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Executive Summary:
Scenarios for Proof-Carrying Code

This document summarizes deliverable D4.1 FP6-015905 (MOBIUS), co-funded by the European Commission
within the Sixth Framework Programme. Full information on this project, including the contents of this
deliverable, is available online at http://mobius.inria.fr.

The goal of this document is to describe possible extensions of the PCC paradigm which make it applica-
ble to a large number of global computing scenarios, and to highlight the technical challenges that underlie
their realization. The traditional PCC scenario, which involves a single code consumer and code producer,
does not reflect the complex and distributed nature of global computers, and it is in fact invalidated by
several global computing scenarios.

The structure of the document is as follows, after a brief introduction and motivation in Chapter 1,
in Chapter 2 we recall the PCC scenarios which exist at the beginning of the project. Then, Chapter 3
discusses important issues for the practical uptake of PCC in the context of global computing, such the
translation of source-level properties to compiled-level properties, the combination of static verification and
dynamic checking, the different formats used by different flavours of PCC and the implications this can have
on the flexibility and efficiency of PCC, and how to have certified certificate checkers. The more speculative
part of the deliverable can be found in Chapter 4. It presents a series of scenarios which are likely to be of
interest in the general case of global computing. The original PCC scenario is extended in order to consider
multiple producers, consumers, intermediaries, external verifiers, and how to effectively handle cases where a
certified mobile code is personalized to a particular consumer, where the consumer can customize the policy,
or where the certified code is upgraded to a new release. Finally, Chapter 5 presents some conclusions and
discusses which of the proposed scenarios and extensions to PCC are subject to ongoing and future work
within the context of MOBIUS.

In summary, the document delivers a systematic exploration of the use of PCC in global computing
scenarios, and outlines a road map for long term research on PCC. Additionally, we expect that the work
performed in MOBIUS in general, and in this task in particular about PCC for global computers, will boost
activity in the different research areas involved.
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Chapter 1

Introduction

Proof Carrying Code (PCC) is an emerging technology whose pervasive adoption in global computers requires
significant advances. Its founding principle (see Chapter 2), is that incoming components should come
equipped with verifiable evidence of their adherence to an appropriate policy that may involve requirements
about their safety, security, or functionality. The aim of the MOBIUS project is to contribute to the
practical uptake of PCC technologies in global computers. This deliverable summarizes the work performed
in Task 4.1, Scenarios for Proof-Carrying Code during the first year of the project. Section 1.1 below provides
a general overview of what the main technical difficulties for the adoption of PCC in global computing are,
whereas Section 1.2 presents the concrete objectives of this task.

1.1 Motivation

While Proof Carrying Code holds the promise of becoming a pivotal technology in next generation security
architectures, there are several scientific and technological challenges which need to be solved in order to
turn the promise into a reality. To successfully complete the development of a security architecture for
global computing, the MOBIUS consortium is confronted with challenges that lie far beyond the current
state-of-the-art. The most important challenges are:

1. Need for comprehensive policies. So far, PCC has mostly been used to enforce safety properties of
applications, including type safety, and memory management safety. It has also been shown adequate
for enforcing basic security policies such as non-interference and resource control. However, PCC
should also be extended in order to be useful in the verification of functional properties of applications.

2. Need for enhanced PCC tools. A fundamental enabling technology for PCC is the use of programming
logics. Unfortunately, programming logics for full-blown programming languages raise a number of
long-standing problems that include complex features such as aliasing, objects and concurrency, as
well as very challenging issues about scalability. A similar conclusion can be drawn for type systems,
that constitute another natural enabling technology for PCC. Indeed, existing type systems for safety
and security often do not cover the advanced programming constructs pertaining to programming
languages for global computers.

3. Need for a distributed architecture. Present PCC architectures focus on scenarios involving a single
code producer and a single code consumer. In order to apply PCC to global computers in which
distributed applications are executed across several devices, we must contemplate scenarios which
involve several code consumers. Less obviously, we must also contemplate scenarios where incoming
components are synthesized by an automatic process from several code fragments that originate from
distinct code producers, or where incoming components may transit before reaching the code consumer
through several devices that alter their computational behavior or their data.
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It is clear that the adoption of PCC requires both comprehensive policies (Challenge 1) and enhanced
PCC tools (Challenge 2). In fact, work packages 2 and 3 in MOBIUS are almost entirely concerned with
these two challenges. However, the importance of advanced distributed architectures (Challenge 3) should
not be overseen, as without solving this challenge, the impact of PCC would be rather limited, since most
of the situations which occur in real-life global computers lie beyond the original PCC scenario. Thus, a
central aim of Task 4.1 is precisely to address Challenge 3 (see Chapter 4). In addition, Task 4.1 is also
concerned with Challenges 1 and 2 (see Chapters 2 and 3).

In Section 1.2 below we describe in detail the concrete objectives of Task 4.1.

1.2 Task Description

In order to gain wide-spread acceptance, security architectures for global computers should take into account
the challenging nature of distributed computation and migrating code that are central aspects of global
computers. It is unlikely that all of security issues related to distribution and migration can be addressed by
one single security architecture. Nevertheless, it is important to understand, for each security architecture,
the extent to which it solves various security issues and the limits to which it can be stretched.

In this deliverable, we develop innovative scenarios for applying Proof Carrying Code in the context
of global computers because, as already mentioned, research on PCC has so far considered very simple
scenarios with a single code producer and a single code consumer, and where the code received by the code
consumer matches exactly the code emitted by the code producer. All of these assumptions are questionable
in the context of global computing, and there are several scenarios that invalidate them.

For example, components for global computers often involve several code producers. Sometimes these
code producers develop fragments of the component individually and later merge them either manually, or
through an automated process such as parametrization, instantiation, etc. More often, these code producers
successively modify the code: for example, service providers acquire from a software company a generic
product that performs some specific service, and customize the software to fit their needs.

Herein we study approaches to PCC that do not rely on the static assumptions of one-producer and
one-consumer of code. We examine potential usage scenarios for PCC in the context of global computing
and establish conditions under which such scenarios can be realized. Relevant issues that are addressed
include:

Presence of several code producers. In the context of global computing it is often the case that the code to
be run on a consumer generates from a number of different producers and it is assembled in the code
consumer before its execution. In such scenario, who provides the evidence that the full application is
innocuous and correct? Where several code producers develop independent fragments of an application,
is it possible to construct evidence that the application is correct from the evidence that its fragments
are correct? For this, we will study whether existing approaches to modular analysis and verification
can be adapted or extended to the context of multiple producers.

Presence of several code consumers. It is also often the case that applications are collectively run by
several cooperating devices. In such case, can each device check only the part of the application that
it executes? Can we trust the rest of devices involved in an application?

Presence of intermediaries: Sometimes the code has to go through a series of devices (intermediaries) from
the code producer to the code consumers. These intermediaries may modify both the code and the
certificate together. In principle, such intermediates do not need to be trusted since the code consumer
will keep the resulting code with the resulting proof. In other situations, intermediaries might actually
be part of the consumers trusted code base since certain functions, such as proof checking, might be
too expensive for the code consumer and, hence, would be delegated to a trusted proof checker. How
should trust of such intermediaries be managed?
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Presence of several verifiers. Which situations are better handled, or can only be handled, by off-device
PCC in which a code verifier proves the evidence that the code is correct before dispatching it to the
code consumers?

The work performed in this task has addressed a series of scenarios. The presentation, much as the
results achieved to date, are rather heterogeneous. In some cases the presentation is technical, whereas
it remains at an abstract level and is descriptive in other cases. It is important to note that, in order to
fully quantify and deploy, several of the scenarios that are presented below require fundamental research in
areas such as formal verification, programming languages, and sometimes even in application domains not
covered by MOBIUS competences. Furthermore, even for those areas where the MOBIUS consortium has
ample competencies to tackle this kind of research, the required effort is outside of the main focus of the
project.

1.3 Structure of the Document

The structure of the rest of the document is as follows, in Chapter 2 we recall the PCC scenarios which
exist at the beginning of the project. Then, Chapter 3 discusses important issues for the practical uptake
of PCC in the context of global computing, such the translation of source-level properties to compiled-
level properties, the combination of static verification and dynamic checking, the different formats used by
different flavours of PCC and the implications this can have on the flexibility and efficiency of PCC, and how
to have certified certificate checkers. The more speculative part of the deliverable can be found in Chapter 4.
It presents a series of scenarios which are likely to be of interest in the general case of global computing.
The original PCC scenario is extended in order to consider multiple producers, consumers, intermediaries,
external verifiers, and how to effectively handle cases where a certified mobile code is personalized to a
particular consumer, where the consumer can customize the policy, or where the certified code is upgraded
to a new release. Finally, Chapter 5 presents some conclusions and discusses which of the proposed scenarios
and extensions to PCC are subject to ongoing and future work within the context of MOBIUS.
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Chapter 2

Existing PCC Scenarios

This chapter recalls the existing approaches to Proof Carrying Code (PCC) which will be instrumental for
presenting the more advanced scenarios proposed in this document. Three main approaches to PCC are
presented. The three approaches have pros and cons and some approaches are more appropriate than others
for different contexts. Thus, all of them are considered in MOBIUS. The more traditional, and the more
established approaches to date, i.e., type-based PCC and logic-based PCC are described in Sections 2.1 and
2.2, respectively. Finally, Section 2.3 presents abstraction carrying code, a more recent proposal whose main
feature is the use of abstract interpretation as enabling technology. This allows the use of powerful and fully
automatic techniques for reasoning about a wide range of program properties.

2.1 Type-based PCC

While the original proposal for PCC advocates the use of program logics as enabling technology, see Sec-
tion 2.2, the most successful instance and widely deployed application of PCC technology to date, namely
the use of stackmaps in lightweight bytecode verification for CLDC, uses type systems as its enabling tech-
nology. In this section, we briefly review the idea of (lightweight) bytecode verification, and discuss some
emerging applications of type systems for the Java Virtual Machine.

2.1.1 Bytecode Verification

Goals Together with stack inspection [68], bytecode verification [106] is a central element of the Java
security architecture. Its purpose is to check that applets are correctly formed and correctly typed, and
that they do not attempt to perform malicious operations during their execution. To this end, the bytecode
verifier (BCV) performs a structural analysis and a static analysis of bytecode programs.

The first analysis, and the simplest, is a structural analysis of the consistency of the class file and its
constant pool. During this step, which is described in more detail in Chapter 4 of the JVM specification,
one checks the absence of basic errors such as calling a method that does not exist, jumping outside the
scope of the program, or not respecting modifiers such as final. While simple to enforce, these simple
checks are important and failing to enforce them may open the door to attacks. E.g. in 2004, A. Gowdiak
showed how failure to verify that jump instructions remain within code boundaries allows the construction
of a real-life malicious Java midlet application that passes bytecode verification and that could be deployed
on Nokia cell phones supporting the KVM.

The second analysis is a static analysis of the program and is meant to ensure that programs execute in
adherence with a set of safety properties, e.g.:

• values are used with their correct type (to avoid forged pointers) and method signatures are respected;

• no frame stack or operand stack underflow or overflow will occur;

• visibility of methods (private, public, or protected) is compatible with their use;
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• objects and local variables are initialized before being accessed, see e.g. [69];

• subroutines are correctly used, see e.g. [156, 47].

Ensuring such properties is an important step towards guaranteeing security, and the failure to enforce any
of these properties opens the possibility of malicious applets launching attacks.

Besides these properties, the specification of the BCV makes additional requirements that do not directly
affect safety of execution, but are more tailored towards an underlying verification algorithm. For example,
the specification stipulates that, if a program point can be reached along different paths, the height and type
of the operand stacks coincide regardless of the path taken. This rule is enforced by monovariant bytecode
verification, which we describe below, but is not enforced by polyvariant bytecode verification, which is more
permissive.

Implementation Bytecode verification [106] is implemented as a data-flow analysis of a typed virtual
machine which operates on the same principles as the standard JVM except for two crucial differences: the
typed virtual machine manipulates types instead of values, and executes one method at a time.

The data-flow analysis aims at computing solutions of data-flow equations over a lattice derived from
the subtyping relation between JVM types. To this end, it uses a generic algorithm due to G. Kildall [98].
In a nutshell, the algorithm manipulates so-called stackmaps that store, for each program point, a history
structure that represents the program states that have been previously reached at this program point. The
history structure is initialized to the initial state of the method being verified for the first program point, and
to a default state for the other program points. One step of execution proceeds by iterating the execution
function of the virtual machine over the states of the history structure. Each non-default state is chosen
once and the result of the execution of the typed virtual machine on this state is propagated to its possible
successors in the history structure.

Different history structures can be used, reflecting the trade-off between accuracy, efficiency and resource
usage that must be made by bytecode verification methods.

• In a monovariant analysis, the history structure stores one program state, which is the least upper
bound of the states that have been been previously computed at this program point. In such an
analysis, propagating a state in a history structure amounts to taking pointwise the least upper bound
(on the type lattice of the virtual machine) of the types appearing in the two states and storing the
result back at this location. Termination of the analysis is guaranteed since the set of states does not
have infinite ascending chains, and the state stored in the history structure is increasing.

As noted by R. Stata and M. Abadi [156], collapsing history structures to a single state as done in
the monovariant analysis leads to a bytecode verification algorithm that does not handle subroutines
as prescribed by the informal specifications of Sun. More precisely, monovariant bytecode verification
rejects bytecode programs that make a polymorphic use of subroutines. This use of subroutines can
lead to two states, for the same program point, that do not have the same number of local variables
or the same number of elements in the operand stack and that would then be merged state into an
error state, although the execution is valid.

• In a polyvariant analysis, the history structure stores the set of program states that have been previ-
ously computed at this program point. In such an analysis, propagating a state in a history structure
amounts to adding the newly computed state to the history structure. Termination of the analysis is
guaranteed since the set of states is finite, and the size of the history structure is increasing.

Polyvariant bytecode verification provides an accurate treatment of subroutines, and was introduced
independently by P. Brisset (in unpublished work) and by A. Coglio [47]. L. Henrio and B. Serpette [82]
propose an improvement of polyvariant bytecode verification in which compatible states in the history
structure can be merged so as to keep the size of history structures reasonable. It is interesting
that approaching bytecode verification through model-checking [129, 19] results in an analysis which
captures a similar class of programs as polyvariant bytecode verification.
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2.1.2 Lightweight Bytecode Verification and On-device Verification

In the context of devices with limited resources such as CLDC-enabled devices, applications are verified off-
device and, in case of a successful verification, signed and loaded on-device. Such a solution is not optimal
in the sense that it leaves a crucial component of the security architecture outside of the perimeter of the
device.

In order to remedy this deficiency, there are several proposals for circumscribing the trusted computing
base to the device using on-device bytecode verification. One solution adopted in the KVM [46] is to rely
on lightweight bytecode verification (LBCV) [143], a variant of byte code verification whose objective, as
compared to standard bytecode verification techniques, is to minimize computations by requiring that the
program comes equipped with the solution to the dataflow equations. Thus, the role of the lightweight
verifier is confined to checking that the solution is correct, which can be performed in one pass. More
technically, a certificate in lightweight bytecode verification is a function that attaches a stackmap to each
junction point in the program, where a junction point is a program point with more than one predecessor,
i.e., a program point where the results of execution potentially need to be merged. Instead of performing
the merging, a lightweight bytecode verifier will merely verify that for each program point the stackmap
computed by dataflow analysis, using the stackmaps of its predecessors, is compatible with the stackmap
provided by the certificate, and continues its computation with the latter. In this way, a lightweight bytecode
verifier essentially checks that the candidate fixpoint is indeed a fixpoint, and that it relates suitably to the
program. Such a procedure minimizes computations since one just needs to check that the stackmap is indeed
a fixpoint. This, as already mentioned, can be done in a single pass over the program, while simultaneously
computing a stackmap for program points that are not junction points (it would be possible to attach a
stackmap to all program points, but the resulting certificates would be unnecessarily large and require more
checks than with a sparser use of annotations). Lightweight bytecode verification is sound and complete
with respect to bytecode verification, in the sense that if a program P equipped with a certificate c is
accepted by a LBCV, then P is accepted by a BCV, and conversely, if P is accepted by a BCV, then there
exists a certificate c (that can be extracted directly from the fixpoint computed by the BCV) such that P
equipped with the certificate c is accepted by a LBCV. To date, LBCV is the sole instance of PCC to be
widely deployed: currently, LBCV is deployed on all CLDC devices, and it is expected that the use of LBCV
will be generalized to all dialects of Java in the future. Figure 2.1 shows the overall Proof Carrying Code
architecture and protocol for type-based certificates.

Another solution proposed by X. Leroy [105] to perform on-device bytecode verification on devices with
very limited resources such as smart cards, relies on performing a transformation of the code off-device.
The goal of the transformation is to produce code that can be verified in one pass without resorting to
certificates. In order to achieve the desired effect, the transformation ensures that:

• the operand stack is empty at branching instructions and join points;

• registers have a single type throughout execution.

It is reasonably straightforward to implement a transformation that achieves the desired effects; moreover,
the increase in code size and register use is negligible. It is then possible to perform bytecode verification
in one pass on transformed code, because there is no merging to be made at junction points.

2.1.3 Beyond Bytecode Verification

The use of type systems in bytecode verification is a consequence of three crucial factors:

Types are intuitive. Types are a particularly simple form of assertions. They can be explained to the user
without the need to understand precise details about why and how they are used in order to achieve
certain effects;

Types are automatic. While adherence of a program to even the simplest policy is an algorithmically unde-
cidable property, type systems circumvent this obstacle by guaranteeing a safe over-approximation of
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Code Producer Code Consumer

Compiler
Source

Program Execution

OK
Byte Code

Verifier

Typed
Byte Code

(incl. Certificate)

Figure 2.1: PCC architecture and protocol for type-based certificates. Compilers add type information to
bytecode, which therefore includes a certificate. The code consumer type checks the code before executing
it. Only the type checker (bytecode verifier) is part of the trusted computing base.

the desired policy. For example, a branching statement with one unsafe branch will usually be consid-
ered unsafe by a type system. This not only restores decidability but contributes to the aforementioned
intuitiveness of type systems;

Types scale up. Besides their simplicity and the possibility to infer types, type systems allow to reduce the
verification of a complex system into simpler verification tasks involving smaller parts of the system.
Such a compositional approach is a crucial property for making the verification of large, distributed
and reconfigurable systems feasible.

It is thus natural to seek to enforce more complex policies using enhanced bytecode verifiers. In fact, a wide
scope of properties enforceable by type systems have been carried in the literature. We indicate below some
applications that are relevant to MOBIUS.

• Access control and information flow: while the runtime penalty incurred by dynamic access control
is acceptable in practice, it is often desirable to detect statically that an application may attempt
to violate the access control rules, especially if such attempts result in a security exception that
blocks the run-time environment. The problem has been studied both for Java Card [41, 63] and
Java [87, 130]. However, access control mechanisms guarantee which principals access but do not
guarantee that confidential information will not leak to unauthorized principals [118]. In order to avoid
principals (that may access information legitimately) to pass the information unduly, it is desirable
to devise security mechanisms that enforce stronger confidentiality policies such as non-interference
using information-flow type systems. An information flow type system for a representative fragment
of the JVM that includes classes, methods, and exceptions is given in [18];

• Resource control: the MRG project [?] has explored the use of advanced type systems to guarantee
memory policies for JVM programs generated from a functional language. An efficient alternative
to estimate memory usage of Java programs on-device has been proposed by G. Schneider et al [38].
Both approaches seem adaptable to a variety of resource usage policies.

• Exception safety: exception safety is an important property that conditions efficient verification of
more complex safety and security policies. Existing analyses for JVM programs either deal with
specific classes of exceptions [173], or carry a full-blown exception analysis [95]. We believe that
developing appropriate lightweight bytecode verification mechanisms for exception safety is a relevant
objective for MOBIUS.

• Concurrent programs: there have been many type systems for concurrent fragments of the JVM [64,
103].

However, it is noticeable that advanced type systems for the JVM have remained at the level of prototype
implementations, and have not found their way in security architectures. While the situation is partially a
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natural consequence of the exploratory nature of some type systems, P. Fong [66] suggests that the situation
may also result from a more fundamental limitation of the Java platform, namely that the verification
architecture of the JVM is not designed to support extensibility, and advocates the design of extensible
protection mechanisms that can be used to accommodate mechanisms tailored towards enforcing application-
specific properties such as confidentiality, access control, or resource management. Building on earlier work
on proof linking [65], he proposes an architecture that supports pluggable verification modules, and illustrates
the principles of his approach by implementing an access control type system as an instance of a pluggable
verification module.

2.2 Logic-based PCC

The original PCC infrastructure proposed by Necula and Lee (for lack of a better name, we call this variant
Standard Proof Carrying Code, or SPCC), is based on program logics, and more precisely on verification
condition generators. In this section, we briefly review the idea of logic-based PCC, and describe how
MOBIUS can further enhance existing logic-based technology.

2.2.1 Standard PCC

Standard PCC builds upon several elements: a logic, a verification condition generator, a formal represen-
tation of proofs, and a proof checker. Figure 2.2 shows the overall Proof Carrying Code architecture and
protocol. We now briefly describe below each element of SPCC:

A formal logic for specifying and verifying policies. The specification language is used to express require-
ments on the incoming component, and the logic is used to verify that the component meets the
expected requirements. SPCC adopts first-order predicate logic as a formalism to both specify and
verify the correctness of components, and focuses on safety properties. Thus, requirements are ex-
pressed as pre- and post-conditions stating, respectively, conditions to be satisfied by the state before
and after a given procedure or function is invoked.

A verification condition generator (VC Generator). The VC Generator produces, for each component
and safety policy, a set of proof obligations whose provability will be sufficient to ensure that the
component respects the safety policy. SPCC adopts a VC Generator based on programming verifi-
cation techniques such as Hoare-Floyd logics and weakest precondition calculi, and it requires that
components come equipped with extra annotations, e.g., loop invariants that make the generation of
verification conditions feasible.

A formal representation of proofs (Certificates). Certificates provide a formal representation of proofs, and
are used to convey to the code consumer easy-to-verify evidence that the code it receives is secure. In
SPCC, certificates are terms of the lambda calculus, as suggested by the Curry-Howard isomorphism
(a.k.a. the proposition-as-types paradigm) [153], and routinely used in modern proof assistants such
as Coq and LF.

A proof checker that validates certificates against specifications. The objective of a proof checker is to
verify that the certificate does indeed establish the proof obligations generated by the VC Generator.
In SPCC, proof checking is reduced to type checking by virtue of the Curry-Howard isomorphism, so
that the proof checker verifies that the certificate is of the correct type. One very attractive aspect of
this approach is that the proof checker, which forms part of the TCB is particularly simple.

Proof Carrying Code benefits from a number of distinctive features that make it a very appropriate
basis for security architectures for global computers. First, Proof Carrying Code is based on verification
rather than trust. Indeed, Proof Carrying Code focuses on the behavior of downloaded components rather
than on the origin of such components. In particular, it does not require the existence of a global trust
infrastructure (although it can be used in combination with cryptographic based trust infrastructures).
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Figure 2.2: Standard Proof Carrying Code architecture and protocol. Systems and data are depicted by ovals
and boxes, respectively. The shaded systems are part of the trusted computing base. After compiling the
source code, code producers generate verification conditions by applying the VC Generator to the bytecode
program. The conditions are then proved by the prover, resulting in a PCC certificate. Like producers,
consumers apply the VC Generator to bytecode. The certificate must contain sufficient information to allow
the proof checker to discharge these conditions. Only after successful checking, the code is executed.

Second, Proof Carrying Code is transparent for end users. While Proof Carrying Code builds upon ideas
from program verification, which in its full generality requires interactive proofs, the PCC architecture does
not require the code consumers to build proofs. Rather, it requires code consumers to check proofs, which is
fully automatic. Third, the principle of Proof Carrying Code is general; the only restriction on the security
policy is that it should be expressible in the formal logic, which is often very expressive. Besides, the basic
principles of Proof Carrying Code apply to any logic, as exemplified by recent work on Temporal Proof
Carrying Code [25]. Fourth, the Proof Carrying Code architecture is flexible and configurable as it can be
used for different policies. In particular, the VC Generator and the proof checker are independent of the
policy, while the certifying compiler can in principle be adapted to different safety properties. Finally, Proof
Carrying Code technology does not sacrifice performance to security as it advocates for static verification
at compile-time, and therefore does not incur in the overhead cost inherent to dynamic techniques based on
monitoring.

2.2.2 Certifying Compilers

One fundamental issue to be addressed by any practical deployment of logic-based PCC is the generation
of certificates. If logic-based certificates are to be used to verify basic safety properties of code, and it
is expected that large classes of programs carry a certificate, then it is important that certificates are
generated automatically. Certifying compilers [?] extend traditional compilers with a mechanism to generate
automatically certificates for sufficiently simple safety properties, exploiting the information available about
a program during its compilation to produce a certificate that can be checked by the proof checker. Note
that the certifying compiler does not form part of the TCB; nevertheless, it is an essential ingredient of
PCC, since it reduces the burden of verification on the code producer side.

Current Instances

The TILT project [162] introduced the idea of certifying compilation, motivating the development of PCC
and Typed Assembly Languages. The original purpose of this project was to take advantage of Typed
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Intermediate Languages to produce high performance object code from SML. They have shown that much
more performance might be gained if type information is propagated to the last stages of the compiler. In
particular, they were able to enforce safety policies by type-checking invariants, introducing the notion of
certifying analyzer.

An early example of certifying compiler is the Touchstone compiler [?], which was intended to explore
the feasibility of the pioneer research on PCC. This compiler generates, for programs written in a type-
safe fragment of C, a formal proof for type-based safety and memory safety of the resulting program in
DEC Alpha assembly language. The Touchstone compiler automatically inserts the loops invariants in the
resulting program and generated the correctness proofs. The counter part of this approach is that the
ensured properties are restricted to simple properties, namely typing predicates.

Later, Colby et al [48] extended this work by transferring type safety check at Java source level to assem-
bly code. They have implemented a compiler that takes a Java bytecode .class file and generates an Intel
x86 machine code with annotations, together with proof of type safety. First the compiler generates con-
ventional machine code from a .class file, properly annotated for a VC Generator. As well as Touchstone,
the specification of properties and axioms are expressed in a variant of the Edinburgh Logical Framework
and, in this setting, proofs are attempted to be proved automatically. The intention of this work is to deter-
mine whether certifying compilers can be applied to programming languages of realistic size and complexity.
The source language contains advanced features such as objects, exceptions and floating-point arithmetic
and the target language is largely conventional. Although the properties considered are restricted to Java
type safety, they mention as future work an extension of the policies to allow enforcement of constraints on
resource consumption, such as execution time or memory usage.

The FLINT project [149] aims at building a common back-end for various Higher Order and Typed
(HOT) languages. The key idea is based on representing the semantics of several advanced features in a
common intermediate language (FLINT). FLINT is a variant of Girard’s and Reynolds’ polymorphic lambda
calculus (Fomega), with a more expressive type system than the Java VM.

2.2.3 Beyond Standard PCC

The use of logic for program verification is a consequence of three crucial factors.

Logic is expressive. During its long development, logic has been designed to allow for greater and greater
expressiveness, a trend pushed by philosophers and mathematicians. This trend continues with com-
puter scientists developing still more expressiveness in logic to encompass notions of resources and
locality. Today a rich collection of well developed and expressive logics exist for describing computa-
tional systems.

Logic is precise. While types generally over-approximate program behavior, logic can be used to provide
precise statements of program behavior. Special conditions can be assumed and exceptional behaviors
can be described. Via the use of negation and rich quantifier alternation, it is possible to state nearly
arbitrary observations about programs and computational systems.

Logic allows to combine analyses. Logic provides a common setting into which the declarative content of a
typing judgment or other static analyses can be translated. The results of such analyses can then be
placed into a common logic so that conclusions about their combinations can be drawn.

It is thus natural to focus on logic-based PCC infrastructure for certifying Java programs. Relevant issues
to be addressed within MOBIUS include the development of an expressive program logic that captures the
security requirements identified in WP1. In addition, the program logic should support reasoning about
multi-threaded Java applications, and appropriate certificate formats should be defined to allow for compact
and efficiently checkable proofs. Finally, it shall be necessary to develop certificate generation procedures that
rely on interactive proofs at source level. All of these issues shall be developed in appropriate deliverables;
in the forthcoming sections, we briefly examine certificates issues and the generation of certificates from
source level proofs.
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2.3 Abstract Interpretation and Abstraction Carrying Code

The technique of Abstract Interpretation [52] has allowed the development of sophisticated program analyses
which are at the same time provably correct and practical. The semantic approximations produced by such
analyses have been applied to both program optimization and verification.

In particular, the application of abstract interpretation to program verification and debugging has re-
ceived considerable attention. Presenting a survey on the application of abstract interpretation to program
verification is out the scope of this document. See for example [51, 78] and their references.

A particularly interesting instance of verification and debugging based on abstract interpretation has
been proposed and implemented in the Astrée system [51, 53], and applied very successfully in the Aerospace
industry. The use of abstract interpretation for verification, debugging, and run-time testing of assertions
has been proposed by members of the Consortium in [36, 84, 137, 86]. The corresponding framework has
been implemented in the Ciao multi-paradigm programming system.

2.3.1 Abstract Interpretation-based Verification

For concreteness, we review some basic concepts from abstract interpretation. We consider the important
class of semantics referred to as fixpoint semantics. In this setting, a (monotonic) semantic operator (which
we refer to as SP ) is associated with each program P . This SP function operates on a semantic domain D
which is generally assumed to be a complete lattice or, more generally, a chain-complete partial order. The
meaning of the program (which we refer to as [[P ]]) is defined as the least fixpoint of the SP operator, i.e.,
[[P ]] = lfp(SP ). A well-known result is that if SP is continuous, the least fixpoint is the limit of an iterative
process involving at most ω applications of SP and starting from the bottom element of the lattice.

In the abstract interpretation technique, the program P is interpreted over a non-standard domain
called the abstract domain Dα which is simpler than the concrete domain D. The abstract domain Dα

is usually constructed with the objective of computing safe approximations of the semantics of programs,
and the semantics w.r.t. this abstract domain, i.e., the abstract semantics of the program, is computed
(or approximated) by replacing the operators in the program by their abstract counterparts. The abstract
domainDα also has a lattice structure. The concrete and abstract domains are related via a pair of monotonic
mappings: abstraction α : D 7→ Dα, and concretization γ : Dα 7→ D, which relate the two domains by a
Galois insertion (or a Galois connection) [52].

One of the fundamental results of abstract interpretation is that an abstract semantic operator SαP for
a program P can be defined which is correct w.r.t. SP in the sense that [[P ]] ∈ γ(lfp(SαP )). In addition, if
certain conditions hold (e.g., ascending chains are finite in the Dα lattice), then the computation of lfp(SαP )
terminates in a finite number of steps. We will denote lfp(SαP ), i.e., the result of abstract interpretation for
a program P , as [[P ]]α.

In most cases, abstract interpretation based verification is concerned with partial correctness. This can
be interpreted as relating the actual semantics of a program P , i.e., [[P ]], with the intended semantics for the
same program (i.e., the specification) I. In this setting, a program P is partially correct iff [[P ]] ⊆ I. The
key idea in abstract interpretation approach to verification is to actually compute an abstract interpretation
[[P ]]α of [[P ]] and compare [[P ]]α to the intended semantics. We assume in the discussion that the program
specification is given as an abstract semantic value Iα ∈ Dα. Comparison between actual and intended
semantics of the program is most easily done in the same domain, since then the operators on the abstract
lattice, that are typically already defined in the analyzer, can be used to perform this comparison. Clearly,
a sufficient condition for partial correctness is the following: [[P ]]α ⊆ Iα.

This allows applying the wide range of analysis domains available in the abstract interpretation literature
to program verification. These domains vary in accuracy and computational cost and also in the class of
properties they observe.
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2.3.2 Abstract Interpretation of Java Bytecode

For concreteness, MOBIUS focuses on Java bytecode applications (see Deliverable D1.1). The topic of static
analysis of Java bytecode, in general, and abstract interpretation, in particular, has received considerable
attention recently. For example, there is significant body of which relies on abstract interpretation techniques
in order to reason about the information flow in a program, i.e., the dependencies among program variables.
These dependencies are then used to verify that the code does not produce undesired information flows,
i.e., it does not leak confidential information (see Deliverables D1.1 and D2.1 for a detailed presentation
of Information Flow). Briefly, the security policy is often based on a complete lattice of security classes
where information is allowed to flow from variables of a specific security class to variables of higher security
classes. In many cases, only two classes are considered for simplicity: High (confidential) and Low (non-
confidential). The work on information flow analysis for Java bytecode of [72] first translates the bytecode
program into a graph of basic blocks such that the complex control-flow features of the Java bytecode are
made explicit. This graph is translated in a second phase into an equation system of Boolean functions
such that its least solution approximates the information flow of the original program. Work by [15] also
addresses the problem of secure information flow for Java bytecode. This one is based on a static analysis
similar to the type-level abstract interpretation used for standard bytecode verification. However, instead
of types, the approach uses a domain of secrecy levels assigned to classes, method parameters, and returned
values. When a security violation is detected, then the analysis fails. The main difference between these
two approaches is that in [72], after analysis, a system of equations collecting the information flow among
the different variables is obtained. With such equations, one can study if the program is secure for a safety
policy which can be established afterwards. In contrast, in [15] the security domain is fixed a priori, and the
Java bytecode is analyzed by using the corresponding inference rules. If the analysis terminates successfully,
then the program satisfies the security policy.

A recent static analysis based on abstract interpretation has been introduced for computing relations
between the path-length of variables in object oriented programs [155]. By using such relations, the process
allows proving automatically the termination of Java bytecode programs dealing with dynamically allocated
data structures. The basic idea is to transform the original program by abstractly compiling all its methods.
The abstract compilation process generates relational constraints between the formal parameters of the
method and the returned value. These constraints refer to the path-length of variables, i.e., to the cardinality
of the longest chain of pointers that can be followed from a variable. From such constraints, it is possible to
determine (in some cases) if the program terminates by realizing that the path-length of a variable decreases.

Finally, [39] presents a certified algorithm for resource usage analysis aimed at verifying that a program
executes in bounded memory. The certification is based on an abstract interpretation framework imple-
mented in the Coq proof assistant which has been used to provide a complete formalization and formal
verification of all correctness proofs. The method is formalized as a constraint-based static analysis, im-
plemented as a loop-detecting algorithm which detects methods and instructions that may be executed an
unbounded number of times. Concretely, the method detects if the creation of new objects may occur in a
loop (including recursion), leading to unbounded memory consumption.

2.3.3 Abstraction Carrying Code

Abstraction Carrying-Code [6] is a general approach to PCC which is based throughout on the use of abstract
interpretation [52] as enabling technology. The use of abstract interpretation allows ACC to generate
certificates which encode complex properties, including traditional safety issues but also resource-related
properties like, e.g., the resource consumption the execution of a code is going to require. Moreover, ACC
benefits from the maturity and sophistication of the abstract interpretation-based analysis tools available.
In ACC, programs are equipped with a certificate which contains an abstraction of the program behaviour.

The certificate (or abstraction of the program) is automatically computed by an abstract interpretation-
based certifier. Given the set of programs Prog , the set of abstract domains ADom, the set of abstract
safety policies AInt and the set of abstractions ACert , we define an abstract interpretation-based certifier
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as a function certifier : Prog × ADom × AInt 7→ ACert which for a given program P ∈ Prog , an abstract
domain Dα ∈ ADom and a safety policy Iα ∈ AInt generates a certificate Certα ∈ ACert , by using an
abstract interpreter for Dα, which entails that P satisfies Iα. In the following, we denote that Iα and
Certα are specifications given as abstract semantic values of Dα by using the same α. The essential idea
in the certification process carried out in ACC is that a fixpoint static analyzer is used to automatically
infer an abstract model (or simply abstraction) about the mobile code which can then be used to prove
that the code is safe w.r.t. the given policy in a straightforward way. The basics for defining the abstract
interpretation-based certifiers in ACC are summarized in the following points and Equations.

Abstraction generation. As seen in Section 2.3.1, we consider that the meaning of the program, [[P ]], is
defined as the least fixed point of the SP operator, i.e., [[P ]] = lfp(SP ). By using abstract interpretation,
we can usually only compute [[P ]]α, as [[P ]]α = lfp(SαP ). The operator SαP is the abstract counterpart
of SP . Then, we define the abstraction of P as follows:

analyzer(P,Dα) = lfp(SαP ) = [[P ]]α (2.1)

Correctness of analysis ensures that [[P ]]α safely approximates [[P ]], i.e., [[P ]] ∈ γ([[P ]]α).

Verification Condition. Let Certα be a safe approximation of [[P ]]. If an abstract safety specification Iα
can be proved w.r.t. Certα, then P satisfies the safety policy and Certα is a valid certificate:

Certα is a valid certificate for P w.r.t. Iα if Certα v Iα (2.2)

Certification. Together, equations (2.1) and (2.2) define a certifier which provides program fixpoints, [[P ]]α,
as certificates which entail a given safety policy, i.e., by taking Certα = [[P ]]α.

The above certification process carried out by the producer may lead to three different possible status: i)
the verification condition is indeed checked and Certα is considered a valid abstraction, ii) it is disproved,
and thus the certificate is not valid and the code is definitely not safe to run (we should obviously correct
the program before continuing the process); iii) it cannot be proved nor disproved. This latter case happens
because some properties are undecidable and the analyzer performs approximations in order to always
terminate. Therefore, it may not be able to infer precise enough information to verify the conditions.
The user can then provide a more refined description of initial calling patterns or choose a different, finer-
grained, domain. In both the ii) and iii) cases, the certification process needs to be restarted until achieving
a verification condition which meets i).

The second main idea in ACC is that a simple, easy-to-trust abstract interpretation-based checker verifies
the validity of the abstraction on the mobile code. The checker is defined as a specialized abstract interpreter
whose key characteristic is that it does not need to iterate in order to reach a fixpoint (in contrast to standard
analyzers). The basics for defining the abstract interpretation-based checkers in ACC are summarized in
the following two points and Equations.

Checking. If a certificate Certα is a fixpoint of SαP , then SαP (Certα) = Certα. Thus, A checker is a
function checker : Prog × ADom × ACert 7→ bool which for a program P ∈ Prog , an abstract domain
Dα ∈ ADom and a certificate Certα ∈ ACert checks whether Certα is a fixpoint of SαP or not:

checker(P,Dα, Certα) returns true iff (SαP (Certα) ≡ Certα) (2.3)

Verification Condition Regeneration. To retain the safety guarantees, the consumer must regenerate a
trustworthy verification condition –Equation 2.2– and use the incoming certificate to test for adherence
of the safety policy.

P is trusted iff Certα v Iα (2.4)
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Therefore, the general idea in ACC is that, while analysis –equation (2.1)– is an iterative process, which may
traverse (parts of) the abstraction more than once until the fixpoint is reached, checking –equation (2.3)– is
guaranteed to be done in a single pass over the abstraction. This characterization of checking ensures that
the task performed by the consumers is indeed strictly more efficient than the certification carried out by
the producers.

Although ACC, as presented above, is a general proposal not tied to any particular programming
paradigm, existing developments [6, 6, 83, 135, 5] are formalized in the context of (Constraint) Logic
Programming. This programming paradigm offers a good number of advantages for ACC, an important
one being the maturity and sophistication of the analysis tools available for it. It is also a non-trivial case
in many ways, including the fact that logic variables and incomplete data structures essentially represent
respectively pointers and structures containing pointers.

The verification process in LBV can be formulated in a similar way as in Equation (2.3). Although in
this case the single pass of the checker is over the program rather than over the abstraction, as in the ACC
framework. Nevertheless, there are two more differences between both approaches. An important one is
that the fact that ACC is based on abstract interpretation provides automatic means for certifying a very
wide range of properties which brings a greater genericity to the ACC proposal. However, it should be noted
that the ACC framework has been developed at the source-level for now, while in existing PCC frameworks
the code supplier typically packages the certificate with the object code rather than with the source code
(both are untrusted). LBV is in contrast developed in the context of Java bytecode already.

The main ideas in ACC showed in Equations (2.2) and (2.4) have been used to build a PCC architecture
based on certified abstract interpretation in [26]. As in ACC, the code producer generates program certifi-
cates automatically by relying on an abstract interpreter. The main novelty is that in this method code
consumers users proof checkers derived from certified analysers to check certificates. When the consumer
does not have the checker, the producer sends the checker together with its soundnesss proof. This soundess
proof is then verified automatically by Coq type checker and if the verification succeeds, then the certified
checker is installed. This has the important effect of removing the checker from the trusted computing
base.

18



Chapter 3

Certificate Issues and Checkers

Moving the Proof Carrying Code paradigm to the global computer setting imposes many requirements on
the nature and structure of certificates and their checkers that were not part of the initial proposal for PCC
involving only a single code producer and a single code consumer. In this chapter, we examine explicitly
issues involving certificates and their checkers in order to help understand what is known of proofs and
certificates now, and how it can be used to support the number of novel scenarios for PCC that we will
propose in Chapter 4. First, Section 3.1 studies how to extend PCC to deal with non-trivial security policies
and extend the benefits of source-level verification to low-level code by automatically translating certificates
from source-level to bytecode level. Section 3.2 presents the case in which, in contrast to PCC, the security
policies include properties which are not always statically checkable and how to effectively combine static
validation with dynamic checking. Then, Section 3.3 discusses the different formats used by different flavors
of PCC. It is important that we have a flexible and rich notion of “proof” and “certificate” in order to meet
the many demands for safety and security that are implied by global computing. It is also the case that in
recent years, the notion of proof that computer scientists are using in their work has grown to include many
new structures which result from using the successful technology of model checking and SAT (satisfiability)
solvers. These two technologies have found wide acceptance in academics and industry, and both of them can
yield (in principle) certificates that are not naturally based on the conventional notions of typed λ-terms or
proof scripts. Finally, Section 3.4 address the problem of reducing the Trusted Computed Base. We propose
to gain confidence in the Proof Carrying Code infrastructure by proving the correctness of the certificate
checkers.

3.1 Certificate Translation

Certifying compilation provides a means to automatically generate certificates for basic safety properties.
While important in some scenarios, automatic generation of certificates is only possible for a restricted
class of properties and programs. For example, it may not be possible to prove automatically basic safety
properties for complex software, nor sophisticated policies that involve the functional behavior of relatively
simple software. In such situations, one has to use interactive verification environments, possibly combined
with automated techniques such as abstract interpretation. These techniques provide a means to guarantee
that programs are correct with respect to a formal specification, and are increasingly being used to prove
the correctness of safety critical or security sensitive software.

However, interactive verification environments typically operate on source code programs, whereas it is
clearly desirable to obtain correctness guarantees for compiled programs, especially in the context of mobile
code, where code consumers may not have access to the source program or, even so, they may not trust the
compiler. Certificate translation aims to provide the benefits of (possibly interactive) source code verification
to code consumers, building upon the notion of certificate used in Proof Carrying Code. More precisely,
the primary goal of certificate translation is to transform certificates of source programs into certificates of
compiled programs. Certificate translation shares two important points with certifying compilers: it relies
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on the same PCC infrastructure on the consumer side, and certificate translators produce certificates that
are checked by the proof checker, and thus do not form part of the Trusted Computing Base. In addition,
certificate translation is by design very general and can be used to enforce arbitrary properties on arbitrary
programs.

The problem of certificate translation can be expressed informally in a very general form: given a compiler
C(.), a function Cspec(.) to transform specifications, and certificate checkers (expressed as a ternary relation
“c is a certificate that P adheres to φ”, written c : P |= φ), a certificate translator is a function Ccert(.) such
that for all source-level programs P , policies φ, and certificates c,

c : P |= φ =⇒ Ccert(c) : C(P ) |= Cspec(φ)

In order to study certificate translation, we must however instantiate the general problem to more specific
settings in which it can be tackled. We indicate some dimensions of choice for a PCC architecture below:

• Programming Languages and Compilation Infrastructure: In order to provide an environment where
the benefits of interactive verification of source programs are transferred to code consumers, it is nec-
essary to consider at least a three level infrastructure. At the highest level, original source code cer-
tificates are built within a verification infrastructure that will strongly depend on the policy language.
At the bottom level, final executable code is delivered to consumers together with the transformed
certificate. Finally, in the analysis and transformation phases, several unstructured intermediate lan-
guages can be considered. This condition depends on the optimizing infrastructure, what kind of
properties are expected to be inferred and on the desired optimizations. Nevertheless, focus is put in
proof obligations changes entailed by code transformations rather than in how sophisticated are the
optimizations applied.

• Verification infrastructure: Certificate translators are tightly bound to the verification infrastructure.
In order to get a more compact representation of certificate, it is desirable that work within the
MOBIUS project focuses on verification condition generators (VC Generator), which are also used
in many interactive verification environments. A VC Generator can be see as an automatic way of
applying rules of an Hoare logic (a strategy), so this applications of rules do not need to be stored in
the certificate. In this setting, the relation c : P |= φ is more concretely expressed as a set of certificates
ci representing c, such that each ci is intended to validate its corresponding proof obligation poi, each
one of those generated by the VC Generator (Figure 3.1). The certificate c is generated interactively

Figure 3.1: Verification Infrastructure

or automatically transformed from previous phases, depending on which level we are operating on.

• Changes concerning the verification infrastructure. In addition to having to consider languages at
different levels of abstraction, as is traditionally inherent in a compiler infrastructure, some changes
can be introduced in the verification infrastructure. When specifying a property over a program,
the policy language usually refers to state variables that are specific to the execution environment.
Since the gradual decrease of abstraction involves both the programming language and the execution
environment, considerable changes may be introduced in the policy language and the verification
infrastructure. Changes may arise even within the same level of abstraction. For instance, although
at the source level a heavy weight VC Generator is used (for instance, JML contains a modifies clause
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to express frame properties), it would be desirable to use a light weight VC Generator to simplify the
TCB. This choice does not represent an issue as long as the heavy to light conversion comes equipped
with a proper transformation for the certificate. It is important to remark that it is possible to
apply this transformation for a simple imperative language, enforcing invariants by means of symbolic
execution or strongest postcondition calculus. Finally, at first sight the choice between several proof
representations (for instance, lambda terms or proof scripts) affects both size of certificates and the
efficiency of the checking process (see Section 3.3 for a detailed discussion on certificate formats).
In addition, some proof representations imply that certificates can be more easily manipulated when
being translated (e.g., by composition, instantiation or reduction). However, there is some flexibility
since this representation is subject to change along the verification-compilation process.

3.1.1 A Road-map to Certificate Translation

A non optimizing compiler generates, from a source program, a sequence of instructions at the intermediate
level language. Then, a series of optimizations are performed over the intermediate program. Each of these
transformations is applied in an independent step and thus entails translating the certificate.

Figure 3.2: A three level infrastructure

Figure 3.2 depicts the overall compilation schema, where the sequence of optimization phases is repre-
sented by an opaque box, whereas Figure 3.3 shows the distinction between a non optimizing compiler and
a series of independent program optimizations.

A certificate translator for a non-optimizing compiler is relatively simple to define, since compilation
preserves proof obligations (up to minor differences). Nevertheless, dealing with optimizations is more
challenging. Certificate translation is tightly bound to the optimizations considered and according to the
program transformation, proof obligations may be preserved (up to variable renaming, normalization or
arithmetic equivalence). However, it may be possible for some optimizations that the VC Generator gener-
ates, for the optimized program, proof obligations that are different from the original proof obligations, but
equivalent to them up to the results of the analysis. For this reason, certificate translators rely on having
previously certified the analysis that justifies the transformation. One must therefore be able to express the
results of the analysis in the logic of the PCC architecture, and enhance the analyzer so that it produces a
certificate of the analysis for each program.

For the purpose of integrating the proof of correctness of the analysis, optimized programs are augmented
with annotations by using the results of the analysis, expressed as an assertion in the logic of the PCC
architecture. In addition, depending on whether the optimizations considered are intraprocedural or not,
the precondition and postcondition of the optimized function may be modified as well.

There are two approaches to building certifying analyzers: one can either perform the analysis and
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Figure 3.3: Overall picture of the Optimizing Infrastructure

build the certificate simultaneously, or use a standard analysis and use a decision procedure to generate the
certificate post-analysis.

Figure 3.4 depicts the process followed by an optimization phase via a certifying analyzer. Three triples
are shown (square boxes) consisting on a program p, a specification and a proof that p satisfies its properties.
The first group corresponds to the original program, the second one corresponds to the result of the analysis
and the remaining one represents the optimized program, with the modified specification and the translated
certificate. Certificate translation phases are represented by rounded boxes. A certifying analyzer process
takes the result of the analysis RESA and builds a function fA, and a proper certificate that fA satisfies
RESA. Then, an optimizing compiler transforms the program and a certificate translator merges the proof
of the analysis with the original proof to build a certificate for the optimized program.

As shown in Figure 3.4, certifying analyzers do not form part of the Trusted Computing Base. In
particular, no security threat is caused by applying an erroneous analyzer, or by verifying a program whose
assertions are too weak or too strong, or erroneous. In these cases, it will either be impossible to generate
the certificate of the analysis, or of the optimized program.

3.1.2 Relation with Certified Compilation and other Techniques

Certificate translation is related to a number of advanced techniques in compilation, which we review below.

Compiler correctness [77] aims at showing that a compiler preserves the semantics of programs. Certified
compilation [107, 159] advocates the use of a proof assistant for machine-checking the observational equiv-
alence between the input program and the compiler results. In section 2 of [107], Leroy mentions that it is
theoretically possible (however, he does not mention it is the proper way) to derive certificate translation
from certified compilation. However, the approach is both restrictive and impractical.

Traditionally, compiler correctness results establish a relationship between the inputs and outputs of
programs; for example, one standard goal in compiler correctness studies is to show that if running program
p on an initial configuration c returns some final result v, then running the corresponding compiled program
C(p) on the same initial configuration c shall also return the same final result v. Under suitable conditions,
one can also prove the converse, i.e. if executing C(p) with initial configuration c yields the final value
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Figure 3.4: Overall picture of certificate translation

v, then executing p with initial configuration c yields the final value v. It can easily be observed that this
implication may be exploited to transfer evidence from source code programs to compiled programs. Indeed,
assume that we want to prove for some program p that R(c, v) holds whenever executing C(p) with initial
configuration c yields the final value v. By the above implication, it is sufficient to show that R(c, v) holds
whenever executing p with initial configuration c yields the final value v, which is exactly what the certificate
of the source program p should establish.

Thus, it is in principle possible to build certificate translators from certified compilers. There are,
however, some major drawbacks. The approach is impractical because certificates encapsulate the definition
of the compiler and its correctness proof on the one hand, and the source code and its certificate on the
other hand. Checking certificates of compiled programs is more costly than the combination of checking
the correctness of the compiler, checking the certificate of the source program, and compiling the source
program. Thus, certificates are outrageously large, and outrageously costly to check.

On the other hand, the approach is restrictive since with the above notion of certified compiler, properties
are confined to conditions about the input/output behavior of programs. But unfortunately, many interesting
properties of programs must be specified using assertions or ghost variables. A further difficulty with this
approach is that it requires that the source code be accessible to the code consumer, which is in general
not the case. For similar reasons, it is not appropriate to take as certificates of optimized programs pairs
that consist of a certificate for the unoptimized program and of a proof that the optimizations are semantics
preserving.

Another related line of work is translation validation, proposed by A. Pnueli, M. Siegel and E. Singer-
man [128], and credible compilation, proposed by M. Rinard [141]. The latter aims at showing, for each
individual run of the compiler, that the resulting target program implements correctly the source program,
i.e. it has the same semantics. This is achieved by the automatic verification of invariants representing the
result of the analysis (for every program point in the source code). These results are then used in each pro-
gram point to justify the semantic preservation of the observable effects from the source to the transformed
program. This technique does not allow to verify that a given specification is satisfied. Related work has
also been done by X. Rival [142, ?], who uses abstract interpretation techniques to infer invariants at the
source level and compile these invariants for the target level.
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3.2 Combining Static Verification and Dynamic Checking

In mobile, ubiquitous computing environments, we need to achieve functional computing environments in the
presence of many forms of mobility of users, hardware and software. This often demands close integration
of both dynamic checking and static verification methods. A typical example of static verification is Java
bytecode verification and its enhancement to security, as well as various model checking techniques. A basic
example of dynamic checking is access control, where identification of a principal who requests an action,
checking the corresponding policy for that principal, and enforcing the policy, are all done at run-time.
Such access control is hard to carry out statically since, for example, the policy itself can change over time.
Consider for example, that as a result of a security breach on a web server, one needs to tighten the access
control policy inside an organization: this temporarily changes the security policy, and the security monitor
now functions dynamically reflecting this new policy. On the other hand, most of type safety in bytecode
can be verified statically at loading time, and some properties such as secure information flow are known
to be hard, or even impossible, to guarantee by means of run-time checking only. Note that type safety is
a basic requirement for safe usage of pointers, which is fundamental for other security properties (one of
the well-known methods to illegally obtain high-level clearance is through the use of corrupted pointers).
Thus, combining static validation and dynamic checking is often essential for guaranteeing practical security.
Dynamic verification can also involve distributed coordination of authentication and validation of policy.

Another example is the use of program logics (where program logics may be used for validating properties
both statically and dynamically) to guarantee a safety of mobile code through PCC with a sophisticated
local access control policy. Such a framework would be relevant to one of the scenarios discussed in the
S3MS Project [134] where a traveler needs to use mobile code in a foreign city she is visiting. First, a
vendor (provider) of the downloadable code equips the code with an assertion written in an access control
logic and its proof. This assertion will specify which components and resources this code would access.
Second, when this code is downloaded, a local browser checks if this assertion satisfies an access policy using
a proof checker. Once this has been verified, the code will run inside an instrumented protection domain
which guarantees its safe behavior by assuming its statically guaranteed properties as well as enforcing
its dynamically checked properties. That is, some aspects of its access behavior are delegated to dynamic
checking on the basis of its statically guaranteed properties. For example, static checking will guarantee that
the code does not leak information and that it always checks access levels for a class of resources and aborts
if its privilege does not reach them: however access to certain critical resources is checked dynamically.

At a more concrete level, there are several language technologies needed to realize this idea. In the
context of Java, Polymer [20] is an expressive language framework which allows simple specification of run-
time policy on security properties in Java. They studied different ways in which run-time behavior is altered
depending on concerned safety properties. By combining their framework with a validation framework
such as the one proposed by Fong [66, 65] (in which class loading and bytecode verification are separated,
cf. Section 2.1.3), we shall obtain a basis for realizing the combined static/dynamic validation. Again
for Java, Chander and others [43] presented an interesting scheme where the guarantee given by a simple
form of dynamic validation (represented by simple annotations) is subjected to static checking by a user.
By restricting to simple resource usage policies, they can make use of tractable program annotations and
a simple predicate transformer calculus for validation. They experimented their scheme with a standard
archival program written in Java. The use of annotations in this work can be a useful technique in other
contexts. These examples suggest effective integration of static and dynamic validation techniques.

Another concrete example of combined dynamic checking and static verification arises in the context of
abstract interpretation-based verification, discussed in Section 2.3. The fact that undecidable properties are
involved and safe approximations used in the reasoning means that it will not always be possible to achieve
full static verification. A solution in these cases, when the property is amenable to be checked at run time,
is to resort to dynamic checking by including the appropriate run-time tests in the program. This way, a
program which is not statically guaranteed to satisfy the security property is still allowed to execute, but
its execution is monitored in such a way that any possible violation of the security policy will be detected
at run-time before it actually takes place.
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Recently, leveraging the results of static checking to increase the efficiency of dynamic checking has
been discussed for tools that understand the Java Modeling Language [37]. Practically, rich specifications
impose significant overhead during runtime checking. For example, executing an application that uses a
few model classes and rich specifications that use finitely quantified first-order expressions in invariants can
slow execution speed dramatically. If one were to prove that certain specifications were always valid, then
during runtime checking those assertions could be elided. This integration of static and runtime checking is
a planned feature of the MOBIUS tool, developed in Task 3.6.

3.3 Certificate Size, Certification Complexity, Efficiency Trade-offs

Logic has played a significant role in computer science for years. For example, logical formulas have been used
for a wide variety of purposes, ranging from type systems, to formal specifications of computation systems,
to circuit design, to artificial intelligence and natural language semantic. Along with logic formulas, the
related notions of provability and satisfiability have had important roles to play, as can be witnessed by the
frequent use made of theorem proving systems such as Coq and Isabelle and of model checkers and SAT
solvers by computer scientists. One can argue, however, that it was with the introduction of PCC that
proofs-as-objects became important to computer science. Proofs as formal structures have been studied for
decades by logicians and philosophers, such as Gentzen, Prawitz, and Girard, to name a few. Their study
has provided a number of mature and sophisticated approaches to represent proofs so that one can formally
manipulate them: for example, normalization and cut-elimination provide rich ways to compute with proofs.
The results of that theoretical research have been exploited in a number of automatic and interactive theorem
provers where proofs can be stored, manipulated, re-played, etc. But the work in PCC appears to be one
of the first efforts by people working outside of the theorem proving community to actually use proofs as
part of a computer system who primary purpose was not the generation of proofs themselves. Of course,
computer scientists probably have a rather different list of requirements concerning proofs-as-objects than,
say, philosophers. For example, the identity of proofs, a focus on early work on natural deduction [131],
seems completely unimportant for PCC. Also, formal manipulation of proof object has played little role in
PCC, although it is likely to play more of a role as this topic matures, for example with the addition to the
PCC scenario of the program manipulation techniques discussed in Sections 4.5 and 4.7.

Within PCC, many engineering-related concerns are paramount: we shall concern ourselves with the
following four properties.

1. Since certificates need to be stored, communicated, and checked, their size is particularly important. If
certificates are large, communicating them from the code producer to the code consumer can dominate
communication costs. If certificates are small, computationally intensive search might need to be
performed in order to reconstruct details of the implied proof. Throughout this section, we address the
size of certificates in only high-level and qualitative terms: there currently is not enough experimental
evidence and theoretical understanding to provide fully formal ways relate certificate sizes to certificate
formats.

2. Checking that a certificate actually contains a proof of the appropriate safety property, requires using
the computational resources of both memory and computation time. Some certificate formats require
that a certificate is completely loaded prior to it being checked, which implies that memory usage must
accommodate certificate size. Some certificates are, instead, stream-based, in which case the certificate
can be checked as it is read and, as a result, it does not need to be stored.

3. Certificate checkers as software components can range from simple and compact to sophisticated and
multi-functional. Their complexity is tied to other aspects of certificates. Simple certificate checkers
are likely to be based on certificate formats based on simple, inference-rule-level proof structures and,
as such, are likely to require large certificates. On the other hand, certificate checkers can, instead,
contain many specialized checkers for a number of specialized domains. As a result, certificates matched
with such checkers can be smaller since they need only mention the use of a specialized proof checker

25



MOBIUS Deliverable D4.1 Scenarios for Proof-Carrying Code

and not detail the proof structure itself. Since ultimately the correctness of a certificate checker must
be established, hopefully, a simple and compact prover will likely be easier to formally prove correct
than a more sophisticated checker.

4. The high-level structure of certificates as artifacts can play an important part of a certificate’s role in
PCC. It is possible that in many situations, a certificate for an applet is generated by a compiler and
used in exactly one way: it is transmitted with the binary code and checked against that code. If the
certificate has no other role to play, then there is no need for it to have structural properties others than
those required by the compiler and checker. It is also likely, however, that certificates need to be stored
and to survive changes in versions to both the compiler and the checker, as in the component update
scenario presented in Section 4.7. It is also likely that novel PCC architectures can do interesting
things with factoring proof checking if, in fact, certificates can be factored and specialized, as already
discussed in Section 4.5. If such formal manipulation of certificates is important, then the high-level
structure of certificates must be studied carefully.

The literature on PCC discusses essentially four different kinds of certificate formats. We shall refer to
them using the following names: typed λ-terms, proof scripts, oracle strings, and fixed points. We shall now
examine each of these formats in more detail.

3.3.1 Certificates as λ-terms

The original proposal for proof carrying code [122, 121] used certificates that were encoded directly as
dependently typed λ-calculus [79]. Basing certificates on typed λ-calculus allows PCC to exploit a large
and mature literature on the theory and implementation of certificates. For example, a great deal is known
about the high-level structure of typed λ-calculus: proofs can easily be specialized via substitutions (via,
for example, β-reduction) and their structure can be checked statically for a wide range of properties.
Certificates based on λ-terms hold great promise as a setting in which some certificates can be made generic
and, for example, stored in libraries from where they can be retrieved by compilers and then specialized (see
Section 4.5). Given their symbolic nature, it is also likely that they can be used for representing certificates
that are more remote from particular low-level technological considerations. For example, certificates based
on dependently typed λ-terms allows one to first specify a logic [14] in which to conduct a proof: even the
choice of logic can, in principle, be incorporated into certificates and not fixed ahead of time.

The complexity of a checking proper typing of λ-terms has been well studied. In particular, there is a
rich literature describing ways to effectively implement certificate checkers in the style of syntax-directed
type checking. The most naive approach to using typed λ-terms fills proof objects with complete details and
stores many of those details in redundant fashions. As a result, checking certificates can be done without
search and by simple-to-design checkers.

Unfortunately, the flexibilities of using typed λ-terms as certificates does come with significant costs. In
particular, various uses of this approach to PCC has been characterized by a serious problem with respect to
the size of certificates: in particular, certificates are generally huge and can easily be an order of magnitude
larger than the code for which they are associated. Some improvement in size has been made by refining
the kinds of λ-terms actually built in a dependent typed calculus [?] or by explicitly tailoring their structure
using a programming language, such λProlog [9], that supports direct computation on λ-terms. While some
of this research has allowed reducing the size of typed λ-terms, it seems likely that certificates based on this
kind of representations will be too large for at least a wide variety of applications. While typed λ-terms
will almost certainly remain the touchstone reference for certificate formats, it seems that other certificate
formats must also be considered in the hope of achieving more compact proof representations. As mentioned
above, other verification technology yield proof-like objects that are not naturally considered as λ-terms.
Integrating model checking, for example, into PCC seems to require examining other forms of certificates
as well.
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3.3.2 Certificates as Proof Scripts

Theorem provers are often guided to proofs by scripts. Such scripts started out as records of all the interactive
commands that a user issued to guide a theorem prover to a proof. Although proof scripts have evolved
to be more structured objects, they still provide the essential function of guiding a particular prover to a
proof of a particular formula. Since proof scripts can be stored and replayed, they can be seen as providing
certificates, since they are all that is needed to find a proof in a given theorem prover. The MRG project
(see [?]) has experimented with using proof scripts in the role certificate in this fashion.

Since proof scripts were originally designed to store particular commands for particular interactive the-
orem provers, such as Isabelle and Coq, proof scripts will generally only function with that one, particular
theorem prover: both the proof producer and proof checker need to be the same prover. Being closely
attached to a particular prover also makes it possible for the proof script to refer to high-level, sophisticated
routines available within that prover, which can reduce the size of the certificate.

Anchoring proof scripts to a particular prover and, more specifically, to sophisticated and computation-
ally intensive parts of such provers, can significantly reduce the usefulness of proof scripting as certificates
in PCC, because it is not feasible to include an entire theorem prover, such as Isabelle or Coq, on mobile
devices. On the other hand, if scripts were restricted to simple inference rules, it should be possible for
such scripts to be understood by a range of simple and unsophisticated checkers that mobile devices could
include. Of course, such restrictions to simple inference rules can mean that proof scripts are likely to yield
larger certificates. See [12] for a proposal on how proof scripts might be treated more abstractly and, hence,
more flexibly.

Independently of their size and their use of simple or sophisticated commands (inference rules), proof
scripts can, in principle, be processed in a stream-based fashion. Thus, proof scripts can be checked as
they are communicated and they do not need to be stored in their entirety within the proof checker. Such
processing can significantly reduce the memory requirements of a proof checker.

Given the current practice, proof scripts are rather fragile: simple changes in the formulas to be proved
or small changes to the version of the theorem prover can invalidate a proof script. Such fragility might be
improved if certificates are based on a reduced and more universal set of inference rules. Given the possibly
close connections that proof scripts should have with certificates based on typed λ-terms, one might expect
that proof scripts can have similar useful high-level properties.

3.3.3 Certificates as Oracle Strings

A rather striking departure from the above two symbolic approaches to representing proofs is given by the
oracle string approach presented by Necula in [123]. In that approach, a non-deterministic theorem prover
is given the task of proving a theorem: whenever the prover has to pick from n choices, it reads dlog2 ne bits
from an oracle string to resolve that choice. As a result, the oracle is used to drive the theorem prover to a
final proof without search, and as such, the oracle string can be considered a proof. Experimental evidence
suggests that oracle strings can be significantly smaller than proofs based on typed λ-terms. As with proof
scripts, checking an oracle string can be done in a stream-based fashion, so memory demands for the proof
checking device can be low.

While the small size and low cost of checking an oracle string are appealing, a potential problem with
them is that there are no currently known ways to manipulate or compose them. Thus, oracle strings for
subprograms might be hard to use directly when trying to find certificates for larger programs (oracle strings
are based on guiding the search for cut-free proofs). They are also fragile in the sense mentioned for proof
scripts: small changes in the formula to be proved or in the version of the theorem prover can invalidate an
oracle string. It might be possible to provide oracle strings with some useful high-level properties so that
they are less fragile and more modular. Proof theory classifies non-determinism into “don’t care” and “don’t
know” (called asynchronous and synchronous [7]): such formal results might go a long way to provide some
structure to oracles so that they can be composed in meaningful ways.
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3.3.4 Certificates as Fixed Points

As described above in Section 2.3.3, certificates in the Abstraction Carrying Code (ACC) approach to PCC
use a fixed point in an abstract model as a certificate. Basing certificates on (abstract) models instead
of proofs certainly provides interesting new dimensions to apply not only the mature field of abstract
interpretation to PCC but also the general area of model checking.

A possible connection between model checking and proof can be seen in the following simple example:
a safety policy for a mobile device might require that its various resources can only be accessed in certain
fashions (for example, once an applet accesses a password file to do authentication, the applet cannot make
a network connection for fear of making public the password file). Such a safety policy can be specified by
insisting that the applet’s communication behavior is simulated by some given process calculus expression.
Simulation in this context is based on a (greatest) fixed point that can be determined using standard model
checking software or by ACC. Such fixed points can also be seen as describing an actual sequent calculus
proof in a suitable logic [113]. The connection is related to the above mentioned distinctions between “don’t
care” and “don’t known” non-determinism. In particular, if one takes out of the sequent calculus proof
of simulation all of the “don’t care” non-determinism, then the resulting structure essentially contains a
collection of key formulas and terms that were required to know in order to complete a proof. Distilling
down to exactly this information reduces the sequent calculus proof to a particular set of formulas that can
be seen as a simulation fixed point. Conversely, one can also move from a fixed point back to a proof by
inserting the required “don’t care” non-determinism that is needed for building a sequent calculus proof.

While proving a safety property in ACC requires iteratively computing a fixed point, that fixed point
(the certificate) can be checked by a single scan of the fixed point. Also, ACC seems to allow for captur-
ing symbolic and expressive properties using certificates of compact size and checkers that can be of low
sophistication while being general [6].

In early work on PCC, Peter Lee [104] has asked how model checking advances could be useful added
to PCC, since model checkers have become very strong at automatically proving simple theorems about
low-level code. The main problem with using model checkers for PCC is the generation of appropriate
certificates. Fixed points as certificates might well serve to make this connection possible.

3.3.5 Richness of Certificate Formats

Clearly there is a richness to the possible structure of certificates. Just as there has not been just one
programming language (nor just one programming paradigm: cf, object-oriented, imperative, functional,
logic) to solve all programming problems, it is not likely that there will be just one approach to certificates,
particularly given the various engineering demands they must meet in a PCC deployment on a global
computer.

The richness of certificate formats outlined above implies that the notions of proofs and certificates
should be able to accommodate a wide variety of engineering concerns and that the theory of proofs has
come a great distance since its early days as a topic of symbolic and philosophical logic.

Of course, an effort like that implied by the MOBIUS project may well need to pick initially a particular
certificate format that is flexible enough to capture a wide range of envisioned applications and for which
there exists tools and expertise among the consortium members. The diversity above implies, however, that
the proof carrying code effort more broadly will have a great deal of flexibility available to it as different sets
of applications are considered and as technology for proving advance, say, from traditional theorem proving
to model checking to, say, winning strategies in game-based modeling.

3.4 Certified Certificate Checkers

In principle, PCC enables the code receiver to check security properties using a small trusted verifier.
However, when dealing with realistic programming languages, the certificate checker becomes a non-trivial
large program. For example, in the case of the Touchstone verifier, the VC Generator represents several
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thousand lines of C code, having as consequence that “there were errors in that code that escaped the
thorough testing of the infrastructure” [124]. This problem has led to several proposition to reduce the size
of the Trusted Computed Base (TCB) of a PCC architecture. We shall now examine the different proposed
approaches.

3.4.1 Foundational Proof Carrying Code

The foundational proof carrying code (FPCC) of Appel and Felty [10, 8] gives stronger semantic foundations
to PCC. In this approach, the code producer gives a direct proof that, in some “foundational” higher-order
logic, the code respects a given security policy. Compared with Standard Proof Carrying Code, this approach
corresponds to directly embedding the correctness proof of the program analysis into the safety proof. Thus,
with this technique, the VC Generator is removed entirely, and the TCB is minimalist.

3.4.2 Direct Verification of a VC Generator

Instead of simply removing the VC Generator, Wildmoser and Nipkow [171, 170] prove the soundness of
a weakest precondition calculus for a reasonable subset of Java bytecode. Hence, they formally proved the
correctness of a core element of a VC Generator, which can then be excluded from the TCB. Necula and
Schneck [124] also extend a small trusted core VC Generator and describe the protocol that the untrusted
verifier must follow in interactions with the trusted infrastructure.

3.4.3 Certified Program Logic

The Mobile Resource Guarantee (MRG) project [24, 13] has produced a PCC infrastructure with minimal
TCB for proving properties related to the resource consumption of a code with explicit memory manage-
ment. To reason about intermediate code annotated with memory consumption information, they build an
intermediate layer of customized inference rules from a generic program logic. The soundness of this logic
is checked in Isabelle. Certificate checking is then reduced to checking a proof in this dedicated logic.

3.4.4 Certified Abstract Interpretation

Certificate checkers can also be obtained by construction. Certified abstract interpretation is a technique
for extracting a static analyzer from the constructive proof of its correctness: since the Coq proof assistant
allows extracting the computational content of a constructive proof, a Caml implementation can be extracted
from a proof of existence, for any program, of a correct approximation of the concrete program semantics.

Using certified abstract interpretation has the following three advantages:

• the PCC infrastructure has semantic foundations as strong as those of FPCC;

• code certificates can be built from results of untrusted static analyzers without the need for re-proving
these results inside a theorem prover;

• proof carrying proof checkers can be built in such a way that the code consumer can check their
correctness using a type checking mechanism.

The third point opens up for the possibility of safely downloading proof checkers, adding flexibility to the
PCC infrastructure. This direction has been followed by Besson, Jensen and Pichardie in [26] who develop a
certified analysis for array out-of-bounds accesses and extract an optimized and certified certificate checker.

3.4.5 Certified Certificate Checkers in the MOBIUS project

All the previous approaches advocate a formal verification of the certificate checker. In the MOBIUS project
we will fit this approach in a same framework. Part of this infrastructure is detailed in deliverable 3.1 [117]
and is summarized in Figure 3.5.
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Figure 3.5: Certified certificate checker infrastructure

At the bottom is the Coq formal specification of the JVM, named Bicolano. The base logic is then proven
correct with respects to Bicolano. Derivation in this logic can either be obtained by the WP generator or
an advanced type system (as one used in MRG project [24]). Both components are formally proven correct
with respect to the base logic. Certificate checkers for abstraction carrying-code or advanced type checking
(for example, for information flow) can be also directly proved correct with respect to Bicolano. Such
an infrastructure will hence support hybrid certificates composed of different kind of certificates. The
computational capabilities of the Coq system support the creation of foundational certificates, directly
expressed in terms of a Bicolano (or base logic) security property. The figure does not mention possible
interactions between certificate checkers: the WP generator can, for example, benefit from the information
provided by an advanced typed system in order to automatically discharge some proof obligations. Such
scenario for hybrid certificates will be investigated in Task 4.2.
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Chapter 4

Global Computing Scenarios

The distributed and heterogeneous nature of global computers calls for the development of PCC technolo-
gies that go beyond the initial scenario with one code producer and one code consumer, and where code
installation on the consumer side is a one-time process. Indeed, global computers are designed to provide
execution support for distributed applications which are themselves built from components that originate
from several code producers that are transferred to several code consumers, possibly through intermedi-
aries that—perhaps maliciously—modify the components, and possibly the process is repeated for different
software upgrades.

The purpose of this section is, therefore, to consider scenarios that involve multiple intermediaries:
producers, consumers, and verifiers, scenarios where the code can be personalized to a particular consumer,
where the consumer can locally customize the safety policy, and where the code is subject to repeated
upgrades after being installed. Also, we will aim at identifying possible bottlenecks in adapting PCC
techniques to these scenarios. For the sake of clarity, we consider the features above in isolation. However,
naturally, global computing scenarios tend to combine these features. For example, one can envision a
component-based (and thus built from many producers) distributed application to be offered to consumers
via an intermediary that delegates verification (i.e. certificate checking) to several certification entities, and
upon successful completion of certificate checking, makes it available to consumers that will execute it on
different nodes. Less obviously, the features are not necessarily orthogonal: for example, it is conceivable that
intermediaries perform just part of the checking and leave other parts of the checking to the consumer, which
is a special case of multiple verifiers. We discuss one such scenario in Section 4.6, where the intermediary
performs partial verification to let consumers perform on-device verification of customized policies. The
more general problem of intermediaries is discussed in Section 4.1: one central issue here is whether or not
the intermediary is to be trusted and, if it is, how to combine trust and verifiable evidence. Section 4.2
considers issues that arise when applications are assembled from multiple producers: the central issue here
is to support modular verification, so that the code of each component can be certified in isolation, and the
global application can subsequently be verified without re-checking the certificate of each component. As a
generalization of this problem, we consider in Section 4.7 the problem of building certificates incrementally
in order to make provisions within the PCC architecture for components upgrade: a modular architecture
is, of course, a prime importance in global computing. Then, we consider in Section 4.3 the problem of
verifying a distributed application by focusing on making sure that a computation performed remotely on
an untrusted grid is indeed correct. In Section 4.4 we consider the case where we have generic code which
is then personalized to a given consumer. This scenario is of particular interest in the context of global
computing since a large number of devices with different features may co-exist. Finally, in the context of
global computing it is not realistic to expect that all consumers will be able to check all possible certificates.
Thus, in Section 4.5 we consider a scenario which involves the existence of multiple verifiers which allow
performing off-device checking of (part of) the security policy.

Overall, the situations considered in this chapter provide a good indication of the potential and difficulties
of scaling PCC technologies to global computing scenarios. Our intention here is to contribute to a long-term
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road map for PCC research by describing situations that arise naturally in the context of global computers,
but for which the use of PCC technology is currently speculative. Developing appropriate technologies for
all the situations considered is not possible within the scope of MOBIUS, since some of these situations
require either radical evolution in the current software industry or technical research advances that are go
beyond the expertise of this consortium.

4.1 Trusted Intermediaries

In the setting of Proof Carrying Code, we shall use the term “intermediary” to refer to some computer or
computational resource that is involved in the transaction associated to getting code from a code producer
to the code consumer. In a simplified view of PCC, what is called “retail” PCC in Section 5.2.5 of Deliver-
able 1.1, there may be no intermediaries involved: code and certificates simply move over a network (usually
not considered an intermediary) from the code producer to the code consumer. Alternatively, proofs may be
checked by a trusted third party (what we call “wholesale PCC”) who then signs the application, in which
case proofs are not downloaded to the code consumer.

In a more involved and realistic scenario for Proof Carrying Code, various kinds of intermediate compu-
tational resources might be needed. For example, various kinds of libraries might be needed containing, for
example, proofs of the correctness of different software. Since the needs of proof checking might overwhelm
a resource limited machine such as a telephone, actual proof checking could be moved from the telephone
to intermediate machines with more computing power. As we shall see below, various kinds of additional
intermediaries can be considered.

A fundamental problem with admitting intermediaries into the PCC setting is that we must now know
whether or not we can trust or need to trust an intermediary. If the intermediary helps in constructing or
transforming the mobile code and its safety proof (say, by specializing generic proof objects or by replacing
one component by a safe but functionally different component), then that intermediary does not, in fact,
need to be trusted: if the safety proof still matches the mobile code (even after processing by a malicious
intermediary), the code can be considered safe and can be consumed. If, however, the intermediary is
checking a proof of correctness so that the code consumer does not need to do so, then the code consumer
must have a strong degree of trust in the proof checking service.

Let us consider this issue of off-loading proof checking from the code-consuming devices to a network of
certificate checking servers. The servers function would be to check certificates and then assure the code
consumer that certificates are, in fact, correct. Presumably, what the certificate server needs to send to the
code consumer is much smaller and less sophisticated than the actual PCC certificate.

Off loading of certificate checking from mobile, limited resource devices to specially designed servers that
exist to check certificates might be desirable for many reasons.

For example, computationally limited devices, such as telephones, might not be able to check anything
but the simplest certificates and, as a result, the certificates they check are likely to be only the weakest
ones. Moving certificate checking to servers should improve network behavior: if code producers are only
required to submit their full certificates to certificate checking servers (of which there should be a small
number) and not to all code consumers (of which there should be a much larger number), then network
traffic should be reduced. In addition, servers would be able to cache repeated requests for checking the same
code+certificate bundles. Also, more capable servers should make it possible to have more sophisticated
and possibly larger certificates checked: in such a case, higher levels of safety and security of downloaded
code could be achieved. Of course, relying on centralized servers can expose the system to denial-of-service
attacks: an attacker could try to overload the proof-checker server.

Also, PCC requires certain infrastructure commitments: storage and cycles for the certificates, upgrading
of checkers and associated software, etc. While PCC should make devices more secure, it also adds a degree
of complexity to them to achieve that security. Makers of global computers may want to move some of that
complexity off of smaller devices and adopt a more server-client model of certificate checking. Also, certificate
checking is not a frequently required task in contrast to, say, the main operations of code consumers (e.g.,
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database operations, video output, VOIP, etc), so optimizing limited computing resources away from PCC
infrastructure will make sense for small devices.

Moving certificate checking to servers means that the code consumer must trust explicitly the certificate
checking servers. Thus, some infrastructure for managing trust must be adopted. We now consider how to
integrate PCC with trust architectures by considering the questions: How can one use trust to customize the
security policy of PCC? How can trust between host devices affect verification tasks in PCC for distributed
applications? Should the notion of trust be integrated within the logic used for PCC itself?

Trademarks and published certificates

Before considering more sophisticated and explicit models of trust below, consider the following simple
scheme for trust that relies on the fact that certificates are ultimately based on proofs and logic and that
these are publicly available formal systems. Thus, one way to manage trust might be for certificates to be
simply posted by the code producer in their entirety on some public web page. The code consumer might be
willing to take evidence of the certificate being made public as enough reason to trust the certificate. Why?
Given that certificates are public, other agents on the web (run by, say, consumer-based or government-run
agencies) could be downloading certificates and checking them. If any incorrect certificates are found, the
company responsible for publishing the incorrect certificate could lose significant respect and market share.
Thus, companies with trademarks to protect (for example, France Telecom, Google, and VeriSign) might be
expected to take great care with any certificates they sign and, hence, such certificates might be trusted.

Checking certificates offline

Assume that distributor D of programs and certificates wishes to have its programs run on a collection of
devices C. One way that this might be achieved is to designate another machine P that confirms that the
alleged proof is a proper proof of the safety of the associated program. This requires, of course, that the
devices in C trust P and that cryptographic signatures are available for P to sign off on correctness of the
certificates. Such a signature scheme is, of course, open to the possibility that, if the proof checker P has
an error, or is compromised by an attacker, some devices in C can be lead into executing unsafe code. Also,
such signature mechanisms are vulnerable to spoofing: see, for example, the case reported as Microsoft
Security Bulletin MS01-017 (titled “Erroneous VeriSign-Issued Digital Certificates Pose Spoofing Hazard”).
Spoofing attacks might also be managed differently in this setting since, if there is doubt about the truth of
a given signed message, one can go back to the original program and certificate issued by D and have them
checked and signed again.

There might be situations, however, where such negative aspects of an offline checking scenario are
outweighed by the fact that the devices in C, which might be computationally restricted, do not need to
check proofs and that proofs do not need to be sent. If the checker P and the devices C are all part of a
similar authority (such as a phone company), it might be felt that the trust infrastructure between them
can be managed without problems of spoofing and erroneous provers.

Trusting a theorem prover without a proof

There may be situations in which a device is willing to trust a particular theorem prover or compiler without
actually having a proof. In such a situation, the device would presumably need to receive a formula packaged
along with the code, with a cryptographic signature for the package as a whole. The device would then need
to check that (a) the signature is in a list of provers that it trusts and (2) the formula that is asserted to be
a theorem is, in fact, the required safety condition for the interface(s) that the associated code purports to
implement.

A theorem prover might achieve this status of being trusted in at least a couple of ways. A prover might
be an open source project in which the code is inspected, tested, and used by many individuals over a long
period of time. Trustworthiness might be granted by some people based on long-term familiarity with the
code and its operation. On the other hand, the prover might have a brand name associated to it, in which
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case, a corporation might have a financial incentive to ensure its correctness. A bug in a theorem prover
can, of course, be catastrophic: if a prover can prove 0 = 1 then it can prove anything. In the area of trust
management, brand names, such as VeriSign, serve a related purpose.

PCC and Software Certification Entities

Code inspection by software certification entities is a technique that is currently used to certify code as
suitable for mobile devices, in the absence of formal verification. Code inspection could still be used for
legacy components, and for components that would be too expensive to interactively verify.

This means, however, that a signature from a software certification body could be treated by the system
as something that establishes that proof obligations have been fulfilled, even though it does not guarantee
such thing in reality. As a compromise, non-critical properties of a component could be verified by inspection,
and critical properties by formal verification, resulting in a generalized hybrid certificate.

With such generalized, or (partially) manually-generated certificates, it is important not to blindly rely
on the properties checked by human inspection, in machine-checked proofs. Instead, proof checkers need
explicit policies specifying when such evidence should be trusted.

Trust Management

Levels of trust can also be used to lower the bar that a component has to pass in order to be accepted. If
a component is signed as coming from a highly trusted source, or is being used by a trusted principal, it
might, for those reasons, be permitted to access protected resources and send data from those resources to
other hosts. The proof obligations placed on that component might therefore be less restrictive (though not
necessarily simpler) than those of an untrusted or less-trusted component. This technique could potentially
be useful to remove burdensome requirements from trusted developers.

For example, a software development team may consider that trusting each other, and their build ma-
chines, not to introduce malicious code is enough, and the components they are building should only be
required to prove that they implement their API contracts and stay within resource bounds. Other proper-
ties, such as security properties, could be omitted for such trusted components, where security is non-critical.
Conversely, a developer might decide that certain security properties are essential, but full API correctness
is too expensive to verify for the benefits obtained.

Such decisions about the proof obligations to impose for trusted components could be made by (in the
most likely scenario) client or “base” component developers, by system administrators, or by users. These
decisions, perspectives, and negotiations of trust must be encoded in the certificate in a formal manner, so
that devices can automatically understand the trust context of a given certificate check. Logics of trust [109,
110] are used to reason about these situations. To encode such terms, typed property-value pairs, with an
accompanying ontology of trust [93] are the only structures that are necessary. Generalized certificates
contain such structured, ontological metadata. Thus, generalized hybrid certificates are certificates that
combine object code, formal properties of that code, logic and type-based specifications and proofs, and
structured metadata about trust.

In systems that use public key infrastructures [67] (PKIs), revoking a key (encoded in a PKI certificate)
is as or more important than issuing and maintaining the key in the first place. A key is revoked in many
circumstances: the owner has lost the private key or the key’s passphrase, has gone out of business or is
otherwise defunct, a product associated with the key is no longer supported, a more sophisticated encryption
algorithm is introduced, etc.

Revoking a key in a PCC setting has new consequences, especially in light of the above scenarios (e.g.,
in Section 4.1). Different revocation intentions have radically different impact on the validity of PCC
infrastructure entities and PCC certificates themselves. For example, the fact that a prover is no longer
supported by a given company does not suddenly mean that all proofs generated or checked by that prover,
or that indirectly depend upon that prover’s behavior in some fashion, are suddenly invalid. Likewise, if
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a private key has been compromised, this does not mean that all proofs signed with that key are invalid
because they can still be checked by the code consumer.

Given these scenarios, it seems necessary to formally encode revocation intention of keys in PCC infras-
tructures that rely upon any kind of trust infrastructure [108]. Current work on such encodings is ad hoc.
There is no consistency between different applications (e.g., while PGP and GPG have the same encoding,
OpenSSL only resembles them [125]). Such an encoding is not complex in realization, but must be carefully
expressed, in perhaps both mathematical and legal terms, and extensible to new reasons for revocation.

Non-PKI systems frequently rely upon Webs of Trust [97, 93] to encode the trust relationships discussed
in this section. By signing keys, one can indicate relationships between keys, between key owners, and
between the other entities that keys represent.

4.2 Multiple Producers

Software systems are more varied and complicated today than at any point in the history of computing.
There are hundreds of languages, tools, and technologies to choose from for developing software systems in
any given application domain. The field of software engineering research has similar variety, as there are an
enormous number of formalisms, methodologies, and approaches.

Concretely, projects consisting of millions of lines of program code, written in a dozen languages, and
developed and maintained by hundreds of people across multiple companies are now commonplace. Ensuring
the reliability and security of such software systems is an important goal for future research, and partly the
subject of Hoare Grand Challenge on the Verifying Compiler [88]. The adoption of PCC technology would
radically contribute to this goal, as PCC considers proving properties of programs as natural part of software
development, and puts proofs on an equal footing with the programs whose correctness they establish.

In the following sections, we examine the main issues in extending PCC technology to make it appropriate
for such software systems: the development of software by several producers, and the use of multiple
languages and formalisms to develop and validate the code.

4.2.1 PCC for Component-based Software Engineering

Component-based software engineering (CBSE) is a relatively young topic that aims at facilitating the
development and maintenance of software systems through the integration of off-the-shelf components [160].

The main considerations unique to CBSE are:

component identification is necessary because one must identify which components to use to fulfill the
requirements of the decomposed system we wish to construct. The identification of components is
accomplished to date mainly through non-technical means, primarily through developer familiarity
with component developers, companies, and communities. Rarely are components described, even in
an informal fashion.

component development is different because creating components is about describing and writing reusable
and refinable pieces of software [132, 27, 28].

component refinement is necessary because very few components exactly match the identified require-
ments [35].

component integration is the final critical aspect because only through the integration of components can
one produce a software system fulfilling the identified requirements and having the desired properties.

The integration of traditional PCC in a component-based software development process impacts on two
steps and restricts its application to a single programming language.

The first step that is influenced is developing certified components which is achieved using standard
PCC techniques. The second step is certifying the software systems themselves. Validating component-
based software requires the use of compositional verification techniques, so that not only the code but also
its certificate are reused.
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Suppose that the program P is assembled from components P0 . . . Pn provided by different producers
cp0 . . . cpn; each component comes equipped with a specification Si and a certificate ci. In order to certify
that P verifies some specification S, one needs a method to produce a certificate c that P satisfies S from the
certificates of each component. Assuming that each component is a set of Java classes and methods, with
P0 being the main component and S being S0, and that specifications consist of pre- and post-conditions as
well as invariants, we fall back on standard verification techniques.

Figure 4.1: Multiple producers

In other words, we need compositional methods to derive certified properties of the software system
from certified properties of its components. Compositional verification is a challenging subject that re-
mains actively researched, however Figure 4.1 illustrates that in some common scenarios standard verifica-
tion technology is sufficient. (The topic of reasoning about modular programs in the context of abstract
interpretation-based verification is discussed, e.g., in Pietrzak et al [127].)

In addition to these two steps, it may be necessary to transform certificates for components that must
undergo adaptations prior to integration. This subject is further developed in Section 4.5.

Integrating PCC in component-based software development has two main advantages: first, it increases
software reliability and security, which is the goal of PCC. Second, component specifications (against which
certificates are checked) provide very useful information to decide whether components qualify for a certain
task [111, 112]. Furthermore, the range of specifications that are considered within PCC permits a more
extensive qualification process whereby not only functional properties of components are considered, but
also resource consumption and security properties such as confidentiality and integrity of data.

4.2.2 PCC for Multi-Languages Software and Multi-Logics Certificates

The limitations of traditional PCC, particularly its focus on a single programming language, is problematic
in a modern development context. By relying instead on a common PCC platform, next generation CBSE
will be PCC-enabled without this limitation. Additionally, in the future, some of the reasons for choosing to
use multiple programming languages and technologies are complemented by the ability to choose amongst
multiple logics and verification techniques.

Modern multi-language system development is realized in one of several ways:

library-based development where the primary unit of reuse is a small-to-medium sized library, typically
written in the C programming language. C is the lingua franca of libraries, thus it is the dominant
language of reuse today. But because C programs are so difficult to verify, there is little hope of seeing
PCC platforms that contain traditional C libraries.

object-oriented classes where sets of related classes are collected into reusable units like packages or
frameworks [29]. OO frameworks have been the focus of much verification research over the past
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decade, thus they are the main place that we see reuse of verified “proto-components” happening
today in the pre-PCC development space.

Unfortunately, nearly all OO languages and runtimes, until the advent of the Java VM and Microsoft’s
CLR, did not support inter-language interoperability, and only Microsoft’s effort was intended to
support multiple languages by design. Also, the fundamental paradigm adopted by most OO languages,
that of class-as-types (as seen in Java, C++, C#, Eiffel, etc.), is widely considered to be a flawed
theoretical foundation in academic circles [140].

CORBA-based systems was the first-generation, widely-adopted technology for integrating subsystems
written in multiple languages. Subsystems are described using an Interface Definition Language (IDL)
that specifies, in a programming language-independent fashion, the type interfaces of the subsystems.
Some research exists in specifying more than the type interfaces of CORBA subsystems, e.g., the work
of Sivilotti and Zinky [150, 151, 178], but such work has not been widely adopted in the CORBA
community outside of occasional lightweight use of OCL [169].

web services are the latest craze in multi-language system integration. Essentially, web services are not
critically different than CORBA in nearly all ways.

Initial work in component identification in modern multi-language development environments focused
on informal component descriptions using natural language, structured keyword-based descriptions called
facets, and module interconnection languages [133, 11]. These approaches were shown to be unscalable
without the incorporation of a significant amount of tool and organizational support [157, 174, 157, 57].

The idea of generalized certificates were inspired by these challenges and were first used in multi-language,
mobile, distributed component-based systems like the Infospheres Infrastructure [44].

Components in this frameworks, called djinns, had human readable and machine parsable metadata
attached to them [75]. This structured metadata included such information as: the author(s) of the com-
ponent, the corporate entity supporting the component, the component’s version number, the URLs from
which the component’s source or binary might be downloaded, and a summary of the component’s purpose.

Because of the use of human-readable, structured descriptions and URLs, components could be discovered
and evaluated through the use of standard web technologies like search engines [99]. Unfortunately, these
descriptions did not contain some of the essential ingredients necessary for a PCC platform, namely formal
specifications of component properties.

Other groups focused on integrating formal methods into CBSE. Cramer et al [54] summarize some
of the early methods including algebraic specifications, the Π component-based description language, and
transformational systems. Early work on formal specifications of component properties focused less on
behavioral properties and more on formalizing the aforementioned informal properties (a la early certificates)
and resources [165]. Finally, once these pieces were in place reuse-centric software development methods
were proposed [172], sometimes with tool support.

The research tool support created to date, but which has never left the lab, has come in two main forms:
reuse repositories that experiment with different kinds of (usually informal) specification matching [60]
(though rarely formal specifications were used [73]) and knowledge-based environments [58].

4.3 Multiple Consumers

Global computers provide support for remote or distributed execution of algorithms that cannot be executed
on a single node, either because the algorithm is computation-intensive, or because the node has restricted
resources. These scenarios have generally not been contemplated by work on PCC (excepted by the Concert
project [50]), and indeed PCC is not immediately applicable to all such scenarios.
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Figure 4.2: Multiple consumers

4.3.1 Distributed Computations among Trusted Hosts

Ensuring security or correctness of distributed programs is greatly facilitated if distributed computation
takes place among trusted hosts. Here the program P is executed among nodes which trust each other, so
that ensuring that the distributed execution of P is secure or correct can be reduced to proving the security
or correctness of each distributed fragment. Suppose, as in Figure 4.2, that the program P is partitioned
into fragments P0 . . . Pn to be executed on different hosts h0 . . . hn, with P0 being the “main” fragment
of the program (we consider a static distribution of code for clarity, but the argument can be extended to
evolving sets of nodes).

Functional correctness: in order to guarantee that the overall program behaves as expected, it is sufficient
that each fragment comes equipped with a specification Si and a certificate ci that can be checked
locally on hi (or delegated to trusted intermediaries), and that the specification S0 of P0 ensures
the overall program correctness. Assuming that programs are written in Java and each fragment of
the program corresponds to a set of classes with its methods, we fall back on standard verification
techniques;

Security: in distributed scenarios, confidentiality and integrity are the main issues. In order to guarantee
both properties, one must rely on network security, e.g. that data travels encrypted and signed
so that confidential data cannot be leaked during communication over the network or that tainted
data can be detected. One must also ensure that each program fragment guarantees confidentiality
and integrity in isolation, which can be achieved by using program logics or type systems. One
interesting approach to enforce confidentiality/integrity without necessarily trusting all hosts is secure
program partitioning [177], which divides a program to prevent information leaks or integrity violations.
Program partitioning can be tuned to reflect the level of trust one has in the different nodes, e.g. so
that critical program fragments are directed towards reliable hosts whereas non-critical fragments are
sent to an arbitrary host.

While the above considerations are primarily directed towards genuinely distributed applications, a promis-
ing trend of operating systems research consists in exploiting the benefits of partitioning on a single
node [144].

4.3.2 Distributed Computations among Untrusted Hosts

For many scenarios, including grid computing, the assumption of a trust relationship between different hosts
must be abandoned. Thus, a user U asking a remote node1 to perform some computation c with some set

1In this scenario R has to trust the code sent to it by U . Since R can protect itself using a traditional PCC architecture, we
focus here on the security of U
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of values ~v on his behalf cannot presume upon reception of the result r that R is returning the result of c,
nor that R has been performing c with the correct set ~v of values, nor even that R has been using c at all!
In order to ensure that r is correct, the only solution for U is to go through independent validation of r.
Since U cannot in general perform the computations independently or relying only on trusted hosts, because
the resources to perform the computations on site or via trusted hosts are not available, it must rely on a
checker that verifies the correctness of the result, and that can be performed on site or via trusted hosts.
In simple instances, no additional information is required to check the correctness of the result efficiently
(e.g. when the algorithm is computing a solution to a system of equations), but in other instances one needs
additional information in order to verify efficiently that the result is indeed correct.

While PCC is not directly targeted towards ensuring that the results of remote computations are correct,
one can adapt ideas from PCC and develop a variant of PCC, which we call Proof-Carrying Result, that
can be used to secure distributed computations in global computers.

Proof Carrying Result Proof Carrying Result (PCR) is an approach which requires that the result
comes equipped with a certificate which provides certain evidence that the computation is correct; certificates
typically consist of a combination of data (additional witnesses that are produced during the computation
and used to build the result) and proofs (that establish some expected property of the witnesses, or of the
final result). Proof Carrying Result inherits many benefits from PCC:

PCR is based on verification rather than trust. Indeed, PCR focuses on mathematical properties of the
result rather than on its origins. In particular, it does not require the existence of a global trust
infrastructure (although as for PCC it can be used in combination with cryptographic based trust
infrastructures).

PCR is transparent for end users. While PCR uses certifying algorithms, which may be difficult to program
or consuming to run, PCR requires code consumers only to check certificates, which is fully automatic,
and not to build these certificates;

PCR is general, flexible and configurable. Formal frameworks for certificates, e.g. type theory, are very
expressive, and lend themselves to efficient verification, thus PCR is in principle applicable to a wide
range of algorithms. Furthermore, it is possible to specialize certificates and certificate checkers for
each particular algorithm.

PCR is resource-aware. Indeed, PCR technology advocates for succinct certificates that can be checked
efficiently and aims at avoiding performing costly computations.

Formally, given a function f ∈ A → B and an entry a ∈ A, the computation of f(a) is delegated to an
untrusted party. The result is returned and verified by the user. To do this, the user must be equipped with
a function checkf ∈ A × B → bool such that ∀(a, b) ∈ A × B, checkf (a, b) = true ⇒ b = f(a). A broader
perspective of PCR deals with finding b such that R(a, b), where the relation R holds the specification to a
certain problem. This is, we generalize the functional specification f to a general input-output specification
R.

Proof Carrying Result serves similar purposes than probabilistic result checking proposed by M. Blum
and S. Kannan [31]. However, both approaches fundamentally differ at a technical level: whereas PCR may
require additional information to ensure correctness, probabilistic result checking emphasizes probabilistic
verification and does not require additional information.

In general, PCR allows the untrusted part to provide additional data H intended to ease the checking
process. Thus, one may have a checker function checkR ∈ A × B ×H → bool such that checkR(a, b, h) ⇒
R(a, b). This means that no matter what value of h is provided, the check will fail unless R(a, b) is true.
The untrusted party is in charge of providing an appropriate h to convince the user that b is an appropriate
answer. As we shall see, the existence and construction of such an h is at the core of efficient result
certification algorithms.

39



MOBIUS Deliverable D4.1 Scenarios for Proof-Carrying Code

Figure 4.3: Result Checking Scheme

One can think of the additional hints as responsible for selecting a successful trace in a non-deterministic
solver program. Thus, the complexity of checkers for a problem is the same as that of a non-deterministic
solver where hint reads have been transformed to nondeterministic reads. In the case of decision problems in
NP, a polynomially checkable certificate may be given for positive answers. A decision problem is in co-NP
iff negative answers have polynomially checkable certificates. Thus the set of decision problems for which
polynomial checker may be given is exactly NP ∩ co-NP [114].

The task of designing such a checker program and an oracle (result producer) providing well defined
hints to eliminate non-deterministic choices seems to be highly creative. In what follows we show some
examples of certifying algorithms and data structures that illustrate the challenge posed by this approach.

Challenge 1: certifying algorithms The development of proof carrying result is conditioned by
an evolution in the design of algorithms in scientific disciplines and fields that rely on software-intensive
computations that must be executed over Grids. In order to make PCR a practical tool for secure remote
computations, the discipline of certifying algorithms must become prevalent. More concretely, one needs
to develop for each algorithm A a compact format for certificates, typically a data structure used to store
auxiliary values that can be used to check the result of a run of A efficiently, as well as a means to generate
certificates and check them efficiently. Devising such certifying algorithms is a fundamental challenge for
PCR.

One basic example of certifying algorithm is the extended GCD (Greatest Common Denominator) algo-
rithm: although GCD does not allow a straightforward checker, extended GCD allows a simple and efficient
checker, and is itself not much harder to compute.

GCD(x, y) = d where d|x ∧ d|y ∧
(
∀d′, d′|x ∧ d′|y ⇒ d′|d

)
The extended GCD algorithm further computes u and v such that d = ux+ vy. Such a u and v constitute
the certificate; in this case, the certificate always exists and implies the minimality of d, i.e. they guarantee
that the quantified part of the specification is true.

One may notice that it is simple to obtain d once u and v have been provided. This shows that in a
result certification framework, the hint or certificate may become more important than the actual result. A
plain result provided by an untrusted party has no value, whereas a certificate does.

In some more advanced cases, certificates may not always exist or may be harder to compute. In [74],
B. Grégoire, L. Théry and B. Werner build efficient primality checkers using Pocklington’s criterion, which
provides a set of sufficient conditions that must be verified by some partial prime decomposition of P − 1
to ensure that the number P is prime.
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Figure 4.4: Extended GCD

Pocklington’s criterion Given a natural number n > 1, a witness a, and some pairs (p1, α1), . . ., (pk, αk),
it is sufficient for n to be prime that the following conditions hold:

p1 . . . pk are prime numbers (4.0)

(pα1
1 . . . pαk

k ) | (n− 1) (4.1)

an−1 = 1(≡ n) (4.2)

∀i ∈ {1, . . . , k} gcd(a
n−1
pi − 1, n) = 1 (4.3)

pα1
1 . . . pαk

k >
√
n. (4.4)

From the point of view of PCR, there are two simple but central observations to make:

• given n, it requires much more computation power to determine suitable numbers a, p1, α1, . . . , qk, αk,
which constitute a Pocklington certificate, than to check that these numbers verify the conditions 1-4
above;

• checking primality of a natural number n with certificate p1, . . . , pk and a boils down to

1. conditions 1-4 can be checked by purely numerical computations. Verification of condition 3, may
make further use of PCR infrastructure by requiring an extended GCD certificate to be provided.

2. verification of condition 0 can be done recursively. Note, however, that Pocklington’s criterion
cannot prove that 2 is prime, so that another form of certificate is required for 2 (it can be no
certificate at all, since 2 is trivially prime).

There are other theorems that suggest certificate formats and checkers for primality, notably in relation
with elliptic curve cryptography; however these certificates are usually difficult to build. Algorithms to
check primality are interesting in the context of PCR and secure distributed computations, in particular for
deploying cryptography on devices whose resources are so restricted that they must rely on external devices,
e.g. to generate random prime numbers.

Although the idea of certifying algorithms is not widely spread, there are several interesting examples of
certifying algorithms beyond primality. Indeed, early approaches to result checking recognized that it may
be useful to return, together with the actual result being calculated, additional hints that enable the result
to be verified by a simple and efficient checker—whereas the lack of those hints would only leave space for
a checker that is as complex or inefficient as the original program. For example, Melhorn [114] identifies
functions providing these hints as having extended interfaces or providing certified results, and a number of
other examples can be found in the literature. We point out some of them in the following non-exhaustive
list with the intention of illustrating application domains of the idea.
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• Solving linear equations (i.e. Ax = b for x). If a solution exists, x can be provided. Insolubility can
be certified by providing c such that cA = 0 and cb 6= 0.

• Checking whether a polynomial P (x1, . . . , xn) is non negative is in general a difficult problem. However,
a sufficient condition is being able to decompose it into the sum of squares (SOS). This is, writing P (~x)
as ΣiP

2
i (~x). D. Hilbert showed that non negative polynomials can always be presented in a SOS form

iff degree(P ) = 2 or n = 1 or (n, degree(P )) = (2, 4). In the general case, E. Artin showed that a non
negative polynomial can always be expressed as the sum of the squares of rational functions. While a
SOS form provides an efficiently checkable non negativity certificate, a negative valuation P (~x) may
be provided to certify the contrary. Powerful semi-decision procedures for the decomposition into SOS
have been implemented in HOL light [80].

Figure 4.5: Sum of squares

• Searching for an element e in a sorted list L. Here the hint is the index i of the element (L.i = e) we
are searching for, or the smallest number superior to it (∀j : 0 ≤ j < i⇒ L.j < e and i ≤ j < #L⇒
e < L.j).

• Sorting a list L. Here the hint is the permutation P such that P (L) is sorted. The permutation P
may be represented as a list of pointers (indexes). In this case, a verification would consist in checking
that each valid index appears exactly once. Lastly, one is left with checking P (L) to be sorted which
is also a task that has linear complexity with respect to the size of the original list.
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• Deciding if a propositional formula is satisfiable (SAT). If the formula is satisfiable, a satisfying as-
signment may be provided. No succinct certificate is known for non-satisfiable formulas. However,
St̊almarks algorithm provides reasonable efficiency for practical industrial applications such as railway
interlocking systems. Furthermore, it allows a conceptual separation between proof searching and
proof checking. This has been exploited by J. Harrison [94] to develop in his implementation of the
algorithm as a HOL rule.

• Finding a maximal flow [62] in a network graph G. This problem deals with maximizing the flow
f from a source node s to a sink node t respecting the edge capacities of the underlying directed
graph. The max-flow min-cut theorem states that for such a flow to be maximal, there must be a
cut (split of the nodes into two sets S 3 s and T 3 t) such that all the edges from S to T are fully
used by f . Standard algorithms may deliver both the flow f and the cut c without compromising the
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complexity. There are many problems such as maximal matchings that may be considered refinements
of the network flow problems and have themselves a refined notion of hint. Applications of these
algorithm range from commodity routing to computer vision [34].

• Planarity testing is the problem of recognizing whether a graph G may be drawn in the plane without
it’s edges crossing. These graphs appear naturally in circuit design and many kinds of maps. If the
answer is affirmative, straight-line planar-grid embeddings may be given as witness. If the graph is
non-planar, Kuratowski’s reduction theorem states that either the fully connected 5-vertex graph K5

or the utility graph K3,3 may be found as a graph minor and provided as a witness. This approach
has been implemented in LEDA [115].

• Recognizing interval graphs and permutation graphs. Interval graphs are graphs in which each node
represents an interval of the real numbers, and each edge represents a non empty intersection be-
tween them. They abstract relevant information from an actual set of intervals and find a number
of applications in scheduling, circuit design, traffic control, genetics and other problem domains. In
permutation graphs each node represents an element and edges identify the elements that change their
relative ordered after a certain permutation π. Permutation graphs uniquely identifies a permutation
π and allow running graph algorithms requiring a classical representation. Recognizing these types
graphs are two decision problems for which efficiently checkable certificates may be provided [101]. We
present this example to illustrate that result certification is not limited to the most classical problems
and may be used in any context that provides an advantage to nondeterministic algorithms, either
because they need to perform search or to iterate until a fixed point is found.

Certifying algorithms have not only been studied from a theoretical perspective, but they are also used in
a number of practical systems, most notably for computational geometry.

The computational geometry algorithm library [42], CGAL, systematically incorporates checks into it’s
code. Checks can be classified into four categories: preconditions, postconditions, assertions, and warnings.
In the first three cases, the code halts in the case of failure whereas the last only leads to a warning. Result
checking is analogous to postcondition checking as they both verify that a routine has done what it promised
to do. Both CGAL and LEDA (library of efficient data types and algorithms [115]) provide a host of domain
specific functions that allow the user to verify significant assertions. These assertions are in many cases the
postconditions of other routines. A repeating pattern is having an is valid method in each class that checks
the class invariant for validity.

The approach taken by both CGAL and LEDA aims at detecting implementation bugs rather than
having an untrusted part perform result critical computation. The checker functions implemented in these
libraries provide an algorithmic base for a PCR infrastructure. However, there are certain points that need
to be addressed in a PCR infrastructure:

1. give emphasis to additional hints even if they imply more computation by the untrusted party.

2. provide a formal notion of certificates applicable in a wide range of domains.

3. describe communication channel between user and untrusted party such as remote procedure call.

4. formally verify result checkers for stronger correctness guarantees.

Challenge 2: infrastructure A desirable environment for producing certified results should consist
of a library of certifying functions together with a systematic mechanism for combining them and producing
certified programs. We distinguish two possible approaches to how to compose oracle/checker pairs to solve
larger problems.

• A direct approach is to regard the different subproblems as independent (see figure 4.6). Each time
the checker reaches a point where a certificate is needed, it makes a request to the corresponding
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Figure 4.6: Independent oracles

oracle providing the relevant input data and subsequently receives the certified result and proceeds to
check it. This approach has the advantage of allowing a straightforward distributed implementation of
the oracle. Furthermore, it allows the checker to use private information in parts of the computation
process. On the downside, oracles may not precalculate results, making a higher latency expectable.
Furthermore, designing reduced input interfaces to oracles becomes a concern.

• Figure 4.7 represents the case in which both oracle and checker are structured in the same way. Here,
the oracle and the checker execute in lock-step. This is, they maintain the same state in corresponding
points of the programs and synchronize at oraclei/checkeri. This requires that the oraclei/checkeri not
modify the state, or modify it in exactly the same manner. In this approach, there is only one entity
responsible for providing all intermediate certificates. Furthermore, the original input is consumed by
both the checker and the oracle. From this point on, the oracle will be able to provide all intermediate
certificates without need of further input. That is to say, the oracle knows what certificate the checker is
expecting without the checker even asking for it. This allows the oracle to precalculate the certificates,
even before the checker has reached the point where they are needed. Furthermore, there are many
problems such as searching in a sorted list, for which an efficient checker may be defined provided
there is no need for communicating the input to the oracle (i.e. passing the sorted list as parameter).
A fast result checking approach is possible thanks to the identical states of oracle and the checker.
However, this approach may require the oracle to execute an excessive amount of ”glue code” to keep
in lockstep with the checker. In addition, extra care must be taken so the glue code executes in a
deterministic manner that allows the oracle to correctly predict the checker’s needs.

One issue, is to develop appropriate structuring mechanisms for certificates. When checkers are not
combined, hints may be structured in a static ad-hoc manner. If one wishes to compose these basic block
checkers in a systematic manner to produce more complex result certifying programs, choosing a structure
for communicating the hints becomes a non trivial design decision. In an imperative context, one may
consider the sequential concatenation (stream) of the hints following execution order (time stamp ordering).
This gives both checker and producer little or no control flow flexibility. It is thus unacceptable for functional
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Figure 4.7: Lockstep Checker

programs, as it makes the evaluation order of subexpressions important. Another possibility, is to tag each
hint with the checking context to which it corresponds (dictionary). The tags allow for flexibility in the
execution order but require agreement upon a tagging method. It remains to be seen which approach can
be practically implemented.

A further open question is understanding the logic required to express recursive or mutually recursive
checkers. For example, in primality testing, the checker must apply the primality test on smaller numbers
provided in the hint. This process continues until the numbers are so small that the checker is capable of
independently verifying their primality. Since the auxiliary problems to be solved are in part determined
by the untrusted part, the checker may be interested in actively enforcing termination by checking that
recursive calls are made on successively decreasing arguments.

Challenge 3: interplay between PCR and program verification While the primary goal of PCR
is to enable trust in distributed computations, it is also possible to exploit PCR for simplifying the task
of program verification. The basic idea is to cut-off program verification tasks by isolating subroutines for
which appropriate checkers exist, and by verifying these checkers instead of these subroutines. This process
is illustrated in Figure 4.8, and avoids verifying complex algorithms whose correctness is not crucial to prove
the correctness of the overall program (provided correct checkers can be used). For example, Xavier Leroy
[107] presents a formal proof of compiler correctness in which result certification is used for checking graph
colorings. In retrospect, the author advocates using result certification for verifying the intermediate results
of many compiler specific algorithms such as Kildall’s dataflow inequation solver, RTL type reconstruction
and parallel move. One could proceed likewise for proving that certificate translation transforms valid
certificates into valid certificates, provided the results of the certifying analyzer are correct. PRC hence
appears as an interesting technique for program verification. In a PCC context, we can furthermore notice
that, if a program incorporates result checking, then it would be easier to generate a correctness proof
certificate.

Dually, a particular algorithm may be efficiently handled using PCR if several advanced certificate
checkers are used simultaneously. In such cases, it is legitimate that the user questions the reliability of
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Figure 4.8: Certified program

these checkers, that are likely to originate from untrusted parties. Fortunately, PCC technology allows us to
address the issue of trusting certificate checkers for PCR by requiring that certificate checkers are themselves
provided with a PCC certificate, as illustrated in Figure 4.9.

Figure 4.9: Verified Checker

4.4 Multiple Verifiers

It would be infeasible for code consumers, within global scale distributed systems, to have previous knowledge
of all verifiers that might be needed during execution. Also, it could be the case that a code consumer only
needs to verify a small number of properties, for example because it will execute only an isolated part of the
received code. Moreover, in some configurations the code consumer may not be able to perform full proof
verification due to limited computational capacity (e.g. JavaCard).

Hence, full proof verification may have to take place in a separate site, allowing verification instances to
be reused, when bundled with the original code and its proof. For this scenario, code consumers still need
to check compliance with their safety policies, but the code arrives pre-verified.

The basic verification protocol works as follows. A code producer generates a program together with a
set of assertions (the PCC). Then the code and its proof are submitted to a trusted verifier, which performs
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full verification. If the verification succeeds, the trusted verifier signs the PCC data and returns it to the
code producer. The result is pre-verified proof carrying code.

When a code consumer receives the trusted PCC data, it submits it to the local verifier along with
the local safety policy. The local verifier establishes the authenticity of the received proof, checks its
correspondence with the program, and then performs verification of the local policy. The bundled (trusted)
verification work is not duplicated; the original assertions are considered to hold, and are only used to try
to infer the local policy. If that succeeds, the code can be executed safely at the receiver.

For example, consider a core program that accepts plugins created by different code providers. Assume
that the code consumer, i.e. the core program, employs a specific security policy, for instance one constraining
the communication channels that can be used by plugins, to a certain set (see [175] for a type-based
approach). Using the proposed multiple verifier PCC architecture, plugins would arrive with trusted proofs
of their communication properties, and the code consumer would be relieved from the computational burden
of performing full proof-checking; instead, it would check whether its local policy is satisfied based on the
received certificate, which in this case would mean that the local set of allowed channels should be a superset
of the channels that can possibly be used in the plugin code. Notice that in order to verify this property the
main application only needs to inspect the trusted certificate without having to Analise the actual plugin
code.

There are manifold advantages in using this approach to verification. Firstly, the local policy of the
consumer can be (or may only require) a fraction of the full assertions that were derived from the received
code, and the local verifier only needs to assert that subset, with the help of the proof and the trusted
verification which is reused. Secondly, this system may enable more complex and modular verification, in
which several consistent logics can be used at the trusted verifiers for the sub-components of received code,
with pre-verified policies composed at the local verifier to try and assert the full local policy.

The latter highlights the connection with multiple producers (Section 4.2): in a realistic scenario, mobile
programs arriving at a code consumer may consist of several heterogeneous sub-components, each requiring
potentially different verification techniques by specialized verifiers. Thus, multiple trusted verifiers are
necessary in order to assert safety policies for multiple pieces of code composed at the consumer.

4.4.1 Security Objectives and Verification Protocol

In order for proof certificates to be trusted by code consumers, there must be some reassurance that the
mentioned verifiers are genuine and indeed ‘believe’ that proofs hold for the received code. Thus, such
verification reuse requires a trust relationship between local and remote verifiers, and specifically, that code
providers and consumers agree on a set of trusted remote verifiers. The required trust relationship can be
established using the trust management techniques introduced in Section 4.1. In this subsection, we explain
the scenario using the notation from the standard cryptographic techniques, Public Key Infrastructure (PKI)
scheme.

Our high-level security objective is to satisfy scenarios where a user U receives executable code M from
some provider P. The code M arrives bundled with a set of assertions A, which have been proof-checked
by a trusted verification service TV. Before the code M can be allowed to execute locally at U, it must be
found to adhere to a local security policy (another set of assertions) B; this additional proof-checking task
is performed by the local verification service LV.

Verification takes place as described by the following protocol, shown in Figure 4.10. The notation
P → TV : (M,A) means that P sends a composite message (M, A) to TV, which in this case constitutes a
request for endorsement of the proof A of program M by the verification service at TV.

1. P → TV : (M, A)
2. TV → P : Sig{M,A}TV

3. P → U : (M, A, Sig{M,A}TV)
4. U → LV : (M, A, B, Sig{M,A}TV)
5. LV → U : Sig{M,B}LV
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TV

P

U

LV

PSfrag replacements

1. (M,A)

2. Sig{M,A}TV

3. (M,A, Sig{M,A}TV )

4. (M,A,B, Sig{M,A}TV )

5. Sig{M,B}LV

TV: Trusted Verifier LV: Local Verifier P: Code Provider U: Code User

Figure 4.10: Verification Protocol

We write Sig{M,A}TV to denote that verifier TV has signed the hash values of the code M and the
assertions A within a single message. After the verifier TV succeeds in proving the assertions, it will create
such an authentic endorsement token, which the code provider can subsequently attach to the respective
program. Hence, in the second message exchange the verifier TV returns the signed data to the provider.

Now the code provider is in a position to dispatch programs that are certified by a mutually trusted
authority. This is expressed in the third message exchange, in which the code M, the respective assertions
A, and the trusted verifier’s token Sig{M,A}TV are sent by the code producer P to a potential user U. The
user will have a local security policy B, which it may want to keep undisclosed from the code providers
and remote verifiers, and before the received code can be ran it must be shown to comply with it. Since
this task is to be handled by the local verifier LV, in the fourth message the user sends to it the code, the
original assertions A, and the locally required assertions B, together with the authenticity information for
the proof-checking of A. The local verifier will then verify the authenticity of the proof token, it will check
that it trusts TV to perform proof-checking, and will finally try to infer B using A.

If the last step succeeds, the local verifier returns a new signed token, which proves to the user that LV
indeed asserted B for M. After the protocol has been completed successfully, the code can be used at U.

4.4.2 Feasibility of Local Verification

In a simple setting, the proof certificate of a piece of code would be a type that can be assigned to that
code, rather than a general formula: then the calculation of the entailment of the local policy verification is
reduced to the decidability of the subtyping relation, reading A ≥ B (B is a subtype of A) as the entailment
A ⊃ B (A implies B). In the simplest case, we can envisage that the types used in the framework are
the sets of communication channels, then the subtyping relation may be represented by the subset test over
finite sets which is clearly decidable. The tractability of calculation may still be further retained when we
augment types with simple capability such as input/output and choice information.

However, when more complex assertions are employed, the calculation of entailment in order to perform
local policy checking may become increasingly difficult, and even infeasible. Hence, there exists a tradeoff
between expressiveness of proofs and flexibility in defining local policies. Thus, the choice of logics to be
employed, as well as its mathematical and infrastructural bases, becomes essential. We may need both a
general logical framework as a foundation and its specific instantiations amenable for engineering uses such
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as in local verifications. As one of the general frameworks, Task 3.1 studies a general specification logic for
Java bytecode which offers a general assertion language for specifying and verifying the behavior of bytecode.

4.4.3 Process Models

In our distributed PCC scenarios, the data communicated are programs and assertions (proofs) on these
programs. Naturally, in order to represent such architectures, a model of computation is required that can
not only encode interactions (first-order communications) but also code mobility (higher-order interactions).
Our model of choice is HOπ, the higher-order π-calculus [146], which is an integration of the π-calculus [116]
and the λ-calculus. HOπ offers a rich theoretical foundation and many typing system options from the π
and the λ-calculi, a number of which can be integrated and directly applicable in the systems we study here.

In our descriptions, for simplicity of presentation, we do not consider an explicit treatment of the trust
architecture, and specifically of any cryptography-related operations; however, an extension using ideas
from the Spi-calculus [2] and the applied π-calculus [1] is possible. Similarly, we do not consider ways
to constrain which processes can communicate with each other (access control), which would be useful in
modelling scenarios where, for instance, not all code providers are allowed to submit code to a specific
trusted verifier; again, this would be possible if we consider fine-grained process typing extensions found
in [176, 175, 81].

Process algebraic foundations

In HOπ, we write P , Q to represent processes, or agents. Agents are placed in parallel using the ‘|’ operator,
in this way modelling concurrent execution. Interaction occurs when different agents communicate a value
over a channel represented abstractly as a, b, c etc. Specifically, each agent is a sequence of inputs and
outputs, although it may also contain concurrency. We write a(x :T ).P for the process that waits to input
a value of type T over channel a, binding the received value to the appropriate occurrences of x within
the remaining code P ; x here is treated similarly to formal arguments in procedures. The sending process
is of the form a〈V 〉.Q. When processes as the two above are composed in parallel, interaction can take
place, rewriting a(x : T ).P | a〈V 〉.Q to the process P{V/x} | Q, in which input and output over a reacted
and became consumed. The notation P{V/x} represents the process which results from substituting the
(received) value V for the formal argument x in P – this substitution implements the effect of value passing
interaction. In HOπ, which combines the π-calculus and the λ-calculus, the exchanged value can be a
function enclosing a process, hence we have higher-order processes (processes that communicate processes).

We write !a(x :T ).P to express that there are infinite copies of a(x :T ).P in parallel; we use (ν a)P to
express that channel a is private within P ; parentheses are used to disambiguate scoping of bound variables,
such as input arguments. Additional notation will be explained when used.

Modelling the protocol with HOπ

The higher-order π-calculus is suitable for modelling the class of protocols involving multiple verifiers (off-
device checking). Encoding the protocol of Figure 4.10 requires that each participant is defined as a com-
municating process, and that those processes are placed in parallel (i.e., run concurrently).

For example, we can model the code provider P, assuming channel a is a communication point between
P and trusted verifier TV, and channel b between P and code user U, as follows:

P
def
= a〈M,A〉︸ ︷︷ ︸

output

.

input︷ ︸︸ ︷
a(x :Sig) . [checksig x M A == true] (

iteration︷ ︸︸ ︷
! b(z :α).z〈M,A, x〉 )︸ ︷︷ ︸

conditional

As mandated by the protocol, P first emits the code M and the assertions A to the trusted verifier, then
waits to input the authentic response certifying the code and proof.
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We assume a ternary function checksig, that checks whether the signature received is valid for the code
and proof, returning a boolean. The expression prefixed with [checksig xMA == true] will only ever execute
if the result of the enclosed test is true; otherwise the computation that follows is to be skipped.

The final part of the definition (iteration), which becomes active when the signature received is valid,
models that the pre-verified code is now available to clients concurrently and persistently; this is achieved
by using the ‘!’ operator that replicates the term that follows it. Clients need to send a new communication
link over b, and then the provider will output the code, proof, and credentials over that new channel. In the
input process, Sig denotes a type of a signature and α denotes a type of channels (which will be explained
below).

Similar definitions can be shown for the other processes that comprise this protocol.

Types for protocol checking: session types

In the previous subsection we saw the definition, in HOπ, of the code provider P. Now, we juxtapose the
definition of the trusted verifier TV, which brings us to the typing discipline of this section, whose purpose
is to enable the verification of precise protocols for distributed scenarios, encoded in the HOπ language; this
offers validation from a global viewpoint.

The verifier can be defined as follows:

TV
def
=

input︷ ︸︸ ︷
a(x :Proc, y :Assert)︸ ︷︷ ︸

1

. ( ( λ(z :Sig).

output︷︸︸︷
a〈z〉 )︸ ︷︷ ︸

4

· ( createsig tv x y (

2︷ ︸︸ ︷
verify x y) )︸ ︷︷ ︸

3

)

where the numbers are added to illustrate the order of execution that our left-to-right call-by-value opera-
tional semantics mandate. The standard λ-calculus notation P · Q represents function application, where
P is the function and Q the operand; however, the ‘·’ will mainly be shown when it enhances clarity, and
otherwise it may be omitted. Functions take the shape λ(x :T ).P where x is the formal argument of type T
and P is the function body (in which x may be used). Any sound typing system ensures that the operand
has the same type as the argument.

In the above definition, TV first waits to input a program and the assertions to be checked over a. Then,
in the second step, the binary function verify performs the proof-checking, resulting in a boolean value. In
the third step the ternary function createsig tv creates a digital signature that includes information on the
received program, the assertions, and the result of the verify application. The produced signature then
becomes an operand to which the function indicated in the fourth step is applied. After that step, the
digital signature will be communicated back to the code provider through the output over a.

Observing the communication patterns of P and TV, we note that they are complementary: P sends
over a, and TV receives, then TV sends and P receives. Moreover, the types match throughout interaction,
that is, whatever arity and type of value one process is sending, the other must be able to receive the same.
Finally, the number of communications over the common channel a is equal for both terms, that is, there is
not a case where one process is trying to send but there is no input possible on the other end, or vice versa.
The same observations could have been made for any pair of interacting processes of the protocol.

The above are exactly the assumptions in session types [161], which model protocols of structured
interaction over a single communication channel. Sessions have been studied in the context of π-calculus [71,
33, 166, 90], functional languages [167], remote interfaces [164], and object-oriented Java-like languages [59].

Session types are sequences of typed input and output, as defined below:

α ::= ε | ![T ] | ?[T ] | α.α

where ![T ] is output of type T and ?[T ] is input of type T . The sequencing can have zero (ε) or more (α.α)
actions. Note that we can easily generalise the above to allow many values to be sent/received in every step,
by using a vector of types.

Sessions enable the checking of communications correspondence, and can therefore serve as a contract for
the safety of protocols. The process P has, with respect to channel a, the session type ![Proc,Assert ].?[Sig ]
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which dictates that first the program (type Proc) and assertions (type Assert) will be sent (prefix !), and
then that a signature (type Sig) will be received (prefix ?). The process TV has the complementary session
?[Proc,Assert ].![Sig ]. Session types faithfully capture the pairwise interactions of the protocol: we can
further extend this model in order to describe and validate the original whole global scenario written in
Subsection 4.4.1, based on a global description calculus with session types in [40, 90]. In these papers,
not only we study a way to guarantee safety of global protocols by session types, but also we investigate
type-preserving decompositions (end-point projections) from a global protocol into each local process (like P
and TV above) and validate correctness of the global protocol via the translation (see [154] for an overview
for its practical use). The advantage of this method in the context of our scenario is that we can use types
that describe the complete verification protocol, while – through the projection to ordinary session types –
retaining the tractability and decentralisation of control offered by sessions.

The first step is to investigate the integration of session types within the higher-order setting, which
introduces further complexities if we are to preserve our communication invariants. The formalism being
developed [119] will constitute the foundation on which other analyses will be added, like the sets-of-channels
as types approach for access control of HOπ [176, 175].

4.4.4 Further Issues in Multiple-Verifier Scenario

The practical concerns of this multiple-verifier scenario, simple as it may look, raises several basic technical
issues.

(1) We want the original specification from the code provider to be sufficiently detailed so that it can entail
other necessary specifications for e.g. assertions for local security property. What assertion should a
code provider use as the original assertion and how can it be verified?

(2) How can we combine assertions for different components coming from different sources consistently
and use them for verifying an assertion of a new component, especially when complex interplay among
existing components is necessary to guarantee the required security property of a new component?

The bytecode level specification language and program logic, discussed in Task 3.1, are based on Hoare logic,
and can address these problems from various directions. A problem related to (1) is addressed in Task 3.7
(annotation generation), though the exact problem of deriving a representative assertion is not treated in
that task. As a theoretical study which may suggest possible ways to address these issues, [89] discusses
a method to generate most general formulae in the context of Hoare-like logics for higher-order functions
[91, 92, 23].

While studied in the context of a program logic for high-level languages, the work [89] shows an automatic
method for generating a full specification of a given program in an imperative call-by-value PCF. Such a
specification is called characteristic assertion. If we can generate the characteristic assertion A of a program
P , then we can check if P is to satisfy a local security property of interest, say B, by checking the implication
A⊃B, instead of proving the assertion for P directly. That is, proving B for P is reduced to proving the
implication A⊃B. Thus, in principle, we can use a characteristic assertion of P as a most general assertion
the code provider offers, addressing the issue (1) above. It would be interesting to adapt the method in [89]
to the bytecode logic in Task 3.1 or its variant. Since implications are not computable in general, the method
in [89] may not be directly applicable. The method can however be combined with traditional methods or
with provided (e.g. hand-proved) asserted programs. It also gives insight on relationship between programs
and assertions.

The intention of the work in [89] is to develop a program logic for complex higher-order behaviour,
which has been considered to be difficult, including combination of assertions for the multiple parts of a
given program. Thus the method in [89] partly addresses the issue (2) above, even though its adaptation
to logics for low-level code, such as the logic for bytecode studied in Task 3.1, is an open issue. The
engineering potential of the method in [89] is experimented through a prototype implementation of the
assertion generation algorithm, accessible from [22].
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4.5 Personalization Servers

There are a number of situations in global computing where code producers will generate code which is
generic in one way or another. In some cases, the actual code which will run on code consumers will not
be such generic code but rather a personalized instance or specialization of the generic code. This scenario
has some similarities with the certificate translation issue discussed in Section 3.1, but it also introduces
interesting variations to the original PCC framework. A first issue is whether a certificate produced for the
generic program is still valid for the specialized ones. We have to distinguish two main concerns here: is the
generic certificate still correct? Is it accurate enough? Regarding the first question, the more general proof
should still hold for the more specialized case. Therefore, there is no problem in terms of correctness. As for
the second question, we might gain more accuracy by specializing the certificate for the personalized instance
of the generic program. As a consequence, we might be able to entail more accurate (or strict) security
policies from the specialized certificate. Therefore, it seems interesting to come up with some automatic
way to personalize certificates.

The next issue is how to generate the specialized certificate. We distinguish two main approaches
depending on whether a new certificate is generated for each personalization or not:

a) In the first approach, we propose to generate together with the specialization of the code a personalized
certificate for it. We have developed for this purpose an abstract interpreter with specialized definitions
[136] in which calls in the program are not analyzed w.r.t. the original definition of the procedures but
w.r.t. a specialized version for them. As a result, the abstract interpreter produces a specialization of
the code together with an abstraction for it such that, by following the ACC framework presented in
Section 2.3.3, can play the role of certificate.

b) In other situations, it can appear inefficient to have to generate a different certificate for each person-
alization or specialization of the code. For such cases, we propose two alternative scenarios:

b.1) One is based on the construction of parametric certificates. In this solution, not only the code but
also the certificate is automatically instantiated for each consumer upon reception of the mobile
code.

b.2) The second solution is based on specialization of certificates, where we develop a mechanism for
adapting a certificate to a series of transformations applied to the code.

In the above approach b.2, we can study a taxonomy of program transformations [126] and their im-
plications as regards certificate validity. For example, a very simple form of specialization can consist of
using just a subset of the functionality of the code. In such case, reconstructing the new certificate can be
straightforward or even completely unneeded (see the discussion on deletion of procedures in Section 4.7.2).
Another case which may be interesting to study is that of program slicing [163]. This can be considered as
a simple case of program specialization where not only some parts of the code are not used, but also some
arguments in method calls and some parts of method code can be deleted from a program, since they are
not needed in a particular context. Here, in general, the certificate is mostly valid, but it will need to be
adapted to the new program.

It is important to mention that the specialization process can be performed both at the producer and
the consumer side. Both alternatives have pros and cons and seem useful in different contexts. Another idea
which is interesting in principle is that of generating extensions [70, 30]. In our context, the mobile code can
be a generating extension which produces code specialized to a particular consumer. A generating extension
is a partial evaluator [96, 139] specialized with respect to a particular program. I.e., when provided with
the static data it produces a specialized version. The advantage of this approach is that the consumer does
not need to install a full-blown partial evaluator and that partial evaluation does not need to be done at
the code producer side either.

It should be noted that code specialization can be viewed as a particular case of incremental PCC , as
discussed in Section 4.7, in which we “update” a generic program by adding more specific information for it
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and deleting the previous information about them (see Section 4.7.2). However, there might be more efficient
ways for the particular case of program specialization rather than deleting and adding new procedures (see
Section 4.7.2).

4.6 User Customizable Policies for On-device Checking

In existing global computing infrastructures most code producers expect their applications or components
to be deployed in multiple host devices with differing capabilities and concerns about security. The actual
security policy that a host device enforces on a piece of code might depend on a variety of factors including
the level of trust it has in the producer and the provider, available resources, device capabilities, user
configuration or the presence of other components on the device. In other cases code consumers might
simply want to keep their local policy undisclosed. Therefore, in general it is not realistic to assume that
every host device enforces the same security policy on a given piece of code or that policies are known a priori
by the producer. As a consequence, the traditional PCC approach, where the producer gives a certificate
that a piece of code abides by a security policy, cannot be directly applied because the exact policy that
code must satisfy is determined by code consumers and not by code producers. Instead, an alternative
PCC approach closely related to Abstraction Carrying Code (ACC) [6] can be devised. In this alternative
approach, a code producer does not provide a certificate for any particular security policy, but gives instead a
general abstraction of the code which allows to efficiently check host-dependent policies. As in ACC, policies
are verified using abstractions of programs, but verification is performed using model-checking techniques
rather than by means of static analyses. Work by Schmidt [148] shows the close relation among the two
approaches.

Another PCC based approach specially targeted at the verification of resource consumption policies is
that of the Mobile Resource Guarantee project [147] of UEDIN and LMU, which has been briefly described
in Section 5.3 of Deliverable D1.1. In the MRG framework [?, 13], mobile code is accompanied by a
verifiable certificate describing its resource behavior (guaranteed policy) while code consumers define their
own target resource behavior policies. A language and a logic for specifying and reasoning about these
policies are devised. By introducing further restrictions in these languages, it is possible to statically check
on-device guaranteed policies against target policies. The technique described in the remainder of this section
generalizes this approach by considering richer policy languages which can express general properties of
programs (including resource behavior) at the cost of a more computationally intensive checking mechanism.

In the ACC framework, programs are distributed together with abstractions that play the role of cer-
tificates and are obtained by means of static analysis. The correspondence of such an abstraction with a
program can be easily verified by a consumer using a simple checker that performs a single pass over the
code. Using an abstraction, a consumer may then automatically generate and prove verification conditions
that ensure the program satisfies a chosen security policy. In this regard, ACC already enables some degree
of customization of security policies because a consumer may use the certificate (i.e. the abstraction) to
verify a local policy that is not exactly the same for which the certificate was constructed, but is nevertheless
implied by the given abstraction.

Although ACC is a general and practical technique, so far there exist some issues that have not been
addressed. For instance, the ACC framework has been so far developed at source code level, while code
suppliers in general are willing to certify and provide object code only. By building upon a trust architecture
(e.g. based on PKI) it is possible to leverage the benefits of ACC and address situations where only the
object code is available. The trade-off is that code consumers must trust in the abstractions provided by
some verification authority instead of rechecking them. The scenario is depicted in Fig. 4.11 and explained
in more detail in the paragraph below.

When given a piece of code from a producer P, perhaps in object form, a distributor D first delegates
the task of generating a safe abstraction of the program to some verification authority TV. This task need
not to be trivial, it may involve complex computations and even the use of interactive tools. Moreover, the
soundness of the abstraction w.r.t. the given code may not be necessarily easily verifiable. Alternatively,
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P : Code Producer D : Code Distributor TV : Trusted Verifier U : Code Consumer (User)

Figure 4.11: Enabling user customizable security policies by means of trust infrastructure

the distributor may directly provide an abstraction to the verification authority, whose task is in this case
to verify that the abstraction is sound w.r.t. the code. The verification authority returns to the distributor
the abstraction together with a signature that ties it to the program. A user U who obtains a copy of
the program from the distributor is also sent a copy of the abstraction and the signature provided by the
verification authority. The methodology generalizes naturally when multiple specialized abstractions are
generated from the same program.

Once a code consumer U relates the origin of the abstraction to a trusted verifier, it might use it to
efficiently verify a customized local security policy. This last stage is performed on-device and for most
policies can be treated as an instance of model checking. We address the situation in the next subsection
and propose a practical approach in the following one.

4.6.1 Towards On-device Model Checking

Model checking is a technique that consist in verifying some property of a model (i.e. an abstraction)
of a system. Before any verification can begin, one is confronted with the task of choosing appropriate
representations for modeling the system under study and the properties to be checked. Research on model
checking in the last decades has brought a plethora of different representations for both models and properties
together with verification algorithms and semi-algorithms [21, 45].

Although model checking techniques suffer from the well-known state explosion problem and in general
require large amounts of computational resources to verify non-trivial properties of complex systems, there
exist many ways to mitigate the problem. By carefully keeping the size of abstractions and properties within
reasonable limits and using specialized small-footprint symbolic model checkers, checking could be performed
entirely on-device. The limitations of this methodology should be determined through experimentation with
realistic examples.

4.6.2 A Practical Proposal for On-device Model Checking

By means of well-established static analysis techniques it is feasible to obtain a safe model from a given
program even when only object code is available. We choose to represent such models as counter automata,
a class of automata extended with integer variables (counters) and guarded transitions whose expressions
are restricted to linear integer inequalities involving at most two counters. Model checking of counter
automata have been thoroughly studied in the last years [16, 49, 61, 32]. This representation is expressive
enough to allow efficiently checking properties about resource consumption, access control and those that
can be expressed by simpler automata classes. Of course, the proposed framework can be adapted to other
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representations when other kind of policies are to be checked.

Consider the Java method group_sms() shown in Fig. 4.12. Using static analysis, we can derive the
model represented as an automaton in Fig. 4.13, which corresponds to a call graph with respect to security
sensitive APIs.

public void groupSMS(Phone[] group, String msg)

throws SecurityException {

Integer pin = getPIN();

SecurityManager.verifyPIN(pin);

if (group.length() > 10) {

alert("Thou shall not spam");

return;

}

for (i = 0; i < group.length(); i++)

sendSMS(group[i], msg);

Integer n = Read("sms.log");

alert("You have sent " + n + " SMS so far.");

}

Figure 4.12: An example of a Java method that can be verified by model checking

A particular code consumer that has received from a distributor the code for the method together with
its model and has verified that the model has been constructed by a trusted third party, can proceed to
verify its local security policy. The security policies to be enforced may be parametrized and represented in
many forms, as suggested in Table 4.1.

Table 4.1: Alternative ways to represent security policies
Description Representation Policy

No SMS sent before valid PIN LTL formula G(¬sendSMS W verifyPIN)
No more than M credit units spent
(each SMS costs N units)

Parametrized counter automa-
ton + LTL formula

Automaton in Fig. 4.14 + G(c ≤M)

No SMS after reading local file Regular expression (¬Read)∗ + (¬Read)∗Read(¬sendSMS)∗

Lets suppose that a given consumer wishes to check that the above method does not send any SMS
before asking the user for a valid PIN. The policy can be represented by the following LTL formula:

G(¬sendSMS W verifyPIN) (4.5)

verifyPIN Read

sendSMS
i < 10 ⇒ i := i+ 1

Figure 4.13: Model obtained from the Java program in Fig. 4.12
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sendSMS
c := c+N

Figure 4.14: Automaton representing the behavior of an API call. Together with the LTL formula G(c ≤M)
it determines a security policy

The consumer may also wish to verify that the method does not spend more than M credit units where
the cost of each SMS is given by N and both M and N are parameters. This later property and the above
LTL formula can be summarized by constructing a single counter automaton which recognizes all and only
the traces of transitions labels for which at least one of the properties is violated (Fig. 4.15).

trap

sendSMS
c ≤ M −N ⇒ c := c+N

verifyPIN

sendSMS
c > M −N

sendSMS

Figure 4.15: An automaton that recognizes when a composite property is violated

Before trying to verify the property, the parameters are instantiated by taking its values from the local
device (e.g. user configuration, available resources). Then, the product of the automata that corresponds
to the model and the property to be verified is constructed by assuming that every state in the model
automaton is accepting and that transitions can only be initiated by the model (Fig. 4.16). The product
automaton is also a counter automaton for which efficient reachability analysis techniques exist that may be
used to model check the security policy on-device [16, 49, 61]. The outcome in this example, may depend on
the particular values of the parameters M and N . Parametric model checking may be used for determining
off-device the exact parameter constraints that make the method satisfy the policy (in this case M ≥ 10N).
Abstractions in this methodology can be regarded as a particular case of parametric certificates as explained
in the previous section.

Another code consumer might not be interested in verifying the credit units spent by the method, but
might be concerned about privacy and thus enforces a different security policy which does not allow an SMS
to be sent after a local file has been read. The set of traces allowed by this policy may be described by the
LTL formula G(Read⇒ G(¬sendSMS)), or by the equivalent regular expression :

(¬Read)∗ + (¬Read)∗Read (¬sendSMS)∗ (4.6)

The verification process can proceed in a similar manner using exactly the same abstraction. In this way,
code consumers have the ability to compose and customize security policies without requiring code producers
to be aware of them. The verification process takes place on-device and can be made in a per-policy basis
or combining many policies in the same run.
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verifyPIN Read

sendSMS
i < 10 ∧ c ≤ M −N ⇒ i := i+ 1, c := c+N

trap

sendSMS
i < 10 ∧ c > M −N

Figure 4.16: Product automaton of the automata that represent the program abstraction and the security
policy

4.6.3 Analysis of Counter Automata

As said before, the problem of verifying that a program model satisfies a security property is reduced to
a reachability problem on the product of the model and the property automata, which is itself a counter
automaton. In general, counter automata give raise to infinite state reachability graphs. Indeed, it is
well-known that even two-counter automata are as expressive as Turing machines, which means that the
reachability problem is undecidable in the general case. Despite this result, it is still feasible to model
check counter automata either by considering restricted subclasses for which the reachability problem is
decidable, or by computing a conservative approximation of the set of reachable configurations. In either
case, there exist symbolic model checking methods which represent and manipulate sets of configurations
implicitly rather than by explicitly enumerating their elements. The key of these methods is the concept
of meta-transition which allows to compute in a single step the reachable configurations by traversing a
sequence of transitions from a given set of starting configurations.

Meta-transitions may accelerate the convergence of algorithms exploring the state space. However, their
ultimate purpose is to enable reachability analysis algorithms to search an infinite state space, which is
not possible using only simple transitions. By considering an upper-approximation of the space state, the
resulting analysis is guaranteed to be safe.

4.6.4 Implementation

In order to implement the proposed methodology there are two main tasks that remain to be performed:

1. Devising static analyses techniques to synthesize program abstractions represented as counter au-
tomata;

2. Adapting existing reachability analysis algorithms of counter automata for executing them on-device.

Although these tasks are not trivial, in principle they may be completed within the next period.

4.7 Component Update and Incremental PCC

Software upgrades can be used to fix bugs or to add features to a program. Nowadays one much less often
expects to install whole systems or indeed even individual applications. Instead, we are probably becoming
quite used to the idea of accepting ongoing upgrades to software that we already have –a behavior of receiving
incremental changes to our software systems and/or applications from vendors over the Web. Clearly, the
access and deployment metaphor that the Web provides has been an important enabler for this. Given the
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relatively high-speed communications infrastructure, we can expect good-sized lumps of code to come over
the wire to us expediently.

Non-incremental PCC scenarios are based on checkers which receive a “certificate+program” package
and read and validate the entire program w.r.t. its certificate at once, in a non-incremental way. However,
situations of frequent software upgrades are not well suited to this simple model, since it would suffice with
rechecking certain parts of the certificate which has already been validated. In the context of PCC, we
consider possible untrusted upgrades of a validated (trusted) code, i.e., a code producer can (periodically)
send to its consumers new upgrades of a previously submitted package. We characterize the different kind
of upgrades, or modifications over a program. In particular, we include:

1. the addition of new data/procedures and the extension of already existing procedures with new func-
tionalities,

2. the deletion of procedures or parts of them and,

3. the replacement of certain (parts of) procedures by new versions for them.

In such a context of software upgrades, it appears inefficient 1) to submit a full certificate (superseding the
original one) and 2) to perform the checking of the entire upgraded program from scratch, as needs to be
done with current systems. Herein we propose an incremental approach to PCC, both for the certificate
generation as well as for the checking process. For the case of ACC we have already performed an initial
development of incremental algorithms. More details can be found in [3, 4, ?]. Though the particular
algorithms for incremental handling of software upgrades very much depend on the particular technology
used for generating certificates (ACC in the case of [?, 4]), it is to be expected that, similarly, algorithms
for the efficient handling of incremental upgrades in type-based PCC and logic-based PCC should also be
feasible.

Regarding the first issue above, i.e., when a program is upgraded, a new certificate has to be computed
for the upgraded program. Such certificate differs from the original one in a) the new information for each
procedure affected by the changes and b) the upgrade of certain (existing) information in the certificate
affected by the propagation of the effect of a). However, certain parts of the original certificate may not
have been affected by the changes. Our proposal is that, if the consumer still keeps the original certificate,
it is possible to provide, along with the program upgrades, only the difference of both certificates, i.e.,
the incremental certificate. The first obvious advantage of the incremental approach is that the size of the
certificate to be transmitted may be substantially reduced by submitting only the increment.

The second issue in incremental PCC is that the task performed by the checker can also be further
reduced. In principle, a non-incremental checker requires a whole traversal of the proof where the entire
program + upgrades is checked against the (full) certificate. However, it is now possible to define an
incremental checking algorithm which, given the upgrades and its incremental certificate, only rechecks
the part of the proof for the procedures which have been affected by the upgrades and, also, propagates
and rechecks the effect of these changes. Thus, the second advantage of our incremental approach is that
checking time is further reduced.

Efforts for coming up with incremental approaches are known in the context of program analysis (see
[168, 85, 138, 145]) and program verification (see [170, 102, 152]). The ideas in this section are more
closely related to incremental program analysis, although the design of an incremental checking algorithm
is notably different from the design of an incremental analyzer (like the ones in [85, 138]). In particular,
the treatment of deletions and arbitrary changes should be completely different. In incremental PCC, we
can take advantage of the information provided in the certificate in order to avoid the need to compute
the strongly connected components (see [85]). This was necessary in the analyzer in order to ensure the
correctness of the incremental algorithm.

An orthogonal issue to that of efficiently checking a certificate after a software upgrade is how to make
the transition from the old version of the software to the new one. In the majority of cases, this is done
by halting the corresponding process and restarting it with the new upgraded code. However, there are
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Figure 4.17: Incremental Certification

certain situations where we would like to make this transition without a downtime. In such cases, dynamic
software updates (DSU) have been used for many years to fix bugs or add features to a running program
without downtime. There is recent work [158] which provides language support to help programmers write
dynamic updates effectively. In particular, Proteus was introduced as a core calculus for dynamic software
updating in C-like languages. It supports dynamic updates to functions (even active ones), to named types
and to data, allowing on-line evolution to match source-code evolution. The updates are guaranteed to be
type-safe by checking for a property called “con-freeness” for updated types t at the point of update. This
means that non-updated code will not use t concretely beyond that point (concrete usages are via explicit
coercions) and thus t ’s representation can safely change. They also define a static updateability analysis
to establish con-freeness statically, and can thus automatically infer program points at which all future
(well-formed) updates will be type-safe. Later work by [120] studies the practicality of dynamic software
updates (i.e., whether it is flexible, and yet safe, efficient, and easy to use). With this purpose, a DSU
implementation for C that aims to meet these challenges is presented in this work. An interesting question
is whether incremental PCC and the approach of [158] can be combined in such a way that DSU can take
into account security properties beyond those currently considered by [158] (i.e., type safety).

4.7.1 A General View of Component Upgrade and Incremental PCC

Figures 4.17 and 4.18 provide a general view of the incremental certification process performed by the
producer and the incremental checking process performed by the consumer, respectively. In Figure 4.17,
the producer starts from an Updated (or upgraded) version, UP , of a previously certified Program, P . It
first retrieves from disk P and its certificate, Cert, computed in the previous certification phase. Next, the
process “	” compares both programs and returns the differences between them, Upd(P), i.e, the program
Upgrades which applied to P result in UP , written as Upd(P) = UP	P . Note that, from an implementation
perspective, a program upgrade should contain both the new upgrades to be applied to the program and
instructions on where to place and remove such new code. This can be easily done by using the traditional
Unix diff format for coding program upgrades. An Incremental Certifier generates from Cert, P and Upd(P)
an incremental certificate, Inc Cert, which can be used by the consumer to validate the new upgrades. The
package “Upd(P)+Inc Cert” is submitted to the code consumer. Finally, in order to have a compositional
incremental approach, the producer has to upgrade the original certificate and program with the new
upgrades. Thus, the resulting Ext Cert and UP are stored in disk replacing Cert and P , respectively.

In Figure 4.18, the consumer receives the untrusted package. In order to validate the incoming upgrade
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w.r.t. the provided (incremental) certificate, it first retrieves from disk P and Cert. Next, it reconstructs the
upgraded program by using an operator “⊕” which applies the upgrade to P and generates UP = P⊕Upd(P).
This can implemented by using a program in the spirit of the traditional Unix patch command as ⊕ operator.
An Incremental Checker now efficiently validates the new modification by using the stored data and the
incoming incremental certificate. If the validation succeeds (returns ok), the checker will have reconstructed
the full certificate. As before, the upgraded program and extended certificate are stored in disk (superseding
the previous versions) for future (incremental) upgrades. In order to simplify our scheme, we assume that the
safety policy and the generation of the verification condition are embedded within the certifier and checker.
However, in an incremental approach, producer and consumer could perfectly agree on a new safety policy
to be implied by the modification. It should be noted that this is not covered yet by our current incremental
approach, since we assume that the verification condition is generated exactly as in non incremental PCC.
It is though an interesting issue for further research.

4.7.2 The Incremental Approach in the Context of ACC

In the context of ACC, we first analyze the influence of the different kinds of upgrades on the incremental
approach in terms of correctness and efficiency. We also outline the main issues on the generation of
incremental certificates and the design of incremental checkers.

Characterization of Upgrades

Let us first recall that in ACC, as we have seen in Section 2.3.3, the program fixpoint, [[P ]]α, automatically
computed by an abstract interpretation-based analyzer, plays the role of certificate (see equations (2.1) and
(2.2) in Section 2.3.3). We now characterize the types of upgrades we consider and how they can be dealt
within the ACC scheme. Given a program P , we define an upgrade of P , written as Upd(P), as a set of
tuples of the form 〈A,Add(A),Del(A)〉, where A = p(x1, . . . , xn) is an atom in base form,2 and:

• Add(A) is the set of rules which are to be added to P for predicate p. This includes both the case of
addition of new procedures, when p did not exist in P , as well as the extension of additional rules (or
functionality) for p, if it existed.

• Del(A) is the set of rules which are to be removed from P for predicate p.

2We require that each rule defining a predicate p has identical sequence of variables xp1 , . . . xpn in the head atom, i.e.,
p(xp1 , . . . xpn). We call this the base form of p.
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Note that, for the sake of simplicity, we do not include the instructions on where to place and remove such
code in the formalization of our method. We distinguish three classes of upgrades: the addition of procedures
occurs when ∀A, Del(A) = ∅, the deletion of procedures occurs if ∀A, Add(A) = ∅ and the remaining cases
are considered arbitrary changes.

Addition of Procedures. When a program P is extended with new procedures or new clauses for existing
procedures, the original abstraction Certα is not guaranteed to be a correct fixpoint any longer, because the
contribution of the new rules can lead to a more general answer. Consider P add the program after applying
some additions and Certaddα the abstraction computed from scratch for P add. Then, Certα v Certaddα (see
Section 2.3.1). This means that Certα is no longer valid in order to entail safety. Therefore, we need to lub
the contribution of the new rules and submit, together with the extension, the new certificate Certaddα (or
the difference of both abstractions). The consumer will thus test the safety policy w.r.t. Certaddα .

Deletion of Procedures. The first thing to note is that in order to entail the safety policy, unlike
extensions over the program, we do not need to change the abstraction at all when some procedures are
deleted. Consider P del the program after applying some deletions and Certdelα the abstraction computed
from scratch for P del. The original certificate Certα is trivially guaranteed to be a correct fixpoint (hence a
correct certificate), because the contributions of the rules were lubbed to give Certα and so it still correctly
describes the contribution of each remaining rule. By applying Equation 2.2 of Section 2.3.3, Certα is still
valid for P del w.r.t. Iα since Certα v Iα. Therefore, more accuracy is not needed to ensure compliance with
the safety policy. This suggests that the incremental certificate can be empty and the checking process does
not have to check any procedure. However, it can happen that a new, more precise safety policy is agreed
by the consumer and producer. Also, this accuracy could be required in a later modification. Although
Certα is a correct abstraction, it is possibly less accurate than Certdelα , i.e., Certdelα v Certα. It is therefore
interesting to define the corresponding incremental algorithm for reconstructing Certdelα and checking the
deletions and the propagation of their effects.

Arbitrary Changes. The case of arbitrary changes considers that rules can both be deleted from and
added to an already validated program. In this case, the new abstraction for the modified program can be
equal, more, or less precise than the original one, or even not comparable. Imagine that an arbitrary change
replaces a rule Ra, which contributes to a fixpoint Certaα, with a new one Rb which contributes to a fixpoint
Certbα such that Certabα = Alub(Certaα, Cert

b
α) (Alub(CP1,CP2) performs the abstract disjunction of two

descriptions) and Certaα @ Certabα and Certbα @ Certabα . The point is that we cannot just abstract the new
rule and add it to the previous fixpoint, i.e., we cannot use Certabα as certificate and have to provide the
more accurate Certbα. The reason is that it might be possible to attest the safety policy by independently
using Certaα and Certbα while it cannot be implied by using their lub Certabα . This happens for certain safety
policies which contain disjunctions, i.e., Certaα ∨Certbα does not correspond to their lub Certabα . Therefore,
arbitrary changes require a precise recomputation of the new fixpoint and its proper checking.

Incremental Certificates

A main idea in ACC [6] is that the certificate, Cert, is automatically generated by using the complete set of
entries stored in the answer table returned by an abstract fixpoint analysis algorithm (see Equation (2.2)).
Entries in the answer table are of the form A : CP 7→ AP, where A is always an atom in base form. They
should be interpreted as “the answer pattern for calls to A satisfying precondition (or call pattern), CP,
accomplishes postcondition (or answer pattern), AP.”

If the consumer keeps the original (fixed-point) abstraction Cert, it is possible to provide only the program
upgrades and the incremental certificate Inc Cert. Concretely, given:

• an upgrade Upd(P) of P ,

• the certificate Cert for P and Sα,

• the certificate Ext Cert for P ⊕Upd(P) and Sα
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we define Inc Cert, the incremental certificate for Upd(P) w.r.t. Cert, as the difference of certificates Ext Cert
and Cert, i.e., the set of entries in Ext Cert not occurring in Cert. The first obvious advantage is that the
size of the transmitted certificate can be considerably reduced.

Incremental Checkers

An abstract interpretation-based checking algorithm receives as input a program P and a certificate Cert
and constructs a program analysis graph in a single iteration by assuming the fixpoint information in Cert
(see Equation (2.3)). While the graph is being constructed, the obtained answers are stored in an answer
table ATmem and compared with the corresponding fixpoints stored in Cert. If any of the computed answers
is not consistent with the certificate (i.e., it is greater than the fixpoint), the certificate is considered invalid
and the program is rejected. Otherwise, Cert gets checked and ATmem ≡ Cert.

In order to define an incremental checking procedure, the above checking algorithm needs to be modified
to compute (and store) also the dependencies between the atoms in the answer table. In [3], we have
instrumented a checking algorithm for full certificates with a Dependency Arc Table (DAT in the following).
This structure, DAT , is not required by non-incremental checkers but it is fundamental to support an
incremental design. It is composed of arcs (or dependencies) of the form Ak : CP ⇒ Bk,i : CP1 associated to
a program rule Ak:-Bk,1, . . . , Bk,n with i ∈ {1, ..n}. The intended meaning of such a dependency is that the
answer for Ak : CP depends on the answer for Bk,i : CP1, say AP1. Thus, if AP1 changes with the upgrade
of some rule for Bk,i then, the arc Ak : CP ⇒ Bk,i : CP1 must be reprocessed in order to compute the new
answer for Ak : CP . This is to say that the rule for Ak has to be processed again starting from atom Bk,i.

An incremental checking algorithm receives as input parameters an upgrade Upd(P) of the original
program P and the incremental certificate Inc Cert for Upd(P) w.r.t. Cert. In a very general way, the
additional tasks that an incremental checking algorithm has to perform are: 1) recheck all entries in ATmem

which have been directly affected by an upgrade, and 2) propagate and recheck the indirect effect of these
changes by inspecting the dependencies in DATmem , the dependency arc table in which the dependencies
have been stored. Finally, in order to support incrementality, the final values of the data structures ATmem ,
DATmem and P must be available after the end of the execution of the checker.
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Chapter 5

Conclusions and Plans

This deliverable presents a series of scenarios which extend the original Proof Carrying Code architecture
in order to cope with the situations which arise in global computing. We summarize below the different
proposed scenarios. We address the scientific and technical challenges which need to be solved and whether
or not the corresponding issues are to be addressed during this project. If a scenario is to be addressed, we
provide information about the related work packages and particular tasks.

Instead of summarizing the scenarios in the order they have been presented in the previous chapters, we
have grouped the scenarios into three categories: high-, medium-, and low-priority. Though all the proposed
scenarios are of interest for global computing, it is important for the success of the project to assign priorities
to the different scenarios so that those scenarios essential for the success of the project are considered first,
whereas those scenarios considered to be less central to the project are only further developed if time and
resources allow. More precisely, we consider high-priority those scenarios which we plan to study and/or
deploy soon within the MOBIUS project. We classify as medium-priority those scenarios which we intend to
study further, but later in the project. Finally, low-priority scenarios are those which we believe are outside
of the main focus of the project and for which we cannot commit resources.

High-priority Scenarios

Enhanced Lightweight Bytecode Verification Type-based approaches to PCC (as discussed in Sec-
tion 2.1), in general, and Lightweight Bytecode Verification (LBCV), in particular, enjoy certain properties
which make them attractive as enabling technology for PCC, such as automation, simplicity, and efficiency,
that are required for on-device checking. This is why, LBCV is the most successful and widely applied PCC
technology to date. Thus, enhancing LBCV (see Section 2.1.2) to handle more advanced security proper-
ties is one of the long-standing issues for future work in PCC (see for example [106]). The aim here, as
discussed in Section 2.1.3, is to keep the benefits of LBCV, including on-device checking, while addressing
more advanced safety properties. This line of work is definitely within the objectives of MOBIUS and will
be addressed in Task 4.5 (On-Device Proof Checking).

Abstraction Carrying Code Abstract Interpretation-based verification (Section 2.3) is now a well es-
tablished technique with powerful static analyzers available. Abstraction Carrying Code, discussed in Sec-
tion 2.3.3, carries the promise of bringing the benefits of these techniques to the context of mobile code
security. While the ideas behind the initial ACC proposal [6, 6] (by members of the consortium) are lan-
guage independent, they were not applied to Java bytecode. Later work [26] (also by members of the
consortium) has shown that the idea of an efficient fixpoint checker on the consumer side can also be applied
effectively to Java bytecode.

Though the foundations for ACC already exist, in order to make the approach useful in practice, it
remains to find efficient and accurate abstract domains that are useful in proving interesting security policies
about Java bytecode, including resource consumption. This is subject to ongoing and upcoming research in
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Tasks 2.3, Types for Basic Resource Policies and 2.4, Advanced Resource Policies. Another interesting open
question is whether on-device checking of ACC certificates is feasible in the case of resource-limited devices.
For this, we need to study how to minimize both the memory and CPU usage required by the checker. This
will be studied in Task 4.5.

Certificate Translation The possibility of performing certificate translation, as discussed in Section 3.1,
opens up the door to bringing the benefits of source level verification to bytecode checking. It is thus a
promising idea that will definitely by pursued in the project. Indeed, an important part of the effort in
Task 4.4 Proof-Transforming Compiler will be devoted to certificate translation. Though this is a topic of
ongoing work, preliminary results [17] recently obtained by members of the consortium allow for optimism
about this scenario.

Certificate Formats Though the topic of certificate formats is not a “scenario” in itself, differing char-
acteristics of certificates, such as their size and the time and space complexity of checking them, could
invalidate or enable entire scenarios. As discussed in Section 3.3, there are a number of possibilities for
representing certificates. First, there exist several enabling technologies for PCC based on different for-
malisms, as seen in Chapter 2. It is thus natural that certificates generated using completely different
technologies contain quite different information. Furthermore, even when certificates convey the same in-
formation, different representation mechanisms may have been chosen. As it is to be expected, different
formats have different trade-offs of size, complexity and efficiency of the checker, etc. Also, and as discussed
in Sections 4.5 and 4.7, there are several scenarios where it is important that the certificate format has some
flexibility with respect to program changes. Thus, the choice of a certificate format, especially in a complex
context such as global computing, is not a trivial one and can have significant impact on the overall success
of the MOBIUS technology. This issue will continue to be studied: work performed in this task is a starting
point for Task 4.2 (Certificates).

Trusted Intermediaries The introduction of trusted intermediaries, as discussed in Section 4.1, arises
from computational requirements of the PCC infrastructure, the capabilities of mobile devices, etc. It is likely
that the deployment prototypes within the MOBIUS project will require the use of trusted intermediaries.
Thus, the particular details of the designs of intermediaries will arise when considering such prototypes. It
is important to note that trust is a research topic in itself and that it is outside of the scope of the project
to perform detailed research in this direction. In fact we expect that, in many cases, a straightforward
instantiation of standard PKI (public key infrastructure) might be enough to provide the needed level of
trust required for our needs. As outlined in Section 4.1, other approaches to trust are also natural given
that the key elements of the design involve logic and proof.

Multiple Verifiers It would be infeasible for code consumers, within global scale distributed systems, to
have previous knowledge of all verifiers that might be needed during execution. Moreover, in some configu-
rations the code consumer may not be able to perform full proof verification due to limited computational
capacity (e.g., JavaCard). Hence, in the multiple verifiers scenario presented in Section 4.4, full proof verifi-
cation may have to take place in a separate site, allowing verification instances to be reused, when bundled
with the original code and its proof. Such verification reuse requires a trust relationship between local and
remote verifiers. Specifically, code providers and consumers would have to agree on a set of trusted verifiers.
This system can be established using standard cryptographic techniques, within security architectures such
as PKI/SPKI. To guarantee the correctness of this scenario, we shall first develop a typed distributed mobile
calculus which can represent the protocol and a local channel access control policy based on the work in
[175, 176, 59]. Later, this approach will be augmented with a trust relationship, extending the model to a
global description calculus developed in [76, 40]. These tasks will be continued within Task 4.1 itself.
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Medium-Priority Scenarios

Combining Static Verification and Dynamic Checking Being able to combine static verification
with dynamic checking (as discussed in Section 3.2) is interesting because it broadens the classes of security
policies for which it is possible to guarantee adherence in a reasonable set of applications. Since most of
interesting security policies are undecidable, having automatic tools which are both correct and complete
when deciding whether an application abides by a given security policy is unfeasible. Though the state of
the art in static analysis and verification steadily advances over time, and since static verification has to err
on the safe side, there are always applications about which the existing tools cannot reason. Furthermore,
for some complex security policies it can even be the case that no tool exists that can verify such policies
statically at all.

Rather than restricting ourselves to statically verifiable security properties, dynamic checking support
executing applications which are not statically guaranteed to satisfy the security policy by monitoring their
execution and avoiding violations of the security policy just before they take place. A simple way of achieving
this behavior is by halting those applications that attempt to violate the security policy. One important
drawback of this approach is that it only makes sense for applications that are not essential to the system,
as their execution is stopped. This can be acceptable for some classes of applications, but it is clearly not
for others, such critical components of operating systems.

For this reason, this combination is not considered central to the project for the time being and it is
not going to be the subject of much research in the next part of the MOBIUS project. It will, however, be
probably be picked up again at a later point in time. In particular, we plan on integrating extended static
checking and runtime assertion checking in Task 3.6 (Program Verification Environment).

Certified Certificate Checkers Within any PCC infrastructure, it is important to keep the trusted
computing base small. Since certificate checkers used on the consumer side are part of the trusted computing
base, it is important to minimize the size and complexity of such checkers. Furthermore, in the context of
global computers, it is to be expected that the number of checkers that are required is not predetermined
and, rather, it may become important to download new checkers which support new security policies.

As discussed in Section 3.4, in the case of abstract interpretation-based verification, it is possible to
obtain certified checkers if a certified analyzer is available. This is certainly an important issue that will be
addressed within the MOBIUS project. One planned approach is to generate implementations of checkers
from Coq, which should increase the level of trust in certificate checker to reasonable levels. In particular,
we plan to generate certified checkers for some of the resource analyses developed in Tasks 2.3 and 2.4. The
feasibility of performing on-device checking using such checkers will be studied in Task 4.5.

Multiple Producers In a global computing environment it will often be the case that an application run
on a code consumer device is composed of different parts originating from different producers, as discussed
in Section 4.2.

An important issue in this practice is the selection of program components. In this direction, we plan
on integrating multiple producer features into the MOBIUS Program Verification Environment in Task 3.6.
In particular, consumers will be able to search for PCC components based upon the metadata contained in
their generalized hybrid certificates.

The correctness of the resulting application must be based on the correctness of the separate components
or modules. Thus, finding modular approaches to correctness in PCC is an important topic to MOBIUS. In
fact, some work has already been devoted to modular programs in the context of ACC [127].

An important point to note here is that we are now in a situation where automated tools for reasoning
about large applications are starting to be available. However, the use of such tools requires certain effort,
though the long-term benefits of using such tools seem evident. Thus, there is a training issue here in
order to systematically use such tools. Nevertheless, leading companies such as Microsoft are starting to
impose the use of static analysis tools in software development [55, 56]. Since the topic of compositional
verification is the subject of research outside the consortium, we will concentrate on the other scenarios and
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reuse the existing and upcoming results on the topic of compositional reasoning within MOBIUS as such
results become available.

User Customizable Policies for On-Device Checking As already mentioned, global computers are
characterized by having a wide range of computing elements with greatly varying levels of computing power:
some devices may, indeed, have relatively little resources. For these small devices, the checking process
required by the PCC architecture will pose too high an overhead since such devices may not have the
capability of performing such checking.

As a result, when designing a PCC architecture it is important to take the cost of the checking process
into account. Section 4.6 presents a PCC architecture whose main feature is that the safety policies used
are both user customizable and easy to check. This results in a promising approach to PCC which will be
further studied in the project, in particular in Task 4.5.

Component Update and Incremental PCC As discussed in Section 4.7, one expects that the software
behind global computers will be updated often. Updating may be necessary, for example, to add new
functionality, to fix bugs, or to provide security patches. Clearly, it is important that certificate checking
is performed as efficiently as possible, and in an incremental fashion. Thus, this scenario is of interest to
MOBIUS, and will be further studied in Task 4.3 Certificate Generation.

Low-Priority Scenarios

Personalization Servers The possibility of having generic code which is then personalized to a given
consumer, as discussed in Section 4.5, is definitely a relevant question which can be of great importance in
the context of global computers, where many different devices with different features may co-exist. Though
some amount of work has been devoted to this scenario during the first year of the project, further work
remains in order to have mature results in this area. Thus, this issue will be further studied during the
remaining 6 months of Task 4.1. It is, however, unclear whether these issues are going to be studied in other
tasks outside Task 4.1.

Multiple Consumers The main scenario we have considered as regards multiple consumers is Proof
Carrying Result, as discussed in Section 4.3.2. This is an interesting approach presented in detail in this
deliverable, where a relatively comprehensive set of examples of certifying versions of some algorithms is
found. However, the main drawback for its generalized deployment is the lack of an automated mechanism for
finding certifying versions of an arbitrary algorithm, which is a requirement for the success of the technique.

PCC for multi-languages software and multi-logics certificates Some of the best ideas to come
out of early work in component-based software engineering, as discussed in Section 4.2.2 will eventually be
combined with formal specification and verification in a PCC platform like the one being built in MOBIUS.

In particular, we plan on adapting and extending the early work on structured metadata for component
identification and discovery in the MOBIUS generalized certificates under development as part of Task 4.2
Certificates. Additionally, the formal specification matching, especially in the presence of behavioral and
resources constraints [73, 100], is definitely of interest in Task 3.6 (Program Verification Environment).
Finally, we believe that the role of evidence is critical when reasoning about the composition of multi-logic,
multi-language components.
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[83] M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Abstraction carrying code and resource-
awareness. In Principle and Practice of Declarative Programming. ACM Press, July 2005.

71



MOBIUS Deliverable D4.1 Scenarios for Proof-Carrying Code

[84] M. Hermenegildo, G. Puebla, and F. Bueno. Using global analysis, partial specifications, and an exten-
sible assertion language for program validation and debugging. In K. R. Apt, V. Marek, M. Truszczyn-
ski, and D. S. Warren, editors, The Logic Programming Paradigm: a 25–Year Perspective. Springer-
Verlag, 1999.

[85] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental analysis of constraint logic
programs. ACM Transactions on Programming Languages and Systems, 22(2):187–223, March 2000.

[86] Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-Garćıa. Integrated
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