
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable 3.10

Final Report on Program Verification Environment and

Annotation Generation

Due date of deliverable: 2009-09-30 (T0+48)

Actual submission date: 2009-09-xx

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: UCD

Revision: Creation

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Contributions

Site Contributed to chapter

ETH 2
INRIA 2 6
RU 2 6
UCD 1 2 3 4 5 7
WU 2 3 6 7

This document has been written by Julien Charles (UCD), Dermot Cochran (UCD),
Werner Dietl (ETH), Fintan Fairmichael (UCD), Radu Grigore (UCD), Marieke Huisman
(INRIA), Joe Kiniry (UCD), Erik Poll (RU), and Aleksy Schubert (WU).

2

Executive Summary:
Final Report on Program Verification Environment and Annotation
Generation

This document describes the results of Tasks 3.6 and 3.7 of project FP6-015905 (MOBIUS), co-
funded by the European Commission within the Sixth Framework Programme. The focus of
these tasks is the design and development of an integrated program verification environment
(PVE), which is colloquially called the MOBIUS PVE. Full information on this project,
including the contents of this deliverable, is available online at http://mobius.inria.fr/. More
information on the MOBIUS PVE is available online at http://mobius.ucd.ie/.

Task 3.6 develops a program verification environment for the automatic and interactive
verification of Java programs, integrating the techniques developed in WP3. Such an envi-
ronment is needed to tackle the realistic case studies in WP5, and, more generally, is crucial
if we are to seriously evaluate the MOBIUS PCC infrastructure.

The MOBIUS verification environment supports the development of specifications, pro-
grams, and proofs of their security properties. It supports both source code and bytecode
level verification, and is able to produce the output necessary for the generation of PCC
certificates.

The result of this task in the four years of the project has been five releases (called
the alpha, beta, gamma, delta, and epsilon releases) of the platform, as well as dozens of
independent releases of its various subsystems. These initial releases support reasoning about
source code and bytecode and focus on single-threaded Java only. The PVE also generates
proof obligations for a single proof generation tool. The environment also interfaces to several
automated theorem provers and interactive proof assistants.

Task 3.7 focus on generating JML annotations for existing source code and bytecode.
Automata or state machines are a convenient and accessible specification formalism for many
properties. The techniques developed focus on generating JML annotations from a simple
automaton that specifies security properties. If a program that is monitored by the automaton
does not go “wrong,” then the generated annotations will not be violated during any execution
of the program. The algorithm and its correctness proof are formalised with a theorem prover.
The generated annotations are then propagated, to assist static verification. A simple version
of the propagation algorithm has been implemented.

3

http://mobius.inria.fr/
http://mobius.ucd.ie/

Contents

1 Overview of the Program Verification Environment 6

2 Subsystems of the MOBIUS Program Verification Environment 8
2.1 Subsystems Developed within MOBIUS . 9

2.1.1 Java Modeling Language Subsystems 10
2.1.2 Static Analysis Subsystems for Extended Static Checking 11
2.1.3 Static Analysis Subsystems using Annotation Generation 13
2.1.4 Automated Theorem Prover Subsystems 14
2.1.5 Prover Editor Subsystems . 17
2.1.6 Core Application Programmer Interfaces Subsystems 17
2.1.7 Java Bytecode Subsystems . 18
2.1.8 DirectVCGen Subsystems . 19

2.2 Subsystems Used within MOBIUS but Developed Elsewhere 21
2.2.1 Mylyn . 21
2.2.2 Version Control . 21
2.2.3 CheckStyle . 22
2.2.4 FindBugs . 22
2.2.5 PMD . 23
2.2.6 Metrics . 23
2.2.7 EclEmma . 24
2.2.8 BCEL . 24
2.2.9 BONc . 24
2.2.10 Beetlz . 25

3 Using the MOBIUS Program Verification Environment 26
3.1 General Walk-through of Using the Mobius PVE 26

3.1.1 Downloading . 26
3.1.2 Configuring a Java Project for Verification 26
3.1.3 Performing Verification . 30

4 The MOBIUS Software Development Process 40
4.1 The MOBIUS Coding Standards . 40
4.2 The MOBIUS Collaborative Development Environments 41

4.2.1 The MOBIUS Trac . 41
4.3 The MOBIUS Version Control Repository . 41

4

5 Epsilon Release Provisional Manifest 42
5.1 Features and Plugins Included . 42
5.2 Sample Workspace . 43
5.3 Platforms . 44

6 Annotation generation 45
6.1 Inferring and Propagating Annotations . 45
6.2 State Diagrams and Navigation Graphs . 46

6.2.1 From Java Code to Automata . 46
6.2.2 From Automata to JML . 46

7 Publications Relating to WP3.6 and WP3.7 48

5

Chapter 1

Overview of the Program Verification
Environment

Many large software engineering projects have functional specifications that are thousands of
pages long. These are usually written in a natural language, such as English, and with semi-
formal notation such as diagrams and tables. There are often subtle ambiguities or internal
contradictions within the software requirements, which are often not discovered until very
late in the software development life cycle, simply because the project becomes too big for
any one developer or analyst to fully understand and remember all the relevant details at the
same time.

Popular high-level “modeling” languages in current use (e.g., UML) are not amenable to
formal analysis because of a lack of semantics and interoperable tool support. Even so, high-
level representations are compelling and useful in modern software engineering practice and
software engineers regularly struggle with using these inadequate languages, even for mission
critical applications.

The Mobius PVE is a customized version of the Eclipse platform that integrates a set of
tools that support software development using state-of-the-art formal methods and software
engineering techniques. The Mobius PVE supports the specification and verification of JML-
annotated Java programs at the source code level as well as at the bytecode level using
logic- and type-based techniques and the Proof-Carrying Code paradigm. The properties
of particular interest include security (e.g., data is secret and never leaked) and resource
guarantee properties (e.g., this method will never use more than this much memory or that
much CPU) as well as total functional correctness. The Mobius PVE is thus, in a sense, a
prototype realization of the U.K. Grand Challenge 6 Verifying Compiler, specialized to the
domain of Java programs [HM05].

The Mobius PVE integrates theoretical and technical best-practices, leveraging the hard
work of many research groups within, as well as outside of, the MOBIUS grant consortium.
Many Java software engineers use the Eclipse development environment, together with plugins
such as FindBugs and PMD [Ecl]. The Mobius PVE is bundled with Eclipse and these
well-known third-party plugins so that Java developers are presented with a pre-configured
development environment without the need to manually install each plugin.

For example, a Java developer might use the Mobius PVE to derive a JML specification
from a high-level functional specification. The JML subsystem of MOBIUS might then be
used to typecheck the JML specification, and, in a complementary fashion, the ESC/Java2

6

used look for inconsistencies in the specification. A variety of other pre-configured subsys-
tems like CheckStyle, FindBugs, PMD, and others are executed asynchronously while the
developer writes, modifies, and evolves their software architecture. Feedback about the com-
pleteness and quality of the system’s documentation, formal specification, and program code
are always at the developer’s fingertips. Once the Java code has been verified against the
JML specification, both statically using ESC/Java2 and dynamically using hand-written and
automatically generated unit tests using JML’s runtime assertion checking, then the devel-
oper has very high confidence that the requirements have been implemented correctly. At this
stage, one performs automatic and interactive verification using the MOBIUS DirectVCGen
and Prover Editor, fully verifying functional and non-functional properties.

JML
Semantics

JML
Specification

Information Flow
Type System

Resource
Type System

BoogiePL Guarded
Commands

Verification
Conditions

Mobius Base
Logic

Bicolano

Java VM
Semantics

operational
model

shallow
embedding

Java
Programdescribes

denotational
model

expressed
within

uses

compiles
to

Java VM
bytecode

BML
Specification

translates
to generates

expressed
within

expressed
within

BML
Semantics

denotational
model

SortedProver

generates

Prover
Interfaces

generates Verification
Conditions

expressed
using

DirectVCGen,
ESC VCGen

B2BPL

FreeBoogie
VCGen

JML2BML
Umbra

Coq
Verification
Conditions
for source

Coq
Verification
Conditions

for bytecode

Proof
Transformer

Concrete
Syntax for
automated

provers

sent to

Automatic Theorem Prover
Feature

ProverEditor ProverEditor

S subsystem S developed outside of Mobius by others

T subsystem T developed within Mobius

U subsystem U extended within Mobius

Figure 1.1: Schematic overview of the different formats (for code and proof obligations),
and the translations between them supported by the PVE and in Coq. See the key for an
explanation of the diagram formatting.

Recent editions of the Mobius PVE has been used at several tutorials run at international
conferences including ETAPS, the GLOBAN Summer School run by MOBIUS partner UW,
in courses taught at UCD, and at the JML Spec-a-thon held at the University of Washington,
Tacoma in May 2009.

7

Chapter 2

Subsystems of the MOBIUS Program
Verification Environment

The Mobius PVE is built on top of the Eclipse platform. The primary units of software
within Eclipse are known as features, which are in turn composed of one or more plugins. We
generally call these two kinds of units subsystems in the Mobius PVE documentation.

The following sections summarize all of these subsystems at a high level. More information
on each subsystem is available via the MOBIUS Trac server (available via http://mobius.ucd.ie/),
within publications related to specific tools cited appropriately, and from the original devel-
opment team, in the case of externally developed tools.

The Mobius PVE is a customized version of Eclipse that contains over forty subsystems
dedicated to reliable, dependable software development. Over half of these subsystems were
implemented by MOBIUS partners.

Development on some of these subsystems (e.g., the static checker ESC/Java2) began
before the project started, but their development continued within the project as their ca-
pabilities directly complemented the goals of the Mobius PVE. Other subsystems (e.g., the
Umbra bytecode subsystem) were developed entirely within and for the MOBIUS project and
the Mobius PVE.

This chapter contains a brief summary of each subsystem in the Mobius PVE. There are
two forms of subsystems: those (co-)developed by MOBIUS partners (known as “MOBIUS
subsystems”), and those developed outside of MOBIUS (known as “non-MOBIUS subsys-
tems”); section 2.1 discusses the former, and section 2.2 the latter. Subsystems developed
within MOBIUS are often discussed in more detail unless a non-MOBIUS subsystem has some
special interaction with a MOBIUS one.

Some subsystems are exposed to the verification application developer via a programmatic
API. Others are full-fledged Eclipse features and/or plugins. Many subsystems, even those
that are plugins, also have rich command-line interfaces and are executed as normal processes.

In general, all MOBIUS subsystems written in Java and the majority of them were devel-
oped with various version of the Mobius PVE itself. Moreover, some of them have full formal
specifications and have been partially or fully validated (e.g., extensively unit tested) and/or
verified (e.g.,, ESC/Java2 reports no errors) with the Mobius PVE. When a subsystem has
one of these properties, it is highlighted in the text.

As discussed in section 4.2, the source code, documentation, version control logs, and
bug and feature tracking database of all subsystems is available online via our Trac-based

8

http://mobius.ucd.ie/
http://mobius.ucd.ie/

CDE located at http://mobius.ucd.ie/. All subsystems developed within MOBIUS are Open
Source and released under one of several license types: the GPLv2, a BSD-style license, or
the Eclipse Public License.

2.1 Subsystems Developed within MOBIUS

This section summarizes in some detail all of the subsystems that ship as part of the current
“epsilon” release of the Mobius PVE. Most of these subsystems are still under development
and are evolving to match the needs of Mobius PVE users and MOBIUS partners and their
research and industry collaborators.

Information about these components (their description, status, location in the source
repository, etc.) is also summarized in the MOBIUS Trac wiki via the Components wiki
page.

Many MOBIUS subsystems are developed by MOBIUS partners working in collaboration
with non-MOBIUS researchers throughout North America and Europe.

Many subsystems have interdependencies, many of which grew organically over several
years of development, as one plugin will depend upon the availability of another. In fact,
teasing out, documenting, and formalizing these dependencies in plugin descriptors has been
a main organizational effort in Mobius PVE development.

Subsystems are of in several “flavors”:

• First, there are the Java Modeling Language (JML) subsystems, containing all the
tools used to type check the annotations, ease the use of JML from within Eclipse, and
support runtime assertion checking.

• Second, there are the static analysis subsystems, namely the extended static checkers
(like ESC/Java2 or FreeBoogie) and some annotations generators, like Houdini.

• Third, we define the automated theorem prover subsytems, which is a packaging of
different theorem provers, as well as an Application Programming Interface for some of
them.

• There is also the ProverEditor subsystem which gives a graphical user interface for the
prover Coq.

As this set of subsystems are related to static verification, they can be easily used outside the
MOBIUS project and, for the most part, are actually used. There are two other subsystems
that were developed expressly for the PCC framework.

• The Bytecode Modelling Language (BML) subsystems, which offer facilities to annotate
Java-bytecode with similar annotations as the Java Modeling Language, and manipulate
these annotations.

• The DirectVCGen subsystems, which are a series of subsystems that implement a veri-
fication condition generator over source code and bytecode. This subsystem is designed
such that one is able to reuse a proof done over the source code to solve the verification
condition generated from its bytecode.

9

http://mobius.ucd.ie/
http://mobius.ucd.ie/
https://mobius.ucd.ie/wiki/Components

Some subsystems lie along multiple facets of these dimensions. For example, many sub-
sytems are interactive, but also have APIs. Others, tie together every facet. For example,
in the case of ESC/Java2, it reasons about Java source code, bytecode, and JML, contains
several different ASTs, provides several APIs, uses many backends, and finally, is also an
interactive plugin.

2.1.1 Java Modeling Language Subsystems

Several different subsystems are included that lex, parse, represent, process, and reason about
the Java Modeling Language (JML), as JML is core to program specification and verification
within MOBIUS [LPC+05]. The inclusion of several subsystems with overlapping functional-
ity is, in nearly all instances, more a historical artifact than a conscious developer choice.

The OpenJML Plugin

OpenJML is a suite of JML tools that supports modern Java . It provides a typechecker for
JML annotations as well as a runtime assertion checker. It includes also jmldoc, an extension
of javadoc that uses the JML annotations to make the documentation more accurate. It is
built on top of OpenJDK, an open source implementation of javac from Sun Microsystems.
It has a graphical user interface in the form of an Eclipse plugin.

The tool is still in development, but soon will see a proper first version released. Hence,
the runtime assertion checking is not totally completed and the extended static checking is
rudimentary implemented. Typechecking is provided for most of the JML constructs except
for model programs, constraint clauses, and accessible clauses.

OpenJML should shortly have a fully operational typechecker and runtime assertion
checker, consequently it will replace JML4 and JML2, which ware included in the previous
versions of the Mobius PVE. JML2 is being replaced because it only support Java versions
1-1 to 1.4, and not Java 1.5 and beyond.

The JML2 Eclipse Plugin

This plugin provides a simple integration of the common JML tools into Eclipse 3.3. It is the
main interactive plugin used by MOBIUS developers within the Mobius PVE at this point in
time.

The following features are provided:

• simple installation of the core JML tools, including

• executing the JML checker,

• executing the JML runtime assertion checker (RAC),

• executing a program that was compiled with RAC, and

• configuration dialogs for JML checker and RAC.

The current version of the plugin is available from an ETHZ website and will be integrated
into the main MOBIUS releases website and Trac in the coming year.

10

http://www.sct.inf.ethz.ch/research/universes/tools/eclipse/

The JML Folding Editor

Folding editors allow one to manually or automatically show or hide various structured pieces
of a document—for example, hiding the contents of a section while only keeping the section
title, which is similar to hiding the implementation of a method while keeping its signature.
The process of hiding and showing a usually larger or complex construct behind a concise
visual representation is called “folding”.

Basic folding editors permit one to manually fold and unfold constructs like source code
documentation and implementation structures like method and loop bodies. Advanced folding
editors provide additional features like saving and restoring the state of folding when a file
is closed and then opened again, or automatically folding a set of related constructs. An
example of the latter is the “short” or “contract” form supported by IDEs like EiffelStudio,
whereby the implementations of all features (fields and methods) of a class are folded and
hidden from the developer—only natural language documentation and contracts remain in
view.

The JML Folding Editor, known under the development code name as “Grok,” is an
Eclipse plugin that has built-in support for folding JML specifications in an intelligent fashion.
It is based upon the Open Source Coffee-Bytes folding plugin.

Manual manipulation of folding is supported, as is customizable defaults in folding behav-
ior. For example, when a file is initially opened, should loop bodies be folded or unfolded?
Perhaps only all private method bodies should be folded?

The MOBIUS extensions to this plugin focus on support for folding, in an intelligent
fashion, JML formal specifications. For example, groups of adjacent related specifications
written in line comments are folded as a unit. Furthermore, the state of folding within a file
is saved when the Mylyn subsystem subsection 2.2.1 is in use. Finally, some basic notions of
fisheye views [Fur86] have been included in the subsystem.

Our next steps in the research work focus on further evolving and experimenting with
fisheye notions of Degree of Interest in the context of software systems with formal specifi-
cations. Given the numerous syntactic and semantic relationships that exist between code
constructs and specification constructs, and observing the ways in which verification-centric
software development and verification takes place, there are many fertile opportunities for
good computer-human interaction research.

2.1.2 Static Analysis Subsystems for Extended Static Checking

ESC/Java2 has been under development for over a decade. The original ESC/Java was
developed by a team at Digital Equipment Corporation’s Systems Research Center in the
mid-1990s. After that team disbanded and DEC-SRC was shut down (after Compaq bought
Digital and then Hewlett-Packard bought Compaq), Hewlett-Packard released the source code
of ESC/Java for research and educational purposes.

At that time, a team at Radboud University Nijmegen, led by Joe Kiniry, restarted
research and development on Extended Static Checking for Java, and have since then released
over fifteen versions of ESC/Java2. ESC/Java2 shares only a few subsystems with the original
ESC/Java.

This section summarizes the core subsystems of the current release of ESC/Java2 (2.0b4)
included with the Mobius PVE that remain from the original ESC/Java. All other extensions
to ESC/Java2 that have taken place over the past five years are described in other sections,

11

http://www.realjenius.com/platform_support

as they have all been incorporated into the Mobius PVE itself. These extensions include
the new VC ASTs, the Automated Prover API, the new Fx7 and Z3 backends, universes
typechecking, and support for higher-order extended static checking, which is not discussed
in this deliverable.

ESCJava2

The Extended Static Checker for Java version 2 (ESC/Java2) is a programming tool that
attempts to find common run-time errors in JML-annotated Java programs by static analysis
of the program code and its formal annotations. Users control the amount and kinds of
checking that ESC/Java2 performs by annotating their programs with specially formatted
comments called pragmas.

ESC/Java2 is a large-scale subsystem within the Mobius PVE. Its architecture relies upon
several of the other subsystems described in this document including the original DEC-SRC
Java Frontend and the Simplify theorem prover, both of which are described in this section,
and several other new MOBIUS subsystems, most of which are described in later sections of
this chapter.

In a nutshell, ESC/Java2 translates JML-annotated Java source code into verification
conditions that are passed to an automated theorem prover. Responses from the prover are
translated back into informational messages useful to a normal programmer.

To implement these features, ESC/Java2 uses a combination of Javafe to lex and parse
Java sourcecode, an internal bytecode subsystem to parse Java bytecode, and its own JML
lexer and parser, all of which produce a JML-annotated Java AST. This representation is then
translated into a semantically equivalent guarded command, dynamic single assignment-based
representation, which is then used to generate a verification condition with either a weakest
precondition or a strongest postcondition VC generator. This VC is represented in one of
two forms, the original DEC-SRC VC AST, or the new MOBIUS sorted VC AST. This VC is
passed to an automated theorem prover via one of two mechanisms, either the original DEC-
SRC Simplify-specific interface, or the new MOBIUS automated prover backend. Likewise,
responses from the automated prover flow back through these same interfaces.

In summary, ESC/Java2 uses more MOBIUS subsystems than any other component,
except the Mobius PVE itself. It represents the core system used to perform research on, and
evolve existing, generic verification functionality, as well as exercise and extend various other
Mobius PVE subsystems.

ESC/Java2 is available in two forms:

• ESC/Java2 as a command-line tool with a simple Swing GUI front-end, or

• ESC/Java2 as an Eclipse 3.3 (Europa) plugin.

This latter, plugin-based version of this subsystem has several features that deeply inte-
grate it into the MOBIUS PVE.

With respect to environment configuration, its preferences system is integrated into the
Mobius PVE at the IDE-level and at the project-level. The former supports configuration at
the systems-level, the latter settings specific to a project that are saved with the project.

Focusing on use, the integration with development is transparent. Each time a file is
saved the extended static checker is run in the background asynchronously. Thus, from the
developer point of view, warnings and errors appear as regular Eclipse markers on lines of

12

code and as red underlines within program code and specifications. Likewise, all developer
feedback appears within the appropriate Eclipse “Warning” and “Error” panes. The extended
static checker is also executed manually on a variety of different constructs (on a package, a
class, a method, etc.) with a single mouse action.

Javafe: The Original DEC-SRC Java Frontend

Javafe is the original DEC-SRC Java Frontend. It lexes and parses Java 1.5 bytecode and
Java 1.4 source code. It is used by several other MOBIUS subsystems including ESC/Java2,
RCC, Houdini, and the universes typechecker. It was originally developed by DEC-SRC but
has been improved and extended over the past five years in a variety of ways.

Some MOBIUS subsystems under development use Javafe as their frontend, as it is a
reliable, well-understood subsystem. Its main drawbacks are (1) that it only supports pre-
Java 1.5 source code, thus does not support parameterized classes, enumerations, foreach
loops, etc., and (2) its license is non-standard and not a recognized Free/Open Source license.

The Universes Typecheckers

The universes typesystems [MR07a] are used to describe ownership, containment, and aliasing
properties of Java programs. The version of the universes typesystem described in Müller et
al. [MR07b] is implemented in two subsystems in the Mobius PVE: in the core JML tool suite
found in the JML2 Eclipse plugin, and in ESC/Java2.

FreeBoogie

FreeBoogie aims to be a backend for verification tools such as Spec# and future versions of
ESC/Java and similar tools. It takes as input a BoogiePL (Boogie Programming Language)
file, generates verification conditions, calls provers such as Simplify and Z3, and reports the
errors in a way that relates to the BoogiePL source. It is a work in progress.

Version 0.0 supports parsing, name resolution, flowgraphs, and typechecking, but no ver-
ification condition generation. Version 0.1 handles the first version of BoogiePL. Version 0.2
will handle the second version of the Boogie language. More information can be found on the
FreeBoogie website.

The Spec# system from Microsoft Research generates BoogiePL from the Spec# language,
which is a variant of Microsoft’s C# programming language with annotations. Another way of
obtaining BoogiePL from a higher level language is via JACK [BBC+07a], which translates
Java with JML annotations into a variant of BML, and B2BPL, which was developed at
ETH under the MOBIUS project and translates BML into BoogiePL. In fact, one design
goal of BoogiePL was to be used as an intermediate language by multiple verification tools,
thereby reducing the implementation effort needed to support multiple high-level languages
and multiple static analyzes at the same time.

2.1.3 Static Analysis Subsystems using Annotation Generation

The Mobius PVE contains over a half dozen static analysis subsystems. Some of these static
checkers were wholly developed within the MOBIUS project (e.g., ESC/Java2, as described in
subsection 2.1.2), some that were developed by others, but evolved and extended within the
project, and still others that were adopted and configured to complement the core analyses

13

http://kind.ucd.ie/products/opensource/FreeBoogie/

of MOBIUS. This section describes the second kind of static analysis subsystems—tools that
MOBIUS has adopted and extended for our own purposes.

Race Condition Checker

The Race Condition Checker (RCC) was originally developed by researchers at the Digital
Systems Research Lab (DEC-SRC) in the late 1990s [FF00]. Its source code was released to
the general public along with the source for Simplify, Javafe, ESC/Java, and Houdini.

RCC’s purpose is to (conservatively) statically check for the absence of race conditions via
analysis of (type) annotated Java source code. As RCC’s analysis is sound, if an annotated
Java program passes RCC, then it is guaranteed to have no race conditions.

As the Mobius PVE is meant to eventually support reasoning about concurrent Java
systems, determining whether a Java module is race-free is a critical first step in verifying
any other properties. Unfortunately, RCC’s source code release barely compiled, and was
completely unmaintained.

Consequently, MOBIUS developers have “revived” RCC and released RCC version 2.
This updated version of RCC incorporates the evolution of the Java language semantics, as
expressed within the third revision of the JLS [GJSB05] and as realized in Java version 5,
particularly with respect to the the Java Memory Model [Con04]. Moreover, several critical
flaws in the original RCC type system and type checker were identified and corrected in this
release.

Houdini

Like the Race Condition Checker (RCC), Houdini was also originally developed by researchers
at the Digital Systems Research Lab (DEC-SRC) in the late 1990s [FL00]. Its source code
was released to the general public along with the source for Simplify, Javafe, ESC/Java, and
RCC.

Houdini automatically generates specifications written in JML for a Java module by stat-
ically analyzing the program code’s structure. It has a number of built-in heuristics and
performs some lightweight syntactic and semantic reasoning about method bodies to “guess”
potential method preconditions, for example. These guesses are then fed to ESC/Java2 to
see whether or not they are valid. If a specification seems to be valid (recall that ESC/Java
is neither sound nor complete), then the specification is retained, otherwise it is discarded.

Houdini generates reports of its behavior in HTML. Houdini is also capable of taking a
snapshot of its state for increasing the reliability of long runs (as running Houdini on a large
code base can take hours, or even days). Finally, Houdini can run in a client-server mode,
utilizing a (potentially larger, and more powerful) remote compute server.

2.1.4 Automated Theorem Prover Subsystems

Several new “backend” subsystems have been developed with MOBIUS resources. These
systems are “backend” in the sense that they are used by many other subsystems and are
deeply embedded in other tools, thus they are mainly interfaced via APIs and are heavily
reused.

These subsystems include automated theorem provers, verification condition generators,
specification generators, and intermediate representations for reasoning. All of these subsys-
tems are used within the Mobius PVE, many for several purposes.

14

The Automated Prover API

The MOBIUS Automated Prover API provides a generic programming interface to automated
theorem provers. The initial version of this API was designed by MOBIUS partners working
in tandem with leaders in the SMT-LIB community. The intention is to have some future
variant of this API be the standard API for all automated theorem provers, at least within
the SMT-LIB community.

The API was developed by performing an analysis of the core operations provides by
all major automated provers: prover initialization and shutdown, hinting to a prover about
resource utilization bounds (primarily, time and space), declaration of new theories (via ax-
iomatic definitions), making and retracting assumptions (as part of, e.g., a background pred-
icate of a theory), and checking the validity of formulae.

The initial version of this API was designed with a formal specification written in JML,
and example implementations were provided in Java, C, and OCaml. Communication with
theorem provers is supported via pipes/sockets, native methods, and an XML-RPC-based
messaging interface. This API is now used by ESC/Java2 and the CVC3 prover, and interfaces
with the Z3 and Simplify theorem provers as well [BT07].

Simplify

The Simplify automated theorem prover was written by Greg Nelson and others at DEC-
SRC around fifteen years ago. It is implemented in Modula-III. Until very recently it was still
considered the premier automated theorem prover for software verification tools. It supports
reasoning about a decidable fragment of first-order logic that includes a theory of arrays,
uninterpreted function symbols, and linear arithmetic.

The only recent development on Simplify that has taken place is the MOBIUS port of it to
Mac OS X, building new releases with new Modula-III compilers, as well as some simple bug
fixes. There are no plans on doing any development on Simplify, as the world of first-order
theorem provers has changed quite a bit over the past decade or so. Instead, we are working
on integrating ESC/Java2 with new-generation SMT-LIB provers, as discussed later in this
chapter.

Simplify has been wrapped in the new MOBIUS prover backend, thus is accessible in a sim-
ple, transparent fashion like many other new generation automated provers. Communication
with Simplify is accomplished exclusively via piped data streams at this time. Additionally,
if the prover terminates abnormally or becomes unavailable, it is restarted automatically.
Finally, terminating a validity check via a timeout is also supported.

Fx7

Fx7 is an automated theorem prover implemented in the Nemerle programming language [ML06]
by Michal Moskal, a visiting MOBIUS PhD student in 2007. Fx7 supports the same set of
theories as Simplify and Z3, as well as a similar set of concrete syntaxes as Z3.

As Nemerle is implemented in Microsoft’s .NET platform, the Mono runtime must be
installed on non-Microsoft Windows Mobius PVE host operating systems. Currently the Fx7
prover is a hand-installed extension to the Mobius PVE. It will be included in a future release
of the Mobius PVE, complete with a pre-packaged runtime for user convenience.

Fx7 has been “bridged” into the MOBIUS Automated Prover API in a fashion akin to the
other provers discussed in this section. Piped datastreams are used to communicate with the

15

prover. The API provides the ability to start and stop the prover, and control its resources
use, and more.

In addition, because Fx7 is exclusively developed by MOBIUS-supported researchers,
including contributors from UCD, various experiments in automated proving and verification
are easy to carry out. In particular, Fx7 generates proofs of valid formulae and includes
two proof checkers which run on embedded devices like PDAs [GM07]. These capabilities
represent the first concrete experiences with proof generation and checking the Mobius PVE,
albeit for extended static checking with ESC/Java2 rather than full functional verification.

Z3

The Z3 automated theorem prover is developed by Microsoft Research in Redmond [?]. It and
Simplify are the primary theorem provers of the Boogie reasoning framework. Z3 is released
in binary-only form. The most recent releases are only built for the Microsoft Windows
operating system. An older, out-of-date release was built for Linux to conform to the SMT-
LIB competition’s rules.

Z3 is a very powerful modern prover, thus it has been “bridged” into the MOBIUS Prover
API as well. It supports the Simplify and SMT-LIB concrete syntaxes, as well as its own.

Whereas Z3 only runs on the Microsoft Windows platform, the Mobius PVE runs on all
modern platforms, including Apple’s OS X and UNIX variants like Linux, Solaris, etc. We
wish to support as many modern theorem provers as possible within the Mobius PVE, but
supporting Z3 on non-Windows systems is a non-trivial task.

Recently Z3 has been tested running within the a Wine runtime [win08] on Intel-based
systems running Linux. This mechanism (spawning Z3 within Wine, communication via piped
datastreams, etc.) is now built into the MOBIUS Automated Prover API.

In theory, such a mechanism will work on all Intel-based Wine runtimes, like those available
for other UNIX variants and OS X. In addition, we plan on experimenting with executing Z3
within a virtualized Microsoft Windows installation (e.g., using Parallels or VMware, both of
which are used for Mobius PVE development and testing) on OS X on Intel.

CVC3

The CVC3 automated theorem prover is currently developed by two teams, one located at
the University of Iowa and the other at New York University. It comes from a legacy of SMT
prover developed at Stanford University with the SVC system.

The CVC3 prover uses a version first-order logic with polymorphic types and quantifiers.
It has powerful built-in theories: it has rational and integer arithmetic, arrays and other
alike data structures as well as inductive data types and equality over uninterpreted function
symbols.

Lately, the CVC3 prover has been tightly integrated in ESC/Java2’s prover backend,
using its brand new Java API. This version of CVC3 is the version that is included in the
Mobius PVE Epsilon release. Even being a so-called unstable version it is stable enough to
be properly used in ESC/Java2.

Yices

Yices is an automated theorem prover that is being developed by SRI International. It is an
SMT solver. It provides counterexamples and unsatisfiable cores. It has numerous theories

16

tightly integrated, and it supports user constraints as well.
The main algorithm it uses is similar to the one in Simplify. It handles uninterpreted

function symbols and equalities. It can handle the solving of MaxSMT problems as well as
SAT and MaxSAT kind of problems.

It is used in the interactive theorem prover PVS, as a decision procedure, as well as in
the Symbolic Analysis Laboratory (SAL) tool suite. SAL is a tool made to help analyse
concurrent systems if they are specified as transition relations.

2.1.5 Prover Editor Subsystems

The MOBIUS Prover Editor [JC08] is an integrated frontend for interactive theorem provers,
currently the Coq prover, that is used to prove the generated verification conditions in-
teractively. Originally developed for JACK, it has now been integrated in the MOBIUS
environment. See [BBC+07b] for more information.

It is composed of several components, a core surrounded by several plugins specific to
provers.

Prover Editor’s Core Component

The basic idea behind the design of the MOBIUS Prover Editor is that reading and writing
large-scale formal specifications is much the same as reading and writing large-scale program
source [Kin04]. Common programming interface idioms like outline views, syntax highlight-
ing, (possibly type-aware) identifier completion, file and construct templates, etc. are natu-
rally adopted and adapted to support development of, and reasoning about, formal models
expressed in higher-order provers.

Additionally, the human-computer interface between the user and the prover via the
Mobius PVE must not only be simple, but most importantly, familiar to traditional interactive
prover users. Thus, most standard key bindings for the Emacs-based front-end are available
from within the MOBIUS Prover Editor.

While the MOBIUS Prover Editor primarily supports Coq, development is underway to
also support the PVS theorem prover, porting the improvements previously identified by
Kiniry and Owre [KO03] and reemphasizing the Prover Editor’s prover-generic nature.

The Coq Language Support

There is an extended support of the Coq language in ProverEditor. It is composed of two
parts, one offering basic interaction with the theorem prover, and the other providing a high
level API permitting to send commands and interpret the output of Coq directly in Java.
This interaction process is extensively described in [JC08].

2.1.6 Core Application Programmer Interfaces Subsystems

The subsystems described in this section are subsystems that were made in order to support
other MOBIUS tools, for their integration inside of Eclipse as well as enabling better profiling
of their performances.

17

The Rich Client Platform Plugin and Library

In order to make the PVE a fully integrated application inside of Eclipse, two things were
necessary: establishing a base library of standard functions used for every MOBIUS graphical
plugin, and providing an extended integration as a Rich Client Platform. This come in the
form of two subsystems, the pluginlib providing facilities for graphical interaction and the PVE
plugin, gathering all the other MOBIUS plugins in order to build an autonomous application
out of them.

The Logging API

The MOBIUS Logging subsystem (or MobLog for short) is an API used by programmers to
make assertions, and emit log messages, about a software system. At its core, it combines
Java and JML’s assert statements with functionality akin to that found in the Java logging
framework (via the java.util.logging package) and the Apache Foundation’s log4j logging
service.

The original design for the Logging subsystem predates not only the MOBIUS project, but
the existence of Java’s logging package and log4j [Kin98]. But, even though this framework
is about a decade old, it still has several features not found in log4j or similar frameworks
including first-class logging contexts, integrated statistics collection, logging categories, and
more.

Within this project, it has been updated and extended for incorporation into the Mobius
PVE for several reasons.

First, as it was designed and written with formal specifications (initially written in Jass,
now in JML), it represents a case study in verification and thus will be used to test various
other MOBIUS subsystems. All classes are annotated with lightweight JML assertions, and
a high-level BON [WN95] specification is also included with the release. Moreover, the entire
software system has been updated and analyzed within the Mobius PVE itself, passing all
static checkers, including ESC/Java2.

Additionally, the MobLog framework supports complex concurrent and distributed sys-
tems’ development, like that found in the Mobius PVE. Tracing the execution of, and un-
derstanding the behavior of, multiple concurrent threads requires a thread-aware logging
framework.

Finally, its availability under MOBIUS control provides an opportunity to unify the several
disparate logging subsystems found within other MOBIUS components. Thus, it is our aim
that all Mobius PVE logging, tracing, and statistics-gathering is performed via this single
unified subsystem.

2.1.7 Java Bytecode Subsystems

One of the end goals of the MOBIUS project is the production of PCC certificates for Java.
To accomplish this goal, reading, writing, manipulating, specifying, and reasoning about Java
bytecode is mandatory. This section discusses the initial subsystems developed for the Mobius
PVE to support these objectives.

18

https://mobius.ucd.ie/browser/src/logging
http://logging.apache.org/log4j/

The Umbra Bytecode Editor

Umbra is an editor for bytecode files which supports editing of BML specifications. This
editor can manipulate bytecode files in a textual form. It can also add, change, and remove
instruction mnemonics so that the actual functionality encoded in the class file methods
changes.

In addition to the modification of bytecode programs, Umbra supports viewing, adding,
deleting and modifying specifications written in the Bytecode Modeling Language (BML), a
counterpart of JML at the bytecode level.

A separate part of the Umbra editor is a library called BMLlib. BMLlib parses fragments
of BML specifications, prints them out in the aforementioned textual format, and reads and
writes BML specifications in class files. More details are presented in [SCB+08].

JML2BML Compiler

The Umbra editor is also equipped with an automatic tool to transform the JML specifications
to BML ones called JML2BML. The compiler can also work as a standalone tool which takes
source code with JML annotations, a class file and adds the BML specifications to the class
file. More details are presented in [FJS08].

BMLVCgen Condition Generator

The bytecode subsystem is able to generate the verification conditions to be proved in Coq.
The tool which does that, BMLVCgen, uses the mechanisms of the MOBIUS Direct Verifi-
cation Generator so the resulting conditions are very similar to the ones obtained from that.
This makes it possible to conduct direct verification of bytecode programs when no source
code is available. More details are mentioned in [CHS09].

Certificate Generation

The bytecode tool set contains also a small tool CCT which enables the possibility to pack a
certificate being e.g. a proof done in Coq to class files. This tool also makes possible to unpack
and check that the code in the class file indeed has the property proven by the certificate.
More details are mentioned in [CHS09].

2.1.8 DirectVCGen Subsystems

One of the aim of the MOBIUS project was to implement a Proof Carrying Code framework.

The Bicolano Plugin

Bicolano [Pic06] is a Coq library that formalizes the memory model of Java, as well as
the bytecode instructions and their semantics. To translate Java classfiles into this Coq
formalization, a tool called Bico has been developed within MOBIUS. This is joint work of
INRIA and Warsaw University [mC07a].

The Bicolano plugin is a package to make Bicolano handily useable by other subsystems,
like the DirectVCGen, BMLVCGen, Bico or Bico+.

19

Bico and Bico+

For each classfile, Bico generates a type, signature, and implementation formalized in Coq.
This generation is modular. Bico also generates summary files to simplify the use of the
definitions.

The main limitation of Bico is due to the size of the Java system library. The classes
contained in this library are usually not generated, because the resolving of the dependencies
would make Bico generate the Coq formalisation for all the system libraries (more than 200
classes). This is not a problem by itself, but loading the generated files into Coq uses a large
amount of time and memory. Therefore, Bico is most useful when applied on user-written
class files, where this problem tends not to arise.

Bico+ is a tool built upon the top of Bico which permits to generate annotations expressed
in the Bicolano formalisation. As an input it takes annotations specified in a data structure.
It is used in two fashions: first in the DirectVCGen, with the annotations being translated
from JML, second in BMLVCGen with the annotations being translated from BML.

The Direct Verification Condition Generator (DirectVCGen)

The MOBIUS DirectVCGen is a tool built upon Bico, Bicolano, the ESC/Java2 parser, as
well as Mobius PVE’s prover backend. It is built around two verification condition generators,
one over source code and one over bytecode.

The MOBIUS DirectVCGen is called “direct” because, contrary to the other verification
condition generators of the Mobius PVE, it uses a simple weakest precondition calculi without
any use of an intermediate language. The source VCGen is written in Java and the bytecode
VCGen is written in Coq. It is part of the proof transforming compiler scheme, as explained
in the deliverable 4.3 [mC07b].

One of the main goals of this tool is to translate the proofs for the verification conditions
generated from the source code to proofs for the verification conditions generated from the
bytecode. To allow this transformation, both VCGen subsystems have to be reasonably
similar. Both weakest precondition calculi have exactly the same set of rules. The only thing
that differs between the two calculi is their way of handling variables. Of course, bytecode
variables can be easily programatically deduced from the source code ones.

The background predicates for both verification conditions are found in the same theory,
that of Bicolano. The tool Bico is used to translate a program into the Coq formalization.
The backend for the VCGen over source code is a specific Coq backend that uses Bicolano as
its memory model.

The mechanisms of the MOBIUS DirectVCGen are used by the bytecode subsystem to
generate verification conditions based on the bytecode alone and BML specifications. The
transition between bytecode combined with BML annotations and the DirectVCGen is done
by a tool called BMLVCGen.

DirectVCGenUI

The user interface of the DirectVCGen is a simple integration inside of Eclipse to seamlessly
be able to see the status of the verification conditions (if they have been proved or not). This
integration is minimalist, and evolves around a simple panel, which uses other components of
the Mobius PVE, like the MOBIUS perspective and ProverEditor.

20

This concludes a summary of Mobius PVE subsystems developed under the MOBIUS
project.

2.2 Subsystems Used within MOBIUS but Developed Elsewhere

Currently eight major “external” subsystems are included in the Mobius PVE. All of these
subsystems have programmatic interfaces available to Mobius PVE developers and are wrapped
in Eclipse plugins for Mobius PVE users. Many of them are also “tuned” for verification, as
described in the following pages.

These particular tools have been chosen for inclusion in the Mobius PVE because they
have been very useful to MOBIUS partners in verification-centric software engineering over
the past several years [KZ08]. As new tools appear in the Eclipse community, they are
objectively evaluated by MOBIUS partner UCD for inclusion in future releases of the Mobius
PVE.

2.2.1 Mylyn

Mylyn is a “Task-Focused Interface” plugin developed originally by researchers at the Uni-
versity of British Columbia, and is now a full-fledged Open Source project recognized by the
Eclipse Foundation. Mylyn makes tasks first-class entities within Eclipse and supports of-
fline, asynchronous interactions with the MOBIUS Trac bug and feature tracker from within
Eclipse, and thus from within the Mobius PVE.

Additionally, when a task is “active”, Mylyn watches the Mobius PVE user work and
figures out what constructs (files, classes, methods, theories, definitions, lemmas, etc.) are
important with respect to that particular task. This means that only those constructs relevant
to the current work, be it developing new software or performing a verification, are visible at
any point in time. When a task is labeled as “inactive”, Mylyn automatically snapshots the
current state of the Mobius PVE and puts everything away so the user is returned to a clean
initial desktop. Furthermore, this context can be saved as a file or attached to a Trac wiki
page or ticket so that others may return to the same state as the original Mobius PVE user.

2.2.2 Version Control

MOBIUS developers primarily use two version control systems: CVS and Subversion. Eclipse
comes with a CVS plugin by default. Two primary Subversion plugins are available today:
Subclipse and Subversive. After evaluating both options, we chose to ship Subclipse with the
Mobius PVE, as it is more reliable and has a more appropriate feature set for dependable
systems development. No special configuration of our version control plugins has taken place.

The Eclipse Mobius PVE developer workspace that we provide via the MOBIUS Trac
server is pre-configured and points (anonymously) to all of the version control repositories
relevant to MOBIUS work, including those hosted by MOBIUS partners, and those hosted
by external sites like SourceForge and our North American colleagues.

The student/instructional/demonstration Mobius PVE workspace that we provide does
not point to any version control repositories.

21

http://subclipse.tigris.org/
http://www.eclipse.org/subversive/

2.2.3 CheckStyle

CheckStyle is a plugin that performs source code style checking. Style checking involves
statically analyzing both documentation and source code against simple, syntactic rules. At
this time CheckStyle does not check JML annotations. Thus, beyond providing example
coding styles codified for checking with this plugin, no special configuration of the CheckStyle
plugin has taken place.

As described in chapter 4, a major part of the MOBIUS process is ensuring that source
code is of a certain quality, measured in terms of the number of errors and warnings produced
by several static checkers working in tandem. The first of these checkers is CheckStyle.

The Mobius PVE comes with several example coding styles: a basic style that promotes
readable code, a moderate style developed by MOBIUS partner Warsaw University that
focuses on dependable code, and a rigorous style developed by MOBIUS partner University
College Dublin that focuses on verifiable code. Additionally, all non-basic styles inherit from
the basic style, thus all checks in the basic style are also contained in the moderate and
rigorous styles.

Style checkers work hand-in-hand with code generators. In Eclipse, there are three basic
kinds of code generators: code templates and skeletons, the results of refactoring, and writing
new code “by-hand” while using Eclipse’s built-in code formatter.

Consequently, each of these mechanisms for generating code must be “tuned” to match
the expected structures of the tool that checks code. As such, the Mobius PVE comes with
appropriate code templates and a code formatting specifications to match each coding style.
Refactoring need not be “tuned” as refactored code is automatically styled according to the
active code formatting style.

In summary, the Mobius PVE assists developers in writing clear, readable, maintainable
documentation and program code by both generating code to a particular per-project style
and checking that code conforms to said style.

The next level of rigor in static checking uses not just syntactic checks, but some lightweight
semantic checks as well. The two main plugins used in the Mobius PVE for such are FindBugs
and PMD, covered in the following two sections.

2.2.4 FindBugs

Static checkers like FindBugs check for programming problems beyond syntactic code style
checking. FindBugs is a configurable bytecode-level checker that analyzes code for common
programming errors. FindBugs does not use a formal semantics or a theorem prover; its
checks are entirely based upon the structure of Java bytecode.

In the Mobius PVE, we have “tuned” FindBugs to perform those checks that complement
and support writing code which is verifiable using MOBIUS verification tools. In other words,
if a program passes the Mobius PVE pre-configured static checkers, it is more amenable to
formal verification.

Each check that is enabled in FindBugs has been evaluated and objectively analyzed
to determine if it should be enabled or disabled for verification-centric programming. This
evaluation is ongoing as new checks become available as FindBugs evolves.

22

2.2.5 PMD

Likewise, we have “tuned” the static checker PMD in a similar fashion. PMD analyzes source
code, rather than bytecode. Thus, it is not usable in all circumstances, as sometimes source
is not available due to licensing, legal, or intellectual property-related reasons.

Evaluation and maintaining the configuration of PMD in the Mobius PVE mirrors that
of FindBugs—as the plugin evolves, so does the set of checks enabled by default to support
verification-centric development.

2.2.6 Metrics

A variety of plugins support measuring a suite of standard software engineering metrics in
program code. Years of experience with automatic and interactive verification have taught
Mobius PVE developers that, code which has a specific range of values for a set of well-
understood metrics are indicative of program code that is easier to verify. Therefore, providing
a plugin that performs metric static analysis is useful to Mobius PVE users.

Two metrics-related plugins ship with the current “epsilon” version of the Mobius PVE:
NCSS and Metrics.

NCSS

JavaNCSS is a simple program that performs some very basic analysis of program source
code. In particular, JavaNCSS counts the Non-Commenting Source Statements (NCSS) of
Java source at the module and method level, as well as summarizing a variety of other tertiary
data.

The NCSS plugin included with the Mobius PVE provides an extremely simple interface
to triggering JavaNCSS from within Eclipse. Analysis is only supported at the project level,
and the output of said analysis is provided within a read-only window containing the raw text
output of JavaNCSS.

As we gain more experience with and “tune” the Metrics plugin discussed in the next
section, it is expected that future versions of the Mobius PVE will not include the NCSS
plugin.

Metrics

The Metrics plugin, in addition to performing all of the actions that NCSS does, also is
capable of analyzing source code for well-known metrics found in the software engineering
literature. Also, metrics at the class and method level are summarized in a more useful
contextual structured fashion, rather than in a plain text window. For example, when a
given code construct is selected with the mouse, the Metrics reporting window automatically
updates to reflect the metrics of that construct.

MOBIUS partners have not gained much hands-on experience in some of these more
advanced kinds of metrics, like various kinds of code coupling analyses. Thus, there is little
concrete evidence about the verifiability of code with respect to such metrics. In fact, as there
is little scientific published data on such, the integration of verification and metrics tools in
the Mobius PVE provides the foundation for new research in such.

23

2.2.7 EclEmma

The following external plugin integrated into the Mobius PVE focuses on code coverage
analysis. The code coverage plugin chosen for use within the Mobius PVE is called EclEmma.

Emma is a code coverage analysis tool that, during program execution (typically dur-
ing unit testing), automatically instruments program bytecode to gather information about
various kinds of standard code coverage measures, including branch and statement coverage.
Emma reports such analysis back to the programmer through a series of reports.

EclEmma wraps Emma into an Eclipse plugin with a rich user interface. Coverage data is
summarized to the user in a simple graphical fashion where program source is highlighted in
various ways to indicate if a given construct has been executed during a given test run. For
example, if a particular method was never executed during unit testing, its body is highlighted
in red.

No customization has yet taken place for EclEmma. The main customization requested
thus far is the ability to perform code coverage analysis during runtime assertion checking.
Highlighting the program source code and executable specifications (in particular, method
contracts and invariants) executed in a given test run will be particularly useful to Mobius
PVE users. Such data will help users understand the completeness of their specifications with
respect to their program code, as well as the completeness of their specifications with respect
to their unit tests.

Additionally, given EclEmma performs aggregate coverage analysis, e.g., a given class’s
executable statements are 90% covered by the current unit tests. Such data will give a
concrete measure that can be related to other aggregate measure like those reported by the
variety of static analysis tools included in the Mobius PVE like FindBugs and ESC/Java2.
A verification “dashboard” is planned that succinctly, visually, interactively summarizes all
of this information for the programmer and a development team.

2.2.8 BCEL

BCEL is the Java library that has been chosen in the MOBIUS project to inspect and ma-
nipulate bytecode. It is used mainly in the BML subsystems, the DirectVCGen subsystems
and the ESC/Java2 subsystem.

Its main use is for embedding annotations in the BML subsystems, and in DirectVCGen
and ESC/Java2 it is used to inspect the structure of the class hierarchy especially when no
source code for a specific class is provided. It is packed as a plugin for Eclipse, and all the
libraries are exposed through it to the other MOBIUS tools.

2.2.9 BONc

BON is a textual and graphical domain-independent specication language akin to UML, but
which focuses on all software engineering stages from domain analysis to architecture to
contract-centric component design.

BONc is a parser, typechecker and documentation generator for BON. It primarily focuses
on checking the correctness of BON documentation, as well as automating some tasks that
are performed during development with BON. More information can be found on the BONc
website.

24

http://kind.ucd.ie/products/opensource/BONc/
http://kind.ucd.ie/products/opensource/BONc/

2.2.10 Beetlz

Beetlz is a tool providing automated support for consistency checking between a detailed BON
model and the JML specification and Java implementation. It delegates parsing of the BON
and Java/JML to BONc and OpenJML respectively, and consumes the structures produced
by these tools during parsing.

Discrepancies between related artifacts are detected and presented in a cohesive manner.
Beetlz also provides support for Java/JML code generation as well as BON model extraction.
Developers can also provide specific knowledge to guide the tool with facts and refinement
relations that were not automatically deducible. More information can be found on the Beetlz
website.

This concludes a summary of Mobius PVE subsystems developed by parties outside of the
MOBIUS project. Furthermore, this concludes a summary of all Mobius PVE subsystems.

25

http://kind.ucd.ie/products/opensource/Beetlz/
http://kind.ucd.ie/products/opensource/Beetlz/

Chapter 3

Using the MOBIUS Program Verification
Environment

As the Mobius PVE is simply an enriched version of Eclipse, Eclipse users will find the
Mobius PVE quite familiar. This chapter provides a high-level developer walk-through of the
configuration and use of the Mobius PVE.

Screenshots included in this deliverable are of the current “epsilon” version of the Mobius
PVE. The final “epsilon” version has more consistent, tighter integration between subsystems,
but as it is being shipped after this deliverable is submitted, we do not include screenshots
from it here. The Mobius Trac http://mobius.ucd.ie/, which contains a constantly-updated
version of this deliverable as user documentation will contain up-to-date screenshots when
appropriate.

3.1 General Walk-through of Using the Mobius PVE

The first step in using the Mobius PVE is to obtain and install it from the MOBIUS website.

3.1.1 Downloading

The Mobius PVE is available from the MOBIUS Trac server http://mobius.ucd.ie/ and via the
KindSoftware research group website (the research group of the MOBIUS UCD partner), as
seen in Figure 3.1. Pre-configured Eclipse builds are available for all main platforms including
Microsoft Windows, Apple’s Mac OS X, and Linux. Download the appropriate archive; it can
be unpacked anywhere on the local disk.

Sample Workspace A sample Eclipse workspace is also available from the aforementioned
sites. This workspace includes example projects and documentation about the Mobius PVE.

3.1.2 Configuring a Java Project for Verification

Each main subsystems included in the “epsilon” release of the Mobius PVE is configured
separately. First one must create a new Java project, or import an existing Java project. One
may also simply use an existing Eclipse workspace with the Mobius PVE.

26

http://mobius.ucd.ie/
http://mobius.ucd.ie/
http://kind.ucd.ie/products/opensource/Mobius/
http://kind.ucd.ie/products/opensource/archives/workspace_examples.zip

Figure 3.1: The Mobius PVE Download Site at KindSoftware.

27

Coding Standards

The first subsystem that one should configure is the CheckStyle coding standard checker
and the complementary Eclipse code formatter. The CheckStyle plugin is configured via the
Project Properties dialog, available either via the Project menu or via a right mouse action
on the project name in the resources browser. The Mobius PVE comes pre-configured with
the MOBIUS coding standard built-in.

Figure 3.2: Importing a new coding standard.

If one wishes to further configure the default coding standard, either the configuration
can be tweaked via the plugin’s preferences panel, or one can import, duplicate and edit
the external MOBIUS coding standard configuration file, available from the MOBIUS Trac
server. Figure 3.2 illustrates this possibility.

Configuring the Eclipse code formatter takes place in a similar fashion. The Mobius PVE
is pre-configured with several code formatters. Figure 3.3 shows the example UCD code
formatter configuration that is included with the sample workspace.

28

https://mobius.ucd.ie/repos/websites/MobiusToolsWiki/Standards/CodeStandard/
https://mobius.ucd.ie/repos/websites/MobiusToolsWiki/Standards/CodeStandard/

Figure 3.3: Configuring the Eclipse Code Formatter.

29

Configuring and Using the JML Plugin

The JML plugin is configured on a per-project basis. The JML typechecker, compiler, and
runtime assertion checker are configured independently. Figure 3.4 shows the preferences
panel for configuring the JML typechecker.

JML typechecking or compilation is currently accomplished via a menu action, as seen
in Figure 3.5. In a future version of the Mobius PVE, autobuilders will be intelligently
triggered instead.

Configuring and Using Static Checkers

Several static checkers are included in the Mobius PVE. First, configuring and executing the
main static checker, ESC/Java2, is summarized.

ESC/Java2 The main static checker included with the Mobius PVE at this time is ESC/Java2.
ESC/Java2 is configured via menu actions and preferences panels.

To initially configure the plugin, one must enable the ESC/Java “nature” (a set of config-
urations that ensures the plugin is properly configured for use) and “builder” (an action that
is triggered at specified times, typically to build a system or to perform some analysis). The
JML menu contains item to perform initial setup of the plugin (Figure 3.6).

Project-specific configuration of ESC/Java2 is accomplished via a Project Properties
panel, as seen in Figure 3.7. Via this control panel, one controls all of the standard warn-
ings for ESC/Java2, the use of various theorem provers, and programming language variants,
including JavaCard (see Figure 3.8).

The ESC/Java builder can be enabled to run each and every time a Java source file is
saved. This is accomplished via another item in the JML menu, as seen in Figure 3.9.

Finally, ESC/Java2 can be manually executed on any project subunit (file, package, etc.)
via a right mouse action on the appropriate resource (Figure 3.10).

Other Static Checkers Configuring plugins like PMD, FindBugs, Mylyn, EclEmma and Met-
rics all happen in the standard fashion. Decide which, if any, of the non-MOBIUS static check-
ers should be enabled as auto-builders. (An auto-builder is a builder that is automatically
triggered when a specific action takes place, e.g., when a file is saved.)

As all plugins are pre-configured to compliment verification with MOBIUS subsystems,
their preference settings should, in general, be untouched.

Configuring Other Subsystems

Several other subsystems (the JML Folding subsystem, the MOBIUS Coq editor, the Umbra
bytecode viewer, etc.) are configured in similar ways, but are not discussed here for brevity’s
sake.

3.1.3 Performing Verification

Performing verification within the Mobius PVE is integrated directly into the standard prac-
tices of software development.

30

Figure 3.4: Configuring the JML Checkers.

31

Figure 3.5: Executing the JML Compiler.

Figure 3.6: Enabling the ESC/Java Nature.

32

Figure 3.7: Configuring ESC/Java2.

33

Figure 3.8: Configuring ESC/Java2 for use with JavaCard.

34

Figure 3.9: Enabling automatic execution of ESC/Java2.

Executing MOBIUS and non-MOBIUS Static Checkers

All static checkers can be executed manually with a right mouse button action and/or a menu
operation, typically at multiple levels of granularity (e.g., check a method, a class, a file, a
package, etc.). Some static checkers like CheckStyle, PMD, FindBugs, and ESC/Java2 can
also be configured as autobuilders, which are triggered each time a resource changes.

Generating a Verification Condition

As discussed in several sections earlier, verification conditions are generated by three different
subsystems shipped with the Mobius PVE at the moment.

VC generation from ESC/Java2 is built-in and VCs are only retained if special switches,
currently unavailable via the Eclipse ESC/Java2 plugin, are used.

VC generation with the MOBIUS DirectVCGen can be controlled using a graphical inter-
face inside of Eclipse Figure 3.11. The FreeBoogie VCGen is only controlled via command-line
tools at this time.

Executing the MOBIUS Prover Editor

The MOBIUS Prover Editor is made out of two panels Figure 3.12. It is automatically loaded
and initialized anytime a Coq theory file or proof script file is loaded within the Mobius PVE.
No special configuration is necessary. If the prover needs to be reset, a small reinitialize
button is available in the toolbar.

35

Figure 3.10: Manually Executing ESC/Java2.

Viewing and Manipulating BML-annotated Java Bytecode

Finally, viewing and editing Java bytecode with Umbra Figure 3.13 is accomplished by simply
opening a bytecode file or pushing an Umbra button when in a Java source code editor. Except
the button to open the bytecode view the environment has also a button to compile JML
specifications into a bytecode file in the form of BML annotations.

While viewing bytecode, a variety of buttons are available that permit one to refresh
the view, jump to source corresponding to the currently selected bytecode fragment. This

completes our brief summary of installation, configuration, and use of the Mobius PVE.

36

Figure 3.11: Generating and inspecting verification conditions with the DirectVCGen.

37

Figure 3.12: Proving in Coq with ProverEditor.

38

Figure 3.13: Viewing and annotating Java bytecode.

39

Chapter 4

The MOBIUS Software Development
Process

Software developed within the MOBIUS project takes place using a variety of tools and
processes. As the Mobius PVE has been under development during the first two years of the
project, MOBIUS developers are now able to use the prototype Mobius PVE to verify existing
and ongoing work. Likewise, software development processes change to accommodate new
verification tools and related technologies as they become available. Most developers have
used, to date, tools and processes which are related to the intent of the Mobius PVE, e.g.,
older versions of the JML tools or standard open source static checkers.

The core elements of any medium-to-large scale software development effort, a coding
standard, a collaborative development environment, and a version control repository, were
put in place very early in MOBIUS development. This chapter briefly summarizes these
resources and the current and intended use of each.

4.1 The MOBIUS Coding Standards

The MOBIUS coding standard is derived from the UCD coding standard, originally developed
by Joe Kiniry while at Caltech in 1996, then updated while he worked at Radboud University
Nijmegen from 2002–2004. This standard has influenced the programming standards of many
other research groups and organizations, including Sun Microsystems.

This coding standard stipulates the syntactic style of Java source code including identifier
naming, code layout, documentation style and completeness, etc. Additionally, guidelines
on appropriate values of a variety of metrics measured by subsystems like those described
in subsection 2.2.6, are provided.

The base MOBIUS coding standard is codified in as a CheckStyle style and an Eclipse
code formatter configuration. Variant coding styles, specific to various projects, groups,
development teams, and sites, are derived from this base standard. They are also codified
using CheckStyle and Eclipse. Example “moderate” and “rigorous” standards are provided
with the Mobius PVE, as discussed in subsection 2.2.6.

While not all source for all subsystems has been checked against a specific coding standard
as of yet, the majority of MOBIUS-specific Mobius PVE code has been checked against one
of three different standards. As Mobius PVE development continues, and the MOBIUS
development process evolves and becomes more codified within the Mobius PVE, new and

40

existing subsystems are checked against new and existing styles.

4.2 The MOBIUS Collaborative Development Environments

Several web-based Collaborative Development Environments (CDEs) have been used for Mo-
bius PVE development thus far.

Tools developed prior to the MOBIUS project’s genesis were hosted at open CDEs sites
like SourceForge and private CDEs like the SoS Bugzilla and the UCD GForge.

The initial CDEs used for MOBIUS coordination and some development effort were
GForges hosted by INRIA (located at http://mobius.inria.fr) and UCD (located at http://sort.ucd.ie/).

To better coordinate development on the Mobius PVE, a single CDE has been configured
at UCD, as it leads the main task relating to Mobius PVE development (Task 3.6). A Trac
server, securely hosted at UCD, now hosts nearly all of Mobius PVE development. Existing
collaborative artifacts like bug and feature request tickets, patches, repository contents, and
wiki pages have been migrated from the various older CDEs mentioned above into this Trac
server.

4.2.1 The MOBIUS Trac

The MOBIUS Trac is an integrated project management system, which includes a wiki for
technical documentation, a Subversion server for source code (and other artifacts) control,
and a ticket management system for defect reports and feature requests. It is integrated with
Eclipse using the Mylyn plugin, as described in subsection 2.2.1, which is distributed as part
of the Mobius PVE.

The MOBIUS Trac is accessed via the URL https://mobius.ucd.ie/.

4.3 The MOBIUS Version Control Repository

Like CDEs, a variety of version control repositories have been used over the past several years
as well. Consolidation of these repositories is ongoing. The MOBIUS Subversion repository
is hosted as part of the Trac discussed in the last section.

Consolidation and reorganization of the Subversion repository is still ongoing. For exam-
ple, the jars and and libs directories are being combined and reorganized.

A Mobius PVE development mailing list called mobius-tools also exists. It is currently
hosted at INRIA but will be moved to UCD as well for better integration with the MOBIUS
Trac server.

This concludes this summary of the MOBIUS software development process and related
servers and tools.

41

http://www.sourceforge.net
http://mobius.inria.fr
http://sort.ucd.ie/
http://trac.edgewell.org/
https://mobius.ucd.ie/

Chapter 5

Epsilon Release Provisional Manifest

The “Epsilon” release of the Mobius PVE is based upon the Eclipse Galileo (3.5.x) IDE for
Java Developers.

5.1 Features and Plugins Included

The following MOBIUS plugins and features are included in the “Epsilon” release. The
versions of each plugins are the minimum versions of each of them that will be found in the
“Epsilon” release.

• Java Modeling Language (JML) feature 1.0.2:

– JML2 Eclipse plugin 1.0.4

– JML folding plugin 1.0.7

• Extended Static Checking (ESC) feature 2.0.21:

– ESC/Java2 plugin 2.0.9

– ESC/Java2 UI plugin 2.0.14

– Javafe plugin 2.0.9

– FreeBoogie plugin 1.0.0

– RCC plugin 1.0.0

• Automated Theorem Provers (ATP) feature 0.2.0:

– Simplify plugin 1.5.6

– CVC3

– Microsoft Research’s Z3 theorem prover 2.0

– Yices plugin 1.0.21

– CVC3 plugin

• ProverEditor feature 1.0.2:

– Prover Editor 0.9.7

42

– Coq Editor 0.9.4

– Coq Sugar 0.9.4

• Bytecode Modeling Language (BML) feature 0.0.14:

– JavaVerifier 0.0.1

– BML2BPL 0.0.1

– BmlLib 1.1.9

– JML2BML 1.0.1

– Umbra 1.0.9

– CCT plugin 0.0.1

– BMLVCGen plugin 0.0.1

• DirectVCGen feature 1.0.7:

– Bicolano 1.0.1

– Bico 1.0.1

– DirectVCGen 1.0.0

– DirectVCGenUI 1.0.3

and the following third-party plugins and features:

• BCEL plugin 5.2.0

• Checkstyle feature 4.4.2

• Subclipse feature 1.6.2

• Buckminster 0.2.0

• EclEmma Java Code Coverage feature 1.3.0

• FindBugs feature 1.2.1

• Metrics feature 1.3.6

• Mylyn feature 2.1.0

• PMD feature 3.2.4

5.2 Sample Workspace

The sample workspace contains the following projects:

• ESCJava2 plugin demo

• ETAPS Tutorial demo

• Examples

43

5.3 Platforms

The “gamma,” “delta,” and “epsilon” releases have been tested on the following platforms:

• Mac OS X 10.4 Tiger

• Mac OS X 10.5 Leopard

• Linux - Ubuntu 9

• Windows XP

• Windows Vista

44

Chapter 6

Annotation generation

Verifying a program typically requires many program annotations. To make this feasible in
practice, some support for automatically generation annotations is vital. Different ways to
alleviate the annotation burden have been pursued in Mobius, incl.

• the inference of basic specifications, for instance non-nullness and requirements stem-
ming from array bounds [CFJ+06, BBC+07a].

• dedicated inference algorithms, in particular for decreases clauses [FJ09] and immutabil-
ity [HP09a, HP09b].

• the generation of annotations from higher level specifications in the form of state ma-
chine of various kinds [PS07, HT09, Hui09], more in particular so-called midlet naviga-
tion graphs [Cré06];

• the extraction of such higher level specifications from code [Cré08];

These efforts are described in more detail below.

6.1 Inferring and Propagating Annotations

Error messages produced by a program analysis tool, which indicate failed verification at-
tempts, can be used to automate the generation and propagation of program annotations in
code. This approach is pursued in the CANAPA tool [CFJ+06]: CANAPA uses the error
messages of ESC/Java2 to infer and propagate non-null annotations. CANAPA comes with
an Eclipse plug-in.

In an attempt to further reduce the burden of annotation writing further, we have imple-
mented an algorithm dedicated to the generation of “obvious” minimal preconditions to avoid
not only null-pointer, but also array-out-of-bounds exceptions (see [BBC+07a]). This algo-
rithm re-uses the implementation of the wp-calculus. A possibility to improve the algorithm
is to apply a simple analysis to identify possible class invariants.

It is important to be able to determine the effectiveness of a particular method of spec-
ification generator. In order to be able to do that a CodeStatistics tool has been developed
which allows to gather statistics on code fragments that enjoy particular property (e.g. for
which an annotation that guarantees certain property can be generated). This has been used

45

in a case study to generate JML decreases clauses that guarantee termination of for loops
[FJ09].

For the type system for enforcing immutability of objects developed in Task 3.3 [HPSS07]
we developed an system to infer the necessary annotations, reported in [HP09b]. Our aim
was to only require annotations for immutability that could be handled with the new JSR
308 annotation syntax. The type system for immutability was considerably generalised and
streamlined in the process, as reported in [HP09a], but unfortunately this meant that imple-
mentation of the type system (as JSR 308 pluggable checker) and the implementation of the
inference algorithm have not been finished yet.

6.2 State Diagrams and Navigation Graphs

An alternative way to alleviate the burden of annotating code is to provide some higher-level
specification formalism, which makes developing specifications less work. These high-level
specifications are then automatically translated into to more basic program annotations.

The earlier work on security requirements reported in Deliverable 1.2 [mC06] suggested
that so-called midlet navigation graphs [Cré06] could be such a higher-level specification
formalism. Such graphs are essentially a form of security automata. The NAVMID tool
developed at France Télécom provides support in drawing midlet navigation graphs. The
existing industry standard for testing MIDP application, the Unified Testing Criteria (UTC)
[Ini06] already prescribes the use of a similar, albeit completely informal, notion of ‘flow
diagram.’ Unfortunately, the notion of flow diagrams is completely informal 1.

6.2.1 From Java Code to Automata

A formalisation of the notion of navigation graph, which had earlier been sketched in Deliver-
able D5.1 [mC07c], is given in [Cré08]. The paper also describes an algorithm for navigation
graph from Java bytecode. A prototype of this algorithm has been implemented on top of the
MATOS program analyser [CA05] at France Télécom. This work is described in more detail
in Deliverable D5.2.

6.2.2 From Automata to JML

Security automata are a convenient way to describe security policies. Traditionally they are
used to monitor an application at runtime, and to interrupt it as soon as it violates the
security policy. However, in our setting of PCC, we would like to use security automata as
JML specifications, and verify adherence to them statically. The JML annotations effectively
inline the monitor in the application.

The translation of security automata into program annotations is not trivial, and there
is the danger that the semantics of the annotations is not equivalent to the effect of runtime
monitoring. Therefore we formalised this translation.

The translation from security automata to program annotations is defined in several steps:

1. complete the security automata, adding a special trap state that should not be reached
(whereas partial automata, describing only the allowed transitions are sufficient for
monitoring);

1UTC 2.1 requires the flow diagram to be supplied as JPG or GIF.

46

2. generate special set-annotations at the level of method specifications, capturing the
behavior of the security automata, together with an invariant stating that the error
state should not be reached; and

3. inline the annotations into the method body.

We have developed a generic program semantics that is instantiated for monitoring and run-
time annotation checking. We prove that every translation step preserves the program be-
havior. In particular this means that monitoring will not find a security violation iff run-time
annotation checking will not find any annotation violation (provided that earlier existing
annotations are not violated either).

The translation and its correctness proof have been presented in [HT09]. The correctness
proofs revealed several subtleties that have to be considered in the algorithm, and necessary
assumptions about program behavior. It also revealed a subtle interplay between the seman-
tics of finally clauses and the behaviour of a run-time checker [Hui09]: abrupt termination of
a finally clause can discard a JML annotation error.

Using an annotation propagation algorithm (as in [PBB+04]) the generated annotations
give rise to pre- and postcondition annotations in the whole application, that can be verified
statically.

In the simplest form of security automata, each edge corresponds to some unique event,
typically some method call, but for convenient specifications one can allow richer languages
for decorating edges. In [PR08] we define suitable notions of refinement for MIDP navigation
graphs, and propose a translation of these to JML annotations.

We have also adapted AutoJML, a tool we developed earlier in Nijmegen [HO03] to gener-
ate JML annotations from automata-like specifications, to cope with richer forms of automata.
In [PS07] this has been used to generate JML annotations to verify that the MIDP-SSH im-
plementation is correct with respect to a formal specification of the SSH protocol. Here our
formal specification probably goes into much more detail than one would typically give in a
security automaton.

Work on case studies in checking midlets against navigation graphs is reported in Deliv-
erable 5.2 [mC09] and in [MP09].

47

Chapter 7

Publications Relating to WP3.6 and WP3.7

The following publications by MOBIUS partners relate directly to subsystems and functional-
ity of the Mobius PVE, case studies performed with the Mobius PVE, or work on annotation
generation.

• [BBC+07a] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet,
M. Pavlova, and A. Requet. JACK: A tool for validation of security and behaviour of
Java applications. In Formal Methods for Components and Objects: Revised Lectures
from the 5th International Symposium FMCO 2006, number 4709 in Lecture Notes in
Computer Science, pages 152174. Springer-Verlag, 2007.

• [CHK05] P. Chalin, C. Hurlin, and J. R. Kiniry. Integrating static checking and inter-
active verification: Supporting multiple theories and provers in verification. In Verified
Software: Tools, Technologies, and Experiences (VSTTE), Zurich, Switzerland, 2005.

• [JC08] J. Charles and J. Kiniry. A lightweight theorem prover interface for eclipse. In
User Interfaces for Theorem Proving, 2008.

• [CHS+08] J. Chrzszcz, M. Huisman, A. Schubert, J. Kiniry, M. Pavlova, and E. Poll.
BML Reference Manual, December 2008. In Progress. Available from http://bml.
mimuw.edu.pl.

• [CHS09] J. Chrzszcz, M. Huisman, and A. Schubert. BML and related tools. In Formal
Methods for Components and Objects, number 5751 in Lecture Notes in Computer
Science, pages 278–297. Springer-Verlag, 2009.

• [CFJ+06] M. Cielecki, J. Fulara, K. Jakubczyk, . Jancewicz, J. Chrzszcz, A. Schubert,
and . Kamiski. Propagation of JML non-null annotations in Java programs. In Princi-
ples and Practices of Programming in Java, 2006.

• [CS08] P. Czarnik and A. Schubert. Extending operational semantics of the Java byte-
code. In Trustworthy Global Computing, volume 4912 in Lecture Notes in Computer
Science, pages 57–72. Springer-Verlag, 2007.

• [Cré08] P. Crégut. Extracting control from data: User interfaces of MIDP applications.
In Trustworthy Global Computing: Revised Selected Papers from the Third Symposium
TGC 2007, number 4912 in Lecture Notes in Computer Science, pages 4156. Springer-
Verlag, 2008.

48

http://bml.mimuw.edu.pl
http://bml.mimuw.edu.pl

• [FJ09] J. Fulara and K. Jakubczyk. Practically applicable formal methods. In http:
//www.mimuw.edu.pl/˜fulara/CodeStatistics/loopconditions.pdf, June 2009. Unpub-
lished manuscript.

• [GM07] R. Grigore and M. Moskal. Edit and verify. In Workshop on First-Order
Theorem Proving, September 2007.

• [GCFK09] R. Grigore, J. Charles, F. Fairmichael, and J.R. Kiniry. Strongest Postcondi-
tion of Unstructured Programs. In Workshop on Formal Techniques for Java Programs,
2009.

• [HP09a] C. Haack and E. Poll. Type-based object immutability with flexible initializa-
tion. In ECOOP 2009, volume 5653 of Lecture Notes in Computer Science, pages 520
545. Springer, 2009.

• [HP09b] C. Haack and E. Poll. Type-based object immutability with flexible initial-
ization (long version). Technical Report ICISR09001, Radboud University Nijmegen,
2009.

• [Hui09] M. Huisman. On the interplay between the semantics of java’s finally clauses
and the jml run-time checker. In A. Banerjee, editor, Workshop on Formal Techniques
for Java Programs. ACM, 2009.

• [HT09] M. Huisman and A. Tamalet. A formal connection between security automata
and JML annotations. In Fundamental Approaches to Software Engineering, volume
5503 of Lecture Notes in Computer Science, pages 340354. Springer-Verlag, 2009.

• [Jan07] M. Janota. Assertion-based loop invariant generation. In Workshop on Invariant
Generation, Hagenberg, Austria, 2007. Workshop at CALCULEMUS 2007.

• [JGM07] M. Janota, R. Grigore, and M. Moskal. Reachability analysis for annotated
code. In Specification and Verification of Component-Based Systems, a workshop at
ESEC/FSE, 2007.

• [JK07] M. Janota and J. Kiniry. Reasoning about feature models in higher-order logic.
In Proceedings of the 11th International Conference, SPL, 2007.

• [KMD06] J. R. Kiniry, A. Morkan, and B. Denby. Soundness and completeness warnings
in ESC/Java2. In Specification and Verification of Component-Based Systems, 2006.

• [Kin07] J. R. Kiniry. Formally counting electronic votes (but still only trusting pa-
per). In IEEE International Conference on Engineering of Complex Computer Systems,
Auckland, New Zealand, 2007.

• [KF09] J.R. Kiniry and F. Fairmichael. Ensuring Consistency between Designs, Docu-
mentation, Formal Specications, and Implementations. In Component Based Software
Engineering (CBSE), 2009.

• [KCT07] J.R. Kiniry, D. Cochran, and P. Tierney. A verification-centric realization
of e-voting. In International Workshop on Electronic Voting Technologies, Boston,
Massachusetts, 2007. Workshop at USENIX/ACCURATE 2007.

49

http://www.mimuw.edu.pl/~fulara/CodeStatistics/loopconditions.pdf
http://www.mimuw.edu.pl/~fulara/CodeStatistics/loopconditions.pdf

• [KMC+07] J.R. Kiniry, A. Morkan, D. Cochran, F. Fairmichael, P. Chalin, M. Oostdijk,
and E. Hubbers. The KOA remote voting system: A summary of work to date. In
Trustworthy Global Computing, Lucca, Italy, 2006.

• [KZ08] J.R. Kiniry and D.M. Zimmerman. Secret ninja formal methods. In Formal
Methods, 2008.

• [LM07] H. Lehner and P. Müller. Formal translation of bytecode into BoogiePL. In
M. Huisman and F. Spoto, editors, Bytecode Semantics, Verification, Analysis and
Transformation, Electronic Notes in Theoretical Computer Science, 2007.

• [MK07] M. Moskal, J. opuszaski, and J. Kiniry. E-matching for fun and profit. In The
5th International Workshop on Satisfiability Modulo Theories (SMT), Berlin, Germany,
July 2007.

• [PS07] E. Poll and A. Schubert. Verifying an implementation of SSH. In Workshop on
Issues in the Theory of Security, pages 164–177. IFIP WG1.7, 2007.

• [SC06] A. Schubert and J. Chrzszcz. ESC/Java2 as a tool to ensure security in the source
code of Java applications. In Software Engineering Techniques: Design for Quality,
IFIP, Warsaw, 2006. Springer-Verlag.

• [SCB+08] A. Schubert, J. Chrzszcz, T. Batkiewicz, J. Paszek, and W. Ws. Technical
aspects of class specification in the byte code of Java language. In To be published in
Bytecode’08 proceedings, Electronic Notes in Theoretical Computer Science. Elsevier,
2008.

50

Bibliography

[BBC+07a] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet,
M. Pavlova, and A. Requet. JACK: A tool for validation of security and be-
haviour of Java applications. In Formal Methods for Components and Objects:
Revised Lectures from the 5th International Symposium FMCO 2006, number
4709 in Lecture Notes in Computer Science, pages 152–174. Springer-Verlag,
2007.

[BBC+07b] Gilles Barthe, Lennart Beringer, Pierre Crégut, Benjamin Grégoire, Martin Hof-
mann, Peter Müller, Erik Poll, Germán Puebla, Ian Stark, and Eric Vétillard.
MOBIUS: Mobility, ubiquity, security — objectives and progress report. In
TGC 2006 [07].

[BT07] C. Barrett and C. Tinelli. CVC3. In Computer Aided Verification, volume 4590
of Lecture Notes in Computer Science, pages 298–302. Springer, 2007.

[CA05] P. Crégut and C. Alvarado. Improving the security of downloadable Java ap-
plications with static analysis. In Bytecode Semantics, Verification, Analysis
and Transformation, volume 141 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2005.

[CFJ+06] M. Cielecki, J. Fulara, K. Jakubczyk, . Jancewicz, J. Chrzszcz, A. Schubert,
and . Kamiski. Propagation of JML non-null annotations in Java programs. In
Principles and Practices of Programming in Java, 2006.

[CHK05] P. Chalin, C. Hurlin, and J. R. Kiniry. Integrating static checking and interactive
verification: Supporting multiple theories and provers in verification. In Verified
Software: Tools, Technologies, and Experiences (VSTTE), 2005.

[CHS+08] J. Chrzaszcz, M. Huisman, A. Schubert, J. Kiniry, M. Pavlova, and E. Poll.
BML Reference Manual, December 2008. In Progress. Available from http://
bml.mimuw.edu.pl.

[CHS09] J. Chrzszcz, M. Huisman, and A. Schubert. BML and related tools. In For-
mal Methods for Components and Objects, number 5751 in Lecture Notes in
Computer Science, pages 278–297. Springer-Verlag, 2009.

[Con04] The JSR 133 Consortium. The Java memory model causality test cases, 2004.
http://www.cs.umd.edu/˜pugh/java/memoryModel/CausalityTestCases.html.

[Cré06] Pierre Crégut. Midlet navigation graphs. Unpublished draft, 2006.

51

http://bml.mimuw.edu.pl
http://bml.mimuw.edu.pl
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html

[Cré08] Pierre Crégut. Extracting control from data: User interfaces of MIDP applica-
tions. In TGC 2007 [08], pages 41–56.

[CS08] P. Czarnik and A. Schubert. Extending operational semantics of the java byte-
code. In TGC 2007 [08], pages 57–72.

[Ecl] Eclipse website. www. See http://www.eclipse.org/.

[07] Trustworthy Global Computing: Revised Selected Papers from the Second Sym-
posium TGC 2006, Lucca, Italy, November 7–9, 2006, number 4661 in Lecture
Notes in Computer Science. Springer-Verlag, 2007.

[08] Trustworthy Global Computing: Revised Selected Papers from the Third Sym-
posium TGC 2007, Sophia-Antipolis, France, November 5–6, 2007, number 4912
in Lecture Notes in Computer Science. Springer-Verlag, 2008.

[FF00] C. Flanagan and S. N. Freund. Type-based race detection for Java. In Program-
ming Languages Design and Implementation, pages 219–232, New York, NY,
USA, 2000. ACM Press.

[FJ09] J. Fulara and K. Jakubczyk. Practically applicable formal methods. In http:
//www.mimuw.edu.pl/˜fulara/CodeStatistics/loopconditions.pdf, June 2009.

[FJS08] J. Fulara, K. Jakubczyk, and A. Schubert. Supplementing java bytecode with
specifications. In T. Hruka, L. Madeyski, and M. Ochodek, editors, Software
Engineering Techniques in Progress, pages 215–228. Oficyna Wydawnicza Po-
litechniki Wroclawskiej, 2008.

[FL00] C. Flanagan and K.R.M. Leino. Houdini, an annotation assistant for ESC/Java.
Technical Report 2000-003, DEC-SRC, December 2000.

[Fur86] G.W. Furnas. Generalized fisheye views. ACM SIGCHI Bulletin, 17(4):16–23,
April 1986.

[GCFK09] R. Grigore, J. Charles, F. Fairmichael, and J.R. Kiniry. Strongest Postcondi-
tion of Unstructured Programs. In Workshop on Formal Techniques for Java
Programs, 2009.

[GJSB05] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Specification, Third Edition, chapter 17. Sun Microsystems, 2005.
http://java.sun.com/docs/books/jls/.

[GM07] R. Grigore and M. Moskal. Edit and verify. In Workshop on First-Order Theorem
Proving, September 2007.

[HM05] C. A. R. Hoare and J. Misra. Verified software: Theories, tools, experiments
vision of a grand challenge project. A companion paper for VSTTE 2005, held
in Züich, Switzerland., July 2005.

[HO03] E. Hubbers and M. Oostdijk. Generating JML specifications from UML state dia-
grams. In Forum on specification & Design Languages, pages 263–273. University
of Frankfurt, 2003. Proceedings appeared as CD-Rom with ISSN 1636-9874.

52

http://www.eclipse.org/
http://www.mimuw.edu.pl/~fulara/CodeStatistics/loopconditions.pdf
http://www.mimuw.edu.pl/~fulara/CodeStatistics/loopconditions.pdf

[HP09a] C. Haack and E. Poll. Type-based object immutability with flexible initializa-
tion. In European Conference on Object-Oriented Programming, volume 5653 of
Lecture Notes in Computer Science, pages 520–545. Springer, 2009.

[HP09b] C. Haack and E. Poll. Type-based object immutability with flexible initialization
(long version). Technical Report ICIS–R09001, Radboud University Nijmegen,
2009.

[HPSS07] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable objects for a Java-like
language. In R. De Nicola, editor, ESOP’07, volume 4421 of Lecture Notes in
Computer Science, pages 347–362. Springer-Verlag, 2007.

[HT09] M. Huisman and A. Tamalet. A formal connection between security automata
and JML annotations. In Fundamental Approaches to Software Engineering,
volume 5503 of Lecture Notes in Computer Science, pages 340–354. Springer-
Verlag, 2009.

[Hui09] M. Huisman. On the interplay between the semantics of java’s finally clauses and
the jml run-time checker. In A. Banerjee, editor, Workshop on Formal Techniques
for Java Programs. ACM, 2009.

[Ini06] Unified Testing Initiative. Unified testing criteria for Java technology-based ap-
plications for mobile devices. Technical report, Sun Microsystems, Motorola,
Nokia, Siemens, Sony Ericsson, May 2006. Version 2.1.

[Jan07] M. Janota. Assertion-based loop invariant generation. In Workshop on Invariant
Generation, 2007. Workshop at CALCULEMUS 2007.

[JC08] J. Kiniry J. Charles. A lightweight theorem prover interface for eclipse. In User
Interfaces for Theorem Proving, 2008.

[JGM07] M. Janota, R. Grigore, and M. Moskal. Reachability analysis for annotated
code. In Specification and Verification of Component-Based Systems, Dubrovnik,
Croatia, 2007. Workshop at ESEC/FSE 2007.

[JK07] M. Janota and J. Kiniry. Reasoning about feature models in higher-order logic.
In Proceedings of the 11th International Conference, SPL, 2007.

[KCT07] J.R. Kiniry, D. Cochran, and P. Tierney. A verification-centric realization of
e-voting. In International Workshop on Electronic Voting Technologies, Boston,
Massachusetts, 2007. Workshop at USENIX/ACCURATE 2007.

[KF09] J.R. Kiniry and F. Fairmichael. Ensuring consistency between designs, documen-
tation, formal specications, and implementations. In International Symposium
on Component Based Software Engineering, 2009.

[Kin98] J. R. Kiniry. IDebug: An advanced debugging framework for Java. Technical
Report CaltechCSTR:1998.cs-tr-98-16, California Institute of Technology, 1998.

[Kin04] J.R. Kiniry. Formalizing the user’s context to support user interfaces for inte-
grated mathematical environments. Electronic Notes in Theoretical Computer
Science, 103, 2004.

53

[Kin07] J. R. Kiniry. Formally counting electronic votes (but still only trusting paper). In
IEEE International Conference on Engineering of Complex Computer Systems,
Auckland, New Zealand, 2007.

[KMC+07] Joseph R. Kiniry, Alan E. Morkan, Dermot Cochran, Fintan Fairmichael, Patrice
Chalin, Martijn Oostdijk, and Engelbert Hubbers. The KOA remote voting
system: A summary of work to date. In TGC 2006 [07], pages 244–262.

[KMD06] J. R. Kiniry, A. Morkan, and B. Denby. Soundness and completeness warnings
in ESC/Java2. In Specification and Verification of Component-Based Systems,
2006.

[KO03] J.R. Kiniry and S. Owre. Improving the PVS user interface. In User Interfaces
for Theorem Proving, September 2003.

[KZ08] J.R. Kiniry and D.M. Zimmerman. Secret ninja formal methods. In Formal
Methods, 2008.

[LM07] H. Lehner and P. Müller. Formal translation of bytecode into BoogiePL. In
M. Huisman and F. Spoto, editors, Bytecode Semantics, Verification, Analysis
and Transformation, Electronic Notes in Theoretical Computer Science, 2007.

[LPC+05] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML
Reference Manual, July 2005. In Progress. Department of Computer Science,
Iowa State University. Available from http://www.jmlspecs.org.

[mC06] MOBIUS Consortium. Deliverable 1.2: Framework-specific and application-
specific security requirements, 2006. Available online from http://mobius.inria.fr.

[mC07a] MOBIUS Consortium. Deliverable 4.2: Certificates, 2007. Available online from
http://mobius.inria.fr.

[mC07b] MOBIUS Consortium. Deliverable 4.3: Intermediate report on proof-
transforming compiler, 2007. Available online from http://mobius.inria.fr.

[mC07c] MOBIUS Consortium. Deliverable 5.1: Selection of case studies, 2007. Available
online from http://mobius.inria.fr.

[mC09] MOBIUS Consortium. Deliverable 5.2: Evaluation of type based and logical
verification technology, 2009.

[ML06] M. Moskal and J. Lopuszaski. Fast quantifier reasoning with lazy proof ex-
plication. http://nemerle.org/ malakith/smt/smt-tr-1.pdf, 2006. Available via
http://nemerle.org/.

[MK07] M. Moskal, J. opuszaski, and J. Kiniry. E-matching for fun and profit. In The
5th International Workshop on Satisfiability Modulo Theories (SMT), Berlin,
Germany, July 2007.

[MP09] Wojciech Mostowski and Erik Poll. Midlet Navigation Graphs in JML.
Technical Report ICIS–R09004, Radboud University Nijmegen, August
2009. Available at https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=
2009-Mostowski-MidletGraphs.

54

http://www.jmlspecs.org
http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr
http://nemerle.org/
https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=2009-Mostowski-MidletGraphs
https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=2009-Mostowski-MidletGraphs

[MR07a] P. Müller and A. Rudich. Formalization of ownership transfer in universe types.
Technical Report 556, ETH Zurich, 2007.

[MR07b] P. Müller and A. Rudich. Ownership transfer in universe types. In ACM Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications,
2007. To appear.

[PBB+04] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing high-
level security properties for applets. In P. Paradinas and J.-J. Quisquater, editors,
Smart Card Research and Advanced Application. Kluwer Academic Publishing,
2004.

[Pic06] D. Pichardie. Bicolano – Byte Code Language in Coq. http://mobius.inria.fr/
bicolano. Summary appears in [?], 2006.

[PR08] E. Poll and J. N. Ravelo. Generalised navigation graphs, their refinement, and
their use for midp applications, 2008. Manuscript. 48 pages.

[PS07] E. Poll and A. Schubert. Verifying an implementation of SSH. In Workshop on
Issues in the Theory of Security, pages 164–177. IFIP WG1.7, 2007.

[SC06] A. Schubert and J. Chrzszcz. ESC/Java2 as a tool to ensure security in the
source code of Java applications. In Software Engineering Techniques: Design
for Quality, IFIP, Warsaw, 2006. Springer-Verlag.

[SCB+08] A. Schubert, J. Chrzszcz, T. Batkiewicz, J. Paszek, and W. Ws. Technical aspects
of class specification in the byte code of java language. In To be published
in Bytecode’08 proceedings, Electronic Notes in Theoretical Computer Science.
Elsevier, 2008.

[win08] The Wine user guide. Available via http://www.winehq.org/, 2008.

[WN95] K. Waldén and J.-M. Nerson. Seamless Object-Oriented Software Architecture -
Analysis and Design of Reliable Systems. Prentice Hall, 1995.

55

http://mobius.inria.fr/bicolano
http://mobius.inria.fr/bicolano

	1 Overview of the Program Verification Environment
	2 Subsystems of the MOBIUS Program Verification Environment
	2.1 Subsystems Developed within MOBIUS
	2.1.1 Java Modeling Language Subsystems
	2.1.2 Static Analysis Subsystems for Extended Static Checking
	2.1.3 Static Analysis Subsystems using Annotation Generation
	2.1.4 Automated Theorem Prover Subsystems
	2.1.5 Prover Editor Subsystems
	2.1.6 Core Application Programmer Interfaces Subsystems
	2.1.7 Java Bytecode Subsystems
	2.1.8 DirectVCGen Subsystems

	2.2 Subsystems Used within MOBIUS but Developed Elsewhere
	2.2.1 Mylyn
	2.2.2 Version Control
	2.2.3 CheckStyle
	2.2.4 FindBugs
	2.2.5 PMD
	2.2.6 Metrics
	2.2.7 EclEmma
	2.2.8 BCEL
	2.2.9 BONc
	2.2.10 Beetlz

	3 Using the MOBIUS Program Verification Environment
	3.1 General Walk-through of Using the Mobius PVE
	3.1.1 Downloading
	3.1.2 Configuring a Java Project for Verification
	3.1.3 Performing Verification

	4 The MOBIUS Software Development Process
	4.1 The MOBIUS Coding Standards
	4.2 The MOBIUS Collaborative Development Environments
	4.2.1 The MOBIUS Trac

	4.3 The MOBIUS Version Control Repository

	5 Epsilon Release Provisional Manifest
	5.1 Features and Plugins Included
	5.2 Sample Workspace
	5.3 Platforms

	6 Annotation generation
	6.1 Inferring and Propagating Annotations
	6.2 State Diagrams and Navigation Graphs
	6.2.1 From Java Code to Automata
	6.2.2 From Automata to JML

	7 Publications Relating to WP3.6 and WP3.7

