
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable D3.3

Preliminary report on thread-modular verification

Due date of deliverable: 2007-03-01 (T0+18)

Actual submission date: 2007-03-28

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: INRIA

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Contributions

Site Contributed to Chapter

INRIA 1, 2, 3, 4, 5, 6

RUN 1, 3, 4, 5, 6

UCD 1, 2, 6

2

Executive Summary:
Preliminary report on thread-modular verification

This document summarises deliverable D3.3 of project FP6-015905 (MOBIUS), co-funded by the European
Commission within the Sixth Framework Programme. Full information on this project, including this
deliverable, is available on-line at http://mobius.inria.fr.

This document describes the intermediate results of Task 3.3 on the verification of multithreaded ap-
plications. Existing logic-based approaches to the verification of multithreaded programs do not scale to
realistic examples, because they require to inspect or explicitly specify all possible interleaving points. In-
stead, in this task, we aim at identifying conditions that allow ignoring the interference of other threads on
the thread and method that we wish to verify. If we do not have to consider possible interference, we can
re-use well-known techniques for sequential program verification.

The document is structured as follows. Chapter 2 describes the impact of the Java Memory Model on
the work in this task. The Java Memory Model describes the set of legal executions of a multithreaded
application. An important objective for the Java Memory model has been to ensure that if a program does
not contain data races, its set of legal executions should be sequentially consistent, i.e., it can be described
by an interleaving semantics. However, if a program does contain data races, compiler optimisations can
have unexpected results and the set of legal executions can become too complex to grasp for a human being.
Indeed, data races are generally considered bugs, and thus applications are supposed to be free of data races.
Therefore, we have decided that in the scope of the MOBIUS project we first check whether a program is free
of data races, and only apply further verification techniques if this is the case. To support this decision, we
have formalised the Java Memory Model in Coq, building on the semantics developed earlier in Task 3.1, and
formally proved that all executions of data race free programs are sequentially consistent. Moreover, we have
revived the RCC tool, which is a static checker that can be used to detect race conditions. Applying RCC
to check for data race freeness will thus always be the first step in the verification process of an application.

Chapter 3 then identifies several conditions for thread-modular verification, i.e., conditions that ensure
that methods are immune to interference of other threads, namely contract-atomicity, immutability, and
thread ownership. Contract-atomicity is a generalisation of the classical notion of atomicity, where a method
is atomic if it contains at most one instruction that is sensitive to interference. We extend this definition
to take a method’s specification, or contract, into account, thus ensuring that the validity of the method’s
contract cannot be affected by another thread. We sketch a verification method for contract-atomicity.

Immutability of an object guarantees that there is no need to synchronise accesses to the object. We
propose a set of rules and a type system that allows us to identify whether an object is immutable, even in
the presence of malicious code.

For thread ownership we propose annotations to indicate how many threads can access a object simulta-
neously, combined with so-called locking policies. The thread ownership system is very flexible, in particular
because it supports transfer of ownership. If we know that an access to an object is always protected by a
lock, or that there is at most one thread at the time that can access an object, then we know that other
threads cannot interfere. We sketch a verification method for our thread ownership annotation system.

Chapter 4 proposes an extension of the Java Modeling Language with a set of keywords that are specific
to multithreaded applications. These keywords are partly based on the results presented in the earlier
chapters, and partly an improvement of an earlier proposal by Rodŕıguez et al.

3

http://mobius.inria.fr

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Chapter 5 sketches two example verifications to illustrate how our different conditions for thread-modular
verification can be combined in practice. The first example uses thread ownership and contract atomicity
to verify a typical worker-tread pattern application. The second example uses immutability and contract-
atomicity to verify an instance of the copy-on-write pattern. Both examples are based on patterns from
Doug Lea’s book on concurrent programming in Java.

Chapter 6 gives a brief summary of the results and presents the plans for the remainder of this task.
Our plans are divided in two lists. The first list presents the topics that we plan to handle within the course
of the MOBIUS project. The second lists contains topics we consider to be interesting for further study, but
are not sure to have the time and possibility to deal with within the context of the MOBIUS project.

4

Contents

1 Introduction 7

1.1 The Role of the Java Memory Model . 7

1.2 Conditions for Thread-modular Verification . 8

1.3 Specifications of Multithreaded Applications . 8

2 The Role of the Java Memory Model 9

2.1 Memory Models for Multithreaded Applications . 9

2.2 The Java Memory Model . 12

2.2.1 Requirements and Motivations . 12

2.2.2 Specification . 13

2.2.3 Proof of Data Race Freeness . 22

2.2.4 Formalisation in Coq . 23

2.3 Multithreaded Bicolano . 27

2.3.1 Bicolano . 27

2.3.2 BicolanoMT . 28

2.4 A Tool for Race Detection . 30

2.4.1 Rules and Annotations . 30

2.4.2 Example . 31

2.4.3 Reviving RCC . 32

2.4.4 Next Steps for RCC . 33

3 Conditions for Thread-modular Verification 35

3.1 Exploiting Contracts for Atomicity . 36

3.1.1 Previous Atomicity Analyses . 36

3.1.2 Contract-atomicity . 37

3.1.3 Contract-independence . 44

3.2 Immutability . 44

3.2.1 Features of the Immutability Type System . 45

3.3 Thread Ownership . 49

3.3.1 Specifying Locality with Capacities . 49

3.3.2 Ordering and Updates of Partial Capacities . 53

3.4 Exploiting Conditions for Thread-modular Verification . 56

4 Specification of Multithreaded Applications 57

4.1 Specification Keywords for Thread-modular Verification . 58

4.2 Using JML for Multithreaded Applications . 61

4.3 Differences With Other Language Proposals . 63

4.3.1 The Spex-JML Project . 63

4.3.2 The Spec# Project . 64

4.4 Example . 65

5

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

5 Example Verifications 68
5.1 Contract-atomicity and Locality . 68
5.2 Lifting a Sequential Class to a Concurrent One . 72

6 Conclusions and Future Work 76
6.1 Summary of Current Results . 76
6.2 Plans . 76

6

Chapter 1

Introduction

Multithreading is one of the major challenges in verifying security requirements on applications in global
computing scenarios. In the last decade, several logics (and tools) have been developed to reason about
single-threaded programs [38, 41, 68]. For multithreaded applications some initial theoretical investigations
have been made into their verification [2, 3, 65], but so far these results have not led to any accepted practical
logic-based verification method.

This report describes the first results of our investigations on how to develop a practical and sound
verification method for multithreaded applications. In particular, we have studied how to specify typical
program properties, such as atomicity [51, 30], immutability [35] and thread ownership [10], that help divorce
the multithreaded aspects from the functional aspects of the specifications. Exploiting this separation of
concerns allows us to use well-known sequential verification techniques to verify the functional behaviour of
a single thread. In addition, we have also studied the role of the Java Memory Model [53] which specifies
all possible executions of a multithreaded application. After reviewing these program properties (atomicity,
immutability, and thread ownership) and the JMM, we summarise the methods and tools that are being
developed in the course of the MOBIUS project, and we demonstrate the verification process of security
requirements for multithreaded applications on a small set of concrete examples.

1.1 The Role of the Java Memory Model

First, Chapter 2 describes the role of the Java Memory Model (JMM). In order to show that an application
respects a security requirement, one has to show that all possible executions of the application respect the
requirement. The JMM specifies the legal executions of an application. In order to allow common compiler
optimisations, statement re-orderings are allowed; therefore, the set of legal executions in general cannot be
described by an interleaving semantics. However, the JMM provides a strong guarantee: for all applications
that are correctly synchronised, the set of legal executions only contains sequential consistent executions,
i.e., executions described by an interleaving semantics. A program is said to be correctly synchronised if it
does not contain any data races, i.e., there cannot be simultaneous accesses to the same variable where at
least one of the two accesses is a write action. Programs that are not correctly synchronised often exhibit
unexpected behaviour and are difficult (or impossible) to verify. Consequently, since most data races are
generally considered bugs, we first verify whether a program is free of data races, and develop further
verification techniques only for correctly synchronised programs.

Concretely, this means that we are studying the following issues. To formally establish the guarantee
for correctly synchronised programs, we have formalised the JMM and proven the guarantee in Coq. We have
also made an extension of the Bicolano JVM semantics developed in Task 3.1 (see http://mobius.inria.fr/bicolano)
with an interleaving semantics for multiple threads. This BicolanoMT semantics will be connected with the
executions of a correctly synchronised program permitted by the JMM. Finally, we have implemented a
race condition checker (based on the RCC checker [27, 1]) that checks whether a program is correctly
synchronised.

7

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

1.2 Conditions for Thread-modular Verification

Chapter 3 describes the conditions that we have identified for allowing thread-modular verification. A
fundamental problem with the use of pre- and post-conditions in specifications for multithreaded code is
the problem of interference. By this, we mean the possibility that upon entry or exit of method m in one
thread, another thread may break the pre- or post-condition of m that the first thread establishes or assumes.
Reasoning about code in a thread-modular way requires some way of restricting or ruling out interference.
Different avenues for doing this are (i) relying on a locking discipline that rules out interference on some
part of the state if certain locks are held; (ii) exploiting the fact that certain objects are immutable and
therefore immune to interference; (iii) using some form of thread ownership that rules out interference on
objects which are not accessible by other threads.

To express when a program does not suffer from interference, the literature proposes the notions of
atomicity and independence. Various analyses have been proposed to check for atomicity and indepen-
dence. However, these definitions and analyses typically do not take the method specifications into account.
Whereas these notions guarantee that semantically we can consider certain methods as atomic, they do not
support modular verification in terms of method contracts. Therefore, Section 3.1 proposes new notions
of atomicity and independence: contract-atomicity and contract-independence. A method can be verified
sequentially if the part of the method’s code that is relevant to the method specification is atomic or in-
dependent. If a method is contract-atomic with respect to its contract, then the contract is effectively
thread-safe, and thus we can rely on it irrespective of interference by other threads.

Sections 3.2 and 3.3 describe how the notions of immutability and thread ownership help to rule out
interference (and thus to establish contract-atomicity), because both thread-local (i.e., owned by a single
thread) and immutable objects cannot be interfered with. To allow the use of shared mutable objects that
are not thread-local in pre- and post-conditions we have to rely on a locking discipline: if a thread owns the
locks of the objects mentioned in pre- and post-condition then interference can be ruled out.

Finally, we would like to emphasise that immutability also allows objects to be shared between trusted
and untrusted code. Indeed, APIs to trusted code typically accept and return immutable objects as argu-
ments and results. We have precisely formalised the notion of immutable object, and developed a technique
to formally guarantee immutability, even in the presence of malicious code.

1.3 Specifications of Multithreaded Applications

Chapter 4 describes our proposal for an extension of the Java Modeling Language (JML) [48] with con-
structs that describe specific multithreaded aspects of an application. This extension language embodies
the conditions for thread-modular verification identified in Chapter 3, but also supports the description of
other typical design decisions related to multithreaded applications that may be useful for verification. The
specification language that we propose is based on an earlier proposal by Rodŕıguez et al. [62], but corrects
several problems and omissions of the original proposal. Also, the semantics of our language is more precise,
and we are currently working on describing the semantics formally. This formalisation will be used to prove
the soundness of our verification techniques.

Chapter 5 illustrates the use of our specification language and (thread-modular) verification techniques
on some non-trivial examples. The examples are adaptations of typical coding patterns for multithreaded
applications, as can be found in Doug Lea’s concurrency package [47].

Finally, this document is an intermediate report describing the progress of MOBIUS Task 3.3 (Verification
of multithreaded Applications) after 12 months. This initial period has mainly been used to investigate the
different directions of research. Chapter 6 describes the plans for the remaining period of the task.

8

Chapter 2

The Role of the Java Memory Model

The Java Memory Model [44] (JMM) defines all legal executions of a multithreaded Java program. After
giving a brief overview of the area of memory models, this chapter describes our formalisation of the JMM,
which we use to prove some fundamental requirements of the model. In particular we prove that any correctly
synchronised program is sequentially consistent. To provide a formal basis for this, we have extended the
Bicolano [60] semantics with multiple threads and interleaving semantics. To complete the verification
chain, we have developed (revived) a tool to check whether a program is correctly synchronised. This tool
is described in Section 2.4 of this chapter.

2.1 Memory Models for Multithreaded Applications

With the emergence of multiprocessor architectures, shared memory has shown to be a simple and com-
fortable communication model for parallel programming. However, this simple abstraction requires for
synchronisation mechanisms to keep the memory of the overall system up-to-date in the presence of con-
current accesses to shared memory locations. These synchronisation mechanisms can have a strong impact
on the performance of the system. To overcome this problem, several relaxations of the consistency (or
coherence) of the memory system have been proposed [4, ?]. These relaxations will affect the programma-
bility (i.e., the way programmers reason about their programs) of the overall architecture, since unexpected
behaviours can result from them. In general, the more performance the memory system provides, the harder
it is to reason about the programs running in that environment. A common example where this trade-off is
evident is the use of write-back caches in a multiprocessor architecture; this can greatly leverage the write
latency, but not all the processors will be able to see values written to variables stored in the cache, until
the consistency protocol requires the write to be committed to the main memory.

A memory model defines all the possible outcomes of a multithreaded program running on a shared
memory architecture that implements the model. In essence, it is a specification of the possible values that
read accesses on the memory are allowed to return1. Therefore, it specifies the multithreaded semantics of
the platform.

Since the memory model describes the allowed executions, having a precise specification of it is funda-
mental to guarantee the correctness of multithreaded programs. It also serves as a contract for both the
programmer and the provider of the platform; for the programmer, it states which are the guarantees that
can be assumed from the platform; for the provider, it defines which are the minimal conditions that it
must comply with—which in turn has an important impact on the compiler and hardware optimisations
the system can take advantage of. In the case of a high level programming language as Java, the memory
model restricts which are the optimisations that can be applied by the source code to bytecode compiler and
by the bytecode to native code compiler (e.g., a JIT compiler), and it also specifies which extra operations

1We will in general—in conformance with the memory model terminology—talk about the write that a read sees, instead of
the write that deposited in the memory the value a read returned, as in general we do not care about the value, but about the
write action itself.

9

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

must be inserted (in case it is needed) by the Java Virtual Machine (JVM) implementation to preserve the
semantics mandated by the model on any particular architecture. The absence of a precise memory model
can lead to serious security issues.

The basic building blocks of the memory model specification are single accesses to the shared memory.
The specification indicates the atomicity, visibility and ordering conditions for these accesses, as perceived by
the different processors; where atomicity defines which are the accesses that execute in a single indivisible
operation, visibility defines which actions a processor can observe when they are performed by another
processor, and ordering gives the restrictions on the order in which different processors might see the actions.

A wide range of memory models exist in the literature; Higham et al. [?] present a good introduction,
definitions and the most important results in the area; Adve et al. [4] present a survey on memory models
and a framework to classify them according to the restrictions and guarantees these provide.

The simplest memory model is sequential consistency [46] proposed by Lamport. The definition of
sequential consistency states that the following condition can be assumed for a sequentially consistent
program:

“... the result of any execution is the same as if the operations of all the processors were executed
in some sequential order, and the operations of each individual processor appear in this sequence
in the order specified by its program.”

An important consequence from the above definition is that for every sequentially consistent execution, there
should exist a total order over the memory actions, that has to be consistent with the program order (the
order of the actions as dictated by the sequence of instructions in the program text), and where each read
access sees the previous write to the same location according to that order. An interesting remark is that
operations do not need to be actually executed in that total order, but can be overlapping or reordered;
the definition only requires the result of the execution to be as if the actions were executed in total order
and one at a time. The importance of the existence of that order is that it describes an interleaving of
the memory actions of the different threads of execution. This allows to verify the program by simply
considering all the possible interleavings of the actions; this is widely known as interleaving semantics for
concurrency. Therefore, sequential consistency is attractive from a programmer’s point of view. However its
simplicity comes at a high cost on the performance of the system, because it disallows many uniprocessor
compiler optimisations, and in addition, in some architectures memory barriers or other synchronisation
mechanisms must be inserted to keep the memory consistent.

Uniprocessor compiler optimisations are widely used by sequential code compilers, and have been long
studied and implemented. Performing multiprocessor compiler optimisations (which involve interactions of
several threads) is a hard task for a compiler, because it has to analyse statically all possible outcomes of the
program under the modifications that it wants to apply and to guarantee that no new outcomes are allowed
due to these modifications. Therefore, most multiprocessor compiler optimisations are just uniprocessor
optimisations applied to one of the threads, but as we shall see, performing uniprocessor optimisations
can easily break sequential consistency. Nevertheless, for performance reasons we want to allow as many
uniprocessor compiler optimisations as possible.

To allow for further performance improvements through optimisations, a consensus—mainly in the
industry—was established that weaker restrictions than those of sequential consistency should be allowed
for memory models. This raised a wide variety of new models which emerged from different relaxations of
sequential consistency, in general called weak memory models. As emblematic examples we mention weak
ordering [25], processor consistency [33], release consistency [32], among many others. Later, Adve et al.
and Gharachorloo et al. defined the data race free [5] and property labelled [32] memory models, respectively,
which take a different approach; namely, they require the programmer to identify actions involved in critical
sections to guarantee the correctness of the program. The weak ordering and data race free memory models
are of special interest to understand the Java memory model in the following section.

A data race occurs when an update on a memory location occurs concurrently with another access to
the same location (read or write) by a different thread. Weak ordering was the first model to distinguish
memory operations in synchronisation and data operations. In general, operations involved in data races

10

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

x == y == 0

Thread 1 Thread 2

r1 := x; r2 := y;

y := 1; x := 1;

Result: r1 == r2 == 1?

Figure 2.1: Unexpected behaviour

should as a rule be synchronisation operations, while common accesses (not involved in data races) should
be data operations. synchronisation operations are guaranteed to have sequentially consistent semantics
among them, while data operations can be reordered (a result of single-threaded compiler optimisation).

Data race free memory models take a different approach; they provide a minimal guarantee to the
programmer, if he adheres to certain rules; optimisations are allowed provided that they do not violate these
guarantees. The fundamental guarantee they build upon is Data Race Freeness (DRF):

Correctly synchronised programs have sequentially consistent semantics.

A program is said to be correctly synchronised if when executed in a sequentially consistent manner no
data races can appear in any of its executions. More precisely:

A program is correctly synchronised if all its sequentially consistent executions are free of data
races.

Determining what constitutes a data race in a sequentially consistent execution depends on the synchro-
nisation mechanisms provided, because these prevent concurrent accesses to the same location to happen
(recall that a data race occurs when to accesses to the memory location, such that one is a write, can happen
at the same time). For that purpose the programmer, as previously, has to identify synchronisation and
data operations, and based on that information the compiler or the architecture is allowed to reorder them.
However in the presence of data races unexpected behaviours might happen2.

Figure 2.13 shows an example of a possible unexpected behaviour, due to a common uniprocessor compiler
optimisation. In the example variable names that start with r are registers local to the thread and are used
to represent read actions, so for example r1 := x means a read action of the variable x, write actions are just
assignments to the shared variables (which in general we will denote as x, y, z). In a sequentially consistent
memory environment the only possible results for this program are: (i) r1 == r2 == 0, (ii) r1 == 1 &

r2 == 0 or (iii) r1 == 0 & r2 ==1. A common optimisation re-orders independent actions on different
memory locations. This is allowed in uniprocessors, since the semantics of the program does not change if
the instructions are independent of each other. However, in a multiprocessor environment this reordering
can be perceived by another processor accessing the locations of the instructions being reordered. In this
case, if any instruction in either Thread 1, Thread 2, or both are reordered the result r1 == r2 == 1 could
be a possible result of the program. For a common programmer this can appear to be an incorrect result,
but it is actually allowed by most weak memory models.

In the previous example, accesses to both variables x and y can be involved in data races, since there is no
synchronisation to prevent a read to happen while the write in the other thread is happening and vice versa.
Most programmers aim for data race free code, since data races can cause unpredictable behaviours [56].
Verifying programs that contain data races is a hard task. Fortunately, in general the presence of races in
multithreaded programs is an evidence of a bug. For the verification techniques described in the following
chapters we will assume that programs are free of data races (correctly synchronised). Section 2.4 describes
a tool that we use to check data race freeness and reject programs that contain races in some of its sequential
executions.

2Unexpected in this context refers to the point of view of the programmer.
3Many of the examples correspond to examples in The Java Memory Model [53], this one corresponds to Figure 2.

11

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

However, notice that sometimes data races are not bugs, and are indeed intended. Benign data races,
such as the unsynchronised assignment of the hash code of an object, are a typical example of this. In such
cases it is important that the memory model guarantees that the program has certain restricted behaviour,
and that a data race cannot be exploited to introduce security threats. We will describe the Java memory
model in the next section, and we will point out how these requirements are met by the specification.

2.2 The Java Memory Model

The Java Memory Model specification [44, 53, 52] has been recently replaced, as the original was fatally
flawed [61]. This specification defines the semantics for multithreaded Java programs. Therefore it serves
as a guide for Java programmers, and as a specification for JVM and Java compiler implementors.

The requirements for the specification emerged from the consensus of a team that included researchers
involved in memory models and concurrency, compiler and JVM constructors and expert programmers. The
formal definition of the memory model is stated as a set of rules that every execution must satisfy and proofs
are given to show that the rules meet the requirements.

2.2.1 Requirements and Motivations

One of the main motivations to replace the old JMM was that it did not allow most of the common
single-threaded compiler optimisations. Therefore producing efficient multithreaded bytecode was almost
impossible. For that reason, an important requirement to fix the model was to allow as many single-threaded
optimisations as possible while keeping the programmability of the language fairly simple. A weak memory
model emerged as a natural choice for this requirement.

Data Race Freeness As in many weak memory models, the programmability is guaranteed by requiring
data race free programs only to exhibit sequentially consistent behaviours. In the context of the JMM (and
memory models in general) this property is called the Data Race Freeness (DRF) property, as mentioned
above. Another way to state the DRF property is:

If every sequentially consistent execution of a program is free of data races, then these are all
the possible executions, i.e., only sequentially consistent executions are allowed.

Note that the DRF guarantee allows to verify correctly synchronised programs by just analysing the
possible interleavings of the threads, and without having to take into account possible re-orderings or other
compiler optimisations.

Interestingly, the following property was identified by the authors of the JMM as a requirement to ensure
DRF: no Out of Thin Air (OoTA) reads should happen. Furthermore, they identified that OoTA is also
a desirable property in the presence of data races to avoid security problems. The OoTA property will be
discussed below.

There are two means to achieve data race free Java programs through the use of synchronisation; namely,
monitors and volatile variables. The basic actions on monitors are lock and unlock, and its semantics is that
at most one thread can hold the lock of a monitor at a time. As expected, every lock action on a monitor
is matched with a following unlock on the same monitor; moreover, when a lock is acquired by a thread, all
the memory updates of threads that previously issued an unlock on that monitor are visible to the former
thread. In case of volatile variables, the semantics defines that every access to them is atomic, and a read on
a volatile makes all the memory updates of threads that executed a write on the same variable previously,
visible to the reading thread (as in the case of the lock action). We will show later how these concepts are
guaranteed by the JMM specification.

12

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

x == y == 0

Thread 1 Thread 2

r1 := x; r2 := y;

if (r1 == 1) if (r2 == 1)

y := 1; x := 1;

if (r2 == 0)

x := 1;

Result: r1 == r2 == 1?

Figure 2.2: Dependency breaking

Reordering As mentioned above, an important motivation for the redefinition of the JMM was to allow
single-threaded optimisations. Many common compiler and hardware optimisations can be seen for simplicity
as a reordering of instructions [53]. The reordering of adjacent independent instructions is probably the
most basic optimisation that could be required. For that purpose, a clear notion of independence is needed;
operations are independent if they execute on different memory locations. This does not mean that any
two independent operations can be reordered, there are certain conditions that limit this requirement—for
example instructions cannot be reordered outside synchronisation blocks to which they belonged originally—
but in general the rule applies to every independent operation. An example of the application of this
reordering rule has been presented in Figure 2.1.

A more delicate compiler optimisation that was required to be allowed by the JMM, involves the elim-
ination of apparent dependencies in the code. When a static analysis of the code can detect that a write
action is guaranteed to happen (i.e., the same value written to the same variable by the same thread) in
every execution, the compiler is allowed to move that write earlier, thus removing the dependency; this can
lead to really unexpected behaviours. Figure 2.24 presents an example where the write of 1 to the variable
x is guaranteed to occur in any sequentially consistent execution, since the only possible values for the y

variable are 0 and 1. Therefore the write to x will always happen. A compiler doing this kind of reasoning
can decide to eliminate the if conditions and reorder the read of y and the write of x in thread 2 (note
that these actions are on different memory locations), and thus, the result r1 == r2 == 1 is valid for the
program. We refer the curious reader to the JMM definition [52, 53] for more details and examples on this
reordering rule.

Removing redundant synchronisation and synchronisation coarsening [24] can produce important im-
provements in the performance of a program. We do give here the details of these optimisations and their
implications on the JMM, but is important to know that allowing these is also a requirement for the model.

Volatiles Volatile variables are required to have atomic semantics, in other words, there should be a total
order among them in the execution such that every volatile read sees the last write on the same variable
in that order. Furthermore, it is required that volatile actions act as synchronisation points among the
threads issuing the accesses. More precisely, when a read observes (via a volatile read) the value another
thread deposited in the memory (with a volatile write), all the updates previous to the write made by the
writing thread are immediately (and necessarily) visible to the reader thread. Therefore, volatile variables
can be used as a synchronisation mechanism to guarantee that the effects of one thread are perceived by
other threads.

2.2.2 Specification

This subsection summarises in a concise way the main ideas, and the formalism of the model. However, this
is not a complete presentation of the model, for the complete definition the interested reader should consult
the Java Memory Model specification [53].

4Figure 7 in The Java Memory Model [53]

13

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

x == y == 0, m is a monitor

Thread1 Thread2

1: lock m; 5: lock m;

2: x := 1; 6: y := 1;

3: r1 := y; 7: r2 := x;

4: unlock m; 8: unlock m;

po: 1
po→ 2

po→ 3
po→ 4, 5

po→ 6
po→ 7

po→ 8

so: 1
so→ 4

so→ 5
so→ 8

sw: 4
sw→ 5

hb: 1
hb→ 2

hb→ 3
hb→ 4

hb→ 5
hb→ 6

hb→ 7
hb→ 8

(a) Exec: Thread1;Thread2;

x == y == 0, m is a monitor

Thread1 Thread2

1: lock m; 5: lock m;

2: x := 1; 6: y := 1;

3: r1 := y; 7: r2 := x;

4: unlock m; 8: unlock m;

po: 1
po→ 2

po→ 3
po→ 4, 5

po→ 6
po→ 7

po→ 8

so: 5
so→ 8

so→ 1
so→ 4

sw: 8
sw→ 1

hb: 5
hb→ 6

hb→ 7
hb→ 8

hb→ 1
hb→ 2

hb→ 3
hb→ 4

(b) Exec: Thread2;Thread1;

Figure 2.3: Ordering examples.

First, we would like to clarify some standard concepts that might not be clear for readers not familiar
with memory model terminology.

Programs Programs are, as usual, a set of instruction sequences (each element of this set being a thread)
which are presented in the examples as simplified bytecode instructions with a syntax biased to make
memory operations evident.

Executions In the context of the JMM an execution consists of the set of actions that it performs, orders
over those actions that define how these actions are issued, and of course the functions that define for
each read, which is the write that stored in the memory the value returned by that read.

Actions Actions are single accesses to the memory, they are classified in: reads or writes of ordinary
variables, reads or writes of volatile variables (synchronisation actions), locks and unlocks on monitors
(synchronisation actions), and some other actions that we will not enumerate here as they are not
fundamental for the understanding of the model. Some actions are marked as external actions: these
are used to define the observable behaviour of an execution.

In order to satisfy the DRF requirement we need a concrete definition of the concept of data races
in the model. This is reflected in the JMM by the Happens-Before (hb) order, defined by Lamport [45].
The definition of hb captures visibility requirements, that is, when an action in a thread is obliged to see
the effects of updates on the memory issued by another thread. To be able to define this order we first
define three other simpler orders on actions, namely Program-Order (po), synchronisation-Order (so) and
synchronises-With-Order (sw).

Program order The program order is a partial order that relates actions in the same thread. It basically
represents the ordering of the instructions as given in the program text. This means that the actions
of a single thread are totally ordered by po. Also note that actions on different threads cannot be
related by po.

As an example of the orderings defined in this section look at Figure 2.3 where the actions have been
numbered to facilitate the representation of the orders. We will take the execution in Figure 2.3(a) as
a running example, the other possible execution is depicted in Figure 2.3(b). In our example we have
chosen the execution that completely executes the thread Thread1, and then executes the Thread2
(recall that these definitions are concerned with particular executions and not with the program).

synchronisation order As said before, the JMM required synchronisation actions to execute sequentially
consistent with each other. By the definition of sequential consistency there should exists a single

14

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

total order over the synchronisation actions of the execution, this order is called in the JMM the
synchronisation order so.

In the previous example, so only involves the lock and unlock actions (the only synchronisation
actions in the example). The order represented in the figure corresponds to the same execution as in
the previous example.

The synchronisation order is needed to guarantee that hb is a partial order.

synchronises-With order The sw order can be derived from the so order. It is simply a directed per
variable restriction of so. By directed we mean that only volatile writes and unlocks can appear in
the first component of the ordered pairs, and only volatile reads and locks can appear in the second
component of the pairs respectively. By restriction we mean that every pair that relates actions on
the same variable (or monitor) present in the so, such that the first element is a lock and the second
is an unlock, or the first is a volatile write and the second a volatile read, must appear in the sw

order. We call the elements in the first component of the pairs releases, and the elements in the second
component acquires.

In the example of Figure 2.3(a), the only edge from a release to an acquire is the one from action 4 to
action 5, and in Figure 2.3(b) this edge goes from action 8 to action 1.

Happens-Before order Finally, the hb order specifies which are the writes (therefore, the values written)
a read action is allowed to see (or return). This order is the transitive closure of the union of the po

and sw orders [(po+ sw)∗]. As we said, hb formalises the conditions under which a thread is forced to
see memory updates of other threads, so it is important to define which are the writes a read is able
to observe. In simple words the hb edges generated by po pairs define that a thread must be aware
of all its previous updates to the memory. The sw edges relate parts of the code of different threads
such that every action that a thread could see before a release must be seen by every action after an
acquire.

The definition of hb allows us to give a first approximation to the JMM, but it does not cover all of
our requirements; in particular it is not sufficient to guarantee the DRF property. This approximation is
based on the hb relation to define the visibility and ordering restrictions of the actions. The authors of the
JMM [53] called this model the Happens-Before Memory Model (HBMM).

Basically the hb relation allows to specify uniquely which write sees each read in a data race free
execution. For executions that contain data races the hb relation allows a read to see a write on the same
variable that immediately precedes it in the hb order, or it is not hb related to it (a data race). This leaves
a lot of freedom for implementors of compiler optimisations to choose according to their needs which is the
write to be seen by those reads.

In what follows we show what a Happens-Before memory model for Java would look like. The reason
to look at this model is that it is a good approximation to the kind of executions we want to allow (and
reciprocally to disallow).

Happens-Before Memory Model In a HB memory model the values a read can return5 are given by:

• a volatile read is only allowed to read the value written by the immediately preceding volatile write
to the same variable in the so;

• so is consistent with mutual exclusion, i.e., no two locks by different threads occur on the same monitor
before an unlock; and lock and unlock actions must be properly nested in so;

• an ordinary read is only allowed to see the immediately preceding write in hb on the same variable or
a write on that variable that is not hb related to it (this last case constitutes a data race).

15

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

x == v == 0, v is volatile

Thread 1 Thread 2

x := 1; r1 := v;

v := 1; r2 := x;

Figure 2.4: HB Example

x == y == 0

Thread 1 Thread 2

lock m lock m

r1 := x; r2 := y;

y := r1; x := r2;

unlock m unlock m

Figure 2.5: Example where HB is enough.

The example in Figure 2.4 shows how this model restricts executions. The important fact of this example
is that the variable v is volatile; therefore if the thread 2 reads the write in thread 1 on variable v a sw

link relates the actions in both threads and thus the read of x in thread 2 is obliged to see the write of x

in thread 1. In case the read in thread 1 does not read a value of 1, the read in thread 2 can still see the
write of x in thread 1, but in this case it forms a data race. Finally, the execution where thread 2 happens
entirely before thread 1 is allowed.

We show now how HBMM in general guarantees the DRF property through the use of synchronisation
(though it is important to know that it does not cover all the cases). Figure 2.5 depicts a correctly synchro-
nised program (recall that correctly synchronised means that every sequentially consistent execution is free
of data races). In any execution of this program, by the second bullet of the conditions of the HBMM there
must be a sw link from the unlock of the first thread to the second one. This guarantees that there must
be a hb link from any read to the write that it sees6, therefore no data races can occur, and the HBMM
conditions are enough to guarantee DRF in this example.

However, the HBMM is not enough, Figure 2.67 shows an example of a correctly synchronised program
where a non sequentially consistent execution is allowed by the HBMM. In this example, every sequentially
consistent execution only contains the two read actions, because in any interleaving of the threads both
reads see a value of 0, and therefore the writes are not executed.

We could imagine a compiler that optimises code by performing speculative execution of actions and if
it can find an execution where that actions are justified it could decide that the speculation is valid, and
therefore, the code can be optimised.

For example, in Figure 2.6, without loss of generality assume (speculatively) that the write y := 42

in Thread1 happened; then, the read r2 := y in Thread2 is allowed to see that write returning the value
42; this, in turn, validates the guard (r2 != 0) and justifies the write x := 42 on Thread2; finally, the
read of x in Thread1 is allowed to see the write on the variable x and return the value 42; therefore, the
guard in Thread1 would also be valid, justifying the whole execution, and in particular the execution of the
initial speculative write of y. Notice that the execution above can only be justified using this kind of causal
reasoning.

The result above is obviously not possible in any sequentially consistent execution, and the program is
correctly synchronised, so to guarantee DRF the JMM must disallow it. But, as we can see the hb order
does not prevent it from happening, since there are no hb links between the reads and the writes on the
different threads. It is important to keep in mind for the following sections that if it was not for the data

5In general we can consider locks and unlocks as read and write actions that have further requirements such as the nesting
and locking semantics.

6Default writes of variables happen before any access to the same variable.
7Figure 4 in The Java Memory Model [53]

16

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

x == y == 0

Thread 1 Thread 2

r1 := x; r2 := y;

if (r1 != 0) if (r2 != 0)

y := 42; x := 42;

Figure 2.6: Example where HB is not enough.

x == y == z == 0

Thread 1 Thread 2

r1 := y; r2 := x;

x := 1; y := 1;

z := r1; r3 := z;

if (r3 + r2 == 2)

z := 42;

Figure 2.7: Justifying through data races.

races (non hb ordered accesses) the execution depicted could not have happened.
Any of the reads of 42 in the example is what the authors of the JMM call an Out of Thin Air (OoTA)

read. The precise concept of OoTA is hard to state as we shall see. The main idea is that a read can only
see values that could actually have been written by some execution where the write that stores that value
is not involved in a circular causal justification through data races (as in the example).

Causality Requirements

This subsection gives an introduction to the problems around the definition of OoTA, and why it is hard to
state it clearly and formally.

The example in Figure 2.6 showed that we must disallow OoTA values to guarantee DRF. But we also
would like to guarantee that no value that could not have been written will ever be read, even in the case
of executions that contain data races. The authors of the JMM tried to restrict the behaviour for every
program (and not only for the correctly synchronised ones), to avoid security threats in case of data races.

A key idea is to identify when a write action can occur. As we saw in the example of Figure 2.6,
the problem appeared when we assumed that a write that does not happen in any sequentially consistent
execution could have occurred. Thus a first approach could be to forbid writes that do not appear in
any sequentially consistent execution, and, by extension, to allow writes that occur in some sequentially
consistent execution. This is not enough; as we can see in Figure 2.7, the write of 42 to z would never
happen in any sequentially consistent execution. But if we consider that r1 and r2 could see a value of 1

(as we saw in the example on Figure 2.1), then r3 + r2 could evaluate to 2, and thus, the write should be
allowed (it should be justified).

The example shows that we need a way to define which actions are allowed based on the actions that
we know for certain that are already allowed. This suggests an iterative procedure to validate (or commit)
actions, where based on the actions already committed, more actions are committed until all actions are
justified. This raises the question of when an action can be committed. A good approach would be to
commit an action if it is present in an execution where all the previously committed actions are executed,
and all actions not committed execute in a sequentially consistent manner.

In Figure 2.88 it can be observed that sequential consistency of the actions not committed is not enough
to avoid the behaviour shown. In particular the value 42 could be written to x in some sequentially consistent
executions, allowing us to commit the reads r1 and r2 with that value. Then, we can commit the read of r0
seeing a different value; namely, the default write to z. This is clearly a violation of the OoTA property, since

8Figure 12 in The Java Memory Model [53]

17

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

x == y == z == 0

Thread 1 Thread 2 Thread 3 Thread 4

r1 := x; r2 := y; z := 42; r0 := z;

y := r1; x := r2; x := r0;

Result: r0 == 0 & r1 == r2 == 42?

Figure 2.8: Thread 3 does not write 42.

r1 and r2 see values that no thread ever wrote. There are some other issues with the previous definition
which we will not discuss here but are more precisely defined in the JMM [53]. The main idea to restrict
OoTA reads, is that the justification of the value 42 occurs only when we have a data race—between the
actions on Thread 3 and Thread 4—that is used to justify them. So our intuition to define the OoTA is
that when an action is being committed all the actions not committed cannot see a value through a data
race; thus preventing the behaviour depicted in the Figure 2.8. In the JMM such executions are called
well-formed executions.

Note that there is much more discussion about the OoTA property in the JMM [53], and it is still a
topic under discussion9. Here we only to give an intuition to the reader, we do not pretend to give complete
explanations and motivations for the rules of the model.

The Java Memory Model Formally

Now we turn attention to the formal definition of the JMM. This is the mathematical definition of the
model; thus to check if a Java multithreaded execution is allowed we must see that it fits the requirements
stated below.

First we define more precisely the concepts introduced in the previous section and then we give the
causality requirements formally.

Actions An action a is a tuple, with the shape < t, k, v, u >, where

• t stands for the Thread Identifier of the thread issuing the action;

• k is the kind of the action, which could be: read, write, volatile read, volatile write, lock or unlock ;

• v stands for the variable or monitor on which the action executes; and

• u is interpreted as an Unique Identifier, which distinguishes every action from any other action.

Executions An execution E is represented as a tuple < P,A,
po→,

so→,W, V,
sw→,

hb→> where:

• P is the program that generated E.

• A is the set of all actions executed in E.

• po→ is the Program Order (as stated before) of E.

• so→ is the Synchronisation Order (as stated before) of E.

• W is the Write-Seen function that for each read in A assigns a write to the same variable also in
A.

• V is the Value-Written function that for each write in A assigns a value.

• sw→ is the Synchronises-With order (as stated before) of E.

• hb→ is the Happens-Before order (as stated before) of E.

9 http://www.decadentplace.org.uk/cgi-bin/mailman/listinfo/cpp-threads

18

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

It is important to note that in this document we only present the basic definitions and elements to specify
the memory model, but we made some simplifications. For example, some kind of actions are missing in the
previous definitions, nevertheless the missing kinds are not crucial for the understanding of the model.

In order to be able to formally define well-formedness of executions we need to introduce formal definitions
of the sw, the hb and the ssw orders.

synchronises-With In the JMM the first component of a sw pair is called a release and the second
component is called an acquire.

There are sw edges from10:

• an unlock of a monitor to every lock on the same monitor following it in so;

• a volatile write on a volatile variable to every read on that variable following it in so; and

• the default write of each variable to the first action in every thread.

Happens-Before As mentioned before the hb order is obtained by the transitive closure of the union of
the sw and po orders. Mathematically: hb = (po + sw)∗.

Sufficient synchronisation (ssw) ssw are the sw present in the transitive reduction of the hb order. This
is the minimal set which is included in sw, such that when we take it in conjunction with the po

order and apply the transitive closure of the union we obtain the hb relation as result. In Manson’s
thesis [52] this set is claimed, but not proved, to be unique.

Well-Formed Executions

The definition of well-formed executions gives some basic formal requirements to the executions of the JMM.
This is a lower bound upon which we construct the more complicated rules of the causality requirements.
Every execution used to justify actions in the justification procedure must be well-formed among other
requirements.

An execution E =< P,A,
po→,

so→,W, V,
sw→,

hb→> isWell-Formed if:

1. Read write consistency Each read of a variable x sees a write to x. An action x is volatile iff x.v
is a volatile variable.

Mathematically11:

(∀r ∈ Reads(A) : W (r) ∈ A ∧W (r).v = r.v)∧

(∀a ∈ A : V olatile(r.v) ⇐⇒ a ∈ V olatilesReads(A) ∨ a ∈ V olatilesWrites(A))

2. synchronisation Order has an order less or equal to omega This implies that for every action
in the so order there are only a finite number of actions that occur before it.

3. Consistency of so with po synchronisation Order is consistent with Program Order and Mutual
Exclusion. This consistency requirement implies that hb is a partial order. Mutual exclusion guarantees
the locking semantics (one at a time), and proper nesting of locking.

Mathematically: (Only the consistency property).

∀x, y ∈ A : x
po→ y ∧ y

so→ x⇒ x = y

10There are some other sw edges that we do not consider here as they are not fundamental.
11We use Reads(A) to denote the set of read actions in A, similarly for Writes(A), V olatileReads(A), V olatileWrites(A),

Locks(A), Unlocks(A). The predicate V olatile is valid only if its parameter is a volatile variable.

19

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

4. Intra-thread consistency The actions performed by every thread of the execution are the same
that would be generated by the thread in isolation provided that each read r reads the value V (W (r))
and each write w writes V (w). The po given must reflect the order in which the actions would be
performed according to the Java specification, without taking the JMM into account.

5. Consistency on so For every volatile read r in A it does not happen that r
so→W (r). And, for every

w, a volatile write action on r.v, it does not happen that W (r)
so→ w

so→ r.

Mathematically:
(∀r ∈ V olatileReads(A) : ¬r so→W (r))∧

¬(∃w ∈ V olatileWrites(A) : w 6= W (r) ∧ r.v = w.v ∧W (r)
so→ w

so→ r)

6. Consistency on hb For every read r in A it does not happen that r
hb→ W (r). And, for every w, a

write action on r.v, it does not happen that W (r)
hb→ w

hb→ r.

Mathematically:

(∀r ∈ Reads(A) : ¬r hb→W (r))∧

¬(∃w ∈Writes(A) : w 6= W (r) ∧ r.v = w.v ∧W (r)
hb→ w

hb→ r)

Causality Formally

The well-formed execution rules above are general rules, specifying simple and expected conditions on
executions; but they do not state anything about about data races, or the justification procedure mentioned
before. Restrictions on the presence of data races are expressed by the causality rules. In particular, these
rules specify which actions can be committed in each step of the justification procedure, and thus, how the
presence of OoTA reads is avoided.

The justifying procedure starts with an empty set of committed actions, and in each step one or more
actions are added to the commitment set. When an action is committed, it must remain committed until
the end of the procedure, when all actions of the execution must be justified. For that purpose we define
pairs containing commitment sets and justifying executions, one for each iteration of the procedure, where
commitment sets are strictly increasing through the justification, and the justifying executions are well-
formed executions that must meet the causality rules to commit further actions as we will see below.

A justification of a well-formed execution E =< P,A,
po→,

so→,W, V,
sw→,

hb→> is is a sequence of pairs
(Ci, Ei), where Ci represents the ith commitment set and Ei is the ith commitment execution. Note that the
sequence can be infinite if the actions in the execution are infinite. All justifying executions are well-formed,
and only actions of the execution being justified (also present in the justifying execution) are committed.

The following conditions must hold for the commitment sets in the sequence:

• C0 = 0

• Ci ⊂ Ci+1

• A =
⋃

(C0, C1, C2, ...)

A simple way to understand the commitment procedure is to think that we want to find an execution
Ei of the program P that imitates E when restricted to the committed actions, and where the actions we
are now trying to commit happen independently from the data races not yet committed, i.e., we forbid not
committed data races in justifying executions.

The following rules state that the actions committed (justified) have to be present in every execution
that follows its commitment in the sequence, and that the hb and so orders of the justifying and justified
executions have to coincide on the committed actions.

1. Ci ⊆ Ai

20

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

2.
hbi→ |Ci =

hb→ |Ci

3.
soi→ |Ci =

so→ |Ci

The next rule only refers to write actions, (i.e., the domain of the V function), and says that when a write
is committed the value it writes to has to be the same as the value it writes to in the justified execution.
Another way to say that is that the value written is permanent when committed.

4. Vi|Ci = V |Ci

The rule below is important. Analogously to the previous case, it only refers to reads (i.e., the domain of
the W function). The rule says that when a read is being committed or it is not committed yet, it can
see in the justifying execution (Ei) a different write than the one it sees in the justified execution (E); but
furthermore, it says that when a read r is being committed (i.e., r ∈ Ci − Ci−1) must see the final write
(i.e., Wr) in the the next commitment. We will see how this rule allows to avoid the justification of actions
with data races when combined with the rules 2, 6 and 7, while it allows to commit (valid) data races.

5. Wi|Ci−1 = W |Ci−1

Rule 6, is also important. It tells us, as outlined before, that reads in the justifying execution that are not
committed can only see writes that are related by hb with them, i.e., no data races are allowed for actions
not already committed.

6. ∀r ∈ Reads(Ai − Ci−1) : Wi(r)
hb→ r

The next rule specifies that when a read is committed, both, the write that it sees in the justifying execution
(Ei), and the write that it sees in the original execution E must be committed.

We can understand this rule as the requirement we stated before, the actions that justify a read must
have happened (i.e., must be committed), in this case the write is in Ei; but as per rule 6 when a read is
justified it can only see a write that happens before it, this would not allow data races to be committed. That
is the reason why rule 5 talks about the previous commitment set, and it is why this rule talks about the
write in the execution E as possibly being different from the write the reads sees when its being committed.
We will see that in an example soon.

7. ∀r ∈ Reads(Ci − Ci−1) : Wi(r) ∈ Ci−1 ∧W (r) ∈ Ci−1

Rule 8 is related with synchronisation actions. It says that whenever a synchronisation link is used to
commit an action, that link must remain there. Recall that synchronisation links extend the hb relation,
and thus, can allow some reads to see writes that are not still committed, provided that the write happens
before the read. So removing synchronisation links would allow to commit reads that see a write that is
yet not committed and it could be not related by hb to the read on forthcoming justifications if we are
allowed to remove the link. A possible more operational intuition would be, that if an action is justified
assuming that a synchronisation of the memory was issued between two threads, we must guarantee that
the synchronisation actually occurred at that point.

8. ∀x, y, z ∈ Ai : x
sswi→ y

hbi→ z ⇒ (∀j ≥ i : x
swj→ y)

Finally, rule 9 requires all external actions that are ordered before any committed action by hb to be
committed too. This rule is of importance only to define the observable behaviour of executions, but not to
prove the proposed requirements of the model.

9. ∀x, y ∈ Ai : External12(x) ∧ y ∈ Ci ∧ x
hbi→ y ⇒ x ∈ Ci

21

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

x == y == 0

Thread 1 Thread 2

r1 := x; r2 := y;

y := r1; x := r2;

Figure 2.9: Causality rules example

Figure 2.9 presents an example that could generate OoTA reads if the compiler did speculative execution
and the JMM would not prevent it. For that reason we will use it to show how the causality rules prevent
OoTA reads from happening. The result in question is r1 == r2 == 4213, note that this result is allowed
by the HBMM.

As in the result depicted both reads see a value of 42 both writes must store a 42 in the memory.
Without loss of generality we will only show which are the conditions that are needed to commit the read
of the variable x. If those conditions cannot be met, that read is not possible. Per rule 7, when a read
r is committed, both, the write that sees in the justifying execution (Wi(r)) and the write that sees in
the final execution (W (r)) must be already committed. The only candidate to write a value of 42 to the
variable x is the write on Thread 2, so this write must be committed before the read in Thread 1, and
it must be committed writing that value, per rule 4. But to respect intra-thread semantics, required by
the well-formedness of justifying execution, the read of y in Thread 2 must see a value of 42, because the
following write stores a 42, though that read can only see the default write to the y variable since it is not

committed and rule 6 demands not committed reads to see a write ordered before them by
hbi→. Would we

have started trying to commit the other write, a similar reasoning would forbid it (from the symmetry of
the program). Therefore a write of 42 can never be committed, invalidating the intended result.

Furthermore, the only result possible for that program is r1 == r2 == 0.

The example in Figure 2.6 is even simpler. As we mentioned, to be able to justify the execution we had
to assume that a write of 42 was issued first (and thus has to be committed first). There are no well-formed
executions of this program where the reads see writes that happen before them, and where the any of the
guards evaluates to true, therefore no write of 42 can be ever committed.

2.2.3 Proof of Data Race Freeness

Two important proofs sketches are given in the JMM paper [53]; namely that the specification allows reorder-
ing of adjacent statements and the most important in terms of verification of multithreaded applications,
that the DRF property holds. Given its importance for the MOBIUS project we give a rough sketch of the
DRF proof.

The DRF guarantee requires every execution of a correctly synchronised program to be sequentially
consistent. Recall that sequentially consistent executions are those for which a total order on its actions
can be found such that every read sees the last write previous to it on the same variable in that order; and
correctly synchronised programs are those where every sequentially consistent execution is free of data races
(i.e., no read sees a write not ordered before it by hb).

The proof goes in two steps. First, a lemma is proved that saying that whenever in an execution of a
correctly synchronised program all reads see writes that happen before them, the execution is sequentially
consistent. Then the actual DRF property is proved using the lemma and proving that in every execution of
a correctly synchronised program reads see writes that happens before them. The proofs can be encountered
in the JMM paper [53].

Lemma 2.2.1. For every execution E of a correctly synchronised program P; if every read sees a write that
happens before it, E is a sequentially consistent execution.

12The definition of external actions is the expected one.
13Note that the value 42 is arbitrary, just to show that any value (not written) could happen.

22

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

The main theorem proof shows that every read of an execution of a correctly sees a write that happens
before it, therefore, by Lemma 2.2.1 the execution must be sequentially consistent.

Theorem 2.2.2. Every execution E of a correctly synchronised program P is sequentially consistent.

An issue may be to explore is a proper formal definition for the OoTA property and a proof that the
JMM satisfies that property. This would allow for a better understanding of how the rules interact with
each other and also could show deficiencies on them, since now it is hard to reason about all the possible
executions of the JMM.

Our approach to the verification of multithreaded software within the MOBIUS project it is to verify
only correctly synchronised programs. As mentioned before, this decision is based on the fact that in general
data races are evidences of bugs in the program. Even though there are programs that contain data races
which are intended by the programmer, reasoning and verifying those programs is really hard, and it is out
of the scope of the project. Therefore, we are mainly concerned with the DRF guarantee of the JMM which
allows us to use interleaving semantics. We rely on techniques to detect data races to reject incorrectly
synchronised programs as will be discussed in Section 2.4.

As we strongly rely on the DRF guarantee, we formalised the JMM in the proof assistant Coq [20],
and we proved it mechanically to have certainty of its correctness. Some parts of the specification are not
currently formalised as these are not needed to prove DRF. In particular, we did not formalise yet the
definition of observable actions and behaviour, or rule 9 that restricts observable actions. Further, we also
did not formalise yet finalisers and the different guarantees for constructors (such as dereference chains, safe
contexts etc.).

To be able to work with interleaving semantics we extended the Bicolano [60] formalisation in Coq of
the Java Bytecode semantics with multiple threads of execution, this will be developed in Section 2.3.2.

2.2.4 Formalisation in Coq

To be able to prove the DRF guarantee mechanically we formalised the JMM as literally as possible,
closely following the paper by Manson et al. [53]. With this we expect to avoid problems derived from
misunderstandings or biased interpretations of the rules. As we mentioned above, there is no need to
formalise the whole JMM to prove DRF, hence, there are some parts which we did not formalise in the
current version of the model, though these can be easily extended afterwards.

Here we give a list of the main restrictions (and for some, we indicate how we could extend the model
to overcome them).

Finite executions For the moment we only consider finite executions. There are several reasons that
justify this approach. First, infinite executions could generate infinite justification sequences (in the
sense of the justification process of the JMM). This raises several issues that need to be carefully
handled, for example the requirement that the union of the sets of committed actions must converge
to the set of all actions in the execution must be given as a coinductive predicate. To consider infinite
justification sequences coinductive data structures should have been used, and this would make the
formalisation more complicated, hence we left it for future work. Another reason is that we need to
talk about the transitive reduction of the hb relation with possibly infinite elements. This is unique
for a finite quantity of element but we cannot take this for granted for infinite executions. We have
not worked on a proof of the uniqueness of the transitive reduction of the hb in the infinite case, and
it is not clear that is a fundamental requirement of the model. However, as infinite executions are not
a priority for this version of the formalisation we leave this analysis for later work.

Kind of Actions Some actions, for example thread creation and thread termination, are not covered in the
current version of the model. This is because these actions are not fundamental for the specification,
or to prove the DRF guarantee, and can be easily added afterwards. However these actions are not
included just for simplicity reasons, there is no theoretical problem to add them to the formalisation,
so it is also left as future work.

23

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Sequential Continuation Axiom For the proof of DRF we need to show that given a prefix of an exe-
cution there is a sequentially consistent execution that has that prefix. To be able to prove this we
would need to establish a link between the program instructions and the actions of the JMM. The
basic idea would be to have a sequentially consistent scheduler that chooses an instruction, executes it
and then proceeds infinitely or until the program finishes. At this time we have not linked the formal
definition of the model with the semantics of single-threaded Java, so we cannot talk about program
instructions in the current formalisation. This is something we expect to do, but for this first version
of the model we take it as an assumption.

Topological Sort of a Partial Order A topological sorting of the hb order is needed to prove the DRF
property. Constructing all the possible topological sorts of a partial order is more easily achieved if
we are able to see the partial order as a forest of directed acyclic graphs (DAG). This would require
transforming the representations we currently have for partial orders, which are sets of ordered pairs,
to DAGs. For the moment we give an axiomatic specification of a the topological sorting, and leave
the implementation of the algorithm on graphs for later study.

First occurrence Axiom Also for the DRF proof we need to say that given a total order derived from
the topological sort of the hb there is a first occurrence of a property that relates the elements in the
order (first with respect to the order given). We added this first occurrence as an axiom. Proving it
instead of assuming it would require to know that every topological sort of the hb order has an order
type less than or equal to omega (i.e., there are only a finite quantity of actions preceding every action
in the order). From the definitions of well-formed executions we know that so has an order type less
than or equal to omega, with this assumption the same property about the hb should be provable,
and then the same property should be provable for any topological sort of the hb. We have left these
issues for future work and assumed it for now.

In this section we make a more specific description of the formalisation in Coq of the JMM. We will briefly
describe some of the main definitions and axioms as well as the important proofs we give. We would like to
clarify that not all definitions here are needed for the DRF proof, but some are added just for completeness
and to be able to easily extend the model afterwards.

Building Blocks Some data types such as thread identifiers (Thread_ID), unique identifiers for actions
(UID), variable names (VarName) and values (Value) are not of great importance in the specification, therefore
we formalised them as abstract data types augmented with a decidability predicate, that allows us to compare
elements of the same type.

Below we depict the definition of the Kind data type, which models the kind of actions existing in the
JMM. It was formalised as an enumerated data type. We have covered only the kind of actions that have a
real impact on the proofs we wanted to give, as we described before. One little difference with the specifi-
cation of the JMM is that the volatility condition of some of the actions is captured by a synchronisation
function instead of the kind type.

Inductive Kind : Set :=

| Read | Write

| Lock | Unlock

| VolatileRead | VolatileRead.

Actions & Executions Actions and executions are formalised axiomatically using the Coq module sys-
tem. Below we present a fragment of the Actions module. We implemented Actions as an abstract data type
which has several functions associated to it, like for example the act_kind function that given an action
returns the kind of the action (read, write, etc.).

24

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Module Type ACTIONS.

Parameter t : Set.

Parameter act_kind : t → Kind.

Parameter act_thID : t → Thread_ID.t.

Parameter act_uid : t → Uid.t.

Parameter act_var : t → VarName.t.

Parameter synchronisation : t → bool.

Parameter act_dec : ∀ x y:t, {x = y} + {x 6= y}.
End ACTIONS.

Executions are axiomatised in a similar way. The only parameters we need for executions are the program
P, the set of actions A, the so order, the po order and the W and V function. The sw, the hb and the ssw

orders are defined using the other orders as described above14.

Module Type EXECUTIONS.

Parameter t : Type.

Parameter program : t → Program.

Parameter actions : t → Ensemble Act.

Parameter po : t → Relation Act.

Parameter so : t → Relation Act.

Parameter W : ∀ (E:t)(x:Act), actions E x → act_kind x = Read → Act.

Parameter V : ∀ (E:t)(x:Act), actions E x → act_kind x = Write → Val.

Definition sw (E:t) : Relation Act :=

fun x y:Act => so E x y ∧ act_var x = act_var y ∧
act_kind x = Write ∧ act_kind y = Read.

Definition hb (E:t) : Relation Act :=

clos_trans (fun x y:Act => sw E x y ∨ po E x y).

Some properties about the elements of the definition are given as axioms. As an example we state
(axiomatically) that po is a partial order and that it is total when restricted to the actions of a single
thread.

Parameter po_partial_order : Order (po E).

Parameter po_total_upto_threadEq :

∀ t:Thread_ID.t, total_upto (po E) (fun x:Act ⇒ act_thID x = t).

The predicate Order is the conjunction of the predicates that say that a relation is reflexive, transitive
and antisymmetric, as expected; and the predicate total_upto says that a relation is total when restricted
to a certain set of actions, in this case the actions which belong to the same thread.

The fact that hb is a partial order is an interesting example of what can be proved only with the
specification of these modules. This proof uses that so is a total order over the synchronisation actions,
that po is total per thread and that so and po are consistent. The proofs of reflexivity and transitivity of
hb are trivial since both sw and po are reflexive and, hb is the transitive closure of their union. The proof of
the antisymmetry requires the conditions mentioned, but we do not present it here, since it is not of great
interesting for the rest of the chapter and the details are somewhat cumbersome.

Justifications The justification procedure is axiomatised through a function that takes a program, an
execution and a proof that the execution belongs to that program, and returns a list (with at least one
element) of pairs containing an execution and a set of actions. The ordering in the list represents the
ordering of commitments in the justification, and the elements in each pair are the execution used to
commit actions, and the set of committed actions so far, respectively. The definition in Coq is:

14Here we do not give the formalisation of the ssw order, as it is complicated and not necessary understand the Executions

module

25

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Definition Justification.t := Executions * Commitments.

Definition commitE := sList Justification.t.

Parameter justification :

∀ (P:Program)(E:Exec), eIn (Program_Executions P) E → commitE.

The Justifications.t definition represents the pairs contained in the sequence of justification, and
commitE represents the sequence (sList is a library for non-empty lists). The justification parameter
gives the type of the function that represents the committing procedure, in that expression eIn repre-
sents that execution E (not shown here, but declared in the scope of the definition) belongs to the set
(Program_Executions P); where the function Program_Executions returns, for a given program, the set
of all its possible executions (recall that this is only an axiomatic definition). The other parameters given
in this module specify how these executions and sets of committed actions are related. For example, the
definition below states that each committed action must belong to the set of actions of the execution in the
commit sequence (Ei).

Definition committedActionsInE :=

∀ (E_exec_P:eIn (Program_ExecutionsP) E)(j:Justification.t)(a:Act),

In (justification E_exec_P) j →
eIn (comm j) a →
eIn (actions (exec j)) a.

Using the JMM notation the property above would be: ∀j : Cj ⊆ Aj .

Causality Rules The causality rules are stated as literally as possible. We have formalised all the rules,
but actually some rules are not needed for the proofs we gave in this version of the model. We have added
them just for completeness, and to be able to extend our formalisation to cover more properties as future
work.

As an example of the formalisation of the rules, rule 2 is phrased in Coq as follows:

Definition req2 :=

∀ (E_exec_P:eIn (Program_ExecutionsP) E)(j:Justification.t)(x y:Act),

In (justification E_exec_P) j →
eIn (comm j) x →
eIn (comm j) y →
hb E x y ↔ hb (exec j) x y.

This definition says that the execution being used to justify actions (exec j), and the execution whose
actions we are trying to justify (E) have the same hb ordering when restricted to the current committed
actions (comm j). All the other rules follow the same general format.

Proofs The proof that correctly synchronised programs have only sequentially consistent executions is
given in our model following the proof sketch by the authors of the JMM paper, mentioned above.

The assumptions mentioned before are enough to prove the theorem. The current state of the formalisa-
tion has the lemma completely proved and all the elements needed for the proof of the theorem are stated.
The final proof of the DRF theorem is not written yet, since we plan to modularise it in smaller lemmas for
readability purposes.

26

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

2.3 Multithreaded Bicolano

Bicolano [60] is the formalisation in Coq of the Java bytecode semantics, developed as part of the Task 3.1
of the MOBIUS project. Bicolano follow the Java Virtual Machine Specification [50] but it is only concerned
with the sequential semantics of Java bytecode.

For correctly synchronised programs we rely on interleaving semantics as our formal model. For that
purpose we extended the sequential version of Bicolano with interleaving semantics. This is still work in
progress, thus some of the features are not yet covered in the current formalisation.

This section shows how we augmented the notion of state present in Bicolano to model all the possible
interleavings of instructions.

2.3.1 Bicolano

First we give a brief recapitulation of single-threaded Bicolano. The bytecode semantics is specified ax-
iomatically, with the use of several data structures that model the inner workings of Java.

Data Structures To define the state of an execution we need to define the heap, the callstack and the
current frame. In this version of the interleaving semantics in Bicolano (we shall call it BicolanoMT from
now on) we do not consider the exceptional state, so in the following we do not mention it, but it is formalised
in Bicolano and has to be taken in account for the final version of BicolanoMT.

Similarly to the axiomatisation of the JMM, the operations on the heap, callstack and frame are specified
through axioms that show which is the expected output for the input given. As an example, below we give
the signature and the specification of the get operation on the heap.

Parameter get : t → AddressingMode → option value.

Parameter get_update_same :

∀ h am v, Compat h am → get(update h am v) am = Some v.

Parameter get_update_old :

∀ h am1 am2 v, am1 6= am2 → get(update h am1 v) am2 = get h am2.

In the first definition the type of the get operation is given. The AddressingMode parameter specifies
whether the location we are trying to access is a static field, a dynamic field or an element in an array. The
semantics of that function is that for a given heap and an AddressingMode, the value placed in that location
of the heap is returned. In case there is no value in that location a special value (None) is returned.

The get_update_same parameter specifies the behaviour of the get operation after an update operation
on the heap on an AddressingMode am with the value v. In short it says that an access to the heap on
a location must return the last value updated for that location. Similarly get_update_old specifies that
the value returned when the argument is not the location being updated is the same as we had before the
update.

With the definition of the heap, and similar definitions of Frame which contains information about the
method currently being executed (such as the operand stack, the local variables and the program counter)
and CallStack which is a list of frames, we can specify the program state.

Module Type STATE.

Inductive t : Type :=

| normal : Heap.t → Frame.t → CallStack.t → t

27

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Small Step Semantics The small step semantics is defined in Bicolano with a large inductive definition
which has a case for each instruction of the bytecode language, and it specifies in each case how the state is
transformed after performing such an instruction. In the example below we can see how this is implemented
for the nop instruction which leaves the state unmodified, but incrementing the program counter by one.

| nop_step_ok :∀ h m pc pc’ s l sf,

instructionAt m pc = Some Nop →
next m pc = Some pc’ →
step p (St h (Fr m pc s l) sf) (St h (Fr m pc’ s l) sf).

We can see in the definition above that if the instruction at the current program counter is a Nop, and
the next program counter is pc’, the state resulting after the execution of the instruction is identical to the
original state but with the pc modified. We can think of step as the predicate that defines the operational
single step semantics.

Now we will see how we can extend the definition of state to model interleaving semantics.

2.3.2 BicolanoMT

Data Structures The main difference between sequential Bicolano and the multithreading extension
BicolanoMT is that we have to take into account the local state of each thread, i.e., every thread has its
own current Frame and CallStack. The definition for thread is as follows:

Module Type THREAD.

Inductive t : Set := make :

Frame.t →
CallStack.t →
ThreadState.t →
WaitingForLock.t →
WaitingForThread.t → t.

End THREAD.

The possible states of threads are specified in the ThreadState definition which is an enumerated data
type that contains as values runnable, blocked and waiting [50]. WaitingForLock is formalised as a
memory location that contains the lock that is blocking the current thread, and WaitingForThread contains
the ThreadID of the thread being waited for, when trying to “join” a thread. These parameters should in
fact be fields of the thread object allocated in the heap, but for simplicity we added them to the thread
definition. We believe that there is no real problem with this definition, but the formalisation could always
be changed.

Once the thread type is defined we need a way to handle all the threads together. For that purpose we
defined ThreadMap to be a mapping of ThreadIDs to the state of the Thread.

Module Type THREADMAP.

Parameter t : Set.

Parameter get : t → ThreadId.t → option Thread.t.

Parameter get_update_new : ∀ tmap x v, get (update tmap x v) x = Some v.

Parameter get_update_old :

∀ tmap x y v, x 6= y → get (update tmap x v) y = get tmap y.

We can now easily define the state of multithreaded executions by replacing the current Frame and
CallStack the by the ThreadMap.

Module Type MULTISTATE.

Inductive t : Set := make : Heap.t → ThreadMap.t → t

28

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Single Step (Interleaving) Semantics The definition of a step of execution in interleaving semantics
(mtstep) makes use of the definition of step of execution in the singlethreaded semantics. In fact, a step
in a multithreaded program would be any step in any of the threads that are currently runnable or some
special multithreading instructions that are not present in the sequential semantics. The definition of the
mtstep predicate that represents the valid state transformations in multithreaded Java is as follows:

Inductive mtstep (p:Program) : MState.t → MState.t → Prop :=

| interleave_mtstep : ∀ tmap tmap’ tid h h’ f f’ cs cs’,

ThreadMap.get tmap tid = Some (Tr f cs ThreadState.runnable None None) →
tmap’ = ThreadMap.update tmap tid (Tr f’ cs’ ThreadState.runnable None None) →
step p (St h f cs) (St h’ f’ cs’) →
mtstep p (MSt h tmap) (MSt h’ tmap’)

...

| monitorenter_nonblocking_mtstep_ok : ∀ m pc pc’ tmap tmap’ tid loc s l cs h,

instructionAt m pc = Some monitorenter →
next m pc = Some pc’ →
ThreadMap.get tmap tid =

Some (Tr (Fr m pc ((Ref loc)::s) l) cs ThreadState.runnable None None) →
Heap.isLockableBy h loc tid →
tmap’ =

ThreadMap.update tmap tid (Tr (Fr m pc’ s l) cs ThreadState.runnable None None) →
mtstep p (MSt h tmap) (MSt (Heap.lock h loc tid) tmap’)

In the interleave_mtstep case of the definition above, the interleaving of runnable threads is for-
malised. More precisely, the definition says that a state transformation in the interleaving semantics
corresponds to the execution of a step of a single runnable thread, or some multithreaded instruction.
All the multithreaded instructions must be added to the mtstep predicate. An example of a multi-
threaded instruction is monitorenter. Here we only present the case where the monitorenter grants
access to the thread requiring it (remember that the exceptional case is not covered in the current model).
The monitorenter_nonblocking_mtstep_ok case states that if the chosen program counter points to a
monitorenter instruction (instructionAt m pc = Some monitorenter), the chosen thread is runnable

and can lock the loc reference on top of the frame’s operand stack, then the lock is granted to that thread.
Native methods are called using the Invokespecial instruction. This was not formalised in Bicolano

at the time of writing BicolanoMT. As native methods do not have a matching bytecode instruction, place-
holders (e.g., _native_notify) were used to define their semantics.

As an example we show the native start instruction which causes a thread to begin executing. On the
stack there should be a reference loc to the thread to be executed, then we lookup the run method of the
class of the thread to be executed, the new program counter is set to the first instruction of this method
and the threads becomes runnable with an empty callstack, an empty operand stack and a self-reference in
the local variables (recall that we do not cover exceptions here).

native_start_mtstep_ok :

∀ tmap tmap’ tmap’’ tid tid’ h m m’ pc pc’ pc’’ loc s l l’ cs cn cl bm’,

instructionAt m pc = Some _native_start →
next m pc = Some pc’ →
ThreadMap.get tmap tid = Some (Tr (Fr m pc ((Ref loc)::s) l) cs

ThreadState.runnable None None) →
ThreadMap.get tmap tid’ = None →
tmap’ = ThreadMap.update tmap tid (Tr (Fr m pc’ s l) cs

ThreadState.runnable None None) →

29

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Heap.typeof h loc = Some (Heap.LocationObject cn) →
lookup p cn (RunMethodSignature p cn) (pair cl m’) →
METHOD.body m’ = Some bm’ →
pc’’ = BYTECODEMETHOD.firstAddress bm’ →

l’ = stack2localvar ((Ref loc)::s) 1 →
tmap’’ = ThreadMap.update tmap’ loc (Tr (Fr m’ pc’’ OperandStack.empty l’) nil

ThreadState.runnable None None) →
mtstep p (MSt h tmap) (MSt h tmap’’)

As said before the current version of BicolanoMT does not cover the exceptional state and there are
some multithreaded instructions missing. We expect to complete all the instructions and support exceptions
in future versions of the semantics.

We also plan to explore how to link the formalisation of the JMM with the formalisation of the interleaving
semantics. In fact we are only interested in linking the part of the JMM that deals with correctly synchronised
programs. A simplification of the JMM and other alternatives are being evaluated to achieve this goal.

2.4 A Tool for Race Detection

As it was presented earlier, the JMM offers programmers the following guarantee: All possible executions are
sequentially consistent if all sequentially consistent executions are free of data races. To support reasoning
about sequentially consistent concurrent systems, we must be able to identify when a program is free of
data races. Thus, we have “revived” Race Condition Checker (RCC), a tool that certifies that a program is
free of data races. After successfully using RCC other components of the MOBIUS verification environment
may assume that all executions are sequentially consistent.

Recalling the following guarantees offered by the JMM is sufficient to understand the rest of the section:

• There can be no data race between actions of the same thread—actions ordered by the program are
also ordered by happens before.

• There can be no data race on volatile fields—accesses to volatile fields are always ordered by happens
before.

• Releasing a lock in one thread always happens before its subsequent acquire by another thread.

• All other conflicting memory accesses are data races.

2.4.1 Rules and Annotations

RCC was originally developed as a prototype by Flanagan and Freund [27] before Java’s memory model was
revised and formalised [44]. Abadi, Flanagan, and Freund have given a thorough presentation of the tool’s
theoretical underpinnings in a recent publication [1]. Here we present, informally, the rules imposed by the
tool, what we call RCC 1.0, today.

Java type declarations are thread shared or thread local. All reference fields of a thread shared type must
be thread shared. The RCC version we ship considers a type to be thread shared by default.

The fields of a thread shared type must be final, volatile, or guarded_by by a lock (a Java Object).
Whenever a variable is accessed, all its protecting locks must be held. To avoid doing a must-alias analysis
on lock variables, RCC forces locks to be final and simply compares them by name. Methods may require
certain locks to be held whenever they are called. These are called the protecting locks of the method, and
must be held whenever the method is called.

Type declarations are parametrised by external locks. These declarations permit programmers to name
references that are not accessible at runtime. Whenever the type is used, lock arguments fulfilling the

30

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

/*#thread_shared*/ class Node/*#{ghost Object data_lock}*/ {

public volatile Node/*#{data_lock}*/ next;

public Object data/*#guarded_by data_lock*/;

}

/*#thread_shared*/ class LinkedList {

private final Object x = new Object();

private Node/*#{x}*/ head /*#guarded_by this*/;

public void add(Object data) /*#requires x*/ {

Node/*#{x}*/ n = new Node/*#{x}*/();

n.data = data;

synchronized (this) {

n.next = head;

head = n;

}

}

}

/*#thread_local*/ class User {

public LinkedList list;

}

Figure 2.10: Example RCC annotations

parameterisation must be provided. Two parametrised types are the same if their Java types are the same
and their arguments are identical. Analogous rules decide whether types are convertible, subtypes of each
other, and so on.

All annotations are written in comments that begin with /*# and end with */ so that annotated code
can be compiled as normal. The somewhat contrived example in Figure 2.10 illustrates all the available
annotations. The words ghost Object need to be used when declaring formal external locks only as a result
of a current implementation detail and should be ignored.

2.4.2 Example

Let us explore why the example in Figure 2.10 is correct.

The class User is thread local, therefore its field list need not be protected. The type of list is not
given any arguments. This is correct because the declaration of LinkedList does not specify any formal
external lock.

The declaration of Node does have a formal external lock and, as a result, whenever Node is used it is
given an argument. In particular, it is also given an argument in the new expression that initialises the
variable n. The variable n is later assigned to head. The assignment is type-correct because both n and
head have the type Node/*#{x}*/. The field head can be accessed in this assignment because its protecting
lock, this, is held.

The earlier access to n.data is more interesting. We are allowed to access n since it is a local variable.
Its field data is protected by the external lock data_lock, which is, in fact, x because the type of n is
Node/*{x}*/, and the lock x is held because it is required by the method add.

Finally, the field data is protected (by a lock) because it appears in a thread shared class (Node). The
other field, next, is protected because it is marked as volatile.

Consider now the example in Figure 2.11, which illustrates a pattern that appears later on in Figure 5.1.
A client of OverThread might think that it is safe to check if isOver is true before looking at the result.

31

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

class OverThread extends Thread {

public boolean isOver = false;

public Object result = null;

public void run() {

/* <Do something, not accessing isOver> */

/* <Set result when finished> */

isOver = true;

}

}

Figure 2.11: A pattern to detect early when a thread finishes

But according to the JMM the statement that sets isOver can be moved to the beginning of the method
run. RCC detects this problem in this example and forces us to either protect the variable with a lock or
mark the variable as volatile.

2.4.3 Reviving RCC

When we started working on RCC, it did not even compile. Now it works in a Java 1.4 Virtual Machine
and processes Java 1.4 code.

We present a few details of the architecture to understand why the code did not compile and why the
changes we had to make were not just local. RCC shares a Java front-end (called “JavaFE” for short) with
the Extended Static Checker for Java (ESC/Java) [19]. JavaFE is responsible for parsing and type checking
Java and building an Abstract Syntax Tree (AST). RCC and ESC/Java are responsible for parsing their
respective annotations and for doing extra type checks.

JavaFE is a large subsystem and it did not have any versioning scheme. Since RCC was originally
developed, the API of JavaFE changed. Furthermore, RCC contained cut-and-pasted code from JavaFE
and, in some cases, that code contained bugs that were later fixed, but only in JavaFE. The reason why the
code was copied is because JavaFE was designed to be extended by subclassing but overriding methods did
not provide the required granularity of control for RCCẆe have rewritten parts of JavaFE to permit a finer
granularity of control and to eliminate this code duplication. In the process of rewriting parts of JavaFE,
we have also fixed a number of bugs that affected ESC/Java.

The RCC test-suite has grown during this work as well. The testing framework now allows the developer
to easily run a subset of tests. The results are presented either quietly or in a verbose mode, and all details
are logged.

Additionally, RCC now understands and reasons about volatile variables. The old version would only
allow us to fix the example in Figure 2.11 by protecting isOver with a lock. Now the field can be marked
as volatile—a much more efficient solution.

From a theoretical point of view the most interesting aspect of this work was realising that type checking
sometimes did not terminate in RCC unless extra restrictions were imposed on what can and cannot be used
as an argument for an external lock. Figure 2.10 illustrates that we want to be able to use either normal
fields or formal external locks. In general we might think of allowing any final expression, but this can be
problematic.

Let us look closer at how we concluded that the access n.data in Figure 2.10 is permitted. The lock
that protects data is data_lock. Because it is an external lock, we looked at the type of n and replaced
data_lock with whatever was used as an argument. In this case the final expression used as an argument
was x and we then saw that x is a lock we hold.

In general, locks are compared by names that are rewritten into a normal form before comparison. To
better see this non-termination problem with type checking, we will use lowercase letters for normal (final)
fields, uppercase letters for (formal) external locks, and we omit the use of the dot operator. Using this

32

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

class Type/*#{ghost Object A}*/ {

Type/*#{A.A.a.a}*/ a /*#guarded_by a.a.A.A*/;

void doit() { a = null; }

}

Figure 2.12: First example of non-terminating type checking

class Type/*#{ghost Object A}*/ {

Type/*#{a.A}*/ a /*#guarded_by a.A*/;

void doit() { a = null; }

}

Figure 2.13: Second example of non-terminating type checking

representation, a declaration of a variable a of a type that is parametrised by A, B, and C will introduce
rewrite rules that transform aA, aB, and aC into whatever was used as arguments for the external locks.

This rewrite system aA->AAaa diverges when starting from aaAA. The corresponding Java example is
seen in Figure 2.12.

A simpler rewrite system that does not terminate is aA->aA. The corresponding Java code is seen in
Figure 2.13.

Both these examples do not make any sense. We need some additional rule to disallow them so that we
do not go into an infinite loop while type checking the body of the method doit. The rule should be flexible
enough to allow both uses that appear in Figure 2.10.

Expressing the problem in terms of a rewrite system makes it easy to find solutions. The one we chose
to stick with is the following: an argument is either an external lock or a field access that involves only
normal (final) fields. We explored other options and we believe that this one is flexible enough and offers
readable error messages to the user.

Another approach would have been to stop type checking when a variable name grows above a certain
limit. While this is practical, the only error message we could provide is something of the form of “lock ’l’
is too complicated,” and the user might not enjoy the fuzziness of that error message. Another approach
would have been to try to impose an ordering on external locks and on fields and fail when this ordering
seems impossible to find. Even if this approach supports use cases that we currently do not, it is more
complex, and we still cannot give a comprehensible error message.

2.4.4 Next Steps for RCC

RCC has a number of known bugs that need to be addressed before it is used in an industrial setting.

First, we kept the RCC annotation syntax different than the Java Modeling Language (JML) annotation
syntax. The RCC annotations have well defined semantics [1], but it is not clear what the semantics
of combined annotations (with normal JML annotations) should be. For example, RCC external locks
introduce new names. Can these names be safely used in another JML annotation? The following example
shows a hypothetical (syntactical) way of integrating the annotations.

class C/*@{lock}*/ {

//@ invariant \typeof(lock) == \typeof{LockClass};

}

Should this program be legal? Does it mean that, whenever C is instantiated, the lock provided should
have runtime or static type LockClass? Should we use an invariant to specify such a property, or should
we just rely on the type checking in RCC?

33

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Numerous similar problems exist. In particular, integration with the Universes type system is nontrivial,
but it suggests improvements [22, 9] that would make RCC more flexible. Other foreseeable benefits of such
an integration include allowing RCC to be more flexible by processing the immutable keyword and including
in JML keywords with well-defined semantics such as guarded_by.

In general, the remaining challenge is to make RCC accept most of well-understood, structured patterns
programmers use when writing concurrent code while preserving soundness. This work will facilitate RCC’s
adoption and will make annotating legacy code easier.

34

Chapter 3

Conditions for Thread-modular
Verification

Ideally, we would like to apply standard reasoning techniques for sequential code – using the established
notions of method contracts – to multithreaded code. A central difficulty is that if we apply such techniques
to verify a property of one thread, that property may be invalidated by interference of other threads.

Verification techniques such as Owicki-Gries and Rely-Guarantee support reasoning about threads in
the presence of interference by other threads. In the Owicki-Gries approach the program code of other
threads has to be known and non-interference has to be shown for any possible interleaving. This results
in a highly non-modular verification technique [59]. The Rely-Guarantee approach achieves modularity by
specifying restrictions on the interference by other threads that an individual thread assumes [43]. In our
work on thread-modular verification techniques the aim is to somehow rule out interference by other threads
so that we can apply standard techniques for reasoning about sequential code as much as possible. Similar
techniques have been used successfully in other settings, e.g., Thornley’s work on reasoning about concurrent
C programs [66].

In this chapter, we describe our work in progress on statically verifying properties that help limiting
thread interference. We have worked on identifying atomic code blocks (Section 3.1), identifying immutable
heap regions (Section 3.2) and regulating object access (Section 3.3).

• Identifying atomic code blocks. A code block is atomic if for every (arbitrarily interleaved)
program execution there exists a semantically equivalent execution that runs the block without inter-
leavings from other threads. Well-designed multithreaded programs typically contain an abundance
of atomic blocks. Knowing about atomic blocks is extremely helpful for program verification, because
verification can soundly ignore all thread interleavings inside these blocks. We are working on ex-
tending the concept of atomicity and developing techniques for modularly verifying our new variant
of atomicity (called contract-atomicity). The main idea is to define atomicity with respect to method
contracts and take advantage of the constraints that contracts impose on the environment, in order to
reach a more liberal notion of atomicity. Section 3.1 describes the main ideas.

• Identifying immutable heap regions. Immutable parts of the heap are only accessed by reads, but
not by writes. Therefore read/write or write/write conflicts are impossible when accessing immutable
regions. We are working on a type-based analysis for verifying object immutability. A type system for
a core language has been designed and proven sound [35]. Section 3.2 describes the main ideas of this
type system.

• Thread ownership. Access to a particular heap location cannot result in interference if, whenever
one thread has permission to write to this location, no other thread has permission to access this
location at all. We are working on regulating object access to ensure such an invariant for object access
permissions. The goal is to leverage existing ideas [10] from a low level core language to an object-
oriented setting. In this approach, object access permissions for threads may vary dynamically. This is

35

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

more liberal than policies based on thread-locality [27, 9, 42], where for each thread-local object there
is only one thread that can access it and this thread remains fixed throughout the entire program run.
This is work in progress. The main ideas are described in Section 3.3.

3.1 Exploiting Contracts for Atomicity

The notion of atomicity [31] (and the auxiliary notion of independence [62], coinciding with a sequence of
both-movers in [51]) has been considered important for the verification of concurrent programs for some
time.

Definition 3.1.1 (Atomicity). A code block is atomic if for every (arbitrarily interleaved) program execution
there exists a semantically equivalent execution that runs the block without interleavings from other thread.

If a method is atomic, we can assume that the method body executes without interleavings from other
threads. Thus, we can significantly reduce the cost of program verification by reducing the number of
interference freedom tests that program logics for concurrent programs require [59]. Earlier investigations
have shown that typical concurrent programs contain an abundance of atomic methods [62], thus it is
well worth exploiting this fact for thread-modular verification. However, existing approaches do not take
specifications into account. We improve on these approaches by providing a notion of contract-atomicity,
where atomicity of a method depends on the method’s contract.

3.1.1 Previous Atomicity Analyses

Before presenting our new notion of contract-atomicity, we briefly review related work on this topic.
The literature contains a number of program analysis techniques for verifying atomicity. Most of these

techniques are based on the reducibility criterion, as introduced by Lipton [51]. The reducibility criterion
forms the basis for atomicity type systems [31, 30], dynamic atomicity analysers [29] and some model checking
techniques for atomicity [36]. A method is said to be reducible if its implementation respects the pattern
R∗N?L∗ where R∗ denotes zero or more so-called right-movers, N? denotes zero or one so-called non-mover
and L∗ denotes zero or more so-called left-movers. Any read or write to a variable that is protected by a lock
is both a left- and a right-mover (also called a both-mover), a lock acquire is a right-mover, a lock release
is a left-mover and any read or write to a non-protected variable is a non-mover. Lipton showed that, if a
method respects this pattern, every concurrent execution can be reduced to a sequential one.

Later, Flanagan introduced a model checking technique that can verify the atomicity of certain code
blocks that are not reducible [26]. This technique is based on executing serial and non-serial versions of an
operational semantics simultaneously, and checking that both versions yield the same final state. Flanagan
calls this model checking technique commit-atomicity, because it can verify a common atomicity pattern
where a code block does not perform any action that affects other threads until a so-called commit point is
reached. The following method, which makes use of an atomic compare-and-swap operation, matches this
pattern:

void acquire() {

boolean r := true;

while (r==true) { CAS(m,false,r); }

}

This method is not reducible, because CAS(m,false,r) is not a mover. However, it is atomic as Flanagan’s
model checking technique shows.

In [28], Flanagan et al. present a type and effect system for verifying a semantic property they call abstract
atomicity. Abstractly atomic code blocks are atomic with respect to an abstract operational semantics, which
differs from a standard operational semantics by allowing additional non-determinism. Roughly speaking,
the abstract operational semantics allows a skip-transition as an alternative for a read-transition (but not as
an alternative for a write-transition). Methods that are atomic are also abstractly atomic, but the converse

36

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

int alloc(){

int i = 0;

int r = -1;

while(i < max) {

l[i].lock();

if(free[i]) {

free[i] = false;

l[i].unlock();

r = i;

break;

}

l[i].unlock();

i+=1;

}

return r;

}

Figure 3.1: Method alloc

is not true. Figure 3.1 shows an example of an abstractly atomic method that is not atomic. The alloc-
method searches for a free disk block. The flag free[i] indicates whether the ith disk block is currently
unused. This flag is protected by the mutually-exclusive lock l[i]. When alloc identifies a free block, it
allocates this block by setting the appropriate bit to false and returns the index of that block, otherwise it
returns -1. Although abstractly atomic, the method is not atomic w.r.t. a standard operational semantics,
because there could be a concurrent thread that ensures there is always at least one free block, yet in an
interleaved execution the search performed by alloc could still fail to find a free block. This is not possible
in an execution that serialises alloc.

The following inclusion hierarchy summarises the relation between the different analysis techniques and
semantic notions of atomicity that we encountered in the literature:

reducibility [51, 31, 30, 29, 36] ⊂ commit-atomicity [26] ⊆ atomicity ⊂ abstract atomicity [28]

3.1.2 Contract-atomicity

The traditional definition of atomicity is purely based on implementations. On the other hand, we assume
that methods are annotated with behavioural contracts in the style of JML’s multithreading extension [48].
This explicitness has an advantage over the previous approaches, because the contract helps us to understand
what behaviours are acceptable for the method, and contract-atomicity let us know what the atomicity
property means in terms of contracts.

For example, even if alloc is abstractly atomic, how does it simplify verification and what properties does
the method have? Indeed, it is difficult to write a contract for alloc because the property the programmer
would like to express is “if alloc returns an index different from −1, the bit at this index has been set to
false at some point in the past”. Unfortunately, the current version of the JML language is not adequate to
easily express such a property.

The following example (again, from [28]) illustrates the correspondence between the contract and the
intended behaviour of a method. In the following code fragment, the value of the variable packetCount

does not influence the correctness of the method receive and this is made explicit by the contract:

int packetCount;

Queue packets;

37

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

void enqueue(Packet p);

//@ ensures packets.has(p);

void receive(Packet p){

packetCount++;

enqueue(p);

}

By analysing where the contract (ensures packets.has(p)) reads when it evaluates, we can deduce that
the intended behaviour of receive does not depend on packetCount (provided the call to has does not
read it). Therefore, we propose a new notion of atomicity that takes the method specification into account:

Definition 3.1.2 (Contract-atomicity). A method m is said to be contract-atomic with respect to its contract
c if, whenever c is respected in a sequential setting, c is also respected in a concurrent setting.

Alternatively stated, interleavings from other threads do not change whether m respects c. An example
of contract-atomic method is shown in Figure 3.2. In this example, the method route is contract-atomic
because its post-condition cannot be violated even if the packet p passed as a parameter is shared between
multiple threads. The method route is not abstractly atomic (thus, not atomic either).

As with previous notions of atomicity, contract-atomicity entails that the correctness in a sequential
setting implies the correctness in a concurrent one. However, contract-atomicity differs from previous notions
for two reasons. First, it requires that the intended behaviour of a method in a concurrent context is made
explicit. Second, contract-atomicity has been designed to be modular. Indeed, on this latter point, previous
definitions of atomicity suffer from being poorly modular, because the composition of two atomic regions
may not yield an atomic region if each region contains a non-mover [62]. It means that if method m1 contains
a call to method m2 which has already been declared atomic, one cannot use this result in a modular way: in
order to verify the atomicity of m1 it is mandatory to look at the implementation of m2 again, for example
by inlining it in m1 when the analysis proceeds. The reason why contract-atomicity is modular is that it
rules out possible external interferences (a similar approach has been taken in SCOOP [57]). An external
interference occurs when the contract of a method is broken between the moment where the callee returns
and the moment where the caller resumes. Typically, external interferences forbid to reason sequentially
because they entail that contracts are not stable. Consider the following example where otherMethod’s
post-condition is R:

//@ assignable x.f;

//@ requires P(x);

//@ ensures Q(\result);

MyObject method(MyObject x){

x.otherMethod();

// (1)

return x;

}

When reasoning sequentially, one can assume that R[this/x] holds when method returns. We say
that R[this/x] is stable [58] because it holds at least until the execution of the next statement. Yet, in
a multithreaded environment, naively, no value is stable, because everything can always be changed by
the environment. Respecting a locking discipline or using confinement permits to entail the stability of
predicates or methods. An example at the end of the document illustrates this (see Section 5.1).

Thus, unstability forbids us to assume R[this/x] when method returns since other threads can modify
fields of x at (1) and break this property. However, if otherMethod has been checked to be contract-atomic,

38

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

class BackupMachine {

synchronized void add(Packet p) { .. };

}

class Packet {

private Lock l; // accesses to Packet objects are protected by the lock "l"

private boolean treated;

//@ requires l.isLocked();

void treat(){ treated = true; }

void protect() { l.lock(); }

void isTreated() { return treated; }

}

class Router {

Vector<Packet> treated; // accesses to this vector are protected by "this"

BackupMachine backup; // object shared between different threads

//@ ensures p.isTreated();

void route(Packet p){

p.protect();

p.treat();

synchronized(this){

treated.add(p);

}

backup.add(p);

}

}

Figure 3.2: Example of a contract-atomic method: route

we have the property that the post-condition R[this/x] is stable until the next release of a lock (thus, at
least until the next statement) and that is why it can be used when method returns. More generally,
contract-atomicity permits to reason in a modular way because it forces contracts to be stable. Of course, it
comes at a cost: in order for a method to be contract-atomic, the contract must not be sensible to external
interferences. Indeed, a contract-atomic method m enforce callers to perform adequate synchronisation
before calling m.

As mentioned above, the second point where contract-atomicity differs from previous notions of atomicity
is that it requires the intended behaviour of a method in a concurrent context to be explicit and that is
why contract-atomicity is not a strict extension of (abstract) atomicity: if a method is strangely specified, it
may be reducible (as this does not consider the contract), but it may not be contract-atomic. For example,
consider the following piece of code where the annotation monitors_for x <- lock indicates that accesses
to x are protected by lock (see Chapter 4 for a complete description of such keywords):

Object x; /*@ monitors_for x <- lock @*/

Object y;

/*@ ensures P(x);

39

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

@ ensures P(y);

@*/

public void doSmtg(){

lock.acquire();

x = independent_call(x);

lock.release();

}

Method doSmtg is reducible, because it respects the pattern R∗ N? L∗. However, it is not contract-atomic,
because the contract asserts something about the field y and, as the implementation does not acquire any
protection for this field, nothing can be ensured about it. Therefore, we define a notion of well-formedness
of a contract which is used to warn the programmer that a method is likely not to be contract-atomic.

This notion is concerned with the set of locations read/written by a method and the set of locations read
when its contract is evaluated. JML already provides multiple keywords for that purpose, e.g., accessible
and assignable. The set of locations specified in assignable (resp. accessible) clauses is an upper-bound
of the set of locations that may be written (resp. read) during the execution of a method.

Definition 3.1.3 (Footprint).

1. The footprint of a method is the union of the set of locations listed in its assignable clauses and the
set of locations listed in its accessible clauses.

2. The footprint of a contract is an upper-bound of the set of locations read during its evaluation.

The footprint of a method m only mentions objects visible by a client, i.e., it cannot mention objects
that are local to m. In addition, the footprint is modular, because if m contains a call to method n, one can
re-use n’s footprint to compute m’s footprint. In the following example, as b is an alias of a and it is is not
visible to the client, m’s footprint is {a.x, a.y}.

class Point {

int x,y;

//@ assignable y;

void n(){ y = 3; }

}

//@ assignable a.x, a.y;

void m(Point a){

Point b = a;

b.x = 3;

b.n();

}

Footprints of contracts are more difficult to compute than footprints of methods because of JML’s
expressiveness, in particular because of \exists and \forall expressions. If none of this keyword appears,
the footprint of a contract is determined in a similar way as for a method (by using accessible clauses of
methods called). If a quantifier is present, it is possible to compute the footprint of the contract considered
if the domain of the quantifier is finite (this is the case if a \forall quantifier is used to range over all
elements occurring in an array). That is why the footprint of oneify’s contract in the piece of code below
is the whole array a.

//@ assignable a[0..a.length];

//@ ensures (\forall int i; i >= 0 && i < a.length; a[i] == 1);

40

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

void oneify(int[] a){

for(int i = 0; i < a.length; i++)

a[i] = 1;

}

If the domain of a quantifier cannot be determined, the worst case is assumed: the footprint of the
contract considered is the whole heap. Note that we will change the semantics of JML visible-state invariants
because, in its current state, it makes footprints useless. Indeed, according to this semantics, all invariants
of all allocated objects are conjoined to non-helper methods1 pre- and post-condition. Of course, this is
not correct in a multithreaded program where a method may proceed whereas objects in the heap are not
respecting their invariant at the same moment. We plan to use information about object ownership to
provide a new notion of visible-state invariants.

Well-formedness is important, because often methods having badly-formed contracts are not contract-
atomic. Thus, it can be used as a lightweight mechanism to warn the programmer for a potential specification
error. Note that this definition implies that a contract whose footprint is the whole heap cannot be considered
well-formed because its footprint is obviously bigger than the footprint of the method associated.

Definition 3.1.4 (Well-formed). A contract c is well-formed for a method m if the footprint of c is included
in the footprint of m.

Checking contract-atomicity. We are currently working on the development of an algorithm to check
contract-atomicity. Its formal definition and soundness proof are future work; here we sketch the main ideas
behind the algorithm. It will eventually be integrated into the MOBIUS tool set. The algorithm will rely on
an alias analysis and read/write analysis and the notion of stability [58].

An alias analysis allows to determine whether two references are aliases, i.e., whether they are pointing
to the same object. If two references are known to be aliases, this means that a single lock will be sufficient
to protect accesses via both references. Also, if two references are known not to be aliases, modifications
via one reference cannot affect the other reference. Although not mandatory, information about aliasing
makes our technique more accurate because it furnishes additional hypotheses. Various tools performing
alias analysis exist [37, 14].

The second analysis is a read/write one. It consists in looking where methods perform read and/or write
actions. As we have seen before, JML already provides annotations for that purpose, and techniques exist to
verify these annotations [13, 64, 34, 17, 63]. Typically, these techniques require an alias analysis to control
reads/writes through aliases. The immutability type system presented in Section 3.2 below also includes a
write-effect analysis that builds on top of an ownership type system (see also [35]). This analysis is also
useful to check well-formedness of contracts i.e., comparing whether the set of locations read and written
by a method contains the set of locations read by its contract.

Figure 3.32 (adapted from [28]) illustrates how the different analyses are used and shows why previous
notions of atomicity are not satisfactory when used in a framework containing annotations. To quote
Flanagan et al. [28], the lookup method “is atomic because it behaves correctly when it is concurrently
invoked by multiple threads”. However if we encode this “good behaviour” with a contract and try to
apply contract-atomicity, we see that this is not as straightforward as they claim. Indeed, lookup behaves
correctly in the sense that the parameter given is correctly added to the cache, yet our analysis detects (see
next paragraph) that the value associated to the key can be computed and stored multiple times (even if
the cache should be an optimisation!). In our encoding, the fact that a value can be computed multiple
times for a similar key is detected by throwing an exception KeyAlreadyThere3. In the paragraph below,

1A method (of class C) is said to be a non-helper one if invariants and constraints of C must be added to its pre- and
post-condition.

2Note that we cannot use the JML monitors_for keyword to specify how the cache is protected because this keyword
protects a field of a class, whereas the policy in this example is to protect the object pointed to by the field cache.

3As mentioned in paragraph 2.3.2, our formalisation of the JMM does not consider exceptions yet, but it does not affect our
explanations here.

41

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Cache cache; // modifications of the cache are protected by "lock"

Lock lock;

//@ accessible cache, k;

Object get(String k);

//@ accessible cache, k, val;

void put(String k, Object val) throws KeyAlreadyThere;

Object compute(String k);

//@ requires \lockset.has(lock);

Object lookup(String k) throws KeyAlreadyThere {

Object r = get(k);

lock.release();

if(r != null)

return r;

r = compute(k);

lock.acquire();

put(k, r);

lock.release();

return r;

}

Figure 3.3: Cache implementation

we explain how a contract-atomicity analysis can be used to show that lookup has a limited good behaviour
i.e., it may throw a KeyAlreadyThere exception because its implementation does not prevent the value
associated to a key to be computed and put into the cache more than once. Alternatively stated, lookup
is contract-atomic w.r.t. a contract ensuring that the key is correctly put in the cache, however it is not
contract-atomic w.r.t. a contract ensuring that no exception is raised.

By inspecting the method declarations we know that the only method that may throw an exception is
put. It will throw this exception when it is called twice in a row with the same key. Thus, whether lookup
throws an exception solely depends on the call to put. As indicated in comments, no method calls or field
assignments can be performed on the cache without holding lock. As lock is held at the entry point
of lookup (as specified by requires \lockset.has(lock)), we know that the cache cannot be modified
until the first lock.release(). However, after that point, concurrent calls to lookup with the same key
k can be triggered by concurrent threads. Furthermore, since put reads from the cache (as indicated by
the annotation accessible cache), its behaviour depends on the state of the cache. Thus, the cache can
be written by other threads between the first lock release and the call to put. Thus if lookup is called
concurrently with the same key and proceeds completely, put will be called twice with the same key and
the second thread making the call will raise an exception. That is why it is interesting to make the good
behaviour of a method explicit in its contract. With the notion of contract-atomicity, it is clear what
properties methods enjoy, whereas previous approaches on atomicity were not precise on this topic.

Now that we have seen how contracts help to understand acceptable behaviours of methods, we sketch
how, given a method m and its contract c, we check that m is contract-atomic w.r.t. c. For that purpose,
consider the example in Figure 3.4. Notice that this method is not considered atomic, using the classical no-

42

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Point o1; // accesses to o1 are protected by "lock"

Point o2; // o2 is not protected

Lock lock;

//@ accessible o.y;

/*@ pure @*/ boolean P(Point o);

//@ accessible p2.x;

//@ assignable p1.x;

void f(Point p1, Point p2);

//@ requires \lockset.has(lock);

//@ ensures P(\result);

Point g(){

Point r = new Point();

f(r, o1);

f(r, o2);

return r;

}

Figure 3.4: Example to illustrate checking of contract-atomicity

tions of atomicity, because the statement f(r, o2) reads to o2 (as indicated by the annotation accessible

p2.x where p2 is replaced by o2 when substituting formal parameters) which can be concurrently written by
other threads (because no confinement or locking discipline provides guarantees about concurrent accesses
to o2).

The code has already been annotated with accessible and assignable clauses, to indicate where
methods read and write. These annotations can be supplied by the programmer and checked by an analysis
or they can be generated by the analysis itself. In addition, we consider that an alias analysis has determined
that o1 and o2 point to different objects (i.e., they are not aliases). Also, fields x and y of Point objects
cannot be aliases because they have type int (see definition of class Point in page 40). By performing
a simple read/write analysis, we can deduce that the contract of g relies on the object pointed to by r,
because the post-condition of g (ensures P(\result)) uses the method’s result, which is the variable r.
As indicated in comments, accesses to o1 are protected by lock, i.e., no threads may call a method, read
or change a field of o1 without holding lock. Below, we distinguish between values that can be modified
by the environment (called unstable, marked grey), and on which the current thread cannot rely, and values
that cannot be modified by the environment (called stable, marked white).

When method g is entered, lock is held (as specified by the requires \lockset.has(lock)), thus the
fields of o1 cannot be changed by the environment (since o1 is protected from unsynchronised accesses by
lock). When the first call to f is made, r is also protected from the environment because it has not yet been
shared. Thus, at that point, r and o1 are stable, as depicted in graph 1 in Figure 3.5 (where only relevant
information is displayed). The second call to f changes this situation, since it involves o2 which is unstable.
Since f writes to r.x, this also becomes unstable (graph 2). However, the method is contract-atomic because
the post-condition only involves P(r) (as indicated by the dashed arrow), whose return value depends only
on r.y (see graph 3) and r.y is stable (because it is marked by a white circle, i.e., its value has not been
influenced by the environment). Note that we did not need any information about f, except the locations
where it reads and writes.

43

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

o1 o2 r

x y

o1 o2 r

x y

o1 o2 r

x y

P

graph 1 graph 2 graph 3

Figure 3.5: Graphs modelling partitioning of the state in unstable and stable values

Thus we can verify whether g respects its contract, using sequential program verification techniques, and
because g is contract-atomic, we know that it also respects its contract in a concurrent setting.

3.1.3 Contract-independence

A notion that is closely related to atomicity is that of independence, introduced by Rodŕıguez et al. [62]
for the case where all instructions in a method are both-movers (cf. [51]). Independence is useful in that it
can help to verify atomicity in a modular way. If a method is independent, then all its statements access
a part of the heap which cannot be concurrently accessed by other threads. This means in particular that
the method does not suffer from interference, thus its behaviour is predictable, from whatever context it is
called.

As with atomicity, the existing criterion to detect that a method is independent relies solely on the
implementation and does not take the contract into account. However, in our framework, contracts can be
used to give an alternative definition of independence:

Definition 3.1.5 (Contract-independence). A method m is contract-independent if for all well-formed
contracts c w.r.t. m, if c is respected in a sequential setting, c is also respected in a concurrent setting.

This definition allows us to re-use the existing notion of independence and we have the property that
contract-independence is equivalent to independence for well-formed contracts. In addition, one can view
contract-atomicity as the existential part of this definition: a method is contract-atomic w.r.t. a particular
contract whereas contract-independence is concerned with all well-formed contracts. The motivation to have
contract-independence is that it can be verified easily. Indeed, as we have seen above, contract-atomicity
involves complex reasoning about read/write, aliases, locking and confinement. Contract-independence is
much easier to verify and we expect it to be a useful notion to specify methods which have a strong locking
or confinement policy. In fact, the both-movers criterion, initiated by Lipton’s theory of reduction [51]
and re-used in many frameworks ([31, 62]), is a simple way to show contract-independence. This allows
us to re-use existing techniques and tools [28] to prove contract-independence. In a nutshell, this criterion
consists in verifying that all possible executions of a method only involve objects that cannot be accessed
at all by other threads. It is further work to re-instantiate the existing techniques to check this criterion in
our framework but we expect the keywords defined in Chapter 4 to be sufficient for that purpose.

In addition, once the implementation of a method has been proven contract-independent, the programmer
can change its contract without the need to check contract-independence again, solely well-formedness must
be checked again. Notice that this is not true for contract-atomicity: if a method m has been checked
contract-atomic w.r.t. c and c is changed to c′ it does not entail that m is contract-atomic w.r.t. c′.

3.2 Immutability

In order to facilitate practical modular verification of multithreaded programs, it is important to take
advantage of program properties that are not usually expressed in terms of a program logic. We have
argued in previous sections that various forms of atomicity are particularly useful. We have also argued

44

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

that static analyses and type systems for controlling read and write-effects are useful for statically enforcing
atomicity. An extreme form of write-effect control is the identification of immutable regions, i.e., parts of
the heap that are read-only after their initialisation. Methods that do not write at all and only read from
immutable regions are Lipton-reducible (even both-movers) and therefore atomic.

In an object-oriented language, it is natural to associate each object with a region of the heap—its object
state. Objects are called immutable whenever they do not permit visible mutations of their object state.
Many Java style guides and popular Java programming guides like Bloch’s book Effective Java [8] recommend
favouring immutable objects. One of the main reasons for this recommendation is that immutable objects
are inherently thread-safe ([8], pg. 65).

One of the accomplishments of the first phase of this work task is the design of a static type and effect
system that captures conditions for programming immutable objects [35]. We have formalised this system
for a small model language that extends Featherweight Java [39] with a mutable heap. We have shown that
our type system is sound in the following sense: in well-typed programs the state of objects of immutable
type does not visibly mutate. Our type system even ensures soundness in an open world where clients of
immutable objects are expected to follow Java’s typing rules but not the rules of our special immutability
type system. This open world model is useful for dealing with untrusted and legacy code. We are now
planning to scale our type system to full Java and implement a prototype type checker. As a result, we
will be able to exploit checked immutability specifications towards our ultimate goal: modular verification
of multithreaded programs.

In the remainder of this section, we summarise important features of our immutability type system. For
details we refer to [35].

3.2.1 Features of the Immutability Type System

The central keyword of our immutability system is a class annotation immutable, which specifies that all
instances of the annotated class are immutable objects. A simple example of an immutable class is a wrapper
class for integer values, similar to Java’s immutable Integer class:

/*@immutable@*/ class MyInteger {

final int value;

MyInteger(int value) { this.value = value; }

int get() { return value; }

}

Deep object states. In simple cases, an object’s state merely consists of its fields, like for MyInteger

objects. In such cases, it is enough to require that all fields are final in order to ensure object immutability.
In more complex cases, however, an object’s state naturally includes the states of objects that its fields refer
to. If, for instance, object o represents a graph that is implemented as an array of adjacency lists, then o’s
state naturally includes not only o’s fields, but also all array fields and the states of the adjacency lists. The
state of each adjacency list in turn contains the state of each of its nodes. Thus, in general, object states
are not disjoint but form a hierarchy ordered by inclusion.

In our Java extension, programmers can use types to specify the depths of object states. Object types are
of the form C<x>, where C is a class name and x is an identifier that refers to the owner of this. Ownerless
objects have types of the form C<world>, where world is a special constant. Field types have one of the
forms C<world>, C<this> or C<myowner>4. The variable myowner is a special variable (like this) and refers
to the owner of this. The myowner variable gets instantiated when a new object is created: newC<o>()
creates a new object of type C<o>. The state of an object o consists of its fields and, recursively, of the
states of all objects that are owned by o and reachable from o’s fields through reference chains. Ownership
typing rules ensure that objects can only have static references to their children and peers in the ownership

4C<this> and C<myowner> correspond to rep C and peer C in the the Universe type system [55].

45

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

tree. This is exactly like in Müller’s Universe type system [55]. For instance, in the following example the
state of list l consists of l’s fields and the fields of l’s nodes:

class List {

Node/*@<this>@*/ head;

int length;

void cons(Object/*@<world>@*/ o) {

head = new Node/*@<this>@*/(o,head);

length++;

}

}

class Node {

Object/*@<world>@*/ value;

Node/*@<myowner>@*/ next;

Node(Object/*@<world>@*/ value, Node/*@<myowner>@*/ next) {

this.value = value; this.next = next;

}

}

Object/*@<world>@*/ o = ...;

List/*@<world>@*/ l = new List/*@<world>@*/();

l.cons(o); l.cons(o); l.cons(o); // now l has three nodes

The following class Immutable is a simple example of an immutable class whose instances have deep
object states:

/*@immutable@*/ class Immutable {

final Mutable/*@<this>@*/ mtbl; // an encapsluated mutable subcomponent

Immutable(Mutable/*@<world>@*/ mtbl) {

this.mtbl = new Mutable/*@<this>@*/(mtbl.get()); }

int get() { return mtbl.get(); }

}

class Mutable {

int value;

Mutable(int value) { set(value); }

int get() { return value; }

void set(int value) { this.value = value; } // a mutator

}

The type annotation Mutable<this> on the field Immutable.mtbl specifies that the state of an Immutable

includes the state of the object that its mtbl-field refers to. Note that the constructor Immutable(mtbl)

makes a defensive copy of its parameter mtbl to prevent representation exposure. This is enforced by the own-
ership type system. Technically, this is achieved because the constructor parameter’s type Mutable<world>

is not a subtype of Mutable<this> and, thus, a direct assignment to the field this.mtbl is disallowed.

Read-only methods. Obviously, methods of an immutable object should not modify its object state.
One could try to ensure this by requiring that methods of immutable objects are side-effect free. However,
ensuring side-effect freeness is not so simple, because even side-effect free methods must be allowed to call
constructors that write to the heap. Limiting constructor writes for side-effect freeness in a practical and
safe way requires alias control [63]. Therefore, instead of requiring side-effect freeness, we use a weaker
restriction that is simpler to enforce on top of the ownership infrastructure and ensures that methods of
immutable objects do not write to the receiver’s state.

46

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

An expression is read-only, if (1) it contains no field assignments; (2) all its method calls have
the form e.m(ē), where either (a) m is read-only, or (b) e has type C<world>; and (3) all its
new-calls take the form newC<world>(ē).

Read-only methods are guaranteed not to write to the state of immutable receivers. Our type system requires
methods of immutable classes to be read-only. Our read-only restriction allows important side-effecting
methods. For instance, the method getChars(int srcBegin,int srcEnd,char[] dst,int dstBegin)

from Java’s immutable String class writes to the array dst (owned by world). It is an example of a
read-only method that is not side-effect free.

Write-local, anonymous constructors. A constructor of an immutable object typically will have side-
effects to initialise the object state. We have to restrict constructors of immutable objects for two reasons:
(i) we have to prevent them from modifying other objects of the same class, (ii) we have to prevent them
from leaking the partially constructed this.

Restriction (i) is needed because visibility modifiers in Java constrain per-class, not per-object, visibility.
For this reason, unrestricted constructors of immutable objects could modify other immutable objects of
the same class. For example:

/*@immutable@*/ class Wrong {

Mutable/*@<this>@*/ mtbl;

int get() { return mtbl.get(); }

Wrong(Wrong/*@<world>@*/ o) {

this.mtbl = new Mutable/*@<this>@*/(o.get());

o.mtbl.set(23); // unwanted side-effect on other object!

}

}

To prevent such immutability violations, we require constructors of immutable objects to be write-local in
the following sense:

An expression is write-local, if (1) all its field assignments have the form e.f=e′ where either
e = this or e has a type C<this> and (2) all its method calls have the form e.m(ē) where either
(a) m is read-only or (b) m is write-local and e = this or (c) m is write-local and e has type
C<this> or (d) e has type C<world>.

Restriction (ii) is needed to prevent immutable objects from making themselves visible during their
construction phase when they are still mutating. We use Vitek et al.’s notion of anonymity to prevent
constructors of immutable objects from leaking this [67, 69]:

An expression is anonymous, if it (1) is not this, (2) does not pass this as a method argument
unless the receiver is this, (3) does not assign this to fields, and (4) all its method calls have
the form e.m(ē) where either e or m is anonymous.

Our type system requires constructors of immutable classes to be both write-local and anonymous.

Owner-polymorphic methods for safe dynamic aliasing during object construction. Methods
can have owner parameters. Like type parameters of Java 5’s generic methods, these are ignored at run-
time and are used for type-checking only. Declarations of owner-polymorphic methods are of the form
<ȳ> ty m(t̄y x̄){e}. The scope of the owner parameters ȳ includes the types T, t̄y and the method body e.
The type system restricts occurrences of owner parameters within e to inside angle brackets < · >. Calls of
owner-polymorphic methods must explicitly instantiate the owner parameters: in the method call expression
e.m<v̄>(ē), the values v̄ instantiate the owner parameters ȳ from m’s declaration.

Owner-polymorphic methods permit dynamic aliasing of representation objects. Consider, for instance,
the following method declaration:

47

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

<x,y> void copy(C<x> from, C<y> to)

A client may invoke the copy method with one or both of x and y instantiated to this, for instance,
copy<world,this>(o,mine) where mine refers to an internal representation object owned by the client.
When a copy-client makes this call, he passes a dynamic alias to his representation object mine to the
copy-method. Dynamic aliasing of representation objects is often dangerous, but can sometimes be useful.
For immutability, dynamic aliasing is useful during the object construction phase, but dangerous thereafter.
For instance, the constructor String(char[] a) of Java’s immutable String class passes an alias to the
string’s internal character array to a global arraycopy() method, which does the job of defensively copying
a’s elements to the string’s representation array. Our type system uses owner-polymorphic methods to
permit dynamic aliasing during the construction phase of immutable objects, but prohibits it thereafter.
The latter is achieved by prohibiting read-only expressions to instantiate a method’s owner parameters by
anything but world.

For String to be immutable in an open world, it is important that the arraycopy() method does not
create a static alias to the representation array that is handed to it from the constructor String(char[] a).
Fortunately, owner-polymorphic methods prohibit the creation of dangerous static aliases! This is enforced
merely by the type signature. Consider again the copy() method: From the owner-polymorphic type we can
infer that an implementation of copy does not introduce an alias to the to-object from inside the transitive
reach of the from-object. This is so, because all fields in from’s reach have types of the form D<x> or
D<from> or D<world> or D<o> where o is in from’s reach. None of these are supertypes of C<y>, even
if D is a supertype of C. Therefore, copy’s polymorphic type forbids assigning the to-object to fields inside
from’s reach.

Read-only objects for safe sharing of mutable representation objects. Our type system distin-
guishes between read-only objects and read-write objects. Although read-only objects may have mutator
methods, clients of read-only objects are not allowed to call these and, consequently, the state of read-only
objects does not mutate after initialisation. Thus, read-only objects are very similar to immutable objects.
The important difference is that read-only objects cannot safely be exposed to untrusted clients, because
we cannot expect that untrusted clients follow our special read-only rules. Immutable objects, on the other
hand, can safely be exposed to arbitrary Java clients, because even untrusted Java clients have no means to
mutate their state.

Our motivation for adding read-only objects to our system is that we want to support sharing mutable
representation objects among different immutable objects. Our type system permits this kind of sharing as
long as the shared objects are read-only.

Technically, we realise read-only objects by enriching object types with an access right parameter. En-
riched object types are of the form C<ar , o> where ar ranges over the access right constants rdwr (“read-
write”) and rd (“read”). Read-only objects owned by o have types of the form C<rd, o>. The access right
parameter may be omitted and is initially set to rdwr. In addition to the access right constants rdwr and
rd, there is a special access right variable myaccess that refers to the access rights of this.

In order to permit sharing of mutable representation objects between immutable objects, we postulate
that types of the forms C<rd, o> and C<rd, p> are equivalent in case o and p have immutable types. In
order to prevent that our type system restricts untrusted Java clients, we postulate that types of the forms
C<ar , world> and C<ar ′, world> are equivalent for arbitrary access rights ar , ar ′. Our type soundness proof
shows that these type equivalences do not break soundness of our type system.

The following simple example illustrates sharing of mutable representation objects. In the second con-
structor, the assignment of o.mtbl to this.mtbl is allowed because the types SharedRepObject<rd,o> and
SharedRepObject<rd,this> are equivalent.

/*@immutable@*/ class SharedRepObject {

Mutable/*<rd,this>*/ mtbl;

int get() { return mtbl.get(); }

48

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

SharedRepObject (int i) {

this.mtbl = new Mutable/*<rd,this>*/(i);

}

SharedRepObject (SharedRepObject/*<world>*/ o) {

this.mtbl = o.mtbl; // o and this now share a representation object

}

}

3.3 Thread Ownership

Another condition that can help to support thread-modular verification is the notion of thread ownership.
If an object is known to be local to a thread (i.e., there is only one thread that can access an object), we do
not need to synchronise access to it. The literature contains various proposals for ownership type systems,
but often these do not consider thread ownership. This section proposes an advanced thread ownership
system that precisely tracks how many threads may access an object. In contrast to standard ownership
systems, for thread ownership systems the transfer of ownership is a crucial element; one cannot expect that
objects are owned by the same thread throughout the execution of the application.

3.3.1 Specifying Locality with Capacities

Thread locality is concerned with the ownership of objects by threads. In multithreaded programs, some
objects may be shared between different threads, while others are local to a particular thread. It is important
to know this information, because it can help to simplify verification. For example, if we know that all objects
involved in a method call are local to the current thread, one can assume a sequential context when verifying
the correctness of this method. In previous work in this area [27, 9] objects are either local or shared and
once an object is shared it cannot become local again. Yet, many typical concurrent programming patterns
(see [47]) do not respect this restriction. For example, a thread t1 may share an object o with a newly
created thread t2 and retrieve o locally once t2 has died.

Therefore, this section proposes a means to annotate a program, so that we can express and verify
properties related to thread locality. Various results on ownership have emerged in the last years (see
e.g., [18, 23]), however these focus on object ownership, whereas we address thread ownership. An elegant
framework for thread ownership has been pioneered by Boyland [10], and we think this can be extended for
multithreaded programs.

We use an annotation shared<x,y> to indicate whether an object is intended to be shared or not; x
indicates the maximum number of threads that may execute simultaneously within the object, while y

indicates the maximum number of threads that may execute simultaneously, without the permission to
write. The annotation can be written as a class modifier, a field modifier or as a parameter annotation.

If the annotation shared<x,y> is written as a class modifier, it means that x different threads may
execute simultaneously (i.e., call methods and access or update fields) for every instance of this class, while
at most y different threads can execute simultaneously in read-only mode (i.e., calling pure methods and
reading fields). For example, a class implementing a shared container would be annotated shared<2,0>

to mean that it may be accessed simultaneously by two writing threads. This annotation applies to every
object that is an instance of the class. We say that it specifies the total capacity of an object. This is a static
notion, which does not change during execution. Figure 3.7 on page 51 specifies that the total capacity of
class Task is shared<1,1>, i.e., there is at most one thread writing and at most one thread reading the task
at any point in time.

Each reference to such an object also has a capacity. The capacity of a reference can change during
program execution, by assigning different objects to it. However, at any point the capacity of the reference
has to be less or equal than the total capacity of the object it is pointing to. Therefore, we call the capacity
of a reference a partial capacity. Moreover, the sum of the partial capacities of all references to a single

49

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

class Line3D {

ReentrantLock l;

/*@ shared(1,0)<1,1> @*/ Point3D p;

/*@ shared(1,0)<1,1> @*/ Point3D q;

//@ requires \lockset.has(l);

//@ ensures (p.x == \old(p.x) + x) && (q.x == \old(q.x) + x);

public void xShift(int x) {

p.x += x;

q.x += x;

}

}

Figure 3.6: Class Line3D

object can never exceed the total capacity of the object. Comparison, addition and subtraction of capacities
is defined formally in the next subsection.

To distinguish between the partial and total capacities of a reference, both fields and parameters are
annotated with two capacities: partial capacities are enclosed between round brackets “()” whereas total
capacities are enclosed between angle brackets “<>”. The field declarations in Figure 3.6 show the use of
capacities as field modifiers.

The annotation shared(1,0)<1,1> indicates the following:

• objects pointed to by references p and q must have a static type greater or equal than shared<1,1>

Point3D, because the total required capacity is at least shared<1,1>; and

• because of shared(1,0) at most one thread at the time can call a method or access a field on the
instance of class Point3D pointed to via p and q.

This thread ownership information can be exploited to establish the correctness of method xShift.
Without any synchronisation, the post-condition of xShift can be violated in several ways, e.g., between
the execution of the last instruction of xShift and the evaluation of its post-condition, another thread can
modify the field x of the object pointed to by p or q. However, because of the annotation shared(1,0)<1,1>,
no other thread can simultaneously write a field of the objects pointed to by p and q when a thread is
executing xShift (however, they are allowed to be read simultaneously). Thus, within xShift the value of
p.x is stable, and the post-condition of xShift can be proven correct.

Thus to recapitulate, when shared(x,y)<w,z> annotates a field declaration, this means that x (resp.
y) different threads may execute (resp. execute in read-only mode) concurrently in the object pointed to
by that reference. In addition, the total capacity of the object pointed to by that reference must be less or
equal than shared<w,z>.

Finally, a similar syntax is used to write capacities in method declarations. A parameter p annotated
with shared(x,y)<w,z> indicates that the object passed as a parameter to this method must have a total
capacity less or equal than shared<w,z> and that the reference used when passing the parameter must have
a partial capacity greater or equal than shared(x,y).

Figure 3.7, which is an implementation of a worked-thread-model (inspired by Doug Lea [47]), illustrates
the use of this notation. The main thread creates a Worker thread to perform a task and an Observer

thread to observe what the worker is doing.

As mentioned above, the annotation shared<1,1> in class Task indicates that at most one thread with
write permission and at most one thread with read permission may execute simultaneously within any

50

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

class Main{

public static void main(String[] args){

Task t = new Task();

Thread t1 = new Worker(t);

Thread t2 = new Observer(t);

t1.start();

t2.start();

}

}

class /*@ shared<1,1> @*/ Task {

void doTheJob(){}

/*@ pure @*/ void observe(){}

}

class Worker extends Thread {

/*@ shared(1,0)<1,1> @*/ Task t;

public Worker(/*@ shared(1,0)<1,1> @*/Task t){

this.t = t;

}

public void run(){

t.doTheJob();

}

}

class Observer extends Thread {

/*@ shared(0,1)<1,1> @*/ Task t;

public Observer(/*@ shared(0,1)<1,1> @*/Task t){

this.t = t;

}

public /*@ pure @*/ void run(){

t.observe();

}

}

Figure 3.7: Worker threads example

instance of Task. The declaration shared(1,0)<1,1> on field t in class Worker indicates that the worker
thread has the right to execute in the task t. Further, the annotation shared(1,0)<1,1> in the constructor
of class Worker indicates that the object passed when constructing a worker thread must have a total
capacity less or equal than shared<1,1>, and that the actual parameter reference should have a partial
capacity greater or equal than shared(1,0).

Intuitively, when the main thread constructs a Worker thread, it gives the capacity shared(1,0) to

51

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

the newly created thread. When the Observer thread is created, the main thread gives it the capacity
shared(0,1). Thanks to this technique, verification of code in the Worker thread can assume that no other
threads will write to the task simultaneously (because the annotation shared(1,0)<1,1> on the task t in
the Worker classes indicates that remaining capacities are such that the environment has only the right to
read from the task). More generally, having information about both partial and total capacities permits to
know what the environment has the right to do. That is why, even if the total capacity is an information
about the whole program, it allows to perform a modular reasoning. The difference between partial and
total capacities permits to know what the rest of the program is allowed to do, in a way that is abstract
enough to keep the analysis modular. In particular, we do not know how the whole program is organised.
For example, if the difference between the total and the partial capacity of an object is (3, 2), we do not
need to know whether this is divided in partial capacities (1, 0) and (2, 2) or (3, 1) and (0, 1) to be able to
exploit this information.

In read-world programs, a wide variety of synchronisation patterns exist. An important one among
them is protection by external locks [27, 9]. An object is externally protected if all threads agree to acquire
a list of locks before performing any action (method call, field read/write) on that object. Using this
pattern is possible in our framework by attaching policies (enclosed in braces) to capacities. The notation
shared(x,y)<w,z>{l1, ..., ln} (where for all i in [1, n], li denotes a lock) indicates that all threads
must respect the policy to synchronise on lock l1 and . . . and ln before calling a method or read or write
a field of the object pointed to by that reference. Policies can be specified wherever capacities can appear.
When it is next to a class declaration, shared<x,y>{l1, ..., ln} indicates that, when an instance of this
class is created, l1 to ln must designate non-null locks at runtime, and that accesses to instances of this
class can only be performed when l1 to ln are held. When it is next to a field or a parameter, the annotation
shared(x,y)<w,z>{l1, ..., ln} denotes the additional constraint that l1 to ln must designate non-null
locks, and any accesses to the reference can only be performed when all locks in the list are held.

For the purpose of modular verification, the system of partial/total capacities and policies can be used to
make verification simpler. In fact, when a method m of class C is verified, for all fields (of C) or parameters
(of m) o such that the difference between the total and the partial capacity of o is equal to (0, y) (where y
can be any value), the verification can safely assume that all fields of o are stable during the analysis. In
particular, if a value of o is cached or written during the execution of m, this value is not invalidated by
the environment (see explanations about the verification of method xShift in Section 3.6). Policies allow
the same kind of reasoning within program fragments respecting them: when a method m is verified, for
all field or parameters o of the class of m whose policies is respected (i.e., all objects and locks specified in
o’s policy are held by the thread being observed), the verification can safely assume that all fields of o are
stable during the program fragment considered. Consider, for example, the following piece of code.

//@ requires c != null && \lockset.has(c);

//@ ensures s == c.size;

public MyVector(/*@ shared(x,y)<w,z>{c} @*/ MyVector c){

s = c.size;

data = new Object[elementCount];

c.toArray(data);

}

The analysis can assume that s == c.size is true after the first statement because the environment
cannot perform method calls on c. This is ensured by the policy {c} and the fact that c is held during
the execution of this method (as specified by the pre-condition \lockset.has(c)). Without the policy, the
possibility of concurrent calls on c would make it impossible to assume that s == c.size is true after the
execution of the first statement.

Note that the system of capacities does not prevent data races. In the example from Figure 3.6, the
annotation shared(1,0)<1,1> on fields p and q makes sure that other threads can only access p or q in read-
only mode. Thus, no synchronisation is needed to make sure that the values of variables are not changed.

52

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

However, if we take the point of view of these “read-only” threads, they have capacity shared(0,1)<1,1>

on the objects pointed to by p and q, and so, they are aware that concurrent writes are possible. In order
to avoid data races, synchronisation should be enforced by the use of policies.

Finally we introduce some syntactical shortcuts to make it easier for the programmer to annotate the
code. These shortcuts can be used to annotate fields and parameters and they all desugar into shared.
In practice these annotations appear often and permit to capture more easily the intended behaviour of a
program.

shortcut desugaring

local , shared(1,0)<1,0>

unvarying<y> , shared(0,1)<0,y>

readonly<x,y> , shared(0,1)<x,y>

unusable<x,y> , shared(0,0)<x,y>

shielded<y> , shared(1,0)<1,y>

Informally, unvarying means that no thread, not even the current one, can modify the object (this
notion is similar to immutability as presented in Section 3.2), readonly means that the current thread
cannot modify the object but the environment has the right to do so, unusable indicates that the current
thread cannot read or write to the object annotated (this is useful to indicate that a concurrent container
may not modify objects stored) and shielded indicates that the current thread is the only one with the
right to write. Finally, local can also be used as a class annotation, in this case it desugars to shared<1,0>,
meaning that only one thread at a time can execute within any instance of the class annotated.

3.3.2 Ordering and Updates of Partial Capacities

When a program is executed, capacities are updated according to the code processed. In the following
example, after the execution of t2.start(), the main thread cannot execute a method or write a field of
the task, otherwise it would violate the constraint imposed by the annotation shared(1,1) in class Task.
The following code fragment shows (in comments) how the capacity of the reference t is updated during
execution.

class Main{

public static void main(String[] args){

Task t = new Task();

// t is shared(1,1)<1,1>

Thread t1 = new Worker(t);

Thread t2 = new Observer(t);

t1.start();

// t is shielded<1> i.e. shared(1,0)<1,1>

t2.start();

// t is unusable<1,1> i.e. shared(0,0)<1,1>

}

}

After the call to t2.start(), t has partial capacity shared(0,0), i.e., the main thread cannot execute
any operation on t. This shows how capacities ensure the correctness of the program by avoiding that there
are 3 threads simultaneously executing within the task.

53

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

More precisely, capacities are updated by using their ordering. A capacity c1 = shared(x1,y1) is greater
or equal than a capacity c2 = shared(x2,y2) (denoted c1 ≥ c2) if x1 > x2 or if x1 = x2 and y1 ≥ y2.
The subtraction of capacities is defined as follows: c1 − c2 = shared(x1 - x2,y1 - y2), provided c1 ≥ c2.
Similarly, capacities can be added: c1+c2 = shared(x1 + x2, y1 + y2). Capacities are updated whenever
a communication occurs between different threads. Communications can be thread start-up/death, method
calls or assignments on objects that are or will be shared. For example, if o is an object shared among
different threads, an assignment to a field of o is a communication, as well as assigning an object o2 to
an object o1 and sharing o1 among different threads. A conservative approach is to consider that any
assignment, method call or object creation is a communication. In order to understand how capacities are
updated when communications take place, consider the following generic code fragment:

static public void main(String[] args){

Object o1;

// o1 is shared(x1, y1)<w1, z1>

t = new MyThread(o1);

t.start();

// o1 is shared(x1 - x2, y1 - y2)<w1, z1>

}

class MyThread extends Thread {

MyThread(/*@ shared(x2, y2)<w2, z2> @*/ Object o2){

...

}

}

When the main thread executes t.start(), if shared(w1,z1) > shared(w2,z2) the program is incor-
rect because of a type mismatch between the total capacity of object o1 and the total capacity specified in
MyThread’s constructor. If shared(x1,y1) < shared(x2,y2) the program is incorrect, because the new
thread requires a larger capacity than the main thread provides. In all other cases the program is correct
w.r.t. the capacity and the partial capacity of reference o1 is updated to shared(w2 - x2,z2 - y2) in the
main thread and the partial capacity of the reference o2 is set to shared(x2,y2). Thus the decrease of the
capacity of the task in the main thread models that the main thread shares its rights on o1 and the capacity
transferred to the new thread models how threads acquire rights. Similarly when a thread t1 waits for
another thread t2 to die (via join()), capacities of objects within t2 can (under some additional conditions)
be reclaimed by t1. In this case, the fact that t1 acquires some capacities is modelled by summing capacities.

The ordering of capacities is also useful to deal with inheritance in a natural way. If class B inherits
from class A whose class annotation is cA, B’s class annotation must be less or equal than cA. This is to
ensure that, given an object whose static type is A, the total capacity visible in the program is always a
sound approximation of the “real” total capacity of the object at run-time. If its dynamic type is A, no
inheritance is involved and its total capacity is cA (thus, equal to the total capacity visible). If its dynamic
type is B, its total capacity is cB which is less or equal than cA and thus is a sound approximation of the
total capacity visible in the program (because cB ≤ cA).

We are currently developing a type-system to statically verify the correctness of annotations about
locality. This type-system relies heavily on alias analysis because duplicating a reference to an object (e.g.,
creating an alias) should not break the correctness of annotations about locality. In order to overcome this
issue, we use an approach similar to destructive reads (cf. Section 4.1 of [11]), i.e., whenever a reference is
copied, capacities are potentially updated. Consider the following piece of code:

54

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Box b = new Box(); // b receives capacity(1,0)<1,0>

/*@ shared(1,0)<1,0> @*/ Box c;

c = b; // an alias is created, b’s capacity must be updated

// as c requires partial capacity shared (1,0)

// b has now capacity shared(1,0)<1,0> - shared(1,0)<1,0>

// = shared(0,0)<1,0>

When the statement c = b is type-checked, the capacity of b must be decreased otherwise there could
be a violation of the annotations. For example, if b and c are later given to two different threads, these two
threads would be able to execute simultaneously within the object pointed to by b and c (which would be
incorrect since Box objects have a total capacity <1,0>, i.e., no more than one thread is supposed to execute
concurrently in them).

A similar behaviour occurs with method calls. Imagine the current thread has complete access (i.e., the
partial capacity is equal to the total one) to a variable t. If t is passed as an argument to a method call, its
capacity must be updated if the method involved keeps a reference to the object pointed to by t (otherwise,
again there would be a violation of the annotations). The notion of “keeping a reference” has already been
formalised in JML with the captures clause. For example, a concurrent container having a store operation
keeps a reference to the object passed as a parameter:

class ConcurrentContainer {

//@ captures o;

public void store(/*@ shared(0,1)<1,1> @*/ Object o){

...

}

}

Calls to store provoke an update of the capacity of objects passed, as it is indicated in comments in
the following example:

class MyThread extends Thread {

ConcurrentContainer c = new ConcurrentContainer();

void public run(){

Task t = new Task(); // t receives capacity shared(1,1)<1,1>

c.store(t); // t is captured in the container

// t has capacity shared(1,1)<1,1> - shared(0,1)<1,1>

// = shared(1,0)<1,1>

}

}

As store requires partial capacity shared(0,1) (as indicated in the annotation of its formal parameter
o), when a thread calls store, it should abandon this partial permission to the concurrent container to
preserve the correctness of the locality system. Eventually, we will also study how the capacity annotations
can be inferred as much as possible.

Finally, we plan to investigate if a non-modular variation of shared could be useful. Such an annotation
would denote that all objects reachable via the object annotated with shared would also have to follow

55

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

the sharing policy. Thus, whenever all locks are held, no other thread can change any of the objects that
can be reached via the reference. We plan to investigate how often the need for such an annotation arises
in practice. Advantage of such an annotation is that it gives a strong assumption for verifying the class
containing the annotation, but drawback is that verification of this annotation is non-modular, and has to
be redone every time a program is extended.

3.4 Exploiting Conditions for Thread-modular Verification

In this chapter, we have explained different notions that are crucial for thread-modular verification. Im-
mutability (Section 3.2) and thread ownership (Section 3.3) permit to ensure properties of objects. Im-
mutable objects cannot be written by any thread while objects correctly synchronised or owned by a thread
are protected against unexpected accesses. Once these notions have been checked, one is sure that a variety
of interferences are ruled out.

On top of these two notions dedicated to objects, we have developed contract-atomicity (Section 3.1) to
reason about method contracts in a sound and modular way. It is future work to integrate all these notions
together, yet clearly, contract-atomicity relies on immutability and thread ownership. Thus, our verification
process will begin by immutability and thread ownership checking, followed by a contract-atomicity analysis
that enables the use of sequential program verification techniques.

56

Chapter 4

Specification of Multithreaded
Applications

In the previous chapter, we studied several conditions for thread-modular verification, that allow us to re-use
program verification techniques for sequential programs. To specify the desired behaviour of a program, we
take the Java Modeling Language (JML) as a starting point, as this is a widely used specification language,
with extensive tool support [12, 19, 15]. However, in its current state, JML is not suited to directly specify
the behaviour of a multithreaded program. In particular, as mentioned above, in a multithreaded setting
pre- and post-conditions of methods can be invalidated by concurrent threads; this is the so-called problem
of interference. Thus we need to extend the language with the possibility to protect method specifications
against interference, so that modular verification is possible, based on the techniques developed in the
previous chapter. Another problem is that in a multithreaded setting one cannot directly rely on class
invariants or history constraints anymore, and we need to fine-grain the semantics of these notions.

This chapter proposes a concrete list of keywords to extend JML, that allow one to specify and verify
the requirements for thread-modular verification. The proposal is based on what already exists in JML, an
earlier proposal by Rodŕıguez et al. [62], and the work presented in the previous chapter. In particular, it
includes keywords for contract-atomicity, immutability and thread ownership. For each keyword, we describe
why we propose it, its intended meaning, its syntax, how it can be exploited and how it can be verified. It
is future work to define a complete formal semantics and appropriate verification techniques. In principle,
the keywords that RCC requires to check for absence of data races (see Section 2.4 and [27]) should also
be part of this language extension. However, some of the keywords used here are close to JML, but with a
slightly different meaning. It is future work to study the possible interactions between the different language
extensions, and to propose one uniform specification language.

Further, this chapter also discusses how multithreading has an impact on the semantics of the existing
language constructs in JML, in particular on the notions of invariant and constraint. We show how the
semantics of the existing specification language will have to be adapted. We also discuss some specification
constructs that are already present in JML, but that will become more important in a multithreaded setting.

Finally, we compare our language with existing other proposals for specification languages for multi-
threaded applications, and we illustrate the use of the extension of JML by means of an example.

Throughout the discussion, there is a subtle issue about what locks exactly are. Since Java 1.5, one can
use the synchronized statement to lock on the implicit lock that is associated with any object, but one can
also explicitly declare a lock (inheriting from class Lock), and call methods lock and unlock on it. This is
different from synchronising on the implicit lock associated with this lock object. For the sake of simplicity,
we require synchronized expressions to be used solely on objects whose type does not inherit from Lock

(as recommended in Sun’s documentation for the class Lock).

57

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

4.1 Specification Keywords for Thread-modular Verification

This section describes the list of keywords that we propose as an extension to JML, and can be used to
specify the necessary conditions for thread-modular verification. The keywords are given in alphabetic
order. The list of keywords is based on the current version of JML, the earlier proposal by Rodŕıguez et
al. [62], and the previous chapter. We believe this list to be sufficient to specify (and verify) any interesting
thread-modular property about a multithreaded program. However, this conviction is only based on our
experience in writing example specifications, and we cannot exclude that, later in the MOBIUS project, we
will find that we need additional expressiveness. As mentioned above, eventually, also the keywords needed
to check the absence of data races with RCC should be integrated into JML.

captures o1, ..., on (from [48, §9.9.13])

• Motivation Supports the verification of thread ownership (Section 3.3).

• Syntax This keyword is a method specification clause, where the variables o1, . . . , on are parameters
of the method (including the implicit method receiver).

• Meaning This keyword is already part of JML, and we use the semantics as described in the JML
Reference Manual [48]: a captures clauses captures o1, ..., on specifies that references to o1, . . . ,
on can be retained after execution of the method has finished, for example in a field of the receiver
object. The default clause is captures \everything, meaning that the method is allowed to capture
any of the actual parameter objects or the receiver.

• Use The list of objects specified in a captures clause is used when verifying the correctness of thread
ownership annotations.

• Verification It is future work to develop verification techniques for this annotation. However, we expect
to re-use existing work on that topic [21].

contract_atomic (see Section 3.1)

• Motivation Support for modular verification: a method that is contract-atomic does not suffer from
the interference problem, i.e., it can be verified sequentially, and its specification can be used for the
verification of other methods.

• Syntax This keyword is a behaviour specifier.

• Meaning As described in Section 3.1, a method is contract-atomic for a certain behaviour contract c
if, whenever the contract c is respected in a sequential setting, c is also respected in a concurrent one.

• Use If a method m is contract-atomic for a contract c, then it can be verified sequentially whether m
respects c. Moreover, when verifying a method m′ calling method m, the contract c can be used, i.e.,
if the pre-condition of c is satisfied, the post-condition can be assumed.

• Verification It is ongoing work to develop a verification technique to check contract-atomicity. Alias
analysis and read/write analysis can be used to improve the precision of the contract-atomicity veri-
fication.

• Alternative syntax The keyword contract_atomic can also be used as method modifier. This is
desugared by adding contract_atomic annotations to all the method’s behaviour specifications.

58

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

contract_independent (see Section 3.1)

• Motivation Contract-independence provides an easily statically enforceable way to guarantee contract-
atomicity.

• Syntax This keyword is a method modifier.

• Meaning All well-formed contracts c for this method are contract-atomic.

• Use Contract-independence implies contract-atomicity for any well-formed contract.

• Verification Contract-independence can be verified using the both-mover criterion from Lipton [51].

immutable (see Section 3.2)

• Motivation Access to immutable objects does not have to be protected by synchronisation.

• Syntax This keyword is a class modifier.

• Meaning An object is immutable in a given program iff its state does not visibly mutate in any run
of the program. A class is immutable iff all its instances are immutable in all programs. Our type
system as outlined in Section 3.2 provides a sound but incomplete verification method with respect to
this semantic definition.

Alternatively, we could define the semantics of immutability like this: a class is immutable iff our
immutability type system can prove it. This definition uses our static type system as the semantics
of immutability. This approach has two pragmatic advantages: Firstly, it disallows declaring classes
as immutable if our static analysis cannot prove their immutability. Experience has shown that
unprovable specifications cause a lot of confusion for users of extended static checking tools. Secondly,
we avoid having to get too deeply into questions like “What exactly is an invisible mutation?”, which
is not so easy to answer formally and precisely in the context of a large programming language like
Java.

Thus, there are different possible choices for the semantics of the immutable keyword. In that respect,
the immutable keyword is similar to JML’s keyword pure.

• Use The contents of an immutable object cannot be affected by any thread.

• Verification An extension of the immutability type system from [35] can be used to verify immutability.

\lockset (from [48, §11.4.19])

• Motivation Allows to make explicit statements about the locks that are currently being held.

• Syntax This keyword is a JML primary expression of type JMLObjectSet.

• Meaning This keyword is already part of JML, and we use the semantics as described in the JML
Reference Manual [48]: the \lockset expression denotes the set of locks held by the current thread.
Notice that its content is implicitly updated whenever a lock is acquired/released or a synchronized

block is entered/left.

• Use The lockset is used for various analyses: contract-atomicity analysis, locality checking etc.

• Verification The proof obligation generator has to generate appropriate proof obligations for this
keyword. In fact, ESC/Java [19] already handles this keywords, with a slightly different syntax:
\lockset[this] instead of \lockset.has(this).

59

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

monitors_for f ← l1, ..., ln (from [48, §8.9])

• Motivation Protects a single reference or field.

• Syntax This keyword is a class specification, where f is an expression, denoting a field visible in the
current class, and l1,...,ln is a list of locks. If l1,...,ln are different from this, they have to be
final.

• Meaning The field f cannot be be read or written without holding all the locks l1,...,ln. Notice
that this does not recursively protect the fields of the object that f references. In order to protect
these, one needs to explicitly specify monitors_for clauses, use an object ownership system to show
that the fields only can be accessed via the reference f, or use the shared annotation described below.

• Use Specifies a locking discipline for accessing fields. It can be used to prove the absence of data races.
When verifying a multithreaded program, one can assume that, whenever the lockset contains {l1,

..., ln}, f cannot be changed by another thread.

• Verification This keyword is already handled by ESC/Java [19], with a slightly different syntax:
monitored_by as a field declaration modifier.

• Alternative syntax JML and ESC/Java have slightly different keywords to express this property: a
class specification monitors_for versus a field declaration modifier monitored_by. Also the RCC
tool supports a similar construct: guarded_by. It remains to be investigated whether it is worth
supporting all these keywords, or whether we can decide on a “best” syntax.

shared<w,z>{l1, ..., ln} (see Section 3.3)

• Motivation Supports thread ownership system.

• Syntax This keyword is a class modifier, where w and z are natural numbers and l1, ...,ln are
names of locks that have to be instantiated when the object is created.

• Meaning Only w (resp., z) different threads may simultaneously access (resp., access in read-only
mode) an instance of this class, while all locks in the list l1, ..., ln must be held when accessing
the object.

• Use If w ≤ 1 or the list l1, ...,ln is not empty, for any field of the current object, one can safely
assume that its value cannot be affected by another thread, i.e., the value of the field can only be
changed by the current thread.

• Verification It is ongoing work to develop a verification technique for this annotation.

shared(x,y)<w,z>{l1, ..., ln} (see Section 3.3)

• Motivation Supports thread ownership system.

• Syntax This keyword is a variable modifier, i.e., it can specify both field and parameter declarations.
The parameters x, y, w and z are natural numbers, while l1, ...,ln is a list of locks visible in the
current class (for field declarations) or in the method (for parameter declarations).

• Meaning Only x (resp., y) different threads may execute (resp., execute in read-only mode) concur-
rently in the object pointed to by the reference. Moreover, all locks in the list l1,..., ln must be
held before executing within the object pointed to. The fields w and z denote the total write and
read-only capacity of the object: the difference with x and y, respectively, denotes the number of other
threads that might be accessing the same object simultaneously.

60

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

• Use This annotation is closely related to the shared class annotation. For any field or parameter o

of class C, annotated with shared(x,y)<w,z>{l1, ..., ln}, if the lockset contains {l1, ..., ln}

or if x = w, then, for any field f of C, one can safely assume that o.f cannot be changed by any
concurrent thread.

• Verification It is ongoing work to develop a verification technique for this annotation.

4.2 Using JML for Multithreaded Applications

As mentioned above, in a multithreaded setting one cannot rely on class invariants or history constraints
anymore. In a sequential program, a class invariant is a predicate that holds in all visible program states,
i.e., in all states in which a method is called or finished. Within a method body, an invariant might be
temporarily broken. However, in a multithreaded program, one thread might call a method that depends
on an invariant, while another thread is in the middle of a method that temporarily breaks this invariant.
Thus, the method that is being called in the first thread might end up in an inconsistent state, because the
invariant does not hold when the method is called. It is future work to study in detail the possible solutions
to this problem. One possibility is to add a notion of strong invariant, i.e., an invariant that is never broken,
not even temporarily. Another possibility is to specify explicitly properties on which a thread can rely when
it has certain locks. This could be expressed using the following keyword.

locking_rely(l1, ..., ln) P

• Syntax This is a class specification, where l1, ..., ln are objects in the scope of the current class
and P is a JML predicate.

• Meaning If a thread holds the locks l1 ...,ln, it can assume the property P to hold. Alternatively
stated, the environment guarantees P when l1,...,ln are held.

• Use If the lockset contains {l1, ..., ln}, one can assume that P holds.

• Verification Whenever a thread wants to release any of the locks l1, ...,ln, it has to ensure that P
holds. This should be an explicit verification condition for the current thread.

One can also imagine further combinations of the two, where the current thread has to ensure that the
predicate P holds in any of its visible states. It is future work to study further how the notion of invariant
can be integrated (and exploited) in a multithreaded setting.

For constraints there is a related problem. A constraint describes a relation that is supposed to hold
between every pair of visible states: however in a multithreaded setting this might be visible states belonging
to different threads. Thus, to verify a constraint one has to consider all possible interleavings of the different
threads, which results in non-modular verification. However, a possibility might be to exploit this, by using
constraints to specify the relies and guarantees that are necessary for a rely-guarantee style of verification.
Another possibility is to redefine the notion of constraint, so that it only relates visible states within the
same thread. However, in that case, one needs to ensure that other threads cannot change the state of the
object, so that the constraint can be violated. Again, it is future work to investigate how the notion of
history constraint can be exploited in a multithreaded setting.

Further, another way to solve the problem of interference for method contracts is to use finer-grained
contracts for individual statements. This allows one to verify that the behaviour of an individual method is
as expected, even if it cannot be expressed as a method contract. To accomplish this, assert annotations
can be used, but they do not offer enough expressiveness. Instead, we have found that block specifications
(currently called following_behavior in JML1) are appropriate for this. A following_behavior block is
like a usual JML method contract, except that it applies to a code block inside a method (see Figure 4.1,

1A recent proposal proposes to tag them with a refining keyword.

61

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

described in Section 4.4 below for an example). Method specifications that suffer from interference, because
the protecting locks are released by the method, can be specified as a following_behaviour – within the
block that is protected by the lock. This allows one to verify the behaviour of the individual method, and
it gives documentation to somebody who wishes to use the class. However, the method specification cannot
be used to verify a call to the corresponding method.

To correctly and precisely specify the behaviour of multithreaded programs, we also often need a way
to express the value “a variable had at some point in time”. Consider for example the following method
(from [28]), which models optimistic concurrency control. In this method, we wish to update the shared
variable z according to z = f(z). However, as f is a long-running operation, for performance issues, the
lock protecting z is released during the call to f. The method keeps a local copy of z, computes the new
value (f(z)) and assigns it to z, if z has not changed in the mean time. If z has changed, the method loops.

int z; //@ monitors_for z <- l;

Lock l;

int f(int i);

void apply_f(){

int x, fx;

l.lock();

x = z;

l.unlock();

while(true){

fx = f(x);

l.lock();

if(x == z){

z = fx;

l.unlock();

return;

}

l : x = z;

l.lock();

}

}

For this method, intuitively one would like to specify a post-condition z == \old(z). However, this
would be incorrect, since \old(z) might denote the value of z a long time ago (not necessarily the value
of z before the last call to f). Instead, we have to express that at some point during the execution of this
method, the variable z contained a value z such that after the method has finished z == f(z).

JML allows one to write an expression \old(lab, E), denoting the value that expression E had when
control last reached the statement label lab [48, §11.4.2]. Thus, a correct and appropriate post-condition
for this method is z == f(\old(l, z)) (provided that \old(lab, E) denotes the value of expression E
when control in the current thread last reached the statement label lab). However, one might argue that it
actually contains too much information: all one wishes to specify is that z is equal to f applied to a value
contained in z at some point in time. We will further study whether we can use (an abstraction of) the
labelled \old expression to denote such expressions in method specifications. It is also unclear whether such
method specifications only serve to verify the method implementation, and as documentation for the user,
or whether they can also be used to verify method calls.

62

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Finally, we would like to mention one construct that is provided by JML, explicitly to support multi-
threading: the when clause. We propose a slightly different semantics for this keyword, compared to the one
given in the JML Reference Manual [48, §9.9.8] (described in more detail in [62]).

when/commit (from [48, §9.9.8])

• Syntax The when clause is a method specification clause, while the commit annotation appears in the
method’s body. The default when clause is true for a heavyweight specification, and \not_specified

for a lightweight specification. The default position for the commit point is before each of the method’s
return points. If the when clause appears in different specification cases, it must always contain the
same predicate, otherwise a specification error is reported.

• Meaning This pair of keywords (adapted from Lerner [49]) specifies that the method might block (at
some point in its body) unless the predicate specified in the when clause is satisfied (typically, because
of an action by another thread). The commit annotation indicates the point where the predicate
specified in the when clause should hold.

• Use The predicate specified in the when clause can be assumed at the commit point to establish
the post-condition of the method (provided the method can be verified sequentially after the commit

point).

• Verification It has to be shown that the predicate specified in the when clause indeed holds, when the
thread can resume execution. This will require a global analysis of the behaviour of the other threads,
in order to know under which conditions they woke up the blocked thread.

So far, we have not studied further how to exploit the when clause.

4.3 Differences With Other Language Proposals

4.3.1 The Spex-JML Project

As part of the Spex-JML project, Rodŕıguez et al. [62] propose an extension of JML with concepts for mul-
tithreading. Our work has been highly inspired by their proposal, but there are some significant differences,
that we will discuss here.

Rodŕıguez et al. focused on atomicity and independence, whereas we use contract-atomicity and contract-
independence. First, contract-atomicity fits well in a framework based on JML specifications because it
allows to reason in a modular and sound way. Second, it permits to detect erroneous specifications, such
as contracts concerning objects that are not properly protected. Although it may seem naive, this is an
important point because it is notoriously difficult to write well-defined specifications in a multithreaded
environment.

Our definition of when and commit is slightly different from their proposal (and the description given in
the JML Reference Manual [48]). First, we do not impose the method to be atomic between the commit
point and the method’s return statement. When using contract-atomicity this is no longer useful, because
the definition of contract-atomicity is not based on reduction. Thus, we accept a larger number of programs
without losing the usefulness of the annotations. Second, the point where the method may block is different.
Indeed, Rodr̀ıguez et al. state that the method blocks whenever it is a called in a state where the predicate
in the when clause does not hold. However, the condition that makes the method block may be established
between the point where execution of the method starts and the point where this condition is tested by
the method. Therefore, we just specify that a method may block unless the predicate in the when clause is
satisfied, but we do not require that this is decided immediately at the beginning of the method.

We do not support the locks keyword, because its semantics and its usefulness were unclear. According
to Rodŕıguez et al., a method annotated with locks l1, ..., ln acquires and releases all the locks in
this list when executing. However, it was not clear whether this means that all these locks will be held

63

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

simultaneously at some point, or throughout the whole method, or whether it would just mean that the
method will acquire and release all locks in the given list without any further restriction. In this case, this
method below would correctly satisfy its locks clause.

//@ locks l1, ..., ln;

void method(){

synchronized(l1) { .. }

..

synchronized(ln) { .. }

}

In any case, it was unclear to us how the locks specification could help verification of an application.
The keywords lock_protected and thread_local, proposed by Rodŕıguez et al., are subsumed by the

keyword shared. The annotation lock_protected(o) (where o is a method parameter) is defined as: “o
is access-protected by some nonempty set of locks and all of those locks are held by the current thread”.
However, the semantics of “access-protected” is unclear: it could mean that writes within o are forbidden
or that all objects reachable through o cannot be written by other threads. The semantics of shared with
a non-empty locking policy corresponds to the first possibility, while the second possibility can be obtained
by adding shared annotations within all sub-objects of o.

Moreover, thread_local is used to state that an object is not shared between different threads. This
can be captured by an annotation shared(1,0)<1,0>, meaning that only one thread at a time may execute
within the object annotated. Contrary to thread_local, we provide a way to check the correctness of our
annotation.

Finally, the keyword thread_safe, defined as thread_local ∨ lock_protected can be encoded by
shared(1,0)<1,0> or an appropriate policy (i.e., an annotation of the form shared(x,y)<w,z>{l1, ...,

ln}). However, it is not possible to express both behaviours in a single shared annotation.
Finally, as the rule forbidding synchronisation on objects inheriting from Lock makes the keyword

locked_if useless, we do not consider it here.

4.3.2 The Spec# Project

The Spec# project [6] aims at the development of a specification language and verification approach for
C#. Within this project, interesting work on an extension that allows static verification of concurrent
object-oriented programming has been done [40, 42]. We will refer to this as the Boogie methodology here.

The focus of the Boogie methodology is proving the preservation of invariants, rather than detailed func-
tional properties; yet, functional properties are of course needed to establish the preservation of invariants.

The Boogie approach uses a simple system for thread ownership, i.e., for controlling shared access to
objects between threads. It distinguishes between thread-local and shared objects. A newly created object
is thread-local, and it remains thread-local until a reference to it is passed to another thread, leading it to
become shared; once shared, it remains shared forever, and there is no way to retrieve exclusive ownership
in one thread. Note that our system for thread ownership is more expressive, as it allows more fine-grained
access restriction to be given per thread.

To ensure thread-safety of method contracts, a method contract can only talk about thread-local objects,
immutable objects, and shared objects (or, more generally, shared state) for which the corresponding locks
are held (i.e., which are ‘lock-protected’).

A special havoc statement in the intermediate language can be used to express the possibility of unknown
side-effects on the heap, for instance interference by other threads.

The Boogie approach does not rely on a separate checker to ensure the absence of data races. Absence
of data races has to be proven, as part of any code verification process. To do this, an association between
a state and the locks protecting the access to that state has to be specified, as in our approach, using the
monitors clause. Also, the ownership type system tells which state belongs to an object. The approach
uses an ownership type systems, with rep and peer annotations.

64

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

Given this, we are also interested in verifying properties of existing code. Using a separate checker for
race conditions, as we propose, can have the effect of reducing the verification burden, especially if we are
only interested in verifying relatively weak properties of existing code.

The Boogie methodology does require a particular coding style. One aspect of this is that it requires the
use of explicit pack and unpack statements by the programmer to specify the code region during which an
objects invariant may be broken. It is not clear if this programming style would be compatible with typical
MIDlets.

The approach assumes that all the code has been verified, i.e., that all code meets the obligations
that Spec# imposes. So it does not allow for any hostile code that might break Spec# rules. It is not
immediately clear how easy it would be to relax this assumption. In our approach we do want to be sound
in the presence of malicious code, possibly even malicious code that contains data races. (For instance, in
defining a notion of immutable object, we found that the possibility of code which does not adhere to the
rules of the ownership type system we use causes a considerable complication.)

One interesting aspect of the Boogie approach is the use of an intermediate language, BoogiePL, for
programs with proof obligations. BoogiePL is a simple imperative language, extended with assert and
assume statements to express proof obligations. It is not object-oriented, and uses an external axiomatisation
of the heap. The semantics of object invariants, the ownership type system, the notion of thread-local
object, and the notion of a lock-set – the set of locks owned by the current thread – are all expressed in
BoogiePL, typically through the use of additional ghost fields. An advantage is that the issue of verifying
BoogiePL programs is independent of the (possibly complicated) semantics of these features. This allows a
modular set-up of the verification tool chain, with one component for the translation of Spec# to BoogiePL,
defining the semantics of Spec#, and another component for the generation of verification conditions from
BoogiePL. Such modularity is not only practically useful in tools, but also conceptually in coming to grips
with the possibly complicated semantics of some notions in the higher-level specification language. Moreover,
directly editing BoogiePL programs allows experimentation with (the semantics of) features in the higher
level specification language.

It also means that BoogiePL can be used as intermediate language for other approaches, incl. ours. But
note that for some notions, expressing their semantics in BoogiePL might be difficult or impossible; an
example might be the notion of contract-atomicity.

4.4 Example

Finally, we finish this chapter with a typical example specification, illustrating the concepts and keywords
introduced above. Figure 4.1 presents an example taken from Rodŕıguez et al. (see Figure 8 in their paper
[62]) which highlights the difference between our approaches. This example shows the implementation of
the take method which is used to retrieve an element from a concurrent container. The field items is used
to store elements and takeIndex indicates the index where the next object is going to be retrieved.

First, the most notable difference with Rodŕıguez et al. is that take is specified as contract-atomic, which
means that its contract can be used for modular verification. That was not possible with the approach of
Rodŕıguez et al. where take was specified as atomic.

Second, the contract of take has a weaker post-condition in our framework. Indeed, in their pa-
per, Rodŕıguez et al. put our following_behavior block in take’s method’s specification. However,
we believe that this is not sound, since, for example, the original post-condition ensures \result ==

\old(items[takeIndex]) relies on items and takeIndex which can be concurrently modified before the
method returns (because lock is released before the method returns). Indeed, if other threads retrieve
elements from the container between take returning and the client resuming, takeIndex may not represent
anymore the index where the object returned has been taken, thus violating the post-condition. This problem
with the method specification is found immediately when verifying whether the method is contract-atomic.

Third, the various shared annotations make clear how objects are shared between threads. The anno-
tation shared(1,0)<1,0>{lock} on the array items indicates that the array can be modified only through

65

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

class ArrayBlockingQueue {

/*@ shared(1,0)<1,0>{lock} shared(0,0)<1,0>[*] @*/ private final E[] items;

private transient int takeIndex;

//@ monitors_for takeIndex <- lock;

private final ReentrantLock lock;

private final Condition notEmpty;

private int count;

//@ monitors_for count <- lock;

/*@ when count != 0;

@ assignable items[takeIndex], takeIndex, count;

@ ensures \result != null;

@*/

public /*@ contract_atomic shared(1,0)<1,0> @*/ E take() throws InterruptedException {

lock.lockInterruptibly();

try {

/*@ following_behavior

@ ensures x == \old(items[takeIndex]) && count == \old(count)-1

@ takeIndex == (\old(takeIndex)+1) % items.length;

@*/

{

try {

while (count == 0)

notEmpty.await();

}

catch (InterruptedException ie) {

notEmpty.signal();

throw ie;

}

/*@ commit @*/ E x = extract();

}

return x;

}

finally { lock.unlock(); }

}

/*@ requires \lockset.has(lock);

@ assignable items[takeIndex], takeIndex, count;

@ ensures \result != null && \result == \old(items[takeIndex]) &&

@ takeIndex == (\old(takeIndex)+1) % items.length &&

@ count == \old(count)-1;

@*/

public /*@ independent shared(1,0)<1,0> @*/ E extract(){ .. }

}

Figure 4.1: Method take

this reference, i.e., no other thread can concurrently access it and furthermore, no assignment within items

may occur without holding lock. In the original proposal, the array items was protected only with a
monitors_for annotation. But this only protects the reference to the array, and not the elements in the
array. If the elements in the array not protected by lock, the whole implementation is unsound.

In addition, the second annotation for the array specifies thread ownership properties for the elements in
the array. The annotation shared(0,0)<1,0>[*] indicates that it is forbidden to change any of the objects

66

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

stored in items.
Finally, the annotation shared(1,0)<1,0> on the return type of method take indicates how an object

returned by take is shared, i.e., the thread retrieving it has all rights on it. All these behaviours were left
implicit or unspecified (and unchecked) in the original specification.

67

Chapter 5

Example Verifications

This chapter presents two examples to demonstrate the use of the notions developed in Chapter 3 and
Chapter 4. The example in Section 5.1 shows how thread ownership and contract-atomicity can be used to
verify a typical worker-thread pattern application. The example in Section 5.2 combines immutability and
contract-atomicity to verify an instance of the copy-on-write pattern. It is future work to implement all the
techniques used, here we informally describe how the notions defined before permit to verify mainstream
multithreaded programs.

5.1 Contract-atomicity and Locality

The example in Figure 5.1 demonstrates how contract-atomicity and locality can be used to show that a
method can be verified sequentially. Method findInt is designed to check whether an Integer x occurs in
the blue list (bl) or in the red list (rl). To increase performance, this method creates a thread (whose code
is visible in Figure 5.2) to inspect the blue list and another thread to inspect the red one, and it returns as
soon as one thread has found the appropriate element. Method findInt returns null if the Integer x does
not appear in bl or rl; in order to know if instances of MyThread have terminated, method isOver is used.
The algorithm performing the search is located in the run method of MyThread. It is important to note
that this class has been designed for local use, as it does not perform anything related with concurrency.
In fact, it is an instantiation of the worker pattern from Doug Lea [47]. The worker class (here MyThread)
does not know what the rest of the program is doing: just performs its task and stops. Indeed, as indicated
by the various unvarying annotations in the class MyThread, it only assumes that the rest of the program
does not concurrently access the used data. In order to show that findInt is contract-atomic, we have to
show that the evaluation of its contract only relies on stable variables. Note that all contracts appearing in
this example are well-formed, indicating that the programmer has written relevant specifications.

Second, we show that the annotations related to locality are correct. Indeed, in the body of findInt,
several data exchanges occur, and we must check that they correctly respect both the shared annotations
of findInt and the annotations in MyThread.

First, we see that two threads (because of MyThread’s class annotation shared<1,1>) may execute
simultaneously within instances of MyThread class: one with the right to write (obviously, it is the object
MyThread itself), and one with only the right to read (in our example, this will be the thread executing
findInt, also called the main thread). As only one thread can execute in write mode in any instance of
MyThread, we will be able to analyse this class sequentially. In order to do that, we must show that any
execution of findInt respects MyThread’s class annotation shared<1,1>. Below, we informally explain how
our draft type-system to check locality operates on findInt.

At point 1 (indicated in comments in the code of findInt), t1 and t2 have partial capacity shared(1,1)

because the corresponding threads have not been started, and bl and rl have partial capacity shared(0,1)

as indicated at the parameter declaration. After the two calls to start, partial capacities of t1 and t2 have
changed to shared(0,1), because the main thread has only the right to execute in read-only mode within

68

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

//@ assignable \nothing;

//@ requires bl != null && rl != null && x != null;

//@ ensures (bl.contains(x) || rl.contains(x)) ==> \result.equals(x);

Integer findInt(/*@ shared(0,1)<0,1> @*/ Vector<Integer> bl,

/*@ shared(0,1)<0,1> @*/ Vector<Integer> rl,

/*@ shared(0,1)<0,1> @*/ Integer x){

Integer r = null;

MyThread t1 = new MyThread(bl, x);

MyThread t2 = new MyThread(rl, x); // 1

t1.start();

t2.start(); // 2

while(true){

if(t1.isOver()){ // 3

r = t1.getResult();

if(r != null)

return r;

}

if(t2.isOver()){ // 4

r = t2.getResult();

if(r != null)

return r;

}

if(t1.isOver() && t2.isOver()){ // 5

r = t1.getResult();

if(r != null)

return r;

r = t2.getResult();

if(r != null)

return r;

return null;

}

}

}

Figure 5.1: findInt method

t1 or t2. Partial capacities of bl and rl are updated to shared(0,0), because, when they have been passed
to t1 and t2, their partial capacities have been “consumed”, i.e., the main thread should not call methods
or write fields of bl and rl anymore.

Until point 3, the main thread has only executed a pure method (isOver) within t1, thus the program
is fine. If the main thread enters the then branch of the conditional, the partial capacity of t1 is updated
to shared(1,1) again, because we know that t1 has stopped (this is due to how MyThread is implemented).
That is why the call to getResult, even if it is a non-pure method, is fine: as t1 is stopped, the execution
of getResult does not violate MyThread’s class annotation shared<1,1>.

If the first conditional test is false, the same reasoning can be applied at point 4 and later at point 5 to
show that, if the branch of a conditional is entered, the statements encountered can be type-checked. Note
that, by point 2, partial capacities of bl and rl (shared(0,0)) have not been violated because the main
thread has not used them. Finally, if no conditional is entered and the program loops, the same reasoning

69

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

/*@ shared<1,1> @*/ class MyThread extends Thread {

/*@ unvarying<1> @*/ Vector<Integer> l;

/*@ unvarying<1> @*/ Integer x;

volatile private boolean isOver = false;

volatile Integer result = null;

//@ requires l != null && x != null;

MyThread(/*@ unvarying<1> @*/Vector<Integer> l,/*@ unvarying<1> @*/ Integer x){

this.l = l;

this.x = x;

}

//@ also

//@ assignable result, isOver;

//@ ensures isOver() && (l.contains(x) ==> result.equals(x));

public void run(){

Iterator<Integer> i = l.iterator();

while(i.hasNext()){

Integer j = i.next();

if(j.intValue() == x.intValue()){

result = j;

break;

}

}

isOver = true;

}

//@ assignable result;

//@ ensures isOver() ==> (l.contains(x) ==> \result.equals(x));

public Integer getResult(){

Integer r = result;

result = null;

return r;

}

//@ ensures \result == isOver;

public /*@ pure @*/ boolean isOver(){

return isOver;

}

}

Figure 5.2: class MyThread

applies over and over again, so that the program can be type-checked w.r.t. localities. Note that this allows
to verify the MyThread class sequentially because we have the property that no threads can concurrently
write objects used in this class (thanks to the different shared(0,1)<0,1> annotations on fields l and x of
class MyThread).

Now that we know localities are fine, we explain how the algorithm for contract-atomicity can be used
to show that findInt can be analysed sequentially. As in Section 3.1, we denote stable variables in white
circles (resp. unstable ones by grey circles)

At point 1, t1 and t2 have been created but they have not been started, thus they are stable. Further,

70

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

bl, tl and x have the same partial capacity ((1,1)) as their complete capacity (<1,1>), so that the main
thread is the only one having access to these three objects, which are consequently stable. Finally r is also
stable, because it has just been created.

t1 t2 r

bl rl x

graph 1

However, after t1 and t2 have been started, they are no longer stable. By looking at the MyThread

constructor, the algorithm deduces that the actual parameters (bl, rl and x) are still stable because no one
can write to them.

t1 t2 r

bl rl x

graph 2

If the then branch of the conditional at point 3 is entered, we know that t1 is stopped, thus the call to
getResult is secured and the assignment to r is secured. That is why, if the method returns by executing
the conditional at point 3, the graph is as follows.

t1 t2 r

bl rl x

graph 3

post-condition

We can see that the post-condition relies on bl, rl, x and r, which are all stable (this is represented by
the different arcs). Similarly, if the then branch of the conditional at point 4 is entered, we are in almost
the same case, except that now t2 is stable (because it has stopped) while t1 is not (as it keeps running).
Finally, if the then branch of the conditional at point 5 is entered, both threads have stopped.

t1 t2 r

bl rl x

graph 4

post-condition

t1 t2 r

bl rl x

graph 5

post-condition

In all cases the evaluation of the post-condition solely depends on stable variables and, in case the method
loops, the reasoning is the same. Thus, the method is contract-atomic and can be verified sequentially.

71

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

5.2 Lifting a Sequential Class to a Concurrent One

The example below illustrates how our techniques can be used to lift a class designed for sequential use
to a concurrent environment. Essentially, we use contract-atomicity to show that reasoning with method
contracts, even in the presence of interleavings, is sound.

Our example is based on an example from Doug Lea’s book on concurrent programming in Java [47].
Lea uses this example to explain the copy-on-write technique. It is a simple implementation of a Point class
that does not directly store the two coordinates in mutable fields, but instead stores the coordinates in an
ImmutablePoint object. When a Point is moved, a new ImmutablePoint is created. We have added an
invariant to Lea’s example, which expresses the fact that a point must be in the lower right triangle of the
plain, i.e., its x-coordinate must be greater than its y-coordinate. The following implementation of Point

is meant to be used in sequential programs only. We have verified it with ESC/Java.

class Point {

private /*@ non_null @*/ ImmutablePoint loc;

//@ requires x >= y;

public Point(int x, int y) {

loc = new ImmutablePoint(x,y);

}

public ImmutablePoint location() { return loc; }

protected void updateLoc (/*@ non_null @*/ImmutablePoint newLoc) {

loc = newLoc;

}

//@ requires x >= y;

public void moveTo(int x, int y) {

updateLoc(new ImmutablePoint(x, y));

}

//@ requires 0 <= delta;

public void shiftX(int delta) {

updateLoc(new ImmutablePoint(loc.x + delta, loc.y));

}

}

class ImmutablePoint {

final int x;

final int y;

//@ invariant x >= y;

//@ requires initX >= initY;

public ImmutablePoint(int initX, int initY) {

x = initX;

y = initY;

}

}

72

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

In order to make Point thread-safe, we have to synchronise accesses to the mutable loc-field. Note that
without synchronisation the object invariant or ImmutablePoint could get violated when methods shiftX()
and updateloc() execute concurrently.

class Point {

private /*@ non_null @*/ ImmutablePoint loc;

//@ monitors_for loc <- this;

//@ requires x >= y;

public /*@ contract_atomic @*/ Point(int x, int y) {

loc = new ImmutablePoint(x,y);

}

public /*@ contract_atomic @*/ ImmutablePoint location() { return loc; }

/*@ contract_atomic @*/

protected synchronized void updateLoc(/*@ non_null @*/ImmutablePoint newLoc) {

loc = newLoc;

}

//@ requires x >= y;

public /*@ contract_atomic @*/ void moveTo(int x, int y) {

updateLoc(new ImmutablePoint(x, y));

}

//@ requires 0 <= delta;

public /*@ contract_atomic @*/ synchronized void shiftX(int delta) {

updateLoc(new ImmutablePoint(loc.x + delta, loc.y));

}

}

/*@ immutable @*/ class ImmutablePoint {

final int x;

final int y;

//@ invariant x >= y;

//@ requires initX >= initY;

public /*@ contract_atomic @*/ ImmutablePoint(int initX, int initY) {

x = initX;

y = initY;

}

}

There are at least two ways of statically checking that all methods in this example are contract-atomic. The
first one is based on the dependency analysis outlined in Section 3.1.2. The second one combines atomicity
type-checking with verifying that other threads cannot interfere with method contracts and object invariants.
We will now outline both techniques.

73

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

loc δ

x y

pre-condition

loc δ

x y

pre-condition

no synchronisation correct implementation

Figure 5.3: Contract-atomicity checking of shiftX

Showing contract-atomicity by dependency analysis. To show that all methods are contract-atomic,
we first expand the method contracts by the object invariants, as it is done for sequential programs. For
instance, the expanded contract for updateLoc() would be this:

//@ requires loc.x >= loc.y;

//@ requires x >= y;

//@ ensures loc.x >= loc.y;

void moveTo (int x, int y)

Now we use the dependency analysis from Section 3.1.2 to show that each method is indeed contract-
atomic with respect to its contract. It is easy to show that Points’s constructor and methods location(),
updateLoc() and moveTo() are contract-atomic, either because there is no property to verify or because
they do not depend on the heap (they only use integers).

Checking that shiftX() is contract-atomic is less simple because we have to make sure that the call to
ImmutablePoint’s constructor respects its pre-condition (even, this is the only proof obligation). However,
without synchronisation, this pre-condition could get violated when methods shiftX() and updateLoc()

execute concurrently. Indeed, if the loc-field is not protected, shiftX cannot be shown contract-atomic, be-
cause, when type-checking the statement new ImmutablePoint(loc.x + delta, loc.y), the pre-condition
of ImmutablePoint’s constructor depends on unstable values (as the graph on the left shows).

If synchronisation is used, loc is stable and the fact that class ImmutablePoint is immutable guarantees
that loc.x and loc.y are stable as well. Then, our algorithm verifies that shiftX() is contract-atomic
(as the graph on the right shows); consequently, the class Point can be safely used in a multithreaded
environment because all its methods are contract-atomic.

Showing contract-atomicity by atomicity type-checking. Alternatively, we could prove contract-
atomicity by combining a type-based atomicity analysis with interference freedom tests for method con-
tracts and object invariants. The interference freedom tests have the same function as in Owicki-Gries- or
Rely/Guarantee-style program logics, but a separate static atomicity analysis reduces the number of such
tests. The idea to combine atomicity analysis and program verification is not new and has been proposed,
for instance, in Rodŕıguez et al. [62].

Concretely, the following three conditions are sufficient for a method to be contract-atomic:

1. The methods is atomic. (Atomic Methods)

2. Its pre- and post-condition are stable against thread interference. (Stable Contracts)

3. Object invariants are stable against thread interference. (Stable Invariants)

We anticipate that sometimes we will have to deal with methods that are not contract-atomic. In such cases,
we will have to do interference freedom test inside non-atomic methods in addition to (Stable Contracts)
and (Stable Invariants).

74

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

In the example, showing (Stable Contracts) is simple because the method contracts only depend on
integer values. In more complicated examples, method contracts depend on the heap and a dependency
analysis as described in Section 3.1.2 is needed. We point out that sometimes history constraints will be
helpful for showing (Stable Contracts).

Showing (Stable Invariants) is trivial for so-called strong invariants. Strong invariants are invariants
that never get broken, not even temporarily. Typical examples of strong invariants are object invariants
of immutable objects. We anticipate that in concurrent programs strong invariants are considerably more
important than in sequential programs.

Here is how we show the three conditions for contract-atomicity in this example:

1. (Atomic Methods) can be verified using Flanagan et al.’s atomicity type system [30].

2. (Stable Contracts) is obvious, because none of the method contracts depends on the heap.

3. (Stable Invariants) is also obvious, because the only invariant in this example is an invariant on an
immutable object and, therefore, it is a strong invariant. Immutability of ImmutablePoint could be
shown by our immutability type system [35], although for this simple example this may be an overkill;
in fact, there is a simple reason for the immutability of an ImmutablePoint: it has a shallow state
and all its fields are final.

75

Chapter 6

Conclusions and Future Work

6.1 Summary of Current Results

This document describes the intermediate results of Task 3.3 of the MOBIUS project on verification of
multithreaded applications.

We first discuss the role of the Java Memory Model. The Java Memory Model guarantees that any
execution of a program that is correctly synchronised is sequentially consistent (i.e., is equivalent to an
execution described by an interleaving semantics). We are formalising the Java Memory Model in Coq,
and proving the guarantee. We exploit this by defining further verification techniques only for correctly
synchronised programs. A program is correctly synchronised if it does not contain data races. To be able
to check this efficiently, we have revived RCC, a static race condition checker.

Further, we have identified several conditions that can help to achieve thread modular verification, i.e.,
sequential verification of the behaviour of a single thread. First, we define the notion of contract atomicity,
meaning that other threads cannot influence whether a method respects its contract. Second, we exploit
the notion of immutability: if an object is immutable, objects to it do not have to be synchronised. And
finally, we propose an annotation system for thread ownership. The information that can be derived from
these annotations can be used to infer other properties.

We also propose an extension of the JML specification language with concurrency-specific keywords.
Part of these keywords are based on the conditions that we have identified for thread-modular verification;
the other keywords allow one to express e.g., locking policies and guarantees.

Finally, we discuss several example verifications, that illustrate how our different techniques allow to
verify non-trivial multithreaded applications. The verifications are now done manually, but it is foreseen to
implement the developed techniques as part of the MOBIUS tool set.

6.2 Plans

For the remainder of this task, we will continue the work described in this deliverable. Concretely, this
means that we will further develop the following topics.

• Establishing a formal connection between the Java Memory Model description, where program be-
haviour is defined in terms of actions and orders on these actions, and BicolanoMT, where program
behaviour is defined in terms of state traces.

• Developing a verification technique to check for contract atomicity, together with a formal correctness
proof.

• Developing a verification technique technique to verify the thread ownership annotation system, to-
gether with a formal correctness proof.

76

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

• Describing a precise semantics for the new concurrency-specific keywords that extend JML (if not
already done), and ensuring that we have appropriate verification techniques for all proposed keywords.

• Studying the impact of multithreading on visible state invariants, by distinguishing between invariants
that are never broken (so-called strong invariants) and invariants that may temporarily be broken.

• Studying the impact of multithreading on the notion of history constraints. We also would like to
explore whether constraints could be used to support reasoning in rely-guarantee style, by using them
to express the rely and guarantee for a class.

• Studying and solving the possible (unwanted) interactions between the different extensions of JML
that we propose.

• Implementing and integrating the developed verification techniques as part of the MOBIUS tool set.

We have also defined several topics that might be interesting to address further, but where we are not
sure that we will have the time and possibility to do this within the context of the MOBIUS project.

• Studying the impact of benign race conditions. Benign race conditions are said to happen when two
threads might try to write concurrently the same value to a location. This could for example happen
if two threads are simultaneously computing and storing the hash key for an object. The outcome of
the computation should always be the same, and thus the race condition should not be observable to
the user. We would be interested in studying whether this is actually the case for the Java Memory
Model.

• Formalising the procedure implemented by RCC to check for data race freeness and to prove soundness
of the result of the checker w.r.t. the BicolanoMT semantics.

• We are also interested in studying the modularity of the Java Memory Model. Can we separate a
program execution in two parts: one with and one without race conditions, and in this case, can we
assume that the executions of the data race free part of the program are sequentially consistent? This
property would be crucial to ensure that an application can work correctly in an untrusted context,
where there might be data races.

• We are also thinking about a formal definition of the out-of-thin-air guarantee, and whether this is a
property that can actually be formally proven for the Java Memory Model.

• There exists some work about slicing methods based on their specification [16]. We are interested in
exploring the relation with contract atomicity: if a method is atomic w.r.t. its contract, would this
then imply that the sliced method w.r.t. the contract is atomic in the classical sense?

• We would like to reviewing the various definitions of purity with the intent of refining the existing
definitions to account for concurrency.

• In the literature, we have found several examples where we cannot specify its intended behaviour
with (our extension of) JML. The method alloc in Figure 3.1 (on page 37) is one example of such a
method.

We have also encountered several examples where the “intuitive” post-condition might be broken
immediately after the method has finished, because the appropriate locks are released. In such a
case, one can give a block specification that specifies the intended behaviour of the method within
the synchronised block. However, we can imagine that there are cases where the fact that the post-
condition of the block specification actually was true at some point in time, might be useful information
also for the caller of the method. For example, if the block specification stated that some element was
added to some collection, it might be useful to know that the element once belonged to the collection.
To be able to express that, we would have to extend JML with temporal operators.

77

Bibliography

[1] M. Abadi, C. Flanagan, and S. Freund. Types for safe locking: Static race detection for Java. ACM
Transactions on Programming Languages and Systems, 28(2):207–255, 2006.

[2] E. Ábrahám. An Assertional Proof System for Multithreaded Java - Theory and Tool Support. PhD
thesis, University of Leiden, 2004.

[3] E. Ábrahám, F. S. de Boer, W.-P. de Roever, and M. Steffen. Tool-supported proof system for mul-
tithreaded Java. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal
Methods for Components and Objects, number 2852 in Lecture Notes in Computer Science, pages 1–32.
Springer-Verlag, 2003.

[4] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE Computer,
29(12):66–76, 1996.

[5] S. V. Adve and M. D. Hill. Weak ordering - a new definition. In International Symposium on Computer
Architecture, pages 2–14, 1990.

[6] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview. In Barthe
et al. [7], pages 151–171.

[7] G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors. Proceedings, Construction
and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS’04) Workshop, volume 3362 of
Lecture Notes in Computer Science. Springer-Verlag, 2005.

[8] J. Bloch. Effective Java. Addison-Wesley, 2001.

[9] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data races and
deadlocks. In ACM Conference on Object-Oriented Programming Systems, Languages, and Applications,
pages 211–230. ACM Press, November 2002.

[10] J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis
Symposium, volume 2694 of Lecture Notes in Computer Science, pages 55–72. Springer-Verlag, 2003.

[11] J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A generalisation of uniqueness and read-
only. In European Conference on Object-Oriented Programming, pages 2–27. Springer-Verlag, 2001.

[12] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M. Leino, and E. Poll. An
overview of JML tools and applications. In Workshop on Formal Methods for Industrial Critical Systems,
volume 80 of Electronic Notes in Theoretical Computer Science, pages 73–89. Elsevier, 2003.

[13] N. Cataño and M. Huisman. Chase: A static checker for JML’s assignable clause. In Verification,
Model Checking and Abstract Interpretation, volume 2575 of Lecture Notes in Computer Science, pages
26–40. Springer-Verlag, 2003.

78

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

[14] B.-C. Cheng and W. W. Hwu. Modular interprocedural pointer analysis using access paths: Design,
implementation, and evaluation. In Programming Languages Design and Implementation. ACM Press,
2000.

[15] Y. Cheon. A Runtime Assertion Checker for the Java Modeling Language. PhD thesis, Iowa State
University, 2003.

[16] I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon. Program slicing based on specification. In
Symposium on Applied Computing, pages 605–609. ACM Press, 2001.

[17] D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and effect.
In ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, pages
292–310. ACM Press, 2002.

[18] D. G. Clarke, J. Noble, and J. Potter. Simple Ownership Types for Object Containment. In J. Lindskov
Knudsen, editor, European Conference on Object-Oriented Programming, volume 2072 of Lecture Notes
in Computer Science, pages 53–76. Springer-Verlag, 2001.

[19] D. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML: Progress and issues in building and
using ESC/Java2 and a report on a case study involving the use of ESC/Java2 to verify portions of an
internet voting tally system. In Barthe et al. [7], pages 108–128.

[20] Coq development team. The Coq proof assistant reference manual V8.0. Technical Report 255, INRIA,
France, March 2004. http://coq.inria.fr/doc/main.html.

[21] D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. Technical report, System
Research Center, 1998.

[22] W. Dietl, S. Drossopoulou, and P. Müller. Generic universe types. In E. Ernst, editor, European Con-
ference on Object-Oriented Programming, Lecture Notes in Computer Science, pages 28 – 53. Springer-
Verlag, 2007.

[23] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology,
4(8):5–32, October 2005.

[24] P. C. Diniz and M. C. Rinard. Lock coarsening: Eliminating lock overhead in automatically parallelized
object-based programs. Journal of Parallel and Distributed Computing, 49(2):218–244, 1998.

[25] M. Dubois, C. Scheurich, and F. A. Briggs. Memory access buffering in multiprocessors. In International
Symposium on Computer Architecture, pages 434–442, 1986.

[26] C. Flanagan. Verifying commit-atomicity using model-checking. In SPIN Workshop on Model Checking
of Software, volume 2989 of Lecture Notes in Computer Science, pages 252–266. Springer-Verlag, April
2004.

[27] C. Flanagan and S. N. Freund. Type-based race detection for Java. In Programming Languages Design
and Implementation, pages 219–232, New York, NY, USA, 2000. ACM Press.

[28] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for atomicity. IEEE Transactions on
Software Engineering, 31(4):275–291, 2005.

[29] C. Flanagan and S.N Freund. Atomizer: a dynamic atomicity checker for multithreaded programs. In
Principles of Programming Languages, pages 256–267, New York, NY, USA, 2004. ACM Press.

[30] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Programming Languages Design
and Implementation, volume 38 of ACM SIGPLAN Notices, pages 338–349. ACM Press, May 2003.

79

http://coq.inria.fr/doc/main.html

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

[31] C. Flanagan and S. Qadeer. Types for atomicity. In Types in Language Design and Implementation.
ACM Press, 2003.

[32] K. Gharachorloo, D. Lenoski, J. Laudon, P. B. Gibbons, A. Gupta, and J. L. Hennessy. Memory
consistency and event ordering in scalable shared-memory multiprocessors. In International Symposium
on Computer Architecture, pages 15–26, 1990.

[33] J. R. Goodman. Cache consistency and sequential consistency. Technical Report 61, SCI Committee,
1989.

[34] A. Greenhouse and J. Boyland. An object-oriented effects system. In R. Guerraoui, editor, European
Conference on Object-Oriented Programming, volume 1628 of Lecture Notes in Computer Science, pages
205–229. Springer-Verlag, 1999.

[35] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable objects for a Java-like language. In R. De
Nicola, editor, ESOP’07, volume 4421 of Lecture Notes in Computer Science, pages 347–362. Springer-
Verlag, 2007.

[36] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifications for concurrent object-oriented
software using model-checking. In VMCAI, pages 175–190, 2004.

[37] M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer alias analyses. In Static
Analysis Symposium. Springer-Verlag, 1998.

[38] M. Huisman. Reasoning about Java programs in higher order logic using PVS and Isabelle. PhD thesis,
Computing Science Institute, University of Nijmegen, 2001.

[39] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ.
In ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, volume
34(10), pages 132–146, 1999.

[40] B. Jacobs. A Statically Verificable Programming Model for Concurrent Object-Oriented Programs. PhD
thesis, Katholieke Universiteit Leuven, 2007.

[41] B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Hussmann, editor,
Fundamental Approaches to Software Engineering, volume 2029 of Lecture Notes in Computer Science,
pages 284–299. Springer-Verlag, 2001.

[42] B. Jacobs, J. Smans, F. Piessens, and W. Schulte. A statically verifiable programming model for
concurrent object-oriented programs. In International Conference on Formal Engineering Methods,
pages 420–439, 2006.

[43] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM Transactions
on Programming Languages and Systems, 5(4):596–619, 1983.

[44] JSR 133: Java memory model and thread specification, 2004.

[45] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the
ACM, 21(7):558–565, 1978.

[46] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Computer, 28(9):690–691, 1979.

[47] D. Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison-Wesley, Boston,
MA, USA, 1996.

80

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

[48] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML Reference Manual,
July 2005. In Progress. Department of Computer Science, Iowa State University. Available from http:

//www.jmlspecs.org.

[49] R. A. Lerner. Specifying objects of concurrent systems. PhD thesis, Carnegie Mellon University, Pitts-
burgh, PA, USA, 1991.

[50] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Second Edition. Sun Microsys-
tems, Inc., 1999. http://java.sun.com/docs/books/vmspec/.

[51] R. J. Lipton. Reduction: A method of proving properties of parallel programs. Communications of the
ACM, 18(12):717–721, December 1975.

[52] J. Manson. The Java Memory Model. PhD thesis, Faculty of the Graduate School of the University of
Maryland, 2004.

[53] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In Principles of Programming
Languages, pages 378–391, 2005.

[54] MOBIUS Consortium. Deliverable 3.1: Bytecode specification language and program logic, 2006. Avail-
able online from http://mobius.inria.fr.

[55] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[56] R. H. B. Netzer and B. P. Miller. What are race conditions? some issues and formalizations. ACM
Letters on Programming Languages and Systems, 1(1):74–88, 1992.

[57] P. Nienaltowski and B. Meyer. Contracts for concurrency. In Symposium on Concurrency, Real-Time,
and Distribution in Eiffel-like Languages, July 2006.

[58] L. P. Nieto. The Rely-Guarantee method in Isabelle/HOL. In P. Degano, editor, European Symposium
on Programming, volume 2618 of Lecture Notes in Computer Science, pages 348–362. Springer-Verlag,
2003.

[59] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Informatica Journal,
6:319–340, 1975.

[60] D. Pichardie. Bicolano – Byte Code Language in Coq. http://mobius.inria.fr/bicolano. Summary
appears in [54], 2006.

[61] W. Pugh. Fixing the Java memory model. In Java Grande, pages 89–98, 1999.

[62] E. Rodŕıguez, M. B. Dwyer, C. Flanagan, J. Hatcliff, G. T. Leavens, and Robby. Extending JML for
modular specification and verification of multi-threaded programs. In A. P. Black, editor, European
Conference on Object-Oriented Programming, volume 3586 of Lecture Notes in Computer Science, pages
551–576. Springer-Verlag, July 2005.

[63] A. Salcianu and M. C. Rinard. Purity and side effect analysis for Java programs. In Verification, Model
Checking and Abstract Interpretation, pages 199–215, 2005.

[64] F. Spoto and E. Poll. Static analysis for JML’s assignable clauses. In G. Ghelli, editor, ACM
Workshop on Foundations of Object-Oriented Languages. ACM Press, January 2003. Available at
www.sci.univr.it/∼spoto/papers.html.

[65] M. Steffen. Object-connectivity and observability for class-based object-oriented languages, 2006. Ha-
bilitation thesis.

81

http://www.jmlspecs.org
http://www.jmlspecs.org
http://mobius.inria.fr
http://mobius.inria.fr/bicolano

MOBIUS Deliverable D3.3 Preliminary report on thread-modular verification

[66] J. Thornley. A Parallel Programming Model with Sequential Semantics. PhD thesis, California Institute
of Technology, 1996. Available as Caltech technical report CS-TR-96-12.

[67] J. Vitek and B. Bokowski. Confined types in Java. Software Practice and Experience, 31(6):507–532,
2001.

[68] D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logic. PhD
thesis, Technische Universität München, 2001.

[69] T. Zhao, J. Palsberg, and J. Vitek. Type-based confinement. Journal of Functional Programming,
16(1):83–128, January 2006.

82

	1 Introduction
	1.1 The Role of the Java Memory Model
	1.2 Conditions for Thread-modular Verification
	1.3 Specifications of Multithreaded Applications

	2 The Role of the Java Memory Model
	2.1 Memory Models for Multithreaded Applications
	2.2 The Java Memory Model
	2.2.1 Requirements and Motivations
	2.2.2 Specification
	2.2.3 Proof of Data Race Freeness
	2.2.4 Formalisation in Coq

	2.3 Multithreaded Bicolano
	2.3.1 Bicolano
	2.3.2 BicolanoMT

	2.4 A Tool for Race Detection
	2.4.1 Rules and Annotations
	2.4.2 Example
	2.4.3 Reviving RCC
	2.4.4 Next Steps for RCC

	3 Conditions for Thread-modular Verification
	3.1 Exploiting Contracts for Atomicity
	3.1.1 Previous Atomicity Analyses
	3.1.2 Contract-atomicity
	3.1.3 Contract-independence

	3.2 Immutability
	3.2.1 Features of the Immutability Type System

	3.3 Thread Ownership
	3.3.1 Specifying Locality with Capacities
	3.3.2 Ordering and Updates of Partial Capacities

	3.4 Exploiting Conditions for Thread-modular Verification

	4 Specification of Multithreaded Applications
	4.1 Specification Keywords for Thread-modular Verification
	4.2 Using JML for Multithreaded Applications
	4.3 Differences With Other Language Proposals
	4.3.1 The Spex-JML Project
	4.3.2 The Spec# Project

	4.4 Example

	5 Example Verifications
	5.1 Contract-atomicity and Locality
	5.2 Lifting a Sequential Class to a Concurrent One

	6 Conclusions and Future Work
	6.1 Summary of Current Results
	6.2 Plans

