
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable D3.6

Intermediate report on modular verification

Due date of deliverable: 2008-08-31 (T0+36)

Actual submission date: 2008-10-15

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: ETH

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Contributions

Site Contributed to Chapter

ETH 1, 2, 3, 4

IC 1, 2, 4

This document was written by Ádám Darvas (ETH), Sophia Drossopoulou (IC), Adrian Francalanza
(formerly IC), Peter Müller (ETH), Arsenii Rudich (ETH), and Alexander Summers (IC).

2

Executive Summary:
Intermediate report on modular verification

This document summarises deliverable D3.6 of project FP6-015905 (MOBIUS), co-funded by the European
Commission within the Sixth Framework Programme. Full information on this project, including this
deliverable, is available online at http://mobius.inria.fr.

Following the goals of Task 3.4 to develop a practical verification technique for object invariants that can
handle interesting implementation patterns including inheritance, call-backs, recursive object structures, and
concurrency, the Mobius consortium has made significant contributions to the area of modular verification.
These contributions appear in diverse publication venues such as: European Conference on Object-Oriented
Programming ”ECOOP” 2008, Workshop on Formal Techniques for Java-like Programs ”FTfJP” 2008,
International Symposium on Formal Methods ”FM” 2008, and International Joint Conference on Automatic
Reasoning ”IJCAR” 2008. This deliverable contains an overview of the results and serves as a chart for
Mobius’ contributions to this area, including pointers to specific contributions for further details.

The following results are in the main focus of the deliverable:

• Several visible-state verification techniques for object invariants have been proposed. It is difficult
to compare these techniques and ascertain their soundness because of differences in restrictions on
programs and invariants, in the use of advanced type systems (e.g., ownership types), in the meaning
of invariants, and in proof obligations.

We have developed a unified framework for such techniques [19]. We distilled seven parameters that
characterise a verification technique, and identify sufficient conditions on these parameters which
guarantee soundness. We instantiated our framework with three verification techniques from the
literature, and use it to assess soundness and compare expressiveness.

• We used the unified framework from the previous item to formalise a generalisation of the Visibility
Technique [31] to cater for static fields and methods [37].

In order to cater for mutable static fields, we extend this topology to multiple trees (a forest), where
each tree is rooted in a class. This allows classes to naturally own object instances as their static fields.
We described how to extend the Visibility Technique to this topology, incorporating extra flexibility
for the treatment of static methods.

• We have developed a technique to check well-formedness of contracts [34]. We give proof obligations
that are sufficient to guarantee the existence of a model for the specification of pure methods. We
improve over earlier work by providing a systematic solution including a soundness result and by
supporting more forms of recursive specifications.

• We have developed a procedure which generates well-definedness conditions that grow linearly with
respect to the input formula [15]. We also present empirical results that demonstrate the improvements
made.

This report reflects only the views of the authors and the European Community is not liable for any use
that may be made of the information contained therein.

3

http://mobius.inria.fr

Contents

1 Introduction 5

2 Object invariants 6

3 Checking well-formedness of pure-method specifications 8

4 Conclusions 10

A Copies of Publications 14

A Unified Framework for Verification Techniques for Object Invariants 15
S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers

A Universe-Type-Based Verification Technique for Mutable Static Fields and Methods 40
A. J. Summers, S. Drossopoulou, and P. Müller

Checking Well-Formedness of Pure-Method Specifications . 54
A. Rudich, Á. Darvas, and P. Müller

Efficient Well-Definedness Checking . 70
Á. Darvas, F. Mehta, and A. Rudich

4

Chapter 1

Introduction
This deliverable reports on intermediate progress on modular verification (Task 3.4). The work carried out
in Task 3.4 is reported in four publications [19, 37, 34, 15], and includes contributions from the MOBIUS
partners involved in Task 3.4, namely ETH and IC1. Here we present an overview of the achievements, and
we refer to the publications for the full details.

Modularity in verification is crucial if verification of realistic applications is to be feasible in practice.
Program correctness and security rely on, among other things, object invariants [25]. For instance, a
dynamically loaded class should not bring the system in an inconsistent state. Whereas modular verification
of simple pre-post specifications for methods is well understood [18, 28], reasoning about object invariants
in the presence of aliasing, subclassing and call-backs is still an active research area.

Several visible-state verification techniques for object invariants have been proposed. It is difficult to
compare these techniques and ascertain their soundness because of differences in restrictions on programs
and invariants, in the use of advanced type systems (e.g., ownership types), in the meaning of invariants,
and in proof obligations.

We develop a unified framework for such techniques. Chapter 2 presents an overview of the unified frame-
work for visible-state verification techniques for object invariants [19] and its application to formalisation of
an extension of the Visibility Technique to cater for static fields and methods [37].

One of the main goals of the MOBIUS project is to enable the Proof Carrying Code (PCC) paradigm. A
specification’s well-formedness is crucial for the PCC paradigm. Ill-formedness of the specification can result
in inconsistency of underlying axioms which leads to unsoundness of the PCC. The proposed technique can
be used to prevent PCC unsoundness due to specification ill-formedness.

Chapter 3 considers a technique to check well-formedness of contracts. Contracts are well-formed if they
respect the partiality of operations, and they enable a consistent encoding of pure methods in a program
logic [34]. A new efficient technique for dealing with partiality is presented [15].

Appendix A collates the four publications that constitute this deliverable.

1RUN withdraws from Task 3.4, moving work and man months from task 3.4 to task 3.3.

5

Chapter 2

Object invariants

Object invariants play a crucial role in the verification of object-oriented programs, and have been an integral
part of all major contract languages such as Eiffel [30], the Java Modeling Language JML [24], and Spec# [4].
Object invariants express consistency criteria for objects, ranging from simple properties of single objects
(for instance, that a field is non-null) to complex properties of whole object structures (for instance, the
sorting of a tree).

While the basic idea of object invariants is simple, verification techniques for practical OO-programs
face challenges. These challenges are made more daunting by the common expectation that classes should
be verified without knowledge of their clients and subclasses. The three main challanges are:

Call-backs: Methods that are called while the invariant of an object o is temporarily broken might call
back into o and find o in an inconsistent state.

Multi-object invariants: When the invariant of an object p depends on the state of another object o,
modifications of o potentially break the invariant of p. In particular, when verifying o, the invariant
of p may not be known and, if not, cannot be expected to be preserved.

Subclassing: When the invariant of a subclass D refers to fields declared in a superclass C then methods of
C can break D’s invariant by assigning to these fields. In particular, when verifying a class, its subclass
invariants are not known in general, and so cannot be expected to be preserved.

Several verification techniques address some or all of these challenges [3, 6, 21, 23, 26, 29, 31, 33]. They
share many commonalities, but differ in the following important aspects:

1. Invariant semantics: Which invariants are expected to hold when?

2. Invariant restrictions: Which objects may invariants depend on?

3. Proof obligations: What proofs are required, and where?

4. Program restrictions: Which objects’ methods/fields may be called/updated?

5. Type systems: What syntactic information is used for reasoning?

6. Specification languages: What syntax is used to express invariants?

7. Verification logics: How are invariants proved?

These differences, together with the fact that most verification techniques are not formally specified,
complicate the comparison of verification techniques, and hinder the understanding of why these techniques
satisfy claimed properties such as soundness. For these reasons, it is hard to decide which technique to
adopt, or to develop new sound techniques.

6

MOBIUS Deliverable D2.5 Intermediate report on safe information release

We developed a unified framework for verification techniques for object invariants [19]. This framework
formalises verification techniques in terms of seven parameters, which abstract away from differences per-
taining to language features (type system, specification language, and logics) and highlight characteristics
intrinsic to the techniques, thereby aiding comparisons. Subsets of these parameters describe aspects appli-
cable to all verification techniques; for example, a generic definition of soundness is given in terms of two
framework parameters, expressivity is captured by three other parameters.

We used the unified framework to formalise an extension of the Visibility Technique (VT for short) [31]to
cater for static fields and methods [37].

When adding statics to verification, one needs to address the following questions:

1. Where in the topology do static fields appear?

2. May instance methods update static fields?

3. May static invariants mention the fields of objects of their class?

4. May instance invariants mention static fields of their class, or of other classes?

5. Can static methods break invariants of objects, and if so, of which objects?

6. Can instance methods break static invariants, and if so, of which classes?

7. What proof obligations are necessary before a call to a static method?

8. What proof obligations are necessary before a call to an instance method?

We explored these questions in the context of VT, and extended the technique and heap topology to
handle static fields. In the process, we encountered a potential source of callbacks not present in VT, and
solved this problem. We developed an approach involving a combination of effect annotations and refinements
to the heap topology using levels. We extended the technique to allow more expressive invariants.

The fundamental premise of this technique is that classes should be able to own objects in the same way
that other objects can. For example, if the behaviour of a class depends on a static field (to manage object
creation, etc.) then this static field naturally ‘belongs’ to the inner workings of the class: its representation.
This gives a natural interpretation of static rep fields: they should be treated analogously to instance rep
fields, but with a class as their owner [27].

Thus, we extended our heap topology to include classes. Classes are the ‘roots’ of trees in our topology.
As there are generally several classes in a program, our topology should allow for several such trees; we work
with a forest. Furthermore, with classes acting as roots, there is no longer a need for an abstract root entity;
these class-rooted trees make up the entire picture. Note that there are no objects at the ‘same level’ as
the class entities, and classes do not have owners. In this paper, we do not consider a notion of static peer
fields.

We interpret static fields and methods as instance fields and methods of the corresponding class object.
That is, the class object (or class for short) is the receiver for an execution of a static method. We expect
that modifications to static fields will be achieved by calling a static method of the class that declares the
field. In other words, static methods may update the fields of their receiver class, just like instance methods
in VT may update fields of their receiver object.

To summarise the ideas:

1. Each point in our heap topology corresponds to either an object or a class.

2. Objects (but not classes) each have exactly one owner (a class or an object).

3. The current receiver (on the stack) can be either an object or a class.

7

Chapter 3

Checking well-formedness of pure-method
specifications

Contract languages such as the Java Modeling Language (JML) [22] and Spec# [5] specify invariants and
pre- and postconditions using side-effect free expressions of the programming language. While contract
languages are natural for programmers, they pose various challenges when contracts are encoded in the logic
of a program verifier or theorem prover, especially when contracts use pure (side-effect free) methods [16].
This chapter addresses two challenges related to pure-method specifications [34].

The first challenge is how to ensure that a specification is well-defined, that is, that all partial operations
are applied within their domain. For instance method calls are well-defined only for non-null receivers
and when the precondition of the method is satisfied. This challenge can be solved by encoding partial
functions as under-specified total functions [20]. However, it has been argued that such an encoding is
counter-intuitive for programmers, is not well-suited for runtime assertion checking, and assigns meaning to
bogus contracts instead of having them rejected by a verifier [10]. Another solution is the use of 3-valued
logic, such as LPF [7]. However, 3-valued logic is typically not supported by the theorem provers that are
used in program verifiers. We present a technique based on 2-valued logic to check whether a specification
satisfies all partiality constraints. If the check fails, the specification is rejected.

The second challenge is how to ensure that a specification is consistent. In order to reason about contracts
that contain pure-method calls, pure methods must be encoded in the logic of the program verifier. This is
typically done by introducing an uninterpreted function symbol for each pure method m, whose properties
are axiomatised based on m’s contract and object invariants [12, 16]. A specification is consistent if this
axiomatisation is free from contradictions. Consistency is crucial for soundness. We present a technique to
check consistency by showing that the contracts of pure methods are satisfiable and well-founded if they are
recursive. If the consistency check fails, the specification is rejected.

An inconsistent specification of a method m is not necessarily detected during the verification of m’s
implementation [16]: (1) m might be abstract; (2) partial correctness logics allow one to verify m w.r.t.
an unsatisfiable specification if m’s implementation does not terminate; (3) any implementation could be
trivially verified based on inconsistent axioms stemming from inconsistent pure-method specifications; this
is especially true for recursion, when the axiom for m is needed to verify its implementation. These reasons
justify the need for verifying consistency of specifications independently of implementations.

We show well-formedness of specifications by posing proof obligations to ensure: (1) that partial opera-
tions are applied within their domains, (2) the existence of a possible result value for each pure method, and
(3) that recursive specifications are well-founded. In order to deal with dependencies between pure methods,
we determine a dependency graph, which we process bottom-up. Thereby, one can use the properties of a
method m to prove the proof obligations for the methods using m.

To deal with partiality, we interpret specifications in 3-valued logic. However, we want to support
standard theorem provers, which typically use 2-valued logic and total functions [32, 17]. Therefore, we
express the proof obligations in 2-valued logic by applying a well-definedness condition generator to the

8

MOBIUS Deliverable D2.5 Intermediate report on safe information release

specification expressions. Well-definedness conditions validity ensures that all formulas at hand can be
evaluated to either true or false.

The literature [8, 35, 1, 9] proposes the procedure D to generate well-definedness conditions. The
procedure is complete [8, 9], that is, the well-definedness condition generated from a formula is provable if
and only if the formula is well-defined.

Due to the exponential blow-up of well-definedness conditions, the D procedure is not used in practice
[8, 35, 1]. Instead, another procedure L is used, which generates much smaller conditions with linear growth,
but which is incomplete. That is, the procedure may generate unprovable well-definedness conditions for
well-defined formulas.

We developed a new procedure Y [15], which unifies the advantages of D and L, while eliminating their
weaknesses. That is, (1) Y yields well-definedness conditions that grow linearly with respect to the size
of the input formula, and (2) Y is equivalent to D, and therefore complete and insensitive to the order of
sub-formulas. To our knowledge, this is the first procedure that has both of these two properties.

The definition of the new procedure is very intuitive and straightforward. We prove that it is equivalent
with D in two ways: (1) in a syntactical manner, as D was derived in [1], and (2) in a semantical way, as D
was introduced in [8].

We proved the following soundness result: If all proof obligations for the pure methods of a program
are proved then there is a partial model for the axiomatisation of these pure methods. In other words, we
guarantee that the partiality constraints are satisfied and the axiomatisation is consistent.

Our approach differs from existing solutions for theorem provers [13, 32], where consistency is typically
enforced by restricting specifications to conservative extensions, but no checks are performed for axioms.
Since specifications of pure methods are axiomatic, the approach of conservative extensions is not applicable
to contract languages. Moreover, theorem provers require the user to resolve dependencies by ordering the
elements of a theory appropriately. We determine this order automatically using a dependency graph.

Our approach improves on existing solutions for program verifiers in three ways. First, it supports
(mutually) recursive specifications, whereas in previous work recursive specifications are severely restricted
[16, 14]. Second, our approach allows us to use the specification of one method to prove well-formedness
of another, which is needed in many practical examples. Such dependencies are not discussed in previous
work [11, 16] and are not supported by program verifiers that perform consistency checks, such as Spec#.
Neglecting dependencies leads to the rejection of well-formed specifications. Third, we prove consistency for
the axiomatisation of pure methods; such a proof is either missing in earlier work [11, 14] or only presented
for a very restricted setting [16].

9

Chapter 4

Conclusions

This chapter summarises the results and briefly discusses their impact on modular verification.

Results There is rich evidence that we have achieved the task goals :

• We presented a unified framework that describes verification techniques for object invariants in terms
of seven parameters and separates verification concerns from those of the underlying type system.
We identified sufficient conditions on the framework parameters that guarantee soundness, and we
proved a universal soundness theorem. The result have been presented in European Conference on
Object-Oriented Programming ”ECOOP” 2008 [19].

• We have outlined a verification technique based on VT, catering for static fields, methods, and invari-
ants. In the process, we extended the usual heap topology of ownership types, and tackled potential
callbacks through a combination of effects, levels, and the owner-as-modifier discipline. The result
have been presented in Workshop on Formal Techniques for Java-like Programs ”FTfJP” 2008 [37].

• We presented a new technique to check the well-formedness of specifications. We showed how to
incrementally construct a model for the specification, which guarantees that the partiality constraints of
operations are respected and that the axiomatisation of pure methods is consistent. contract language,
logic, or backend theorem prover. The result have been presented in International Symposium on
Formal Methods ”FM” 2008 [34].

• We proposed a new procedure Y to generate well-definedenss conditions. Y is complete and yields
formulas that grow linearly with respect to the size of the input formula. Our procedure has been used
to enforce well-formedness of invariants and method specifications. The result have been presented in
International Joint Conference on Automatic Reasoning ”IJCAR” 2008 [15].

Further development within the project Further development within the project will be reported on
in the final report on modular verification, deliverable D3.9.

• ETH and IC will develop a verification technique for non-hierarchic object structures. They will
combine their work on hierarchic (ownership-based) structures with recent results on dynamic frames
[36] and regions [2]. The aim is a verification technique that provides the simplicity of ownership-based
verification with the flexibility of dynamic frames and regions. A comparison of the four major existing
verification techniques for object structures (dynamic frames, ownership, regions, separation logic) will
be an intermediate result.

• ETH will continue their work on the well-definedness of specifications by extending it to model classes,
which encode mathematical structures. Program verifiers map model classes to their underlying logics.
Flaws in a model class or in the mapping can easily lead to unsoundness and incompleteness. ETH
will continue to develop a technique for finding such flaws.

Acknowledgments We are grateful to Erik Poll and Joseph Kiniry for helpful discussions and for their
insightful comments.

10

Bibliography

[1] J. Abrial and L. Mussat. On using conditional definitions in formal theories. In D. Bert, J. P. Bowen,
M. C. Henson, and K. Robinson, editors, ZB 2002, volume 2272 of Lecture Notes in Computer Science,
pages 242–269. Springer-Verlag, 2002.

[2] A. Banerjee, D. Naumann, and S. Rosenberg. Regional logic for local reasoning about global invariants.
In J. Vitek, editor, European Conference on Object-Oriented Programming, volume 5142 of Lecture
Notes in Computer Science, pages 387–411. Springer-Verlag, 2008.

[3] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of object-oriented
programs with invariants. Journal of Object Technology, 3(6):27–56, 2004.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview. In
G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Construction and Analysis of
Safe, Secure and Interoperable Smart Devices: Proceedings of the International Workshop CASSIS 2004,
volume 3362 of Lecture Notes in Computer Science, pages 151–171. Springer-Verlag, 2005.

[5] M. Barnett, R. Leino, and W. Schulte. The Spec# programming system: An overview. In CASSIS,
volume 3362 of Lecture Notes in Computer Science, pages 49–69. Springer-Verlag, 2005.

[6] M. Barnett and D. Naumann. Friends need a bit more: Maintaining invariants over shared state. In
D. Kozen, editor, Mathematics of Program Construction, volume 3125 of Lecture Notes in Computer
Science, pages 54–84. Springer-Verlag, 2004.

[7] H. Barringer, J. H. Cheng, and C. Jones. A logic covering undefinedness in program proofs. Acta
Informatica, 21:251–269, 1998.

[8] P. Behm, L. Burdy, and J. Meynadier. Well Defined B. In D. Bert, editor, International B Conference,
volume 1393 of LNCS, pages 29–45. Springer-Verlag, 1998.

[9] S. Berezin, C. Barrett, I. Shikanian, M. Chechik, A. Gurfinkel, and D.Dill. A practical approach
to partial functions in CVC Lite. In Workshop on Pragmatics of Decision Procedures in Automated
Reasoning, 2004.

[10] P. Chalin. Are the logical foundations of verifying compiler prototypes matching user expectations?
Formal Aspects of Computing, 19(2):139–158, 2007.

[11] P. Chalin. A sound assertion semantics for the dependable systems evolution verifying compiler. In
ICSE, pages 23–33. IEEE Computer Society, 2007.

[12] D. R. Cok. Reasoning with specifications containing method calls in JML. Journal of Object Technology,
4(8):77–103, 2005.

[13] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduction to PVS, April 1995.

[14] Á. Darvas and R. Leino. Practical reasoning about invocations and implementations of pure methods.
In FASE, volume 4422 of LNCS, pages 336–351. Springer-Verlag, 2007.

11

MOBIUS Deliverable D2.5 Intermediate report on safe information release

[15] Á. Darvas, F. Mehta, and A. Rudich. Efficient well-definedness checking. In IJCAR, volume 5195 of
Lecture Notes in Computer Science, pages 100–115. Springer, 2008.

[16] Á. Darvas and P. Müller. Reasoning About Method Calls in Interface Specifications. Journal of Object
Technology (JOT), 5(5):59–85, June 2006.

[17] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. Journal of the
Association of Computing Machinery, 52(3):365–473, 2005.

[18] K. K. Dhara. Behavioral subtyping in object-oriented languages. Technical Report 97-09, Iowa State
University, May 1997.

[19] S. Drossopoulou, A. Francalanza, Peter Müller, and A. J. Summers. A unified framework for verification
techniques for object invariants. In European Conference of Object Oriented Programming, 2008.

[20] D. Gries and F. B. Schneider. Avoiding the undefined by underspecification. In J. van Leeuwen,
editor, Computer Science Today, volume 1000 of Lecture Notes in Computer Science, pages 366–373.
Springer-Verlag, 1995.

[21] K. Huizing and R. Kuiper. Verification of object-oriented programs using class invariants. In
T. Maibaum, editor, Fundamental Approaches to Software Engineering (FASE), volume 1783 of Lecture
Notes in Computer Science, pages 208–221. Springer-Verlag, 2000.

[22] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral interface specification
language for Java. SIGSOFT Software Engineering Notes, 31(3):1–38, 2006.

[23] G. T. Leavens and P. Müller. Information hiding and visibility in interface specifications. In Interna-
tional Conference on Software Engineering (ICSE), pages 385–395. IEEE, 2007.

[24] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller, J. Kiniry, and P. Chalin.
JML Reference Manual, February 2007. Department of Computer Science, Iowa State University.
Available from http://www.jmlspecs.org.

[25] K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of Technology,
1995.

[26] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky, editor, European
Conference on Object-Oriented Programming, volume 3086 of Lecture Notes in Computer Science, pages
491–516. Springer-Verlag, 2004. Available from www.sct.inf.ethz.ch/publications/index.html.

[27] R. Leino and P. Müller. Modular verification of static class invariants. In Formal Methods, 2005.

[28] B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on Programming
Languages and Systems, 16(6), 1994.

[29] Y. Lu, J. Potter, and J. Xue. Object Invariants and Effects. In E. Ernst, editor, European Conference
on Object-Oriented Programming (ECOOP), volume 4609 of Lecture Notes in Computer Science, pages
202–226. Springer-Verlag, 2007.

[30] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[31] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object structures.
Science of Computer Programming, 62:253–286, 2006.

[32] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for Higher-Order Logic.
Springer-Verlag, 2002.

12

http://www.jmlspecs.org
www.sct.inf.ethz.ch/publications/index.html

MOBIUS Deliverable D2.5 Intermediate report on safe information release

[33] A. Poetzsch-Heffter. Specification and verification of object-oriented programs. Habilitation thesis,
Technical University of Munich, 1997.

[34] A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of pure-method specifications. In
J. Cuellar and T. Maibaum, editors, Formal Methods, volume 5014 of Lecture Notes in Computer
Science, pages 68–83. Springer-Verlag, 2008.

[35] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate subtyping in PVS. IEEE
Transactions on Software Engineering, 24(9):709–720, 1998.

[36] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic verifier for Java-like programs based
on dynamic frames. In J. L. Fiadeiro and P. Inverardi, editors, Fundamental Approaches to Software
Engineering, volume 4961 of Lecture Notes in Computer Science, pages 261–275. Springer-Verlag, 2008.

[37] Alexander J. Summers, S. Drossopoulou, and P. Müller. A universe-type-based verification technique
for mutable static fields and methods (work in progress). In Workshop on Formal Techniques for Java
Programs, 2008.

13

Appendix A

Copies of Publications

14

A Unified Framework for
Verification Techniques for Object Invariants

S. Drossopoulou(1), A. Francalanza(2), P. Müller(3), and A. J. Summers(1)

(1) Imperial College London,
(2) University of Southampton,

(3) Microsoft Research, Redmond

Abstract. Object invariants define the consistency of objects. They
have subtle semantics because of call-backs, multi-object invariants and
subclassing. Several visible-state verification techniques for object in-
variants have been proposed. It is difficult to compare these techniques
and ascertain their soundness because of differences in restrictions on
programs and invariants, in the use of advanced type systems (e.g., own-
ership types), in the meaning of invariants, and in proof obligations.
We develop a unified framework for such techniques. We distil seven pa-
rameters that characterise a verification technique, and identify sufficient
conditions on these parameters which guarantee soundness. We instanti-
ate our framework with three verification techniques from the literature,
and use it to assess soundness and compare expressiveness.

1 Introduction

Object invariants play a crucial role in the verification of object-oriented pro-
grams, and have been an integral part of all major contract languages such as
Eiffel [25], the Java Modeling Language JML [17], and Spec# [2]. Object in-
variants express consistency criteria for objects, ranging from simple properties
of single objects (for instance, that a field is non-null) to complex properties of
whole object structures (for instance, the sorting of a tree).

While the basic idea of object invariants is simple, verification techniques for
practical OO-programs face challenges. These challenges are made more daunting
by the common expectation that classes should be verified without knowledge
of their clients and subclasses:

Call-backs: Methods that are called while the invariant of an object o is tem-
porarily broken might call back into o and find o in an inconsistent state.

Multi-object invariants: When the invariant of an object p depends on the
state of another object o, modifications of o potentially break the invariant
of p. In particular, when verifying o, the invariant of p may not be known
and, if not, cannot be expected to be preserved.

Subclassing: When the invariant of a subclass D refers to fields declared in a
superclass C then methods of C can break D’s invariant by assigning to these
fields. In particular, when verifying a class, its subclass invariants are not
known in general, and so cannot be expected to be preserved.

2

Several verification techniques address some or all of these challenges [1, 3, 14,
16, 18, 23, 26, 27, 31]. They share many commonalities, but differ in the following
important aspects:
1. Invariant semantics: Which invariants are expected to hold when?
2. Invariant restrictions: Which objects may invariants depend on?
3. Proof obligations: What proofs are required, and where?
4. Program restrictions: Which objects’ methods/fields may be called/updated?
5. Type systems: What syntactic information is used for reasoning?
6. Specification languages: What syntax is used to express invariants?
7. Verification logics: How are invariants proved?

These differences, together with the fact that most verification techniques
are not formally specified, complicate the comparison of verification techniques,
and hinder the understanding of why these techniques satisfy claimed properties
such as soundness. For these reasons, it is hard to decide which technique to
adopt, or to develop new sound techniques.

In this paper, we present a unified framework for verification techniques for
object invariants. This framework formalises verification techniques in terms of
seven parameters, which abstract away from differences pertaining to language
features (type system, specification language, and logics) and highlight char-
acteristics intrinsic to the techniques, thereby aiding comparisons. Subsets of
these parameters describe aspects applicable to all verification techniques; for
example, a generic definition of soundness is given in terms of two framework
parameters, expressivity is captured by three other parameters.

We concentrate on techniques that require invariants to hold in the pre-
state and post-state of a method execution (often referred to as visible states
[27]) while temporary violations between visible states are permitted. These
techniques constitute the vast majority of those described in the literature.

Contributions. The contributions of this paper are:
1. We present a unified formalism for object invariant verification techniques.
2. We identify conditions on the framework that guarantee soundness of a ver-

ification technique.
3. We separate type system concerns from verification strategy concerns.
4. We show how our framework describes some advanced verification techniques

for visible state invariants.
5. We prove soundness for a number of techniques, and, guided by our frame-

work, discover an unsoundness in one technique.
Our framework allows the extraction of comparable data from techniques that
were presented using different concepts, terminology and styles. Comparative
value judgements concerning the techniques are beyond the scope of our paper.

Outline. Sec. 2 gives an overview of our work, explaining the important con-
cepts. Sec. 3 formalises program and invariant semantics. Sec. 4 describes our
framework and defines soundness. Sec. 5 instantiates our framework with exist-
ing verification techniques. Sec. 6 presents sufficient conditions for a verification
technique to be sound, and states a general soundness theorem. Sec. 7 discusses
related work. Proofs and more details are in the companion report [8]. This paper
follows our FOOL paper [7], but provides more explanations and examples.

3

2 Example and Approach

Example. Consider a scenario, in which a Person holds an Account, and has a
salary . An Account has a balance, an interestRate and an associated DebitCard.
This example will be used throughout the paper. We give the code in Fig. 1.

class Account {
Person holder ;
DebitCard card;
int balance, interestRate ;

// invariant I1 : balance < 0 ==>
interestRate == 0;

// invariant I2 : card.acc == this;

void withdraw(int amount) {
balance −= amount;
if (balance < 0) {
interestRate = 0;
this .sendReport();

}
}

void sendReport()
{ holder . notify () ; }

}

class SavingsAccount
extends Account {

// invariant I3 : balance >= 0;
}

class Person {
Account account;
int salary ;

// invariant I4 :
// account.balance + salary > 0;

void spend(int amount)
{ account.withdraw(amount); }

void notify ()
{ ... }

}

class DebitCard {
Account acc;
int dailyCharges ;

// invariant I5 :
// dailyCharges <= acc.balance;

}

Fig. 1. An account example illustrating the main challenges for the verification of
object invariants. We assume that fields hold non-null values.

Account’s interestRate is required to be zero when the balance is negative (I1).
A further invariant (the two can be read as conjuncts of the full invariant for
the class) ensures that the DebitCard associated with an account has a consistent
reference back to the account (I2). A SavingsAccount is a special kind of Account,
whose balance must be positive (I3). Person’s invariant (I4) requires that the
sum of salary and account’s balance is positive. Finally, DebitCard’s invariant
(I5) requires dailyCharges not to exceed the balance of the associated account.
Thus, I2, I4, and I5 are multi-object invariants.

To illustrate the challenges faced by verification techniques, suppose that p
is an object of class Person, which holds the Account a with DebitCard d:

Call-backs: When p executes its method spend, this results in a call of withdraw
on a, which (via a call to sendReport) eventually calls back notify on p; the
call notify might reach p in a state where I4 does not hold.

4

Multi-object invariants: When a executes its method withdraw, it may tem-
porarily break its invariant I1, since its balance is debited before any corre-
sponding change is made to its interestRate . This violation is not important
according to the visible state semantics; the if statement immediately af-
terwards ensures that the invariant is restored before the next visible state.
However, by making an unrestricted reduction of the account balance, the
method potentially breaks the invariants of other objects as well. In partic-
ular, p’s invariant I4, and d’s invariant I5 may be broken.

Subclassing: Further to the previous point, if a is a SavingsAccount, then call-
ing the method withdraw may break the invariant I3, which was not neces-
sarily known during the verification of class Account.

These points are addressed in the literature by striking various trade-offs between
the differing aspects listed in the introduction.

Approach. Our framework uses seven parameters to capture the first four as-
pects in which verification techniques differ, i.e., invariant semantics, invariant
restrictions, proof obligations and program restrictions. To describe these pa-
rameters we use two abstract notions, which we call regions and properties. A
region (when interpreted semantically) describes a set of objects (e.g., those on
which a method may be called), while a property describes a set of invariants
(e.g., the invariants that have to be proven before a method call). We deal with
the aspects identified in the previous section as follows:

1. Invariant semantics: The property X describes the invariants expected to
hold in visible states. The property V describes the invariants vulnerable to
a given method, i.e., those which may be broken while the method executes.

2. Invariant restrictions: The property D describes the invariants that may
depend on a given heap location. This also characterises indirectly the loca-
tions an invariant may depend on.

3. Proof obligations: The properties B and E describe the invariants that must
be proven to hold before a method call and at the end of a method body,
respectively.

4. Program restrictions: The regions U and C describe the permitted receivers
for field updates and method calls, respectively.

5. Type systems: We parameterise our framework by the type system. We state
requirements on the type system, but leave abstract its concrete definition.
We require that types are formed of a region-class pair so that we can handle
types that express heap topologies (such as ownership types).

6. Specification languages: Rather than describing invariants concretely, we as-
sume a judgement that expresses that an object satisfies the invariant of a
class in a heap.

7. Verification logics: We express proof obligations via a special construct prvp,
which throws an exception if the invariants in property p cannot be proven,
and has an empty effect otherwise. We leave abstract how the actual proofs
are constructed and checked.

5

Fig. 2 illustrates the parameters of our framework by annotating the body of
the method withdraw. X may be assumed to hold in the pre- and post-states of
the method. Between these visible states, some object invariants may be broken
(so long as they fall within V), but X\V is known to hold throughout the method
body. Field updates and method calls are allowed if the receiver object (here,
this) is in U and C, respectively. Before a method call, B must be proven. At
the end of the method body, E must be proven. Finally, D (not shown in Fig. 2)
constrains the effects of field updates on invariants. Thus, assignments to balance
and interestRate affect at most D.

void withdraw(int amount) {

balance −= amount;

if (balance < 0) {

interestRate = 0;

this .sendReport();
}

}

assume X¾

check this in U¾

check this in U¾

check this in C¾
prove B

prove E¾
assume X¾

X \ V holds

?

6

Fig. 2. Role of framework parameters for method withdraw from Fig. 1.

The number of parameters reflects the variety of concepts used by verification
techniques, such as accessibility of fields, purity, helper methods, ownership, and
effect specifications. For instance, V would be redundant if all methods were to
re-establish the invariants they break; in such a setting, a method could break
invariants only through field updates, and V could be derived from U and D.
However, in general, methods may break but not re-establish invariants.

The seven parameters capture concepts explicitly or implicitly found in all
verification techniques, defined either through words [27, 14, 16, 31] or typing
rules [23]. For example, V is implicit in [27], but is crucial for their soundness
argument. X and V are explicit in [23], while U and C are implicitly expressed as
constraints in their typing rules. Subsets of these seven parameters characterise
verification technique concepts e.g., soundness (through X and V), expressiveness
(D, X and V), proof obligations (B and E).

3 Invariant Semantics

We formalise invariant semantics through an operational semantics, defining at
which execution points invariants are required to hold. In order to cater for
the different techniques, the semantics is parameterised by properties to express
proof obligations and which invariants are expected to hold. In this section,
we focus on the main ideas of our semantics and relegate the less interesting
definitions to App. A. We assume sets of identifiers for class names Cls, field

6

e ::= this (this) | x (variable) | null (null)
| new t (new object) | e.f (access) | e.f = e (assignment)
| e.m(e) (method call) | e prvp (proof annotat.)

er ::= . . . (as source exprs.) | v (value) | verfExc (verif exc.)
| fatalExc (fatal exc.) | σ ·er (nested call) | call er (launch)
| ret er (return)

Fig. 3. Source and runtime expression syntax.

names Fld, and method names Mthd, and use variables c ∈ Cls, f ∈ Fld and
m ∈ Mthd.

Runtime Structures. A runtime structure is a tuple consisting of a set of heaps
Hp, a set of addresses Adr, and a set of values Val = Adr ∪ {null}, using
variables h ∈ Hp, ι ∈ Adr, and v ∈ Val. A runtime structure provides the
following operations. The operation dom(h) represents the domain of the heap.
cls(h, ι) yields the class of the object at address ι. The operation fld(h, ι, f)
yields the value of a field f of the object at address ι. Finally, upd(h, ι, f, v)
yields the new heap after a field update, and new(h, ι, t) yields the heap and
address resulting from the creation of a new object of type t. We leave abstract
how these operations work, but require properties about their behaviour, for
instance that upd only modifies the corresponding field of the object at the
given address, and leaves the remaining heap unmodified. See Def. 9 in App. A
for details.

A stack frame σ ∈ Stk = Adr×Adr×Mthd×Cls is a tuple of a receiver
address, an argument address, a method identifier, and a class. The latter two
indicate the method currently being executed and the class where it is defined.

Regions, Properties and Types. A region r ∈ R is a syntactic representation
for a set of objects; a property p ∈ P is a syntactic representation for a set of
assertions about particular objects. It is crucial that our syntax is parametric
with the specific regions and properties; we use different regions and properties
to model different verification techniques.1

We define a type t ∈ Typ, as a pair of a region and a class. The region allows
us to cater for types that express the topology of the heap, without being specific
about the underlying type system.

Expressions. In Fig. 3, we define source expressions e ∈ Expr. In order to
simplify our presentation (but without loss of generality), we restrict methods
to always have exactly one argument. Besides the usual basic object-oriented
constructs, we include proof annotations e prvp. As we will see later, such a
proof annotation executes the expression e and then imposes a proof obligation
for the invariants characterised by the property p. To maintain generality, we
avoid being precise about the actual syntax and checking of proofs.

1 For example, in Universe types, rep and peer are regions, while in ownership types,
ownership parameters such as X, and also this , are regions (more in Sec. 5).

7

In Fig. 3, we also define runtime expressions er ∈ RExpr. A runtime ex-
pression is a source expression, a value, a nested call with its stack frame σ, an
exception, or a decorated runtime expression. A verification exception verfExc
indicates that a proof obligation failed. A fatal exception fatalExc indicates that
an expected invariant does not hold. Runtime expressions can be decorated with
call er and ret er to mark the beginning and end of a method call, respectively.

In Def. 10 (App. A), we define evaluation contexts, E[·], which describe con-
texts within one activation record and extend these to runtime contexts, F [·],
which also describe nested calls.

Programming Languages. We define a programming language as a tuple consist-
ing of a set Prg of programs, a runtime structure, a set of regions, and a set of
properties (see Def. 11 in App. A). Each Π ∈ Prg comes equipped with the fol-
lowing operations. F (c, f) yields the type of field f in class c as well as the class
in which f is declared (c or a superclass of c). M (c,m) yields the type signature
of method m in class c. B(c,m) yields the expression constituting the body of
method m in class c as well as the class in which m is declared. Moreover, there
are operators to denote subclasses and subtypes (<:), inclusion of regions (v),
and interpretation ([[·]]) of regions and properties.

The interpretation of a region produces a set of objects. We characterise each
invariant by an object-class pair, with the intended meaning that the invariant
specified in the class holds for the object.2 Therefore, the interpretation of a
property produces a set of object-class pairs, specifying all the invariants of
interest. Regions and properties are interpreted w.r.t. a heap, and from the
viewpoint of a “current object”; therefore, their definitions depend on heap and
address parameters: [[. . .]]h,ι.

Each program also comes with typing judgements Γ ` e : t and h ` er : t
for source and runtime expressions, respectively. An environment Γ ∈ Env is a
tuple of the class containing the current method, the method identifier, and the
type of the sole argument.

Finally, the judgement h |= ι, c expresses that in heap h, the object at address
ι satisfies the invariant declared in class c. We define that the judgement trivially
holds if the object is not allocated (ι 6∈ dom(h)) or is not an instance of c
(cls(h, ι) 6<: c). We say that the property p is valid in heap h w.r.t. address ι if
all invariants in [[p]]h,ι are satisfied. We denote validity of properties by h |= p, ι:

h |= p, ι ⇔ ∀(ι′, c) ∈ [[p]]h,ι. h |= ι′, c

Operational Semantics. The framework parameter X describes which invariants
are expected to hold at visible states. Given a program Π and a set of properties
Xc,m, each characterising the property that needs to hold at the beginning and
end of a method m of class c, the runtime semantics is the relation −→ ⊆
(RExpr×Hp)× (RExpr×Hp) defined in Fig. 4.

The first eight rules are standard for object-oriented languages. Note that
in rNew, a new object is created using the function new, which takes a type as

2 An object may have different invariants for each of the classes it belongs to [18].

8

(rThis)
σ = (ι, , ,)

σ ·this, h −→ σ ·ι, h

(rVar)
σ = (, v, ,)

σ ·x, h −→ σ ·v, h

(rNew)
σ = (ι, , ,) h′, ι′ = new(h, ι, t)

σ ·new t, h −→ σ ·ι′, h′

(rDer)
v = fld(h, ι, f)

ι.f, h −→ v, h

(rAss)
h′ = upd(h, ι, f, v)

ι.f = v, h −→ v, h′

(rCxtFrame)
er, h −→ e′r, h

′

σ ·er, h −→ σ ·e′r, h′

(rCall)
B(m, cls(h, ι)) = e, c σ = (ι, v, c,m)

ι.m(v), h −→ σ ·call e, h

(rCxtEval)
σ ·er, h −→ σ ·e′r, h′

σ ·E[er], h −→ σ ·E[e′r], h
′

(rLaunch)
σ=(ι, , c,m) h |=Xc,m, ι

σ ·call e, h −→ σ ·ret e, h

(rLaunchExc)
σ=(ι, , c,m) h 6|=Xc,m, ι

σ ·call e, h −→ σ ·fatalExc, h

(rFrame)
σ=(ι, , c,m) h |=Xc,m, ι

σ ·ret v, h −→ v, h

(rFrameExc)
σ=(ι, , c,m) h 6|=Xc,m, ι

σ ·ret v, h −→ fatalExc, h

(rPrf)
σ = (ι, , ,) h |= p, ι
σ ·v prvp, h −→ σ ·v, h

(rPrfExc)
σ = (ι, , ,) h 6|= p, ι

σ ·v prvp, h −→ σ ·verfExc, h
Fig. 4. Reduction rules of operational semantics.

parameter rather than a class, thereby making the semantics parametric w.r.t.
the type system: different type systems may use different regions and definitions
of new to describe heap-topological information. Similarly, upd and fld do not
fix a particular heap representation. Rule rCall describes method calls; it stores
the class in which the method body is defined in the new stack frame σ, and
introduces the “marker” call er at the beginning of the method body.

Our reduction rules abstract away from program verification and describe
only its effect. Thus, rLaunch, rLaunchExc, rFrame, and rFrameExc check whether
Xc,m is valid at the beginning and end of any execution of a method m defined in
class c, and generate a fatal exception, fatalExc, if the check fails. This represents
the visible state semantics discussed in the introduction. Proof obligations e prvp
are verified once e reduces to a value (rPrf and rPrfExc); if p is not found to be
valid, a verification exception verfExc is generated.

Verification using visible state semantics amounts to showing all proof obli-
gations in some program logic, based on the assumption that expected invariants
hold in visible states. Informally then, a specific verification technique described
in our framework is sound if it guarantees that a fatalExc is never encountered.
Verification technique soundness does allow verfExc to be generated, but this
will never happen in a correctly verified program. We give a formal definition of
soundness at the end of the next section.

This semantics allows us to be parametric w.r.t. the syntax of invariants and
the logic of proofs. We also define properties that permit us to be parametric
w.r.t. a sound type system (cf. Def. 15 in App. A). Thus, we can concentrate
entirely on verification concerns.

9

4 Verification Techniques

A verification technique is essentially a 7-tuple, where the components of the
tuple provide instantiations for the seven parameters of our framework. These
instantiations are expressed in terms of the regions and properties provided by
the programming language. To allow the instantiations to refer to the program
(for instance, to look up field declarations), we define a verification technique as
a mapping from programs to 7-tuples.

Definition 1 A verification technique V for a programming language is a map-
ping from programs into a tuple:

V : Prg → eXp×Vul×Dep×Pre×End×Upd×Cll

where

X ∈ eXp = Cls×Mthd → P V ∈ Vul = Cls×Mthd → P
D ∈ Dep = Cls → P B ∈ Pre = Cls×Mthd×R → P
E ∈ End = Cls×Mthd → P C ∈ Cll = Cls×Mthd×Cls → R
U ∈ Upd = Cls×Mthd×Cls×Mthd → R

To describe a verification technique applied to a program, we write the applica-
tion of the components to class, method names, etc., as Xc,m, Vc,m, Dc, Bc,m,r,
Ec,m, Uc,m,c′ , Cc,m,c′,m′ . The meaning of these components is:

Xc,m: the property expected to be valid at the beginning and end of the body of
method m in class c. The parameters c and m allow a verification technique
to expect different invariants in the visible states of different methods. For
instance, JML’s helper methods [17] do not expect any invariants to hold.

Vc,m: the property vulnerable to method m of class c, that is, the property
whose validity may be broken while control is inside m. The parameters c
and m allow a verification technique to require that invariants of certain
classes (for instance, c’s subclasses) are not vulnerable.

Dc: the property that may depend on fields declared in class c. The parameter
c can be used, for instance, to prevent invariants from depending on fields
declared in c’s superclasses [16, 27].

Bc,m,r: the property whose validity has to be proven before calling a method
on a receiver in region r from the execution of a method m in class c. The
parameters allow proof obligations to depend on the calling method and the
ownership relation between the caller and the callee.

Ec,m: the property whose validity has to be proven at the end of method m
in class c. The parameters allow a technique to require different proofs for
different methods, e.g., to exclude subclass invariants.

Uc,m,c′ : the region of allowed receivers for an update of a field in class c′, within
the body of method m in class c. The parameters allow a technique, for
instance, to prevent field updates within pure methods.

Cc,m,c′,m′ : the region of allowed receivers for a call to method m′ of class c′,
within the body of method m of class c. The parameters allow a technique
to permit calls depending on attributes (e.g., purity or effect specifications)
of the caller and the callee.

10

The class and method identifiers used as parameters to our components can
be extracted from an environment Γ or a stack frame σ in the obvious way.
Thus, for Γ =(c,m,) or for σ=(ι, , c,m), we use XΓ and Xσ as shorthands for
Xc,m; we also use BΓ,r and Bσ,r as shorthands for Bc,m,r.

Well-Verified Programs. The judgement Γ V̀ e expresses that expression e is
well-verified according to verification technique V . It is defined in Fig. 5.

(vs-null)

Γ V̀ null

(vs-var)

Γ V̀ x

(vs-this)

Γ V̀ this

(vs-new)

Γ V̀ new t

(vs-fld)
Γ V̀ e

Γ V̀ e.f

(vs-ass)
Γ ` e : r c′ F (c′, f) = , c
r v UΓ,c Γ V̀ e Γ V̀ e′

Γ V̀ e.f = e′

(vs-call)
Γ ` e : r c′ B(c′,m) = , c
r v CΓ,c,m Γ V̀ e Γ V̀ e′

Γ V̀ e.m(e′ prvBΓ,r)

(vs-class)

B(c,m) = e, c
M (c,m) = t, t′

}
⇒

{
e = e′ prvEc,m

c,m, t V̀ e′

V̀ c

Fig. 5. Well-verified source expressions and classes.

The first five rules express that literals, variable lookup, object creation, and
field lookup do not require proofs. The receiver of a field update must fall into
U (vs-ass). The receiver of a call must fall into C (vs-call). Moreover, we require
the proof of B before a call. Finally, a class is well-verified if the body of each
of its methods is well-verified and ends with a proof obligation for E (vs-class).
Note that we use the type judgement Γ ` e : t without defining it; the definition
is given by the underlying programming language, not by our framework.

Fig. 9 in App. A defines the judgement h V̀ er for verified runtime expres-
sions. The rules correspond to those from Fig. 5, with the addition of rules for
values and nested calls.

A program Π is well-verified w.r.t. V , denoted as V̀ Π, iff (1) all classes
are well-verified and (2) all class invariants respect the dependency restrictions
dictated by D. That is, the invariant of an object ι′ declared in a class c′ will be
preserved by an update of a field of an object of class c if it is not within Dc.

Definition 2 V̀ Π ⇔

(1) ∀c ∈ Π. V̀ c

(2) F (cls(h, ι), f) = , c, (ι′, c′) 6∈ [[Dc]]h,ι, h |= ι′, c′ ⇒ upd(h, ι, f, v) |= ι′, c′

Valid States. The properties X and X \ V characterise the invariants that are
expected to hold in the visible states and between visible states of the current
method execution, respectively. That is, they reflect the local knowledge of the
current method, but do not describe globally all the invariants that need to hold
in a given state.

11

For any state with heap h and execution stack σ, the function vi(σ, h) yields
the set of valid invariants, that is, invariants that are expected to hold :

vi(σ, h) =

{
∅ if σ = ε

(vi(σ1, h) ∪ [[Xσ]]h,σ)\[[Vσ]]h,σ if σ = σ1 ·σ

The call stack is empty at the beginning of program execution, at which point
we expect the heap to be empty. For each additional stack frame σ, the corre-
sponding method m may assume Xσ at the beginning of the call, therefore we
add [[Xσ]]h,σ to the valid invariants. The method may break Vσ during the call,
and so we remove [[Vσ]]h,σ from the valid invariants.

A state with heap h and stack σ is valid iff:

(1) σ is a valid stack, denoted by h V̀ σ (Def. 12 in App. A), and meaning that
the receivers of consecutive method calls are within the respective C regions.

(2) The valid invariants vi(σ, h) hold.
(3) If execution is in a visible state with σ as the topmost frame of σ, then the

expected invariants Xσ hold additionally.

These properties are formalised in Def. 3. A state is determined by a heap h
and a runtime expression er; the stack is extracted from er using function stack,
given by Def. 13 in App. A.

Definition 3 A state with heap h and runtime expression er is valid for a ver-
ification technique V , er |=V h, iff:

(1) h V̀ stack(er) (2) h |= vi(stack(er), h)

(3) er=F [σ ·call e] or er=F [σ ·ret v] ⇒ h |= Xσ, σ

Soundness. A verification technique is sound if verified programs only produce
valid states and do not throw fatal exceptions. More precisely, a verification
technique V is sound for a programming language PL iff for all well-formed
and verified programs Π ∈ PL, any well-typed and verified runtime expression
er executed in a valid state reduces to another verified expression e′r with a
resulting valid state. Note that a verified e′r contains no fatalExc (see Fig. 9).

Well-formedness of program Π is denoted by ẁf Π (Def. 14, App. A). Well-
typedness of runtime expression er is denoted by h ` er : t and required as part
of a sound type system in Def. 11, App. A. These requirement permits separation
of concerns, whereby we can formally define verification technique soundness in
isolation, assuming program well-formedness and a sound type system.

Definition 4 A verification technique V is sound for a programming language
PL iff for all programs Π ∈ PL:

ẁf Π, h ` er : , V̀ Π, er |=V h,
h V̀ er, er, h −→ e′r, h

′

}
⇒ e′r |=V h′, h′

V̀ e′r

5 Instantiations

In our earlier paper [7], we discuss six verification techniques from the literature
in terms of our framework, namely those by Poetzsch-Heffter [31], Huizing &

12

Kuiper [14], Leavens & Müller [16], Müller et al. [27], and Lu et al. [23]. In
this paper we concentrate on the techniques based on heap topologies [27, 23],
because those benefit most from the formalisation in our framework.

Müller et al. [27] present two techniques for multi-object invariants, called
ownership technique and visibility technique (OT and VT for short), which
use the hierarchic heap topology enforced by Universe types [6]. Their distinc-
tive features are: (1) Expected and vulnerable invariants are specified per class.
(2) Invariant restrictions take into account subclassing (thereby addressing the
subclass challenge). (3) Proof obligations are required before calls (thereby ad-
dressing the call-back challenge) and at the end of calls. (4) Program restrictions
are uniform for all methods3, and are based on the relative object placement in
the hierarchy.

Lu et al. [23] define Oval, a verification technique based on ownership types,
which support owner parameters for classes [5], thus permitting a more precise
description of the heap topology. The distinctive features of Oval are: (1) Ex-
pected and vulnerable invariants are specific to every method in every class
through the notion of contracts. (2) Invariant restrictions do not take subclass-
ing into account. (3) Proof obligations are only imposed at the end of calls.
(4) To address the call-back challenge, calls are subject to “subcontracting”, a
requirement that guarantees that the expected and vulnerable invariants of the
callee are within those of the caller.

OT, VT, and Oval are discussed in more detail in our companion report [8].
In the remainder of this section, we introduce these techniques and summarise
them in Fig. 6. We explain the notation from Fig. 6 informally, and define it
formally in the appendix. This section (without the appendix) gives an overall
intuition, aimed at the reader who is not interested in all of the formal details.

To sharpen our discussion w.r.t. structured heaps, we will be adding annota-
tions to the example from Fig. 1, to obtain a topology where the Person p owns
the Account a and the DebitCard d.

5.1 Instantiation for OT and VT

Universe types associate reference types with Universe modifiers, which specify
ownership relative to the current object. The modifier rep expresses that an
object is owned by the current object; peer expresses that an object has the
same owner as the current object; any expresses that an object may have any
owner. Fig. 7 shows the Universe modifiers for our example from Fig. 1, which
allow one to apply OT and VT.

To address the subclass challenge, OT and VT both forbid rep fields f and
g declared in different classes cf and cg of the same object o to reference the
same object. This subclass separation can be formalised in an ownership model
where each object is owned by an object-class pair (see [18] for details).

3 However, both OT and VT have special rules for pure (side-effect free) methods.
We ignore pure methods here, but refer the interested reader to [7].

13

Müller et al. (OT) Müller et al. (VT) Lu et al.(Oval)

Xc,m own ; rep+ own ; rep+ I ; rep∗

Vc,m super〈c〉 t own+ peer〈c〉 t own+ E ; own∗

Dc self〈c〉 t own+ peer〈c〉 t own+ self ; own∗

Bc,m,r
super〈c〉 if intrsPeer(r)
emp otherwise

peer〈c〉 if intrsPeer(r)
emp otherwise

emp

Ec,m super〈c〉 peer〈c〉 self if I=E
emp otherwise

Uc,m,c′ self peer
self if I=E
emp otherwise

Cc,m,c′,m′ rep〈c〉 t peer rep〈c〉 t peer
⊔
r, with SC(I,E,I′,E′,Or,c) r

Fig. 6. Components of verification techniques. For Oval, Or,c is the owner of r; we use
shorthands I = I(c,m), and E = E(c,m), and I′ = r ; I(c′,m′), and E′ = r ;E(c′,m′).

class Account {
peer DebitCard card;
any Person holder ;
...

}

class Person {
rep Account account;
...

}

class DebitCard {
peer Account acc;
...

}

Fig. 7. Universe modifiers for the Account example from Fig. 1.

Regions and Properties. For OT and VT, we define the sets of regions and
properties to be:

r ∈ R ::= emp | self | rep〈c〉 | peer | any | r t r
p ∈ P ::= emp | self〈c〉 | super〈c〉 | peer〈c〉 | rep | own | rep+| own+|p t p|p;p

In our framework, Universe modifiers intuitively correspond to regions, since they
describe areas of the heap. For example, peer describes all objects which share
the owner (object-class pair) with the current object. However, because of the
subclass separation described above, it is useful to employ richer regions of the
form rep〈c〉, describing all objects owned by the current object and class c. For
regions (and properties) we also include the “union” of two regions (properties).
The predicate intrsPeer(r) checks whether a region intersects the peer region.

For properties, self〈c〉 represents the singleton set containing a pair of the
current object with the class c. The property super〈c〉 represents the set of pairs
of the current object with all its classes that are superclasses of c. The prop-
erty peer〈c〉 represents all the objects (paired with their classes) that share the
owner with the current object, provided their class is visible in c. There are also
properties to describe the invariants of an object’s owned objects, its owner, its
transitively owned objects, and its transitive owners. A property of the form
p1;p2 denotes a composition of properties, which behaves similarly to function
composition when interpreted. The formal definitions of the interpretations of
these regions and properties can be found in App. B.

Ownership Technique. As shown in Fig. 6, OT requires that in visible states, all
objects owned by the owner of this must satisfy their invariants (X).

14

Invariants are allowed to depend on fields of the object itself (at the current
class), as in I1 in Fig. 1, and all its rep objects, as in I2. Other client invariants
such as I4 and I5) and subclass invariants that depend on inherited fields (such as
I3) are not permitted. Therefore, a field update potentially affects the invariants
of the modified object and of all its (transitive) owners (D).

A method may update fields of this (U). Since an updated field is declared
in the enclosing class or a superclass, the invariants potentially affected by the
update are those of this (for the enclosing class and its superclasses, which
addresses the subclass challenge) as well as the invariants of the (transitive)
owners of this (V).

OT handles multi-object invariants by allowing invariants to depend on fields
of owned objects (D). Therefore, methods may break the invariants of the tran-
sitive owners of this (V). For example, the invariant I2 of Person (Fig. 1) is legal
only because account is a rep field (Fig. 7). Account’s method withdraw need not
preserve Person’s invariant. This is reflected by the definition of E: only the in-
variants of this are proven at the end of the method, while those of the transitive
owners may remain broken; it is the responsibility of the owners to re-establish
them, which addresses the multi-object challenge. As an example, the method
spend has to re-establish Person’s invariant after the call to account.withdraw.

Since the invariants of the owners of this might not hold, OT disallows calls
on references other than rep and peer references (C). For instance, the call
holder . notify () in method sendReport is not permitted because holder is in an
ancestor ownership context.

The proof obligations for method calls (B) must cover those invariants ex-
pected by the callee that are vulnerable to the caller. This intersection contains
the invariant of the caller, if the caller and the callee are peers because the callee
might call back; it is otherwise empty (reps cannot callback their owners).

Visibility Technique. VT relaxes the restrictions of OT in two ways. First, it
permits invariants of a class c to depend on fields of peer objects, provided
that these invariants are visible in c (D). Thus, VT can handle multi-object
structures that are not organised hierarchically. For instance, in addition to
the invariants permitted by OT, VT permits invariants I4 and I5 in Fig. 1.
Visibility is transitive, thus, the invariant must also be visible wherever fields of
c are updated. Second, VT permits field updates on peers of this (U).

These relaxations make more invariants vulnerable. Therefore, V includes
additionally the invariants of the peers of this. This addition is also reflected in
the proof obligations before peer calls (B) and before the end of a method (E).
For instance, method withdraw must be proven to preserve the invariant of the
associated DebitCard, which does not in general succeed in our example.

5.2 Instantiation for Oval

Fig. 8 shows our example inOval using ownership parameters [5] to describe heap
topologies. The ownership parameter o denotes the owner of the current object;

15

p denotes the owner of o and specifies the position of holder in the hierarchy,
more precisely than the any modifier in Universe types.

class Account[o,p] {
DebitCard〈o〉 card;
Person〈p〉 holder;
...
void withdraw(int amount)〈this,this〉
{ ... }

void sendReport()〈bot,p〉
{ ... }

}

class Person[o] {
Account〈this〉 account;
...
void spend(int amount)〈this,this〉
{ account.withdraw(amount); }

void notify ()〈bot,top〉
{ ... }

}

Fig. 8. Ownership parameters and method contracts in Oval.

Method Contracts. Ownership parameters are also used to describe expected and
vulnerable invariants, which are specific to each method. Every Oval program
extends method signatures with a contract 〈I,E〉: the expected invariants at
visible states (X) are the invariants of the object characterised by I and all objects
transitively owned by this object; the vulnerable invariants (V) are the object
at E and its transitive owners. These properties are syntactically characterised
by Ls in the code (and Ks in typing rules), where:

L ::= top | bot | this |X K ::= L |K ; rep

and where X stands for the class’ owner parameters.4 An ordering L ¹ L′ is
defined, expressing that at runtime the object denoted by L will be transitively
owned by the object denoted by L′. This is used to formally specify various
restrictions in the technique, for example that for all method contracts, I ¹ E
must hold.

In class Account (Fig. 8), withdraw() expects the current object and the ob-
jects it transitively owns to be valid (I=this) and, during execution, this method
may invalidate the current object and its transitive owners (E=this). The con-
tract of sendReport() does not expect any objects to be valid at visible states
(I=bot) but may violate object p and its transitive owners (E=p).

Subcontracting. Call-backs are handled via subcontracting, which is defined using
the order L ¹ L′.To interpret Oval’s subcontracting in our framework, we use
SC(I,E, I′,E′,K), which holds iff:

I ≺ E ⇒ I′ ¹ I I = E ⇒ I′ ≺ I I′ ≺ E′ ⇒ E ¹ E′ I′ = E′ ⇒ E ¹ K

4 We discuss a slightly simplified version of Oval, where we omit the existential owner
parameter ‘∗’, and non-rep fields, a refinement whereby only the current object’s
owners depend on such fields. Both enhance the expressiveness of the language, but
are not central to our analysis.

16

where I, E characterise the caller, I′, E′ characterise the callee, and K stands for
the callee’s owner. The first two requirements ensure that the caller guarantees
the invariant expected by the callee. The other two conditions ensure that the
invariants vulnerable to the callee are also vulnerable to the caller. For instance,
the call holder . notify () in method sendReport satisfies subcontracting because
caller and callee do not expect any invariants, and the callee has no vulnerable
invariants. In particular, the receiver of a call may be owned by any of the owners
of the current receiver, provided that subcontracting is respected (C).

Given that I ¹ E for all well-formed methods, and that Bc,m,r =emp, the
first two requirements of subcontracting exactly give (S1), while the latter two
exactly give (S3) from Def. 5 in the next section – more in [8].

Regions and Properties. To express Oval in our framework, we define regions
and properties as follows (see App. B for their interpretations):

r ∈ R ::= emp | self | c〈K〉 | r t r p ∈ P ::= emp | self | K | K ; rep∗ | K ; own∗

As already stated, expected and vulnerable properties depend on the contract
of the method and express X as I ; rep∗ and V as E ; own∗ (see Fig. 6). Similarly
to OT, invariant dependencies are restricted to an object and the objects it
transitively owns (D). Therefore, I1 and I4 are legal, as well as I3, which depends
on an inherited field. Oval imposes a restriction on contracts that the expected
and vulnerable invariants of every method intersect at most at this. Consequently,
at the end of a method, one has to prove the invariant of the current receiver,
if I = E = this, and nothing otherwise (E). In the former case, the method is
allowed to update fields of its receiver; no updates are allowed otherwise (U).
Therefore, spend and withdraw are the only methods in our example that are
allowed to make field updates. Oval does not impose proof obligations on method
calls (B is empty), but addresses the call-back challenge through subcontracting.
Therefore, call-backs are safe because the callee cannot expect invariants that are
temporarily broken. With the existing contracts in Fig. 8, subcontracting permits
spend to call account.withdraw(), and withdraw to call this .sendReport(), and also
sendReport to call holder . notify (). The last two subcalls may potentially lead
to callbacks, but are safe because the contracts of sendReport and notify do not
expect the receiver to be in a valid state (I=bot).

Subclassing and Subcontracting. Oval also requires subcontracting between a
superclass method and an overriding subclass method. As we discuss later, this
does not guarantee soundness [22], and we found a counterexample (cf. Sec. 6).
Therefore, we require that a subclass expects no more than the superclass, and
vice versa for vulnerable invariants, and that if an expected invariant in the
superclass is vulnerable in the subclass, then it must also be expected in the
subclass:5

I′ ¹ I ¹ E ¹ E′ I = E′ ⇒ I′ = E′

5 Note, that we had erroneously omitted the latter requirement in [7].

17

where I, E, I′, E′ characterise the superclass, resp. subclass, method. This require-
ment gives exactly (S5) from Def. 5. It allows I′= I= E=E′ which is forbidden
in Oval. We refer to the verification technique with the above requirement for
method overriding as Oval′.

5.3 Summary

In spite of differences in, e.g., the underlying type systems and the logics used,
our framework allows us to extract comparable information about these three
techniques. We summarise here the commonalities and differences in the results.

1. Invariant semantics: In OT and VT, the invariants expected at the begin-
ning of withdraw are I1, I2, and I3 for the receiver, as well as I5 for the
associated DebitCard (which is a peer). For withdraw in Oval, I=this, there-
fore the expected invariants are I1, I2, and I3 for the receiver.

2. Invariant restrictions: Invariants I2 and I5 are illegal in OT and Oval, while
they are legal in VT (which allows invariants to depend on the fields of
peers). Conversely, I3 is illegal in OT and VT (it mentions a field from a
superclass), while it is legal in Oval.

3. Proof obligations: In OT, before the call to this .sendReport() and at the end
of the body of withdraw, we have to establish I1 and I2 for the receiver. In
addition to these, in VT we have to establish I5 for the debit card. In Oval,
the same invariants as for OT have to be proven, but only at the end of the
method because call-backs are handled through subcontracting. In addition,
I3 is required.6 In all three techniques, withdraw is permitted to leave the
invariant I4 of the owning Person object broken. It has to be re-established
by the calling Person method.

4. Program restrictions: OT and VT forbid the call holder . notify () (reps can-
not call their owners), while Oval allows it. On the other hand, if method
sendReport required an invariant of its receiver (for instance, to ensure that
holder is non-null), then Oval would prevent method withdraw from calling
it, even though the invariants of the receiver might hold at the time of the
call. The proof obligations before calls in OT and VT would make such a
call legal.

6 Well-Structured Verification Techniques

We now identify conditions on the components of a verification technique that are
sufficient for soundness, state a general soundness theorem, and discuss sound-
ness of the techniques presented in Sec. 5

Definition 5 A verification technique is well-structured if, for all programs in
the programming language:

6 This means that verification of a class requires knowledge of a subclass. The Oval
developers plan to solve this modularity problem by requiring that any inherited
method has to be re-verified in the subclass [22].

18

(S1) r v Cc,m,c′m′ ⇒ (r . Xc′,m′) \ (Xc,m \ Vc,m) ⊆ Bc,m,r

(S2) Vc,m ∩ Xc,m ⊆ Ec,m

(S3) Cc,m,c′,m′ . (Vc′,m′ \ Ec′,m′) ⊆ Vc,m

(S4) Uc,m,c′ . Dc′ ⊆ Vc,m

(S5) c′ <: c ⇒ Xc′,m ⊆ Xc,m ∧ Vc′,m\Ec′,m ⊆ Vc,m \ Ec,m

In the above, the set theoretic symbols have the obvious interpretation in the
domain of properties. For example (S2) is short for ∀h, ι : [[Vc,m]]h,ι∩([[Xc]]h,ι ⊆
[[Ec,m]]h,ι. We use viewpoint adaptation r . p, defined as:

[[r . p]]h,ι =
⋃

ι′∈[[r]]h,ι
[[p]]h,ι′

meaning that the interpretation of a viewpoint-adapted property r .p w.r.t. an
address ι is equal to the union of the interpretations of p w.r.t. each object in
the interpretation of r.

The first two conditions relate proof obligations with expected invariants.
(S1) ensures for a call within the permitted region that the expected invariants
of the callee (r . Xc′,m′) minus the invariants that hold throughout the calling
method (Xc,m \ Vc,m) are included in the proof obligation for the call (Bc,m,r).
(S2) ensures that the invariants that were broken during the execution of a
method, but which are required to hold again at the end of the method (Vc,m ∩
Xc,m) are included in the proof obligation at the end of the method (Ec,m).

The third and fourth condition ensure that invariants that are broken by a
method m of class c are actually in its vulnerable set. Condition (S3) deals with
calls and therefore uses viewpoint adaptation for call regions (Cc,m,c′,m′).
It restricts the invariants that may be broken by the callee method m′, but are
not re-established by the callee through E. These invariants must be included in
the vulnerable invariants of the caller. Condition (S4) ensures for field updates
within the permitted region that the invariants broken by updating a field of
class c′ are included in the vulnerable invariants of the enclosing method, m.

Finally, (S5) establishes conditions for subclasses. An overriding method m
in a subclass c may expect fewer invariants than the overridden m in superclass
c′. Moreover, the subclass method must leave less invariants broken than the
superclass method.

Note that the five soundness conditions presented here are slightly weaker
than those in the previous version of this work [7]. 7

Soundness Results. The five conditions from Def. 5 guarantee soundness of a
verification technique (Def. 4), provided that the programming language has a
sound type system (see Def. 15 in App. A).

7 Namely, (S3) and (S5) are weaker, and thus less restrictive, here. In [7], instead
of (S3) we required the stronger version Cc,m,c′,m′ . (Vc′,m′ \Xc′,m′)⊆Vc,m, and a
similarly stronger version for (S5). However, the two versions are equivalent when
Ec,m is the minimal set allowed by (S2), i.e., when Ec,m =Vc,m∩Xc,m for all c and
m. In all techniques presented here, Ec,m is minimal in the above sense.

19

Theorem 6 A well-structured verification technique, built on top of a program-
ming language with a sound type system, is sound.

This theorem is one of our main results. It reduces the complex task of proving
soundness of a verification technique to checking five fairly simple conditions.

Unsoundness of Oval. The original Oval proposal [23] is unsound because it
requires subcontracting for method overriding. As we said in the previous section,
subcontracting corresponds to our (S1) and (S3). This gives, for c′ <: c, the
requirements that Xc′,m′ ⊆ Xc,m\Vc,m, and Vc′,m′ \Ec′,m′ ⊆ Vc,m, which do
not imply (S5). We were alerted by this discrepancy, and using only the X, E
and V components (no type system properties, nor any other component), we
constructed the following counterexample.

class D[o] {

C1<this> c = new C2<this>();
void m() <this,o> { c.mm() }

}

class C1[o]{
void mm() <this,this> {...}

}
class C2[o] extends C1<o> {

void mm() <bot,this> {...}
}

The call c.mm() is checked using the contract of C1::mm; it expects the callee
to re-establish the invariant of the receiver (c), and is type correct. However,
the body of C2::mm may break the receiver’s invariants, but has no proof obli-
gations (EC2,mm = emp). Thus, the call c.mm() might break the invariants of
c, thus breaking the contract of m. The reason for this problem is, that the—
initially appealing—parallel between subcontracting and method overriding does
not hold. The authors confirmed our findings [22].

Soundness of the Presented Techniques.

Theorem 7 The verification techniques OT, VT, and Oval′ are well-structured.

Corollary 8 The verification techniques OT, VT, and Oval′ are sound.

Our proof of Corollary 8 confirmed soundness claims from the literature. We
found that the semi-formal arguments supporting the original soundness claims
at times missed crucial steps. For instance, the soundness proofs for OT and VT
[27] do not mention any condition relating to (S3) of Def. 5; in our formal proof,
(S3) was vital to determine what invariants still hold after a method returns.
We relegate proofs of the theorems to the companion report [8].

7 Related Work

Object invariants trace back to Hoare’s implementation invariants [12] and mon-
itor invariants [13]. They were popularised in object-oriented programming by
Meyer [24]. Their work, as well as other early work on object invariants [20, 21]

20

did not address the three challenges described in the introduction. Since they
were not formalised, it is difficult to understand the exact requirements and
soundness arguments (see [27] for a discussion). However, once the requirements
are clear, a formalisation within our framework seems straightforward.

The idea of regions and properties is inspired from type and effects systems
[33], which have been extremely widely applied, e.g., to support race-free pro-
grams and atomicity [10].

The verification techniques based on the Boogie methodology [1, 3, 18, 19] do
not use a visible state semantics. Instead, each method specifies in its precondi-
tion which invariants it requires. Extending our framework to Spec# requires two
changes. First, even though Spec# permits methods to specify explicitly which
invariants they require, the default is to require the invariants of its arguments
and all their peer objects. These defaults can be modelled in our framework by
allowing method-specific properties X. Second, Spec# checks invariants at the
end of expose blocks instead of the end of method bodies. Expose blocks can
easily be added to our formalism.

In separation logic [15, 32], object invariants are generally not as important
as in other verification techniques. Instead, predicates specifying consistency cri-
teria can be assumed/proven at any point in a program [28]. Abstract predicate
families [29] allow one to do so without violating abstraction and information
hiding. Parkinson and Bierman [30] show how to address the subclass challenge
with abstract predicates. Their work as well as Chin et al.’s [4] allow program-
mers to specify which invariants a method expects and preserves, and do not
require subclasses to maintain inherited invariants. The general predicates of
separation logic provide more flexibility than can be expressed by our frame-
work.

We know of only one technique based on visible states that cannot be di-
rectly expressed in our framework: Middelkoop et al. [26] use proof obligations
that refer to the heap of the pre-state of a method execution. To formalise this
technique, we have to generalise our proof obligations to take two properties;
one for the pre-state heap and one for the post-state heap. Since this generality
is not needed for any of the other techniques, we omitted a formal treatment in
this paper.

Some verification techniques exclude the pre- and post-states of so-called
helper methods from the visible states [16, 17]. Helper methods can easily be
expressed in our framework by choosing different parameters for helper and
non-helper methods. For instance in JML, X, B, and E are empty for helper
methods, because they neither assume nor have to preserve any invariants.

Once established, strong invariants [11] hold throughout program execution.
They are especially useful to reason about concurrency and security properties.
Our framework can model strong invariants, essentially by preventing them from
occurring in V.

Existing techniques for visible state invariants have only limited support for
object initialisation. Constructors are prevented from calling methods because
the callee method in general requires all invariants to hold, but the invariant of

21

the new object is not yet established. Fähndrich and Xia developed delayed types
[9] to control call-backs into objects that are being initialised. Delayed types
support strong invariants. Modelling these in our framework is future work.

8 Conclusions

We presented a framework that describes verification techniques for object in-
variants in terms of seven parameters and separates verification concerns from
those of the underlying type system. Our formalism is parametric w.r.t. the
type system of the programming language and the language used to describe
and to prove assumptions. We illustrated the generality of our framework by
instantiating it to describe three existing verification techniques. We identified
sufficient conditions on the framework parameters that guarantee soundness,
and we proved a universal soundness theorem. Our unified framework offers the
following important advantages:

1. It allows a simpler understanding and separation of verification concerns.
In particular, most of the aspects in which verification techniques differ are
distilled in terms of subsets of the parameters of our framework.

2. It facilitates comparisons since relationships between parameters can be ex-
pressed at an abstract level (e.g., criteria for well-structuredness in Def. 5),
and the interpretations of regions and properties as sets allow formal com-
parisons of techniques in terms of set operations.

3. It expedites the soundness analysis of verification techniques, since checking
the soundness conditions of Def. 5 is significantly simpler than developing
soundness proofs from scratch.

4. It captures the design space of sound visible states based verification tech-
niques.

We are currently using our framework in developing verification techniques for
static methods, and plan to use it to develop further, more flexible, techniques.

Acknowledgements We thank Rustan Leino, Matthew Parkinson, Ronald
Middelkoop, John Potter, Yi Lu, as well as the POPL, FOOL and ECOOP
referees for their feedback. This work was funded in part by the Information So-
ciety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project.

References

1. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification
of object-oriented programs with invariants. JOT, 3(6):27–56, 2004.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS, LNCS, pages 49–69. Springer-Verlag, 2005.

3. M. Barnett and D. Naumann. Friends need a bit more: Maintaining invariants
over shared State. In MPC, volume 3125 of LNCS, pages 54–84. Springer, 2004.

22

4. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Enhancing modular OO verifi-
cation with separation logic. In POPL, pages 87–99. ACM Press, 2008.

5. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. In OOPSLA, volume 33(10), pages 48–64. ACM Press, 1998.

6. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. JOT, 4(8):5–
32, October 2005.

7. S. Drossopoulou, A. Francalanza, and P. Müller. A unified framework for verifica-
tion techniques for object invariants. In FOOL, 2008.

8. S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summmers. A uni-
fied framework for verification techniques for object invariants — ecoop’08
full paper. Available from http://www.doc.ic.ac.uk/~ajs300m/papers/

frameworkFull.pdf, 2008.
9. M. Fähndrich and S. Xia. Establishing object invariants with delayed types. In

OOPSLA, pages 337–350. ACM Press, 2007.
10. C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity. In PLDI,

pages 338–349. ACM Press, 2003.
11. R. Hähnle and W. Mostowski. Verification of safety properties in the presence of

transactions. In CASSIS, volume 3362 of LNCS, pages 151–171, 2005.
12. C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica,

1:271–281, 1972.
13. C. A. R. Hoare. Monitors: an operating system structuring concept. Commun.

ACM, 17(10):549–557, 1974.
14. K. Huizing and R. Kuiper. Verification of object-oriented programs using class

invariants. In FASE, volume 1783 of LNCS, pages 208–221. Springer-Verlag, 2000.
15. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data

structures. In POPL, pages 14–26. ACM Press, 2001.
16. G. T. Leavens and P. Müller. Information hiding and visibility in interface speci-

fications. In ICSE, pages 385–395. IEEE, 2007.
17. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller,

J. Kiniry, and P. Chalin. JML Reference Manual. Department of Computer Science,
Iowa State University. Available from http://www.jmlspecs.org, February 2007.

18. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In ECOOP,
volume 3086 of LNCS, pages 491–516. Springer-Verlag, 2004.

19. K. R. M. Leino and W. Schulte. Using history invariants to verify observers. In
ESOP, volume 4421 of LNCS, pages 316–330. Springer-Verlag, 2007.

20. B. Liskov and J. Guttag. Abstraction and Specification in Program Development.
MIT Press, 1986.

21. B. Liskov and J. Wing. A behavioral notion of subtyping. ACM ToPLAS,
16(6):1811–1841, 1994.

22. Y. Lu and J. Potter. Soundness of Oval. Priv. Commun., June 2007.
23. Y. Lu, J. Potter, and J. Xue. Object Invariants and Effects. In ECOOP, volume

4609 of LNCS, pages 202–226. Springer-Verlag, 2007.
24. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.
25. B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
26. R. Middelkoop, C. Huizing, R. Kuiper, and E. J. Luit. Invariants for non-

hierarchical object structures. Electr. Notes Theor. Comput. Sci., 195:211–229,
2008.

27. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered
object structures. Science of Computer Programming, 62:253–286, 2006.

28. M. Parkinson. Class invariants: the end of the road? In International Workshop
on Aliasing, Confinement and Ownership, 2007.

23

(ad-null)

h V̀ σ ·null

(ad-addr)
ι ∈ dom(h)

h V̀ σ ·ι

(ad-new)

h V̀ σ ·new t

(ad-Var)

h V̀ σ ·x
(ad-this)

h V̀ σ ·this
(ad-verEx)

h V̀ F [verfExc]

(ad-ass)
h, σ ` er : r c′

F (c′, f) = , c
r v Uσ,c

h V̀ σ ·er
h V̀ σ ·e′r
h V̀ σ ·er.f = e′r

(ad-fld)
h V̀ σ ·er
h V̀ σ ·er.f

(ad-end)
h V̀ σ′ ·v

h V̀ σ ·σ′ ·ret v

(ad-call)
h, σ ` er : r c′

B(c′,m) = , c
r v Cσ,c,m

h V̀ σ ·er
h V̀ σ ·e′r
h V̀ σ ·er.m(e′r prvBσ,r)

(ad-call-2)
h, σ ` v : r c′

B(c′,m) = , c
h |= Bσ,r, σ
r v Cσ,c,m

h V̀ σ ·v
h V̀ σ ·v′
h V̀ σ ·v.m(v′)

(ad-start)
h V̀ σ′ ·e

h V̀ σ ·σ′ ·call e prvEσ′

(ad-frame)
h V̀ σ′ ·er

h V̀ σ ·σ′ ·ret er prvEσ′

Fig. 9. Well-verified runtime expressions.

29. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL, pages
247–258. ACM Press, 2005.

30. M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance. In
POPL, pages 75–86. ACM Press, 2008.

31. A. Poetzsch-Heffter. Specification and verification of object-oriented programs.
Habilitation thesis, Technical University of Munich, 1997.

32. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74. IEEE Computer Society, 2002.

33. J. P. Talpin and P. Jouvelot. The Type and Effect Discipline. In LICS, pages
162–173. IEEE Computer Society, 1992.

A Appendix—The Framework

Definition 9 A runtime structure is a tuple
RStruct = (Hp,Adr,',¹,dom, cls, fld,upd, new)

where Hp, and Adr are sets, and where
' ⊆ Hp×Hp ¹ ⊆ Hp×Hp dom : Hp → P(Adr)
cls : Hp×Adr ⇀ Cls new : Hp×Adr×Typ → Hp×Adr
fld : Hp×Adr× Fld ⇀ Val upd : Hp×Adr× Fld×Val → Hp

where Val=Adr ∪ {null} for some element null 6∈ Adr. For all h ∈ Hp, ι, ι′ ∈
Adr, v ∈ Val, we require:

(H1) ι ∈ dom(h) ⇒ ∃c.cls(h, ι) = c

(H2) h ' h′ ⇒ dom(h) = dom(h′), cls(h, ι) = cls(h′, ι)

(H3) h ¹ h′ ⇒ dom(h) ⊆ dom(h′), ∀ι ∈ dom(h).cls(h, ι) = cls(h′, ι)

(H4) upd(h, ι, f, v) = h′ ⇒
{
h ' h′ fld(h′, ι, f) = v,

ι 6= ι′ or f 6= f ′ ⇒ fld(h′, ι′, f ′) = fld(h, ι′, f ′)

(H5) new(h, ι, t) = h′, ι′ ⇒ h ¹ h′, ι′ ∈ dom(h′)\dom(h)

24

Definition 10 E[·] and F [·] are defined as follows:
E[·] ::= [·] | E[·].f | E[·].f = e | ι.f = E[·] | E[·].m(e) | ι.m(E[·]) | E[·] prvp | retE[·]
F [·] ::= [·] | F [·].f | F [·].f = e | ι.f = F [·] | F [·].m(e) | ι.m(F [·]) | F [·] prvp | σ ·F [·]

| callF [·] | retF [·]
Definition 11 A programming language is a tuple

PL = (Prg,RStruct,R,P)

where R and P are sets, and Prg is a set where every Π ∈ Prg is a tuple

Π =

(
F ,M ,B, <: (class definitions) v, [[·]] (inclusion and interpretations)
|=,` (invariant and type satisfaction)

)

with signatures:
F : Cls× Fld ⇀ Typ×Cls M : Cls×Mthd ⇀ Typ×Typ
B : Cls×Mthd ⇀ Expr×Cls
<: ⊆ Cls×Cls ∪ Typ×Typ v ⊆ R×R
[[·]] : R×Hp×Adr → P(Adr) [[·]] : P×Hp×Adr → P(Adr×Cls)
|= ⊆ Hp×Adr×Cls ` ⊆ (Env × Expr ∪ Hp×RExpr)×Typ

where every Π ∈ Prg must satisfy the constraints:
(P1) F (c, f) = t, c′ ⇒ c <: c′ (P2) B(c,m) = e, c′ ⇒ c <: c′

(P3) F (cls(h, ι), f) = t, ⇒ ∃v.fld(h, ι, f) = v (P4) r1 v r2 ⇒ [[r1]]h,ι ⊆ [[r2]]h,ι
(P5) [[r]]h,ι ⊆ dom(h) (P6) h ¹ h′ ⇒ [[p]]h,ι ⊆ [[p]]h′,ι
(P7) r c <: r′ c′ ⇒ r v r′, c <: c′

Definition 12 Stack σ is valid w.r.t. heap h in a verification technique V , de-
noted by h V̀ σ, iff:

σ=σ1 ·σ ·σ′ ·σ2 ⇒ σ′ = (ι, , c′,m), h, σ ` ι : r , c′ <: c, r v Cσ,c,m

Definition 13 The function stack : RExpr → Stk∗ yields the stack of a run-
time expression:

stack(E[er]) =

{
σ ·stack(e′r) if er = σ ·e′r
ε otherwise

Definition 14 For every program, the judgement:
ẁf : (Hp× Stk× Stk×R) ∪ (Env ×Hp× Stk) ∪ Prg is defined as:

– ẁf Π ⇔

(F1) M (c,m) = t, t′ ⇒ ∃e. B(c,m) = e, , c,m, t ` e : t′

(F2) c <: c′, F (c′, f) = t, c′′ ⇒ F (c, f) = t′, c′′, t′ = t

(F3) c <: c′, M (c,m) = t, t′, M (c′,m) = t′′, t′′′ ⇒ t = t′′, t′ = t′′′′

(F4) c <: c′, B(c′,m) = e′, c′′ ⇒ ∃c′′′. B(c,m) = e, c′′′, c′′′ <: c′′

– h, σ ẁf σ
′ : r ⇔ σ′ = (ι, , ,), h, σ ` ι : r

– Γ ẁf h, σ ⇔
{
∃c,m, t, ι, v. Γ = c,m, t, σ = (ι, v, c,m),

cls(h, ι) <: c, h, σ ` v : t

Definition 15 A programming language PL has a sound type system if all
programs Π ∈ PL satisfy the constraints:

(T1) Γ ` e : t, t <: t′ ⇒ Γ ` e : t′ (T2) h ` er : t, t <: t′ ⇒ h ` er : t′

(T3) h ` er : t, h ' h′ ⇒ h′ ` er : t (T4) h ` σ ·ι : c ⇒ cls(h, ι) <: c
(T5) h ` σ ·ι.m(v) : t ⇒ h ` σ ·ι : r c M (c,m) = t′, t, h ` σ ·v : t′

(T6) σ = (ι, , ,), h ` σ ·ι′ : r ⇒ ι′ ∈ [[r]]h,ι
(T7) Γ ` e : r c, Γ ` h, σ ⇒ h ` σ ·e : r c
(T8) ẁf Π, h, σ ` er : t er, h −→ e′r, h

′ ⇒ h′, σ ` e′r : t

25

B Appendix—The Instantiations

Müller et al. We assume an additional heap operation, which gives an object’s
owner: own : Hp×Adr → Adr×Cls.
Regions are interpreted as follows:

[[self]]h,ι = {ι} [[any]]h,ι = dom(h)

[[rep〈c〉]]h,ι =
{
ι′ | own(h, ι′) = ι c

}
[[emp]]h,ι = ∅

[[peer]]h,ι =
{
ι′ | own(h, ι′) = own(h, ι)

}
[[r1 t r2]]h,ι = [[r2]]h,ι ∪ [[r2]]h,ι

Properties are interpreted as follows:

[[self〈c〉]]h,ι = {(ι, c) | cls(h, ι) <: c} [[emp]]h,ι = ∅
[[peer〈c〉]]h,ι = {(ι′, c′) | own(h, ι′) = own(h, ι) ∧ vis(c′, c)}

[[rep]]h,ι = {(ι′, c′) | own(h, ι′)= ι } [[rep+]]h,ι = [[rep]]h,ι ∪ [[rep; rep+]]h,ι

[[own]]h,ι ={own(h, ι)} [[own+]]h,ι = [[own]]h,ι ∪ [[own; own+]]h,ι

[[super〈c〉]]h,ι = {(ι, c′) | c <: c′} [[p1;p2]]h,ι =
⋃

(ι′,c)∈[[p1]]h,ι
[[p2]]h,ι′

The predicate intrsPeer(r), is defined as:
intrsPeer(emp) = intrsPeer(rep〈c〉) = false
intrsPeer(self) = intrsPeer(peer) = intrsPeer(any) = true
intrsPeer(r1 t r2) = intrsPeer(r1) || intrsPeer(r2)

Lu et al. We interpret regions as follows:

[[emp]]h,ι =∅ [[self]]h,ι={ι} [[r t r′]]h,ι=[[r]]h,ι ∪ [[r′]]h,ι
[[c〈K〉]]h,ι =

{
ι′ | h ` ι′ : c〈ι〉,∀i. ιi ∈ [{Ki}]h,ι

}

As usual in ownership systems, h ` ι : c〈ι〉 describes that ι points to an object of
a subclass of c〈ι〉, while h ` ι′ ¹ ι expresses that ι′ is owned by ι, and h ` ι′ ¹∗ ι
is the transitive closure. We interpret properties as follows:

[[emp]]h,ι = [[top]]h,ι = [[bot]]h,ι = ∅ [[self]]h,ι = {(ι, c) | ...}
[[K]]h,ι =

{
(ι′, c) | ι′ ∈ [{K}]h.ι, cls(h, ι′) <: c

}

[[K;p]]h,ι =

{
all(h) K= top,p= rep∗ ∨K=bot,p=own∗⋃

(ι′,c)∈[[K]]h,ι
[[p]]h,ι′ p ∈ {rep∗, own∗}

[[rep∗]]h,ι =
{
ι′ | h ` ι′ ¹∗ ι

}
[[own∗]]h,ι =

{
ι′ | h ` ι ¹∗ ι′

}

[{X}]h,ι =
{
ιi | h ` ι : c〈ι〉, c has formal parameters X̄, X = Xi

}

The owner extraction function O is defined as:

Or,c =

K1, if r = c〈K〉
X1, if r = self, class c has formal parameters X̄.

⊥ otherwise

A Universe-Type-Based Verification Technique
for Mutable Static Fields and Methods

– Work in progress –

A. J. Summers(1), S. Drossopoulou(1), and P. Müller(2)
(1) Imperial College London, (2) Microsoft Research, Redmond

Abstract. We present a novel technique for the verification of invariants
in the setting of a Java-like language including static fields and methods.
The technique is a generalisation of the existing Visibility Technique of
Müller et al., which employs universe types.
In order to cater for mutable static fields, we extend this topology to
multiple trees (a forest), where each tree is rooted in a class. This allows
classes to naturally own object instances as their static fields. We describe
how to extend the Visibility Technique to this topology, incorporating
extra flexibility for the treatment of static methods.
We encounter a potential source of callbacks not present in the original
technique, and show how to overcome this using an effects system. To
allow flexible and modular verification, we refine our topology with a
hierarchy of ‘levels’.

1 Introduction

In this paper, we extend the Visibility Technique (VT for short) [10], a known
visible states verification technique based on universe types, to cater for static
fields and methods. When adding statics to verification, one needs to address
the following questions:

1. Where in the topology do static fields appear?
2. May instance methods update static fields?
3. May static invariants mention the fields of objects of their class?
4. May instance invariants mention static fields of their class, or of other classes?
5. Can static methods break invariants of objects, and if so, of which objects?
6. Can instance methods break static invariants, and if so, of which classes?
7. What proof obligations are necessary before a call to a static method?
8. What proof obligations are necessary before a call to an instance method?

In this paper, we explore these questions in the context of VT, and extend the
technique and heap topology to handle static fields. In the process, we encounter
a potential source of callbacks not present in VT, and devote much of this paper
to solving this problem. We develop an approach involving a combination of
effect annotations and refinements to the heap topology using levels. We then
extend the technique to allow more expressive invariants.

void meth(T1 x, T2 y) {

this . f =

x.g = ...

y.meth 2();

}

assume X¾

check this in U¾

check T1 in U¾

check T2 in C, prove B¾

prove E¾

X \ V holds

?

6

Fig. 1. Illustration of the use of the seven components.

In Sec. 2 we give the background to visible states verification techniques,
universe types, and VT. In Sec. 3 we discuss the first two questions from above.
In Sec. 4 we address the others, give a first attempt to an extension of VT,
and argue that it is sound. We refine our approach with improved calculations
of effects in Sec. 5, and with more powerful static class invariants in Sec. 6. In
Sec. 7 we conclude. Proof sketches can be found in the longer version of our
work, at http://www.doc.ic.ac.uk/~ajs300m/papers/staticsFull.pdf.

2 Background

Visible state verification techniques are defined around the notion of visible
states, which correspond to the beginning and the end of any method call. At
these visible states, the invariants of certain objects (exactly which objects de-
pends on the contents of the call stack, and on the particular technique) are
guaranteed to hold.

Several visible states techniques have been suggested, e.g., [12, 3, 10, 8], and
they share many commonalities. As suggested in [2], these commonalities, as
well as the differences, can be neatly distilled in terms of the following seven
components:
X invariants expected to hold in visible states.
V invariants vulnerable to a method, i.e., which may be broken while it executes.
D invariants that may depend on a given heap location1.
B invariants that must be proven to hold before a method call.
E invariants that must be proven to hold at the end of a method body.
U permitted receivers for field updates.
C permitted receivers for method calls.

The use of these components should be clear from their description above, but
is also shown in Fig. 1 through annotating a method meth1: Xmay be assumed to
hold in the pre- and post-states of the method. Between these visible states, some
object invariants may be broken, but X \V is guaranteed to hold. Field updates
and method calls are allowed if the receiver object is in U and C, respectively.
Before a method call, B must be proven. At the end of the method body, E must
be proven. Finally, assignments to this . f and x.g affect at most D.
1 This also characterises indirectly the locations an invariant may depend on.

In [2], five soundness conditions are presented, and it is proven that if these
conditions are satisfied, then the technique is sound (the expected invariants hold
at visible states). In this paper, we use the framework of [2] informally, since the
technique presented here does not quite fit the present formalism. However, the
soundness conditions still guided us in the design of our technique. Informally,
the five sufficient soundness conditions can be described as follows:

Definition 1 (Soundness Conditions).

1. Xm′ \ (Xm \ Vm) ⊆ B
When a legal (according to the technique, i.e., C) call is made to a method
m′ from a method m, all of the invariants which are both expected to hold
by the new method (Xm′), and are not currently known to hold in the calling
method (i.e., not within Xm\Vm), must be within the proof obligations made
before the method call (B).

2. V ∩ X ⊆ E
The invariants both expected (X) by and vulnerable to (V) a method, must
be within the proof obligations at the end of the method (E).

3. Vm′ \ Em′ ⊆ Vm

If a (legal) method call is made to a method m′ from a method m, any
invariants which are vulnerable to m′ and not reestablished by m′, must be
vulnerable to m.

4. D ⊆ V
Invariants depending on fields which may be legally modified (according to
the technique, i.e., U) by a method, are vulnerable to the method.

5. Xc′ ⊆ Xc and (Vc′ \ Ec′) ⊆ (Vc \ Ec)
If a method is overridden, then in the subclass version, no more invariants
may be expected or left broken than in the superclass version.

One such visible states technique, the Visibility Technique (VT), was devel-
oped on top of universe types [10] with the aim to guide the verification process,
and to guarantee modularity. Universe types [9] organise the heap into a tree
topology, in which each object is owned by another object, and where an object
o considers another object o′, as its peer if they have the same direct owner;
it considers it its rep if it is its direct owner2. The owner-as-modifier discipline
(hereafter OAM) restricts field updates and method calls, implying in particular
that the receivers of methods are only allowed to be reps or peers. Thus, at any
time in execution any receiver on the call stack3 is directly followed either by a
rep or a peer. In Fig. 2, note that calls may only go “down” or “sideways”.

The seven components from before have the following meaning for VT (we
simplify slightly with respect to visibility, and to the exact class whose invariant
we are considering):

2 We do not discuss any or readonly references, nor pure methods.
3 consisting of a sequence of activation records, each of which contains the then-current
receiver

Fig. 2. Ownership Tree and Control Flow; the
arrows show consecutive method calls and their
receivers; note that calls go only “down”, i.e.,
to reps, or “sideways”, i.e., to peers. The shaded
area indicates the area where objects satisfy their
invariants.

X invariants of objects (reflexively, transitively) owned by peers.
V invariants of all transitive owners of the current receiver, plus invariants of

peers of the current receiver.
D Invariants of peers and transitive owners may depend on the fields of an

object.
B If the callee is a peer of the current receiver, then the invariants of all peers

must be established. Otherwise, no proof obligations.
E the invariants of all visible peers.
U A field of an object may only be assigned to by the object’s owner, or by any

of its peers.
C A call is allowed if the callee is a peer or rep of the current receiver.

It can be shown that these parameters satisfy the soundness conditions of
Def. 1 [2]. In particular, X and V and the owner-as-modifier discipline, guarantee
that at any given time in execution, all objects are valid, except for those directly
owned by one of the receivers on the call stack, cf. Fig. 2.

3 Heap Topology for Static Fields

The fundamental premise of this work is that classes should be able to own
objects in the same way that other objects can. For example, if the behaviour of
a class depends on a static field (to manage object creation, etc.) then this static
field naturally ‘belongs’ to the inner workings of the class: its representation.
This gives a natural interpretation of static rep fields: they should be treated
analogously to instance rep fields, but with a class as their owner [7].

Thus, we extend our heap topology to include classes. Classes are the ‘roots’
of trees in our topology. As there are generally several classes in a program, our
topology should allow for several such trees; we work with a forest. Furthermore,
with classes acting as roots, there is no longer a need for an abstract root entity;
these class-rooted trees make up the entire picture. Note that there are no objects
at the ‘same level’ as the class entities, and classes do not have owners. In this
paper, we do not consider a notion of static peer fields.

We interpret static fields and methods as instance fields and methods of the
corresponding class object. That is, the class object (or class for short) is the
receiver for an execution of a static method. We expect that modifications to
static fields will be achieved by calling a static method of the class that declares

the field. In other words, static methods may update the fields of their receiver
class, just like instance methods in VT may update fields of their receiver object.

To summarise the ideas so far:

1. Each point in our heap topology corresponds to either an object or a class.
2. Objects (but not classes) each have exactly one owner (a class or an object).
3. The current receiver (on the stack) can be either an object or a class.

4 Basic Technique

Having defined a suitable heap topology, in this section we generalise VT to our
setting.

A key aspect of our technique is that we preserve the OAM property of VT.
In the following technique, control is only allowed to enter a tree in the heap
topology via the ‘root’; i.e., by calling a static method on the class at the root
of the tree. Instance method calls are restricted in the same way as in VT. This
implies the following property, which will be useful for our reasoning:

Proposition 1. A call stack (including the current method-call) always starts
with a class receiver. If an object o is a receiver on the call stack, then the most
recently-preceding class receiver on the call stack is the owner of the tree in which
o resides.

For the moment, we treat static invariants analogously to VT instance invari-
ants. Therefore, they can only mention expressions which start with the static
fields of the same class (since they have no peers).

How then, to handle static method calls? According to VT, a method call
is only allowed if the current receiver is either the owner or a peer of the callee
receiver. Since classes do not have either owners or peers, this would make static
methods impossible to call. We initially considered allowing arbitrary static
method calls. This immediately creates problems with callbacks; in particular,
how do we know the invariants of the new receiver hold when we make the call?
If our current call stack has already visited this class, we may have left invariants
broken.

We solve this problem by the following rule: a static method may only be
called on a class c, if c has not been a previous receiver on the call stack. However,
this rule is slightly too restrictive, since it unnecessarily prohibits a static method
of class c from calling another static method of class c. Our rule of thumb is:

A static method of c can be called if either c is the current receiver, or c
is not already a receiver on the call stack.

We are now in a position to define our technique in terms of the seven compo-
nents. Compared with the description of VT, we need to extend X to reflect which
invariants in other trees are expected, depending on the current call stack, and
C to reflect the special rules for static method calls. The other five parameters

are straightforward generalisations of those for VT. We highlight the differences
between our work and VT in italics, and point out the interpretation of these
components with regard to a static method call in footnotes.

X invariants of objects (reflexively, transitively) owned by peers, plus all invari-
ants in trees not currently visited on the call stack4.

V invariants of all transitive owners of the current receiver, plus invariants of
peers of the current receiver5.

D Invariants of peers and transitive owners may depend on the field of an object
or class6.

B If the callee is a peer of the current receiver, then the invariants of all peers
must be established. Otherwise, no proof obligations7.

E the invariants of all visible peers8.
U A field of an object or class may only be assigned to by its owner, or by any

of its peers9.
C A call to an instance method is allowed if the callee is a peer or rep of the

current receiver. A call to a static method m on class c is allowed if either
the current receiver is c itself, or else c is not on the current call stack.

Fig. 3. Calls stacks across several trees, invariants hold in shaded areas.

When considering only the tree of the current receiver, the rules are essen-
tially those of VT. However, the other trees either have none of their invariants
expected, or all of them, depending on whether or not they have been visited on
the current call stack. Furthermore, static methods are treated differently from

4 For a static method, this amounts to all the invariants of the current tree, plus each
unvisited tree.

5 The only invariants vulnerable to a call of a static method in class c are the static
invariants of c itself.

6 The only invariants which are allowed to depend on a static field declared in class c
are the static invariants of c.

7 If a static method is called on a class c which is both caller and callee (a ‘self’ call),
then the static invariants of c must be reestablished first.

8 For a static method, the invariants of the class.
9 A static field can only be assigned to by the class itself.

instance method calls, in that any call is permitted so long as the callee has not
been a receiver prior to the current one on the call stack.

Since C depends on the current call stack, it is not possible to statically
verify whether a method call will be legal. We therefore identify next a way of
conservatively approximating when method calls are legal.

Effect Annotations. For each class c and method m, we require a set of effects,
Effs(c,m), predicting which classes may have static methods called on them as
a result of calling m of c. Effs(c,m) is a (possibly empty) set of class names.
This is described by requirements 1-3 in Def. 2 below.

If, from within the body of a static method m of class c, we make a call to a
(static or instance) method m′ defined in class c′ (with a different receiver), and
if this method call may eventually result in a callback to c, then as a consequence
of Def. 2, we must have c ∈ Effs(c′,m′). Therefore, we can rule out dangerous
callbacks on c by insisting that any method which is called from a static method
of c does not contain c in its effects. This is described through the method
restriction in item 4 of Def. 2.

Definition 2 (Valid Effects and Method Restrictions).

1. Within the body of a method m of class c, if there is a call e.m′(. . .) and e
has static type c′, then Effs(c′,m′) ⊆ Effs(c,m).

2. Within the body of a method m of class c, if there is a call c′.m′(. . .) to a
static method m′ of class c′, then

(a) Effs(c′,m′) ⊆ Effs(c,m) and

(b) if m is an instance method or c 6= c′ 10, then c′ ∈ Effs(c,m).

3. If c′ is a subclass of c which overrides a method m, then Effs(c′,m) ⊆
Effs(c,m).

4. A static method m of c is legal, only if c /∈ Effs(c,m).

Soundness. We focus on the first item from Def. 1: the guarantee that when
a method call is made, the invariants expected in the new method will hold
(because they have been preserved, or proven before the call is made). We claim
that the other points can be easily established.

In the technique presented, all invariants may only depend on the fields of
peers (if any) and any objects transitively owned. Furthermore, fields may only
be modified by peers. Therefore, we have the following property:

Proposition 2 (Broken Invariants). If, at runtime, the invariants of an ob-
ject (or class) do not hold, then one of the receivers on the call stack (possibly
the current one) must be the object (or class) itself or one of its peers.

10 i.e., a static method always may call another static method from the same class.

To demonstrate that our restrictions using effects (Def. 2) are sufficient to
guarantee that our desired notion of valid method call (C) is always adhered
to, we need a deeper discussion of possible sequences of calls. We require some
notation to capture these sequences; we wish to track the receiver-method pairs
from (consecutive) fragments of the call stack. We write (c,m) for a call of static
method m on class c, and (o,m) for a call of instance method m on object o.
For any receivers r,r′ (which may each be either classes or objects), we write
(r,m) call (r′,m′) to denote a sequence of legal calls11 beginning with m and
ending with m′, i.e., method m on receiver r calls some method m1 on some
receiver r1, etc., which eventually leads to calling method m′ on receiver r′.
These sequences of calls correspond to consecutive regions of a call stack, in
which only the receiver and method information is retained. Note that such
sequences need not begin from the initial (class) receiver of a call stack. We
consider only call-sequences which are legal according to our technique.

We can now show how calls are restricted by the effect annotations:

Proposition 3 (Effects are Conservative).

1. For any call-sequence (o,m) call (c′,m′), if c is the dynamic class of o, then
c′ ∈ Effs(c,m).

2. For any call-sequence (c,m) call (c′,m′), if either c 6= c′ or any of the inter-
mediate receivers in call are not c, then c′ ∈ Effs(c,m).

3. Any call-sequence (c,m) call (c,m′) consists only of calls where c is the
receiver.

4. If o and o′ are peers, then any call-chain (o,m) call (o′,m′) features only
peers of o (and o′) as receivers.

Finally, we can prove that the invariants of a new receiver are always guaranteed
by the proof obligations in the technique:

Theorem 1.

1. If a static method m is to be called on c, then the proof obligations imposed
by the technique guarantee that c’s invariants hold.

2. If an instance method m is to be called on o, then the proof obligations
imposed by the technique guarantee that o’s invariants hold.

5 Refined Effects

The effects as described so far require annotations for all classes used in a pro-
gram. This requirement leads to a high annotation burden, compomises infor-
mation hiding, and limits the usability of the technique presented so far, as the
following example illustrates.

11 i.e., calls which are permissible according to Def. 2.

Example 1 (Method Overriding and Effects). Consider the String class of the
Java API. An implementation of this class can exploit that fact that strings are
immutable in Java, and so share instances of objects, by using static fields from
class String to maintain a ‘pool’ of used String instances. This would imply that
the constructor String calls String static methods, and would have String in its
effects. Consider now that we want to write a class which overrides the equals ()
method inherited from Object:

class MyClass extends Object{
boolean equals(Object o)
{
System.out. println (new String(”equals() called ”)) ;
return this == o;

}
}

Obviously, we need to have String∈ Effs(MyClass,equals), and because of
Def. 2 (item 3), we also need that String∈ Effs(Object,equals). But, it is unlikely
that this effect was predicted when the class Object was given effect annotations.
Therefore, this method definition would be illegal. This illustrates an annotation
problem (annotations may need recomputing), an information-hiding problem
(our code should not need to know how String is implemented), and a usability
problem (our technique forbids this method declaration).

To alleviate this burden, we introduce a refinement, whereby we group classes
in a linear hierarchy of ‘levels’, such that the code of lower-level classes does not
mention the higher-level classes12. The intuition is that library classes should
have been previously verified and belong on a ‘lower level’ than the classes which
the programmer is now writing. We express the levels through a function Lvl()
which maps classes to integers.

Definition 3 (Valid Levels). c mentions c′ ⇒ Lvl(c) ≥ Lvl(c′).

Because classes in the lower levels do not ‘know about’ classes in the upper
levels, it is impossible for them to make static calls on the classes in the upper
levels (cf. Fig. 4). Therefore, if we consider verification of the topmost level, then
when a call is made down to a lower level, the effect annotations are no longer
necessary. 13 Thus, we refine our effect annotation sets to only mention classes
on the same level as the method being verified. The new conditions on effects
(in which differences in comparison with Def. 2 are shown in roman font) are:

Definition 4 (Refined Effects).

12 For example, we could consider the Java API classes (e.g., Object and String) to be
on a lower level than our classes, and it would be naturally guaranteed that the API
classes do not mention ours.

13 To handle dynamic binding, we require the effects of methods that override methods
in lower levels to be empty and, thus, independent of the effects of the overridden
method.

1. If c′ is in Effs(c,m) then Lvl(c′) = Lvl(c).
2. Within the body of a method m of class c, if there is a call e.m′(. . .) and e

has static type c′, and Lvl(c) = Lvl(c′), then Effs(c′,m′) ⊆ Effs(c,m).
3. Within the body of a method m of class c, if there is a call c′.m′(. . .) to a

static method m′ of class c′ and Lvl(c) = Lvl(c′), then:
(a) Effs(c′,m′) ⊆ Effs(c,m)
(b) if m is either an instance method or c 6= c′, then c′ ∈ Effs(c,m).

4. If c′ is a subclass of c which overrides a method m, then
(a) If Lvl(c) = Lvl(c′), then Effs(c′,m) ⊆ Effs(c,m)
(b) If Lvl(c) < Lvl(c′), then Effs(c′,m) = ∅

5. A static method m of c is legal, only if c /∈ Effs(c,m).

The refined conditions given permit smaller effects sets for methods than
those of Def. 2. Considering the example at the start of the section, it is no
longer necessary (or indeed, allowed) for String to be in Effs(MyClass,equals).

x x

Fig. 4. Trees in one level. The current level may call into the lower level, but no
calls from the lower level may come into the current level. The level of an object is
determined by the class that transitively owns the object, not by the object’s type.

Soundness. As in the previous section, we focus on ensuring that the proof
obligations made before method calls are always sufficient to guarantee the ex-
pected invariants. Furthermore, we make the assumption here that we are only
interested in verifying the ‘top-level’; we assume that the classes on lower levels
have already been verified. This can be used to construct an inductive verifica-
tion of the entire class-structure, if needed, but also allows us a more-modular
approach; once the classes on a lower level have been verified, we need not repeat
the process if we are only adding classes to higher levels.

We write Lvl(o) for the level of an object, defined to be the level of the
class which transitively owns the object (i.e., the class which is the ‘root’ of the
appropriate tree). We can then show the following property:

Proposition 4 (Levels do not Increase through Calls).

1. If object o is transitively owned by class c, and if c′ is the dynamic class of
o, then Lvl(c) ≥ Lvl(c′).

2. For any call-sequence (c,m) call (o,m′), where call consists exclusively of
instance method calls, if c′ is the dynamic class of o, then Lvl(c) ≥ Lvl(c′).

3. For any sequence of calls (r1,m1) call (r2,m2), in which r1, r2 can be any
receivers, i.e., classes or objects, we have Lvl(r1) ≥ Lvl(r2).

4. For any call-sequence (c,m) call (c,m′), for all the intermediate receivers r,
we have Lvl(r) = Lvl(c).

This allows us to construct similar arguments to those in the previous section,
regarding soundness of method calls. Proposition 2 still holds for this refinement.
Proposition 3 holds in the restricted case that all receivers involved are from the
top-level. Theorem 1 then holds for all such receivers.

Remarks. We have allowed the organisation of levels to be very flexible, and
thus the effects and levels can be used to complement each other in various
different ways. Considering the extreme case of only one level, we return to our
original effects proposal from the previous section, in which all the work must
be done by the effects. On the other hand, if every class has a level to itself, we
essentially impose a total ordering on classes (which may not be possible within
our restrictions, for all programs), and no effect annotations are required at all.
In practice, we envisage that the levels will be used to separate away previously
written library classes from those being currently developed and verified.

6 Extended Technique

So far, static invariants cannot mention the fields of instance objects, and in-
stance invariants cannot mention static fields. It seems reasonable to question
whether this is enough. For example, if we wished to write a class MyThread in
which each instance object was assigned a unique identifier id, we might like an
invariant to express that distinct MyThread objects have different ids14. These
kinds of invariants involve both static fields and instance fields. It is desirable to
extend our technique to handle these more-expressive invariants. We could allow
instance invariants to mention static fields (of the same class, and perhaps su-
perclasses) in their invariants. The alternative approach is, instead of enriching
instance invariants, to enrich static invariants with the ability to quantify over
all instances of a class. In fact, any instance invariant mentioning static fields
can always be expressed as a static invariant by adding a quantified object to
replace all the mentions of this. However, enriching static invariants in this way
can be more general if we allow multiple quantifiers. If we wanted to express the
described invariant of MyThread, we could do so by the static invariant forall
MyThread o1 ,o2 : o1 6= o2 ⇒ o1 . id 6= o2 . id. However, it is not clear how to
express this at the level of an instance invariant (without quantifiers).

14 This is an actual invariant of the Thread class in the Java API.

We choose to add the ability to quantify over fields of instances in static
invariants. In static invariants of class c, if o is a quantified object variable, the
only fields of o which may be mentioned in the invariants are those declared in
class c. This restriction corresponds to the notion of subclass separation described
for VT (see [10] for details).

Remark. Although it is true that any instance invariant mentioning static fields
can be encoded as a static invariant quantifying over instances, this does not
quite mean the two are interchangeable with respect to our technique. The reason
is that although these invariants express the same properties, because one is an
invariant per object, and one is an invariant of the class, they will be expected
to hold at different times.

To work out exactly what changes were needed to our technique in order to
retain soundness, we were guided by the soundness conditions of [2] (cf. Def. 1).
Essentially, having made a change to our D parameter (by changing which in-
variants can depend on instance fields), the conditions presented there implied
the minimal necessary changes to the other parameters of our technique in or-
der to restore soundness. We highlight the differences between the new and the
previous technique through the use of italics.

X invariants of objects (reflexively, transitively) owned by peers, plus all invari-
ants in trees not currently visited on the call stack.

V invariants of all transitive owners of the current receiver, plus invariants of
peers of the current receiver, and their classes.

D Invariants of peers and transitive owners may depend on the field of an ob-
ject or class. Additionally, static invariants of the class in which the field is
declared.

B Before making a method call, the invariants of the classes of all of the peers of
the current receiver must be established. Furthermore, if the callee is a peer
of the current receiver, then the invariants of all peers must be established.

E the invariants of all visible peers, and their classes.
U A field of an object (or class) may only be assigned to by its owner, or by any

of its peers.
C A call to an instance method is allowed if the callee is a peer or rep of the

current receiver. A call to a static method m on class c is allowed if either
the current receiver is c itself, or else c is not on the current call stack.

Soundness. Informally, the soundness of this extended technique follows from
the soundness of the previously-presented versions, as follows:

Proposition 2 no longer holds. Namely, because of the extended language
of invariants in this new version of our technique, it is possible for many more
methods to cause such invariants to break. However, our technique does not allow
these invariants to remain broken in any more visible states than was previously
allowed. Essentially, any invariants which are broken due to the quantification
over instances now possible, will always be reestablished at the next visible state
(either the end of the method call, or before the next method call; whichever is

the sooner). This is reflected in our B and E defined above. Therefore, although
Proposition 2 does not hold, Theorem 1 can still be proved, essentially because
enough extra proof obligations are imposed before a method call takes place.

7 Conclusions, Related Work, and Future Work

We have outlined a verification technique based on VT, catering for static fields,
methods, and invariants. In the process, we extended the usual heap topology
of ownership types, and tackled potential callbacks through a combination of
effects, levels, and the OAM discipline.

Universe types as implemented in JML [5] require static fields to be readonly.
JML’s static invariants may only refer to static fields, while instance invariants
may refer to both static and instance fields [6, Sec. 8.2]. In JML and in our work,
both instance and static invariants are supposed to hold in visible states [10]. In
JML’s universe types, static methods are executed relative to the context of the
object who called the static method. This allows one to implement static factory
methods, which create new objects in the context of their caller. We can extend
our approach to support factory methods by incorporating ownership transfer
[11], allowing a method to create a new object, but to postpone the decision of
assigning it an owner.

In [7], Leino and Müller extend the Boogie methodology [1] to static invari-
ants: static fields may be reps; class invariants may mention static rep fields and
also quantify over objects of their class. The callback problem is solved by mak-
ing explicit the state in which static invariants may be assumed to hold, and
by enclosing expressions that potentially break the static invariant of a class in
expose blocks. In order to support abstraction in method specifications, a valid-
ity ordering is used to allow a class to implicitly expect the static invariants of
‘smaller’ classes. This issue is similar to one of the motivations for introducing
our levels. The validity ordering, however, has the side-effect for static initiali-
sation that subclasses be initialised before superclasses.

In Jacobs et al.’s work [4], Spec# annotations are suggested to cater for local
reasoning in the presence of multithreading. Again, static fields may be reps,
and static invariants may depend on the (transitively) owned objects. Both our
system and theirs need to address potential circularities: ours in order to avoid
visiting classes in an inconsistent state, and [4] in order to prevent deadlocks.
They require a partial ordering of locks, which, in a way, corresponds to our
levels. Two locks on the ‘same level’ are not allowed to be consecutively acquired.
In contrast, we permit method calls between classes on the same level, if the
effects allow it. Our work may be seen as the visible-states-based counterpart of
[4, 7].

We have not discussed static initialisation in this paper. In brief, we expect to
be able to incorporate the Java semantics for static initialisation. In terms of our
topology, initialisation is best modelled by considering that the tree owned by a
class comes into existence at the moment static initialisation of the class begins
(and is initially empty, apart from the owning class). Static initialisers may

assume all of the invariants of lower levels, and no others (since the restrictions on
method calls are not respected by the execution of static initialisers). Exploring
these issues in more detail will be the subject of future work. We also plan
to complete the formal presentation of our work, and to study class visibility,
modularity, readonly fields, pure methods, and factory methods.

Acknowledgements. This paper has been greatly improved by comments and
generous feedback from Adrian Francalanza and the (anonymous) FTfJP review-
ers. We are also grateful to Nick Cameron, Werner Dietl, and Jayshan Raghu-
nandan for discussions on static methods and verification. This work was funded
in part by the IST-2005-015905 MOBIUS project.

References

1. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In FMCO, LNCS. Springer,
2005.

2. S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A unified frame-
work for verification techniques for object invariants. In ECOOP, 2008.

3. K. Huizing and R. Kuiper. Verification of object-oriented programs using class
invariants. In FASE, volume 1783 of LNCS, pages 208–221. Springer, 2000.

4. B. Jacobs, J. Smans, F. Piessens, and W. Schulte. A simple sequential reasoning
approach for sound modular verification of mainstream multithreaded programs.
Electronic Notes on Theoretical Computer Science special issue on Thread Verifi-
cation (TV06),, 174:23–47, 2007.

5. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller,
J. Kiniry, and P. Chalin. JML Reference Manual—section on Universe annota-
tions, February 2007. www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_

18.html#SEC205.
6. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller,

J. Kiniry, and P. Chalin. JML Reference Manual. Available from http://www.

jmlspecs.org, May 2008.
7. K. Rustan M. Leino and Peter Müller. Modular verification of static class invari-

ants. In Formal Methods, 2005.
8. Y. Lu, J. Potter, and J. Xue. Object Invariants and Effects. In ECOOP, volume

4609 of LNCS, pages 202–226. Springer, 2007.
9. P. Müller. Modular Specification and Verification of Object-Oriented Programs,

volume 2262 of LNCS. Springer, 2002.
10. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered

object structures. Science of Computer Programming, 62:253–286, 2006.
11. P. Müller and A. Rudich. Ownership transfer in Universe Types. In Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA), pages 461–478.
ACM, 2007.

12. A. Poetzsch-Heffter. Specification and verification of object-oriented programs.
Habilitation thesis, Technical University of Munich, 1997.

Checking well-formedness of pure-method
specifications

Arsenii Rudich1, Ádám Darvas1, and Peter Müller2

1 ETH Zurich, Switzerland, {arsenii.rudich,adam.darvas}@inf.ethz.ch
2 Microsoft Research, USA, mueller@microsoft.com

Abstract. Contract languages such as JML and Spec# specify invari-
ants and pre- and postconditions using side-effect free expressions of the
programming language, in particular, pure methods. For such contracts
to be meaningful, they must be well-formed: First, they must respect the
partiality of operations, for instance, the preconditions of pure methods
used in the contract. Second, they must enable a consistent encoding of
pure methods in a program logic, which requires that their specifications
are satisfiable and that recursive specifications are well-founded.
This paper presents a technique to check well-formedness of contracts.
We give proof obligations that are sufficient to guarantee the existence
of a model for the specification of pure methods. We improve over earlier
work by providing a systematic solution including a soundness result and
by supporting more forms of recursive specifications. Our technique has
been implemented in the Spec# programming system.

1 Introduction

Contract languages such as the Java Modeling Language (JML) [21] and Spec# [2]
specify invariants and pre- and postconditions using side-effect free expressions
of the programming language. While contract languages are natural for pro-
grammers, they pose various challenges when contracts are encoded in the logic
of a program verifier or theorem prover, especially when contracts use pure
(side-effect free) methods [13]. This paper addresses two challenges related to
pure-method specifications.

The first challenge is how to ensure that a specification is well-defined, that is,
that all partial operations are applied within their domain. For instance method
calls are well-defined only for non-null receivers and when the precondition of the
method is satisfied. This challenge can be solved by encoding partial functions
as under-specified total functions [15]. However, it has been argued that such
an encoding is counter-intuitive for programmers, is not well-suited for runtime
assertion checking, and assigns meaning to bogus contracts instead of having
them rejected by a verifier [8]. Another solution is the use of 3-valued logic, such
as LPF [3]. However, 3-valued logic is typically not supported by the theorem
provers that are used in program verifiers. We present a technique based on 2-
valued logic to check whether a specification satisfies all partiality constraints.
If the check fails, the specification is rejected.

interface Sequence {

[Ghost] int Length;

invariant Length >= 0;

invariant IsEmpty() ==> Length == 0;

invariant !IsEmpty() ==> Length == Rest().Length + 1;

[Pure][Measure=Length] int Count(Object c)

requires !IsEmpty();

ensures result >= 0;

ensures result == (GetFirst() == c ? 1 : 0) +

(Rest().IsEmpty() ? 0 : Rest().Count(c));

[Pure] bool IsEmpty();

[Pure] Object GetFirst()

requires !IsEmpty();

[Pure] Sequence Rest()

requires !IsEmpty();

ensures result != null;

// other methods and specifications omitted

}

Fig. 1. Specification of interface Sequence. We use a notation similar to Spec#, which
is an extension of C#. The Pure attribute marks a method to be side-effect free;
pre- and postconditions are attached to methods by requires and ensures clauses,
respectively. Invariants are specified in invariant clauses; in postconditions, result
denotes the return value of methods. User-specified recursion measures are given by
the Measure attribute. Fields marked with the Ghost attribute are specification-only.

The second challenge is how to ensure that a specification is consistent. In
order to reason about contracts that contain pure-method calls, pure methods
must be encoded in the logic of the program verifier. This is typically done by
introducing an uninterpreted function symbol for each pure method m, whose
properties are axiomatized based on m’s contract and object invariants [10, 13].
A specification is consistent if this axiomatization is free from contradictions.
Consistency is crucial for soundness. We present a technique to check consistency
by showing that the contracts of pure methods are satisfiable and well-founded
if they are recursive. If the consistency check fails, the specification is rejected.

An inconsistent specification of a methodm is not necessarily detected during
the verification of m’s implementation [13]: (1) m might be abstract; (2) partial
correctness logics allow one to verify m w.r.t. an unsatisfiable specification if m’s
implementation does not terminate; (3) any implementation could be trivially
verified based on inconsistent axioms stemming from inconsistent pure-method
specifications; this is especially true for recursion, when the axiom for m is
needed to verify its implementation. These reasons justify the need for verifying
consistency of specifications independently of implementations.

We illustrate these challenges by the interface Sequence in Fig. 1. It contains
pure methods to query whether the sequence is empty, and to get the first element
and the rest of the sequence. Method Count returns the number of occurrences
of its parameter in the sequence. The interface contains the specification-only
ghost field Length, which represents the length of the sequence. The interface is
equipped with method specifications and invariants specifying Length.

We call a specification well-formed if it is well-defined and consistent. The
main difficulty in the checking of well-formedness lies in the subtle dependencies
between the specification elements. For instance, to be able to show that the ex-
pression Rest().Count(c) in Count’s postcondition is well-defined, the guarding
condition !Rest().IsEmpty(), the precondition of Count, and the contract of
Rest are needed. These specification elements together allow one to conclude
that the receiver is not null and that the preconditions of Rest and Count are
satisfied. That is, we need the specification of (axioms for) some pure methods
to prove the well-definedness of other pure methods.

The second challenge is illustrated by the specification of method Count. Con-
sistency requires that there actually is a result value for each call to Count. This
would not be the case, for instance, if the first postcondition required result
to be strictly positive. Since the specification of Count is recursive, proving the
existence of a result value relies on the specification of Count. Using this spec-
ification is sound since the recursion in Count’s specification is well-founded:
the first and third invariant, and the precondition of Count guarantee that the
sequence is finite, and the guarding condition together with the precondition of
Count and the third invariant guarantees that we recurse on a shorter sequence.
Again, we have a subtle interaction between specifications: proving the consis-
tency of a pure method makes use of the specification of this method as well as
invariants and the specification of the methods mentioned in these invariants.

These examples demonstrate that generating the appropriate proof obliga-
tions to check well-formedness is challenging. A useful checker must permit de-
pendencies between specification elements, but prevent circular reasoning.

Approach and contributions. We show well-formedness of specifications by
posing proof obligations to ensure: (1) that partial operations are applied within
their domains, (2) the existence of a possible result value for each pure method,
and (3) that recursive specifications are well-founded. In order to deal with
dependencies between pure methods, we determine a dependency graph, which
we process bottom-up. Thereby, one can use the properties of a method m to
prove the proof obligations for the methods using m.

To deal with partiality, we interpret specifications in 3-valued logic. However,
we want to support standard theorem provers, which typically use 2-valued logic
and total functions [22, 14]. Therefore, we express the proof obligations in 2-
valued logic by applying the ∆ formula transformer [17] to the specification
expressions. We proved the following soundness result: If all proof obligations
for the pure methods of a program are proved then there is a partial model for
the axiomatization of these pure methods. In other words, we guarantee that
the partiality constraints are satisfied and the axiomatization is consistent.

Our approach differs from existing solutions for theorem provers [11, 22],
where consistency is typically enforced by restricting specifications to conser-
vative extensions, but no checks are performed for axioms. Since specifications
of pure methods are axiomatic, the approach of conservative extensions is not
applicable to contract languages. Moreover, theorem provers require the user
to resolve dependencies by ordering the elements of a theory appropriately. We
determine this order automatically using a dependency graph.

Our approach improves on existing solutions for program verifiers in three
ways. First, it supports (mutually) recursive specifications, whereas in previous
work recursive specifications are severely restricted [13, 12]. Second, our approach
allows us to use the specification of one method to prove well-formedness of
another, which is needed in many practical examples. Such dependencies are not
discussed in previous work [9, 13] and are not supported by program verifiers
that perform consistency checks, such as Spec#. Neglecting dependencies leads
to the rejection of well-formed specifications. Third, we prove consistency for the
axiomatization of pure methods; such a proof is either missing in earlier work
[9, 12] or only presented for a very restricted setting [13].

For simplicity, we consider pure methods to be strongly-pure. That is, pure
methods may not modify the heap in any way. An extension to weakly-pure
methods [13], which may allocate and initialize objects, is possible.

Outline. Sec. 2 defines well-formedness of pure-method specifications. We present
sufficient proof obligations to guarantee the existence of a model in Sec. 3. We
discuss how our technique can be applied with automatic theorem provers in
Sec. 4. We summarize related work in Sec. 5 and offer conclusions in Sec. 6.

2 Well-formedness

In this section, we define the well-formedness criteria for the specifications of
pure methods. Even though some criteria such as partiality also apply to non-
pure methods, we focus on pure methods in the following.

Preliminaries. We assume a set Heap of heaps with the usual properties. For
simplicity, we assume that a program consists of exactly one class; a generaliza-
tion to several classes and subclassing is possible.

Since there is a one-to-one mapping between pure methods and the cor-
responding uninterpreted function symbols, we can state the well-formedness
criteria directly on the function symbols. In particular, we say “the specifi-
cation of a function f” to abbreviate “the specification of the pure method
encoded by function f”. We assume a signature with the function symbols
F := {f1, f2, , . . . , fn}, which correspond to the pure methods of a program.
For simplicity we assume pure methods to have exactly one explicit parameter.
Thus, all functions in F are ternary with parameters for the heap (h), receiver
object (o), and explicit parameter (p). We assume that all formulas and terms
are well-typed.

We define a specification of F as Spec := 〈Pre,Post, INV〉, where:

– Pre maps each fi ∈ F to a formula. We denote Pre(fi) as Prefi . Due to
the syntactic structure of preconditions, the only free variables in Prefi are
h, o, and p.

– Post maps each fi ∈ F to a formula. We denote Post(fi) as Postfi . Due to
the syntactic structure of postconditions, the only free variables in Postfi
are h, o, p, and the result variable res. Since we assume pure methods to be
strongly-pure, one heap variable is enough to capture the heap before and
after the method execution.

– INV is a set of formulas {Inv1, Inv2, . . . , Invm}. Due to the syntactic struc-
ture of invariants, the only free variables in Invi ∈ INV are the heap h and
the object o to which the invariant is applied.
We use SysInv := ∀ o ∈ h.∧m

i=1 Invi to denote the conjunction of all invari-
ants for all allocated objects, where o ∈ h expresses that a reference o refers
to an allocated object in heap h. Note that SysInv is an open formula with
free variable h.

Structures and interpretations. To define the interpretation of specifica-
tions, we use a structure M := 〈Heap,R, I〉, where R is the set of references
and I is an interpretation function for the specification of a function f ∈ F:
I(f) : Heap × R × R → R. This structure can be trivially extended to other
sorts like integer or boolean.

For a formula ϕ, we define the interpretation in total structures [ϕ]2Me in the
standard way. Here, e is a variable assignment that maps the free variables of ϕ
to values. For the interpretation in partial structures [ϕ]3Me, we follow Berezin
et al. [5]: intuitively, the interpretation of a function is defined if and only if the
interpretations of all parameters are defined and the vector of parameters belongs
to the function domain. The interpretation of logical operators and quantifiers
is defined according to Kleene logic [20].

A total interpretation maps a formula to a value in Bool2 := {T,F}, while
a partial interpretation maps a formula to a value in Bool3 := {T,F,⊥}. A
partial structure M can be extended to a total structure M̂ by defining values
of functions outside of their domains by arbitrary values. To check whether or
not a value in Bool3 is ⊥ we use the following function:

wd : Bool3 → Bool2

wd(x) :=

{
T , if x ∈ {T,F}
F , if x = ⊥

Well-formedness criteria. A specification Spec is well-formed (denoted by
|= Spec) if there exists a partial model M for the specification. A structure M
is a partial model for specification Spec, denoted by M |= Spec, if it satisfies
the following four criteria:

1. Invariants are never interpreted as ⊥, that is, for each heap ∈ Heap:

wd([SysInv]3Me) holds

where e := [h → heap].
2. Preconditions are never interpreted as ⊥ in heaps that satisfy the invariants

of all allocated objects, that is, for each f ∈ F, heap ∈ Heap, this ∈ heap,
and par ∈ heap:

if [SysInv]3Me holds, then wd([Pref]
3
Me) holds

where e := [h → heap, o → this, p → par].
3. The values of the parameters belong to the domain of the interpretation

of function symbols, provided that the heap satisfies the invariants and the
precondition holds. That is, for each f ∈ F, heap ∈ Heap, this ∈ heap,
and par ∈ heap:

if [SysInv]3Me and [Pref]
3
Me hold,

then 〈heap, this,par〉 ∈ dom(I(f)) holds

where e := [h → heap, o → this, p → par].
4. Postconditions are never interpreted as ⊥ for any result, and the interpreta-

tion of function f as result value satisfies the postcondition, provided that
the heap satisfies the invariants and the precondition holds. That is, for each
f ∈ F, heap ∈ Heap, this ∈ heap, and par ∈ heap:

if [SysInv]3Me and [Pref]
3
Me hold,

then for each result ∈ heap wd([Postf]
3
Me′) holds,

and [Postf]
3
Me holds

where e := [h → heap, o → this, p → par, res → I(f)(heap, this,par)],
e′ := [h → heap, o → this, p → par, res → result].

Axiomatization. As motivated in Sec. 1, a verification system needs to extract
axioms from the specifications of pure methods. We denote the axiom for function
symbol f as Axf and the axioms for all functions as AxSpec. Formally:

Axf := ∀ h, o ∈ h, p ∈ h. SysInv ∧Pref ⇒ Postf [f(h, o, p)/res]

AxSpec :=
∧

f∈F

Axf

From well-formedness criterion 4 and Axf , we can conclude that if a structure
M is a partial model for specification Spec then it is a model for AxSpec:

if M |= Spec then M |= AxSpec

Consequently, if specification Spec is well-formed then the axioms are consistent:

if |= Spec then |= AxSpec

Important to note is that this property does not hold in the other direction,
that is, if |= AxSpec then |= Spec is not necessarily true. For example, consider
a method with precondition 1/0 == 1/0 and postcondition true. In 2-valued
logic, the axiom is trivially consistent, but the specification is not well-formed
(criterion 2). This demonstrates that our well-formedness criteria require more
than just consistency, namely also satisfaction of partiality constraints.

3 Checking well-formedness

In this section, we present sufficient proof obligations that ensure that a speci-
fication is well-formed, that is, the existence of a model.

3.1 Partiality

We want our technique to work with first-order logic theorem provers, which are
often used in program verifiers. These provers check that a formula holds for all
total models. However, we need to check properties of partial models. Therefore,
we apply a technique that reduces the 3-valued domain to a 2-valued domain by
ensuring that ⊥ is never encountered. This is a standard technique applied in
different tools, for instance, in B [4], CVC Lite [5], and ESC/Java2 [9].

The main idea is to use the formula transformer ∆ [17, 4], which takes a (pos-
sibly open) formula ϕ and domain restriction δ, and produces a new formula ϕ′.
The interpretation of ϕ′ in 2-valued logic is true if and only if the interpretation
of ϕ in 3-valued logic is different from ⊥. The domain restriction δ is a mapping
from a set of function symbols Fδ to formulas. δ characterizes the domains of
the function symbols of Fδ. For instance for the division operator, the domain
restriction δ requires the divisor to be non-zero. Thus, ∆(a/b > 0, δ) ≡ b 6= 0.

For lack of space, we do not give the details of the ∆ operator and refer the
reader to [4]. The most important property for our purpose is the following [5]:

M |= δ ⇒ ([∆(ϕ, δ)]2
M̂
e = wd([ϕ]3Me)) (1)

which captures the intuition of ∆ described above. ∆ is a syntactical characteri-
zation of the semantical operation wd. Thus, using ∆, we can check in 2-valued
logic the partiality properties we are interested in.

Property (1) interprets formulas w.r.t. a structure M. This structure with
function symbols Fδ has to be a model for δ (denoted by M |= δ), that is:

– The domain formulas are defined, that is, for each f ∈ Fδ

wd([δ(f)]3Me) holds for all e.

– δ characterizes the domains of function interpretations for M, that is, for
each f ∈ Fδ and val1, . . . ,valk ∈ R:

[δ(f)]3Me holds if and only if 〈val1, . . . ,valk〉 ∈ dom(I(f))

where e := [v1 → val1, . . . , vk → valk] and {v1, . . . , vk} are the parameter
names of f . (Since methods have only one explicit parameter, k = 3.)

3.2 Incremental construction of model

In general, showing the existence of a model requires one to prove the existence
of all its functions. To be able to work with first-order logic theorem provers, we
approximate this second-order property in first-order logic. We generate proof
obligations whose validity in 2-valued first-order logic guarantees the existence

of a model. However, if we fail to prove them then we do not know whether a
model exists or not. That is, the procedure is sound but not complete. However,
it works for the practical examples we have considered so far.

The basic idea of our procedure is to construct a model incrementally. We
build a dependency graph whose nodes are function symbols and invariants.
There is an edge from node a to node b if the specification of function a or the
invariant a applies function b. The dependency graph of interface Sequence is
presented in Fig. 2.

The dependency graph may be cyclic. However, we disallow cycles that are
introduced by preconditions. In other words, a precondition must not be recursive
in order to avoid fix-point computation to define the domain of the function. This
is not a limitation for practical examples.

We construct the model by traversing the dependency graph bottom-up. We
start with the empty specification Spec0 := 〈∅, ∅, ∅〉, for which we trivially have
a model M0. In each step j, we select a set of nodes Gj := {g1, g2, . . . , gk} such
that if there is an edge from gi to a node n then either n has already been visited
in some previous step (i.e., n ∈ G1 ∪ ...∪Gj−1) or n ∈ Gj . Moreover, we choose
Gj such that it has one of the following forms:

1. Gj contains exactly one invariant Invl ∈ INV.
2. Gj contains exactly one function symbol fl ∈ F and the specification of fl

is not recursive.
3. Gj is a set of function symbols, and the nodes in Gj form a cycle in the

dependency graph, that is, they are specified recursively in terms of each
other. Gj may contain only one node in case of direct recursion.

We call the pre- and postconditions and the invariants of Gj the current specifi-
cation fragment, sj . We extend Specj−1 with sj resulting in Specj . We impose
proof obligations on sj that guarantee that the model Mj−1 for Specj−1 can be
extended to a model Mj for Specj . Since this construction is inductive, we may
assume that all specification fragments processed up to step j−1 are well-formed.

It is easy to see that an order in which one can traverse the dependency graph
always exists. However, the chosen order may influence the success of the model
construction. Essentially one should choose an invariant node whenever possible
because the invariant provides information that might be useful for later steps.

3.3 Proof obligations

We now present the proof obligations for the three different kinds of current
specification fragments sj . We refer to the elements of Specj as Prej , Postj ,
and INVj . To make the formulas more readable we use the following notations:

– SysInvj := ∀ o ∈ h.
∧

Inv∈INVj
Inv. SysInvj is the conjunction of invari-

ants processed up to step j. After the last step z of the construction of the
model, we have SysInvz = SysInv.

– Fj denotes the set of function symbols whose pre- and postconditions have
been processed up to step j: Fj := dom(Prej), and thus Fj = dom(Postj).

IsEmptyInv1

Inv3

Rest

Count

GetFirst
Inv2

Fig. 2. Dependency graph for interface Sequence.

– We denote the axioms for Specj as follows:

Axj
f := ∀ h, o ∈ h, p ∈ h. SysInvj ∧Pref ⇒ Postf [f(h, o, p)/res]

AxSpecj :=
∧

f∈Fj
Axj

f

Axj
f is the definition of the axiom for a function f according to specifica-

tion Specj . Note that the axiom Axj
f may be different for different j since

SysInvj gets gradually strengthened during the construction of the model.

Therefore, the axiom Axj
f becomes gradually weaker. This is an important

observation for the soundness of our approach. After the last step z of the
construction of the model, we have Axz

f = Axf and AxSpecz = AxSpec.

The following proof obligations are posed on the three different types of specifi-
cation fragments in step j.

Invariant Invl. The invariant Invl must be well-defined for each object, pro-
vided the invariants SysInvj−1 hold.

AxSpecj−1 ⇒ ∀ h. (SysInvj−1 ⇒ ∆(∀ o ∈ h. Invl,Prej−1)) (2)

Note that we use preconditions Prej−1 as domain restriction. Although invari-
ants additionally restrict the domain of functions, these restrictions are never
violated due to the assumption that SysInvj−1 holds.

Example. We instantiate the proof obligation for a specification fragment from
Fig. 1. The corresponding dependency graph is presented in Fig. 2. The traversal
of the dependency graph first visits the first invariant since it has no dependen-
cies. The well-definedness of the invariant is trivial. Next, the traversal takes
method IsEmpty, which is also processed trivially since the method has no spec-
ifications. As third node, the second invariant is picked. For this specification
fragment, the following proof obligation is generated.

∀ h. ((∀ o ∈ h. h[o, Length] ≥ 0) ⇒
∆(∀ o ∈ h. IsEmpty(h, o) ⇒ h[o, Length] = 0, {〈IsEmpty , true〉}))

where h[o, f] denotes field access with receiver object o and field f in heap h.
Note that AxSpec2 has been omitted since it is equivalent to true. After the
application of the ∆ operator, the proof obligation requires one to prove that
(1) o is non-null since it is the receiver of a method call and a field access, and
that (2) the domain restriction of IsEmpty is not violated. The first property
holds since o ∈ h, the second since the domain restriction of IsEmpty is true. ut

Pre- and postcondition of a single function fl. This case requires two
proof obligations for the non-recursive pre- and postcondition of fl, respectively.
The first proof obligation checks that the precondition of fl is defined for all
receiver objects and parameters in all heaps in which the invariants hold.

AxSpecj−1 ⇒ ∀ h, o ∈ h, p ∈ h. (SysInvj−1 ⇒ ∆(Prefl ,Prej−1)) (3)

Example. Assume method Rest is selected as fourth specification fragment. The
corresponding proof obligation is the following.

∀ h, o ∈ h.
((∀ o ∈ h. h[o, Length] ≥ 0 ∧ (IsEmpty(h, o) ⇒ h[o, Length] = 0)) ⇒
∆(¬IsEmpty(h, o), {〈IsEmpty , true〉}))

Again, AxSpec3 has been omitted since it is equivalent to true. After the appli-
cation of the ∆ operator, the same properties need to be proven as above: o is
non-null and the domain restriction of IsEmpty is not violated. ut

The second proof obligation checks that the postcondition of fl is never inter-
preted as ⊥ for any result, and that there exists a value which satisfies the post-
condition for all receiver objects and parameters that satisfy the precondition in
all heaps in which the invariants hold.

AxSpecj−1 ⇒ ∀ h, o ∈ h, p ∈ h. (SysInvj−1 ∧ Prefl ⇒
(∀ res. ∆(Postfl ,Prej−1)) ∧ (∃ res. Postfl))

(4)

Example. The proof obligation for the postcondition of method Rest is:

∀ h, o ∈ h.
((∀ o ∈ h. h[o, Length] ≥ 0 ∧ (IsEmpty(h, o) ⇒ h[o, Length] = 0)) ∧
¬IsEmpty(h, o)

⇒
(∀ res. ∆(res 6= null, {〈IsEmpty , true〉})) ∧ (∃ res. res 6= null))

As before, AxSpec3 is equivalent to true. The first conjunct is proved trivially
since formula res 6= null does not contain any partial operation. To satisfy the
second conjunct, we instantiate res with o. ut

Pre- and postconditions of a set of recursively-specified functions. This
case handles both direct and mutual recursion. That is, we have a set of functions
Gj := {g1, g2, . . . , gk} with k ≥ 1. We assume that for each function gi in Gj

the programmer provides a measure function ‖ · ‖gi : Heap × R × R → N
using the Measure attribute. We assume that there is no recursion via measure
functions, that is, the definition of measure function ‖ · ‖gi may only contain
function symbols from G1 ∪ . . . ∪ Gj−1, but not from Gj .

Since preconditions must not be recursively specified (see Sec. 3.2), the proof
obligation for the precondition of each gi is identical to proof obligation (3) for
the non-recursive case.

In order to prove well-formedness of postconditions, we first need to show
that user-specified measures are well-defined and non-negative. For a function
gi with measure attribute Measure=µgi , we introduce a new pure method Mgi

with precondition Pregi and postcondition µgi ≥ 0. The dependency graph is
extended with a node for Mgi and an edge from gi to Mgi . Node Mgi is processed
like any other node. This allows measures to rely on invariants and to contain
calls to pure methods.

Proof obligation (5) below for postconditions is similar to proof obligation (4),
but differs in two ways: First, we have to prove that the recursive specification
is well-founded. Since we have already shown that our measure functions yield
non-negative numbers, it suffices to show that the measure decreases for each
recursive application. We achieve this by using a domain restriction that ad-
ditionally requires the measure for recursive applications to be lower than the
measure ind of the function being specified. If the measure ind is 0, the domain
restriction becomes false, which prevents further recursion. Note that the oc-
currence of ind seems to violate the condition that domain restrictions do not
contain free variables other than the parameters of the function whose domain
they characterize. However, since ind is universally quantified, we may consider
ind to be a constant for each particular application of the domain restriction.
(One could think of the universal quantification as an unbounded conjunction,
where ind is a constant in each of the conjuncts.)

Second, for the proof of well-formedness of the specification of a function gi,
we may assume the properties of the functions recursively applied in this spec-
ification. This is an induction scheme over the measure ind, which is expressed
by the assumption in lines 4 and 5 of the following proof obligation, which must
be shown for each method gi.

AxSpecj−1 ⇒
∀ ind ∈ N, h, o ∈ h, p ∈ h.
(SysInvj−1 ∧ Pregi ∧ ‖〈h, o, p〉‖gi = ind ∧
(
∧k

l=1 ∀ o′ ∈ h, p′ ∈ h. Pregl [o
′/o, p′/p] ∧ ‖〈h, o′, p′〉‖gl < ind ⇒

Postgl [o
′/o, p′/p, gl(h, o′, p′)/res])

⇒
(∀ res. ∆(Postgi ,Prej−1 ∪ {〈gl,Pregl ∧ ‖〈h, o, p〉‖gl < ind〉 | l ∈ 1..k})) ∧
(∃ res. Postgi))

(5)

Example. Since the size of proof obligation (5) for the postcondition of method
Count (the only recursive specification in our example) is rather large, we use
a considerably smaller example here, namely the factorial function with the
following specification.

[Pure][Measure=p] int Fact(int p)

requires p >= 0;

ensures p == 0 ==> result == 1;

ensures p > 0 ==> result == Fact(p-1)*p;

To simplify the example, we omit the variables for heap h and receiver object o.
First, we need to prove that measure p is well-defined and non-negative. This

is trivially proven since the measure does not contain partial operators and the
precondition of Fact guarantees that p is non-negative.

Next, we need to show proof obligation (5). For brevity, we only show it for
the second postcondition, which is the interesting case containing recursion:

∀ ind ∈ N, p.
(p ≥ 0 ∧ p = ind ∧
(∀ p′. p′ ≥ 0 ∧ p′ < ind ⇒

(p′ = 0 ⇒ Fact(p′) = 1) ∧ (p′ > 0 ⇒ Fact(p′) = Fact(p′ − 1) ∗ p′))
⇒

(∀ res. ∆(p > 0 ⇒ res = Fact(p− 1) ∗ p, {〈Fact, p ≥ 0 ∧ p < ind〉 })) ∧
(∃ res. p > 0 ⇒ res = Fact(p− 1) ∗ p))

We need to show that the two quantified conjuncts on the right-hand side of
the implication hold. Proving that the existential holds is straightforward due to
the equality. The other conjunct is more interesting. The only partial operator
is Fact and after applying the ∆ operator the sub-formula simplifies to:

∀ res. p > 0 ⇒ p− 1 ≥ 0 ∧ p− 1 < ind

The first conjunct is provable from p > 0 and the second from p = ind in the
premise of the proof obligation. ut

Soundness. The above proof obligations are sufficient to show that a specifi-
cation is well-formed:

Theorem. If a specification Spec does not contain recursive precondi-
tions and all of the above proof obligations for Spec hold then Spec is
well-formed, that is, |= Spec holds.

The proof of this theorem runs by induction on the order of specification frag-
ments given by the dependency graph. For each recursive specification fragment,
the proof uses a nested induction on the recursion depth ind. Due to lack of space,
we refer to [23] for a detailed proof sketch.

Modularity. In general, adding new classes to a program does not invalidate
the proofs for the well-formedness criteria of existing methods and invariants.
This is because we assume behavioral subtyping, which ensures that the axiom
for an overriding method is weaker than the axiom for the overridden method.
Although new classes can introduce cycles in the dependency graph that involve
existing methods, proofs remain valid since we introduce new function symbols
for overriding methods, which thus do not interfere with existing proofs.

The invariants of additional classes strengthen SysInv, which appears as part
of the premises of proof obligations; thus, they weaken the proof obligations.

4 Application with automatic theorem provers

The proof obligations presented in the previous section are sufficient to show
the well-formedness of a specification. However, they are not well-suited for au-
tomatic theorem provers such as Simplify [14] or Z3 for two reasons. First, the
proof obligations to ensure consistency for postconditions (proof obligations (4)
and (5)) contain existential quantifiers, for which automatic theorem provers
often do not find suitable instantiations. Second, the proof obligation for the
well-foundedness of recursive specifications (proof obligation (5)) is in general
proved by induction on ind, but induction is not supported well by automatic
theorem provers. In this section, we discuss these issues.

Consistency. Spec# uses four approaches to find witnesses for the satisfiability
of a specification, that is, instantiations for the existential quantifiers1. First, if
a postcondition has the form result R E, where R is a reflexive operator and
E is an expression that does not contain result and recursive calls, then there
always exists a possible result value, namely, the value of E [12]. Thus, this part
of the proof obligations can be dropped. Second, if a pure method has a body of
the form return E, where E does not contain a recursive call, then expression E

is a likely candidate for a witness. It suffices to use a simplified proof obligation
to show that this candidate actually is a witness. Third, for many postconditions,
good candidates for witnesses can be inferred by simple heuristics. For instance,
for a postcondition result > E, one might try E + 1. Finally, if the former
approaches do not work, Spec# allows programmers to specify witnesses for
model fields explicitly. One could use the same approach for pure methods.

Well-foundedness. Proof obligation (5) in general requires induction. For in-
stance, if function f(n) has a postcondition (n = 0 ⇒ res = 1)∧(n > 0 ⇒ res =
1/f(n − 1)), one needs to apply induction to prove that f never returns zero.
However, induction is needed only if the function is specified recursively and the
recursive call occurs as an argument to a partial function, as in this example. In
our experience, this is not the case for most specifications. For instance, proving
proof obligation (5) for the factorial function does not require induction, as we
have shown in Sec. 3.3. Therefore, this proof obligation is not a major limitation
in practice.

1 Most of these approaches were proposed and implemented by Rustan Leino and
Ronald Middelkoop.

5 Related work

We sketch what three important groups of formal systems do in the areas of
consistency and well-definedness checking.

Theorem provers. Isabelle [22] is an interactive LCF-style theorem proving
framework based on a small logical core. Everything on top of the core is sup-
posed to be defined by conservative extensions, which ensures the consistency of
the specification. The use of axioms is possible but discouraged since inconsis-
tency may be introduced. Recursion (both direct and mutual) is supported and
the well-foundedness of the recursion has to be proven. Isabelle handles partiality
by under-specification [15] and requires no well-definedness checks.

PVS [11] is similar to Isabelle with respect to consistency guarantees. The
main difference is in the modeling of partial functions. Although PVS also con-
siders functions to be total, predicate subtyping is used to restrict the domain of
functions. This makes the type system undecidable leading to Type Correctness
Conditions to be proven [24].

Formal software development systems. Z is a formal specification language
for computing systems [25]. The work closest to ours is the approach of Hall et
al., which shows how a model conjecture can be derived from a Z specification
[16]. Partiality is handled by under-specification [26].

The B method [1] is similar to Z but is more focused on the notion of refine-
ment. Satisfiability of the specification has to be proven in each refinement step.
B allows users to add axioms whose consistency is not checked. Thus, they may
introduce unsoundness. B allows functions to be partial and requires specifica-
tions to be well-defined by using the ∆ formula transformer [4].

VDM [18] also checks satisfiability of specifications and allows the use of
(possibly inconsistent) axioms. VDM uses LPF [3], a 3-valued logic. In contrast
to our approach, well-definedness is not proven before the actual proof process,
but is proven together with the validity of verification conditions.

Program verifiers. ESC/Java2 [19] is an automatic extended static checker for
Java programs annotated with JML specifications. The tool axiomatizes speci-
fications of pure methods [10]. Consistency of the axiom system is not ensured,
which can lead to unsoundness. Recently, well-definedness checks have been
added by Chalin [9] but it is not clear how dependencies among specification
elements are handled, and no soundness proof is provided.

Jack [7] is a program verifier for JML annotated Java programs. The backend
prover of the tool is Coq [6]. The tool axiomatizes pre- and postconditions of pure
methods separately. This separation ensures that axioms are only instantiated
when a pure-method call occurs in a given verification condition—as opposed to
be available to the theorem prover at any time. However, since Jack does not
check consistency, unsoundness can still occur by the use of axioms. Jack does
not support mutual recursion and does not check well-definedness.

The Spec# program verifier ensures consistency of axioms over pure methods
by the approaches described in Sec. 4 and by allowing programmers to declare
a static call-order on pure methods. Only a simple form of recursive specifica-
tions is supported where the measure is based on the ownership relation. The
well-foundedness of this relation can be checked by the compiler without proof
obligations [12]. Spec# does not fully check well-definedness of specifications.

Our technique improves on our own earlier work [13] by allowing pure-method
calls in invariants, ensuring well-formedness of specifications, supporting mutual
recursion, taking dependencies into account, and by precisely defining what the
proposed proof obligations guarantee. On the other hand, [13] handles weak-
purity which we omitted in this paper for simplicity. However, our work could
be extended following the technique described in [13].

6 Conclusion

Well-formedness of specifications is important to meet programmer expectations,
to reconcile static and runtime assertion checking, and to ensure soundness of
static verification. We presented a new technique to check the well-formedness
of specifications. We showed how to incrementally construct a model for the
specification, which guarantees that the partiality constraints of operations are
respected and that the axiomatization of pure methods is consistent. Our tech-
nique can be applied in any verification system, regardless of its contract lan-
guage, logic, or backend theorem prover. As a proof of concept, we implemented
our technique in the Spec# verification system.

As future work, we plan to develop adapted proof obligations that require
induction in fewer cases. We expect that this can be done by generating spe-
cific proof obligations for each given recursive call, which encode the inductive
argument. We also plan to investigate how to conveniently specify measures for
methods that traverse object structures.

Acknowledgments. We are grateful to Julien Charles, Farhad Mehta, and
Burkhart Wolff for helpful discussions on related work. Thanks also to the anony-
mous reviewers for their insightful comments. Geraldine von Roten implemented
the presented technique in the Spec# system.

This work was funded in part by the Information Society Technologies pro-
gram of the European Commission, Future and Emerging Technologies under
the IST-2005-015905 MOBIUS project.

References

1. J. R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In CASSIS, volume 3362 of LNCS, pages 49–69. Springer-Verlag, 2005.

3. H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering undefinedness in
program proofs. Acta Informatica, 21:251–269, 1984.

4. P. Behm, L. Burdy, and J.-M. Meynadier. Well Defined B. In International B
Conference, pages 29–45. Springer-Verlag, 1998.

5. S. Berezin, C. Barrett, I. Shikanian, M. Chechik, A. Gurfinkel, and D. L. Dill. A
practical approach to partial functions in CVC Lite. In PDPAR, 2004.

6. Y. Bertot and P. Castran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer-Verlag, 2004.

7. L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A developer-oriented
approach. In FME, volume 2805 of LNCS, pages 422–439. Springer-Verlag, 2003.

8. P. Chalin. Are the logical foundations of verifying compiler prototypes matching
user expectations? Formal Aspects of Computing, 19(2):139–158, 2007.

9. P. Chalin. A sound assertion semantics for the dependable systems evolution
verifying compiler. In ICSE, pages 23–33. IEEE Computer Society, 2007.

10. D. Cok. Reasoning with specifications containing method calls and model fields.
Journal of Object Technology, 4(8):77–103, October 2005.

11. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduction
to PVS, April 1995.

12. Á. Darvas and K. R. M. Leino. Practical reasoning about invocations and im-
plementations of pure methods. In FASE, volume 4422 of LNCS, pages 336–351.
Springer-Verlag, 2007.

13. Á. Darvas and P. Müller. Reasoning About Method Calls in Interface Specifica-
tions. Journal of Object Technology (JOT), 5(5):59–85, June 2006.

14. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, 2003.

15. D. Gries and F. B. Schneider. Avoiding the undefined by underspecification. In
J. van Leeuwen, editor, Computer Science Today, volume 1000 of LNCS, pages
366–373. Springer-Verlag, 1995.

16. J. G. Hall, J. A. McDermid, and I. Toyn. Model conjectures for Z specifications.
In 7th International Conference on Putting into Practice Methods and Tools for
Information System Design, pages 41–51, 1995.

17. A. Hoogewijs. On a formalization of the non-definedness notion. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 25:213–217, 1979.

18. C. B. Jones. Systematic software development using VDM. Prentice Hall, 1986.
19. J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting ESC/Java and JML. In CASSIS,

volume 3362 of LNCS, pages 108–128. Springer-Verlag, 2005.
20. S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.
21. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral

interface specification language for Java. ACM SIGSOFT Software Engineering
Notes, 31(3):1–38, 2006.

22. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

23. A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of pure-method
specifications (Full Paper). Technical Report 588, ETH Zurich, 2008.

24. J. Rushby, S. Owre, and N. Shankar. Subtypes for Specifications: Predicate Sub-
typing in PVS. IEEE Transactions on Software Engineering, 24(9):709–720, 1998.

25. J. M. Spivey. Understanding Z: a specification language and its formal semantics.
Cambridge University Press, 1988.

26. S. H. Valentine. Inconsistency and Undefinedness in Z - A Practical Guide. In
International Conference of Z Users, pages 233–249. Springer-Verlag, 1998.

Efficient Well-Definedness Checking

Ádám Darvas, Farhad Mehta, and Arsenii Rudich

ETH Zurich, Switzerland,
{adam.darvas,farhad.mehta,arsenii.rudich}@inf.ethz.ch

Abstract. Formal specifications often contain partial functions that
may lead to ill-defined terms. A common technique to eliminate ill-
defined terms is to require well-definedness conditions to be proven. The
main advantage of this technique is that it allows us to reason in a two-
valued logic even if the underlying specification language has a three-
valued semantics. Current approaches generate well-definedness condi-
tions that grow exponentially with respect to the input formula. As a
result, many tools prove shorter, but stronger approximations of these
well-definedness conditions instead.
We present a procedure which generates well-definedness conditions that
grow linearly with respect to the input formula. The procedure has been
implemented in the Spec# verification tool. We also present empirical
results that demonstrate the improvements made.

1 Introduction

Formal specifications often allow terms to contain applications of partial func-
tions, such as division x / y or factorial fact(z). However, it is not clear what
value x / y yields if y is 0, or what value fact(z) yields if z is negative. Specifi-
cation languages need to handle ill-defined terms, that is, either have to define
the semantics of partial-function applications whose arguments fall outside their
domains or have to eliminate such applications.

One of the standard approaches to handle ill-defined terms is to define a
three-valued semantics [22] by considering ill-defined terms to have a special
value, undefined, denoted by ⊥. That is, both x / 0 and fact(−5) are considered
to evaluate to ⊥. In order to reason about specifications with a three-valued
semantics, undefinedness is lifted to formulas by extending their denoted truth
values to {true, false,⊥}.

A common technique to reason about specifications with a three-valued se-
mantics is to eliminate ill-defined terms before starting the actual proof. Well-
definedness conditions are generated, whose validity ensures that all formulas at
hand can be evaluated to either true or false. That is, once the well-definedness
conditions have been discharged, ⊥ is guaranteed to never be encountered.

The advantage of the technique is that both the well-definedness conditions
and the actual proof obligations are to be proven in classical two-valued logic,
which is simpler, better understood, more widely used, and has better automated
tool support [30] than three-valued logics.

The technique of eliminating ill-defined terms in specifications by generating
well-definedness conditions is used in several approaches, for instance, B [2],
PVS [13], CVC Lite [6], and ESC/Java2 [21].

Motivation. A drawback of this approach is that well-definedness conditions
can be very large, causing significant time overhead in the proof process. As an
example, consider the following formula:

x / y = c1 ∧ fact(y) = c2 ∧ y > 5 (1)

where x and y are variables, and c1 and c2 are constants. The formula is well-
defined, that is, it always evaluates to either true or false. This can be justified
by a case split on the third conjunct, which is always well-defined:

1. if the third conjunct evaluates to true, then the division and factorial func-
tions are known to be applied within their domains, and thus, the first and
second conjuncts can be evaluated to true or false. This means that the
whole formula can be evaluated to either true or false.

2. if the third conjunct evaluates to false, then the whole formula evaluates to
false (according to the semantics we use in the paper).

The literature [8, 27, 3, 9] proposes the procedureD to generate well-definedness
conditions. The procedure is complete [8, 9], that is, the well-definedness condi-
tion generated from a formula is provable if and only if the formula is well-
defined. Procedure D would generate the following condition for (1):

(y 6= 0 ∧ (y ≥ 0 ∨ (y ≥ 0 ∧ fact(y) 6= c2) ∨ y ≤ 5)) ∨
(y 6= 0 ∧ x/y 6= c1) ∨
((y ≥ 0 ∨ (y ≥ 0 ∧ fact(y) 6= c2) ∨ y ≤ 5) ∧ ¬(fact(y) 6= c2 ∧ y > 5))

As expected, the condition is provable. However, the size of the condition is
striking, given that the original formula contained only three sub-formulas and
two partial-function applications. In fact, procedure D yields well-formedness
conditions that grow exponentially with respect to the input formula. This is a
major problem for tools that have to prove well-definedness of considerably larger
formulas than (1), for instance, the well-definedness conditions for B models, as
presented in [8].

Due to the exponential blow-up of well-definedness conditions, the D proce-
dure is not used in practice [8, 27, 3]. Instead, another procedure L is used, which
generates much smaller conditions with linear growth, but which is incomplete.
That is, the procedure may generate unprovable well-definedness conditions for
well-defined formulas. This is the case with formula (1), for which the procedure
would yield the following unprovable condition:

y 6= 0 ∧ (x/y = c1 ⇒ y ≥ 0)

Incompleteness of the procedure originates from its “sensitivity” to the order
of sub-formulas. For instance, after proper re-ordering of the sub-formulas of
(1), the procedure would yield a provable condition. This may be tedious for
large formulas and may appear unnatural to users who are familiar with logics
in which the order of sub-formulas is irrelevant for proof. Furthermore, there
are situations (for instance, our example in Section 4) where such a manual
re-ordering cannot be done.

Contributions. Our main contribution is a new procedure Y, which unifies the
advantages of D and L, while eliminating their weaknesses. That is, (1) Y yields
well-definedness conditions that grow linearly with respect to the size of the input
formula, and (2) Y is equivalent to D, and therefore complete and insensitive to
the order of sub-formulas. To our knowledge, this is the first procedure that has
both of these two properties.

The definition of the new procedure is very intuitive and straightforward. We
prove that it is equivalent with D in two ways: (1) in a syntactical manner, as
D was derived in [3], and (2) in a semantical way, as D was introduced in [8].

We have implemented the new procedure in the Spec# verification tool [5]
in the context of the well-formedness checking of method specifications [26].
We have compared our procedure with D and L using two automated theorem
provers. The empirical results clearly show that not only the size of generated
well-definedness conditions are significantly smaller than what D produces, but
the time to prove validity of the conditions is also decreased by the use of Y.
Furthermore, our results show that the performance of Y is also better than that
of L in terms of the size of generated conditions.

Outline. The rest of the paper is structured as follows. Section 2 formally defines
procedures D and L, and highlights their main differences. Section 3 presents
our main contribution: the Y procedure and the proof of its equivalence with
D. Section 4 demonstrates the improvements of our approach through empirical
results. We discuss related work in Section 5 and conclude in Section 6.

2 Eliminating Ill-definedness

The main idea behind the technique of eliminating ill-definedness in specifica-
tions is to reduce the three-valued domain to a two-valued domain by ensuring
that ⊥ is never encountered. D is used for this purpose. Hoogewijs introduced
D in the form of the logical connective ∆ in [19], and proposed a first-order
calculus, which includes this connective. Later, D was reformulated as a formula
transformer, for instance, in [8, 3, 9] for the above syntax. D takes a formula φ
and produces another formula D(φ). The interpretation of the formula D(φ) in
two-valued logic is true if and only if the interpretation of φ in three-valued
logic is different from ⊥.

Term ::= V ar
| f(t1, . . . , fn)

Formula ::= P (t1, . . . , tn)
| true | false
| ¬φ
| φ1 ∧ φ2 | φ1 ∨ φ2

| ∀x. φ | ∃x. φ

Fig. 1. Syntax of terms and formulas we consider in this paper.

δ(V ar) , true

δ(f(e1, . . . , en)) , df (e1, . . . , en) ∧
n̂

i=1

δ(ei)

D(P (e1, . . . , en)) ,
n̂

i=1

δ(ei)

D(true) , true

D(false) , true

D(¬φ) , D(φ)

D(φ1 ∧ φ2) , (D(φ1) ∧ D(φ2)) ∨ (D(φ1) ∧ ¬φ1) ∨ (D(φ2) ∧ ¬φ2)

D(φ1 ∨ φ2) , (D(φ1) ∧ D(φ2)) ∨ (D(φ1) ∧ φ1) ∨ (D(φ2) ∧ φ2)

D(∀x. φ) , ∀x.D(φ) ∨ ∃x. (D(φ) ∧ ¬φ)

D(∃x. φ) , ∀x.D(φ) ∨ ∃x. (D(φ) ∧ φ)

Fig. 2. Definition of the δ and D operators as given by Behm et al. [8].

In order to have a basis for formal definitions, we define the syntax of terms
and formulas that we consider in this paper. We follow the standard syntax-
definition given in Figure 1. Throughout the paper we use true, false, and ⊥
to denote the semantic truth values, and true and false to refer to the syntactic
entities.

2.1 Defining the D Operator

The definition of D is given in Figure 2. Operator δ handles terms and D handles
formulas. A variable is always well-defined. Application of function f is well-
defined if and only if f ’s domain restriction df holds and all parameters ei are
well-defined. Each function is associated with a domain restriction, which is a
predicate that represents the domain of the function. Such predicates should
only contain total-function applications. For instance, the domain restriction of
the factorial function is that the parameter is non-negative.

A predicate is well-defined if and only if all parameters are well-defined.
Note that this definition assumes predicates to be total. Although an extension
to partial predicates is straightforward, we use this definition for simplicity and
to have a direct comparison of our approach to [8]. Constants true and false are
always well-defined. Well-definedness of logical connectives is defined according
to Strong Kleene connectives [22]. For instance, as the truth table in Figure 3(a)

∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ false ⊥

∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ ⊥ ⊥

(a) Strong Kleene (b) McCarthy

Fig. 3. Kleene’s and McCarthy’s interpretation of conjunction.

shows, a conjunction is well-defined if and only if either (1) both conjuncts are
well-defined, or (2) if one of the conjuncts is well-defined and evaluates to false.
Intuitively, in case (1) the classical two-valued evaluation can be applied, while
in case (2) the truth value of the conjunction is false independently of the well-
definedness and value of the other conjunct.

Well-definedness of universal quantification can be thought of as the general-
ization of the well-definedness of conjunction. Disjunction and existential quan-
tification are the duals of conjunction and universal quantification, respectively.
Soundness and completeness of D was proven in [19, 8, 9].

2.2 An Approximation of the D Operator

As mentioned before in Section 1, the problem with the D operator is that it
yields well-definedness conditions that grow exponentially with respect to the size
of the input formula. This problem has been recognized in several approaches,
for instance, in B [3] and PVS [27]. As a consequence, these approaches use a
simpler, but stricter operator L [8, 3] for computing well-definedness conditions.
The definition of L differs from that of D only for the following connectives:1

L(φ1 ∧ φ2) , L(φ1) ∧ (φ1 ⇒ L(φ2))

L(φ1 ∨ φ2) , L(φ1) ∧ (¬φ1 ⇒ L(φ2))

L(∀x. φ) , ∀x.L(φ)

L(∃x. φ) , ∀x.L(φ)

Looking at the definition, we can see that L yields well-definedness conditions
that grow linearly with respect to the input formula. This is a great advantage
over D. However, the L operator is stronger than D, that is, L(φ)⇒ D(φ) holds,
but D(φ)⇒ L(φ) does not necessarily hold, as shown for formula (1) in Section
1. This means that we lose completeness with the use of L.

For quantifiers, L requires that the quantified formula is well-defined for
all instantiations of the quantified variable. As a result, a universal quantifica-
tion may be considered ill-defined although an instance is known to evaluate to
false. Similarly, an existential quantification may also be considered ill-defined
although an instance is known to evaluate to true. The D operator takes these
“short-circuits” into account.

1 Although our formula-syntax does not contain implication, we use it below to keep
the intuition behind the definition.

The other source of incompleteness originates from defining conjunction and
disjunction according to McCarthy’s interpretation [24], which evaluates formu-
las sequentially. That is, if the first operand of a connective is ⊥, then the result
is defined to be ⊥, independently of the second operand. The truth table in Fig-
ure 3(b) presents McCarthy’s interpretation of conjunction. The only difference
from Kleene’s interpretation is in the interpretation of ⊥ ∧ false, which yields
⊥. This reveals the most important difference between the two interpretations:
in McCarthy’s interpretation conjunction and disjunction are not commutative.

As a consequence, for instance, φ1 ∧ φ2 may be considered ill-defined, al-
though φ2 ∧ φ1 is considered well-defined. Such cases might come unexpected
to users who are used to classical logic where conjunction and disjunction are
commutative.

In most cases this incompleteness issue can be resolved by manually re-
ordering sub-formulas. However, as pointed out by Rushby et al. [27], the manual
re-ordering of sub-formulas is not an option when specifications are automati-
cally generated from some other representation. Furthermore, Cheng and Jones
[12], and Rushby et al. [27] give examples for which even manual re-ordering
does not help, and well-defined formulas are inevitably rejected by L.

3 An Efficient Equivalent of the D Operator

In this section we present our main contribution: a new procedure Y that yields
considerably smaller well-definedness conditions than D, and that retains com-
pleteness. We prove equivalence of Y and D in two ways: (1) we syntactically
derive the definition of Y, (2) using three-valued interpretation we prove by
induction that the definition of Y is equivalent to that of D. Both proofs demon-
strate the intuitive and simple nature of Y’s definition.

3.1 Syntactical Derivation of Y

We introduce two new formula transformers T and F , and define them as follows:

T (φ) , D(φ) ∧ φ and F(φ) , D(φ) ∧ ¬φ
That is, T (φ) yields true if and only if φ is well-defined and evaluates to true.
Analogously, F(φ) yields true if and only if φ is well-defined and evaluates to
false. From the definitions the following theorem follows.

Theorem 1. D(φ) ⇔ T (φ) ∨ F(φ)
Proof. D(φ) ⇔ D(φ) ∧ (φ ∨ ¬φ) ⇔ (D(φ) ∧ φ) ∨ (D(φ) ∧ ¬φ) ⇔

T (φ) ∨ F(φ) ut

Intuitively, the theorem expresses that formula φ is well-defined if and only if φ
evaluates either to true or to false. This directly corresponds to the interpreta-
tion of D given by Hoogewijs [19].

From the definitions of T and F , the equivalences presented in Figure 4
can be derived. To demonstrate the simplicity of these derivations, we give the
derivation of T (φ1 ∧ φ2) and F(∀x. φ):

T (φ1 ∧ φ2) ⇔ D(φ1 ∧ φ2) ∧ φ1 ∧ φ2 ⇔
((D(φ1) ∧ D(φ2)) ∨ (D(φ1) ∧ ¬φ1) ∨ (D(φ2) ∧ ¬φ2)) ∧ φ1 ∧ φ2 ⇔
D(φ1) ∧ D(φ2) ∧ φ1 ∧ φ2 ⇔ T (φ1) ∧ T (φ2)

F(∀x. φ) ⇔ D(∀x. φ) ∧ ¬∀x. φ ⇔
(∀x. D(φ) ∨ (∃x. (D(φ) ∧ ¬φ))) ∧ ∃x. ¬φ ⇔
∃x. (D(φ) ∧ ¬φ) ⇔ ∃x. F(φ)

The derived equivalences are very intuitive. Both T and F reflect the stan-
dard two-valued interpretation of formulas. For instance, F essentially realizes
de Morgan’s laws. The handling of terms is the same as before using the δ opera-
tor. Note that T and F are mutually recursive in the equivalences. Termination
of the mutual application of the operators is trivially guaranteed: the size of
formulas yields the measure for termination.

The more involved semantic proof of equivalence is presented in the appendix.
The proof, in particular Lemma 4, highlights the intuition behind Y’s definition.

The definition of our new procedure Y, based on Theorem 1, is the following:

Y(φ) , T (φ) ∨ F(φ)

It is easy to see that (1) our procedure begins by duplicating the size of
the input formula φ, and (2) afterwards applies operators T and F that yield
formulas that are linear in size with respect to their input formulas.

That is, overall our procedure yields well-definedness conditions that grow
linearly with respect to the size of the input formula. This is a significant im-
provement over D which yields formulas that are exponential in size with respect
to the input formula. Intuitively, this improvement can be explained as follows:
D makes case distinctions on the well-definedness of sub-formulas at each step
of its application, whereas Y only performs a single initial case distinction on
the validity of the entire formula. In spite of this difference, our procedure is
equivalent to D, thus it is symmetric, as opposed to L.

4 Implementation and Empirical Results

We have implemented a well-formedness checker in the context of the verification
of object-oriented programs. Our implementation extends the Spec# verification
tool [5] by a new module that performs well-definedness and well-foundedness
checks on specifications using the Y procedure. Details of the technique applied
in the well-formedness checker are described in [26].

T (P (e1, .., en)) ⇔ P (e1, .., en) ∧
n̂

i=1

δ(ei)

T (true) ⇔ true
T (false) ⇔ false
T (¬φ) ⇔ F(φ)
T (φ1 ∧ φ2) ⇔ T (φ1) ∧ T (φ2)
T (φ1 ∨ φ2) ⇔ T (φ1) ∨ T (φ2)
T (∀x. φ) ⇔ ∀x. T (φ)
T (∃x. φ) ⇔ ∃x. T (φ)

F(P (e1, .., en)) ⇔ ¬P (e1, .., en) ∧
n̂

i=1

δ(ei)

F(true) ⇔ false
F(false) ⇔ true
F(¬φ) ⇔ T (φ)
F(φ1 ∧ φ2) ⇔ F(φ1) ∨ F(φ2)
F(φ1 ∨ φ2) ⇔ F(φ1) ∧ F(φ2)
F(∀x. φ) ⇔ ∃x. F(φ)
F(∃x. φ) ⇔ ∀x. F(φ)

Fig. 4. Derived equivalences for T and F .

Additionally, in order to be able to compare the different procedures, we
have built a prototype that implements the D, L, and Y procedures for the
syntax given in Figure 1. We used the two automated theorem provers that are
integrated with Spec#: Simplify [15] and Z3 [14], both of which are used by
several other tools as prover back-ends too. The experiment was performed on
a machine with Intel Pentium M (1.86 GHz) and 2 GB RAM.

The benchmark. We have used the following inductively defined formula, which
allowed us to experiment with formula sizes that grow linearly with respect to
n, and which is well-defined for every natural number n:

φ0 , f(x) = x ∨ f(−x) = −x
φn , φn−1 ∧ (f(x+ n) = x+ n ∨ f(−x− n) = −x− n)

where the definition and domain restriction of f is as follows:

∀x. x ≥ 0 ⇒ f(x) = x and df : x ≥ 0

Note that formula φn is well-defined for any n. However, its well-definedness
cannot be proven using L for any n, and no re-ordering would help this situation.

Empirical results. Figure 5(a) shows that well-definedness conditions generated
by D grow exponentially, whereas conditions generated by L and Y grow linearly.
This was expected from their definitions. Note that the y axis uses a logarithmic
scale. The figure also shows, that the sizes of conditions generated using Y are
smaller than those generated by L for n > 4.

Figure 5(b) compares the time that Simplify (version 1.5.4) required to prove
the well-definedness conditions generated from our input formula. As required
by its interface, these conditions were given to Simplify as plain text. We see
that the time required to prove formulas generated by D grows exponentially,
whereas with Y the required time grows linearly. Note that the y axis uses a
logarithmic scale. Additionally, for D our prototype was not able to generate the
well-definedness condition for input formulas with n > 16 because it ran out of
memory.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

N
um

be
r

of
 A

ST
 n

od
es

Value of n in input formula

D

L

Y

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300T
im

e
to

 p
ro

ve
 u

si
ng

 S
im

pl
if

y
(m

se
c)

Value of n in input formula

D

Y

(a) (b)

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300

T
im

e
to

 p
ro

ve
 u

si
ng

 Z
3

(m
se

c)

Value of n in input formula

D

Y

(c)

Fig. 5. (a) Size of well-definedness conditions generated by procedures D, L, and Y;
(b) Time to prove well-definedness conditions using Simplify; (c) Time to prove well-
definedness conditions using Z3.

Figure 5(c) shows the results of the same experiment using Z3 (version 1.2).
Note that the y axis is linear. From this graph we see that although the times
required to prove well-definedness conditions show the same growth pattern for
both procedure D and Y, the times recorded for Y are approximately 1/3 to
1/2 below that of for D. For instance, with n = 200, Z3 proves the condition
generated byD in 9 seconds, while it takes 3.5 seconds for the condition generated
by Y. For n = 300, these figures are 23.5 and 10.5 seconds, respectively. Note that
we could successfully prove much larger well-definedness conditions generated by
D in Z3 as compared to Simplify. This is because (1) we used the native API
of Z3 in order to construct formulas with maximal sharing, and (2) due to the
use of its API, Z3 may have benefited from sub-formula sharing, which could
have made the size of the resulting formula representation linear. In spite of this,
procedure Y performs better than D.

Note that Figure 5(b) and 5(c) do not plot the results of L. This is because
the L procedure cannot prove well-definedness of the input formulas.

Finally, we note that the whole sequence of formulas were passed to a single
session of Simplify or Z3, respectively.

5 Related Work

The handling of partial functions in formal specifications has been studied ex-
tensively and several different approaches have been proposed. Here we only
mention three mainstream approaches and refer the reader for detailed accounts
to Arthan’s paper [4], which classifies different approaches to undefinedness, to
Abrial and Mussat’s paper [3, Section 1.7], and to Hähnle’s survey [18].

Eliminating undefinedness. As mentioned already in the paper, eliminat-
ing undefinedness by the generation of well-definedness conditions is a common
technique to handle partial functions, and is applied in several approaches, such
as B [8, 3], PVS [27], CVC Lite [9], and ESC/Java2 [11]. The two procedures
proposed in these papers are D and L.

PVS combines proving well-definedness conditions with type checking. In
PVS, partial functions are modeled as total functions whose domain is a predi-
cate subtype [27]. This makes the type system undecidable requiring Type Cor-
rectness Conditions to be proven. PVS uses the L operator because D was found
to be inefficient [27].

CVC Lite uses the D procedure for the well-definedness checking of formulas.
Berezin et al. [9] mention that if formulas are represented as DAGs, then the
worst-case size of D(φ) is linear with respect to the size of φ. However, there
are no empirical results presented to confirm any advantages of using the DAG
representation in terms of proving times.

Recent work on ESC/Java2 by Chalin [11] requires proving the well-definedness
of specifications written in the Java Modeling Language (JML) [23]. Chalin uses
the L procedure, however, as opposed to other approaches, not because of inef-
ficiency issues. The L procedure directly captures the semantics of conditional
boolean operators (e.g. && and || in Java) that many programming languages
contain, and which are often used, for instance, in JML specifications. Chalin’s
survey [10] indicates that the use of L is better suited for program verification
than D, since it yields well-definedness conditions that are closer to the expec-
tations of programmers.

Schieder and Broy [28] propose a different approach to the checking of well-
definedness of formulas. They define a formula under a three-valued interpre-
tation to be well-defined if and only if its interpretation yields true both if
⊥ is interpreted as true, and if ⊥ is interpreted as false. Although checking
well-definedness of formulas becomes relatively simple, the interpretation may
be unintuitive for users. For example, formula ⊥∨ ¬⊥ is considered to be well-
defined. We prefer to eliminate such formulas by using classical Kleene logic.

Three-valued logics. Another standard way to handle partial functions is to
fully integrate ill-defined terms into the formal logic by developing a three-valued
logic. This approach is attributed to Kleene [22]. A well-known three-valued logic
is LPF [7, 12] developed by C.B. Jones et al. in the context of VDM [20]. Other
languages that follow this approach include Z [29] and OCL [1].

A well-known drawback of three-valued logics is that they may seem unnatu-
ral to proof engineers. For instance, in LPF, the law of the excluded middle and
the deduction rule (a.k.a. ImpI) do not hold. Furthermore, a second notion of
equality (called “weak equality”) is required to avoid proving, for instance, that
x / 0 = fact(−5) holds. Another major drawback is that there is significantly less
tool support for three-valued logics than there is for two-valued logics.

Underspecification. The approach of underspecification assigns an ill-defined
term a definite, but unknown value from the type of the term [16]. Thus, the
resulting interpretation is two-valued, however, in certain cases the truth value
of formulas cannot be determined due to the unknown values. For instance,
the truth value of x / 0 = fact(−5) is known to be either true or false, but
there is no way to deduce which of the two. However, for instance, x / 0 = x / 0
is trivially provable. This might not be a desired behavior. For instance, the
survey by Chalin [10] argues that this is against the intuition of programmers,
who would rather expect an error to occur in the above case. Underspecification is
applied, for instance, in the Isabelle theorem prover [25], the Larch specification
language [17], and JML [23].

6 Conclusion

A commonly applied technique to handle partial-function applications in formal
specifications is to pose well-definedness conditions, which guarantee that un-
defined terms and formulas are never encountered. This technique allows one
to use two-valued logic to reason about specifications that have a three-valued
semantics. Previous work proposed two procedures, each having some drawback.
The D procedure yields formulas that are too large to be used in practice. The
L procedure is incomplete, resulting in the rejection of well-defined formulas.

In this paper we proposed a new procedure Y, which eliminates these draw-
backs: Y is complete and yields formulas that grow linearly with respect to the
size of the input formula. Approaches that apply the D or L procedures (for in-
stance, B, PVS, and CVC Lite) could benefit from our procedure. The required
implementation overhead would be minimal.

Our procedure has been implemented in the Spec# verification tool to en-
force well-formedness of invariants and method specifications. Additionally, we
implemented a prototype to allow us to compare the new procedure with D and
L. Beyond the expected benefits of shorter well-definedness conditions, our ex-
periments also show that theorem provers need less time to prove the conditions
generated using Y.

Acknowledgments. We would like to thank Peter Müller and the anonymous
reviewers for their helpful comments. This work was funded in part by the In-
formation Society Technologies program of the European Commission, Future
and Emerging Technologies under the IST-2005-015905 MOBIUS project.

References

1. UML 2.0 OCL Specification. Available at http://www.omg.org/docs/formal/

06-05-01.pdf, May 2006.

2. J.-R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

3. J.-R. Abrial and L. Mussat. On using conditional definitions in formal theories. In
D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002, volume
2272 of LNCS, pages 242–269. Springer-Verlag, 2002.

4. R. Arthan. Undefinedness in Z: Issues for specification and proof. Presented at
CADE Workshop on Mechanization of Partial Functions, 1996.

5. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In CASSIS, volume 3362 of LNCS, pages 49–69. Springer-Verlag, 2005.

6. C. W. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker category B. In R. Alur and D. Peled, editors, CAV, volume 3114
of LNCS, pages 515–518. Springer-Verlag, 2004.

7. H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering undefinedness in
program proofs. Acta Informatica, 21:251–269, 1984.

8. P. Behm, L. Burdy, and J.-M. Meynadier. Well Defined B. In D. Bert, editor,
International B Conference, volume 1393 of LNCS, pages 29–45. Springer-Verlag,
1998.

9. S. Berezin, C. Barrett, I. Shikanian, M. Chechik, A. Gurfinkel, and D. L. Dill. A
practical approach to partial functions in CVC Lite. In Workshop on Pragmatics
of Decision Procedures in Automated Reasoning, 2004.

10. P. Chalin. Are the logical foundations of verifying compiler prototypes matching
user expectations? Formal Aspects of Computing, 19(2):139–158, 2007.

11. P. Chalin. A sound assertion semantics for the dependable systems evolution
verifying compiler. In ICSE, pages 23–33. IEEE Computer Society, 2007.

12. J. H. Cheng and C. B. Jones. On the usability of logics which handle partial
functions. In Refinement Workshop, pages 51–69, 1991.

13. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction to
PVS. In Workshop on Industrial-Strength Formal Specification Techniques, 1995.

14. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R. Ra-
makrishnan and J. Rehof, editors, TACAS, volume 4963 of LNCS, pages 337–340.
Springer-Verlag, 2008.

15. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, 2003.

16. D. Gries and F. B. Schneider. Avoiding the undefined by underspecification. In
Computer Science Today, volume 1000 of LNCS, pages 366–373. Springer-Verlag,
1995.

17. J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Specifica-
tion. Texts and Monographs in Computer Science. Springer-Verlag, 1993.

18. R. Hähnle. Many-valued logic, partiality, and abstraction in formal specification
languages. Logic Journal of the IGPL, 13(4):415–433, 2005.

19. A. Hoogewijs. On a formalization of the non-definedness notion. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 25:213–217, 1979.

20. C. B. Jones. Systematic software development using VDM. Prentice Hall, 1986.

21. J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting ESC/Java and JML. In CASSIS,
volume 3362 of LNCS, pages 108–128. Springer-Verlag, 2005.

22. S. C. Kleene. On a notation for ordinal numbers. Journal of Symbolic Logic,
3:150–155, 1938.

23. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes, 31(3):1–38, 2006.

24. J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort
and D. Hirschberg, editors, Computer Programming and Formal Systems, pages
33–70. North-Holland, Amsterdam, 1963.

25. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

26. A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of pure-method
specifications. In J. Cuellar and T. Maibaum, editors, Formal Methods (FM),
volume 5014 of LNCS, pages 68–83. Springer-Verlag, 2008.

27. J. Rushby, S. Owre, and N. Shankar. Subtypes for Specifications: Predicate Sub-
typing in PVS. IEEE Transactions on Software Engineering, 24(9):709–720, 1998.

28. B. Schieder and M. Broy. Adapting calculational logic to the undefined. The
Computer Journal, 42(2):73–81, 1999.

29. J. M. Spivey. Understanding Z: a specification language and its formal semantics.
Cambridge University Press, 1988.

30. G. Sutcliffe, C. B. Suttner, and T. Yemenis. The TPTP Problem Library. In
A. Bundy, editor, CADE, volume 814 of LNCS, pages 252–266. Springer-Verlag,
1994.

A Semantic Proof of Equivalence

Structures. We define structures and interpretations in a way similar to as
Behm et al. [8]. Let A be a set that does not contain ⊥. We define A⊥ as
A ∪ {⊥}. Let F be a set of function symbols, and P a set of predicate symbols.
Let I be a mapping from F to the set of functions from An to A⊥, and from P to
the set of predicates from An to {true, false} (for simplicity, we assume that the
interpretation of predicates is total), where n is the arity of the corresponding
function or predicate symbol. We say that M = 〈A, I〉 is a structure for our
language with carrier set A and interpretation I. We call a structure total if
the interpretation of every function f ∈ F is total, which means f(. . .) 6= ⊥. We
call the structure partial otherwise. A partial structure M can be extended to
a total structure M̂ by having functions evaluated outside their domains return
arbitrary values.

Interpretation. For a term t, structure M, and variable assignment e, we
denote the interpretation of t as [t]eM. Variable assignment e maps the free
variables of t to values. We define the interpretation of terms as given in Figure
6. Interpretation of formula ϕ denoted as [ϕ]eM is given in Figure 7. Dom yields
the domain of the interpretation of function symbols.
To check whether or not a value l is defined, we use function wd:

wd(l) =

{
true, if l ∈ {true, false}
false, if l = ⊥

[v]eM , e(v) where v is a variable

[f(t1, . . . , tn)]eM ,

8
><
>:

I(f)([t1]eM, . . . , [tn]eM), if 〈[t1]eM, . . . , [tn]eM〉 ∈ Dom(I(f))

and [t1]eM 6= ⊥, . . . , [tn]eM 6= ⊥
⊥, otherwise

Fig. 6. Interpretation of terms.

Lemma 1. For every total structure M, formula ϕ, and variable assignment e,
we have wd([ϕ]eM) = true.

Proof. By induction over the structure of ϕ. ut

Lemma 2. For every structure M, if M is extended to total structure M̂, then
wd([ϕ]e

M̂
) = true.

Proof. Trivial consequence of the way M is extended and of Lemma 1. ut

Domain restrictions. Each function f is associated with a domain restriction
df , which is a predicate that represents the domain of function f . A structure
M is a model for domain restrictions of functions in F (denoted by dF(M)) if
and only if:

– The domain formulas are defined. That is, for each f ∈ F and for all e:
wd([df]eM) = true

– Domain restrictions characterize the domains of function interpretations for
M. That is, for each f ∈ F and l1, . . . , ln ∈ A:

[df]eM = true if and only if 〈l1, . . . , ln〉 ∈ Dom(I(f))
where e = [v1 → l1, . . . , vn → ln] and {v1, . . . , vk} are f ’s parameter names.

In the following we prove two lemmas and finally our two main theorems.

Lemma 3. For each structure M, term t, and variable assignment e:
if dF(M) then [t]eM 6= ⊥ if and only if [δ(t)]e

M̂
= true.

Proof. By induction on the structure of t under the assumption that dF(M).
Induction base: t is variable v.
Since [v]eM = e(v) 6= ⊥ and [δ(v)]e

M̂
= true, we have the desired property.

Induction step: t is function application f(t1, . . . , tn).
From definition of interpretation we get that [f(t1, . . . , tn)]eM 6= ⊥ if and only if:

〈[t1]eM, . . . , [tn]eM〉 ∈ Dom(I(f)) ∧ [t1]eM 6= ⊥ ∧ . . . ∧ [tn]eM 6= ⊥

By the definition of dF(M) and the induction hypothesis, it is equivalent to:

[df (t1, . . . , tn)]e
M̂

= true ∧ [δ(t1)]e
M̂

= true ∧ . . . ∧ [δ(tn)]e
M̂

= true

[true]eM , true

[false]eM , false

[P (t1, . . . , tn)]eM ,

8
>>>>>><
>>>>>>:

true, if I(P)([t1]eM, . . . , [tn]eM) = true and

[t1]eM 6= ⊥, . . . , [tn]eM 6= ⊥
false, if I(P)([t1]eM, . . . , [tn]eM) = false and

[t1]eM 6= ⊥, . . . , [tn]eM 6= ⊥
⊥, otherwise

[¬ϕ]eM ,

8
><
>:

true, if [ϕ]eM = false

false, if [ϕ]eM = true

⊥, otherwise

[ϕ ∧ φ]eM ,

8
><
>:

true, if [ϕ]eM = true and [φ]eM = true

false, if [ϕ]eM = false or [φ]eM = false

⊥, otherwise

[ϕ ∨ φ]eM ,

8
><
>:

true, if [ϕ]eM = true or [φ]eM = true

false, if [ϕ]eM = false and [φ]eM = false

⊥, otherwise

[∀x. ϕ]eM ,

8
><
>:

true, if for all l ∈ A, [ϕ]
e[x←l]
M = true

false, if there exists l ∈ A such that[ϕ]
e[x←l]
M = false

⊥, otherwise

[∃x. ϕ]eM ,

8
><
>:

true, if there exists l ∈ A such that[ϕ]
e[x←l]
M = true

false, if for all l ∈ A, [ϕ]
e[x←l]
M = false

⊥, otherwise

Fig. 7. Interpretation of formulas.

which is, by the definition of δ, equivalent to [δ(f(t1, . . . , tn))]e
M̂

= true. ut

Lemma 4. For each structure M, formula ϕ, and variable assignment e:
if dF(M) then [ϕ]eM = true if and only if [T (ϕ)]e

M̂
= true and

[ϕ]eM = false if and only if [F(ϕ)]e
M̂

= true.

Proof. By induction on the structure of ϕ under the assumption that dF(M).
Induction base: ϕ is predicate P (t1, . . . , tn).

From definition of interpretation we get [P (t1, . . . , tn)]eM = true if and only if:

I(P)([t1]eM, . . . , [tn]eM) = true ∧ [t1]eM 6= ⊥ ∧ . . . ∧ [tn]eM 6= ⊥

which is, by the assumption that the interpretation of predicates is total and by
Lemma 3, equivalent to:

[P (t1, . . . , tn)]e
M̂

= true ∧ [δ(t1)]e
M̂

= true ∧ . . . ∧ [δ(tn)]e
M̂

= true

which is, by the definition of T , equivalent to [T (P (t1, . . . , tn))]e
M̂

= true.
The proof is analogous for F .
Induction step: For brevity, we only present the proof of those two cases for
which the syntactic derivation was shown on page 7. The proofs are analogous
for all other cases.

1. We prove that if dF(M) then [γ∧φ]eM = true if and only if [T (γ∧φ)]e
M̂

= true.

From definition of interpretation we get that [γ ∧ φ]eM = true if and only if
[γ]eM = true and [φ]eM = true, which is, by the induction hypothesis, equiva-
lent to [T (γ)]e

M̂
= true and [T (φ)]e

M̂
= true, which is, by the definition of T ,

equivalent to [T (γ ∧ φ)]e
M̂

= true.

2. We prove that if dF(M) then [∀x. φ]eM = false iff [F(∀x. φ)]e
M̂

= true.

From the definition of the interpretation function we get that [∀x. φ]eM = false

if and only if there exists l ∈ A such that [φ]
e[x←l]
M = false. By the induction

hypothesis, this is equivalent to the existence of l ∈ A such that [F(φ)]
e[x←l]

M̂
=

true, which is, by the definition of F , equivalent to [F(∀x. φ)]e
M̂

= true. ut

Theorem 2. For each structure M, formula ϕ, and variable assignment e:
if dF(M) then wd([ϕ]eM) = [Y(ϕ)]e

M̂
Proof. From the definition of wd we know that wd([ϕ]eM) is defined. Further-
more, from Lemma 2 (with ϕ substituted by Y(ϕ)) we know that [Y(ϕ)]e

M̂
is defined. Thus, it is enough to prove that wd([ϕ]eM) = true if and only if
[Y(ϕ)]e

M̂
= true. Under the assumption that dF(M), we have:

wd([ϕ]eM) = true if and only if [by definition of wd]
[ϕ]eM ∈ {true, false} if and only if [by Lemma 4]
[T (ϕ)]e

M̂
= true or [F(ϕ)]e

M̂
= true if and only if [by definition of Y]

[Y(ϕ)]e
M̂

= true ut

Berezin et al. [6] proved the following characteristic property of D:

if dF(M) then wd([ϕ]eM) = [D(ϕ)]e
M̂

(2)

Theorem 3. For each total structure M, formula ϕ, and variable assignment e:
[D(ϕ)⇔ Y(ϕ)]eM = true

Proof. For each total structure M there exists a partial structure M′ such that
M = M̂′ and dF(M′). We can build M′ from M by restricting the domain of
partial functions according to the domain restrictions.
By Theorem 2 and (2) we get [D(ϕ)]e

M̂′
= wd([ϕ]eM′) = [Y(ϕ)]e

M̂′
. Which is

equivalent to [D(ϕ) ⇔ Y(ϕ)]e
M̂′

= true. Since M = M̂′ we get the desired
property. ut

	1 Introduction
	2 Object invariants
	3 Checking well-formedness of pure-method specifications
	4 Conclusions
	A Copies of Publications
	A Unified Framework for Verification Techniques for Object Invariants
	A Universe-Type-Based Verification Technique for Mutable Static Fields and Methods
	Checking Well-Formedness of Pure-Method Specifications
	Efficient Well-Definedness Checking

