postcondition, in case the method returned in a normal way, to the code
that handles the exception, in case the exception can be handled locally, or to the block that asserts the
exceptional postcondition of the calling method, if no handler is installed.

Lines 45 to 61 of the running example show a method call that can throw an exception that is caught
in the same frame. The variable pre_heap is used to make possible the use of \old expressions in the
postcondition of the called method. In the exceptional block on lines following 52, we assume that we have
a reference to an alive exception object on stack0r. In the normal block, we perform havoc on the stack
element, that will contain the return value and then assume the normal postcondition.

45 arg0r := stack2r; //12: invokevirtual roundCost
46 arg1i := stack3i ; //p.MST(target) = (target R,target T, )
47 pre heap := heap;
48 havoc heap;
49 assert true //target R (pre heap, args)
50 goto block 12 Normal, block 12 Exception;
51

52 block 12 Exception:
53 havoc stack0r;
54 assume alive(rval(stack0r ), heap);
55 assume typ(rval(stack0r)) � java.lang.Exception
56 assume true; //target T (pre heap, args) (heap, (Exception stack0r))
57 goto block 29;
58

59 block 12 Normal:
60 havoc stack2i;
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61 assume (stack2i ≤ arg1i); //target T (pre heap, args) (heap, (Normal stack2i))

Exceptions

We distinguish between JVM errors, runtime exceptions, and user generated exceptions. Errors should not
be caught in normal application as they mean problems with the platform rather than the program and
are therefore not handled at all in the current formalization. More interesting is the way to deal with
runtime exceptions. (1) We can just model them as they occur. That is, every instruction that can throw
a runtime exception can have two possible outcomes — a normal case and an exceptional case. (2) We can
add assertions in such a way that a program that possibly throws a runtime exception cannot be verified.
In this case, the user is informed that a runtime exception could be thrown on a certain instruction. The
second approach is chosen for this translation. However, it would be easy to support the first approach as
well. User generated exceptions are fully supported.

In our translation, instructions that can throw exceptions lead to the creation of additional blocks which
represent the normal and possibly several exceptional executions of the instruction. In such an exceptional
block, the heap is transformed to contain an exception object of a given type and we assume that the variable
stack0r holds the reference to it. If a handler for the exception exists in the current method, a jump to
the block containing the handler is added. If the exception is caught in a parent frame, a jump to the block
that asserts the method’s exceptional postcondition for the given exception-type is added.

5.2.6 Translation of bytecode methods

In the following functions we use a monospaced font for literals of the translation. Lines beginning with the
character ”#” do not contain the resulting code, but they describe how the code is generated. The symbol
”←↩” is used to show line breaks in the resulting BoogiePL code.

The function Tr marks the starting point of the translation. The BoogiePL headers procedure and
implementation are generated followed by the result of the functions TrVars that introduces the declarations
of the BoogiePL variables, TrInit that does the initialization of the variables, and TrBody, TrBody that
translates the method body.

We also introduce two translation functions TrType and TrTypeAbbrev to translate a type (primitive
or reference) respectively to its BoogiePL representation and to an abbreviation for use in variable names
(e.g. r for reference types).

Tr[[p : Program,m : Method]] =
procedure TrSig[[signature(p,m)]]←↩
implementation TrSig[[signature(p,m)]]←↩
TrV ars[[p,m]]←↩
TrInit[[p,m]]←↩
TrBody[[p,m]]←↩

The TrSig function prints the signature of the bytecode method in BoogiePL style. The parameters are
numbered from param 0 to param n.

TrSig[[ms : MethodSignature]] =
(

#for i := 0, i < |parameters(ms)|, i := i+ 1
param i : TrType[[parameters(ms)[i]]] ,

#end for
)

#if result(ms) 6= V oidType
returns ( result: TrType[[result(ms)]] )

#end if

As described in the previous subsections, we use variables to model the stack and the heap. From the
bytecode verifier we get the maximum size of the operand stack and the number of registers needed for a
given method.
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• maxLocals : Program→Method→ Int
Returns the number of locals (registers) used by the method. This includes the parameters of the
method, as they are being stored in the first register-slots.

• maxOperandStackSize : Program→Method→ Int
Returns the maximum size of the operand stack.

With this information we can create the variables needed for primitive (int) and reference types. We
also introduce two variables used for translating the swap instruction. arg0 is used to store a copy of the
first argument when calling a method. This is needed as this stack location is overwritten with the result
of the callee.

TrV ars[[p : Program,m : Method]] =
#for i := 0, i < maxOperandStackSize(p,m), i := i+ 1

var stack i r: ref, stack i i: int;←↩
#end for
#for i := 0, i < maxLocals(p,m), i := i+ 1

var reg i r: ref, reg i i: int;←↩
#end for

var swapr: ref, swapi: int;←↩
var old_heap: Store, pre_heap: Store;←↩
var arg0r: ref, arg0i: int;←↩

TrInit creates a basic block init that assigns the method arguments to the corresponding registers. Note
that in case of the instance method the first register always holds the reference to its target (this).

TrInit[[p : Program,m : Method]] =
init:←↩

old_heap := heap;←↩
#for i := 0, i < |parameters(signature(m))|, i := i+ 1

#if parameters(signature(m))[i] is RefType
assume typ(rval(param i )) <: parameters(signature(m))[i];←↩
assume alive(rval(param i ), heap);←↩
#end if
reg i T rTypeAbbrev[[parameters(signature(m))[i]]] := param i ;←↩

#end for
assume param0 != null;←↩
assume typ(rval(param0)) <: parameters(signature(m))[0];←↩
assume alive(rval(param0), heap);←↩
goto pre;←↩

The method body is subsequently translated by the TrBody function. It starts with creation of a helper
block pre that assumes the method’s precondition. In the case that the first instruction is a jump target,
we assert the local annotation (if there is any) and finish this block by jumping to the block starting at the
first instruction. The translation of the JVM instructions then starts with the call to TrInstructions. At
the end of the translation, the blocks for the method’s normal postcondition and its optional exceptional
postconditions are generated.

TrBody[[p : Program,m : Method]] =
# p.MST (m) = (R, T, S)
# params = param(0) .. param(|parameters(signature(m))| − 1)
pre:←↩

assume R(old heap, params) ;←↩
#if isEdgeTarget(p,m, firstm)

#if isBackEdgeTarget(p,m, firstm)
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assert S(firstm)(old heap, params)(heap, ∅, regs)←↩
#end if
goto block_firstm;←↩

#end if
←↩

TrInstructions[[p,m, firstm]]←↩
post: ←↩

assert T (old heap, params)(heap,Normal result) ;←↩
return;←↩
←↩

post_X:←↩
assert T (old heap, params)(heap,Exception stack0r) ;←↩
return;←↩

#end for

TrInstructions is a wrapper for the translation of a single JVM instruction. It uses the control flow graph
information to determine if a new block needs to be started. This is the case for any instructions that are
targets of jumps.

If we encounter a label in the bytecode that is a target of a back-edge, we add the necessary annotations
for the loop, as back-edges are removed. To be able to verify a loop that is executed more than once, we have
to ensure that any information about the local state which is available before the loop has been destroyed
with havoc. The loop invariant is then assumed to hold.

If the successive bytecode instruction can be reached from other locations, the block has to be ended.
At this point we cut the back-edge if there is any.

TrInstructions[[p : Program,m : Method, pc : PC]] =
# p.MST (m) = (R, T, S)
#if isEdgeTarget(p,m, pc)

block_ pc : ←↩
#if isBackEdgeTarget(p,m, pc)

havoc all vars\{old heap, this, parami}←↩
assume S(pc)←↩

#end if
#end
TrInstruction[[p,m, pc]]
#if isEdge(p,m, pc, nextm(pc))

#if isBackEdgeTarget(p,m, jump(pc, o))
assert S(jump(pc, o))(old heap, params)(heap, stacks, regs)←↩

#end if
#if isBackEdge(p,m, pc, jump(pc, o))

return;←↩
#else

goto block_ nextm(pc) ;←↩←↩
#end if

#end if
TrInstructions[[p,m, nextm(pc)]]

TrInstruction translates a single JVM instruction. Certain instructions may result in creation of suc-
cessive blocks (e.g. for assuming conditions after a conditional jump), note that a goto statement is added
only to the block representing the branch decision, the goto to the block starting at the sequentially next
program counter location is added by TrInstructions.

TrInstruction[[p : Program,m : Method, pc : PC]] =
#p.MST (m) = (R, T, S)
#h := getStackHeight(p,m, pc)− 1
#switch instructionAt(p,m, pc)
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Integer binary arithmetic

Integer binary arithmetic operations are done by performing simple arithmetic on the corresponding integer
stack variables.

#case ibinop op : AddInt
stack(h− 1)i := stack(h− 1)i + stackhi;←↩

Integer division and remainder operations cause an arithmetic runtime exception when dividing by zero.
We take this fact into consideration by asserting that the divisor is not zero.

#case ibinop op : DivInt
assert stackhi != 0;←↩
stack(h− 1)i := stack(h− 1)i / stackhi;←↩

Since BoogiePL does not offer bit operations on integers, we use BoogiePL functions and axioms that
describe the effect of the bit operation. For example, the effect of the bit left shift operation can be described
with a function bit shl as shown below.

function bit shl ( int , int) returns ( int );

axiom (∀ i: int :: bit shl ( i , 0) = i);
axiom (∀ i: int , j : int :: 0 ≤ j =⇒ bit shl(i, j + 1) = bit shl(i, j) ∗ 2);

Pushing constants

Pushing an integer constant is done by assigning a numerical constant to the appropriate stack variable of
depth one greater than the current depth.

#case iconst n : int
stack(h+ 1)i := n;←↩

Register manipulation

The loading or storing of an integer or reference value to a register is done by assigning the value of the top
stack variable to the register variable and vice versa.

#case iload n : RegNum
stack (h+ 1)i := regni;←↩

#case astore n : RegNum
regnr := stackhr;←↩

Field access

Field read and write operations are performed by applying the heap functions get and update. Depending
on the type of the field, helper functions that convert to or from a BoogiePL type to objects stored in the
heap are called. The location on the heap is formed from the object reference on the stack and the field
signature (a name constant). Assertions prevent accessing a field through a null pointer.
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#case getfield f : FieldSig
assert stackhr != null;←↩
#switch type(f)
#case $int

stackhi := toint(get(heap, instvar(stackhr, f)));←↩
#case t : RefType

stackhr := toref(get(heap, instvar(stackhr, f)));←↩
#end switch

#case putfield f : FieldSig
assert stack(h− 1)r != null;←↩
#switch type(f)
#case $int

heap := update(heap, instvar(stack(h− 1)r, f), ival(stackhi));←↩
#case t : RefType

heap := update(heap, instvar(stack(h− 1)r, f), rval(stackhr));←↩
#end switch

Object allocation

Allocating an object with the instruction new is translated to applications of the heap functions new and
add. The top stack item is assumed to hold a reference to an object of the given reference type after the
instruction completes.

#case new t : RefType
havoc stack(h+ 1)r;←↩
assume new(heap, t) == rval(stack(h+ 1)r);←↩
heap := add(heap, t);←↩

Conditional and unconditional branches

Conditional branch instructions for integers and references are translated to non-deterministic jumps fol-
lowing assumptions depending on the branch condition. In this translation, TrCond yields the BoogiePL
comparator for a given (Bicolano-)condition.

In order to simplify reading, we introduce a function blockEnd that emits the translation for a jump to
a given PC. The generated BoogiePL code removes back-edges in the CFG.

blockEnd(pc′ : PC) =
#if isBackEdgeTarget(p,m, pc′)

assert S(pc′)(old heap, params)(heap, stacks, regs)←↩
#end if
#if isBackEdge(p,m, pc, pc′)

return;←↩
#else

goto block_ pc′ ;←↩←↩
#end if

#case if icmp cond : IntCond, o : Offset
goto block_pc_True, goto block_pc_False;←↩
←↩
block_pc_True:←↩

assume stack(h− 1)i TrCond[[cond]] stackhi;←↩
blockEnd(jump(pc, o))

←↩
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block_pc_False:←↩
assume !(stack(h− 1)i TrCond[[cond]] stackhi);←↩

Return statements assign to a designated result variable and jump to the block which asserts the
current method’s normal postcondition. For methods that do not return anything, only a goto is required.

#case ireturn
result := stackhi;←↩
goto post;←↩

The goto instruction, if it is not a back-edge, leads to a branch to the block that contains the translation
of the instructions starting at the resulting offset. Here too, we assert the local annotation of the target if
necessary.

#case goto o : Offset
blockEnd(jump(pc, o))

Method invocation

The most interesting point in the translation of method calls is the way exceptions are dealt with. Two blocks
are generated. In block_pc_Exception:, we assume that the callee has thrown an exception. Exceptions
that are caught in the caller method lead to a jump to the block of their handler. Exceptions with no
such handler lead to the creation of a jump to a BoogiePL block which corresponds to the exceptional
postcondition of the caller method. In this block, we state that stack0r contains an object that is a
subtype of java.lang.Throwable. This could be more specific by using the information in the throws-clause
of the method signature of the callee. But as the underlying VC generator does not use this information,
we can safely also do so without creating a source of unsoundness.

If the method has a non-void return type, the havoc instruction is performed over the top stack item
to indicate that it has changed to something arbitrary.

The heap state is lost which is modelled by the use of the havoc statement on the heap variable. The
variables pre_heap and arg0i/r are used to save the state before calling the method.

#case invokestatic target : Method
#p.MST (target) = (target R, target T, )

arg0 TrTypeAbbrev[[parameters(target)[i− 1]]] :=

stack (h− |parameters(target)|+ 1) TrTypeAbbrev[[parameters(target)[0]]] ;←↩
#args = (arg0i/r, stack(h− |parameters(target)|+ 2)..stack(h))
assert target R (pre heap, args)←↩
pre_heap := heap;←↩
havoc heap;←↩
assume (forall v: Value :: alive(v, pre_heap) ==> alive(v, heap));←↩
goto block_pc_Normal; block_pc_Exception;
←↩

block_pc_Exception:←↩
havoc stack0r;←↩
assume alive(rval(stack0r), heap);←↩
assume typ(rval(stack0r)) <: javaLangThrowable;←↩
assume target T (pre heap, args)(heap,Exception stack0r)←↩
# pc′ = lookupHandler(m, pc, typ(rval(stack0r)))
blockEnd(pc′)
←↩

block_pc_Normal:←↩
#if returnType(target) 6= V oid
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#first param =stack(h− |parameters(target)|)TrTypeAbbrev[[returnType(target)]]
havoc first param ;←↩
assume target T (pre heap, args)(heap,Normal first param)←↩
#else
assume target T (pre heap, args)(heap,Normal None)←↩
#end if

Throwing exceptions

The athrow instruction throws an exception object referenced by the top item on the operand stack. The
smallest common super-type of the top stack is known by the bytecode verifier.

#case athrow
assert stackhr != null;←↩
stack0r := stackhr;←↩
# pc′ = lookupHandler(m, pc, typ(rval(stack0r)))
blockEnd(pc′)
←↩

5.2.7 Soundness of the translation

Preliminaries

The starting point of the VC generator for MOBIUS base logic is an annotated program (p, subclass,MST ).
We assume that the translation to BoogiePL starts from the same input. That is, we have exactly the
method specifications and local specifications that are contained in MST.

We make here a number of simplifying assumptions, mainly to focus on the most interesting aspects:

A0: The CFG of each bytecode method is reducible (or made reducible by code duplication before verifica-
tion).

A1: Loop invariants and local preconditions:

1. For each pc that is the sink of a backward edge in the bytecode CFG, the specification table
contains a local precondition for the loop invariant.

2. For all pc that are not sinks of backward edges, the specification table does not contain a local
precondition.

A2: We use an untyped version of BoogiePL. That is, we omit BoogiePL types and casts.

A3: We assume that the VC generator and BoogiePL use exactly the same store model, even though the
VC generator model cannot directly be encoded in BoogiePL.

A4: We assume that the following variables can be used in preconditions and postconditions:

1. Preconditions may mention the formal parameters and the heap.

2. Postconditions may mention the formal parameters and the heap of the prestate as well as the
heap of the poststate and ”result” (provided that the method is not void) or an exception object
reference.

3. Local preconditions may mention the formal parameters and the heap of the prestate as well as
the heap, the locals, and the operand stack of the current state.

A5: The bytecode program passed the Java bytecode verifier. We can assume everything that the bytecode
verifier guarantees.

A6: The precondition of each method includes the following three requirements:

1. The variable ”param0” is alive and not null in case of an instance method.
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2. All parameters of a method are alive.

3. The actual type of a parameter is a subtype of the declared type.

Mapping between state

Assertions in the VC generator take one or two states as input:

InitState : Heap× Locals
TermState : Heap×Result
LocalState : Heap×OperandStack × Locals

Assertions in BoogiePL use local variables. When applying a VC generator state to a BoogiePL formula,
we implicitly perform the following substitutions:

For InitState(h, l)
old_heap ← h
parami ← l(i) for all arguments p of the method (where this = param0 in instance methods)

For TermState(h, r)
heap ← h
result ← r

For LocalState(h, os, l)
heap ← h
regi ← l(i) for all arguments p and locals of the method
stacki ← os(i) for all stack elements

The soundness theorem

The definition CertMethodBPL below expresses that a method can be verified in the BoogiePL calculus. Since
we do not use the requires and ensures clauses of BoogiePL, the weakest precondition of the method is
equivalent to true. Moreover, to satisfy the VC generator obligation for local annotations, we require that
the weakest precondition holds for each block that starts with the translation of a local annotation, although
we believe that this is not necessary to be sound with respect to the base logic.

The translation of a local annotation is ”havoc s; assume S(pc)” where s stands for all variables used to
map the LocalState to BoogiePL. As havoc s does not occur on other occasions, we can use this to identify
a translated local annotation.

Definition 5.2.1 (Certified methods)

∀(bpl : BoogiePLProg,m : Method).
CertMethodBPL(bpl,m)⇐⇒ (∀(s0, s). wpb(bpl,m, initmbpl

)(s0, s))∧
(∀(s0, s, pos). stmt(bpl,m, pos) = havoc s =⇒ wpb(bpl,m, p)(s0, s))

The soundness theorem we prove is the following.

Theorem 5.2.2 (Soundness of BoogiePL translation) For every method m of an annotated program P, if the
translation of m can be verified in BoogiePL, then m can be verified in the VC generator:

∀(P : AnnotProg).
(∀(m : Method).CertMethodBPL(Tr(P ),m) =⇒ CertMethodVC(P,m))

In order to prove the soundness theorem, we have to show that the following lemma holds.

Lemma 5.2.1 (Weakest preconditions of instruction sequences) The translation of a bytecode instruction
(sequence) requires a stronger weakest precondition than the original instruction (sequence).

∀(P,m, pc, s0, s).
(wpb(Tr(P ),m, instrpos(Tr(P ),m, pc))(s0, s) =⇒ wpi(P,m, pc)(s0, s))

83



MOBIUS Deliverable D3.1 Byte Code Level Specification Language and Program Logic

where

instrpos(Tr(P ),m, pc) =

{
position(Tr(P ),m, pc) + 2 : if isBackEdgeTarget(P,m, pc),
position(Tr(P ),m, pc) : otherwise.

In other words: instrpos(Tr(P ),m, pc) is the position of the first BoogiePL statement that comes from
the translation of the bytecode instruction at pc after the possibly inserted translation of the loop invariant.

A proof sketch of the soundness theorem and the presented lemma can be found in appendix E.
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Chapter 6

Related and future work

We have presented here the formal foundations for verification and specification of Java bytecode programs
which are the result of Task 3.1. These foundations are based on Bicolano — a model of the Java Virtual
Machine and the bytecode language. This model has been further extended with the MOBIUS base logic
which is a program logic for bytecode programs. On the basis of the logic, we have built the semantics of
the specification language BML (Bytecode Modeling Language) and the procedures to generate verification
conditions which will be used in the tool set developed within the MOBIUS project.

We conclude with a short sketch of the main lines of the further development within the MOBIUS project
and a description of scientific efforts outside of the MOBIUS project which are related to the development
of Task 3.1.

6.1 Tool development

It is foreseen that the MOBIUS tool set developed in Tasks 3.6 and Task 4.4 will provide the following
functionalities that will use the formalisms developed in the Task 3.1:

• a translator from bytecode programs augmented with specifications into the Bicolano semantics;

• a tool to inspect BML specifications;

• a verification condition generator for the MOBIUS base logic;

• an implementation of the translation into BoogiePL as defined in section 5.2;

• a compiler that compiles source code and JML specifications into the corresponding bytecode and
BML specifications and preserves the related proofs;

• proof assistant tactics to ease verification in the Coq proof assistant.

The formalisation of the VC generator for the MOBIUS base logic is done so that it can produce
verification conditions for actual programs. Thus, we can treat this as a prototype of the final VC generator.
A prototype version of the translator from bytecode to Bicolano has already been developed. Moreover, a
prototype compiler of JML to BML, jml2bml, has been implemented for a subset of BML (see [17]). We
plan to redesign and extend the compiler and the other prototype tools in the future course of the MOBIUS
project.

6.2 Extensions

The operational semantics developed in this task models only the core behaviour of the bytecode executed
by the Java Virtual Machine. The most notable omissions are the bounded size of the memory and the
multi-threading. We plan to extend the Bicolano semantics to cover these aspects of the bytecode execution
in Tasks 3.2 and 3.3 respectively.

Task 3.2 is going to enrich the Bicolano semantics to tackle the resource usage for the Java Virtual
Machine. This extension can take into account instruction counts, stack depth, heap size etc. Task 3.3
will provide formalisms to deal with the multi-threading semantics based on the Java Memory Model [31]
and prove that the semantics is equivalent to the traditional interleaving semantics in case of properly
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synchronised programs. In particular this formalisation will concern the synchronisation primitives as well
as the semantics of the access to volatile and final fields.

The MOBIUS base logic as presented in chapter 3 covers a large subset of JVM language. Only a few
instructions that are modelled in Bicolano have not yet been covered, namely the switch instruction and
some further method invocation instructions. These will be added in the near future. In addition, we plan
to extend the logic by including a component for reasoning explicitly about resources and execution traces,
and by including ghost variables and fields. These extensions are part of Task 3.2 and will be addressed
jointly as the differences between the two tasks appear small (programmable vs non-programmable get/set
operations).

A final issue concerns the completeness of the program logic. As the current formalisation in Coq uses a
shallow embedding of the assertions, the appropriate notion for formalising completeness would be Cook’s
relative completeness w.r.t. the internal logic of Coq [19]. Given our own previous experience, and the work
of Kleymannn and Nipkow, a proof of relative completeness appears certainly feasible. As completeness
is not required for the trustworthiness of the MOBIUS architecture, however, we currently do not plan to
carry out a formalisation of this property.

6.3 Related work

Specification languages for low level languages The specification language BML, the formal semantics of
which was developed in the work of the task, was inspired by the JML specification language [34]. JML is a
realisation of the Design by Contract principle introduced first by Meyer in Eiffel [39]. Another realisation
of the Design by Contract principles is th language Spec# and Boogie tool set [6] which bring the ideas into
the C# programming language setting.

One of the features of BML — the possibility to assert and check during runtime the constraints that
must hold each time the control of a program reaches a particular place, has a long history as it was inspired
by Dijkstra’s guarded command language [23]. This assert construct was a long time ago adopted in
the C programming language and lately in Java 5 (section 14.10 of [27]). A recent preliminary proposal
of Extended Virtual Platform (EVP) advocates a strong dedicated support for assertions and parametric
types at the level of the virtual machine [2].

Operational semantics for the bytecode language The meaning of BML is described in terms of the oper-
ational semantics of JVM formulated in Coq. There were several other formalisations of the machine. For
instance, Stärk et al. [50] provide a high-level description, together with a mathematical and an experimen-
tal analysis, of Java and of the Java Virtual Machine. The formalisation is based on the Abstract State
Machines and is done on paper. Wildmoser et al. [53] describe verification of annotated bytecode programs,
in particular they propose an incremental verification of verification conditions. The authors formalise in
their work a restricted fragment of JVM and show how results from a trusted type analyser may be com-
bined with untrusted interval analysis to automatically verify that bytecode programs do not overflow. All
trusted components are formalised and verified in Isabelle/HOL. A formalisation of JVM was also done
within the Bali project [45]. This formalisation included a proof of its type-safety. Furthermore, a bytecode
verifier and lightweight bytecode verification have been verified in the project [41]. Another formalisation
of a representative subset of JVM and its bytecode verifier was done in Isabelle/HOL by Klein [32]. A
formalisation of JVM in ACL2 was proposed by Moore et al. [40]. The group argues that a practical way
to apply formal methods to the Java programming language is to apply formal methods to a formalisation
of the JVM directly. The work for Java Card platform, which uses a significantly reduced version of the
Java Virtual Machine, also resulted in formalisation of Java related tools and languages. In particular, the
SecSafe project gave an operational semantics for the Java Card Virtual Machine Language [49]. Also, the
work by Dufay includes a formalisation of the Java Card platform in Coq [24]. This formalisation includes
a bytecode verifier.

Sometimes, a bytecode verifier is a part of a formalisation of a version of the Java Virtual Machine. A
comprehensive description of the bytecode verification algorithms was presented by Leroy [37]. In particular,
within the work the author surveys the use of proof assistants to specify bytecode verification and prove its
correctness.
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MOBIUS base logic The necessity of complementing partial-correctness assertions by guarantees that apply
to intermediate states and non-terminating computations has also been observed by Hähnle and Mostowski
[28]. Starting from an extension of first-order dynamic logic with trace modalities [10], they discuss the
verification of transaction properties in the context of Java Card applications. Similar requirements arise
from object invariants [36] and idioms like the validity of objects in ESC/Java [25]. Similarly to these logics,
the logics developed in connection with the LOOP tool (e.g. [29]) operate at the source code level. More
precisely, they work with a representation of the source code and JML specifications in a theorem prover.
Various termination modes are considered, but some rules, such as the rule for while, can only be applied
in special circumstances. The logic is formulated as a set of derived proof rules, so proof search may always
fall back on the underlying operational semantics. In contrast, our formulation as a syntactic proof system
admits a study of (relative) completeness, following the approach taken by Kleymann, Nipkow, and ourselves
[33, 42, 4].

Benton’s logic [12] includes (basic) type information in judgements, extending bytecode verification
conditions. Consequently, methods can be given more modular specifications that, for example, constrain
the heap to the areas relevant for the verification of the method body, similarly to Separation Logic [48]. In
our approach, such local reasoning principles would be formulated in the interpretation of type judgements,
i.e. in derived proof rules [14]. As a further difference, Benton’s logic is interpreted extensionally, by reference
to program contexts. This enables Benton to prove that certain program transformations are semantics-
preserving (see also [11]), while we aim to certify code-inherent properties, including intensional properties
such as the consumption of resources [?].

The need to use the deep embedding for a program logic is advocated in the paper [54] by Wildmoser
and Nipkow. The use of de Bruijn notation for logical variables in the development of the deep embedding
of the assertion language was inspired by Stefan Berghofer’s solution to the POPLMark challenge, which
may be viewed as deep embedding of the polymorphic λ-calculus [13].

Formalisms for verification tools Two notable approaches were developed that use an imperative inter-
mediate language to verify a program automatically. Neither approach proves soundness of the translated
output with respect to the operational semantics of the original program.

On the one hand, we have the Spec# Environment [8] introducing an annotated C# language called
“Spec#”. In this approach, Spec# is translated to the .NET CIL together with annotations. The CIL is
then verified by translating it into BoogiePL [21] and then into verification conditions that are sent to the
automatic prover Simplify [22]. The counterexample that Simplify might find is then transformed back into
an error message for Spec# source code. The translation from annotated CIL to BoogiePL is similar to
what we present in section 5.2, but it has two main differences: it uses a different heap model and it does
not include exception handling. The latter point is one of the main contributions of the work done in this
task.

On the other hand, we have ESC/Java and ESC/Java2 [18, 25]. In this approach, JML-annotated Java
source code is the origin language for the verification process. It is transformed to a guarded commands
language that is suitable only for structured programs. From there, different backends can be used to
generate verification conditions for different provers. Compared to the original guarded commands language
from Dijkstra [23], ESC/Java2 defines a weakest precondition calculus that also defines the behaviour for
exceptional program states. Therefore, this approach includes exception handling. In contrast to ESC/Java2,
we want to use annotated Java bytecode as the starting point and not source code. Latest developments in
the backend

Flanagan and Saxe [26] showed how to generate verification conditions that are linear in size. Barnett
and Leino [7] adapt this approach in their verification condition generation for BoogiePL programs.
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Appendix A

Detailed description of the Bicolano specification

The purpose of this appendix is to give a detailed description of how the JVM specification is interpreted
in Bicolano. It also gives more precise information about which parts of the JVM are (not) covered by
Bicolano. It can serve as a reference for those who would like to use the semantics for particular purpose
and are interested if the semantics covers the intended scope. The structure of this chapter reflects the
structure of chapter 3 in the JVM specification [38]. We assume the reader is familiar with the terminology
and structure of the chapter and encourage reading of this appendix in parallel with the chapter.

A.1 The class file format

Bicolano does not read nor write class files. The binary format of class files is not meaningful to Bicolano.
Instead, the semantics operates on programs after linking. The logical structure of programs and classes is
specified in the Bicolano types Program and Class (file Program.v).

A.2 Data types

Bicolano follows the JVM specification in introducing a distinction between reference types and primitive
types. However, it does not explicitly introduce the null type. Instead it allows the reference variables to
assume the value null.

Relevant type names: PROGRAM.type, DOMAIN.value

Type definitions

Inductive type : Set :=

| ReferenceType (rt : refType)

| PrimitiveType (pt: primitiveType)

with refType :Set :=

| ArrayType (typ:type)

| ClassType (ct:ClassName)

| InterfaceType (it:InterfaceName)

with

primitiveType : Set :=

| BOOLEAN | BYTE | SHORT | INT.

Inductive value : Set :=

| Num : num → value

| Ref: Location → value

| Null : value.

Relevant operations

• init_value : type →value

Returns the initial value of the given type (0 for numeric types, null for reference type).
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Differences with the JVM specification The types char, float, double, long are not specified in Bicolano.

A.3 Primitive types and values

A.3.1 Integral types and values

Relevant type names: The module type NUMERIC is a common interface for all integral data types. The
modules Byte, Short, Int in Domain.SEMANTIC_DOMAIN are instances of NUMERIC with the appropriate number
of bits. The types of integral values are Byte.t, Short.t, Int.t in Domain.SEMANTIC_DOMAIN.

Relevant operations

• toZ : NUMERIC.t →Z

Converts the given value to a Coq integer type (Z).

• range : Z →Prop

Checks whether the given value in the range of the integral type.

• smod : Z →Z

Returns the argument mod the base.

• Several basic arithmetic operations inside the type (e.g. add, shr, xor, etc.)

• b2i : Byte.t →Int.t

Converts a byte value directly to an integer value.

• i2b : Int.t →Byte.t

Converts an integer value to a byte value.

• Similarly for other integral values (s2i, i2s).

Properties Every value of a type is in its range.

Parameter range_prop : ∀ x:t, range (toZ x).

There are also axioms for arithmetic operations, i.e.:

Parameter mul_prop : ∀ i1 i2 ,

toZ (mul i1 i2)= smod (toZ i1 * toZ i2).

A.3.2 Floating-point types, value sets and values

Differences with the JVM specification Floating-point types are not implemented in Bicolano.

A.3.3 The returnAddress type and values

Following the CLDC specification, the instructions jsr, ret, jsr_w are not specified in Bicolano, because
Bicolano does not support subroutines. Therefore, also the return address value is not modelled in Bicolano.

A.3.4 The boolean type

The BOOLEAN data type is one of the allowed values of Bicolano’s primitiveType inductive type. It specifies
the boolean type of fields and method parameters.

However, there is no corresponding type that could hold boolean values directly. The only conversion
related to the boolean type is:

Parameter i2bool : Int.t → Byte.t.

used when a boolean value is written to a boolean array.
The JVM specification defines that the integer type should be used in all places, where operands expect

boolean values, except for boolean arrays, which are handled in the same way as byte arrays (baload and
bastore operations should be used).

Following the JVM specification, Bicolano uses 0 to represent false and 1 to represent true.
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A.4 Reference types and values

Relevant type names: DOMAIN.Location.

Type definitions

Parameter Location : Set.

Relevant operations The Location type is closely related to Heap. See A.5.3 for description of heap
operations.

A.5 Runtime data areas

This section explains how the different JVM runtime data areas are represented in Bicolano. The following
subsections describe the particular structures, as they are defined in the JVM specification.

First, we describe the overall JVM state.

Relevant type names: DOMAIN.STATE.t

Type definitions

Inductive t : Set :=

normal : Heap.t → Frame.t → CallStack.t → t

| exception : Heap.t → ExceptionFrame.t → CallStack.t → t.

Differences with the JVM specification Bicolano implements only a single-threaded JVM, therefore there
is only copy in the state of the per-thread structures of the JVM (program counter, JVM stack).

A.5.1 The pc register

Relevant type names: PROGRAM.PROGRAM.PC

Type definitions

Parameter PC : Set.

Relevant operations

• jump : PC →PROGRAM.OFFSET.t →PC

Returns the position in the code after jumping from the given position by the given offset.

• firstAddress : BytecodeMethod →PC

Returns the pointer to the first instruction of the given method.

• nextAddress : BytecodeMethod →PC →option PC

Returns Some pc, where pc is the position of the next instruction in the given method. If the given
position is out of range or has no following instruction then None is returned.

• instructionAt : BytecodeMethod →PC →option Instruction

Returns Some i, where i is the instruction that has the given position in the given method. If there is
no such instruction then None is returned.

• next : Method →PC →option PC

Returns Some pc, where pc is the position of the next instruction in the given method. If the method
has no body or the given position is out of range or there is no following instruction then None is
returned.
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Location in the formalisation The current program counter is a part of the current frame. Every frame in
the frame stack contains one program counter.

type constructor parameter

DOMAIN.FRAME.t make 2nd

A.5.2 Java Virtual Machine stacks

Relevant type names: DOMAIN.CALLSTACK.t

Type definitions

Definition t : Set := list Frame.t.

Location in the formalisation The current JVM stack is the third field of a (non-exceptional) state.

type constructor parameter

DOMAIN.STATE.t make 3rd

A.5.3 Heap

Relevant type names: DOMAIN.HEAP.t, DOMAIN.HEAP.AdressingMode, DOMAIN.HEAP.LocationType

Type definitions

Parameter t : Set.

Inductive AdressingMode : Set :=

| StaticField : FieldSignature → AdressingMode

| DynamicField : Location → FieldSignature → AdressingMode

| ArrayElement : Location → Int.t → AdressingMode.

Inductive LocationType : Set :=

| LocationObject : ClassName → LocationType

| LocationArray : Int.t → type → LocationType.

Relevant operations

• get : HEAP.t →AdressingMode →option value

Returns Some v, where v is the value at the given address in the given heap, or None if there is no value
at that address.

• update : HEAP.t →AdressingMode →value →HEAP.t

Returns the given heap with the given value assigned to the given address.

• typeof : t →Location →option LocationType

Returns the (dynamic) type of the value stored at the given location, or None if there is no value stored.

• new : t →Program →LocationType →option (Location * t)

Returns a fresh location of the given type, or None if no fresh location has been allocated.

Location in the formalisation The heap is a part of the state (notice that also for the multi-threaded JVM,
there is only one heap).

type constructor parameter

DOMAIN.STATE.t make 1st

A.5.4 Method area

The access to methods and instructions is available through the functions described below.
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Relevant operations

• PROGRAM.METHOD.body : Method →option BytecodeMethod

Returns the body of a method. If the method has no body (it is abstract), None is returned.

• Further manipulation of methods and instructions is done via the functions for the program counter,
as described above.

A.5.5 Runtime constant pool

Differences with the JVM specification The runtime constant pool is not explicitly handled in Bicolano as
the semantics is described for a linked program. The JVM uses the runtime constant pool, among other
things, for dynamic linking (delayed classes loading). As this is not allowed on the CLDC platform, this is
outside the scope of interest for the MOBIUS project; and therefore it has not been modelled in Bicolano.

A.5.6 Native method stacks

Differences with the JVM specification Bicolano currently does not support native methods. This is
motivated by the fact that on the CLDC platform, one cannot extend the set of native methods. However,
to extend Bicolano to multi-threading, it will have to model several native methods from the standard API,
to model thread creations, thread start etc.

A.6 Frames

This section describes the representation of frames in Bicolano. Below, we the describe the different elements
of a frame, as defined in the JVM specification. First, we describe frames themselves.

Relevant type names: DOMAIN.FRAME.t

Type definitions

Inductive t : Set :=

make : Method → PC → OperandStack.t → LocalVar.t → t.

Location in the formalisation The JVM state contains one current frame and zero or more frames in the
call stack.

type constructor parameter

DOMAIN.STATE.t make 2nd

DOMAIN.CALLSTACK.t this is a list of frames

A.6.1 Local variables

Relevant type names: DOMAIN.LOCALVAR.t

Type definitions

Parameter t : Set.

Relevant operations

• get : LOCALVAR.t →Var →option value

Returns Some v, where v is the value of the given local variable, or None if there is no such variable.

• update : LOCALVAR.t →Var →value →LOCALVAR.t

Returns the given local array with the given value set at the given index.
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Location in the formalisation Every frame contains one array of local variables.

type constructor parameter

DOMAIN.FRAME.t make 4th

Differences with the JVM specification Bicolano arrays are indexed with the abstract type Var, while the
JVM specification uses ordinary non-negative integers.

A.6.2 Operand stacks

Relevant type names: DOMAIN.OPERANDSTACK.t

Type definitions

Definition t : Set := list value.

Location in the formalisation Operand stack is part of the current frame and of each frame on the JVM
stack.

type constructor parameter

DOMAIN.FRAME.t make 3rd

A.6.3 Dynamic linking

Dynamic linking is outside the scope of interest in Bicolano, the semantics is defined for the post-linking
state.

A.6.4 Normal method invocation completion

Bicolano specifies normal method invocation completion according to the JVM specification.

1. Invocation of a method causes putting the current frame on the frame stack and creating a new current
frame. Consider for instance the semantics of the invokestatic instruction:

| invokestatic_step_ok : ∀ h m pc s l sf mid M args bM fnew ,

instructionAt m pc = Some (Invokestatic mid) →
findMethod p mid = Some M →
length args = length (METHODSIGNATURE.parameters mid) →
METHOD.body M = Some bM →
fnew = (Fr M

(BYTECODEMETHOD.firstAddress bM)

OperandStack.empty

(stack2localvar (args++s) (length args ))) →
step p (St h (Fr m pc (args++s) l) sf) (St h fnew ((Fr m pc s l)::sf))

2. Returning from a method causes replacing the current frame by the frame on the top of the frame
stack and updating the program counter. If the called method returns a value, it is put on top of the
operand stack of the current frame. Consider for instance the semantics of the ireturn instruction:

| ireturn_step_ok : ∀ h m pc s l sf i tm m’ pc’ pc’’ l’ s’,

instructionAt m pc = Some Ireturn →
next m’ pc ’ = Some pc ’’ →
METHODSIGNATURE.result (METHOD.signature m) = Some (PrimitiveType tm) →

step p (St h (Fr m pc (Num (I i)::s) l) ((Fr m’ pc ’ s’ l’)::sf))

(St h (Fr m’ pc ’’ (Num (I i)::s’) l’) sf)
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A.6.5 Abrupt method invocation completion

Bicolano specifies abrupt method invocation completion according to the JVM specification.
When a thrown exception is not caught within the current method, the current frame is forgotten and

the next frame is popped from the call stack, which means that the current method is exited.
This is described by the following semantics step:

| exception_uncaught : ∀ h m pc loc l m’ pc’ s’ l’ sf bm,

METHOD.body m = Some bm →
(∀ pc ’’, ¬ lookup_handlers p

(BYTECODEMETHOD.exceptionHandlers bm) h pc loc pc ’’) →
step p (StE h (FrE m pc loc l) ((Fr m’ pc ’ s’ l’)::sf))

(StE h (FrE m’ pc ’ loc l’) sf)

A.6.6 Additional information

The current version of Bicolano does not keep any additional information in frames.

A.7 Representation of objects

In Bicolano, there is no explicit type representing JVM objects. All operations on objects are done on
HEAP.t and Location types, as described in A.5.3.

A.8 Floating-point arithmetic

Differences with the JVM specification Bicolano does not support floating-point arithmetic.

A.9 Specially named initialisation methods

Bicolano does not provide any way to get the actual name of a method as a sequence of characters. It is
possible, however, to check if a name describes an instance initialisation method.

Relevant operations

• isConstructorName : ShortMethodName →Prop

Holds iff the given name is a constructor name.

Differences with the JVM specification Bicolano does not support class initialisation methods (named
<clinit> in class files).

A.10 Exceptions

Exception handling in Bicolano is consistent with the JVM specification.
A program is always in one of the two following states:

• normal state,

• exceptional state.

When an exception is thrown, the program goes into an exceptional state. There are only two possible
semantic steps starting from an exceptional state:

• The state exception_uncaught — when the exception is not caught in the current method and the
current method is not the main program method. The top frame is popped from the frame stack, and
the state at the end of this step is the same, as if the exception was thrown by the method invocation
instruction in the invoking method.

• The state exception_caught — when the exception is caught in the current method. The program
goes into a normal state again, but the operand stack contains only one element: a reference to the
exception object, and the program counter points to the first instruction of the exception handler.
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Type definitions

Parameter ExceptionHandler : Set.

Relevant operations

• exceptionHandlers : BytecodeMethod →list ExceptionHandler

Returns the list of exception handlers defined for the given method.

• catchType : ExceptionHandler →option ClassName

Returns the name of the class which is the type of the given exception handler (i.e. the type used in
the catch clause).

• isPCinRange : ExceptionHandler →PC →bool

Checks whether the given program address is in the range of the given exception handler (i.e. whether
an exception thrown in that address may be caught by the exception handler).

• handler : ExceptionHandler →PC

Returns the address of the first instruction of an exception handler.

Differences with the JVM specification The Bicolano semantics does not specify or handle any “asyn-
chronous” exceptions. An “asynchronous” exception is an exception that is thrown unexpectedly during
execution of an instruction due to state inconsistency, JVM errors or operating system conditions (see also
section 2.1).

Thus, in Bicolano, a program only throws an exception under the conditions explicitly described in the
JVM specification, chapter 6.

A.11 Instruction set summary

Types and the Java Virtual Machine

Bicolano uses the Coq inductive type Instruction to represent JVM instructions. In many cases one
instruction in Bicolano represents several JVM instructions. In such a case the Bicolano instruction has
additional parameters specifying a type or a value. For instance in the JVM there are separate load
instructions for different argument types. Additionally, there are some extra instructions for frequently
used array indexes:

iload, iload_0, iload_1, iload_2, iload_3,

lload, lload_0, lload_1, lload_2, lload_3,

fload, fload_0, fload_1, fload_2, fload_3,

dload, dload_0, dload_1, dload_2, dload_3,

aload, aload_0, aload_1, aload_2, aload_3

In Bicolano this is modelled by the following type- and value-parametrised instruction:

Vload (k:ValKind) (x:Var)

However, it should be noted that, as mentioned above, the types long, float and double are not supported
in Bicolano.

Load and store instructions

The following JVM instructions are supported in Bicolano:

JVM opcodes Instruction in Bicolano

iload, iload ¡n¿, aload, aload ¡n¿ Vload

istore, istore ¡n¿, astore, astore ¡n¿ Vstore

bipush, sipush, iconst ¡i¿, aconst null, ldc, ldc w Const

The following JVM instructions are not supported in Bicolano:
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JVM opcodes Reason

lload, lload ¡n¿, lstore, lstore ¡n¿, lconst ¡l¿ long not supported

fload, fload ¡n¿, fstore, fstore ¡n¿, fconst ¡f¿ float not supported

dload, dload ¡n¿, dstore, dstore ¡n¿, dconst ¡d¿ double not supported

ldc2 w double and long not supported

wide wide not supported

Arithmetic instructions

The following JVM instructions are supported in Bicolano:

JVM opcodes Instruction in Bicolano

iadd, isub, imul, idiv, irem, ineg, ishl, ishr, iushr, ior,
iand, ixor

Ibinop

iinc Iinc

The following JVM instructions are not supported in Bicolano:

JVM opcodes Reason

ladd, lsub, lmul, ldiv, lrem, lneg, lshl, lshr, lushr, lor,
land, lxor, lcmp

long not supported

fadd, fsub, fmul, fdiv, frem, fneg, fcmpg, fcmpl float not supported

dadd, dsub, dmul, ddiv, drem, dneg, dcmpg, dcmpl double not supported

Type conversion instructions

The following JVM instructions are supported in Bicolano:

JVM opcodes Instruction in Bicolano

i2b I2b

i2s I2s

The following JVM instructions are not supported in Bicolano:

JVM opcodes Reason

i2c char not supported

i2l, l2i long not supported

i2f, f2i float not supported

i2d, d2i double not supported

l2f, l2d, f2d, f2l, d2l, d2f long, float and double not supported

Object creation and manipulation

The following JVM instructions are supported in Bicolano:
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JVM opcodes Instruction in Bicolano

new New

getfield Getfield

putfield Putfield

getstatic Getstatic

putstatic Putstatic

baload, caload, saload, iaload, aaload Vaload

bastore, castore, sastore, iastore, aastore Vastore

arraylength Arraylength

instanceof Instanceof

checkcast Checkcast

The following JVM instructions are not supported in Bicolano:

JVM opcodes Reason

multianewarray

laload, lastore long not supported

faload, fastore float not supported

daload, dastore double not supported

l2f, l2d, f2d, f2l, d2l, d2f long, float and double not supported

Operand stack management instructions

The following JVM instructions are supported in Bicolano:

JVM opcodes Instruction in Bicolano

pop Pop

pop2 Pop2

dup Dup

dup2 Dup2

dup x1 Dup_x1

dup2 x1 Dup2_x1

dup x2 Dup_x2

dup2 x2 Dup2_x2

swap Swap

Control transfer instructions

The following JVM instructions are supported in Bicolano:

JVM opcodes Instruction in Bicolano

ifeq, iflt, ifle, ifne, ifgt, ifge If0

ifnull, ifnonnull Ifnull

if icmpeq, if icmpne, if icmplt, if icmpgt, if icmple,
if icmpge

If_icmp

if acmpeq, if acmpne If_acmp

tableswitch Tableswitch

lookupswitch Lookupswitch

goto, goto w Goto

lookupswitch Lookupswitch

The following JVM instructions are not supported in Bicolano:
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JVM opcodes Reason

jsr, jsr w, ret subroutines not supported

Method invocation and return instructions

The following JVM instructions are supported in Bicolano:

JVM opcodes Instruction in Bicolano

invokevirtual Invokevirtual

invokeinterface Invokeinterface

invokespecial Invokespecial

invokestatic Invokestatic

Throwing exceptions

The following JVM instructions are supported in Bicolano:

JVM opcodes Instruction in Bicolano

athrow Athrow

Implementing finally

Subroutines, required to implement finally, are not supported in Bicolano.

Synchronization

Multi-threading is currently not supported in Bicolano.

A.12 Class libraries

Currently, the Bicolano semantics does not include descriptions for classes that require special support from
the JVM. However, the semantics has a provision for such cases: method specifications have an attribute
isNative which allows to mark a method as one which should be described externally (i.e. not as a sequence
of instructions).

A.13 Public design, private implementation

In the development of Bicolano in Coq, we tried to follow Sun’s specification as close as possible. In some
cases the specification explicitly allowed several different, but equivalent, ways of seeing certain design issues;
in these cases we took the freedom to choose the approach which seemed most comfortable for us.
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Appendix B

Bicolano translation of the running example

This appendix presents the full representation of the running example program (Figure 1.4) in Coq.

B.1 The main module

First, we present the module which specifies the complete program (notice that Bicolano defines semantics
for complete programs only).

Require Import ImplemProgramWithList.

Import P.

Module TheProgram.

Load "java_lang_Object.v".

Load "java_lang_Throwable.v".

Load "java_lang_Exception.v".

Load "Bill.v".

Definition AllClasses : list Class := java_lang_Object.class ::

java_lang_Throwable.class :: java_lang_Exception.class ::

Bill.class :: nil.

Definition AllInterfaces : list Interface := nil.

Definition program : Program := PROG.Build_t

AllClasses

AllInterfaces

End TheProgram.

This file loads the representation of three standard library classes that are required to properly define
the Bill class (i.e. java.lang.Object, java.lang.Throwable and java.lang.Exception) and then the repre-
sentation of the class itself.

B.2 Representation of standard library classes

(∗ ===================================================== ∗ )
Module java_lang_Object.

Definition className : ClassName := (javaLang , object ).

Definition _init_Signature : MethodSignature := METHODSIGNATURE.Build_t

(className , 10% positive)

nil

None
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.

Definition _init_Instructions : list (PC*Instruction) :=

(0%N, Return )::

nil

.

Definition _init_Body : BytecodeMethod := BYTECODEMETHOD.Build_t

_init_Instructions

nil

1

0

.

Definition _init_Method : Method := METHOD.Build_t

_init_Signature

(Some _init_Body)

false

false

false

Public

.

Definition class : Class := CLASS.Build_t

className

None (∗ ( Some j a v a l a n g O b j e c t . c lassName ) ∗ )
nil

nil

(_init_Method ::nil)

false

true

false

.

End java_lang_Object.

(∗ ===================================================== ∗ )

Module java_lang_Throwable.

Definition className : ClassName := (javaLang , throwable ).

Definition _init_Signature : MethodSignature := METHODSIGNATURE.Build_t

(className , 10% positive)

nil

None

.

Definition _init_Instructions : list (PC*Instruction) :=

(0%N, Vload Aval 0%N)::

(1%N, Invokespecial java_lang_Object._init_Signature )::

(14%N, Return )::

nil

.

Definition _init_Body : BytecodeMethod := BYTECODEMETHOD.Build_t

_init_Instructions

nil

1

2

.

Definition _init_Method : Method := METHOD.Build_t
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_init_Signature

(Some _init_Body)

false

false

false

Public

.

Definition class : Class := CLASS.Build_t

className

(Some java_lang_Object.className)

nil

nil

(_init_Method ::nil)

false

true

false

.

End java_lang_Throwable.

(∗ ===================================================== ∗ )

Module java_lang_Exception.

Definition className : ClassName := (javaLang , 9% positive ).

Definition _init_Signature : MethodSignature := METHODSIGNATURE.Build_t

(className , 10% positive)

nil

None

.

Definition _init_Instructions : list (PC*Instruction) :=

(0%N, Vload Aval 0%N)::

(1%N, Invokespecial java_lang_Throwable._init_Signature )::

(4%N, Return )::

nil

.

Definition _init_Body : BytecodeMethod := BYTECODEMETHOD.Build_t

_init_Instructions

nil

1

1

.

Definition _init_Method : Method := METHOD.Build_t

_init_Signature

(Some _init_Body)

false

false

false

Public

.

Definition class : Class := CLASS.Build_t

className

(Some java_lang_Throwable.className)

nil

nil

(_init_Method ::nil)
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false

true

false

.

End java_lang_Exception.

B.3 Representation of class !Bill!

Module Bill.

Definition className : ClassName := (EmptyPackageName , 11% positive ).

Definition sumFieldSignature : FieldSignature := FIELDSIGNATURE.Build_t

(className , 100% positive)

(PrimitiveType INT)

.

Definition sumField : Field := FIELD.Build_t

sumFieldSignature

false

false

Package

FIELD.UNDEF

.

Definition _init_Signature : MethodSignature := METHODSIGNATURE.Build_t

(className , 10% positive)

nil

None

.

Definition roundCostSignature : MethodSignature := METHODSIGNATURE.Build_t

(className , 11% positive)

(( PrimitiveType INT ):: nil)

(Some (PrimitiveType INT))

.

Definition produceBillSignature : MethodSignature := METHODSIGNATURE.Build_t

(className , 12% positive)

(( PrimitiveType INT ):: nil)

(Some (PrimitiveType BOOLEAN ))

.

Definition _init_Instructions : list (PC*Instruction) :=

(0%N, Vload Aval 0%N)::

(1%N, Invokespecial java_lang_Object._init_Signature )::

(4%N, Return )::

nil

.

Definition _init_Body : BytecodeMethod := BYTECODEMETHOD.Build_t

_init_Instructions

nil

1

1

.

Definition _init_Method : Method := METHOD.Build_t

_init_Signature

(Some _init_Body)

false

false
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false

Package

.

Definition roundCostMethod : Method := METHOD.Build_t

roundCostSignature

None

false

false

false

Package

.

Definition produceBillInstructions : list (PC*Instruction) :=

(0%N, Const INT 1%Z)::

(1%N, Vstore Ival 2%N)::

(2%N, Goto 20%Z)::

(5%N, Vload Aval 0%N)::

(6%N, Vload Aval 0%N)::

(7%N, Getfield Bill.sumFieldSignature )::

(10%N, Vload Aval 0%N)::

(11%N, Vload Ival 2%N)::

(12%N, Invokevirtual Bill.roundCostSignature )::

(15%N, Ibinop AddInt )::

(16%N, Putfield Bill.sumFieldSignature )::

(19%N, Iinc 2%N 1%Z)::

(22%N, Vload Ival 2%N)::

(23%N, Vload Ival 1%N)::

(24%N, If_icmp LeInt (-19)%Z)::

(27%N, Const INT 1%Z)::

(28%N, Vreturn Ival )::

(29%N, Vstore Aval 3%N)::

(30%N, Const INT 0%Z)::

(31%N, Vreturn Ival )::

nil

.

Definition produceBillHandlers : list ExceptionHandler :=

(EXCEPTIONHANDLER.Build_t

(Some java_lang_Exception.className) 0%N 29%N 29%N)::

nil

.

Definition produceBillBody : BytecodeMethod := BYTECODEMETHOD.Build_t

produceBillInstructions

produceBillHandlers

4

4

.

Definition produceBillMethod : Method := METHOD.Build_t

produceBillSignature

(Some produceBillBody)

false

false

false

Public

.

Definition class : Class := CLASS.Build_t

className

(Some java_lang_Object.className)

nil
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(sumField ::nil)

(_init_Method :: roundCostMethod :: produceBillMethod ::nil)

false

false

true

.

End Bill.
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Grammar for BML predicates and specification
expressions

As in the JML Reference Manual [34], we use an extended Backus-Nauer Form (BNF) grammar to describe
the syntax of JML. The extensions are as follows [35].

• Nonterminal symbols are written as follows: nonterminal.

• Terminal symbols are written as follows: terminal.

• The terminal symbol # is marked as \#.

• Square brackets ([ and ]) surround optional text. Notice that ‘[’ and ‘]’ are terminal symbols.

• The notation . . . means that the preceding nonterminal or group of optional text can be repeated zero
(0) or more times.

predicate ::= spec-expression
spec-expression-list ::= spec-expression

[ , spec-expression ] . . .
spec-expression ::= expression
expression-list ::= expression [ , expression ] . . .
expression ::= conditional-expr
conditional-expr ::= equivalence-expr

[ ? conditional-expr : conditional-expr ]
equivalence-expr ::= implies-expr

[ equivalence-op implies-expr ] . . .
equivalence-op ::= <==> — <=!=>

implies-expr ::= logical-or-expr
[ ==> implies-non-backward-expr ]

— logical-or-expr <== logical-or-expr
[ <== logical-or-expr ] . . .

implies-non-backward-expr ::= logical-or-expr
[ ==> implies-non-backward-expr ]

logical-or-expr ::= logical-and-expr [ ‘||’ logical-and-expr ] . . .
logical-and-expr ::= inclusive-or-expr [ && inclusive-or-expr ] . . .
inclusive-or-expr ::= exclusive-or-expr [ ‘|’ exclusive-or-expr ] . . .
exclusive-or-expr ::= and-expr [ ^ and-expr ] . . .
and-expr ::= equality-expr [ & equality-expr ] . . .
equality-expr ::= relational-expr [ == relational-expr] . . .

— relational-expr [ != relational-expr] . . .
relational-expr ::= shift-expr < shift-expr

— shift-expr > shift-expr
— shift-expr <= shift-expr
— shift-expr >= shift-expr
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— shift-expr <: shift-expr
— shift-expr [ instanceof type-spec ]

shift-expr ::= additive-expr [ shift-op additive-expr ] . . .
shift-op ::= << — >> — >>>

additive-expr ::= mult-expr [ additive-op mult-expr ] . . .
additive-op ::= + — -

mult-expr ::= unary-expr [ mult-op unary-expr ] . . .
mult-op ::= * — / — %

unary-expr ::= ( type-spec ) unary-expr
— + unary-expr
— - unary-expr
— unary-expr-not-plus-minus

unary-expr-not-plus-minus ::= ~ unary-expr
— ! unary-expr
— ( built-in-type ) unary-expr
— ( reference-type ) unary-expr-not-plus-minus
— primary-expr [ primary-suffix ] . . .

primary-suffix ::= ( [ expression-list ] )
— ‘[’ expression ‘]’

primary-expr ::= \#natural — lv[ natural ]
— constant — super — true

— false — this — null

— ( expression )

— bml-primary
— jml-primary

built-in-type ::= void — boolean — byte

— char — short — int

— long — float — double

constant ::= java-literal
bml-primary ::= array-length-expression —

— opstack-counter-expression
— stack-expresion

array-length-expression ::= length( expression )

opstack-counter-expression ::= cntr

stack-expression ::= st( additive-expr )
jml-primary ::= result-expression

— old-expression
— fresh-expression
— nonnullelements-expression
— typeof-expression
— elemtype-expression
— type-expression
— spec-quantified-expr

result-expression ::= \result

old-expression ::= \old ( spec-expression )

— \pre ( spec-expression )

fresh-expression ::= \fresh ( spec-expression-list )
nonnullelements-expression ::= \nonnullelements ( spec-expression )

typeof-expression ::= \typeof ( spec-expression )

elemtype-expression ::= \elemtype ( spec-expression )

type-expression ::= \type ( type )

spec-quantified-expr ::= ( quantifier quantified-var-decls ;

[ [ predicate ] ; ]
spec-expression )

quantifier ::= \forall — \exists

quantified-var-decls ::= [ bound-var-modifiers ] type-spec quantified-var-declarator
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[ , quantified-var-declarator ] . . .
quantified-var-declarator ::= ident [ dims ]
bound-var-modifiers ::= non_null — nullable

store-ref-list ::= store-ref [ , store-ref ] . . .
store-ref ::= store-ref-expression

— store-ref-keyword
store-ref-expression ::= store-ref-name [ store-ref-name-suffix ] . . .
store-ref-name ::= \# natural — super — this

store-ref-name-suffix ::= ( store-ref-expression )

— ‘[’ spec-array-ref-expr ‘]’
spec-array-ref-expr ::= spec-expression

— spec-expression .. spec-expression
— *

store-ref-keyword ::= \nothing — \everything — \not_specified
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Appendix D

The correctness proof for the produceBill

method

This appendix presents the full proof script of the lemma which is required to prove the correctness of the
produceBill method from the running example. The formulation of the lemma uses the certifiedMethod

definition from the VC generator. In the course of the proof one can see how the subsequent verification
conditions are generated by the base VC generator described in section 5.1.

Lemma produce_bill_correct :

certifiedMethod anno_prog Bill.produce_billMethod

produce_bill_spec.

Proof with solve.

myred ...

destruct s0 as (l0,h0); destruct s as ((h,s),l).

destruct H as (loc , (n, (sum0 , (sum , (i, (Hpre , (Hmod , (Heq , HH ))))))))...

myred.

assert (Rpre : round_cost_pre

(stack2localvar (Num (I i) ::

Ref loc ::

Num (I sum) ::

Ref loc ::

s)

(length

(METHODSIGNATURE.parameters

(snd Bill.round_costSignature )) + 1), h)).

myred. trivial.

case rv...

assert (Rpost := H17 Rpre). clear Rpre H17 ...

simpl in Rpost ...

assert (RP2 ’:= H0 _ (refl_equal _)); clear H0;

destruct RP2 ’ as (n1 ,(Heq1 , Hbound )); inversion_mine Heq1 ...

clear H13 H12.

injection H11;clear H11;intros ...

unfold mk_produce_bill_pre in Hpre ...

assert (Int.range 1).

unfold Int.range;compute;split;trivial;intros Heq;inversion Heq.

assert (Int.toZ (Int.const 1) = 1).

rewrite Int.const_prop;trivial.

assert (Heqi : Int.toZ (Int.add i0 (Int.const 1)) = i0 + 1).

rewrite Int_add_spec. rewrite H12. omega.

unfold Int.range;rewrite H12. omega.

assert (Haux := arith_aux _ H3).

assert (Haux2 := arith_aux2 _ _ H7).

assert (Heq2 : Int.toZ (SemBinopInt AddInt sum n1) = sum + n1).

simpl;apply Int_add_spec. unfold Int.range;split. omega.

apply Zle_lt_trans with (sum0 + (i0 - 1) * i0 / 2 + i0);try omega.

exists loc;

exists n;
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exists sum0;

exists (SemBinopInt AddInt sum n1);

exists (Int.add i0 (Int.const 1));

try rewrite Heqi;

try rewrite Heq2;

repeat split;

auto;

try rewrite Heqi;

try omega.

intros;rewrite Heap.get_update_old;auto.

rewrite Heap.get_update_same;trivial.

econstructor;eauto.

replace (i0 + 1 - 1) with (Int.toZ i0); omega.

assert (Rpost := H18 Rpre). clear Rpre H18 ...

simpl in Rpost ...

myred ...

intro XX;hnf;intros;hnf;clear XX;intros.

simpl in Hpre , H8;simpl_hyps;subst;simpl_eq.

injection H9;clear H9;intros;subst ...

exists sum;repeat split;auto.

assert (XX:= arith_aux _ H3); assert (XX2 := arith_aux2 _ _ H7); omega.

intro XX;clear XX;simpl in H7;hnf;intros;hnf;intros.

simpl in Hpre , H10;simpl_hyps;subst;simpl_eq.

injection H11;clear H11;intros;subst ...

exists sum;repeat split;auto.

assert (n0 + 1 = i). omega.

rewrite <- H in H4.

pattern n0 at -1;replace (Int.toZ n0) with (n0 + 1 - 1);[ trivial|ring].

(∗ p r e c o n d i c t i o n i m p l i e s wp o f f i r s t a d d r e s s ∗ )

intro XX;clear XX.

simpl in H.

destruct H as (loc , (n, (sum , (Heq1 ,XX)))).

subst l.

hnf.

intros ...

assert (1 = Int.const 1).

rewrite Int.const_prop;trivial.

compute;split;auto. intro H;discriminate H.

exists loc;exists n; exists sum; exists sum; exists (Int.const 1);

simpl;rewrite <- H;repeat split;auto;simpl;try omega.

change (0/2) with 0; omega.

Time Qed.
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Soundness proof of BoogiePL translation

This appendix shows the most interesting parts of the soundness proof of the translation from bytecode to
BoogiePL presented in section 5.2. We first introduce three lemmas that are needed in the soundness proof.

Lemma E.1 (Weakest precondition of the post block) In Tr(P), the BoogiePL position post indicates the
start of the postcondition. Therefore, its weakest precondition is exactly the postcondition:

(∀(P,m, T, s0, s, heap,Normal result)) .
s = (heap, result :: , ) ∧ p.MST (m) = ( , T, ) =⇒
wpb(Tr(P ),m, post)(s0, s) = T (s0, (heap,Normal result))

)

Proof of Lemma E.1

The BoogiePL code at position post is:
assert T (s0, (heap,Normal result));
return;

By the definition of wpb, we get
wpb(Tr(P ),m, post)(s0, s)

= [[Definition of wpb; Assumption A4]]
T (s0, (heap,Normal result)) ∧ true

Lemma E.2 (Weakest precondition of the post X block) In Tr(P), the BoogiePL position post_X indicates
the start of the exceptional postcondition. Therefore, its weakest precondition is exactly the postcondition:

(∀(P,m, T, s0, s, heap,Exception loc)) .
s = (heap,Exception loc :: , ) ∧ p.MST (m) = ( , T, ) =⇒
wpb(Tr(P ),m, post X)(s0, s) = T (s0, (heap,Exception loc))

)

Proof of Lemma E.2

The BoogiePL code at position post is:
assert T (s0, (heap,Exception loc));
return;

By the definition of wpb, we get
wpb(Tr(P ),m, post X)(s0, s)

= [[Definition of wpb; Assumption A4]]
T (s0, (heap,Exception loc)) ∧ true

Lemma E.3 (Operand stack height) Stack elements that are located above the height given by getStack-
Height(P,m,pc) do not influence the value of wpl.
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∀(P,m, pc, h, os, os′, l).
getStackHeight(P,m, pc)− 1 = h ∧ suffix(os, h) = suffix(os′, h) =⇒
wpl(P,m, pc)(h, os, l) = wpl(P,m, pc)(h, os

′, l)

Proof for the Theorem 5.2.2

In order to prove the soundness theorem we show for any bytecode program P and method m that they
meet our assumptions:

CertMethodBPL(Tr(P ),m)
=⇒

(∀(s0) . wpb(Tr(P ),m, initmbpl
)(s0, s0))∧

(∀(p : Position) . stmt(Tr(P ),m, p) = ”havoc s” =⇒
(∀(s0, s) . wpb(Tr(P ),m, p)(s0, s))

)
=⇒ [[Derivations (*) and (**)]]

(∀(s0) . R(s0) =⇒ wpl(P,m, initm)(s0, s0))∧
(∀(pc) . isBackEdgeTarget(P,m, pc) =⇒

(∀(s0, s) . S(pc)(s0, s) =⇒ wpi(P,m, pc)(s0, s))
)

=⇒
CertMethodVC(P,m)

isBackEdgeTarget(P,m, pc) expresses that pc is the sink of a backward edge in m’s CFG.

Derivation (*)

In this derivation, we shows that
wpb(Tr(P ),m, initmbpl

)(s0, s) implies R(s0) =⇒ wpl(P,m, initm)(s0, state(s0)).

Case 1: NOT isBackEdgeTarget(P,m,init)

We prove for any s0,s:

wpb(Tr(P ),m, initmbpl
)(s0, s)

= [[Translation is
old_heap := heap;

regi := parami; (for all parameters of the method
assume R;
TrInstructions[[p,m, initm]];
State mapping]]

R(s0) =⇒ wpb(Tr(P ),m, instrpos(initm))(s0, state(s0))
=⇒ [[Lemma 5.2.1; assumption of Case 1 implies wpl(initm) = wpi(initm)]]
R(s0) =⇒ wpl(P,m, initm)(s0, state(s0))

Case 2: isBackEdgeTarget(P,m,initm)

We prove for any s0,s:
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wpb(Tr(P ),m, initmbpl
)(s0, s)

= [[Translation is
old_heap := heap;

this := param0;

regi := parami;

assume R;
assert S(initm);
goto initm; ;
State mapping]]

R(s0) =⇒ S(initm)(s0, state(s0))∧
wpb(Tr(P ),m, position(initm))(s0, state(s0))

=⇒ [[predicate logic]]
R(s0) =⇒ S(initm)(s0, state(s0))

=⇒ [[Def. of wpl]]
R(s0) =⇒ wpl(P,m, initm)(s0, state(s0))

Derivation (**)

We prove for any pc, s0, s:

isBackEdgeTarget(P,m, pc)∧
(∀(p : Position) . stmt(P,m, p) = ”havoc s” =⇒

(∀(s0, s) . wpb(Tr(P ),m, p)(s0, s))
)

=⇒ [[position(P,m, pc) for p]]
isBackEdgeTarget(P,m, pc)∧
(stmt(P,m, position(P,m, pc)) = ”havoc s” =⇒

(∀(s0, s) . wpb(Tr(P ),m, position(P,m, pc))(s0, s))
)

=⇒ [[Translation of pc starts with havoc s;]]
(∀(s0, s) . wpb(Tr(P ),m, position(P,m, pc))(s0, s))

=⇒ [[s0,s for s0,s]]
wpb(Tr(P ),m, position(P,m, pc))(s0, s)

=⇒ [[Translation of the first two instructions]]
(∀(z) . S(pc)(s0, z) =⇒ wpb(Tr(P ),m, position(P,m, pc) + 2)(s0, z))

=⇒ [[s for z; instrpos(P,m, pc) = position(P,m, pc) + 2]]
S(pc)(s0, s) =⇒ wpb(Tr(P ),m, instrpos(P,m, pc))(s0, s)

=⇒ [[Lemma 5.2.1]]
S(pc)(s0, s) =⇒ wpi(P,m, pc)(s0, s)

Proof of Lemma 5.2.1

The proof runs by induction on the CFG of the bytecode method m.

Induction base

Return statements are the only instructions that form the induction base. We illustrate it by showing the
case return.
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Case instructionAt(P,m,pc) = return

Translation :
Tr(P,m, pc)

= [[Definition of TrInstructions; pc cannot be the sink of a backward edge; p.MST (m) = ( , T, )]]
goto post;

Proof :
wpb(Tr(P ),m, position(P,m, pc))(s0, s)

= [[Definition of wpb]]
wpb(Tr(P ),m, post)(s0, s)

= [[Lemma E.1]]
T (s0, (heap,Normal None))

= [[Definition of wpi]]
wpi(P,m, pc)(s0, s)

Induction step

For the induction step, we have to distinguish

(a) whether pc is the sink of a backward edge and

(b) whether pc is the source of a backward edge

because Tr is defined differently in these cases. Issue (a) is taken care of by using instrpos(P,m, pc) rather
than position(P,m, pc). Issue (b) is addressed by the derivation (***), which we use for non-jumps.

We only show the proof for four interesting cases: one basic instruction, a control flow instruction, an
exception throwing instruction and an invocation instruction.

Case instructionAt(P,m,pc) = iload n

Translation :
Tr(P,m, pc)

= [[Definition of TrInstructions, Assumption A2, getStackHeight(P,m, pc)− 1 = cntr]]
#if isBackEdgeTarget(P,m, pc)
havoc s; assume S(pc);

stack(cntr + 1) := reg(n)
#if isBackEdge(P,m, pc, nextm(pc))
assert S(nextm(pc)); return;

#if isBackEdgeTarget(P,m, nextm(pc))∧!isBackEdge(P,m, pc, nextm(pc))
assert S(nextm(pc)); goto position(P,m, nextm(pc));

#if !isBackEdgeTarget(P,m, nextm(pc)) ∧ isEdge(P,m, pc, nextm(pc))
goto position(P,m, nextm(pc));

Proof :
wpb(Tr(P ),m, instrpos(P,m, pc))(s0, s)

= [[Definition of wpb, s = (h, os, l), lenght(os)− 1 = cntr]]
wpb(Tr(P ),m, instrpos(P,m, pc) + 1)[reg(n)/stack(cntr + 1)](s0, s)

=⇒ [[s = (h, v :: os, l); state mapping v = reg(n)]]
wpb(Tr(P ),m, instrpos(P,m, pc) + 1)(s0, (h, v :: os, l))

=⇒ [[Derivation (***)]]
wpl(P,m, nextm(pc))(s0, (h, v :: os, l))

=⇒ [[Assumption A5]]
compat V alKind value(Ival, v) =⇒
wpl(P,m, nextm(pc))(s0, (h, v :: os, l))

= [[Definition of wpi, s = (h, os, l)]]
wpi(P,m, pc)(s0, s)
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Case instructionAt(P,m,pc) = goto o

Translation :
Tr(P,m, pc)

= [[Definition of TrInstructions, Assumption A2, getStackHeight(P,m, pc)− 1 = cntr]]
#if isBackEdgeTarget(P,m, pc)
havoc s; assume S(pc);

#if isBackEdge(P,m, pc, jump(pc, o))
assert S(jump(pc, o)); return;

#if isBackEdgeTarget(P,m, jump(pc, o))∧!isBackEdge(P,m, pc, jump(pc, o))
assert S(jump(pc, o)); goto position(P,m, jump(pc, o));

#if !isBackEdgeTarget(P,m, jump(pc, o)
goto position(P,m, jump(pc, o));

We have to distinguish between forward and backward jumps because the translation to BoogiePL is
different. Case a and b would be identical if we would not insert a goto statement in case b.

Proof :

Case a: Backward jump:
wpb(Tr(P ),m, instrpos(P,m, pc))(s0, s)

= [[Definition of wpb]]
S(jump(pc, o))(s0, s) ∧ true

=⇒ [[Definition of wpl, Assumption A1]]
wpl(P,m, jump(pc, o))(s0, s)

= [[Definition of wpi]]
wpi(P,m, pc)(s0, s)

Case b: Forward jump, there are back-edges to target:
wpb(Tr(P ),m, instrpos(P,m, pc))(s0, s)

= [[Definition of wpb]]
S(jump(pc, o))(s0, s)∧
wpb(Tr(P ),m, position(P,m, jump(pc, o)))(s0, s)

=⇒ [[Predicate logic]]
S(jump(pc, o))(s0, s)

= [[Definition of wpl, Assumption A1]]
wpl(P,m, jump(pc, o))(s0, s)

= [[Definition of wpi]]
wpi(P,m, pc)(s0, s)

Case c: Forward jump, there are no back-edges to target:
wpb(Tr(P ),m, instrpos(P,m, pc))(s0, s)

= [[Definition of wpb]]
wpb(Tr(P ),m, position(jump(pc, o)))(s0, s)

= [[position(P,m, jump(pc, o)) = instrpos(P,m, jump(pc, o))]]
wpb(Tr(P ),m, instrpos(P,m, jump(pc, o)))(s0, s)

=⇒ [[Induction hypothesis]]
wpi(P,m, jump(pc, o))(s0, s)

= [[Definition of wpl, Assumption A1]]
wpl(P,m, jump(pc, o))(s0, s)

= [[Definition of wpi]]
wpi(P,m, pc)(s0, s)
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Case instructionAt(P,m,pc) = athrow

Translation :
Tr(P,m, pc)

= [[Definition of TrInstructions; Assumption A2; getStackHeight(P,m, pc)− 1 = cntr;
p.MST (m) = ( , T, ); pc′ = lookupHandler(m, pc, typ(stack(cntr)))]]

#if isBackEdgeTarget(P,m, pc)
havoc s; assume S(pc);

assert stack(cntr) ! = null;
stack0 := stack(cntr);
#if isBackEdge(P,m, pc, pc′)
assert S(pc′); return;

#if isBackEdgeTarget(P,m, pc′)∧!isBackEdge(P,m, pc, pc′)
assert S(pc′); goto position(P,m, pc′);

#if !isBackEdgeTarget(P,m, pc′)
goto position(P,m, pc′);

Proof :
wpb(Tr(P ),m, instrpos(P,m, pc))(s0, s)

= [[Definition of wpb]]
(stack(cntr) 6= null∧
wpb(Tr(P ),m, instrpos(p,m, pc) + 2))[stack(cntr)/stack0](s0, s)

= [[Predicate Logic; State Mapping: stack(cntr) = loc; Lemma E.3]]
loc 6= null∧
wpb(Tr(P ),m, instrpos(p,m, pc) + 2)(s0, s)

= [[wpb(Tr(P ),m, instrpos(p,m, pc) + 2) is exactly translation of goto instruction.]]
loc 6= null∧
wpl(P,m, pc

′)(s0, s)
=⇒ [[Assumption A5]]
loc 6= null∧
typ(loc) <: javaLangThrowable =⇒
wpl(P,m, pc

′)(s0, s)
= [[Definition of wpi]]

wpi(P,m, pc)(s0, s)
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Case instructionAt(P,m,pc) = invokestatic target; target is void;

Translation :
Tr(P,m, pc)

= [[Definition of TrInstructions, Assumption A2, getStackHeight(P,m, pc)− 1 = cntr]]
#if isBackEdgeTarget(P,m, pc)
havoc s; assume S(pc);

pre heap := heap;
arg0 := stack(cntr − |parameters(target)|);
assert target R(pre heap, arg∗);// P.MST(target) = (target R,target T, )
havoc heap;
goto block pc Exception, block pc Normal :
block pc Exception :
havoc stack0r;
assume alive(rval(stack0r), heap)
assume typ(stack0) <: javaLangThrowable
assume target T ((pre heap, arg∗), (heap,Exception loc));
#pc′ = lookupHandler(m, pc, typ(loc))
#if isBackEdge(P,m, pc, pc′)
assert S(pc′); return;

#if isBackEdgeTarget(P,m, pc′)∧!isBackEdge(P,m, pc, pc′)
assert S(pc′); goto position(P,m, pc′);

#if !isBackEdgeTarget(P,m, pc′)
goto position(P,m, pc′);

block pc Normal :
assume target T ((pre heap, arg∗), (heap,Normal None));
#if isBackEdge(P,m, pc, nextm(pc))
assert S(nextm(pc)); return;

#if isBackEdgeTarget(P,m, nextm(pc))∧!isBackEdge(P,m, pc, nextm(pc))
assert S(nextm(pc)); goto position(P,m, nextm(pc));

#if !isBackEdgeTarget(P,m, nextm(pc)) ∧ isEdge(P,m, pc, nextm(pc))
goto position(P,m, nextm(pc));

Proof :
wpb(Tr(P ),m, instrpos(P,m, pc))

= [[Definition of wpb, s = (h, os, l), getStackHeight(P,m, pc)− 1 = cntr;]]
target R(h, arg∗)∧
(∀(h′) .

wpb(Tr(P ),m, instrpos(P,m, pc) + 4)[stack(cntr − |parameters(target)|)/arg0, heap/pre heap]
(s0, (h

′, os, l)))
)

=⇒ [[pre heap and arg0 are only used within the translation of an invoke statement,
As we always assign values to them, they don’t show up in the vc’s and we
don’t have to substitute them; State mapping;]]

target R(h, arg∗)∧
(∀(h′) .

wpb(Tr(P ),m, instrpos(P,m, pc) + 4)(s0, (h
′, os, l)))

)
=⇒
target R(h, arg∗)∧
(∀(h′) .

wpb(Tr(P ),m, instrpos(P,m, pc) + 5)(s0, (h
′, os, l)))∧

wpb(Tr(P ),m, instrpos(P,m, pc) + 12)(s0, (h
′, os, l)))

)
=⇒ [[Derivations (invoke*), (invoke**)]]

wpi(P,m, pc)(s0, s)
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The two new blocks that are being generated in the translation of the invoke instruction are only reachable
from the goto statement also generated for the same invoke instruction. So we can be sure that the two
edges introduced here are no back-edges in the control flow graph, and therefore, the induction still works.

We split the proof in the two derivations below. We can show that the translation is sound for both
choices of the nondeterministic goto. And as it is the case for both choices separately, it is also true for the
conjunction.

Derivation (invoke*)

If we only look at the normal behavior, we can derive the following

target R(h, arg∗)∧
(∀(h′) .

wpb(Tr(P ),m, instrpos(P,m, pc) + 12)(s0, (h
′, os, l)))

)
=⇒
target R(h, arg∗)∧
(∀(h′) .

(target T ((h, arg∗), (h′, Normal None)) =⇒
wpb(Tr(P ),m, instrpos(P,m, pc) + 13)(s0, (h

′, os, l)))
)

=⇒ [[Derivation (***)]]
target R(h, arg∗)∧
(∀(h′) .

(target T ((h, arg∗), (h′, Normal None)) =⇒
wpl(P,m, nextm(pc))(s0, (h

′, os, l)))
)

=⇒ [[getStackHeight(P,m, pc)− 1 = cntr =⇒ getStackHeight(P,m, nextm(pc))− 1 = cntr − n;
Lemma E.3]]

target R(h, arg∗)∧
(∀(h′) .

(target T ((h, arg∗), (h′, Normal None)) =⇒
wpl(P,m, nextm(pc))(s0, (h

′, pop(os, n), l)))
)

=⇒ [[Predicate logic]]
(∀(h′) .
target R(h, arg∗) =⇒
target T ((h, arg∗), (h′, Normal None)) =⇒
wpl(P,m, nextm(pc))(s0, (h

′, pop(os, n), l))
)

= [[Definition of wpi, s = (h, os, l)]]
wpi(P,m, pc)(s0, s)
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Derivation (invoke**)

If we only look at the exceptional behavior, we can derive the following

target R(h, arg∗)∧
(∀(h′) .

wpb(Tr(P ),m, instrpos(P,m, pc) + 5)(s0, (h
′, os, l)))

)
=⇒ [[os’ = os without the first element]]

(target R(h, arg∗)∧
(∀(stack0r, h′) .
alive(rval(stack0r), h) =⇒
typ(stack0r) <: javaLangThrowable =⇒
(target T ((h, arg∗), (h′, Exception stack0r)) =⇒
wpb(Tr(P ),m, instrpos(P,m, pc) + 10)(s0, (h

′, os′ :: stack0r :: ∅, l)))
))

=⇒ [[getStackHeight(P,m, pc′) = 1;
Lemma E.3]]

(target R(h, arg∗)∧
(∀(stack0r, h′) .
alive(rval(stack0r), h) =⇒
typ(stack0r) <: javaLangThrowable =⇒
(target T ((h, arg∗), (h′, Exception stack0r)) =⇒
wpb(Tr(P ),m, instrpos(P,m, pc) + 10)(s0, (h

′, stack0r :: ∅, l)))
))

= [[wpb(Tr(P ),m, instrpos(p,m, pc) + 2) is exactly translation of goto instruction.]]
(target R(h, arg∗)∧
(∀(stack0r, h′) .
alive(rval(stack0r), h) =⇒
typ(stack0r) <: javaLangThrowable =⇒
(target T ((h, arg∗), (h′, Exception stack0r)) =⇒
wpl(P,m, pc

′)(s0, (h
′, stack0r :: ∅, l)))

))
= [[Definition of wpi]]

wpi(P,m, pc)(s0, s)
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Derivation (***) inside proof of Lemma 5.2.1

∀(P,m, pc, pos, s0, s) .
wpb(Tr(P ),m, pos)(s0, s)∧
pos marks a (possible empty) suffix of the translation of instructionAt(P,m,pc)∧
stmt(P,m, pos) =

#if isBackEdge(P,m, pc, nextm(pc))
assert S(nextm(pc)); return;

#if isBackEdgeTarget(P,m, nextm(pc))∧!isBackEdge(P,m, pc, nextm(pc))
assert S(nextm(pc)); goto position(P,m, nextm(pc));

#if !isBackEdgeTarget(P,m, nextm(pc)) ∧ isEdge(P,m, pc, nextm(pc))
goto position(P,m, nextm(pc));

=⇒
wpl(P,m, nextm(pc))(s0, s)

Proof :
Case a: Backward jump, isBackEdgeTarget(P,m, nextm(pc)):

wpb(Tr(P ),m, pos)(s0, s)
=
S(nextm(pc))(s0, s)

=⇒ [[isBackEdgeTarget(P,m, nextm(pc)), Assumption A1]]
wpl(P,m, nextm(pc))(s0, s)

Case b: Forward jump, isBackEdgeTarget(P,m, nextm(pc)):
wpb(Tr(P ),m, pos)(s0, s)

=
S(nextm(pc))(s0, s) ∧ wpb(Tr(P ),m, position(P,m, nextm(pc)))

=⇒ [[isBackEdgeTarget(P,m, nextm(pc)), Assumption A1]]
wpl(P,m, nextm(pc))(s0, s)

Case c: Forward jump, !isBackEdgeTarget(P,m, nextm(pc)):
wpb(Tr(P ),m, pos)(s0, s)

= [[Assumption of Case c (stmt(P,m, pos) = goto position(P,m, nextm(pc));)]]
wpb(Tr(P ),m, position(P,m, nextm(pc)))(s0, s)

=⇒ [[Induction hypothesis]]
wpi(P,m, nextm(pc))(s0, s)

= [[Assumption of Case c (No local annotation)]]
wpl(P,m, nextm(pc))(s0, s)

Case d: No jump:
wpb(Tr(P ),m, pos)(s0, s)

= [[pos = position(P,m, nextm(pc))]]
wpb(Tr(P ),m, position(P,m, nextm(pc)))(s0, s)

=⇒ [[Induction hypothesis]]
wpi(P,m, nextm(pc))(s0, s)

= [[Assumption of Case d]]
wpl(P,m, nextm(pc))(s0, s)
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