
11

Analysing Snapshot Isolation

ANDREA CERONE, Imperial College London, UK

ALEXEY GOTSMAN, IMDEA Software Institute, Spain

Snapshot isolation (SI) is a widely used consistency model for transaction processing, implemented by most

major databases and some of transactional memory systems. Unfortunately, its classical definition is given in

a low-level operational way, by an idealised concurrency-control algorithm, and this complicates reasoning

about the behaviour of applications running under SI. We give an alternative specification to SI that charac-

terises it in terms of transactional dependency graphs of Adya et al., generalising serialisation graphs. Unlike

previous work, our characterisation does not require adding additional information to dependency graphs

about start and commit points of transactions. We then exploit our specification to obtain two kinds of static

analyses. The first one checks when a set of transactions running under SI can be chopped into smaller pieces

without introducing new behaviours, to improve performance. The other analysis checks whether a set of

transactions running under a weakening of SI behaves the same as when running under SI.

CCS Concepts: • Theory of computation → Distributed computing models;

Additional Key Words and Pharses: Distributed computing models, robustness, snapshot isolation, transaction

chopping

ACM Reference format:

Andrea Cerone and Alexey Gotsman. 2018. Analysing Snapshot Isolation. J. ACM 65, 2, Article 11 (January

2018), 41 pages.

https://doi.org/10.1145/3152396

1 INTRODUCTION

Transactions simplify concurrent programming by enabling computations on shared data that are
isolated from other concurrent computations and resilient to failures. They are commonly provided
by databases (Bernstein et al. 1987) and, more recently, by transactional memory systems (Herlihy
and Moss 1993). Ideally, programmers would like to get strong guarantees about the isolation
of transactional computations, formalised by the notion of serialisability (Bernstein et al. 1987):
the results of concurrently executing a set of transactions could be obtained if these transactions
executed atomically in some order. Unfortunately, ensuring serialisability carries a significant per-
formance penalty. For this reason, transactional systems often provide weaker guarantees about

We thank Hongseok Yang, who participated in the early stages of this work. We also thank Hagit Attiya, Ricardo Jiménez-

Peris and Pierre Sutra for comments that helped improve the article.

This article is a revised and expanded version of a paper that received the Best Paper Award at the 35th Annual ACM

Symposium on Principles of Distributed Computing (PODC).

This work was supported by an EU project ADVENT. The first author was also supported by the EPSRC Programme Grant

REMS: Rigorous Engineering for Mainstream Systems (EP/K008528/1).

Authors’ addresses: A. Cerone, Department of Computing, Imperial College London, South Kensington Campus, SW7 2AZ,

London (UK); email: a.cerone@imperial.ac.uk; A. Gotsman, IMDEA Software Institute, Campus Montegancedo S/N, 28223

Pozuelo de Alarcon, Madrid, Spain; email: Alexey.Gotsman@imdea.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 0004-5411/2018/01-ART11 $15.00

https://doi.org/10.1145/3152396

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

https://doi.org/10.1145/3152396
mailto:permissions@acm.org
https://doi.org/10.1145/3152396

11:2 A. Cerone and A. Gotsman

transaction processing, formalised by weak consistency models. Snapshot isolation (SI) (Berenson
et al. 1995) is one of the most popular such models, implemented by major centralised databases
(e.g., MS SQL Sever and Oracle), distributed databases (Daudjee and Salem 2006; Serrano et al.
2007; Peng and Dabek 2010), and transactional memory systems (Litz et al. 2014; Bieniusa and
Fuhrmann 2010; Dias et al. 2011; Clojure 2016; Riegel et al. 2006).

Informally, SI is defined by a multi-version concurrency control algorithm as follows. A trans-
actionT reads values of shared objects from a snapshot taken at its start. The transaction commits
only if it passes a write-conflict detection check: sinceT started, no other committed transaction has
written to any object thatT also wrote to. If the check fails,T aborts. OnceT commits, its changes
become visible to all transactions that take a snapshot afterwards. This concurrency-control algo-
rithm allows unserialisable behaviours, called anomalies. One of them, write skew, is graphically
illustrated in Figure 2(f). Each of the transactions T1 and T2 checks that the combined balance of
two accounts exceeds 100 and, if so, withdraws 100 from one of them. Under SI, both transactions
may pass the checks and make the withdrawals from different accounts, resulting in the combined
balance going negative. This outcome cannot occur under serialisability. Given such anomalies,
reasoning about the behaviour of applications executing under SI is far from trivial. This task is
further complicated by the fact that the specification of SI is given in a low-level operational way,
by a concurrency control algorithm. To facilitate reasoning about applications using SI and estab-
lishing useful results about this consistency model, we need a more declarative specification that
abstracts from implementation-level details as much as possible.

An approach that yields such consistency model specifications was proposed by Adya (1999) and
Adya et al. (2000). In this approach, an execution of a set of transactions is described by three kinds
of dependencies between pairs of transactions T1 and T2: read dependencies record when T1 reads
the value of an object written byT2; write dependencies record whenT1 overwrites the value of an
object written by T2; finally, anti-dependencies are derived from read and write dependencies in a
certain way (Section 3). A set of transactions and dependencies between them form a dependency

graph, generalising classical serialisation graphs (Bernstein et al. 1987). Then the set of executions
allowed by a given consistency model is defined by those dependency graphs that lack certain
cycles; in particular, serialisable executions are characterised by acyclic dependency graphs. This
way of specifying consistency models has been shown to be particularly appropriate for design-
ing static analyses (Fekete et al. 2005; Jorwekar et al. 2007; Shasha et al. 1995; Zhang et al. 2013;
Cerone et al. 2015b), runtime monitoring (Cahill et al. 2009; Zellag and Kemme 2014) and proving
concurrency-control algorithms correct (Lin et al. 2009; Xie et al. 2015; Diegues and Romano 2014).
In particular, specifications in terms of dependency graphs facilitate exploring possible program
executions in a static analysis, because the analysis can determine which dependencies can possi-
bly exist at runtime by looking for pairs of read or write accesses to the same object in the code of
different transactions. In contrast, it is hard to predict statically more low-level information about
transaction execution, such as the order in which transactions commit.

Specifications in terms of dependency graphs have been proposed for ANSI isolation levels such
as serialisability, Read Committed and Repeatable Read (Adya 1999), as well as more recent pro-
posals of consistency models (Bailis et al. 2014; Xie et al. 2015). But surprisingly, there is no such
specification of SI. This is not for the want of trying: Adya did propose a definition of SI that refers
to dependency graphs (Adya 1999). However, to capture the subtle semantics of SI, this definition
extends the graphs by a relation describing low-level information about transaction execution,
which negates their benefits.

In this article, we propose the first characterisation of SI solely in terms of dependency graphs
(Section 4) and apply it to develop new static analyses (Section 5 and Section 6). Namely, we show
that SI allows exactly the executions represented by dependency graphs that contain only cycles

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:3

with at least two adjacent anti-dependency edges. The proof of this fact is highly non-trivial and
represents a key technical contribution of this article. It requires showing that, given a dependency
graph satisfying the above acyclicity condition, we can construct certain relations describing how
the transactions can be processed by the SI concurrency control, e.g., the order in which trans-
actions commit. Constructing these relations from transactional dependencies is challenging, and
the main insight of our proof is given by a procedure for this construction, based on solving certain
kinds of inequalities over relations.

To illustrate the benefits of our dependency graph characterisation of SI, we exploit it to develop
two kinds of static analyses. First, we propose a new static analysis for the classical problem of
transaction chopping (Shasha et al. 1995; Xiang and Scott 2015; Afek et al. 2011)—checking when
transactions in an application can be chopped into smaller pieces without introducing new be-
haviours (Section 5). When applied to long-running transactions executing under SI, chopping
can improve performance, because the longer an SI transaction runs, the higher the chances are
that it will abort due to a write conflict. There are analyses for transaction chopping under se-
rialisability (Shasha et al. 1995) and parallel SI (Cerone et al. 2015b), a recently proposed weaker
version of SI for large-scale databases (Sovran et al. 2011; Saeida Ardekani et al. 2013a). However,
there has been no such analysis under SI, despite the widespread use of this consistency model.

Our dependency graph characterisation of SI is instrumental in deriving the static analysis for
transaction chopping, and not only due to the feasibility of determining possible dependencies
statically. In more detail, chopping transforms transactions in a program into sessions (Terry et al.
1994; Daudjee and Salem 2006) (aka chains (Zhang et al. 2013)) of smaller transactions, which en-
sure that the transactions will be executed in the order given, but provide no isolation guarantees.
A chopping is correct if each SI execution of the resulting program can be spliced into an SI execu-
tion that has the same operations as the original one, but where all operations from each session
are executed inside a single transaction. Showing the existence of the spliced execution is chal-
lenging on SI because it is non-trivial to pick the order in which its transactions should commit.
Our characterisation of SI in terms of transactional dependencies avoids this complication, because
unlike low-level aspects of an execution, these dependencies do not change significantly during
splicing, and this makes it easy to construct the spliced execution.

The other kind of static analyses that we consider checks whether an application is robust (Fekete
et al. 2005; Shasha and Snir 1988) against weakening consistency: it behaves the same regardless
of whether it uses a database providing a weak consistency model or a database proving a stronger
model (Section 6). When this is the case, the application programmer can reap the performance
benefits of using the weaker model, yet can reason about the correctness of the application assum-
ing the stronger one. We first show that our SI characterisation allows easily deriving a variant
of an existing analysis that checks whether an application executing under SI behaves the same
as when executing under serialisability (Fekete et al. 2005) (robustness against SI, Section 6.1). We
then propose a new static analysis that checks whether an application executing under the recently
proposed parallel SI (Sovran et al. 2011; Saeida Ardekani et al. 2013a) behaves the same as when
executing under the stronger classical SI (robustness against parallel SI towards SI, Section 6.2). To
derive this static analysis, we formulate a dependency graph characterisation of parallel SI, which
can be given more easily than for classical SI. Again, our characterisations of consistency models
in terms of dependency graphs greatly facilitate deriving the above robustness analyses, since the
characterisations allow us to easily map between executions on different models.

2 SNAPSHOT ISOLATION

We start by formally defining snapshot isolation (SI), as well as serialisability. Rather than us-
ing the classical definition of SI by a concurrency-control algorithm (Section 1), it is technically

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:4 A. Cerone and A. Gotsman

convenient for us to build on a more declarative specification that we previously proposed and
proved equivalent to the standard one (Cerone et al. 2015a). Even though this specification is stated
in terms of lower-level relations than transactional dependencies, it avoids referring explicitly to
times at which a transaction takes a snapshot in the SI concurrency-control algorithm. We first
introduce mathematical structures that represent transaction execution in the specification.

We consider a transactional system managing a set of integer-valued objects Obj = {x ,y, . . .}.
Transactions read and write the objects, and in our representation of executions, we denote each
invocation of such an operation by an event from a set Event = {e, f , . . .}. A function op : Event→
Op for

Op = {read(x ,n), write(x ,n) | x ∈ Obj,n ∈ Z}
determines the operation a given event denotes: reading a value n from an object x or writing n to
x . We call a binary relation a strict partial order if it is transitive and irreflexive. We call it a total

order if it additionally relates any pair of distinct elements one way or another. We represent an
execution of a single transaction by the following structure, recording a set of operations and the
order in which they were invoked.

Definition 2.1. A transaction T , S, . . . is a pair (E, po), where E ⊆ Event is a finite, non-empty
set of events and the program order po ⊆ E × E is a total order.

For simplicity, all transactions in this article are assumed to be committed: our specifications
do not constrain values read inside aborted or ongoing transactions; this limitation could be lifted
following Adya (1999), Doherty et al. (2013), and Guerraoui and Kapalka (2008). We denote com-

ponents of transactions and similar structures as in ET and poT . We write e
po
−−→ f and (e, f) ∈ po

interchangeably, and similarly for other relations.
To allow transaction chopping (Section 5), we assume that the transactional system allows its

clients to group several transactions into a session (Terry et al. 1994), which establishes an order-
ing on the transactions. Thus, instead of classical SI and serialisability, we actually define their
strong session variants (Daudjee and Salem 2004, 2006). We represent the client-visible results of
executing a set of sessions by a history.

Definition 2.2. A history is a pair H = (T , SO), where T is a finite set of transactions with
disjoint sets of events and the session order SO ⊆ T × T is a union of total orders defined on
disjoint subsets of T , which correspond to transactions in different sessions.

For simplicity, we elide the treatment of infinite computations, and thus histories are always
finite. A consistency model, such as SI or serialisability, is specified by a set of histories. To define
this set, we extend histories with two relations, declaratively describing how the transactional
system processes transactions.

Definition 2.3. An abstract execution (or just an execution) is a tuple

X = (T , SO,VIS,CO),

where (T , SO) is a history and the visibility and commit orders VIS,CO ⊆ T × T are such that
VIS ⊆ CO and CO is total.

ForH = (T , SO) we shorten (T , SO,VIS,CO) to (H ,VIS,CO). In terms of the SI concurrency-

control algorithm sketched in Section 1, T
VIS−−→ S means that the writes done by the transaction T

are included into the snapshot taken by the transaction S ; T
CO−−→ S means that T commits earlier

than S . The constraint VIS ⊆ CO ensures that the snapshot taken by a transaction may only include
previously committed transactions. SI or serialisability allow those histories that can be extended

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:5

Fig. 1. Axioms constraining an abstract execution (T , SO,VIS,CO).

to an abstract execution satisfying certain consistency axioms from Figure 1, which specify the
corresponding guarantees about transaction processing.

Definition 2.4. The sets of executions and histories allowed by (strong session) SI and serial-

isability are

ExecSI = {X | X |= Int ∧ Ext ∧ Session ∧ Prefix ∧ NoConflict};
ExecSER = {X | X |= Int ∧ Ext ∧ Session ∧ TotalVis};

HistSI = {H | ∃VIS,CO. (H ,VIS,CO) ∈ ExecSI};
HistSER = {H | ∃VIS,CO. (H ,VIS,CO) ∈ ExecSER}.

We now explain the axioms in Figure 1, as well as anomalies that SI allows or disallows; the latter
are summarised in Figure 2. We use the following notation. For a setA and a total order R ⊆ A ×A,
we let maxR (A) be the element a ∈ A such that ∀b ∈ A. a = b ∨ (b,a) ∈ R; if A = ∅, then maxR (A)
is undefined. In the following, the use of maxR (A) in an expression implicitly assumes that it
is defined. We define minR (A) similarly. For a relation R ⊆ A ×A and an element a ∈ A, we let
R−1 (a) = {b | (b,a) ∈ R}. We define the sequential composition of relations R1 and R2 as

R1 ; R2 = {(a,b) | ∃c . (a, c) ∈ R1 ∧ (c,b) ∈ R2}.

We write _ for a value that is irrelevant and implicitly existentially quantified.
The Int and Ext axioms in Figure 1 ensure that a transaction reads from a snapshot of object

states and its own writes. The internal consistency axiom Int ensures that a read event e on
an object x returns the same value as the last write to or a read from x preceding e in the same
transaction. In particular, the axiom ensures that, if a transaction writes to an object and then reads
the object, then it will observe its last write. The axiom also disallows unrepeatable reads: if a
transaction reads an object twice without writing to it in-between, then it will read the same value
in both cases.

If a read is not preceded in the same transaction by an operation on the same object, then its
value is determined in terms of writes by other transactions using the external consistency axiom

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:6 A. Cerone and A. Gotsman

Fig. 2. Abstract executions illustrating SI and serialisability. Boxes represent transactions, and arrows inside

boxes represent the program order. We omit irrelevant CO edges. We also omit a special transaction that

writes initial versions of all objects and precedes all the other transactions in VIS and CO. The bold edges

are explained in Section 3.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:7

Ext. For T = (E, po), we let T
 write(x ,n) if T writes to x and the last value written is n:

op(maxpo{e | op(e) = write(x , _)}) = write(x ,n).

We let T
 read(x ,n) if T reads from x before writing to it and n is the value returned by the first
such read:

op(minpo{e | op(e) = _(x , _)}) = read(x ,n).

We also let WriteTxx = {T | T
 write(x , _)}. Then Ext ensures that, if a transaction T reads
an object x before writing to it, then the value read is determined by the transactions that are
included into T ’s snapshot according to VIS and that wrote to x ; T reads the value written by the
transaction from this set that committed last according to CO. For simplicity, we consider only
executions where the above set is always non-empty; this can be ensured by introducing a special
transaction that writes initial values of all objects. The executions in Figure 2(a) and (b) satisfy
Ext. Note that the read inT3 in Figure 2(b) returns 25, becauseT1 precedesT2 in the commit order.
The axiom Ext implies the absence of dirty reads: a committed transaction cannot read a value
written by an aborted or ongoing transaction (as such transactions are not present in abstract
executions), and a transaction also cannot read a value that was overwritten by the transaction
that wrote it (ensured by the definition of T
 write(x ,n)). Finally, Ext guarantees that either
all or none of the writes by a transaction can be visible to another transaction. For example, Ext
disallows the execution in Figure 2(c) and, in fact, any execution with the same history. This
illustrates a fractured reads anomaly: T1 makes Alice and Bob friends, but T2 observes only one
direction of the friendship relationship.

Our specification determines the snapshot that a transaction reads from based on an arbitrary
visibility relation and does not require the snapshot to be “latest”; this is similar to so-called gen-

eralised SI (Elnikety et al. 2005). However, following strong session SI (Daudjee and Salem 2004,
2006), the Session axiom requires the snapshot to include the effects of all preceding transactions
in the same session. For example, in the execution in Figure 2(a), the session order betweenT1 and
T2 induces a visibility edge according to Session.

The Prefix axiom ensures that, if the snapshot taken by a transactionT includes a (committed)
transaction S , then this snapshot also includes all transactions that committed before S . Note that
Prefix and the property VIS ⊆ CO in Definition 2.4 imply that VIS is transitive. Hence, Prefix
disallows the causality violation anomaly in Figure 2(d): here T3 sees the effects of T2, but not
the effects of T1, which is seen by T2. Since VIS is transitive, we must have a VIS edge between
T1 and T2; but then by Ext, T3 has to read comment from y. Prefix also disallows the long fork

anomaly shown in Figure 2(e), which is allowed by parallel SI (Sovran et al. 2011; Saeida Ardekani
et al. 2013a), a weakening of SI. There transactions T1 and T2 concurrently write to objects x and
y. Transaction T3 sees the write by T1, but not the write by T2; conversely, transaction T4 sees the
write byT2, but not the write byT1. Thus, from the perspectives ofT3 andT4, the writes ofT1 andT2

happen in different orders. Prefix disallows any execution with the history in Figure 2(e), because
in such an execution T1 and T2 have to be related by CO one way or another; but then by Prefix,
either T4 has to observe the write to x or T3 has to observe the write to y.

The axioms explained so far do not prevent the lost update anomaly, illustrated by the execution
in Figure 2(b). This execution could arise from the code in the figure that uses transactionsT1 and
T2 to make deposits into an account. The two transactions read the initial balance of the account
and concurrently modify it, resulting in one deposit getting lost. This anomaly is disallowed by the
NoConflict axiom: if two distinct transactions write to the same object, then one of them has to
be aware of the other. This axiom rules out any execution with the history in Figure 2(b): it forces

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:8 A. Cerone and A. Gotsman

T1 and T2 to be ordered by VIS, so that they cannot both read 0 from acct. In the SI concurrency
control this is ensured by the write-conflict detection check (Section 1).

The set HistSI (Definition 2.4) defined using the consistency axioms explained so far is exactly
the one produced by the SI concurrency-control algorithm (Cerone et al. 2015a). The axioms allow
the execution in Figure 2(f) with the characteristic SI anomaly of write skew (Section 1), disallowed
by serialisability. We formalise the latter by the axiom TotalVis, which requires visibility to totally
order all transactions. Then the axioms Int and Ext ensure that the transactions are processed
according to the usual sequential semantics. We thus have HistSER ⊂ HistSI.

3 DEPENDENCY GRAPHS

From an abstract execution we can extract several kinds of dependencies between its transactions,
which are used in consistency model specifications in the style of Adya (1999) and Adya et al.
(2000).

Definition 3.1. Let X = (H ,VIS,CO) be an execution. For x ∈ Obj, we define the following re-
lations on TH :

—read dependency:

T
WRX (x)
−−−−−−→ S ⇐⇒ S
 read(x , _) ∧T = maxCO (VIS−1 (S) ∩WriteTxx);

—write dependency:

T
WWX (x)
−−−−−−−→ S ⇐⇒ T

CO−−→ S ∧T , S ∈ WriteTxx ;

—anti-dependency:

T
RWX (x)
−−−−−−→ S ⇐⇒ T � S ∧ ∃T ′.T ′

WRX (x)
−−−−−−→ T ∧T ′

WWX (x)
−−−−−−−→ S .

Informally, T
WRX (x)
−−−−−−→ S means that S reads T ’s write to x (cf. the Ext axiom in Figure 1);

T
WWX (x)
−−−−−−−→ S means that S overwrites T ’s write to x ; T

RWX (x)
−−−−−−→ S means that S overwrites the

write to x read by T . For example, the dependencies of the executions in Figure 2(b), (e), and (f)
are shown there with bold arrows (keep in mind that the pictures omit a special initialisation
transaction). We often abuse notation and use the symbol WRX to also denote the relation⋃

x ∈Obj WRX (x) ⊆ TH × TH , and similarly for WWX and RWX .
A key goal of this article is to characterise SI solely in terms of dependencies: we want to de-

termine whether SI allows a given history by looking for appropriate dependencies between its
transactions rather than visibility and commit orders, as in Definition 2.4. To this end, we extend
histories to dependency graphs (aka direct serialisation graphs) (Adya 1999), which include rela-
tions representing the dependencies.

Definition 3.2. A dependency graph is a tuple G = (T , SO,WR,WW,RW), where (T , SO) is a
history and

(1) WR : Obj→ 2T ×T is such that

(a) ∀T , S ∈ T .∀x .T
WR(x)
−−−−−→ S ⇒ ∃n.T � S ∧T
 write(x ,n) ∧ S
 read(x ,n);

(b) ∀S ∈ T .∀x . S
 read(x , _) ⇒ ∃T .T
WR(x)
−−−−−→ S ;

(c) ∀T ,T ′, S ∈ T .∀x . (T
WR(x)
−−−−−→ S ∧T ′

WR(x)
−−−−−→ S) ⇒ T = T ′.

(2) WW : Obj→ 2T ×T is such that for every x ∈ Obj, WW(x) is a total order on the set
WriteTxx ;

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:9

(3) RW : Obj→ 2T ×T is derived from WR and WW as in Definition 3.1:

∀T , S ∈ T .∀x .T
RW(x)
−−−−−→ S ⇐⇒ T � S ∧ ∃T ′.T ′

WR(x)
−−−−−→ T ∧T ′

WW(x)
−−−−−−→ S .

Proposition 3.3. For any X = (T , SO,VIS,CO) ∈ ExecSI,

graph(X) = (T , SO,WRX,WWX,RWX)

is a dependency graph.

Note that the constraints on WR in Definition 3.2 ensure that it uniquely determines the
values read by transactions. ForH = (T , SO) we write (H ,WR,WW,RW) for (T , SO,WR,WW,
RW).

We write T |= Int if a set of transactions T satisfies the internal consistency axiom Int in
Figure 1. A relation R ⊆ T × T is acyclic if R+ ∩ {(T ,T) | T ∈ T } = ∅, where R+ is the transitive
closure of R. (Strong session) serialisability can be characterised by the set of acyclic dependency
graphs with internally consistent transactions (Adya 1999).

Theorem 3.4. Let

GraphSER = {G | (TG |= Int) ∧ ((SOG ∪WRG ∪WWG ∪ RWG) is acyclic)}.
Then

HistSER = {H | ∃WR,WW,RW. (H ,WR,WW,RW) ∈ GraphSER}.

For example, the histories in Figures 2(b), (e), and (f) are not serialisable, and they cannot be
extended to acyclic dependency graphs; in particular, the graphsG1,G2,G3, shown with bold edges
in Figure 2(b), (e), and (f), respectively, satisfy the conditions of Definition 3.2, but contain cycles.
We now set out to find a characterisation of the above form for SI.

4 SI CHARACTERISATION

For a setT and a relationR ⊆ T × T letR? = R ∪ {(T ,T) | T ∈ T }. We show that (strong session)
SI is characterised by dependency graphs that contain only cycles with at least two adjacent anti-
dependency edges.

Theorem 4.1. Let

GraphSI = {G | (TG |= Int) ∧ (((SOG ∪WRG ∪WWG) ; RWG?) is acyclic)}.
Then

HistSI = {H | ∃WR,WW,RW. (H ,WR,WW,RW) ∈ GraphSI}.

According to the theorem, to determine whether a particular history is allowed by SI, we can
look for dependencies that extend it to a graph in GraphSI. As we demonstrate in Section 5 and
Section 6, this way of defining SI is particularly suitable for developing static analyses for this
consistency model. The history in Figure 2(f) is allowed by SI, and indeed the dependency graph G
shown in the figure contains only cycles with two adjacent anti-dependencies (e.g.,T1

RW−−−→ T2
RW−−−→

T1). In contrast, the histories in Figures 2(b) and 2(e) are not allowed by SI, and they cannot be
extended to graphs where every cycle has at least two adjacent anti-dependencies. In particular,
the graphs G and G shown in Figures 2(b) and (e), respectively, contain cycles without these: e.g.,

T1
WW−−−→ T2

RW−−−→ T1 in Figure 2(b) and T1
WR−−−→ T3

RW−−−→ T2
WR−−−→ T4

RW−−−→ T1 in Figure 2(e).
To prove Theorem 4.1, we prove a slightly stronger result, showing that we can establish a

correspondence between executions in ExecSI and graphs in GraphSI that preserves histories and
dependencies.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:10 A. Cerone and A. Gotsman

Fig. 3. An illustration of a correspondence between abstract executions and dependency graphs.

Theorem 4.2.

(i) Soundness: ∀G ∈ GraphSI. ∃X ∈ ExecSI. graph(X) = G.

(ii) Completeness: ∀X ∈ ExecSI. graph(X) ∈ GraphSI.

As we explain in Section 7, the easier completeness direction of this theorem actually follows
from existing results (Fekete et al. 2005). Our main technical contribution is the more challeng-
ing proof of the soundness direction, which is required for the static analyses that we propose
(Section 5 and Section 6).

4.1 Relationships Between Abstract Executions and Dependency Graphs

We start by establishing several relationships between abstract executions in ExecSI and depen-
dency graphs in GraphSI that are useful in proving Theorem 4.2. We introduce them by example.

First, consider the dependency graph G4 in Figure 3 and an abstract execution X ∈ ExecSI such

that graph(X) = G. We show that we cannot have T4
VISX−−−−→ T2. Indeed, if we had T4

VISX−−−−→ T2, then

by Definition 3.1 we would have T4

WRG (x)
−−−−−−→ T2, contradicting the hypothesis that T3

WRG (x)
−−−−−−→ T2.

Hence, ¬(T4
VISX−−−−→ T2). This fact is not unique to the dependency graph G, as we show in the

following proposition.

Proposition 4.3.

∀X ∈ ExecSI.∀T , S ∈ TX . S
RWX−−−−→ T ⇐⇒

S � T ∧ ∃x . S
 read(x , _) ∧T
 write(x , _) ∧ ¬(T
VISX−−−−→ S).

Proof. Fix X = (T , SO,VIS,CO) ∈ ExecSI and T , S ∈ T . Let graph(X) = (T , SO,WR,WW,
RW). We illustrate the proof in Figure 4.

“=⇒”. Assume S
RW−−−→ T . Then for some x ∈ Obj andT ′ ∈ T we haveT ′

WR(x)
−−−−−→ S andT ′

WW(x)
−−−−−−→

T . This implies S � T , S
 read(x , _), T
 write(x , _), and T ′ = maxCO (VIS−1 (S) ∩WriteTxx).

SinceT ′
WW(x)
−−−−−−→ T , we haveT ′

CO−−→ T , and sinceT
 write(x , _), we haveT ∈ WriteTxx . Together

with T ′ = maxCO (VIS−1 (S) ∩WriteTxx), these statements imply T � VIS−1 (S), i.e., ¬(T
VIS−−→ S).

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:11

Fig. 4. An illustration of the proof of Proposition 4.3.

“⇐=”. Assume S
 read(x , _), T
 write(x , _), and ¬(T
VIS−−→ S) for some x ∈ Obj. Let T ′ be the

unique transaction such that T ′
WR(x)
−−−−−→ S ; then T ′
 write(x , _). Since CO is total, we must have

one of T ′ = T , T
CO−−→ T ′, or T ′

CO−−→ T . We cannot have T ′ = T , since then we would get T
VIS−−→ S

fromT ′
WR(x)
−−−−−→ S . We also cannot haveT

CO−−→ T ′, since then we would getT
VIS−−→ S byT ′

WR(x)
−−−−−→ S

and Prefix. Therefore, T ′
CO−−→ T and, hence, T ′

WW(x)
−−−−−−→ T . But then S

RW(x)
−−−−−→ T . �

We next show that Proposition 4.3 implies an interesting relationship among anti-dependencies,
visibility, and the commit order. Consider again the dependency graph G of Figure 3 and X ∈
ExecSI such that graph(X) = G. Even though transactions T1 and T4 access different objects, we

cannot choose the commit order between them arbitrarily: we must have T1
COX−−−−→ T4. This is be-

cause (Session) guarantees T1
VISX−−−−→ T2. Then, if we had T4

COX−−−−→ T1, then by (Prefix) we would

haveT4
VISX−−−−→ T2. But this contradicts the edgeT2

RWX−−−−→ T4 and Proposition 4.3, according to which

¬(T4
VISX−−−−→ T2). Again, the pattern illustrated in this example is not unique to the dependency graph

G, as we now show.

Lemma 4.4. ∀X ∈ ExecSI.VISX ; RWX ⊆ COX .

Proof. Consider X ∈ ExecSI and T , S ′, S ∈ TX such that S ′
VISX−−−−→ S

RWX−−−−→ T . If T = S ′, then

S ′
VISX−−−−→ S

RWX−−−−→ S ′, contradicting Proposition 4.3. If T
COX−−−−→ S ′, then by Prefix we get T

VISX−−−−→ S ,

contradicting Proposition 4.3. Then, since COX is total, we must have S ′
COX−−−−→ T . �

4.2 Pre-Executions

The main challenge in the proof of Theorem 4.2(i) is to construct a total commit order in the desired
execution X from the dependencies given by G while satisfying the SI axioms (Definition 2.4).
We do this incrementally; at intermediate stages of the construction we get structures similar to
abstract executions, but where the commit order can be partial.

Definition 4.5. A tuple P = (T , SO,VIS,CO) is a pre-execution if it satisfies all the conditions
of Definition 2.3, except CO is a strict partial order that may not be total. We let PreExecSI be the
set of pre-executions satisfying the SI axioms (Figure 1):

PreExecSI = {P | P |= Int ∧ Ext ∧ Session ∧ Prefix ∧ NoConflict}.

Thus, an execution is a pre-execution whose commit order is total. In the following, we apply the
graph function of Section 3 also to pre-executions.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:12 A. Cerone and A. Gotsman

Fig. 5. Requirements on a pre-execution P = (H ,VIS,CO) constructed from a dependency graph G =
(H ,WR,WW,RW).

Proposition 4.6. For any P ∈ PreExecSI, graph(P) is a dependency graph.

Towards proving Theorem 4.2(i), in this section, for a dependency graph

G = (T , SO,WR,WW,RW) ∈ GraphSI

we construct a pre-execution

P = (T , SO,VIS,CO) ∈ PreExecSI

such that graph(P) = G. In Section 4.3, we show how to extend P to a desired execution X ∈
ExecSI.

We start by restating the requirements on the pre-execution P in a way more suitable for guid-
ing its construction; these are given by the system of inequalities in Figure 5. First, to ensure
graph(P) = G, by Definition 3.1 at the very least we must have WR ∪WW ⊆ VIS. For P to satisfy
the Session axiom we must also have SO ⊆ VIS. These two observations motivate (S1). This in-
equality also implies that P satisfies NoConflict, since according to Definition 3.1, WW is total
over transactions that write to a given object. Inequality (S2) is equivalent to Prefix, and inequal-
ity (S3) states a relationship between VIS and CO inherited by Definition 4.5 from Definition 2.3.
Inequality (S4) requires CO to be transitive; (S2) and (S3) ensure that so is VIS.

As we now show, (S5), motivated by Lemma 4.4, ensures the axiom Ext. More generally, the
system of inequalities in Figure 5 can be used to ensure that a pre-execution P = (T , SO,VIS,CO)
satisfies all SI axioms save Int.

Lemma 4.7. Let G = (T , SO,WR,WW,RW) be a dependency graph such that T |= Int and

VIS,CO ⊆ T × T be acyclic relations satisfying the system of inequalities in Figure 5. Then P =
(T , SO,VIS,CO) is a pre-execution such that P ∈ PreExecSI and graph(P) = G.

Proof. We only prove that P |= Ext and WRP =WR; discharging the other obligations is
straightforward. Consider S ∈ T such that S
 read(x ,n). Then there exists a uniqueT ′ such that

T ′
WR(x)
−−−−−→ S . Let T = maxCO (VIS−1 (S) ∩WriteTxx). This is defined because CO is acyclic; by (S1)

and (S3) we have WW ⊆ CO, so that CO is total over WriteTxx ; and by (S1) we have WR ⊆ VIS,

so that T ′ ∈ VIS−1 (S) ∩WriteTxx . Hence, either T = T ′ or T ′
CO−−→ T . We now show that the the

latter case is impossible. Since T
VIS−−→ S , we cannot have S

RW(x)
−−−−−→ T , for in this case (S5) would

imply T
CO−−→ T , contradicting the acyclicity of CO. Hence, ¬(S

RW(x)
−−−−−→ T). Since S
 read(x , _),

T
 write(x , _), and T ′
WR(x)
−−−−−→ S , this can be the case only if ¬(T ′

WW(x)
−−−−−−→ T), which implies

¬(T ′
CO−−→ T). Thus, we must have T = T ′, which entails the required. �

According to Lemma 4.7, to construct a desired pre-execution P = (T , SO,VIS,CO) ∈
PreExecSI from a dependency graph G = (T , SO,WR,WW,RW), it is sufficient to find a solu-
tion to the system of inequalities in Figure 5 in terms of acyclic relations VIS and CO. This is not

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:13

completely trivial because of the recursive nature of the inequalities: according to them, adding
more edges into VIS forces adding more edges into CO and vice versa, increasing the risk of tying
a cycle. Our insight is to look for the solution that is smallest and, hence, least likely to contain
cycles. The following lemma gives a closed form for this solution. In anticipation of using the
lemma when extending a pre-execution to an execution, we state it in a generalised form that
gives the smallest solution where CO contains at least a given set of edges R. We use ∗ to denote
the transitive and reflexive closure of a given relation.

Lemma 4.8. Let G = (T , SO,WR,WW,RW) be a dependency graph. For any R ⊆ T × T , the

relations

VIS = (((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; (SO ∪WR ∪WW);

CO = (((SO ∪WR ∪WW) ; RW?) ∪ R)+
(1)

are a solution to the system of inequalities in Figure 5. They also are the smallest solution to the

system for which CO ⊇ R: for any other solution (VIS′,CO′) with CO′ ⊇ R we have VIS ⊆ VIS′ and

CO ⊆ CO′.

Proof. We first prove that the relations in the statement of the lemma are indeed a solution to
the system of inequalities in Figure 5.

(S1)

SO ∪WR ∪WW = (SO ∪WR ∪WW)

⊆ (((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; (SO ∪WR ∪WW)

= VIS.

(S2)

CO ; VIS = (((SO ∪WR ∪WW) ; RW?) ∪ R)+ ;

(((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; (SO ∪WR ∪WW)

= (((SO ∪WR ∪WW) ; RW?) ∪ R)+ ; (SO ∪WR ∪WW)

⊆ (((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; (SO ∪WR ∪WW)

= VIS.

(S3)

VIS = (((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; (SO ∪WR ∪WW)

⊆ (((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; ((SO ∪WR ∪WW) ; RW?)

⊆ (((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; (((SO ∪WR ∪WW) ; RW?) ∪ R)

= (((SO ∪WR ∪WW) ; RW?) ∪ R)+

= CO.

(S4)

CO ; CO = (((SO ∪WR ∪WW) ; RW?) ∪ R)+ ; (((SO ∪WR ∪WW) ; RW?) ∪ R)+

= (((SO ∪WR ∪WW) ; RW?) ∪ R)+

= CO.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:14 A. Cerone and A. Gotsman

(S5)

VIS ; RW = (((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; (SO ∪WR ∪WW) ; RW

⊆ (((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; ((SO ∪WR ∪WW) ; RW?)

⊆ (((SO ∪WR ∪WW) ; RW?) ∪ R)∗ ; (((SO ∪WR ∪WW) ; RW?) ∪ R)

= (((SO ∪WR ∪WW) ; RW?) ∪ R)+

= CO.

Next, consider VIS′ and CO′ such that they satisfy (S1)–(S5) and R ⊆ CO′. We first show that
CO ⊆ CO′. By (S1) we have

SO ∪WR ∪WW ⊆ VIS′. (2)

Then by (S3) and (S5) we get

(SO ∪WR ∪WW) ; RW? ⊆ CO′.

Since R ⊆ CO′, this implies

((SO ∪WR ∪WW) ; RW?) ∪ R ⊆ CO′,

and by (S4) we get

(((SO ∪WR ∪WW) ; RW?) ∪ R)+ ⊆ (CO′)+ ⊆ CO′.

But this is exactly CO ⊆ CO′.
To prove that VIS ⊆ VIS′, we rewrite VIS as

VIS = (SO ∪WR ∪WW) ∪ ((((SO ∪WR ∪WW) ; RW?) ∪ R)+ ; (SO ∪WR ∪WW)),

and we prove that both parameters of the union are included in VIS′. We have already proved (2).
We also have

(((SO ∪WR ∪WW) ; RW?) ∪ R)+ ; (SO ∪WR ∪WW) = CO ; (SO ∪WR ∪WW).

Since CO ⊆ CO′ and SO ∪WR ∪WW ⊆ VIS′, by (S2) we get

CO ; (SO ∪WR ∪WW) ⊆ CO′ ; VIS′ ⊆ VIS′,

as required. �

For R = ∅, Lemma 4.8 gives the smallest solution to the system of inequalities in Figure 5, which
we denote by (VIS0,CO0). We now show that this solution gives us the pre-execution we originally
set out to construct.

Corollary 4.9. If

G = (T , SO,WR,WW,RW) ∈ GraphSI,

then

P0 = (T , SO,VIS0,CO0) ∈ PreExecSI

and graph(P0) = G.

Proof. Since G ∈ GraphSI, CO0 is acyclic. By (S3), so is VIS0. The required then follows from
Lemma 4.7. �

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:15

4.3 From Pre-Executions to Executions: Proof of Theorem 4.2(i)

Fix G = (T , SO,WR,WW,RW) ∈ GraphSI. Let P0 = (T , SO,VIS0,CO0) be the pre-execution
constructed in Corollary 4.9, so that P0 ∈ PreExecSI and graph(P0) = G. To prove Theorem 4.2(i),
we now show how to extend P to a desired executionX ∈ ExecSI such that graph(P) = G. To this
end, we take an incremental approach: we construct a sequence of pre-executions

{Pi = (T , SO,VISi ,COi)}ni=0 ⊆ PreExecSI

for some n ≥ 0. The sequence is such that graph(Pi) = G for i = 0..n, and COi ⊂ COi+1 for i =
0..(n − 1). Furthermore, COn is total, so that Pn is an execution.

To define the above sequence, assume that Pi has been defined. To construct Pi+1, we choose
two transactions (if any) Ti , Si that are not related by COi and define (VISi+1,COi+1) to be the
smallest solution to the system of inequalities of Figure 5 that contains COi ∪ {(Ti , Si)}. If the
above transactions Ti , Si do not exist, we terminate the construction and let n = i . To prove that
the constructed sequence satisfies the properties stated above, we need to show that COi+1 is
acyclic. This is established using the following lemma.

Lemma 4.10. Let Pi = (T , SO,VISi ,COi) ∈ PreExecSI, where (VISi ,COi) is a solution to the sys-

tem of inequalities in Figure 5. Assume that Ti , Si ∈ T are two different transactions not related by

COi , and (VISi+1,COi+1) is the smallest solution to the system of inequalities in Figure 5 such that

COi ∪ {(Ti , Si)} ⊆ COi+1. Then COi+1 is acyclic.

Proof. To prove the required, we exploit the fact that Lemma 4.8 can be used to express the
relation COi+1 as a function of COi and (Ti , Si). Namely, by Lemma 4.8 we have

COi+1 = (((SO ∪WR ∪WW) ; RW?) ∪ (COi ∪ {(Ti , Si)}))+

= (((SO ∪WR ∪WW) ; RW?)+ ∪ (COi ∪ {(Ti , Si)}))+

= (CO0 ∪ COi ∪ {(Ti , Si)})+.

We furthermore have CO0 ⊆ COi , because (VIS0,CO0) is the smallest solution of the system in
Figure 5. Then

COi+1 = (COi ∪ {(Ti , Si)})+.
We now use this equality to show that COi+1 must be acyclic. Reasoning by contradiction,

suppose it has a cycle. Then there exists a sequence of transactionsT 0, . . . ,Tm , wherem ≥ 0, such
that T 0 = Tm , and

T 0 COi∪{(Ti ,Si) }
−−−−−−−−−−−→ · · ·

COi∪{(Ti ,Si) }
−−−−−−−−−−−→ Tm .

Because Pi is a pre-execution, COi is acyclic, so in the sequence above there exists at least one
index k ∈ {0, . . . ,m − 1} such that T k = Ti and T k+1 = Si . Let j,h be the smallest and the largest
such indices, respectively (note that we can have j = h). Then we can convert the above cycle into
the following one:

T 0 COi−−−→ · · ·
COi−−−→ T j = Ti

{(Ti ,Si) }
−−−−−−−→ Si = T

h+1 COi−−−→ · · ·
COi−−−→ Tm ,

where there is exactly one arrow labelled with the relation {(Ti , Si)}, and all other arrows are
labelled with COi . Now it remains to note that we have

Si = T
h+1 COi−−−→ · · ·

COi−−−→ Tm = T 0 COi−−−→ · · ·
COi−−−→ T j = Ti ,

and because COi is transitive by (S3), we have Si
COi−−−→ Ti . But this contradicts the assumption that

Si and Ti are not related by COi . Therefore, COi+1 must be acyclic. �

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:16 A. Cerone and A. Gotsman

Fig. 6. An illustration of constructing an execution from a dependency graph (Section 4) and splicing an

execution (Section 5). We omit an initialisation transaction that sets acct1 = 100 and acct2 = 0.

Proof of Theorem 4.2(i). Consider the sequence {Pi = (T , SO,VISi ,COi)}ni=0 constructed as
described above. We prove by induction on i that Pi ∈ PreExecSI and graph(Pi) = G for i = 0..n.
If i = 0, then P0 ∈ PreExecSI and graph(P0) = G by Corollary 4.9. Assume Pi ∈ PreExecSI for
0 ≤ i < n. Then by Lemma 4.10, COi+1 is acyclic. Hence, by Lemma 4.7, Pi+1 ∈ PreExecSI and
graph(Pi+1) = G, which completes the induction. Finally, by construction COn is total, so that
X = Pn is an abstract execution such that graph(Pn) = G, as required. �

We now illustrate the construction in the proof of Theorem 4.2(i) by an example. Consider the
dependency graph G5 ∈ GraphSI in Figure 6, which we also use as an example in Section 5. Its
transactions could arise from the programs, also shown in the figure, that make a transfer between
two accounts and query their balances or the sum thereof. The transactions arising from lookup1
and lookup2 see the initial state of the database, while the transactions arising from lookupAll
see its state in the middle of a transfer.

By Lemma 4.8, the smallest solution (VIS0,CO0) of the system of inequalities in Figure 5 consists

of the solid edges in Figure 6. In particular, we have S ′
CO0−−−→ T because of S ′

SO−−→ S (so that S ′
VIS−−→

S), S
RW−−−→ T , and the inequality (S5). Since CO0 is not total, we have to pick an arbitrary pair of

transactions (T1, S1) unrelated by CO0 and construct VIS1 and CO1 as the smallest solution to the
system of inequalities in Figure 5 such that CO1 ⊇ CO0 ∪ {(T1, S1)}. By Lemma 4.8, this solution
is given by (1) for R = CO0 ∪ {(T1, S1)}. For example, in Figure 6 the transactions T ′ and T ′′ are
unrelated by the commit order. If we pick as (T1, S1) the pair (T ′,T ′′) in Figure 6, then we get
VIS1 = VIS0, and CO1 = CO0 ∪ {(T ′,T ′′)}. The relation CO1 is not yet total: for example, it does
not relate the transactions T ′′ and S ′′. By picking as (T2, S2) the pair (T ′′, S ′′), we construct VIS2

and CO2 by letting R = CO1 ∪ {(T ′′, S ′′)} in (1); this corresponds to all the solid and dashed edges

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:17

in Figure 6. Note that CO2 also includes the edge (T ′, S ′′). Since CO2 is total in this example, the
construction terminates with n = 2.

4.4 Proof of Theorem 4.2(ii)

Consider X = (T , SO,VIS,CO) ∈ ExecSI. As follows from Lemma 4.4, VIS and CO give a solution
to the system of inequalities of Figure 5 for WR =WRX , WW =WWX , and RW = RWX . We now
apply Lemma 4.8 for R = ∅; the minimality of the solution given by Lemma 4.8 implies that ((SO ∪
WR ∪WW) ; RW?)+ ⊆ CO. Then ((SO ∪WR ∪WW) ; RW?)+ is acyclic because so is CO. This
establishes graph(X) ∈ GraphSI. �

4.5 More Precise Characterisations

In this section, we present corollaries of Theorem 4.1 that give more precise SI characterisations.
We use these in our static analyses (Section 5 and Section 6).

For the following, it is helpful to introduce some notation. We use γ ,γ ′, . . . to range over cycles
in a dependency graph G, i.e., paths of the form

T1
R1−−→ T2

R2−−→ · · ·
Rn−1−−−−→ Tn (3)

such thatT1 = Tn and for any i = 1..n we haveTi ∈ TG and Ri ∈ {SOG,WRG,WWG,RWG}. For a
given cycle γ of the form (3), we let

rep(γ) = |{Ti | ∃j . 1 ≤ i, j < n ∧ i � j ∧Ti = Tj }|
be the number of repeated vertices in it. Note thatγ has no repeated vertices if and only if rep(γ) =
0. We call such a cycle simple. Our first strengthening of the SI characterisation limits the scope
of the acyclicity check in Theorem 4.1 to simple cycles.

Theorem 4.11. Let G be a dependency graph. Then G ∈ GraphSI if and only if G |= Int and all

simple cycles in G contain at least two adjacent anti-dependency edges.

Proof. The “only if ” direction trivially follows from Theorem 4.1. For the “if ” direction, let G
be a dependency graph. We show that if G contains a cycle without adjacent RWG edges, then
it also contains a simple cycle without adjacent RWG edges. To this end, let γ be a cycle in G
without adjacent RWG edges. If rep(γ) = 0, then there is nothing to prove, so let us assume that
rep(γ) > 0. Below we show how to extract a sub-cycle γ ′ of γ such that rep(γ ′) < rep(γ) and γ ′

has no adjacent RWG edges. By applying this procedure repeatedly, we obtain a cycle γ ′′ with no
adjacent RWG edges and such that rep(γ ′′) = 0, as required.

To construct γ ′ from γ , we proceed as follows: since rep(γ) > 0, we have

γ = S
_
−→ . . .

R1−−→ T
R2−−→ . . .

R3−−→ T
R4−−→ . . .

_
−→ S

for some T , S ∈ TG and {Ri }4i=1 ⊆ {SOG,WRG,WWG,RWG}. A graphical representation of γ is
given in Figure 7. From γ we can derive the cycles

γ1 = S
_
−→ · · ·

R1−−→ T
R4−−→ · · ·

_
−→ S

and

γ2 = T
R2−−→ · · ·

R3−−→ T ,

which are contained inside the dashed boxes in Figure 7.
Since γ contains no adjacent RWG edges, we can have two adjacent RWG edges in γ1 only if
R1 = RWG and R4 = RWG ; similarly, we can have two adjacent RWG edges in γ2 only if R2 =

RWG and R3 = RWG . Therefore, if either R1 � RWG or R2 � RWG , then we know that γ1 has no

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:18 A. Cerone and A. Gotsman

Fig. 7. A cycle with a repeated transaction T .

adjacent RWG edges, and we choose γ ′ = γ1. Otherwise R1 = RWG . Since γ contains no adjacent
RWG edges, it follows that R2 � RWG ; therefore γ2 contains no adjacent RWG edges, and we
choose γ ′ = γ2. �

Next, we show another characterisation of GraphSI that involves the notion of vulnerable anti-
dependencies (Fekete et al. 2005). In our setting, we define these as the anti-dependency edges that
are not covered by the other types of edges. Formally, in a dependency graphG an anti-dependency

edge T
RWG−−−−→ S is vulnerable if we do not have T

SOG∪WRG∪WWG−−−−−−−−−−−−−−→ S .

Theorem 4.12. Let G be a dependency graph. Then G ∈ GraphSI if and only if G |= Int and all

simple cycles in G contain at least two adjacent vulnerable anti-dependency edges.

Proof. First note that

((SOG ∪WRG ∪WWG) ; RWG?)+ =

((SOG ∪WRG ∪WWG) ; (RWG \ (SOG ∪WRG ∪WWG))?)+.

Then by Theorem 4.1 and the above equality, G ∈ GraphSI if and only if G |= Int and all cycles in
G contain at least two adjacent vulnerable anti-dependency edges. We can now proceed as in the
proof of Theorem 4.13 to obtain the required. �

So far, none of our SI characterisations has considered the objects involved in dependencies
between transactions. The following theorem takes these into account.

Theorem 4.13. Let G be a dependency graph. Then G ∈ GraphSI if and only if G |= Int and

all simple cycles in G contain at least two adjacent vulnerable anti-dependency edges over different

objects.

Proof. The “if ” part of the theorem is trivial. For the “only if ” part, suppose that G ∈ GraphSI.
We prove that

∀x . RWG (x) ; RWG (x) ⊆ RWG (x) ; (RWG (x) ∩WWG (x)). (4)

This implies that, whenever we have two adjacent anti-dependencies over the same object in G,
then at least one of them is not vulnerable. Since G ∈ GraphSI, by Theorem 4.12 the graph has
only simple cycles with two adjacent vulnerable anti-dependencies, and by Equation (4) such anti-
dependencies need to be over different objects.

To prove Equation (4), consider x ∈ Obj and T ,T ′,T ′′ ∈ TG such that T
RWG (x)
−−−−−−→ T ′

RWG (x)
−−−−−−→ T ′′.

By definition,T ′
 write(x , _),T ′′
 write(x , _), andT ′ � T ′′. Therefore, eitherT ′
WWG (x)
−−−−−−−→ T ′′ or

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:19

T ′′
WWG (x)
−−−−−−−→ T ′. However, we cannot haveT ′′

WWG (x)
−−−−−−−→ T ′, becauseT ′

RWG (x)
−−−−−−→ T ′′ and the hypoth-

esis G ∈ GraphSI ensures that WWG (x) ; RWG (x) is acyclic. Hence, we must haveT ′
WWG (x)
−−−−−−−→ T ′′

and, therefore, T
RWG (x)
−−−−−−→ T ′

RWG (x)∩WWG (x)
−−−−−−−−−−−−−−→ T ′′. �

As an illustration of Theorem 4.13, the dependency graph of the write skew anomaly in
Figure 2(f), allowed by SI, contains only cycles with at least two adjacent vulnerable anti-

dependencies over different objects: e.g., T1
RW(acct2)
−−−−−−−−→ T2

RW(acct1)
−−−−−−−−→ T1.

5 TRANSACTION CHOPPING UNDER SI

In this section, we exploit our characterisation of SI in terms of dependency graphs to derive
a static analysis that checks when transactions in an application executing under SI can be
chopped (Shasha et al. 1995) into sessions of smaller transactions without introducing new be-
haviours (the sessions are also called chains in this context (Zhang et al. 2013)). To this end, the
analysis must check that any SI execution of the application with chopped transactions can be
spliced into an SI execution that has the same operations as the original one, but where all op-
erations from each session are executed inside a single transaction. We first establish a dynamic

chopping criterion that checks whether a single SI execution, represented by a dependency graph,
is spliceable. From this we then derive a static analysis that checks whether this is the case for all
executions produced by a given chopped application.

For a historyH , let

≈H = SOH ∪ SO−1
H ∪ {(T ,T) | T ∈ TH }

be the equivalence relation grouping transactions from the same session. We let T H be the result

of splicing all transactions in the session to whichT belongs inH into a single transaction: T H =
(E, po), where E = (

⋃{ES | S ≈H T }) and

po = {(e, f) | (∃S . e, f ∈ ES ∧ e
po

S−−−→ f ∧ S ≈H T) ∨

(∃S, S ′. e ∈ ES ∧ f ∈ ES ′ ∧ S
SOH−−−−→ S ′ ∧ S ′ ≈H T)}.

We let splice(H) be the history resulting from splicing all sessions in a historyH :

splice(H) =
({

T H | T ∈ TH
}
, ∅
)
.

A dependency graph G ∈ GraphSI is spliceable if there exists a dependency graph G′ ∈ GraphSI

such thatHG′ = splice(HG). For a dependency graph G, we let ≈G = ≈HG and T G = T HG .

For example, the graph G5 in Figure 6 is not spliceable, because splice(HG5) � HistSI: informally,

S G5
observes the write by T G5

to acct1, but not its write to acct2. On the other hand, let G6

be the graph obtained by removing the transactions S and S ′ from G5. Then G6 is spliceable, as

witnessed by the graph G′6 ∈ GraphSI with HG′6 = splice(HG6) and only the edges T ′′ G6

RWG′6−−−−→

T G6
and S ′′ G6

RWG′6−−−−→ T G6
.

Our criterion for checking that a dependency graph is spliceable requires the absence of certain
cycles in a variant of the graph.

Definition 5.1. Given a dependency graph G, the dynamic chopping graph corresponding to
G is the graph DCG(G) with the node set TG and the edge set obtained from the union of the
following sets:

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:20 A. Cerone and A. Gotsman

—SOG (a successor edge);
—SO−1

G (a predecessor edge):

—WRG \ ≈G (a read dependency edge);
—WWG \ ≈G (a write dependency edge); and
—RWG \ ≈G (an anti-dependency edge).

We refer to the last three kinds of edges as conflict edges.
A cycle in a chopping graph DCG(G) is critical if

(i) it is simple;
(ii) it contains a fragment of three consecutive edges of the form “conflict, predecessor, con-

flict”; and
(iii) any two anti-dependency edges on the cycle are separated by at least one read or write

dependency edge.

Theorem 5.2. For G ∈ GraphSI, if DCG(G) contains no critical cycles, then G is spliceable.

For example, the above graph G6 contains no critical cycles, and the graph G5 contains a critical
cycle

T ′
WRG−−−−→ S ′

SOG−−−→ S
RWG−−−−→ T

SO−1
G−−−−→ T ′.

5.1 Proof of the Dynamic Chopping Criterion under SI

To prove Theorem 5.2, we exhibit a particular dependency graph splice(G) such that splice(G) ∈
GraphSI and Hsplice(G) = splice(HG). We define read dependencies WRsplice(G) by lifting those in
WRG to spliced transactions:

∀T , S ∈ TG .∀x ∈ Obj. T G
WRsplice(G) (x)
−−−−−−−−−−→ S G ⇐⇒ T G � S G ∧ T

≈G ; WRG (x) ;≈G−−−−−−−−−−−−−→ S . (5)

We define WWsplice(G) similarly and derive RWsplice(G) from WRsplice(G) and WWsplice(G) as in
Definition 3.1. Then Theorem 5.2 is a corollary of the following theorem.

Theorem 5.3. For G ∈ GraphSI, if DCG(G) contains no critical cycles, then splice(G) is a depen-

dency graph and splice(G) ∈ GraphSI.

To prove the above theorem, we first show that RWsplice(G) can be decomposed into a form
similar to (5).

Lemma 5.4. Let G ∈ GraphSI be such that DCG(G) contains no critical cycles. Then

∀T , S ∈ TG .∀x ∈ Obj. T G
RWsplice(G) (x)
−−−−−−−−−−→ S G ⇒ T G � S G ∧ T

≈G ; RWG (x) ;≈G−−−−−−−−−−−−−→ S .

Proof. Let G ∈ GraphSI and suppose that T G
RWsplice(G) (x)
−−−−−−−−−−→ S G for some T , S ∈ TG and x ∈

Obj. By definition, T G � S G and there exists V ∈ TG such that V G
WRsplice(G) (x)
−−−−−−−−−−→ T G and

V G
WWsplice(G) (x)
−−−−−−−−−−−→ S G . That is, there exist T ′ ≈G T ,V ′ ≈G V , V ′′ ≈G V , and S ′′ ≈G S such that

V ′
WRG (x)
−−−−−−→ T ′ and V ′′

WWG (x)
−−−−−−−→ S ′′. We show that T ′

RWG (x)
−−−−−−→ S ′′, so that T

≈G ; RWG (x) ;≈G−−−−−−−−−−−−−→ S .

First note that from V ′
WRG (x)
−−−−−−→ T ′ and V ′′

WWG (x)
−−−−−−−→ S ′′ we can infer V ′
 write(x , _), V ′′

write(x , _), and S ′′
 write(x , _). SinceV ′ ≈G V ≈G V ′′, one of the following must be true:V ′ =

V ′′,V ′
SOG−−−→ V ′′, or V ′′

SOG−−−→ V ′. We handle these three cases separately, as illustrated in Figure 8.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:21

Fig. 8. Graphical representation of the different cases in the proof of Lemma 5.4.

(1) V ′ = V ′′. Then V ′
WRG (x)
−−−−−−→ T ′ and V ′

WWG (x)
−−−−−−−→ S ′′, from which T ′

RWG (x)
−−−−−−→ S ′′ follows.

(2) V ′
SOG−−−→ V ′′. We have V ′
 write(x , _) and V ′′
 write(x , _). The assumption G ∈

GraphSI mandates that ¬(V ′′
WWG (x)
−−−−−−−→ V ′): otherwise, we would have the cycle V ′

SOG−−−→

V ′′
WWG (x)
−−−−−−−→ V ′, contradicting G ∈ GraphSI. Hence, V ′

WWG (x)
−−−−−−−→ V ′′. We thus have

V ′
WWG (x)
−−−−−−−→ V ′′

WWG (x)
−−−−−−−→ S ′′ and by transitivity of WWG (x) we obtainV ′

WWG (x)
−−−−−−−→ S ′′. We

have established V ′
WWG (x)
−−−−−−−→ S ′′ and V ′

WRG (x)
−−−−−−→ T ′, so that T ′

RWG (x)
−−−−−−→ S ′′.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:22 A. Cerone and A. Gotsman

(3) V ′′
SOG−−−→ V ′. Since V ′ ≈G V , we have V ′ G = V G ; similarly, S ′′ G = S G . Therefore,

we have V ′ G
WWsplice(G) (x)
−−−−−−−−−−−→ S ′′ G , which implies V ′ G � S ′′ G , or equivalently V ′ �G

S ′′. In particular, V ′ � S ′′. We have already observed that V ′
 write(x , _) and S ′′

write(x , _); since V ′ � S ′′, we must have either V ′
WWG (x)
−−−−−−−→ S ′′ or S ′′

WWG (x)
−−−−−−−→ V ′. How-

ever, in the latter case we would have the critical cycle S ′′
WWG (x)
−−−−−−−→ V ′

SO−1
G−−−−→ V ′′

WWG (x)
−−−−−−−→

S ′′ in DCG(G), which contradicts the hypothesis of the lemma. Therefore, we must have

V ′
WWG (x)
−−−−−−−→ S ′′. Since we also have V ′

WRG (x)
−−−−−−→ T ′, it follows that T ′

RWG (x)
−−−−−−→ S ′′. �

We next show that splice(G) is a dependency graph (Lemma 5.6 below) and that Tsplice(G) |= Int
(Lemma 5.7 below). The proof of the former fact relies on the following easy proposition.

Proposition 5.5. Let G be a dependency graph. For any T ∈ TG :

(1) T G
 read(x ,n) if and only if minSOG {S | S ≈G T ∧ S
 _(x , _)}
 read(x ,n);

(2) T G
 write(x ,n) if and only if maxSOG {S | S ≈G T ∧ S
 write(x , _)}
 write(x ,n).

Lemma 5.6. Let G ∈ GraphSI be such that DCG(G) contains no critical cycles. Then splice(G) is

a dependency graph.

Proof. We prove that, if the chopping graph of G contains no critical cycles, then splice(G)
satisfies all the constraints of Definition 3.2.

(1a) Consider x ∈ Obj and T G, S G ∈ Tsplice(G) such that T G
WRsplice(G) (x)
−−−−−−−−−−→ S G . By defi-

nition, T G � S G and there exist two transactions T ′, S ′ ∈ TG such that T ≈G T ′
WRG (x)
−−−−−−→

S ′ ≈G S . Hence, for some n we have T ′
 write(x ,n) and S ′
 read(x ,n). We now prove

that (i) T G
 write(x ,n) and (ii) S G
 read(x ,n).

(i) Consider an arbitrary transaction T ′′ ∈ T such that T ′′
 write(x , _) and

T ′′ ≈G T ′ (Figure 9(a)). We show that it cannot be the case that T ′
SOG−−−→ T ′′. Then

T ′ = maxSOG {S | S ≈G T ∧ S
 write(x , _)}, and by Proposition 5.5(ii) it follows that

T G
 write(x ,n), as required.

Assume T ′
SOG−−−→ T ′′; then T ′ � T ′′. Since T ′,T ′′
 write(x , _), either T ′

WWG (x)
−−−−−−−→ T ′′

orT ′′
WWG (x)
−−−−−−−→ T ′. However, the latter case would lead to the cycleT ′′

WWG−−−−→ T ′
SOG−−−→ T ′′,

which cannot exist because G ∈ GraphSI. Therefore T ′
WWG (x)
−−−−−−−→ T ′′. To-

gether with T ′
WRG (x)
−−−−−−→ S ′, this yields the anti-dependency S ′

RWG (x)
−−−−−−→ T ′′. Since

S ′ ≈G S �G T ≈G T ′′, this implies S ′
(RWG (x)\≈G)
−−−−−−−−−−−→ T ′′. We have thus obtained the cycle

T ′
(WRG\≈G)
−−−−−−−−→ S ′

(RWG\≈G)
−−−−−−−−→ T ′′

SO−1
G−−−−→ T ′ in DCG(G), which is critical. This contradicts the

assumption of the lemma.

(ii) We show that, for any transaction S ′′ ≈G S ′ such that S ′′
SOG−−−→ S ′ we have

¬(S ′′
 write(x , _)), and if S ′′
 read(x ,m), then m = n. As a consequence, minSOG ({V |
V ≈G S ∧V
 _(x , _)}
 read(x ,n)), and hence, by Proposition 5.5(i) we have S G
 read
(x ,n).

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:23

Fig. 9. Graphical representation of the different cases in the proof of Lemma 5.6.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:24 A. Cerone and A. Gotsman

Fig. 10. Graphical representation of the different cases in the proof of Lemma 5.6.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:25

Let S ′′ be a transaction such that S ′′
SOG−−−→ S ′; we prove that ¬(S ′′
 write(x , _))

by contradiction. Assume S ′′
 write(x , _). Then by the definition of WWG (x),

either T ′
WWG (x)
−−−−−−−→ S ′′ or S ′′

WWG (x)
−−−−−−−→ T ′; the case S ′′ = T ′ is ruled out because

S ′′ ≈G S �G T ≈G T ′.

We cannot have T ′
WWG (x)
−−−−−−−→ S ′′ (Figure 9(b)), since together with T ′

WRG (x)
−−−−−−→ S ′,

this would imply the anti-dependency edge S ′
RWG (x)
−−−−−−→ S ′′. But then we have a cycle

S ′
RWG (x)
−−−−−−→ S ′′

SOG−−−→ S ′, contradicting G ∈ GraphSI. We cannot have S ′′
WWG (x)
−−−−−−−→ T ′

either (Figure 9(c)): in this case the chopping graph of G contains the critical cy-

cle S ′′
(WWG\≈G)
−−−−−−−−−→ T ′

(WRG\≈G)
−−−−−−−−→ S ′

SO−1
G−−−−→ S ′′. We have thus established ¬(S ′′
 write

(x , _)).

Suppose now that S ′′
SOG−−−→ S ′ and S ′′
 read(x ,m) for some m. Then there ex-

ists a transaction V ′ ∈ TG such that V ′
WRG (x)
−−−−−−→ S ′′ and V ′
 write(x ,m). Since

T ′
 write(x ,n), we haveV ′ = T ′,V
WWG (x)−−−−−−→ T ′, orT ′

WWG (x)−−−−−−→ V . We show that the latter

two cases are impossible, so thatT ′ = V ′ and, hence,m = n, as required. IfT ′
WWG (x)
−−−−−−−→ V ′,

then we have the anti-dependency edge S ′
RWG (x)
−−−−−−→ V ′ (Figure 9(d)). Then the graph

G contains the cycle S ′
RWG−−−−→ V ′

WRG−−−−→ S ′′
SOG−−−→ S ′, which contradicts G ∈ GraphSI. If

V ′
WWG (x)
−−−−−−−→ T ′, then we have the anti-dependency edge S ′′

RWG (x)
−−−−−−→ T ′ (Figure 10(e)). In

this case, DCG(G) contains the critical cycle S ′′
(RWG\≈G)
−−−−−−−−→ T ′

(WRG\≈G)
−−−−−−−−→ S ′

SO−1
G−−−−→ S ′′, and

again we obtain a contradiction.

(1b) Let x ∈ Obj and S G ∈ Tsplice(G) be such that S G
 read(x , _). By Proposition 5.5(i),

there exists a transaction S ′ ≈G S such that S ′
 read(x , _). Since G is a dependency

graph, there exists a transaction T ∈ TG such that T
WRG (x)
−−−−−−→ S ′. Then T � S ′. We cannot

have T
SOG−−−→ S ′, because T
 write(x , _) and S ′ = minSO{S | S ≈G S ′ ∧ S
 _(x , _)} by

Proposition 5.5(i). Finally, we cannot have S ′
SOG−−−→ T , because this would contradict the

hypothesis G ∈ GraphSI due to the cycle S ′
SOG−−−→ T

WRG (x)
−−−−−−→ S ′. As a consequence, it cannot

be T ≈G S ′. Then T G
WRsplice(G) (x)
−−−−−−−−−−→ S G .

(1c) Let x ∈ Obj and S G, T G, V G ∈ Tsplice(G) be such that T G
WRsplice(G) (x)
−−−−−−−−−−→ S G and

V G
WRsplice(G) (x)
−−−−−−−−−−→ S G . Then S �G T , S �G V and there exist transactions S ′, S ′′,T ′,V ′ such

that S ′ ≈G S ≈G S ′′, T ′
WRG (x)
−−−−−−→ S ′, V ′

WRG (x)
−−−−−−→ S ′′. Note that if S ′ = S ′′, then T ′ = V ′, be-

cause G is a dependency graph; hence T G = T ′ G = V ′ G = V G , and there is nothing

left to prove.

It remains to analyse the case when S ′ � S ′′, so that either S ′
SOG−−−→ S ′′ or S ′′

SOG−−−→ S ′.

Without loss of generality, assume that S ′′
SOG−−−→ S ′ (Figure 9(d)). Since T ′

WRG (x)
−−−−−−→ S ′ and

V ′
WRG (x)
−−−−−−→ S ′′, we get T ′
 write(x , _) and V ′
 write(x , _). Therefore, we must have one

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:26 A. Cerone and A. Gotsman

of the following: T ′ = V ′, T ′
WWG (x)
−−−−−−−→ V ′, or V ′

WWG (x)
−−−−−−−→ T ′. However, the latter two cases

are impossible. If we had T ′
WWG (x)
−−−−−−−→ V ′, then G would contain the configuration shown in

Figure 9(d), which contradicts G ∈ GraphSI. If we hadV ′
WWG (x)
−−−−−−−→ T ′, then G would contain

the configuration shown in Figure 10(e) and, hence, DCG(G) would contain a critical cycle.

Hence, we must have T ′ = V ′ and T G = V G .

(2) We prove that WWsplice(G) is transitive, irreflexive, and total over WriteTxx .

WWsplice(G) is transitive. Let x ∈ Obj and T G, V G, S G ∈ Tsplice(G) be such that

T G
WWsplice(G) (x)
−−−−−−−−−−−→ V G

WWsplice(G) (x)
−−−−−−−−−−−→ S G . By definition there exist transactions

T ′,V ′,V ′′, S ′′ ∈ TG such that

T ≈G T ′
WWG (x)
−−−−−−−→ V ′ ≈G V ≈G V ′′

WWG (x)
−−−−−−−→ S ′′ ≈G S .

To prove that T G
WWsplice(G) (x)
−−−−−−−−−−−→ S G , it suffices to prove thatT ′

WWG (x)
−−−−−−−→ S ′′ andT �G S .

We prove these two statements separately.

—Since T ′
WWG (x)
−−−−−−−→ V ′ and V ′′

WWG (x)
−−−−−−−→ S ′′, we have V ′
 write(x , _) and

V ′′
 write(x , _). Then one of the following holds: V ′ = V ′′,V ′
WWG (x)
−−−−−−−→ V ′′, or

V ′′
WWG (x)
−−−−−−−→ V ′. In the first two cases, the transitivity of WWG (x) guarantees

T ′
WWG (x)
−−−−−−−→ S ′′, as required. Suppose now that V ′′

WWG (x)
−−−−−−−→ V ′. Then V ′′

SOG−−−→ V ′,
because V ′′ ≈G V ′ and G ∈ GraphSI. Since T ′
 write(x , _) and S ′′
 write(x , _), we

have one of the following: T ′
WWG (x)
−−−−−−−→ S ′′, S ′′

WWG (x)
−−−−−−−→ T ′, or T ′ = S ′′. However, in

the latter two cases we would end up with the chopping graph of Figure 10(f), which

contains the critical cycle T ′
WWG (x)\≈G−−−−−−−−−−→ V ′

SO−1
G−−−−→ V ′′

WWG (x)\≈G−−−−−−−−−−→ S ′′
WWG (x)
−−−−−−−→ T ′.

Therefore, it has to be T ′
WWG (x)
−−−−−−−→ S ′′.

—We proveT �G S by contradiction. Suppose thatT ≈G S and, hence,T ′ ≈G S ′′. We have
V ′
 write(x , _) and V ′′
 write(x , _), so that one of the following holds: V ′ = V ′′,

V ′
WWG (x)
−−−−−−−→ V ′′, or V ′′

WWG (x)
−−−−−−−→ V ′.

In the first two cases, G ∈ GraphSI guarantees V ′
SOG (x)?
−−−−−−→ V ′′ and the transitivity

of WWG (x) guarantees T ′
WWG (x)
−−−−−−−→ S ′′. Since WWG (x) is irreflexive, we cannot have

T ′ = S ′′, and since G ∈ GraphSI, we cannot have S ′′
SOG−−−→ T ′. Therefore, T ′

SOG−−−→ S ′′.

Then, as illustrated in Figure 10(g), DCG(G) contains the critical cycle T ′
(WWG\≈G)
−−−−−−−−−→

V ′
SOG?
−−−−→ V ′′

(WWG\≈G)
−−−−−−−−−→ S ′′

SO−1
G−−−−→ T ′, yielding a contradiction.

It remains to consider the case when V ′′
WWG (x)
−−−−−−−→ V ′. Then V ′′

SOG−−−→ V ′, because
V ′′ ≈G V ′ and G ∈ GraphSI. Since we are assuming T ′ ≈G S ′′, one of the follow-

ing holds: T ′ = S ′′, T ′
SOG−−−→ S ′′, or S ′′

SOG−−−→ T ′. In all cases there is a critical cycle in

DCG(G). For example, ifT ′
SOG−−−→ S ′′, then G has a configuration shown in Figure 10(h),

and DCG(G) contains the critical cycleT ′
(WWG\≈G)
−−−−−−−−−→ V ′

SO−1
G−−−−→ V ′′

(WWG\≈G)
−−−−−−−−−→ S ′′

SO−1
G−−−−→

T ′.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:27

WWsplice(G) (x) is irreflexive. This follows immediately from the definition of
WWsplice(G) (x).

WWsplice(G) (x) is total over WriteTxx . Let x ∈ Obj and T G, S G ∈ Tsplice(G) be such that

T G
 write(x , _), S G
 write(x , _), and T G � S G . By Proposition 5.5(ii), there ex-

ist T ′, S ′ ∈ TG such that T ′ ≈G T , T ′
 write(x , _), S ′ ≈G S , and S ′
 write(x , _). Also,
T ′ ≈G T �G S ≈G S ′, so that it cannot be T ′ = S ′. Since WWG (x) is total over WriteTxx ,

we must have either T ′
WWG (x)
−−−−−−−→ S ′ or S ′

WWG (x)
−−−−−−−→ T ′; without loss of generality, we as-

sume T ′
WWG (x)
−−−−−−−→ S ′. We thus have T G � S G and T ≈G T ′

WWG (x)
−−−−−−−→ S ′ ≈G S . Hence,

T G
WWsplice(G) (x)
−−−−−−−−−−−→ S G .

(3) This follows immediately from the definition of RWsplice(G) . �

Lemma 5.7. Let G ∈ GraphSI be such that DCG(G) contains no critical cycles. Then

Tsplice(G) |= Int.

Proof. Proceeding by contradiction, let us assume that Int is violated. Then there existT ∈ TG ;
e ∈ ET such that op(e) = read(x ,n) for some x ∈ Obj,n ∈ N; and, letting poT = po

T G

,

f = max poT
{e ′ | op(e ′) = _(x , _) ∧ e ′

poT

−−−−−→ e} (6)

such that op(f) = _(x ,m) for some m � n. Since TG |= Int, we cannot have f ∈ ET . Therefore,

there exists a transaction T ′
SOG−−−→ T such that f ∈ ET ′ ; see Figure 11(a). We now make a case split

on whether T ′
 write(x , _).

(1) T ′
 write(x , _). Then there exists an event д ∈ ET ′ such that op(д) = write(x , _). With-

out loss of generality, let д be the last write to object x in ET ′ . If f
po

T ′−−−→ д, then f
poT

−−−−−→

д
poT

−−−−−→ e , contradicting (6). Thus, either д = f or д
po

T ′−−−→ f . In both cases, we show that
op(д) = write(x ,m). If f = д, we have _(x ,m) = op(f) = op(д) = write(x , _), so that

op(д) = write(x ,m). If д
po

T ′−−−→ f , then op(f) = read(x ,m), since д is the last write to

x in T ′. Also, for any other event h such that op(h) = _(x , _) and д
po

T ′−−−→ h
po

T ′−−−→ f , we
have op(h) = read(x , _). Then because TG |= Int and op(f) = read(x ,m), we must have
op(h) = read(x ,m). But then TG |= Int again ensures op(д) = write(x ,m).

We have proved that T ′
 write(x ,m). By hypothesis, T
 read(x ,n) for some n �m,

so that there exists a transaction S � T ′ such that S
 write(x ,n) and S
WRG (x)
−−−−−−→ T .

Next we prove that T ′ �G S . Assume the contrary. Since S � T ′ and T ′
SOG−−−→ T , we must

have one of the following:

S
SOG−−−→ T ′

SOG−−−→ T ; T ′
SOG−−−→ S

SOG−−−→ T ; T ′
SOG−−−→ T

SOG−−−→ S .

We show that each of these cases leads to a contradiction.

—S
SOG−−−→ T ′

SOG−−−→ T , Figure 11(b). Since S,T ′
 write(x , _) and S � T ′, we must have

either S
WWG (x)
−−−−−−−→ T ′ or T ′

WWG (x)
−−−−−−−→ S . However, the last case is impossible because

it would lead to a cycle S
SOG−−−→ T ′

WWG (x)
−−−−−−−→ S , contradicting G ∈ GraphSI; therefore,

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:28 A. Cerone and A. Gotsman

Fig. 11. Graphical representation of the different cases in the proof of Lemma 5.7.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:29

S
WWG (x)
−−−−−−−→ T ′. Together with S

WRG (x)
−−−−−−→ T , this yields T

RWG (x)
−−−−−−→ T ′. But then we obtain

a cycle T ′
SOG−−−→ T

RWG (x)
−−−−−−→ T ′, which again contradicts G ∈ GraphSI.

—T ′
SOG−−−→ S

SOG−−−→ T , Figure 11(c). Since S
 write(x , _), there exists an event h ∈ ES such

that op(h) = write(x , _) and f
poT

−−−−−→ h
poT

−−−−−→ e . But this contradicts (6).

—T ′
SOG−−−→ T

SOG−−−→ S , Figure 11(d). In this case, we have the cycle T
SOG−−−→ S

WRG (x)
−−−−−−→ T ,

which contradicts G ∈ GraphSI.
We have thus proved that T ′ �G S . Next, we observe that since T ′
 write(x ,m), S

write(x ,n), and T ′ � S , we must have either T ′
WWG (x)
−−−−−−−→ S or S

WWG (x)
−−−−−−−→ T ′. We show

that both of these cases lead to a contradiction. If S
WWG (x)
−−−−−−−→ T ′, then since S

WRG (x)
−−−−−−→ T ,

we getT
RWG (x)
−−−−−−→ T ′, causing the cycleT

RWG (x)
−−−−−−→ T ′

SOG−−−→ T ; this contradictsG ∈ GraphSI.

On the other hand, ifT ′
WWG (x)
−−−−−−−→ S , then we have a critical cycleT ′

(WWG\≈G)
−−−−−−−−−→ S

(WRG\≈G)
−−−−−−−−→

T
SO−1
G−−−−→ T ′ in DCG(G), contradicting the hypothesis of the lemma.

(2) ¬(T ′
 write(x , _)). In this case, there exists no event д ∈ ET ′ such that op(д) =
write(x , _). Using the fact that TG |= Int, we can easily show that for any д ∈ ET ′ such
that op(д) = read(x , _), we have op(д) = read(x ,m). Then T ′
 read(x ,m).

Since G is a dependency graph, there exist two transactions S,V such that S
WRG (x)
−−−−−−→ T

andV
WRG (x)
−−−−−−→ T ′. Since S
 write(x ,n) andV
 write(x ,m), we have S � V . Since¬(T ′

write(x , _)) and S
 write(x , _), we have T ′ � S . We also have V � T , for otherwise we

would have a cycle T ′
SOG−−−→ T

WRG−−−−→ T ′, contradicting G ∈ GraphSI. Hence, the transac-
tions T ′,T ,V , S are pairwise distinct.

We must have either S
WWG (x)
−−−−−−−→ V or V

WWG (x)
−−−−−−−→ S . We show that neither of these

cases is possible. If S
WWG (x)
−−−−−−−→ V (Figure 11(e)), then T

RWG (x)
−−−−−−→ V . This causes a cycle

T
RWG−−−−→ V

WRG−−−−→ T ′
SOG−−−→ T , contradicting G ∈ GraphSI. If V

WWG (x)
−−−−−−−→ S (Figure 11(f)),

then T ′
RWG (x)
−−−−−−→ S . As in the case above, we can show that S �G T . This yields a critical

cycle T ′
(RWG\≈G)
−−−−−−−−→ S

(WRG\≈G)
−−−−−−−−→ T

SO−1
G−−−−→ T ′ in DCG(G), contradicting the assumptions of

the lemma. �

Proof of Theorem 5.3. Let G ∈ GraphSI be a dependency graph such that DCG(G) contains
no critical cycles. We prove that splice(G) ∈ GraphSI. First, Lemmas 5.6 and 5.7 ensure that
splice(G) is indeed a dependency graph and Tsplice(G) |= Int. Since SOsplice(G) = ∅, by Theorem 4.2
it remains to prove that the relation ((WRsplice(G) ∪WWsplice(G)) ; RWsplice(G)?) is acyclic. The
proof goes by contradiction: we assume that this relation contains a cycle and exhibit a critical
cycle in DCG(G). Let

γ = T0 G
C0−−→ . . .

Cn−1−−−−→ Tn G
(n ≥ 1)

be a cycle in splice(G), where

T0, . . . ,Tn ∈ TG, C0, . . . Cn−1 ∈ {WRsplice(G),WWsplice(G),RWsplice(G) }

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:30 A. Cerone and A. Gotsman

(the letter C stands for conflict), Tn G
= T0 G

(in particular, Tn ≈G T0), and there is no index

i = 0..(n − 1) such that Ci = RWsplice(G) and C(i+1) mod n = RWsplice(G) . By Theorem 4.11, we can

assume that γ is simple. Thus, for any i, j = 0..(n − 1) we have Ti G
= Tj

G
(equivalently, Ti ≈G

Tj) only if i = j.
By applying Lemma 5.4, we can convert γ into the following path:

T ′0 ≈G T ′′0

CG0−−→ T ′1 ≈G T ′′1

CG2−−→ . . .
CG

n−1−−−−→ T ′n ≈G T ′′n , (7)

where for any i = 0..n, T ′i ≈G Ti ≈G T ′′i (note that because Tn ≈G T0, this implies T ′′n ≈G T ′0), and

for any i = 0..(n − 1), CGi is the relation in G corresponding to the relation Ci in splice(G) (e.g., if

Ci =WRsplice(G) , then CGi = (WRG \ ≈G)). We also know that

¬∃i = 0..(n − 1). (CGi = (RWG \ ≈G)) ∧ (CG
(i+1) mod n

= (RWG \ ≈G)). (8)

Since the cycle γ is simple, the only possibility for vertices to be repeated on the path (7) is
when they are adjacent: T ′i = T

′′
i for some i = 0..(n − 1). Recall that whenever T ≈G S , for some

transaction T , S ∈ TG , then one of the following holds: T = S , T
SOG−−−→ S , or T

SO−1
G−−−−→ S . Also, we

know that T ′n ≈ Tn ≈ T0 ≈ T ′′0 . Therefore, we can rewrite the path (7) as follows:

T ′n
S0−−→ T ′′0

CG1−−→ T ′1
S1−−→ T ′′1

CG2−−→ . . .
Sn−1−−−−→ T ′′n−1

CG
n−1−−−−→ T ′n , (9)

where S0, . . .Sn−1 ∈ {SOG?, SO−1
G }. In this cycle, repeated vertices are always adjacent and

connected by an SOG?-edge. By removing such edges from the cycle, we obtain a simple cycle,
where all the occurrences of SOG?-edges are actually SOG-edges; this is a cycle in DCG(G). Due
to Equation (8), in this cycle any two anti-dependency edges are separated by a read- or write-
dependency edge. To prove this cycle yields a critical cycle in DCG(G), it remains to show that
there exists an index i = 0..(n − 1) such that Si = SO−1

G . This holds because, if we had Si = SOG
for all i = 0..(n − 1), then we would obtain a cycle in ((SOG ∪WRG ∪WWG) ; RWG?)+,
contradicting the assumption that G ∈ GraphSI. �

Discussion. Our dependency graph characterisation of SI is instrumental in checking chopping
correctness due to the ease of splicing a dependency graph (cf. Equation (5)). Splicing abstract
executions directly would be problematic. To illustrate this, consider the abstract execution X in
Figure 12, which is in ExecSI. A straightforward way to define splice(X) is by letting

T X
COsplice(X)

−−−−−−−−→ S X ⇐⇒ ∃T ′, S ′.T ≈HX T
′ COX−−−−→ S ′ ≈HX S,

and similarly for VISsplice(X) . In this case, we would have

T X
COsplice(X)

−−−−−−−−→ S X
COsplice(X)

−−−−−−−−→ T X,

so that COsplice(X) is not irreflexive. Hence splice(X) is not a valid execution. On the other hand,
by extracting a dependency graph G from X and computing splice(G), we easily obtain a depen-
dency graph in GraphSI. This allows us to construct an execution X′ with the dependency graph
splice(G) such that X′ ∈ ExecSI.

5.2 Static Analysis

We now derive a static analysis from Theorem 5.2. Assume a set of programs P = {P1, P2, . . .},
each defining the code of sessions resulting from chopping the code of a single transaction.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:31

Fig. 12. An attempt to splice an execution directly.

We leave the precise syntax of the programs unspecified, but assume that each Pi consists of

ki program pieces P j
i (j = 1..ki), defining the code of the transactions in the sessions. We further

assume that for each Pi we are given a sequence

(Ri
1,W

i
1) (Ri

2,W
i
2) . . . (Ri

ki
,W i

ki
), (10)

of read and write sets Ri
j ,W

i
j ⊆ Obj, i.e., the sets of all objects that may be, respectively, read and

written by the j-th piece of Pi . For example, the program transfer in Figure 6 consists of two
pieces; the first one has the read and write sets equal to {acct1} and the second, to {acct2}. The
program lookup1 consists of a single piece with the read set {acct1} and the write set ∅.

Following Shasha et al. (1995), we make certain assumptions about the way clients execute pro-
grams. We assume that, if a transaction initiated by a program piece aborts, it will be resubmitted
repeatedly until it commits, and, if a piece is aborted due to system failure, it will be restarted. We
also assume that the client does not abort transactions explicitly.

Definition 5.8. A historyH = (T , SO) can be produced by programs

P = {(P1
1 , . . . , P

k1

1), . . . , (P1
i , . . . , P

ki

i)} (11)

with read and write sets (10) if there exists a bijective function f from transactions inT to program

pieces P j
i of P, such that

(∀T ∈ T .∀x ∈ Obj.∀i, j . f (T) = P j
i ∧T
 read(x , _) ⇒ x ∈ R j

i) ∧
(∀T ∈ T .∀x ∈ Obj.∀i, j . f (T) = P j

i ∧T
 write(x , _) ⇒ x ∈W j
i) ∧

(∀T , S ∈ T .∀i, j,h. f (T) = P j
i ∧ f (S) = Ph

i ∧T
SO−−→ S ⇒ j < h).

For example, the history in Figure 6 can be produced by the programs in the figure.

Definition 5.9. The chopping defined by the programs P is correct if every dependency graph
G ∈ GraphSI, whereHG can be produced by P, is spliceable.

We check the correctness of P by defining an analogue of the dynamic chopping graph from
Definition 5.1, whose nodes are pieces of P, rather than transactions in a given execution. Each
piece is identified by a pair (i, j) of the number i of a program in P and the piece’s position j in
the program.

Definition 5.10. Given a set of programs (11) with read and write sets (10), its static chopping

graph SCG(P) is the directed graph whose nodes are pairs of indices identifying the pieces in

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:32 A. Cerone and A. Gotsman

Fig. 13. The static chopping graph of the programs P1 = {transfer, lookupAll} from Figure 6. Dashed

boxes group program pieces into sessions.

P: {(i, j) | i = 1..|P |, j = 1..ki }. We have an edge ((i1, j1), (i2, j2)) if and only if one of the following
holds:

—i1 = i2 and j1 < j2 (a successor edge, S);
—i1 = i2 and j1 > j2 (a predecessor edge, P);

—i1 � i2 andW j1

i1
∩ R j2

i2
� ∅ (a read dependency edge, WR);

—i1 � i2 andW j1

i1
∩W j2

i2
� ∅ (a write dependency edge, WW); or

—i1 � i2 and R j1

i1
∩W j2

i2
� ∅ (an anti-dependency edge, RW).

The notion of a critical cycle introduced above for dynamic graphs is also applicable to static ones.
The edge set of a static graph SCG(P) over-approximates the edge sets of dynamic graphs DCG(G)
corresponding to dependency graphs G produced by the programs P. From this observation and
Theorem 5.2 we easily get our static analysis.

Corollary 5.11. The chopping defined by P is correct if SCG(P) contains no critical cycles.

In Figure 13, we show the static chopping graph of the programs P1 = {transfer, lookupAll},
which contains a critical cycle:

(var1 = acct1)
RW−−−→ (acct1 = acct1 − 100)

S−→ (acct2 = acct2 + 100)
WR−−−→

(var2 = acct2)
P−→ (var1 = acct1). (12)

In fact, since the dependency graph in Figure 6 is not spliceable, the chopping defined by the above
programs is incorrect. In Figure 14, we show the static chopping graph of the programs P2 =

{transfer, lookup1, lookup2}. This graph contains no critical cycles, and hence, the chopping
defined by these programs is correct: they behave the same as when transfer is implemented by
a single transaction.

5.3 Comparison with Transaction Chopping Under Other Consistency Models

We now compare our chopping criterion for SI to criteria that have been proposed for other con-
sistency models: serialisability (Shasha et al. 1995) and parallel SI (Cerone et al. 2015b). For clarity,

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:33

Fig. 14. The static chopping graph of the programs P2 = {transfer, lookup1, lookup2} from Figure 6.

in the following we refer to critical cycles of Definition 5.1 as SI-critical. The notion of chopping
correctness in Definition 5.9 straightforwardly generalises to other consistency models.

Transaction Chopping Under Serialisability. Following the approach in the proof of Theorem 5.2,
we can easily establish the following improved version of the chopping criterion for serialisability
by Shasha et al. (1995).

Definition 5.12. A cycle in SCG(P) is SER-critical if

(i) it is simple; and
(ii) it contains a fragment of three consecutive edges of the form “conflict, predecessor, con-

flict.”

Theorem 5.13. The chopping defined by programs P is correct under serialisability if SCG(P)
contains no SER-critical cycles.

For example, the chopping defined by the programs P2 considered in Figure 14 is correct under
serialisability. On the other hand, the chopping defined by P1 considered in Figure 13 is incorrect,
and in fact SCG(P1) contains a SER-critical cycle (12).

Any SI-critical cycle is also SER-critical and, thus, a chopping that is correct under serialisability
is also correct under SI. It follows that the classical transaction chopping analysis for serialisability
of Shasha et al. is also sound for SI. Note that this result is non-trivial: the correctness of a chopping
requires that the set of histories produced by the chopped program be included into the set of his-
tories produced by the original program. Enlarging both sets when switching from serialisability
to SI may not preserve the inclusion.

The programs P3 = {write1, write2} in Figure 15 define a correct chopping under SI, but not
under serialisability. Their static chopping graph SCG(P3), shown in the figure, has only one
simple cycle with three consecutive edges of the form “conflict, predecessor, conflict”:

(var1 = x)
S−→ (x = var2)

P−→ (var2 = y)
RW−−−→ (y = var1)

P−→ (var1 = x).

This cycle is not SI-critical, and by Corollary 5.11, the chopping defined by P3 is correct un-
der SI. However, it is incorrect under serialisability. Indeed, consider the dependency graph

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:34 A. Cerone and A. Gotsman

Fig. 15. Programs P3 defining a chopping correct under SI, but not under serialisability.

G7 ∈ GraphSER in Figure 15, whose history can be produced byP3. Splicing the historyHG results
in a variant of the write skew anomaly, and thus splice(HG) � HistSI.

Transaction Chopping Under Parallel SI. We now compare our chopping criterion for SI to the one
that we recently proposed (Cerone et al. 2015b) for parallel (aka non-monotonic) SI, a weakening
of SI for large-scale databases (Sovran et al. 2011; Saeida Ardekani et al. 2013a). To specify parallel
SI in the framework of Section 2, we drop the axiom Prefix, while still requiring visibility to be
transitive, a property that we refer to as TransVis (Cerone et al. 2015a).

Definition 5.14. The sets of executions and histories allowed by parallel SI are

ExecPSI = {X | X |= Int ∧ Ext ∧ Session ∧ TransVis ∧ NoConflict};
HistPSI = {H | ∃VIS,CO. (H ,VIS,CO) ∈ ExecSI}.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:35

Note that this specification essentially does not use the commit order CO: according to
NoConflict, its edges used in Ext are uniquely determined by VIS.

The axiom TransVis ensures that transactions ordered by VIS are observed by others in this
order; in particular, it disallows the anomaly in Figure 2(d). However, it allows two transactions
unrelated by VIS to be observed in different orders; in particular, parallel SI allows the long fork
anomaly of Figure 2(e), disallowed by the axiom Prefix in SI.

Definition 5.15. A cycle in SCG(P) is PSI-critical if

(i) it is simple;
(ii) it contains a fragment of three consecutive edges of the form “conflict, predecessor, con-

flict”; and
(iii) it contains at most one anti-dependency edge.

Theorem 5.16 ((Cerone et al. 2015b)). The chopping defined by programs P is correct under

parallel SI if SCG(P) contains no PSI-critical cycles.

Note that any cycle that is PSI-critical, is also SI-critical; as a consequence, the programs P2

from Figure 14 and P3 from Figure 15 considered above define a correct chopping under parallel
SI. On the other hand, the programs P1 from Figure 13 are not chopped correctly under parallel
SI, and the cycle (12) in SCG(P1) is PSI-critical.

The programs P4 = {write1, write2, read1, read2} in Figure 16 define a correct chopping un-
der parallel SI, but not SI. The static chopping graph SCG(P4), shown in the figure, contains exactly
one simple cycle with three consecutive edges of the form “conflict, predecessor, conflict”:

(x = post1)
WR−−−→ (b = x)

P−→ (a = y)
RW−−−→ (y = post2)

WR−−−→

(b = y)
P−→ (a = x)

RW−−−→ (x = post1).

This cycle is not PSI-critical, so that P4 indeed define a correct chopping under parallel SI. On
the other hand, this cycle is SI-critical and P4 do not define a correct chopping under SI. Indeed,
consider the dependency graph G8 ∈ GraphSI in Figure 16, whose history can be produced by P4.
Splicing the historyHG8 results in a long fork anomaly, and thus splice(HG8) � HistSI.

6 ROBUSTNESS CRITERIA FOR SI

We now consider another type of static analysis that checks whether an application is robust

against weakening consistency: executing it under a weak consistency model produces the same
client-observable behaviour as executing it under a stronger one.

6.1 Robustness Against SI

We first show that our SI characterisation allows deriving a variant of an existing analysis that
checks whether an application executing under SI behaves the same as when executing under seri-
alisability (Fekete et al. 2005) (robustness against SI). For this the analysis checks that the applica-
tion code may produce no histories in HistSI \ HistSER. Like for transaction chopping (Section 5),
we first establish a dynamic robustness criterion that checks whether a single execution, repre-
sented by a dependency graph, is in GraphSI \ GraphSER. This easily follows from Theorems 3.4
and 4.2.

Theorem 6.1. For any G, we have G ∈ GraphSI \ GraphSER if and only if TG |= Int, G contains

a cycle, and all its cycles have at least two adjacent anti-dependency edges.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:36 A. Cerone and A. Gotsman

Fig. 16. Programs P4 defining a chopping correct under parallel SI, but not under SI.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:37

The dependency graph G of the write skew anomaly in Figure 2(f) contains a cycle: T1

RWG3−−−−→

T2

RWG3−−−−→ T1. Furthermore, it is easy to see that all its cycles have two adjacent anti-dependencies, so
that G3 ∈ GraphSI \ GraphSER. The dependency graph G from Figure 6 does not contain any cy-
cles, so that G � GraphSI \ GraphSER; in fact, G ∈ GraphSER. Finally, the dependency graph G of
the long fork anomaly in Figure 2(e) contains a cycle, but without two adjacent anti-dependencies;
hence, G � GraphSI \ GraphSER, and in fact, G � GraphSI.

We can obtain the following refinement of Theorem 6.1 by using the characterisation of SI in
Theorem 4.13 instead of that in Theorem 4.2.

Theorem 6.2. For any G, we have G ∈ GraphSI \ GraphSER if and only if TG |= Int, G contains

a cycle, and all its cycles have at least two adjacent vulnerable anti-dependency edges over different

objects.

Fekete et al. previously established a result roughly corresponding to the “only if ” direction
of the above theorem (Fekete et al. 2005). The “if ” direction strengthens their result by showing
that the criterion in the theorem is complete for checking whether a given dependency graph is
admitted by SI, but not serialisability.

We can derive a static analysis from Theorem 6.1 similarly to how it was done in Section 5.
Namely, the analysis assumes that the code of transactions in an application is defined by a set
of programs P. It then constructs a static dependency graph, over-approximating possible read
and write dependencies and vulnerable anti-dependencies that may exist in executions of P; in
contrast with the chopping analysis, the robustness analysis also records the objects to which
different edges refer to. The analysis then checks that the graph has no cycles with at least two
adjacent vulnerable anti-dependency edges over different objects. By Theorem 6.2 this implies that
the programsP produce no histories in HistSI \ HistSER, and hence, the corresponding application
is robust against SI.

The construction of the static dependency graph above can be done like in the chopping analysis,
using sets of objects that may be read or written by programs in P. During this construction, we
can exclude vulnerable anti-dependencies using information about objects that must necessarily
be written by certain programs (Fekete et al. 2005) using the following proposition.

Proposition 6.3. Consider an anti-dependency edge T
RWG (x)
−−−−−−→ S in a dependency graph G ∈

GraphSI. If T
 write(x , _), then the anti-dependency is not vulnerable.

Proof. From T
RWG (x)
−−−−−−→ S we get T
 write(x , _) and T � S . Since we also know T

write(x , _), we must have either T
WWG (x)
−−−−−−−→ S or S

WWG (x)
−−−−−−−→ T . However, the latter yields a cy-

cle T
RWG (x)
−−−−−−→ S

WWG (x)
−−−−−−−→ T , contradicting G ∈ GraphSI by Theorem 4.1. Hence, we must have

T
WWG (x)
−−−−−−−→ S , implying the required. �

Note that the dependency graphs characterisation of consistency models greatly facilitates de-
riving the above robustness analysis, since the characterisations allow us to easily establish cor-
respondences between executions on different models with the same histories.

6.2 Robustness Against Parallel SI Towards SI

We now use our SI characterisation to derive a static analysis that checks whether an application
executing under parallel SI (Section 5.3) behaves the same as when executing under the classical
SI (robustness against parallel SI towards SI). First, we give a characterisation of parallel SI in
terms of dependency graphs.

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:38 A. Cerone and A. Gotsman

Theorem 6.4 ((Cerone et al. 2015b, extended version, Lemma 14)). Let

GraphPSI = {G | (TG |= Int) ∧ (((SOG ∪WRG ∪WWG)+ ; RWG?) is irreflexive)}.
Then

HistPSI = {H | ∃WR,WW,RW. (H ,WR,WW,RW) ∈ GraphPSI}.
Thus, parallel SI is characterised by dependency graphs that contain only cycles with at least

two anti-dependency edges. For example, consider the dependency graph G in Figure 2(e). It is
easy to see that all its cycles contain at least two anti-dependencies, and therefore G ∈ GraphPSI.
On the other hand, let G be the dependency graph in Figure 2(b). The graph G contains a cycle with

exactly one anti-dependency (T1

WWG−−−−→ T2

RWG−−−−→ T1), and therefore G � GraphPSI. As a corollary
of Theorems 4.1 and 6.4, we obtain a dynamic robustness criterion that checks whether a given
dependency graph is in GraphPSI \ GraphSI.

Theorem 6.5. For any G, we have G ∈ GraphPSI \ GraphSI if and only if TG |= Int, G contains

at least one cycle with no adjacent anti-dependency edges, and all its cycles have at least two anti-

dependency edges.

For example, we have already noted that in the dependency graph G of the long fork anomaly
(Figure 2(e)) all cycles have at least two anti-dependencies. Furthermore, G also has a cycle with
no adjacent anti-dependencies:

T1

WRG−−−−→ T3

RWG−−−−→ T2

WRG−−−−→ T4

RWG−−−−→ T1,

so that G ∈ GraphPSI \ GraphSI. The dependency graph G of the write skew anomaly in
Figure 2(f) contains only cycles with at least two adjacent anti-dependencies, so that
G � GraphPSI \ GraphSI; in fact, G ∈ GraphSI. The dependency graph G of the lost up-
date anomaly (Figure 2(b)) contains a cycle with exactly one anti-dependency, so that
G � GraphPSI \ GraphSI; in fact, G � GraphPSI.

We can refine the characterisation in Theorem 6.4 by taking into account the objects involved in
dependencies between transactions, similarly to how we did this for SI (Theorem 4.13, Section 4.5);
for brevity, we omit a refinement that takes into account vulnerability.

Theorem 6.6. Let G be a dependency graph. Then G ∈ GraphPSI if and only if TG |= Int and all

cycles in G contain at least two anti-dependency edges over different objects.

Proof. The “if ” part of the theorem is trivial. For the “only if ” part, suppose thatG ∈ GraphPSI.
We can show that all cycles in G contain at least two anti-dependency edges over different objects
using the following algebraic law:

∀x . RWG (x) ; (SOG ∪WRG ∪WWG)∗ ; RWG (x) ⊆ RWG (x) ; WWG (x). (13)

Indeed, if G contains a cycle where all anti-dependency edges are over the same object x , then
Equation (13) allows us to convert this cycle into one with at most one anti-dependency edge,
which contradicts G ∈ GraphPSI by Theorem 6.4.

It remains to prove (13). To this end, consider x ∈ Obj and T ,T ′, S ′, S ∈ TG such that

T
RWG (x)
−−−−−−→ T ′

(SOG∪WRG∪WWG)∗

−−−−−−−−−−−−−−−−→ S
RWG (x)
−−−−−−→ S ′.

Then T ′
 write(x , _) and S ′
 write(x , _). Therefore, we have one of the following: T ′ = S ′,

S ′
WWG (x)
−−−−−−−→ T ′, or T ′

WWG (x)
−−−−−−−→ S ′. We cannot have that T ′ = S ′: if this were the case, we would

have the cycle

T ′
(SOG∪WRG∪WWG)∗

−−−−−−−−−−−−−−−−→ S
RWG (x)
−−−−−−→ T ′

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

Analysing Snapshot Isolation 11:39

in G with a single anti-dependency edge, contradictingG ∈ GraphPSI. We cannot have S ′
WWG (x)
−−−−−−−→

T ′: in this case we would have the cycle

S ′
(SOG∪WRG∪WWG)+

−−−−−−−−−−−−−−−−→ S
RWG (x)
−−−−−−→ S ′,

again disallowed because G ∈ GraphPSI. We are thus left with the case T ′
WWG (x)
−−−−−−−→ S , so that

T
RWG (x)
−−−−−−→ T ′

WWG (x)
−−−−−−−→ S . This establishes Equation (13), as required. �

As an illustration of Theorem 6.6, the dependency graph G of the long fork anomaly in
Figure 2(e), allowed by parallel SI, contains only cycles with at least two anti-dependencies over
different objects: e.g.,

T1

WRG (x)
−−−−−−→ T3

RWG (y)
−−−−−−→ T2

WRG (y)
−−−−−−→ T4

RWG (x)
−−−−−−→ T1.

We can obtain the following refinement of Theorem 6.5 by using the characterisations of SI and
PSI in Theorems 4.13 and 6.6.

Theorem 6.7. For any G, we have G ∈ GraphPSI \ GraphSI if and only if TG |= Int, G contains

at least one cycle with no adjacent anti-dependency edges over different objects, and all its cycles have

at least two anti-dependency edges over different objects.

From Theorem 6.7 it follows that a static analysis for robustness against parallel SI towards SI
can check that the static dependency graph of an application contains no cycles where there are
at least two anti-dependency edges over different objects and no two anti-dependency edges over
different objects are adjacent.

7 RELATED WORK

Snapshot isolation was originally defined by an idealised algorithm formulated in terms of
implementation-level concepts (Berenson et al. 1995). Since then, there have been proposals of
more declarative SI specifications (Adya 1999; Saeida Ardekani et al. 2013b; Cerone et al. 2015a),
one of which (Cerone et al. 2015a) was our starting point (Section 2). However, these specifications
are stated in terms of relations which make it challenging to obtain results such as transaction
chopping and robustness analyses.

Fekete et al. (2005) proposed the analysis for robustness against SI that we considered in
Section 6.1. To this end, they have proved a fact roughly equivalent to our completeness result
(Theorem 4.2(ii)), but they did not establish an analogue of our soundness result (Theorem 4.2(i)).
The latter more challenging result is the one that is needed to obtain analyses for transaction
chopping under SI and for robustness against parallel SI towards SI: both require proving that an
execution with a particular dependency graph is in SI, rather than the other way around. We also
hope that our specification of SI will be beneficial in other domains where dependency graphs
have been useful, such as runtime monitoring (Cahill et al. 2009; Zellag and Kemme 2014) and
proving the correctness of concurrency-control algorithms (Xie et al. 2015; Diegues and Romano
2014). Finally, we expect that the approach to constructing a total commit order from transactional
dependencies in the proof of our soundness theorem can be used to give dependency graph
characterisations to other consistency models whose formulation includes similar total orders,
such as prefix consistency (Terry et al. 2013).

The constraint on dependency graphs that we use to characterise SI also arose in the work of Lin
et al. (2009), who used it to formulate conditions under which a replicated database guarantees SI
provided every one of its replicas does so. In comparison to them, we solve a more general problem

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

11:40 A. Cerone and A. Gotsman

of characterising SI regardless of how it is implemented and handle a variant of SI that does not
require transactions to see the latest snapshot.

Transaction chopping has recently received a lot of attention. In particular, researchers have
demonstrated that transactions arising in web applications can be chopped in a way that drastically
improves their performance when executed under serialisability (Zhang et al. 2013; Mu et al. 2014;
Xie et al. 2015). There have also been proposals of consistency models for transactional memory
that weaken consistency guarantees in a way similar to chopping (Felber et al. 2009; Xiang and
Scott 2015; Afek et al. 2011). Our chopping analysis enables bringing these benefits to transactional
systems providing SI. We have previously proposed a chopping analysis for parallel SI (Cerone
et al. 2015b), which also relies on a dependency graph characterisation of this consistency model
(Theorem 6.4, Section 6.2). But since parallel SI can be formulated without using an analogue of
SI’s commit order, its dependency graph characterisation did not present the challenges that we
had to deal with when establishing our soundness theorem.

REFERENCES

Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions. PhD

thesis. MIT.

Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized isolation level definitions. In ICDE. 67–78.

Yehuda Afek, Hillel Avni, and Nir Shavit. 2011. Towards consistency oblivious programming. In OPODIS. 65–79.

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2014. Scalable atomic visibility with RAMP

transactions. In SIGMOD. 15:1–15:45.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A critique of ANSI SQL

isolation levels. In SIGMOD. 1–10.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in Database Systems.

Addison-Wesley.

Annette Bieniusa and Thomas Fuhrmann. 2010. Consistency in hindsight: A fully decentralized STM algorithm. In IPDPS.

1–12.

Michael J. Cahill, Uwe Röhm, and Alan David Fekete. 2009. Serializable isolation for snapshot databases. ACM Trans. Data-

base Syst. 34, 4 (2009), 20:1–20:42.

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015a. A framework for transactional consistency models with

atomic visibility. In CONCUR. Dagstuhl, 58–71.

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2015b. Transaction chopping for parallel snapshot isolation. In DISC.

388–404. Extended version available from www.software.imdea.org/∼gotsman.

Clojure. 2016. Refs and Transactions. Retrieved from http://clojure.org/refs.

Khuzaima Daudjee and Kenneth Salem. 2004. Lazy database replication with ordering guarantees. In ICDE. 424–435.

Khuzaima Daudjee and Kenneth Salem. 2006. Lazy database replication with snapshot isolation. In VLDB. 1–12.

Ricardo J. Dias, João M. Lourenço, and Nuno Preguiça. 2011. Efficient and correct transactional memory programs combin-

ing snapshot isolation and static analysis. In HotPar. https://www.usenix.org/legacy/events/hotpar11/.

Nuno Diegues and Paolo Romano. 2014. Time-warp: Lightweight abort minimization in transactional memory. In PPoPP.

167–178.

Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2013. Towards formally specifying and verifying trans-

actional memory. Formal Aspects of Computing 25, 5 (2013). 769–799. DOI:http://dx.doi.org/10.1007/s00165-012-0225-8

Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. 2005. Database replication using generalized snapshot isolation.

In SRDS. 73–84.

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha. 2005. Making snapshot isolation

serializable. ACM Trans. Database Syst. 30, 2 (2005), 492–528.

Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. 2009. Elastic transactions. In DISC. 93–107.

Rachid Guerraoui and Michal Kapalka. 2008. On the correctness of transactional memory. In PPoPP. 175–184.

Maurice Herlihy and J. Eliot, B. Moss. 1993. Transactional memory: Architectural support for lock-free data structures. In

ISCA. 289–300.

Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan. 2007. Automating the detection of snapshot isolation

anomalies. In VLDB. 1263–1274.

Yi Lin, Bettina Kemme, Ricardo Jiménez-Peris, Marta Patiño-Martínez, and José Enrique Armendáriz-Iñigo. 2009. Snapshot

isolation and integrity constraints in replicated databases. ACM Trans. Database Syst. 34, 2 (2009), 11:1–11:49. DOI:
http://dx.doi.org/10.1145/1538909.1538913

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

www.software.imdea.org/protect $elax sim $gotsman
http://clojure.org/refs
https://www.usenix.org/legacy/events/hotpar11/
http://dx.doi.org/10.1007/s00165-012-0225-8
http://dx.doi.org/10.1145/1538909.1538913

Analysing Snapshot Isolation 11:41

Heiner Litz, David Cheriton, Amin Firoozshahian, Omid Azizi, and John P. Stevenson. 2014. SI-TM: Reducing transactional

memory abort rates through snapshot isolation. In ASPLOS. 383–398.

Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting more concurrency from distributed trans-

actions. In OSDI. 479–494.

Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing using distributed transactions and notifications.

In OSDI. 251–264.

Torvald Riegel, Christof Fetzer, and Pascal Felber. 2006. Snapshot isolation for software transactional memory. In Workshop

on Languages, Compilers, and Hardware Support for Transactional Computing (TRANSACT). http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.113.7870&rank=1.

M. Saeida Ardekani, P. Sutra, and M. Shapiro. 2013a. Non-monotonic snapshot isolation: Scalable and strong consistency

for geo-replicated transactional systems. In SRDS. 163–172.

M. Saeida Ardekani, P. Sutra, M. Shapiro, and N. Preguiça. 2013b. On the scalability of snapshot isolation. In Euro-Par.

369–381.

D. Serrano, M. Patiño-Martínez, R. Jiménez-Peris, and B. Kemme. 2007. Boosting database replication scalability through

partial replication and 1-copy-snapshot-isolation. In PRDC. 290–297.

D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. 1995. Transaction chopping: Algorithms and performance studies. ACM

Trans. Database Syst. 20, 3 (1995), 325–363.

Dennis Shasha and Marc Snir. 1988. Efficient and correct execution of parallel programs that share memory. ACM Trans.

Program. Lang. Syst. 10, 2 (1988), 282–312.

Y. Sovran, R. Power, M. K. Aguilera, and J. Li. 2011. Transactional storage for geo-replicated systems. In SOSP. 385–400.

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and Brent W. Welch. 1994. Session

guarantees for weakly consistent replicated data. In PDIS. 140–149.

Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-

Libdeh. 2013. Consistency-based service level agreements for cloud storage. In SOSP. 309–324.

Lingxiang Xiang and Michael L. Scott. 2015. Software partitioning of hardware transactions. In PPoPP. 76–86.

Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos, and Yang Wang. 2015. High-performance ACID via

modular concurrency control. In SOSP. 279–294.

Kamal Zellag and Bettina Kemme. 2014. Consistency anomalies in multi-tier architectures: Automatic detection and pre-

vention. The VLDB Journal 23, 1 (2014), 147–172.

Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li. 2013. Transaction chains: Achieving serializability with

low latency in geo-distributed storage systems. In SOSP. 276–291.

Received August 2016; revised October 2017; accepted October 2017

Journal of the ACM, Vol. 65, No. 2, Article 11. Publication date: January 2018.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi$=$10.1.1.113.7870&rank$=$1

