
2

Characterizing Transactional Memory Consistency
Conditions Using Observational Refinement

HAGIT ATTIYA, Technion—Israel Institute of Technology

ALEXEY GOTSMAN, IMDEA Software Institute

SANDEEP HANS, Technion—Israel Institute of Technology

NOAM RINETZKY, Tel Aviv University

Transactional memory (TM) facilitates the development of concurrent applications by letting a programmer

designate certain code blocks as atomic. The common approach to stating TM correctness is through a consis-

tency condition that restricts the possible TM executions. Unfortunately, existing consistency conditions fall

short of formalizing the intuitive semantics of atomic blocks through which programmers use a TM. To close

this gap, we formalize programmer expectations as observational refinement between TM implementations.

This states that properties of a program using a concrete TM implementation can be established by analyzing

its behavior with an abstract TM, serving as a specification of the concrete one.

We show that a variant of Transactional Memory Specification (TMS), a TM consistency condition, is

equivalent to observational refinement for a programming language where local variables are rolled back

upon a transaction abort. We thereby establish that TMS is the weakest acceptable condition for this case.

We then propose a new consistency condition, called Strong Transactional Memory Specification (STMS), and

show that it is equivalent to observational refinement for a language where local variables are not rolled

back upon aborts. Finally, we show that under certain natural assumptions on TM implementations, STMS is

equivalent to a variant of a well-known condition of opacity.

Our results suggest a new approach to evaluating TM consistency conditions and enable TM implementors

and language designers to make better-informed decisions.

CCS Concepts: • Theory of computation → Parallel computing models; Program specifications; Pro-

gram verification; Operational semantics;

Additional Key Words and Phrases: Transactions, correctness conditions, opacity, Transactional Memory

Specification, TMS, Strong Transactional Memory Specification, STMS, atomicity

S. Hans is currently with IBM Research, India.

This article combines and extends results that appeared in preliminary form in Proceedings of the 32nd Annual ACM

Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2013, pp. 309–318 and in Proceedings of the

28th International Symposium on Distributed Computing (DISC), Springer-Verlag, Berlin, Germany, 2014, pp. 376–390.

This work was partially supported by EU FP7 projects TRANSFORM (238639) and ADVENT (308830), and by the Broadcom

Foundation and Tel Aviv University Authentication Initiative.

Authors’ addresses: H. Attiya, Department of Computer Science, Technion, Haifa 32000, Israel; email: hagit@cs.

technion.ac.il; A. Gostman, IMDEA Software Institute, Campus Montegancedo s/n, 28223-Pozuelo de Alarcon, Madrid,

Spain; email: Alexey.Gotsman@imdea.org; N. Rinetzky, School of Computer Science, Tel Aviv University, Tel Aviv 69978,

Israel; email: maon@cs.tau.ac.il; S. Hans, IBM India Research Laboratory, ISID Campus, Plot No. 4, Block C, Institutional

Area, Vasant Kunj Phase-II, New Delhi-110070, India; email: shans001@in.ibm.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 0004-5411/2017/12-ART2 $15.00

https://doi.org/10.1145/3131360

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

https://doi.org/10.1145/3131360

2:2 H. Attiya et al.

ACM Reference format:

Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. 2017. Characterizing Transactional Mem-

ory Consistency Conditions Using Observational Refinement. J. ACM 65, 1, Article 2 (December 2017),

44 pages.

https://doi.org/10.1145/3131360

1 INTRODUCTION

Transactional memory (TM) facilitates the development of concurrent applications by letting the
programmer designate certain code blocks as atomic (Herlihy and Moss 1993). TM allows de-
veloping a program and reasoning about its correctness as if each atomic block executes as a
transaction—atomically and without interleaving with other blocks—even though in reality the
blocks can be executed concurrently. Figure 1 demonstrates the simplicity of implementing a con-
current (bounded array-based) stack using TM. This is done using two transactional objects, man-
aged by the TM: a Top variable and an array Items of size N. The transaction of thread 1 pushes a
new item onto the stack, and the transaction of thread 2 pops a value off the top of the stack. In
this case, we can perform several operations accessing Top and Items in a single transaction, with
the TM guaranteeing their atomicity.

Many TM implementations have been proposed (e.g., Dalessandro et al. (2010), Dice et al. (2006),
Harris et al. (2010), Herlihy et al. (2003), Marathe et al. (2005), and Riegel et al. (2006)). They use
myriad design approaches that, for efficiency, may execute transactions concurrently, even though
they aim to provide the programmer with an illusion that the transactions are executed atomically.
This illusion is not always perfect, as transactions may abort, typically due to conflicts with
concurrently running ones, and need to be restarted (see the transaction of thread 2 in Figure 1).

How can we be sure that a TM indeed implements atomic blocks correctly? The common ap-
proach to stating TM correctness is through a consistency condition that restricts the possible TM
executions. A TM consistency condition can be similar to a database consistency condition, such as
serializability (Papadimitriou 1979). The latter requires that the results of concurrently executing a
set of committed transactions could be obtained if these transactions executed atomically in some
order according to the sequential semantics of transactional objects. However, there is a subtlety:
serializability provides no guarantees for live transactions (i.e., those that have not yet committed
or aborted). Because live transactions can always be aborted, one might think it unnecessary to
provide any guarantees for them. However, in the setting of TM, this is often unsatisfactory.

For example, the accesses to the array Items in Figure 1 are only safe when 0 ≤ Top ≤ N—an
invariant that is preserved by the transactions in the figure when they are executed atomically.
If the TM allows (e.g., the transaction of thread 2 to read Top > N), this will lead to the program
faulting due to an out-of-bounds array access. Allowing such a behavior is undesirable.

There have been several proposals of TM consistency conditions that constrain the behavior
of live transactions. Opacity was the first one of them (Guerraoui and Kapalka 2008). Roughly
speaking, opacity requires that for any sequence of interactions between the program and the TM,
dubbed a history, there exists another justifying history where

(i) the interactions of every separate thread are the same as in the original history,
(ii) the order of nonoverlapping transactions in the original history is preserved, and

(iii) each transaction executes atomically and yields results consistent with the sequential
semantics of transactional objects.

Opacity thus constrains the behavior of live, as well as aborted, transactions by including actions
inside them into the justifying history. Opacity has been followed by more proposals of consis-

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

https://doi.org/10.1145/3131360

Characterizing Transactional Memory Consistency Conditions 2:3

Fig. 1. Implementation of a concurrent bounded stack using TM. Note that thread 1 explicitly aborts its
transaction if the stack is full.

tency conditions that weakened it (Transactional Memory Specification (TMS) (Doherty et al. 2013),
Virtual World Consistency (VWC) (Imbs and Raynal 2012)) or strengthened it (DU-opacity (Attiya
et al. 2013), Transactional Memory Specification 2 (TMS2) (Doherty et al. 2013)).

Given the plethora of proposals, it is unclear which condition one should use. An ideal TM con-
sistency condition should satisfy two desiderata. On one hand, it should be strong enough to satisfy
the intuitive expectations of the programmer and, in particular, to disallow undesirable behaviors,
such as the preceding out-of-bounds array access. On the other hand, the consistency condition
should put minimal restrictions on TM implementations needed to achieve this, so as to allow as
many optimizations as possible. The first contribution of this article is to propose a formal frame-
work for systematically evaluating TM consistency conditions according to these criteria. Our
key insight is to formalize the intuitive expectations of a programmer using observational refine-

ment (He et al. 1986, 1987) between TM implementations. Consider two TM implementations—a
concrete one, such as an efficient TM, and an abstract one, such as a TM executing each atomic
block atomically. Informally, the concrete TM observationally refines the abstract one for a given
programming language if every behavior of any program P in this language that a user can ob-
serve when P uses the concrete TM can also be observed when P uses the abstract TM instead. This
allows the programmer to reason about the behavior of P (e.g., the preservation of the invariant
0 ≤ Top ≤ N in Figure 1) using the expected intuitive semantics formalized by the abstract TM.
Observational refinement implies that the conclusions (e.g., the safety of array accesses) will carry
over to the case when P uses the concrete TM. Thus, if we formulate a consistency condition as a
relation between a concrete and an abstract TM, then the condition ideal for a given programming
language should be equivalent to observational refinement for this language.

The notion of observational refinement depends on which aspects of program behavior we con-
sider user observable. In this article, we consider observable the sequence of actions performed
outside transactions in finite program computations, and whether the program faults or not (in-
side or outside a transaction). This choice is motivated by the fact that input-output actions in pro-
grams using TMs are done outside transactions, unless the TM supports special transactions that
are guaranteed not to abort (Spear et al. 2008; Welc et al. 2008); we do not consider such transac-
tions in this article. Since we consider only finite computations, our notion of observation allows a
programmer to reason about safety, but not about liveness properties (see Section 9 for discussion).

The next contribution of this article is to identify the TM consistency conditions equivalent to
observational refinement for particular programming languages. As we show, the key considera-
tion is how the language treats local variables modified by a transaction (e.g., pos in Figure 1) if the
transaction aborts: whether it rolls back the variables to the values they had when the transaction
started or leaves them as they are. There are programming languages that behave in both ways:

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:4 H. Attiya et al.

Scala TM (Scala STM Expert Group 2012) rolls back local variables, whereas most TM systems do
not. We prove the following:

—When local variables are rolled back upon transaction abort, observational refinement is
equivalent to a relational variant of the previously proposed TMS (Doherty et al. 2013),
which relates a concrete and an abstract TM.

—When local variables are not rolled back upon transaction abort, observational refinement
is equivalent to a new consistency condition that we propose, called Strong Transactional

Memory Specification (STMS).

We show that under certain natural assumptions on the abstract TM, STMS is indeed stronger
than our relational variant of TMS, and STMS is weaker than an opacity relation, a variant of
opacity (Guerraoui and Kapalka 2008) that requires every history of the concrete TM to have a
justifying history of the abstract TM satisfying the conditions (i) and (ii) presented earlier. We
furthermore show that STMS implies the opacity relation under assumptions on the concrete TM
that require it to satisfy a liveness property similar to lock-freedom (Herlihy and Shavit 2008) and
to allow threads to explicitly abort their transactions (like thread 1 in Figure 1).

To concentrate on the core goal of this article, the programming languages we consider do not
allow transaction nesting and assume a static separation of transactional and nontransactional
shared memory. Extending our development to lift these restrictions is an interesting avenue for
future work.

Even in this simple setting, establishing a connection between the consistency conditions and
observational refinement is a challenging task, which is due to the subtle way in which TMS and
STMS weaken opacity. In more detail, the key feature of opacity is that the behavior of all trans-
actions in a history of the concrete TM, including aborted and live ones, has to be justified by a
single history of the abstract TM. TMS and STMS relax this requirement by requiring only a subset
of completed transactions in the concrete history to be justified by a single abstract one obeying
(i) through (ii) shown earlier. TMS and STMS differ in that the former excludes all aborted trans-
actions from this particular check. To specify the behavior of live transactions, TMS and STMS
require each response in a live transaction to be justified by a separate abstract TM history, which
may be different for different transactions. The constraints on the choice of this abstract history
are subtle. Somewhat counterintuitively, it can include transactions that aborted in the concrete
history, with their status changed to committed, and exclude some that committed; however, this is
subject to certain carefully chosen constraints. The flexibility in the choice of the abstract history
is meant to allow the concrete TM implementation to perform as many optimizations as possible.
However, it is not straightforward to establish that this flexibility does not invalidate observational
refinement (and hence the informal guarantees that programmers expect from a TM) or that the
consistency definitions cannot be weakened further.

Our results ensure that this is indeed the case and motivate the definitions of the consistency
conditions. Informally, using a separate history for every live transaction in TMS and STMS does
not invalidate observational refinement because the only aspect of the behavior of live transactions
that users can observe is whether one of them faults or not. For observational refinement, we need
to prove that a fault inside a live transaction occurring with the concrete TM could be reproduced
with the abstract one. For this, it is sufficient to require that the state of transactional objects seen
by every single live transaction can be justified by some abstract history; different transactions
can be justified by different histories. The link to observational refinement similarly explains the
differences between TMS and STMS. If local variables are not rolled back when transactions abort,
then threads can communicate to each other the observations they make inside aborted transac-
tions about the state of transactional objects. For example, even when the transaction of thread 1

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:5

in Figure 1 aborts, the thread may learn the number of elements in the stack through the local vari-
able pos. This knowledge may then be communicated to other threads through global variables,
such as g in Figure 1, and may affect their future behavior. This is the reason for STMS requiring
a single justifying history not only for committed transactions (as in TMS) but also aborted ones.

Technically, we prove that TMS and STMS are sufficient for observational refinement for the
respective programming languages by establishing a nontrivial property of the set of computations
of a program, showing that a live transaction cannot notice the changes in the committed/aborted
status of other transactions that are allowed by the consistency conditions. Proving that TMS
and STMS are necessary for observational refinement is challenging as well, as this requires us to
devise multiple programs that can observe whether the subtle constraints governing the change of
transaction status in the consistency conditions are fulfilled by the TM. We have identified several
closure properties on the set of histories produced by the abstract TM required for these results
to hold. Although intuitive, these properties are not necessarily provided by an arbitrary TM, and
our results demonstrate their importance.

2 PROGRAMMING LANGUAGE SYNTAX

We consider a language with programs consisting of a fixed, but arbitrary, number m of threads,
identified by ThreadID = {1, . . . ,m}. Every thread t ∈ ThreadID has a private set of local variables

LVart = {x ,y, . . .} and threads share a set of global variables GVar = {д, . . .}, all of type integer.
We let Var = GVar �⊎m

t=1 LVart be the set of all program variables. Threads can also access a TM,
which manages a fixed collection of transactional objects Obj = {o, . . .}, each with a set of methods

that threads can call. For simplicity, we assume that each method takes one integer parameter and
returns an integer value, and that all objects have the same set of methods Method = { f , . . .}.

The syntax of the language is as follows:

C ::= c | C;C | if (b) {C} else {C} | while (b) {C} |
x := atomic {C} | x := o. f (e) | abort

P ::= C1 ‖ . . . ‖ Cm ,

where b and e denote Boolean and integer expressions over local variables, left unspecified. The
code of threads in a program P is given by sequential commands C1, . . . ,Cm . These include primi-

tive commands c from a set PComm, sequential compositions, conditionals, loops, atomic blocks,
object method invocations, and a special abort command that can only be used inside an atomic
block and whose effect is to abort the corresponding transaction. Primitive commands are meant to
execute atomically. We do not fix their set PComm but assume that it at least includes assignments
to local and global variables, a skip command that does nothing, and a special fault command,
which stops the execution of the program in an error state. Thus, fault encodes illegal computa-
tions, such as division by zero or out-of-bounds memory access.

An atomic block x := atomic {C} executesC as a transaction, which the TM can commit or abort.
The TM’s decision is returned in the local variable x , which gets assigned distinguished values
committed or aborted. We forbid nested atomic blocks and, hence, nested transactions. Inside an
atomic block (and only there), the program can invoke methods on transactional objects, as in
x � o. f (e). Here the expression e gives the value of the method parameter, and x gets assigned
the return value after the method terminates. The transactional system may decide to abort a
transaction initiated by x := atomic {C} not only upon reaching the end of the atomic block but
also during the execution of a method on a transactional object. Once this happens, the execution
ofC terminates. Transactions can be aborted explicitly using the abort command (e.g., as done by

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:6 H. Attiya et al.

thread 1 in Figure 1 if the array is full). A typical pattern of using the transactional system is to
execute a transaction repeatedly until it commits, as done by thread 2 in Figure 1.

We assume that a thread cannot access global variables inside atomic blocks and cannot access
local variables of other threads. Thus, we accordingly restrict the expressions used in the condi-
tions of if and while commands. To restrict accesses by primitive commands, we partition the
set PComm − {fault} into 2m classes: PComm − {fault} = ⊎m

t=1 (LPcommt � GPcommt). The
intention is that commands from LPcommt can access only the local variables of thread t (LVart);
commands from GPcommt can additionally access global variables (LVart � GVar). We formalize
these restrictions in Section 4. We then require a thread t to use only primitive commands from
LPcommt � GPcommt � {fault} and to use only those from LPcommt � {fault} inside atomic
blocks.

We note that whereas transactional objects are managed by the transactional system, global vari-
ables are not. Thus, threads can communicate via the transactional system inside atomic blocks
and directly via global variables outside them. In the following, we define two variants of program-
ming language semantics differing in the treatment of local variables upon a transaction abort: in
one case, they are rolled back to the values they had when the transaction started, and in the other
case, left as they are. Thus, in the latter case, aborted transactions can communicate information
to the following nontransactional code. Local variables are never rolled back when a transaction
commits.

3 MODEL OF COMPUTATIONS

We model a program computation by a trace, which is a finite sequence of actions, each describing
a single computation step.1

Definition 3.1. Let ActionId be a set of action identifiers. A primitive action χ has the form (a, t , c),
where a ∈ ActionId, t ∈ ThreadID, and c ∈ PComm is a primitive command. A TM interface action

ψ has one of the following forms:

Request Actions Corresponding Response Actions

(a, t , txbegin) (a′, t ,OK) | (a′, t , aborted)
(a, t , txcommit) (a′, t , committed) | (a′, t , aborted)
(a, t , txabort) (a′, t , aborted)
(a, t , call o. f (n)) (a′, t , ret(n′) o. f) | (a′, t , aborted)

where a,a′ ∈ ActionId, t ∈ ThreadID, o ∈ Obj, f ∈ Method, and n,n′ ∈ Z. We use φ to range over
both primitive and TM interface actions.

TM interface actions denote the control flow of a thread t crossing the boundary between the
program and the TM: request actions correspond to the control being transferred from the former
to the latter, and response actions, the other way around. A txbegin action is generated upon enter-
ing an atomic block. If this successfully starts a transaction, the TM responds with an OK action.
A txcommit action is generated when a transaction tries to commit upon exiting an atomic block;
if this is successful, the TM responds with a committed action. Actions call and ret denote, respec-
tively, a call to and a return from an invocation of a method f on a transactional object o and are
annotated with the method parameter n or return value n′. The TM may abort a transaction at any
point when it is in control; this is recorded by an aborted response action.

1We do not consider infinite computations; see Section 9 for a discussion.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:7

Fig. 2. Notation for traces.

In addition to interface actions, we have actions of the form (a, t , c), which denote the execution
of a primitive command c by thread t . To denote the evaluation of conditions in if and while
statements, we assume that the sets LPcommt contain special primitive commands assume(b),
where b is a Boolean expression over local variables of thread t , defining the condition. We state
their semantics formally in Section 4.2; informally, assume(b) does nothing ifb holds in the current
program state and stops the computation otherwise. Thus, it allows the computation to proceed
only ifb holds. The assume commands are only used in defining the semantics of the programming
language; hence, we forbid threads from using them directly.

We call a trace containing only TM interface actions a history. We use τ to range over traces and
H , S to range over histories. We denote the set of all traces by Traces and the set of all histories by
History. We denote irrelevant expressions by _ and use the notation for traces shown in Figure 2.

Programs in our programming language do not generate arbitrary traces, but only those satis-
fying certain conditions, summarized in the following definition.

Definition 3.2. A trace τ is well-formed if

(i) every action in τ has a unique identifier: if τ = _ (a1, _, _) _ (a2, _, _) _ then a1 � a2;
(ii) no action follows a fault: if τ = τ ′φ, then τ ′ does not contain a fault action;

(iii) request and response actions alternate correctly: for every thread t , history(τ) |t , con-
sists of alternating request and corresponding response actions, starting with a request
action;

(iv) requests must be answered before calling a primitive command: for every thread t , τ |t
does not contain a request action immediately followed by a primitive action;

(v) actions denoting the beginning and end of transactions alternate correctly: for every
thread t , in the projection of τ |t to txbegin, committed, and aborted actions, txbegin
alternates with committed or aborted, starting with txbegin;

(vi) call, ret, txcommit, and txabort actions occur only inside transactions: for every thread t ,
if τ |t = τ1ψτ2 for a call, ret, txcommit, or txabort actionψ , then τ1 = τ

′
1 (_, t , txbegin) τ ′′1

for some τ ′1 and τ ′′1 such that τ ′′1 does not contain committed or aborted actions;

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:8 H. Attiya et al.

Fig. 3. Notation for transactions.

(vii) commands in τ do not access local variables of other threads: if (_, t , c) ∈ τ , then c ∈
LPcommt � GPcommt � {fault};

(viii) commands in τ do not access global variables inside a transaction: for every thread t , if
τ |t = τ1 (_, t , c) τ2 for c ∈ GPcommt , then it is not the case that τ1 = τ

′
1 (_, t , txbegin) τ ′′1 ,

where τ ′′1 does not contain committed or aborted actions.

A history is well formed if it is well formed as a trace. We denote the set of all well-formed traces
by WfTraces and the set of all well-formed histories by WfHistory.

Definition 3.3. A transaction T is a nonempty well-formed trace such that

—it contains actions by the same thread,
—it begins with a txbegin action, and
—only its last action can be a committed or an aborted action.

The status of a transaction T is

—committed if it ends with a committed action;
—aborted if it ends with an aborted action;
—pending if it ends with a txcommit or a txabort action; and
— live, in all other cases.

A transaction T is visible if it contains a txcommit action and completed if it is either committed
or aborted. An aborted transaction is end-aborted if it is visible, self-aborted if it is contains a
txabort action, and mid-aborted otherwise. A pending transaction is commit-pending if it ends with
a txcommit action and abort-pending otherwise. We denote the set of all transactions in τ by tx(τ)
and use the following self-explanatory notation for various subsets of transactions: completed(τ),
committed(τ), aborted(τ), endaborted(τ), selfaborted(τ), midaborted(τ), visible(τ), pending(τ),
compending(τ), abpending(τ), and live(τ).

We say that an action φ ∈ τ is transactional if φ ∈ T for some transactionT ∈ τ and nontransac-

tional otherwise. We use the notation for transactions shown in Figure 3.

We specify the behavior of a TM implementation by the set of possible interactions it can have
with programs.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:9

Definition 3.4. A TM T is a set of well-formed histories that is prefix-closed and closed under

renaming action identifiers—for instance, if a history H is in T , then any history equivalent to H is

also in T .

In the definition of transactional memories, we require prefix-closure to take into account incom-
plete program executions.

3.1 An Atomic TM

We define the correctness of a TM implementation by relating its history set to that of an abstract

implementation, whose behavior it has to simulate; in this context, we call the original implemen-
tation concrete. In this section, we give an example Tatomic of an abstract TM that formalizes the
intuitive expectations of a programmer: atomic blocks actually execute atomically, and methods
called by aborted transactions have no effect. We start by defining more precisely what we mean
by the atomic execution of atomic blocks, using the following notion of noninterleaved histories.

Definition 3.5. A well-formed history H is complete if all transactions in it are completed. A
well-formed history H is noninterleaved if actions by any two transactions do not overlap: if H =
H1 (_, t , txbegin) H2 (_, t ′, txbegin) H3, where H2 does not contain txbegin actions, then either H2

contains a (_, t , committed) or a (_, t , aborted) action, or there are no actions by thread t in H3.

Note that a noninterleaved history does not have to be complete. For example,

(_, t , txbegin) (_, t ,OK) (_, t ,call o. f (_))

(_, t ′, txbegin) (_, t ′,OK) (_, t ′, call o. f (_)) (_, t ′, ret(_) o. f)

is a noninterleaved history. In fact, the history set Tatomic that we are about to define contains
only noninterleaved histories, but some of them are incomplete. This is because programs in our
language may produce traces with such histories (e.g., when due to a loop inside, an atomic block
does not terminate). Hence, we needTatomic to allow these histories for it to be useful when formally
defining the semantics of the programming language in Section 4.

We define Tatomic in such a way that the changes made by a live, aborted, or abort-pending
transaction are invisible to other transactions. However, there is no such certainty in the treatment
of a commit-pending transaction: the TM implementation might have already reached a point at
which it is decided that the transaction will commit. Then the transaction is effectively committed,
and its operations may affect other transactions (Guerraoui and Kapalka 2011). To account for this,
when defining Tatomic, we consider every possible completion of each commit-pending transaction
in a history to either a committed or an aborted one. Formally, a history H c is a completion of a
well-formed history H if

—H is a subsequence of H c ,
—H c is well formed,
—H c |¬H contains only committed or aborted actions, and
—H c has no pending transactions.

We denote the set of all completions of H by complete(H).
To define Tatomic, we also need to know the intended semantics of operations on transactional

objects. We describe the semantics for an object o ∈ Obj by fixing all sequences of actions on o
that are considered correct when executed by a sequential program. More precisely, a sequential

specification of an object o is a set of well-formed histories [[o]] such that

—[[o]] is prefix-closed;
—[[o]] is closed under renaming action identifiers;

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:10 H. Attiya et al.

—each H ∈ [[o]] consists of alternating call and ret actions on o, starting from a call action,
where every ret is by the same thread as the preceding call; and

—[[o]] is insensitive to thread identifiers: for any H ∈ [[o]], changing the thread identifier in a
call-ret pair of adjacent actions in H yields a history in [[o]].

For example, [[o]] for a register object o would consist of histories where each read method invo-
cation returns the value written by the latest preceding write method invocation (or the default
value if there is none).

Using sequential specifications for all objects, we now define when a noninterleaved history H
respects the object semantics. LetH (i) be a call or ret action on an object o. We say thatH (i) is legal

in H if H ′ |o ∈ [[o]], where H ′ is the history obtained from H by projecting H�i on all actions by
committed transactions and the transaction containing H (i). A noninterleaved history H is legal if
all call and ret actions in H are legal. In this definition, we check every action separately to make
sure that the return values are consistent with object specifications not only inside committed but
also aborted and live transactions. We now let Tatomic be the set of all noninterleaved histories that
can be completed to a legal history:

Tatomic = {H ∈ WfHistory | ∃H c ∈ complete(H).H c is legal and non-interleaved}.

We say that a TM is atomic if it is a subset of Tatomic. It is easy to check that Tatomic is a prefix-
closed set of well-formed noninterleaved histories.

For example, consider the history H shown later in Figure 5, and assume the expected seman-
tics of read and write operations. Clearly, H � Tatomic, because H is not a noninterleaved history.
However, the history S = T1T3T2T4T5 is complete and legal: the writes to y by the aborted transac-
tionsT3 andT3 are ignored when checking the legality of the read from y inT5. Hence, S ∈ Tatomic.
As another example, consider the transactions shown later in Figure 7, and let S ′ = T1T3T4T5. A
completion of S ′ where T4 becomes committed is a noninterleaved and legal. Hence, S ′ ∈ Tatomic.
However, S ′′ = T1T3T2T4T5 has no legal completion: no matter how we complete T4, we cannot
justify the read of 0 from y in T5. Hence, S ′′ � Tatomic.

4 SEMANTICS OF THE PROGRAMMING LANGUAGE

AND OBSERVATIONAL REFINEMENT

In this section, we define the semantics of our programming language (i.e., the set of traces that
computations of programs produce). The semantics comes in two flavors:

—Semantics without rollback. When a transaction is aborted, local variables are not rolled
back to their initial values, and the values written to them by the transaction can thus be
observed by the following nontransactional code.

—Semantics with rollback. When a transaction is aborted, local variables are rolled back to the
values they had at its start, and the values written to them by the transaction cannot be
observed by the following nontransactional code.

The two semantics are needed to characterize STMS and TMS, respectively. In the following, we
subscript definitions used to define the semantics by RB and noRB, and use “X” to range over these.

A state of a program records the values of all of its variables: s ∈ State = Var→ Z. The semantics
of a program P = C1 ‖ . . . ‖ Cm is given by the set of well-formed traces [[P ,T]]X (s) ⊆ WfTraces it
produces when executed with a TM T from an initial state s . We define this set in two stages. First,
we define the set of traces [[P]]X (s) ⊆ WfTraces that a program can produce when executed from
s with the behavior of the TM unrestricted—for instance, considering all possible values, the TM
can return to object method invocations and allowing transactions to commit or abort arbitrarily.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:11

We then compute the set of traces produced by P when executed with a TM T by selecting those
traces that interact with the TM in a way consistent with T :

[[P ,T]]X (s) = {τ | τ ∈ [[P]]X (s) ∧ history(τ) ∈ T }. (1)

The set [[P]]X (s) is itself defined in two stages. First, we define a set Tr(P) ⊆ WfTraces of traces
that resolves all issues regarding sequential control flow and interleaving. Intuitively, if one thinks
of each threadCt in P as a control-flow graph, then Tr(P) contains all possible interleavings of paths
in the graphs of Ct , t ∈ ThreadID, starting from their initial nodes. The set Tr(P) is a superset of
all traces that can actually be executed—for example, if a thread executes the command

x := 1; if (x = 1) {y := 1 } else {y := 2 }, (2)

where x ,y are local variables, then Tr(P) will contain a trace where y := 2 is executed instead
of y := 1. To filter out such nonsensical traces, we evaluate every trace to determine whether it is
valid (i.e., whether its control flow is consistent with the effect of its actions on program variables).
This is formalized by a function evalX : State ×WfTraces→ P (State) ∪ {�} that, given an initial
state and a well-formed trace, produces the set of states resulting from executing the actions in
the trace, an empty set if the trace is invalid, or a special error state � if the trace contains a fault
action. Thus,

[[P]]X (s) = {τ ∈ Tr(P) | evalX (s,τ) � ∅}. (3)

It is the definition of the evalX function that mandates that local variables be rolled back upon a
transaction abort (when X = RB) or not (when X = noRB).

We next formally define the trace set Tr(P) (Section 4.1) and the evaluation function evalX
(Section 4.3).

4.1 The Trace Set Tr(P)

The function Tr(·) in Figure 4 maps programs to traces they may produce. It is defined using
an auxiliary function Tr′(·), which yields the set of all interleavings of traces produced by the
threads constituting P . The set produced by Tr′(·) may contain traces that are not well formed
(e.g., because they contain duplicate identifiers or continue beyond a fault command). This is
resolved by defining Tr(P) as the intersection of the set Tr′(P) with the set of all well-formed
traces. We also take the prefix-closure of Tr′(P) to account for incomplete program computations,
as well as those in which the scheduler preempts a thread forever.

The function Tr′t (·) maps a sequential command executed by thread t to the traces it may pro-
duce. Tr′t (c) returns a singleton set with the action corresponding to the primitive command c
(recall that primitive commands execute atomically). Tr′t (C1;C2) concatenates all possible traces
corresponding to C1 with those corresponding to C2. The set of traces of a conditional considers
cases where either branch is taken. We record the decision using an assume action; at the evalua-
tion stage, this allows us to ensure that this decision is consistent with the program state. The set
of traces for a loop is defined by considering all possible unfoldings of the loop body, including
the case in which it never executes. Again, we record branching decisions using assume actions.

The set of traces of a method invocation x := f (e) includes both traces where the method exe-
cutes successfully and where the current transaction is aborted. The former set is constructed by
nondeterministically choosing two integers n and n′ to describe the parameter n and the return
value n′ for the method call. To ensure that e indeed evaluates to n, we insert assume(e = n) before
the call action, and to ensure that x gets the return value n′, we add the assignment x := n′ after
the ret action. Note that some of the choices here might not be feasible: the chosen n might not be
the value of the parameter expression e when the method is invoked, or the method might never

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:12 H. Attiya et al.

Fig. 4. The definition of Tr(P). A trace τ ∈ interleave(τ1, . . . ,τm) if and only if every action in τ is performed
by some thread t ∈ {1, . . . ,m}, and τ |t = τt for every t ∈ {1, . . . ,m}. The function prefix(·) prefix-closes a
given set of traces.

return n′ when called with the parameter n. Such infeasible choices are filtered out at the follow-
ing stages of the semantics definition: the former when defining [[P]]X (s) in (3) by the semantics
of assume and the latter when defining [[P ,T]]X (s) in (1) by selecting the traces from [[P]]X (s) that
interact with the TM correctly. The trace set of x := atomic {C} contains the trace in which the
transaction aborts immediately after it is invoked, the traces in which C is aborted in the middle
of its execution, and those in whichC executes until completion and then the transaction commits
or aborts.

4.2 Semantics of Primitive Commands

To define evaluation, we assume a semantics of every command c ∈ PComm − {fault} given by
a function [[c]] that defines how the program state is transformed by executing c . As noted in
Section 2, different classes of primitive commands are supposed to access only certain subsets of
variables. To ensure that this is indeed the case, we define [[c]] as a function of only those variables
that c is allowed to access. Namely, the semantics of c ∈ LPcommt is given by

[[c]] : (LVart → Z) → P (LVart → Z).

The semantics of c ∈ GPcommt is given by

[[c]] : ((LVart � GVar) → Z) → P ((LVart � GVar) → Z).

For a valuation q of variables that c is allowed to access, [[c]](q) yields the set of their valuations
that can be obtained by executing c from a state with variable values q (this allows c to be nonde-
terministic). For example, an assignment command x := д has the following semantics:

[[x := д]](q) = {q[x
→ q(д)]}.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:13

We define the semantics of assume commands following the informal explanations given in
Section 3: for example,

[[assume(x = n)]](q) =
⎧⎪⎨
⎪
⎩

{q}, if q(x) = n;

∅, otherwise.
(4)

Thus, when the condition in assume does not hold for q, the command stops the computation by
not producing any state.

We lift functions [[c]] to full states by keeping the variables that c is not allowed to access un-
modified. For example, if c ∈ LPcommt , then

[[c]](s) = {s |LVar\LVart
� q | q ∈ [[c]](s |LVart

)},

where s |V is the restriction of s to variables in V . Finally, we let

[[fault]](s) = �

so that the only way a program can fault is by executing the fault command.

4.3 Evaluation of Traces

Using the semantics of primitive commands, we first define the evaluation of a single action on a
given state:

eval : State × Action→ P (State) ∪ {�};
eval(s, (_, t , c)) = [[c]](s);

eval(s,ψ) = {s}.

Note that eval does not change the state s as a result of TM interface actions, as their return
values are assigned to local variables by separate actions introduced when generating Tr(P). We
now lift eval to traces; the definition of this lifting is different for the semantics with and without
rollback.

Semantics without rollback. In this case, the effects of actions inside an aborted transaction on
the program state are visible to the following actions. Hence, the result of evaluating a trace τ from
a state s is given by the following evalnoRB (s,τ), which composes the effects on the program state
of all actions in τ , including those inside aborted transactions:

evalnoRB : State ×WfTraces→ P (State) ∪ {�};

evalnoRB (s,τ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

{s}, τ = ε ;

�, τ = τ ′φ and ∃s ′. s ′ ∈ evalnoRB (s,τ ′) ∧ eval(s ′,φ) = �;

{s ′′ | ∃s ′. s ′ ∈ evalnoRB (s,τ ′) ∧ s ′′ ∈ eval(s ′,φ)},
τ = τ ′φ and ¬∃s ′. s ′ ∈ evalnoRB (s,τ ′) ∧ eval(s ′,φ) = �.

Semantics with rollback. In this case, the effects of actions inside an aborted transaction on the
program state are ignored when evaluating the following actions, to model local variable rollback.
To this end, the following definition of evalRB (s,τ) removes the contents of actions inside aborted
transactions before evaluating the trace. However, this poses the risk that we may consider traces
including invalid sequences of actions inside aborted transactions. To mitigate this, evalRB (s,τ)
additionally evaluates every prefix of τ and checks that it yields a nonempty set of states:

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:14 H. Attiya et al.

evalRB : State ×WfTraces→ P (State) ∪ {�};

evalRB (s,τ) =
⎧⎪⎨
⎪
⎩

∅, τ = τ ′φ ∧ evalRB (s,τ ′) = ∅;
evalnoRB (s,τ |¬abortact), otherwise.

Discussion. The preceding definitions allow us to define [[P]]X (s) as the set of those traces from
Tr(P) that can be evaluated from s without getting stuck, as formalized by (3). Note that this en-
ables the semantics of assume defined by (4) to filter out traces that make branching decisions
inconsistent with program states. For example, consider again the program (2). The set Tr(P) in-
cludes traces where both branches are explored. However, due to the semantics of the assume
actions added to the traces according to Figure 4, only the trace executing y := 1 will result in a
nonempty set of final states after the evaluation, and therefore only this trace will be included into
[[P]]X (s).

The semantics [[P ,Tatomic]]X (s), defined by (1) for Tatomic from Section 3.1, represents the intu-
itive expectations of the programmer about our programming language: atomic blocks execute
without interleaving (but may not complete), and methods called by aborted transactions have no
effect.

4.4 Observational Refinement

Informally, a concrete TM TC observationally refines an abstract TM TA if every user-observable
behavior of a program using TC can be reproduced if the program uses TA. This allows the pro-
grammer to reason about the behavior of a program using the intuitive semantics formalized by
the abstract TM (e.g., Tatomic from Section 3.1) while knowing that the conclusions will carry over
to the program using the concrete TM. The formal definition of observational refinement depends
on which aspects of program behavior we consider user observable. In this article, given a trace
τ of a program, we consider observable whether τ ends with fault or not and, in the latter case,
the sequence of nontransactional actions in τ . The rationale is that a user can always observe the
program crashing, even when inside a transaction, and otherwise we assume input-output actions
to be nontransactional.2

Definition 4.1. Well-formed traces τ and τ ′ are observationally equivalent, written τ ∼ τ ′, if

(i) τ � _ (_, _, fault) ⇒ (τ ′ � _ (_, _, fault) ∧ τ |¬trans = τ
′ |¬trans) and

(ii) τ = _ (_, _, fault) ⇒ τ ′ = _ (_, _, fault).

Note that ∼ is an equivalence relation.

Definition 4.2. Given X ∈ {RB, noRB}, we let TC �X TA if

∀P .∀s .∀τ ∈ [[P ,TC]]X (s). ∃τ ′ ∈ [[P ,TA]]X (s). τ ′ ∼ τ .
If TC �noRB TA, we say that TC observationally refines TA under the semantics without rollback. If
TC �RB TA, then TC observationally refines TA under the semantics with rollback.

If TC �X TA, then the absence of faulting traces in [[P ,TA]]X (s) implies the absence of such traces
in [[P ,TC]]X (s). Hence, the programmer can establish the safety of P assuming TA instead of TC .
The programmer can similarly establish properties of nontransactinoal actions of P and can also
indirectly reason about the behavior of, for example, committed transactions by recording the
required information in local variables and checking them in the following nontransactional code.
However, since our notion of observations excludes actions performed inside live transactions

2With a few exceptions (Welc et al. 2008; Spear et al. 2008), most systems do not allow input-output actions inside

transactions.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:15

Fig. 5. Example of a history and a trace for explaining the requirement of real-time order preservation. x and
y are register objects initialized to 0. w(y,n) and r(x ,m) denote operations writing value n to y and reading
valuem from x , respectively. We denote committed or aborted status of transactions by C and A, respectively.
д is a global variable.

other than faulting, the programmer cannot make any conclusions about the properties of such
actions.

5 CONSISTENCY CONDITIONS AND MAIN RESULTS

We now consider three TM consistency conditions and relate them to observational refinement:
TMS (Doherty et al. 2013); STMS, which we propose; and the opacity relation (Attiya et al. 2013a),
a variant of opacity (Guerraoui and Kapalka 2008). We start by formalizing these conditions in our
setting.3

As is common in consistency conditions for shared memory concurrency, such as linearizabil-
ity (Herlihy and Wing 1990), a crucial building block in the definitions of the preceding consis-
tency conditions is the following notion of the real-time order, which captures the order between
nonoverlapping transactions in a history.

Definition 5.1. Letψ = (_, t , _) andψ ′ = (_, t ′, _) be two actions in a history H . Thenψ is before

ψ ′ in the transactional real-time order in H , denoted byψ ≺H ψ ′, if H = H1ψH2H
′
2ψ
′H3 and either

(i) t = t ′ or
(ii) (_, t ′, txbegin) ∈ H ′2ψ ′ and either (_, t , committed) ∈ ψH2 or (_, t , aborted) ∈ ψH2.

A transactionT is before an actionψ ′ in the transactional real-time order in H , denoted byT ≺H ψ ′,
ifψ ≺H ψ ′ for everyψ ∈ T . A transaction T is before a transaction T ′in the transactional real-time

order in H , denoted by T ≺H T ′, if T ≺H T ′(1).

For example, in history H in Figure 5, T1 ≺H T2 and T3 ≺H T5; however, ¬(T1 ≺H T5). It is easy
to verify that ≺H is a partial order.

Definition 5.2. The transactional real-time order of a history H is preserved in a history S , de-
noted by H �RT S , if

∀ψ ,ψ ′. (ψ ∈ S ⇐⇒ ψ ∈ H) ∧ (ψ ≺H ψ ′ ⇒ ψ ≺S ψ ′).

For example, considering again the history H in Figure 5, we can see that H �RT T1T3T2T4T5. It is
easy to verify that �RT is a partial order. For brevity, in the following, we use the term real-time

order instead of transactional real-time order.

3TMS was originally formulated in an operational manner, using I/O automata; here we present a more abstract definition

appropriate for our goals.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:16 H. Attiya et al.

5.1 The STMS Relation

The consistency conditions that we define relate a concrete TMTC and an abstract TMTA. For every
history H ∈ TC , the conditions require the existence of one or more histories S ∈ TA justifying

the TM behavior in H . Our intention is for the STMS relation TC �STMS TA to be equivalent to
observational refinement under the semantics without rollback: TC �noRB TA. Hence, STMS picks
justifying histories so that a trace τ of a program P with a history H ∈ TC could be transformed
into an observationally equivalent trace τ ′ of P with a history S ∈ TA justifying H . STMS picks
justifications in two ways, which can respectively be used to transform τ into τ ′ in the cases when
τ contains a fault inside a live transaction or not (see Definition 4.1). We start by defining the STMS
requirements that allow performing the transformation in the latter case.

Consider first a complete history H ∈ TC . In this case, STMS requires the existence of a history
S ∈ TA such that H �RT S . In particular, S has to contain the same transactions as H . This is neces-
sary for STMS to imply observational refinement under the semantics without rollback: since all
transactions in H are completed, the nontransactional code following the corresponding atomic
blocks in P is aware of the return values obtained inside these transactions, even if they aborted.
For example, even if the transaction by thread 1 in Figure 1 is aborted, the value of local variable
pos, which depends on the transactional object Top, is assigned to the global variable g.

Thus, to convert a trace τ of P with the history H ∈ TC into a trace τ ′ of P with the same non-
transactional actions, but with a history S ∈ TA, the history S has to match the return values inside
the transactions of H . The relative positions of actions by different transactions may generally dif-
fer inH and S , but we require that the real-time order ofH be preserved in S . This is also necessary
for observational refinement. As illustrated in Figure 5, ifT3 ≺H T5, then in betweenT3 completing
and T5 starting in the trace τ , threads t2 and t3 may execute nontransactional code and can thus
communicate using global variables, such as д. Preserving the real-time order of H in S ensures
that this communication can be preserved when transforming τ into τ ′.

We now consider the general case of a history H ∈ TC , which requires us to deal with live and
commit-pending transactions in H . In this case, STMS requires the existence of a history S ∈ TA
such that H c �RT S for some history H c that can be obtained from H via the following transfor-
mation: all live and abort-pending transactions and any number of commit-pending transactions
are discarded, and the remaining commit-pending transactions are completed with committed ac-
tions. The intuition is that since a live or an abort-pending transaction has not made an attempt to
commit, its actions should not affect completed transactions, which influence the nontransactional
code following them in a program. A commit-pending transaction may or may not have effectively
committed, and thus its actions may or may not affect completed transactions (Section 3.1).

To perform the preceding transformations on H , we use the following auxiliary definitions and
operations:

—A history H c is a commit-completion of a well-formed history H if it is a completion of H
and there exists a history H ′ comprised only of committed actions such that H c = HH ′. Let
cendcomplete(H) be the set of all commit-completions of H .

—Let rempending(H) be the set of histories obtained from H by removing any number
of its commit-pending transactions and all its abort-pending transactions: we have H ′ ∈
rempending(H) if and only if
—H ′ is a subsequence of H ,
—tx(H) \ pending(H) = tx(H ′) \ pending(H ′), and
—pending(H ′) ⊆ compending(H).

Given the preceding definitions, a part of the STMS relation between TC and TA requires

∀H ∈ TC . ∃H ′ ∈ rempending(H |¬live). ∃H c ∈ cendcomplete(H ′). ∃S ∈ TA.H c �RT S . (5)

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:17

The other part of STMS considers every response actionψ in a history H = H1ψH2 ∈ TA that is
not a committed or an aborted action. It then requires the existence of a certain history Sψ ∈ TA
justifying the outcome of ψ . As we show, this allows transforming a trace τ of P that has the
history H and contains a fault in the transaction of ψ into a trace τ ′ of P that has the history Sψ

and contains a fault in the same transaction. The history Sψ ∈ TA includes the transaction ofψ and
some of the transactions from H1ψ . Somewhat counterintuitively, these transactions may exclude
some of the committed transactions in H1ψ maximal in the real-time order, and may include some
of such aborted transactions with their status changed to committed: the responseψ is given as if
the latter transactions have taken effect and the former have not. Thus, Sψ creates a “virtual world”
that describes the view of ψ on the TM state. This view may be different from that of a response
actionψ ′ in another transaction, as STMS allows Sψ ′ to be different from Sψ .

To formalize this part of STMS, we first introduce several auxiliary definitions. A transactionT ∈
tx(H) is maximal inH if it is not followed by another transaction in the real-time order: ¬∃T ′.T ′ ∈
tx(H).T ≺H T ′. We denote the set of all maximal transactions of H by maxtx(H). The following
notion of a possible past of a history H = H1ψ defines all sets of transactions from H that can form
its justification Sψ .

Definition 5.3. A well-formed history Hψ = H ′1ψ is a possible past of a well-formed history H =
H1ψ , whereψ is a response action that it is not a committed or an aborted action, if

(i) H ′1 is a subsequence of H1.
(ii) Hψ is comprised of the transaction of ψ and some of the completed or commit-pending

transactions in H :

tx(Hψ) ⊆ {txof (ψ ,H)} ∪ committed(H) ∪ aborted(H) ∪ compending(H).

In particular, Hψ does not contain abort-pending transactions or live transactions, except
that ofψ .

(iii) For every transactionT ∈ Hψ , the history Hψ includes all transactions precedingT in the
real-time order in H :

∀T ∈ tx(Hψ).∀T ′ ∈ tx(H).T ′ ≺H T ⇒ T ′ ∈ tx(Hψ).

(iv) A maximal transaction in Hψ cannot be mid- or self-aborted:

(midaborted(Hψ) ∪ selfaborted(Hψ)) ∩maxtx(Hψ) = ∅.

We denote the set of possible pasts of H by STMSpast(H).

We explain the definition using the historyH1ψ of the trace shown in Figure 6; one of its possible
pasts Hψ consists of the transactions T1, T3, T4, and T5. According to (i) and (ii), the transaction of
ψ (T5 in Figure 6) is always included into any possible past, and other live transactions as well as
abort-pending ones are excluded: since they have not made an attempt to commit, they should
not have an effect on ψ . We are allowed to select which of the remaining transactions to include
into Sψ subject to (iii): if we include a transaction T , then we also have to include all transactions
preceding it in the real-time order. For example, sinceT4 andT5 are included inHψ , so areT1 andT3.
This condition is necessary for STMS to imply observational refinement. To illustrate, consider a
trace τ of a program P with the historyH that has a fault inside the transactionT5. As illustrated in
Figure 6, in betweenT3 aborting andT5 starting in τ , thread t2 can communicate to thread t3 some
facts about the behavior of T3 (e.g., using a global variable д). Then to preserve the behavior of T5

when transforming τ into a trace τ ′ of P with a history from TA constructed from the transactions
inHψ , we also have to preserve the behavior ofT3. Hence,T3 has to be included intoHψ : informally,
the views of T3 and T5 on the TM behavior have to be consistent.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:18 H. Attiya et al.

Fig. 6. TransactionsT1,T3,T4, andT5 form one possible past of the historyH of the trace shown. Allowed sta-
tus of transactions in H is denoted as follows: committed, C; aborted, A; end-aborted, EA; commit-pending,
CP; live, L. The transactionT5 executes only primitive actions afterψ in the trace. χ1 and χ2 are nontransac-
tional actions by threads t1 and t2, respectively.

As the next step in constraining the desired justification Sψ of Hψ , we change the status of all
commit-pending and maximal aborted transactions in Hψ to committed, as we define in the fol-
lowing. To ensure that the resulting history is well formed, condition (iv) allows including mid- or
self-aborted transactions into Hψ only when they are not maximal (i.e., only when their inclusion
is required by condition (iii)).

Definition 5.4. We let maxcom(H) denote the history obtained from H by making all maximal
aborted transactions in H committed: |maxcom(H) | = |H | and

maxcom(H) (i) = (if (H (i) = (a, t , aborted) ∧ txof (H (i),H) ∈ maxtx(H)),

then (a, t , committed) else H (i)).

Definition 5.5. The set of completed possible pasts of a well-formed history H1ψ is

cSTMSpast(H1ψ) = {H c
ψ | ∃H

′
1,H

′′
1 .H

′
1ψ ∈ STMSpast(H1ψ) ∧

H ′′1 = maxcom(H ′1) ∧ H c
ψ ∈ cendcomplete(H ′′1 ψ)}.

For example, one completed possible past of the history in Figure 6 consists of the transactionsT1,
T3, T4, and T5, with the status of T4 changed to committed if it was previously aborted or commit-
pending. We can now give a complete definition of STMS, strengthening (5).

Definition 5.6. A history H is in the STMS relation with TM T , denoted H �STMS T , if

(i) ∃H ′ ∈ rempending(H |¬live). ∃H c ∈ cendcomplete(H ′). ∃S ∈ T .H c �RT S ; and
(ii) for every response action ψ such that it is not a committed or an aborted action and

H = H1ψH2 for some H1 and H2, we have ∃H c
ψ
∈ cSTMSpast(H1ψ). ∃Sψ ∈ T .H c

ψ
�RT Sψ .

A TM TC is in the STMS relation with a TM TA, denoted by TC �STMS TA, if

∀H ∈ TC .H �STMS TA.

Thus, part (i) in this definition checks the behavior of transactions in H excluding live ones; part
(ii) then covers live transactions. Even though our definition of completed possible past of a his-
tory H allows us to perform unexpected transformations on H , the resulting definition of STMS
nevertheless validates observational refinement. This is because our programming language does
not allow accessing global variables inside transactions. Hence, when constructing Sψ from H ,
we can change, for example, the status of T4 from aborted to committed: there is no way for the
code in T5 to find out about the status of T4 from thread t2, and hence this code will not notice

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:19

Fig. 7. Histories illustrating the definitions of STMS and TMS.

the change when replacing the concrete TM by an abstract one in observational refinement. For
similar reasons, we can exclude T2 from Sψ , even if it is committed.

We illustrate the definition of the STMS relation using the histories in Figure 7. We take Tatomic

as the abstract TM (Section 3.1), with the expected semantics of read and write operations. We
now argue that H �STMS Tatomic for the history H depicted in the figure assuming transaction T5

is live. To satisfy the conditions in Definition 5.6(i), we can take as H ′ and H c the subsequence of
H consisting of transactions T1, T2, T3 and as S the history S = T1T3T2 ∈ Tatomic. Another option is
to take as H ′ the subsequence of H consisting of transactionsT1,T2,T3, andT4; as H c , we can take
the history Hψ , whereψ is a committed action completingT4 to a committed transactionT ′4 . Then
we can satisfy the definition by letting S = T1T3T2T

′
4 ∈ Tatomic.

To establish the conditions in Definition 5.6(ii), we need to consider every prefixH1ψ ofH ending
with a response actionψ that is not an aborted or committed action. We explain the case whenψ is
the response for the read of x byT5. For thisψ , a completed possible pastH c

ψ
containsT1,T3,T5 and

the committed transaction T ′4 , obtained from T4 as explained previously. To satisfy the definition,
we can then take Sψ = T1T3T

′
4T5 ∈ Tatomic. Note that we have to include T ′4 into H c

ψ
, because the

read of x by T5 returns the value written by T4.
Consider now the history H in Figure 7, assuming that T5 is aborted. We argue that ¬(H �STMS

Tatomic). Since T4 is the only transaction that writes to x and T5 reads 4 from x , Definition 5.6(i)
requires us to find a complete history S ∈ Tatomic that consists of transactionsT1,T2,T3,T5 and the
transactionT ′4 obtained by committing T4. However, this is not possible: for T5 to read 4 from x , it
has to follow T ′4 in S ; for T2 to read 0 from x , it must appear before T ′4 ; but then since T2 writes 2
to y, T5 cannot read 0 from y.

5.2 The TMS Relation

TMS (Doherty et al. 2013) is a weaker consistency condition than STMS. As we show, the TMS re-
lation TC �TMS TA is equivalent to the observational refinement under the semantics with rollback:
TC �RB TA. Since this semantics does not allow nontransactional code to observe the behavior in-
side aborted transactions, TMS is obtained from STMS by excluding such transactions from the
checks that it performs. Formally, this is achieved by removing aborted transactions from com-
pleted possible pasts of Definition 5.5 and from the history H c in Definition 5.6(i).

Definition 5.7. The set of completed visible possible pasts of a well-formed history H is

cTMSpast(H) = {(H ′|¬aborted) | H ′ ∈ cSTMSpast(H)}.

Definition 5.8. A history H is in the TMS relation with TM T , denoted by H �TMS T , if

(i) ∃H ′ ∈ rempending(H |¬live). ∃H c ∈ cendcomplete(H ′). ∃S ∈ T .H c |¬aborted �RT S ; and

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:20 H. Attiya et al.

Fig. 8. Closure properties on TMs. C1, C2, and C5 through C7 are required of abstract TMs, and C3, C4 of
concrete TMs.

(ii) for every response action ψ such that it is not a committed or aborted action and H =
H1ψH2 for some H1 and H2, we have ∃H c

ψ
∈ cTMSpast(H1ψ). ∃Sψ ∈ T .H c

ψ
�RT Sψ .

A TM TC is in the TMS relation with a TM TA, denoted by TC �TMS TA, if

∀H ∈ TC .H �TMS TA.

Consider again the history H in Figure 7 assuming that T5 is aborted. Earlier we argued
that ¬(H �STMS Tatomic). We now argue that H �TMS Tatomic. To satisfy the conditions in Defini-
tion 5.8(i), we take as H ′ the history H and as H c the history Hψ , where the action ψ completes
T4 to a committed transaction T ′4 . Then H c aborted consists of transactions T1, T2, and T ′4 , and we
can satisfy the definition by letting S = T1T2T

′
4 ∈ Tatomic. We illustrate Definition 5.8(ii) for the case

when the action ψ is the response for the read of x by T5. When explaining STMS, we argued
that for this ψ , a completed possible past consists of T1, T3,T5 and the committed transaction T ′4 .
We can thus satisfy the definition by choosing H c

ψ
so that it consists of T1, T5, and T ′4 and letting

Sψ = T1T
′
4T5 ∈ Tatomic.

We now prove that under a certain condition on abstract TMs, STMS implies TMS. This and other
conditions on TMs used in this article are listed in Figure 8; we introduce them as needed. All of
them have the form of closure properties on the set of histories defining a TM behavior; some are
required of abstract TMs and some of concrete ones. The former are satisfied by Tatomic, which for-
malizes the intuitive expectations of a programmer (Section 3.1). Informally, closure property C1,
which we use here, requires that actions by aborted, abort-pending, and live transactions do not

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:21

Fig. 9. Relationships between STMS, TMS, and opacity.

Fig. 10. Some of the constructions in the proof of Theorem 5.10.

affect other transactions.4 We summarize the relationships that we establish in this article between
various consistency conditions and the closure properties used for this in Figure 9.

Our proof of the relationship between STMS and TMS uses the following proposition, which
ensures that projection does not introduce new real-time order relationships.

Proposition 5.9. ∀H1,H2,H .H1 �RT H2 ⇒ H1 |¬H �RT H2 |¬H .

Theorem 5.10. Consider TMs TC and TA such that the latter satisfies closure property C1. Then

TC �STMS TA ⇒ TC �TMS TA.

Proof. We illustrate the proof in Figure 10. Take H ∈ TC . By Definition 5.6(i), there exist (i) a
history H ′ ∈ rempending(H |¬live), (ii) a history H c ∈ cendcomplete(H ′), and (iii) a history S ∈ TA
such that H c �RT S . By Proposition 5.9, H c �RT S implies H c |¬aborted �RT S |¬aborted. Since TA satis-
fies C1, from S ∈ TA we get S |¬aborted ∈ TA. Together with (i) and (ii), this establishes the require-
ments of Definition 5.8(i).

Letψ be a response action inH that is not a committed or an aborted action, and letH = H1ψH2.
By Definition 5.6(ii), there exist histories H c

ψ
∈ cSTMSpast(H1ψ) and Sψ ∈ TA such that H c

ψ
�RT

Sψ . Since Sψ ∈ TA and TA satisfies C1, we have Sψ |¬aborted ∈ TA. Since H c
ψ
∈ cSTMSpast(H1ψ),

by Definition 5.7 we get H c
ψ
|¬aborted ∈ cTMSpast(H1ψ). Finally, by Proposition 5.9, we get

H c
ψ
|¬aborted �RT Sψ |¬aborted. Together with Sψ |¬aborted ∈ TA, this establishes the requirements of

Definition 5.8(ii). �

5.3 The Opacity Relation

The opacity relation (Attiya et al. 2013a) requires us to justify the behavior of all transactions in
a history of the concrete TM, including aborted and live ones, by a single history of the abstract
TM.

4Note that this rules out early release, which allows live transactions to read values written by other live transactions

(Herlihy et al. 2003; Marathe et al. 2005).

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:22 H. Attiya et al.

Fig. 11. Some of the constructions in Part I of the proof of Theorem 5.12.

Fig. 12. Some of the constructions in Part II of the proof of Theorem 5.12.

Definition 5.11. A TM TC is in the opacity relation with a TM TA, denoted by TC �OP TA, if
∀H ∈ TC . ∃S ∈ TA.H �RT S .

As shown by Attiya et al. (2013a), in the case when TA = Tatomic (Section 3.1), the opacity relation
becomes equivalent to a well-known condition of opacity (Guerraoui and Kapalka 2008). Under
certain conditions on abstract TMs, the opacity relation implies STMS.

Theorem 5.12. Consider TMs TC and TA such that the latter satisfies C1 and C2. Then TC �OP

TA ⇒ TC �STMS TA.

Proof. We illustrate the proof in Figures 11 and 12. Let H ∈ TC . The proof has two parts, which
respectively establish the conditions in Definition 5.6(i) and (ii).

Part I. Since TC �OP TA, there is a history S1 ∈ TA such that H �RT S1. Since TA satisfies C1, we
have S1 |¬live ∈ TA. SinceTA satisfies C2, there exists a complete historyS2 ∈ complete(S1 |¬live) ∩ TA.
Let S be the subsequence of S2 obtained by removing the transactions that got aborted when S1 |¬live

was completed to S2. Since TA satisfies C1, we have S ∈ TA.
Let H ′ be the subsequence of H |¬live obtained by removing the transactions that got aborted

in S2. As any abort-pending transaction in H necessarily got aborted in S2, we have H ′ ∈
rempending(H |¬live). Let H ′′ = S |¬(S1 |¬live) be the sequence of committed actions used to complete
transactions in S, and letH c = H ′H ′′ (without loss of generality, we can assume that the identifiers
of the actions in H ′ andH ′′ are distinct). By construction,H c ∈ cendcomplete(H ′). It is easy to see
that ∀t .H c |t = S |t . Furthermore, when transforming H ′ into H c , we place committed actions at its
end and thus do not create new real-time order relationships. Using this fact and Proposition 5.9,
we establish H c �RT S .

Part II. Let ψ be a response action in H that is not a committed or an aborted action, and
let H = H1ψH2. Since TC is prefix-closed, we have H1ψ ∈ TC . Then since TC �OP TA, there is a
history S1 ∈ TA such thatH1ψ �RT S1. Since TA satisfies C1, we have S1 |¬live ∈ TA. Since TA satisfies
C2, there exists a complete history S2 ∈ complete(S1 |¬live) ∩ TA. Let S3 be the subsequence of S2

obtained by removing all transactions that got aborted when S1 |¬live was completed to S2. Since TA
satisfies C1, we have S3 ∈ TA.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:23

Let H ′ be the subsequence of (H1ψ) |¬live obtained by removing the transactions that got aborted
in S2; note that this removes all abort-pending transactions from (H1ψ) |¬live. Let H ′′ = S3 |¬(S1 |¬live)

be the sequence of committed actions used to complete transactions in S3, and let H ′′′ = H ′H ′′

(without loss of generality, we can assume that the identifiers of the actions in H ′ and H ′′ are
distinct). Like in the previous part of the proof, we have H ′′′ �RT S3. Let H c

ψ
∈ WfHistory be the

well-formed history such that

(i) H c
ψ

is a subsequence of H ′′′,

(ii) tx(H ′′′ |¬H c
ψ

) ⊆ aborted(H ′′′),

(iii) maxtx(H c
ψ

) ∩ aborted(H c
ψ

) = ∅, and

(iv) ∀T1,T2.T1 ≺H T2 ∧T2 ∈ tx(H c
ψ

) ⇒ T1 ∈ tx(H c
ψ

).

It is easy to check that such H c
ψ

exists and is unique. Note that H c
ψ

was obtained from H ′′′

by removing some aborted transactions. Let Sψ be the subsequence of S3 obtained by remov-
ing the same transactions. Then Sψ ∈ TA, since TA satisfies C1. Furthermore, Proposition 5.9
ensures that H c

ψ
�RT Sψ . By the construction of H c

ψ
, we have that H c

ψ
|¬H ′′ ∈ STMSpast(H) and

H c
ψ
∈ cendcomplete(H c

ψ
|¬H ′′). Furthermore, since H c

ψ
does not contain maximal aborted transac-

tions, we also have maxcom(H c
ψ
|¬H ′′) = H c

ψ
|¬H ′′ . From this, it follows that H c

ψ
∈ cSTMSpast(H1ψ),

which completes the proof. �

In general, STMS does not imply the opacity relation. Consider, for example, the history shown
in Figure 7, assuming that T5 is a live transaction. We have already argued that H �STMS Tatomic

(Section 5.1). However, ¬(H �OP Tatomic). This is the case for essentially the same reasons as
¬(H �STMS Tatomic), assuming that T5 is aborted in H , as we discussed before. We now show that
under certain conditions on concrete TMs, STMS does imply opacity. The following lemma estab-
lishes that this relationship always holds for complete histories.

Lemma 5.13. LetH be a complete history and T a TM such thatH �STMS T . Then for some history

S ∈ T , we have H �RT S .

Proof. By Definition 5.6(i), there exist histories H ′ ∈ rempending(H |¬live), H c ∈
cendcomplete(H ′), and S ∈ T such that H c �RT S . Since H is complete, we have H ′ = H
and cendcomplete(H ′) = cendcomplete(H) = {H }. Hence, H c = H so that H �RT S . �

The next theorem establishes that STMS implies opacity in the general case, provided that the
concrete TM satisfies C3 and C4. The former property requires the concrete TM to always allow
the client to explicitly abort a transaction. The latter property is a liveness property similar to
lock-freedom (Herlihy and Shavit 2008): it requires that the concrete TM eventually respond to
client requests, provided the client does not issue new ones. Informally, these properties ensure
that STMS imply opacity, because they allow completing all live transactions in any history pro-
duced by the concrete TM. Then Definition 5.6(i) forces the TM to give a single justification for all
transactions in the history, making the flexibility allowed by Definition 5.6(ii) unnecessary. The
only way in which a TM may satisfy STMS, but not opacity, is by giving to a live transaction (e.g.,
T5 in Figure 7) a view of the TM state that is inconsistent with that of other transactions, then never
responding to a request to commit or abort the live transaction. We also rely on closure properties
C5 and C6 on abstract TMs, which mirror C3 and C4. Like C1, these are satisfied by TMs where
actions by live and aborted transactions do not affect other transactions.

Theorem 5.14. Let TC be a TM that satisfies C3 and C4, and let TA be a TM that satisfies C5 and

C6. Then TC �STMS TA ⇒ TC �OP TA.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:24 H. Attiya et al.

Proof. Take H ∈ TC . Since TC satisfies C4, there exists a history HH ′ ∈ TC , which extends
H with a sequence of response actions such that every request action in HH ′ has a matching
response. TC also satisfies C3, and thus there exists a complete history HH ′H ′′ ∈ TC such that
H ′′ contains a txabort action for every live transaction in HH ′. As TC satisfies C4, there exists a
history H c = HH ′H ′′H ′′′ ∈ TC such that H ′′′ aborts all abort-pending transactions introduced by
H ′′. In particular, H c is a complete history.

Since TC �STMS TA, we get H c �STMS TA. Because H c is a complete history, Lemma 5.13 ensures
that for some history Sc ∈ TA we have H c �RT Sc . Let S be the history produced by removing all
actions in Sc added to H while completing it to H c : S = Sc |¬H ′H ′′H ′′′ . Note that S ∈ TA because
Sc ∈ TA and TA satisfies C6 and C5. Thus, by Proposition 5.9, we get H �RT S , which implies the
required. �

5.4 Statements of the Main Results

Assuming certain closure properties on abstract TMs, we establish that the STMS relation is equiv-
alent to observational refinement under the semantics without rollback and the TMS relation is
equivalent to observational refinement under the semantics with rollback.

Theorem 5.15. Let TC and TA be TMs:

(i) TC �STMS TA =⇒ TC �noRB TA.

(ii) If TA satisfies C1 and C2, then TC �noRB TA =⇒ TC �STMS TA.

Theorem 5.16. Let TC and TA be TMs:

(i) If TA satisfies C7, then TC �TMS TA =⇒ TC �RB TA.

(ii) If TA satisfies C1 and C2, then TC �RB TA =⇒ TC �TMS TA.

The closure property C7 in Theorem 5.16 is a technical requirement, allowing us to add empty
aborted transactions to histories of an abstract TM. Constraint (6) is needed so that this operation
transforms noninterleaved histories into noninterleaved ones, and the closure property can be
satisfied by Tatomic (Section 3.1).

As part of proving the preceding theorems, we also prove the next result, showing that the
opacity relation is sufficient for observational refinement without assuming any closure properties
on TMs.

Theorem 5.17. ∀X ∈ {RB, noRB}. TC �OP TA ⇒ TC �X TA.

6 SUFFICIENCY PROOFS

In this section, we prove Theorems 5.15(i) and 5.16(i). Let us fix a program P and a state s . To prove
the theorems, we need to transform a trace τ ∈ [[P]]X (s) with a historyH ∈ TC into an observation-
ally equivalent trace τ ′ ∈ [[P]]X (s) with a history S ∈ TA. This transformation is done differently
depending on whether τ contains a fault inside a live transaction or not, and these cases respec-
tively exploit the two clauses in Definitions 5.6 and 5.8. We start by presenting the key lemmas
used in the two transformations (Sections 6.1 and 6.2).

6.1 Sufficiency of the Opacity Relation

Consider the following notion of trace equivalence, strengthening the one in Definition 4.1.

Definition 6.1. Well-formed traces τ and τ ′ are strongly equivalent, denoted τ ≈ τ ′, if

(τ |¬trans = τ
′ |¬trans) ∧ (∀t ∈ ThreadID. τ |t = τ ′ |t).

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:25

The following lemma (holding for any X ∈ {RB, noRB}) is key in the trace transformation using
Definitions 5.6(i) and 5.8(i), which match histories using the real-time order relation. It shows that
a trace τH ∈ [[P]]X (s) with a history H can be transformed into a strongly equivalent trace τS with
a given history S ∈ [[P]]X (s) such that H �RT S .

Lemma 6.2.

∀P .∀s .∀H , S ∈ WfHistory.H �RT S ⇒
(∀τH ∈ [[P]]X (s). history(τH) = H ⇒ ∃τS ∈ [[P]]X (s). history(τS) = S ∧ τH ≈ τS).

Before proving the lemma, we note some of its consequences. Let us formulate a notion of
observational refinement between TMs induced by the trace equivalence in Definition 6.1.

Definition 6.3. Given X ∈ {RB, noRB}, we let TC ≤X TA if

∀P .∀s .∀τ ∈ [[P ,TC]]X (s). ∃τ ′ ∈ [[P ,TA]]X (s). τ ′ ≈ τ .

Then Lemma 6.2 implies the following theorem, showing that the opacity relation is sufficient for
this notion of observational refinement.

Theorem 6.4. ∀X ∈ {RB, noRB}. TC �OP TA ⇒ TC ≤X TA.

Since strong equivalence (Definition 6.1) implies observational equivalence (Definition 4.1), The-
orem 5.17 is a straightforward corollary of Theorem 6.4. Strong equivalence of Definition 6.1 re-
quires preserving not only nontransactional actions and faults but also the behavior of all live
transactions in the trace, whether faulting or not. Since at most one live transaction may fault in a
trace, and we assume that input-output actions are nontransactional, strong equivalence thus pre-
serves aspects of program behavior that are unobservable to the program user in practice. Hence,
even though we use strong equivalence in intermediate results, our final goal is establishing a
link between TM consistency conditions and observational refinement between TMs based on the
weaker Definition 4.1 (we discuss this further in Section 8).

We now proceed to prove Lemma 6.2. The next lemma gives the key step in this proof; unlike
Lemma 6.2, it transforms arbitrary traces, not necessarily those produced by P .

Lemma 6.5 (Rearrangement).

∀H , S ∈ WfHistory.H �RT S ⇒
(∀τH ∈ WfTraces. history(τH) = H ⇒ ∃τS ∈ WfTraces. history(τS) = S ∧ τH ≈ τS).

Proof. ConsiderH , S ∈ WfHistory and τH ∈ WfTraces such thatH �RT S and history(τH) = H .
Note that |H | = |S |. To obtain the desired trace τS , we inductively construct a sequence of traces
τ i ∈ WfTraces, i = 0..|S | with histories H i = history(τ i) ∈ WfHistory such that

H i�i = S�i ; H i �RT S ; τH ≈ τ i . (7)

We then let τS = τ
|S | so that τH ≈ τ |S | and

history(τ |S |) = H |S | = H |S |� |S | = S� |S | = S,

as required. Note that the condition H i �RT S in (7) is not used to establish the required properties
of τS ; we add it so that the induction goes through.

We start the construction of the sequence of traces τ i with τ 0 = τH so that H 0 = H and all
requirements in (7) hold trivially. Assume that a trace τ i ∈ WfTraces satisfying (7) has been con-
structed. We show that there is a history H i+1 ∈ WfHistory and a trace τ i+1 ∈ WfTraces such that

history(τ i+1) = H i+1; H i+1�i+1 = S�i+1 ; H i+1 �RT S ; τ i ≈ τ i+1.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:26 H. Attiya et al.

Fig. 13. Illustration of the transformations performed in the proof of Lemma 6.5.

Let S = S1ψS2, where |S1 | = i . By (7), history(τ i)�i = H i�i = S�i = S1. Thus, for some traces τ1

and τ2, we have τ i = τ1τ2, where τ1 is the minimal prefix of τ i such that history(τ1) = S1 (see
Figure 13(a)). We also have H i �RT S , and hence S is a permutation of H i preserving the real-time
order (Definition 5.2). Since history(τ1) = S1 and history(τ i) = S1ψS2, for some traces τ3 and τ4,
we have

τ2 = τ3ψτ4, τ i = τ1τ2 = τ1τ3ψτ4.

Let ψ = (_, t , _). We note that since �RT preserves the order of actions by the same thread and
history(τ1) = S1, we have history(τ3 |t) = ε . We consider two cases, depending on whether ψ =
(_, t , txbegin) or not.

Case I: ψ � (_, t , txbegin). Let τ i+1 = τ1 (τ3 |t)ψ (τ3 |¬t
) τ4 and H i+1 = history(τ i+1) (see

Figure 13(b)). Intuitively, τ i+1 is obtained from τ i = τ1τ3ψτ4 by moving all actions in τ3 performed
by thread t , together withψ , to the position right after τ1.

Since history(τ1) = S1, history(τ3 |t) = ε, and |S1 | = i , we get

H i+1�i+1 = (history(τ1 (τ3 |t)ψ (τ3 |¬t
) τ4))�i+1 = S1ψ = S�i+1 ,

as required. We also have

τ i+1 |t = (τ1 (τ3 |t)ψ (τ3 |¬t
) τ4) |t = (τ1 |t) (τ3 |t)ψ (τ4 |t) = (τ1τ3ψτ4) |t = τ i |t ;

τ i+1 |¬t = (τ1 (τ3 |t)ψ (τ3 |¬t
) τ4) |¬t = (τ1 |¬t) (τ3 |¬t

) (τ4 |¬t) = (τ1τ3ψτ4) |¬t = τ
i |¬t .

Hence, for any thread t ′, we have τ i |t ′ = τ i+1 |t ′ and H i+1 |t ′ = H i |t ′ = S |t ′ . If a committed or an
aborted action precedes a txbegin action in H i+1, but not in H i , then the precedence also holds in
S . Thus, H i+1 �RT S .

Sinceψ � (_, t , txbegin) and history(τ3 |t) = ε , all actions performed by t in the subtrace τ3 of τ i

are transactional. Hence,

τ i+1 |¬trans = (τ1 (τ3 |t)ψ (τ3 |¬t
) τ4) |¬trans = (τ1τ3ψτ4) |¬trans = τ

i |¬trans,

and therefore τ i ≈ τ i+1.
Case II: ψ = (_, t , txbegin). Assume that the subtrace τ3 of τ i contains a committed or aborted

actionψ ′. Since history(τ1) = S1, the actionψ ′ would be in S2. This would mean that the real-time
order between ψ ′ and ψ in H i is not preserved in S , contradicting our assumption that H i �RT S .
Thus, for any thread t ′ � t , τ3 |t ′ consists of some number of nontransactional actions followed by
some number of transactional ones, and τ3 |t does not contain any transactional actions. Motivated
by these observations, we let

τ i+1 = τ1 (τ3 |¬trans)ψ (τ3 |trans) τ4

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:27

and H i+1 = history(τ i+1) (see Figure 13(c)). Intuitively, τ i+1 is obtained from τ i = τ1τ3ψτ4 by mov-
ing all transactional actions in τ3 to the position right before τ4.

Since history(τ1) = S1, history(τ3 |¬trans) = ε, and |S1 | = i , we get

H i+1�i+1 = (history(τ1 (τ3 |¬trans)ψ (τ3 |trans) τ4))�i+1 = S1ψ = S�i+1 ,

as required.
Since for every thread t ′ � t , τ3 |t ′ consists of nontransactional actions followed by transactional

ones,

((τ3 |¬trans)ψ (τ3 |trans)) |t ′ = (τ3ψ) |t ′ .
Since τ3 |t does not contain any transactional actions, τ3 |t = (τ3 |¬trans) |t , and hence

((τ3 |¬trans)ψ (τ3 |trans)) |t = (τ3ψ) |t .

Thus, for any t ′′, we have

τ i+1 |t ′′ = (τ1 (τ3 |¬trans)ψ (τ3 |trans) τ4) |t ′′ = (τ1τ3ψτ4) |t ′′ = τ i |t ′′,

and H i+1 |t ′′ = H i |t ′′ = S |t ′′ . If a committed or an aborted action precedes a txbegin action in H i+1,
then it also does in H i . Hence, H i+1 �RT S . Finally,

τ i+1 |¬trans = (τ1 (τ3 |¬trans)ψ (τ3 |trans) τ4) |¬trans = (τ1τ3ψτ4) |¬trans = τ
i |¬trans,

and hence τ i ≈ τ i+1. �

We also need the following lemma, which states that if two traces are strongly equivalent, then
one of the traces is valid if the other is as well. The proof of the lemma relies on the restrictions
on accesses to variables in Definition 3.2.

Lemma 6.6.

∀τH ,τS ∈ WfTraces.∀s . τH ≈ τS ∧ evalX (s,τH) � ∅ ⇒ evalX (s,τH) = evalX (s,τS).

Proof. The proof goes by case analysis depending on whether τH contains a fault action or
not.

Case I. Let us assume first that τH , and hence τS , does not contain a fault action. We inductively
construct a sequence of traces τ i ∈ WfTraces, i = 0..|τS | such that

τ i�i = τS �i ; τ i ≈ τS ; evalX (s,τ i) = evalX (s,τH) � ∅. (8)

Then for i = |τS |, we get τ i = τS , which implies the required result.
To construct the sequence of traces τ i , we let τ 0 = τH so that all requirements in (8) hold trivially.

Assume now that a trace τ i satisfying (8) has been constructed. Let τS = τ1φτ2, where |τ1 | = i , and
φ = (_, t , _). By assumption, τ i�i = τS �i and τ i ≈ τS so that τ i |t = τS |t . Hence, for some traces τ ′2
and τ ′′2 , we get τ i = τ1τ

′
2φτ

′′
2 ,where τ ′2 does not contain any actions by thread t . Let τ i+1 = τ1φτ

′
2τ
′′
2 ;

then τ i+1�i+1 = τS �i+1.
We now show τ i+1 ≈ τ i . Note that τ i |t ′ = τ i+1 |t ′ for any thread t ′, as τ ′2 does not contain any

actions by thread t . Because τ i ≈ τS , we have τ i |¬trans = τS |¬trans. We also have τ i = τ1τ
′
2φτ

′′
2 and

τS = τ1φτ2. Then if φ is nontransactional, then τ ′2 cannot contain any nontransactional actions.

Hence, τ i+1 |¬trans = τ
i |¬trans, and thus τ i+1 ≈ τ i .

We next show evalX (s,τ i+1) = evalX (s,τ i), which completes the proof of this case. The restric-
tions on accesses to variables by commands from LPcommt and GPcommt (stated in Section 2 and
formalized in Section 4) imply the following.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:28 H. Attiya et al.

Proposition 6.7. Assume that χ1 = (_, t1, c1) and χ2 = (_, t2, c2) are actions by different threads

and

(c1 ∈ LPcommt1 ∧ c2 ∈ LPcommt2 � GPcommt2) ∨
(c1 ∈ LPcommt1 � GPcommt1 ∧ c2 ∈ LPcommt2).

Then evalX (s, χ1χ2) = evalX (s, χ2χ1) for any state s .

Since τ i is well formed, by Definition 3.2, for any action (_, t ′, c) in it, we have that c ∈
LPcommt ′ � GPcommt ′ , and if c ∈ GPcommt ′ , then the action is nontransactional. Given this and
the properties of τ ′2 established previously, by applying Proposition 6.7 repeatedly, we get that
evalX (s ′,φτ ′2) = evalX (s ′,τ ′2φ) for any state s ′. Hence,

evalX (s,τ i+1) = evalX (s,τ1φτ
′
2τ
′′
2) = evalX (s,τ1τ

′
2φτ

′′
2) = evalX (s,τ i).

Case II. We now consider the case when τH = τ
′
H (_, t , fault). By assumption, τH ≈ τS . Hence,

τH |t = τS |t , and because τS is well formed, τS = τ
′
S (_, t , fault) and neither τ ′H nor τ ′S contains a

fault. Then τ ′H ≈ τ
′
S . By assumption, we also have evalX (s,τH) � ∅, and hence evalX (s,τ ′H) � ∅ and

evalX (s,τH) = fault. Applying Case I, we get evalX (s,τ ′S) = evalX (s,τ ′H) � ∅. By the definition of
evalX, this implies evalX (s,τS) = � = evalX (s,τH). �

Proof of Lemma 6.2. Let P = C1 ‖ . . . ‖ Cm . Consider s and H , S ∈ WfHistory and τH ∈
[[P]]X (s) such that history(τH) = H . By Lemma 6.5, there exists τS ∈ WfTraces such that
history(τS) = S and τH ≈ τS . It remains to show that τS ∈ [[P]]X (s).

Since τH ∈ [[P]]X (s), for some τ ′, we have τHτ
′ ∈ Tr′(P). This implies (τHτ

′) |t ∈ Tr′t (Ct) for any
thread t . Since τH ≈ τS , we have τS |t = τH |t , and so (τSτ

′) |t ∈ Tr′t (Ct). Then by the definition of
Tr(P) in Figure 4, we get τS ∈ Tr(P).

Since τH ∈ [[P]]X (s), we also have evalX (s,τH) � ∅. Together with τH ≈ τS , by Lemma 6.6, this
implies evalX (s,τS) � ∅. But we have also established τS ∈ Tr(P) so that τS ∈ [[P]]X (s). �

6.2 The Live Transaction Insensitivity Lemma

As part of the sufficiency proofs, we need to transform a trace τ ∈ [[P]]X (s) with a history H ∈ TC
into an observationally equivalent trace τ ′ ∈ [[P]]X (s) with a history S ∈ TA. The previous section
dealt with the case when H and S are related as in part (i) of Definitions 5.6 and 5.8. We now deal
with the other case, whenH and S are related as in part (ii). The main subtlety of this case lies in the
fact that part (ii) allows justifying the behavior of a live transaction inH by a history S that contains
only a subset of transactions inH , with the committed/aborted status of some of these transactions
changed; this is formalized by the use of cSTMSpast and cTMSpast in Definitions 5.6(ii) and 5.8(ii),
respectively. The subtle connection between H and S makes it challenging to show that a fault
inside a live transaction of τ can be reproduced in τ ′, as required by Definition 4.1(ii).

The following lemma describes the first and foremost step of this transformation: given a trace
τ ∈ [[P]]X (s) with a live transaction and a history H c

ψ
∈ cSTMSpast(history(τ)), the lemma con-

verts τ into another trace from [[P]]X (s) that contains the same live transaction but whose history
is H c

ψ
. In other words, this establishes that the live transaction cannot notice changes to the set

of transactions done by applying cSTMSpast. The lemma holds for both X = RB and X = noRB,
and even though the lemma deals only with cSTMSpast, it is used in the proofs of both sufficiency
results.

Lemma 6.8 (Live Transaction Insensitivity). Let τ = τ1ψτ2 ∈ [[P]]X (s) be a trace such that ψ
is a response action by thread t0 that is not a committed or aborted action and τ2 is a sequence of

primitive actions by thread t0. For any H c
ψ
∈ cSTMSpast(history(τ)) such that the action identifiers

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:29

in H c
ψ
|¬history(τ) do not appear in τ , there exists τψ ∈ [[P]]X (s) such that history(τψ) = H c

ψ
and τψ |t0 =

τ |t0 .

Proof. We first show how to construct τψ and then prove that it satisfies the required proper-
ties. We illustrate the idea of its construction using the trace τ in Figure 6. Let history(τ) = H1ψ .
Since H c

ψ
∈ cSTMSpast(H), by Definition 5.5 there exist histories H ′1 and H ′′1 such that

H ′1ψ ∈ STMSpast(H1ψ) ∧ H ′′1 = maxcom(H ′1) ∧ H c
ψ ∈ cendcomplete(H ′′1 ψ).

In the following, we use H cc to denote the subsequence of H c
ψ

comprised of the committed actions

that were inserted into H ′′1 ψ to obtain H c
ψ

(i.e., H cc = H c
ψ
|¬H ′′1 ψ).

Recall that for the τ in Figure 6, one possible H ′1ψ consists of the transactions T1, T3, T4, and T5.
Then H ′′1 is obtained from H ′1 by changing the last action ofT4 to committed if it was aborted; H c

ψ

is obtained by completingT4 with a committed action if it was commit-pending. The trickiness of
the proof comes from the fact that just mirroring these transformations on τ may not yield a trace
of the program P : for example, if T4 aborted, the code in thread t2 following T4 may rely on this
fact, communicated to it by the TM via a local variable. Fortunately, we show that it is possible to
construct the required trace by erasing certain suffixes of every thread and therefore getting rid
of the actions that could be sensitive to the changes of transaction status, such as those following
T4. This erasure has to be performed carefully, as threads can communicate via global variables:
for example, the value written by the assignment to д′ in the code following T4 may later be read
by t1, and hence when erasing the former, the latter action has to be erased as well.

We now explain how to truncate τ consistently. Let ψb be the last txbegin action in H ′1ψ ; then

for some traces τb
1 and τb

2 , we have τ = τb
1ψ

bτb
2ψτ2. For the trace τ in Figure 6, ψb is the txbegin

action ofT4. Our idea is, for every thread other than t0, to erase all of its actions that follow the last
of its transactions included into H ′1ψ or its last nontransactional action preceding ψb , whichever
is later.

Formally, for every thread t , let τ I
t denote the prefix of τ |t that ends with the last TM interface

action of t in H ′1ψ , or ε if no such action exists. For example, in Figure 6, τ I
t1

and τ I
t2

end with the

last TM interface actions of T1 and T4, respectively. Similarly, let τN
t denote the prefix of τ |t that

ends with the last nontransactional action of t in τb
1 , or ε if no such action exists. For example, in

Figure 6, τN
t1

and τN
t2

respectively end with the actions χ1 and χ2, directly precedingT2 and T4. Let

τt0 = τ |t0 , and for each t � t0, let τt be the longer of the traces τN
t and τ I

t —i.e., τ I
t , if |τN

t | < |τ I
t |,

and τN
t , otherwise. We define the truncated trace τ ′ as the subsequence of τ such that τ ′ |t = τt for

each t . Thus, for the τ in Figure 6, in the corresponding trace τ ′, the actions of t1 end with χ1 and
those of t2 with the last action of T4; note that this erases both operations on д′. The proof now
proceeds in several stages.

Stage I: history(τ ′) = H ′1ψ . By the choice of τ I
t for t � t0, every transaction in (H ′1ψ) |t is also in

τ I
t . In addition, τ ′ |t0 = τt0 . Hence, H ′1ψ is a subsequence of history(τ ′). We now show that every

transaction in history(τ ′) is in H ′1ψ . We consider three cases, depending on the thread t that the
transaction is by:

—t = t0. Let T = txof (ψ ,H1ψ) ∈ H ′1ψ . Then by Definition 5.3(iii), we get

∀T ′.T ′ ≺H ′1ψ T ⇐⇒ T ′ ≺H1ψ T . (9)

Since any transaction T ′ in history(τ ′|t0) = history(τ |t0) is either T or is such that
T ′ ≺(H1ψ) |t0

T , (9) implies the required.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:30 H. Attiya et al.

Fig. 14. Cases in the proof of Lemma 6.8. ∗, all actions by t are transactional; ∗∗, all actions by t come from

a single transaction, started before or byψb .

—t � t0 is such that τ ′ |t = τ I
t � ε . Letψ I

t be the last action in τ I
t , and letT = txof (ψ I

t ,H1ψ). By
the choice of τ I

t , we haveT ∈ H ′1ψ ; then by Definition 5.3(iii), we get (9). Since any transac-
tion T ′ in history(τ ′ |t) is either T or is such that T ′ ≺(H1ψ) |t T , (9) implies the required.

—t � t0 is such that τ ′ |t = τN
t � ε . Let χN

t be the last action in τN
t , and letT = txof (ψb ,H1ψ) ∈

H ′1ψ . Then by Definition 5.3(iii), we get (9). Since χN
t comes beforeψb in H1ψ , any transac-

tion T ′ in τ ′ |t is such that T ′ ≺H1ψ T , which together with (9) implies the required.

This shows that history(τ ′) = H ′1ψ .
Stage II: Constructing τψ such that history(τψ) = H c

ψ
and τψ |t0 = τ |t0 . To construct τψ from τ ′,

we mirror the transformations of H ′1 into H ′′1 and H c
ψ

. Let τ ′′ be defined by |τ ′′ | = |τ ′ | and

τ ′′(i) = (if (τ ′(i) = (a, t , aborted) ∧ txof (τ ′(i), history(τ ′)) ∈ maxtx(history(τ ′)))

then (a, t , committed) else τ ′(i)).

Then history(τ ′′) = H ′′1 ψ . Given this and Definition 5.3(iv), which ensures that any maximal
aborted transaction in H ′′1 ψ is visible, it is easy to see that τ ′′ is well formed. We now construct
τψ from τ ′′ similarly to how H c

ψ
is constructed from H ′′1 ψ , by inserting actions in H cc so that

history(τψ) = H c
ψ

. Since the action identifiers in H c
ψ
|¬history(τ) do not appear in τ , the trace τψ is

well formed.
Finally, we have τψ |t0 = τ |t0 , because τ ′ |t0 = τ |t0 ; any aborted transaction in history(τ |t0) pre-

cedes the live transaction txof (ψ ,H1ψ) in the real-time order and hence is not maximal; and H cc

does not contain any action by t0.
Stage III: τ ′ ∈ [[P]]X (s). We start by analyzing how the trace τ |t is truncated to τt for every

thread t � t0. Let us make a case split on the relative positions of τN
t , τ I

t , and ψb in τ . There are

three cases, shown in Figure 14. Either τt = τ
N
t (a, thread t1 in Figure 6) or τt = τ

I
t (b, c). If τt = τ

N
t ,

then ψb has to come in τ after the end of τN
t . If τt = τ

I
t , then either ψb comes after the end of τ I

t

(b) orψb is the last action of τ I
t or precedes this action (c, thread t2 in Figure 6).

By the choice of τN
t , in (a) and (b) the fragment of τ in between the end of τN

t andψb can contain

only those actions by t that are transactional (T2 in Figure 6). By the choice of τ I
t and ψb , in (c)

the fragment of τ in between ψb and the end of τ I
t cannot contain a txbegin action by t ; hence, it

can contain only those actions by t that are transactional. Furthermore, these have to come from
a single transaction, started either by ψb or before it (T4 in Figure 6). Finally, by the choice of ψb ,
the actions of t0 following ψb are transactional and come from the transaction of ψ , also started
either byψb or before it (T5 in Figure 6).

Given the aforementioned analysis and the fact that τ ′ |t0 = τ |t0 , the transformation from τ to

τ ′ can be viewed as a sequence of two: (i) erase all actions following ψb , except those in some of
transactions that were already ongoing at this time; (ii) erase some suffixes of threads containing
only transactional actions. Since transactional actions do not access global variables, according

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:31

to the semantics of Section 4, they are not affected by the actions of other threads. Furthermore,
[[P]]X (s) includes incomplete program computations. This allows us to conclude that τ ′ ∈ [[P]]X (s).

Stage IV: τψ ∈ [[P]]X (s). Consider a transaction T by a thread t whose status is changed
when switching from τ ′ to τ ′′. Then t � t0 and T must be the last transaction in τ ′t . We again

consider cases (a) through (c). In case (a), we have history(T) ≺H ′1ψ txof (ψb ,H ′1ψ). Hence, the

status of T is not changed when switching from τ ′ to τ ′′. In cases (b) and (c), T does not have
any nontransactional actions following it. Since τ ′′ is well formed, T is also visible. Since the
definition of [[P]]X (s) allows committing or aborting transactions arbitrarily, we conclude that
τ ′′ ∈ [[P]]X (s). For the same reason, we get τψ ∈ [[P]]X (s). �

6.3 Proof of Theorem 5.15(i): Sufficiency of the STMS Relation

Assume TC �STMS TA. Consider τ ∈ [[P ,TC]]noRB (s), and let H = history(τ).
Assume first that τ does not contain a fault action inside a live transaction. Since TC �STMS

TA, there exist H ′ ∈ rempending(H |¬live), H c ∈ cendcomplete(H ′) and S ∈ TA such that H c �RT S .
Then H c is obtained from H ′ by inserting some number of committed actions. Since TA is closed
under renaming action identifiers, we can assume that the identifiers of the committed actions do
not occur in τ . Let τ0 be a trace obtained from τ in the same way as H c is obtained from H : by
discarding abort-pending and live transactions and the same set of commit-pending transactions,
while inserting the same committed actions, so that history(τ c) = H c . It is easy to see that τ c ∈
[[P]]noRB (s). In addition, τ c |¬trans = τ |¬trans. Since τ c ∈ [[P]]noRB (s) and H c �RT S , by Lemma 6.2
there exists τ ′ ∈ [[P]]noRB (s) such that history(τ ′) = S and τ c ≈ τ ′, which implies that τ ′ |¬trans =

τ c |¬trans = τ |¬trans and τ ′ does not contain a fault. Hence, τ ′ ∈ [[P ,TA]]noRB (s) and τ ∼ τ ′.
Now assume that τ contains a fault action inside a live transaction. Let τ = τ1ψτ2χ , where

χ = (_, t0, fault) is transactional and ψ is the last TM interface action by thread t0. Then τ2 |t0

consists of transactional actions and thus does not contain accesses to global variables. Let τ3 =

τ1ψ (τ2 |t0) χ ; then τ3 ∈ [[P ,TC]]noRB (s). By our assumption, TC �STMS TA. Then there exists H c
ψ
∈

cSTMSpast(history(τ3)) and S ∈ TA such that H c
ψ
�RT S . By Lemma 6.8, for some τ4 we have τ4 ∈

[[P]]noRB (s), history(τ4) = H c
ψ

, andτ4 |t0 = τ3 |t0 = _χ . By Lemma 6.2, there exists τ5 ∈ [[P ,TA]]noRB (s)

such that τ4 ≈ τ5 and hence τ5 = _χ and τ ∼ τ5.

6.4 Proof of Theorem 5.16(i): Sufficiency of the TMS Relation

To prove Theorem 5.16(i), we cannot straightforwardly apply Lemma 6.2: Definition 5.8(i) matches
only histories of committed transactions, but the histories of traces produced by the program P in
Lemma 6.2 also contain aborted transactions. Fortunately, the following Lemma 6.10 allows us to
add empty aborted transactions into the abstract history while preserving the real-time order of
all actions. Furthermore, the following proposition shows that under the semantics with rollback,
the set of traces produced by a program is closed under making all aborted transactions empty.

Proposition 6.9. ∀τ . τ ∈ [[P]]RB (s) ⇒ τ |¬abortact ∈ [[P]]RB (s).

We call a history Ha an immediate abort extension of H if Ha ∈ addoneab(H) (see C7 in Figure 8)
or there exists an immediate abort extension H ′ of H such that Ha ∈ addoneab(H ′). We denote
the set of all immediate abort extensions of H by addab(H).

Lemma 6.10. Let H , S ∈ WfHistory be such that H |¬abortact = H and H |¬aborted �RT S . There exists

S ′ ∈ WfHistory such that S ′ ∈ addab(S) and H �RT S ′.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:32 H. Attiya et al.

Proof. Let n be the number of aborted transactions in H . To construct the desired S ′, we in-
ductively construct a sequence of histories Si , i = 0..n such that

Si ∈ WfHistory; |aborted(Si) | = i; Si ∈ addab(S);

{ψ | ψ ∈ H |¬aborted} ⊆ {ψ | ψ ∈ Si } ⊆ {ψ | ψ ∈ H };
∀ψ1,ψ2 ∈ Si .ψ1 ≺H ψ2 ⇒ ψ1 ≺Si

ψ2.

(10)

We then let S ′ = Sn so that H �RT S ′.
For i = 0, we take S0 = S , and all requirements in (10) hold vacuously. Assume that a history

Si satisfying (10) was constructed; we get Si+1 from Si by the following construction. Let H =
H1ψbH2ψaH3, whereψb = (_, t , txbegin),ψa = (_, t , aborted),ψb � Si , H2 |t = ε and

¬∃ψ ′.ψ ′ = (_, _, txbegin) ∈ H1 ∧ txof (ψ ′,H) ∈ aborted(H) ∧ψ ′ � Si .

In other words, out of all aborted transactions in H that are not in Si , ψbψa is the one with the
earliest txbegin.

If H1 does not contain a committed or an aborted action, we let Si+1 = ψbψaSi . Then Si+1 ∈
WfHistory. We only need to show that for anyψ ′ ∈ Si , we haveψ ′ ≺H ψb ⇒ ψ ′ ≺Si+1 ψb andψa ≺H

ψ ′ ⇒ ψa ≺Si+1 ψ
′. The latter holds by the construction of Si+1. To show the former, observe that

since H1 does not contain a committed or aborted action, it cannot contain actions by thread t .
Hence, we cannot haveψ ′ ≺H ψb for anyψ ′.

The rest of the proof deals with the case whenH1 contains a committed or an aborted action. Let
ψ be the last committed or aborted action in Si that is also in H1, and let Si = S ′ψS ′′. We then let
Si+1 = S ′ψψbψaS

′′. We again need to show that for any ψ ′ ∈ Si we have ψ ′ ≺H ψb ⇒ ψ ′ ≺Si+1 ψb

andψa ≺H ψ ′ ⇒ ψa ≺Si+1 ψ
′.

Assumeψ ′ ≺H ψb for someψ ′ ∈ Si ; thenψ ′ ∈ H1. By the choice ofψb andψa , all committed and
aborted actions in H1 are in Si , and by the choice of ψ , all such actions are in S ′ψ . Hence, if ψ ′ is
a committed or an aborted action, then ψ ′ ∈ S ′ψ , and hence ψ ′ ≺Si+1 ψb . If ψ ′ is by thread t , then
it is either a committed or an aborted action (and henceψ ′ ≺Si+1 ψb) or it precedes such an action
ψ ′′ ∈ Si by t in H1:ψ ′ ≺H1 ψ

′′. Thenψ ′ ≺Si+1 ψ
′′ andψ ′′ ≺Si+1 ψb , which impliesψ ′ ≺Si+1 ψb .

Now assume ψa ≺H ψ ′ for some ψ ′ ∈ Si ; then ψ ′ ∈ H3. If ψ ′ is a txbegin action, then ψ ≺H ψ ′.
Hence, ψ ≺Si

ψ ′ (i.e., ψ ′ ∈ S ′′), which implies ψa ≺Si+1 ψ
′. If ψ ′ is by thread t , then it is either

a txbegin action (and hence ψa ≺Si+1 ψ
′) or it follows such an action ψ ′′ ∈ Si by thread t in H3:

ψ ′′ ≺H3 ψ
′. Thenψ ′′ ≺Si+1 ψ

′ andψa ≺Si+1 ψ
′′, which impliesψa ≺Si+1 ψ

′.
Finally, it is easy to show that H1 |t = (S ′ψ) |t , which implies that Si+1 ∈ WfHistory. �

Proof of Theorem 5.16(i). The proof is similar to that of Theorem 5.15(i). Assume TC �TMS TA.
Consider τ ∈ [[P ,TC]]RB (s), and let H = history(τ).

Assume first that τ does not contain a fault action inside a live transaction. Since
TC �TMS TA, there exist H ′ ∈ rempending(H |¬live), H c ∈ cendcomplete(H ′), and S ∈ TA such that
H c |¬aborted �RT S . Then H c is obtained from H ′ |¬live by inserting some number of committed ac-
tions. Without loss of generality, we can assume that the identifiers of these actions do not occur in
τ . Let τ0 be a trace obtained from τ in the same way as H c is obtained from H so that history(τ c) =
H c . It is easy to see that τ c ∈ [[P]]RB (s). Additionally, τ c |¬trans = τ |¬trans. Let τna = τ c |¬abortact.
By Proposition 6.9, we get τna ∈ [[P]]RB (s). Since (H c |¬abortact) |¬aborted = H c |¬aborted �RT S , by
Lemma 6.10, for some history S ′ we have H c |¬abortact �RT S ′ and S ′ ∈ addab(S). Since S ∈ TA and
TA satisfies C7, we have S ′ ∈ TA. We have τna ∈ [[P]]RB (s) and history(τna) = H c |¬abortact; hence,
by Lemma 6.2, there exists a trace τ ′ ∈ [[P]]RB (s) such that history(τ ′) = S ′ ∈ TA and τna ≈ τ ′,
which implies that

τ ′ |¬trans = τ
na |¬trans = τ

c |¬trans = τ |¬trans

and τ ′ does not contain a fault. Hence, τ ′ ∈ [[P ,TA]]RB (s) and τ ∼ τ ′.
Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:33

Now assume that τ contains a fault action inside a live transaction. Let τ = τ1ψτ2χ , where
χ = (_, t0, fault) is transactional and ψ is the last TM interface action by thread t0. Then
τ2 |t0 consists of transactional actions and thus does not contain accesses to global variables.
Let τ3 = τ1ψ (τ2 |t0) χ ; then τ3 ∈ [[P ,TC]]RB (s). By our assumption, TC �TMS TA. Then there ex-
ists H c

ψ
∈ cTMSpast(history(τ3)) and S ∈ TA such that H c

ψ
�RT S . By Definition 5.7, there exists

a history H ′
ψ
∈ cSTMSpast(history(τ3)) such that H c

ψ
= H ′

ψ
|¬aborted. By Lemma 6.8, for some τ4,

we have τ4 ∈ [[P]]RB (s), history(τ4) = H ′
ψ

, and τ4 |t0 = τ3 |t0 = _χ . By Proposition 6.9, τ4 |¬abortact ∈
[[P]]RB (s). Using Lemma 6.10, we get S ′ ∈ WfHistory such that history(τ4 |¬abortact) �RT S ′ and
S ′ ∈ addab(S). Since S ∈ TA and TA satisfies C7, we get S ′ ∈ TA. Hence, by Lemma 6.2, there exists
τ5 ∈ [[P ,TA]]RB (s) such that τ4 ≈ τ5, and hence τ5 = _χ and τ ∼ τ ′. �

7 NECESSITY PROOFS

7.1 Proof of Theorem 5.15(ii): Necessity of the STMS Relation

Theorem 5.15(ii) follows from Lemmas 7.1 and 7.2, stated and proved in the following. The former
establishes the conditions in Definition 5.6(i), and the latter establishes the conditions in Defini-
tion 5.6(ii).

Lemma 7.1. Let TC and TA be TMs such that TC �noRB TA and TA satisfies C1 and C2. The following

holds:

∀H ∈ TC . ∃H ′ ∈ rempending(H |¬live). ∃H c ∈ cendcomplete(H ′). ∃S ∈ TA.H c �RT S . (11)

Proof. The proof works in several stages, and this structure is common to all lemmas in our
proofs of necessity:

I. For every history H ∈ TC , we construct a particular program PH . Threads in PH perform
the sequence of transactions specified by H , record the return values that they obtain
from the TM, and monitor whether the real-time order between actions includes the one
in H . Crucially, if the TM behavior in an execution of PH deviates significantly from H ,
then the program does not perform certain nontransactional actions that it would perform
otherwise.

II. As we show, the program PH is such that for some state s and trace τ ∈ [[PH]]noRB (s)
without a fault, we have history(τ) = H .

III. Since H ∈ TC and TC �noRB TA, we get that there exists a trace τ ′ ∈ [[PH ,TA]]noRB (s) such
that τ ∼ τ ′. Since τ does not contain a fault, Definition 4.1 implies τ ′ |¬trans = τ |¬trans. Let
S1 = history(τ ′) ∈ TA. From τ ′ |¬trans = τ |¬trans and the structure of PH , we infer a certain
correspondence between the histories H and S1: these histories cannot be too far apart.

IV. The correspondence between H and S1 allows us to transform these into histories H c and
S required by (11), with the transformations on S1 justified using the closure properties
C1 and C2.

Stage I: Constructing PH . Consider a history H ∈ TC . We define the program PH in Figure 15
using the auxiliary notation in Figure 16. For reference, Figure 17 lists the variables used in PH

and their intended meaning. Given that the history H is well formed, we construct the command
Ct executed by every thread t in PH as a sequence of atomic blocks, corresponding to txbegin,
txcommit, txabort, committed, and aborted actions in H |t . These blocks perform the sequence of
method invocations determined by call and ret actions in H |t . In more detail, the command Ct is
comprised of a sequence of commands Ct

i each constructed according to the i-th transaction of t
in H .

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:34 H. Attiya et al.

Fig. 15. The construction of PH . For conciseness, we use an extension of the programming language with
conditionals without an “else” clause. The loop command is a syntactic sugar for while (true) do skip.

The command Ct
H

records the return value of the j-th method invocation in the i-th transaction
by thread t in a dedicated variableyt

i, j , local to t . The return status of the i-th transaction is recorded

in a dedicated local variable wt
i . The command checks the values of yt

i, j and wt
i , and if there is a

mismatch with H |t , the command enters a nonterminating loop. We also perform some additional
checks using the variables at

i and bt
i , which we explain later on. If the i-th transaction of thread t

in H is live or mid-aborted, then the command Ct
H

executes a nonterminating loop before the end
of the corresponding atomic block, to ensure that the transaction does not try to commit. If the
transaction aborts itself explicitly, then so does the command Ct

H
.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:35

Fig. 16. Auxiliary notation derived from the history H and used to construct PH (see Figure 15).

Fig. 17. The variables used in PH and their their intended meaning (see Figure 15).

To check whether an execution of PH complies with the real-time order in H , we exploit the
ability of threads to communicate via global variables outside transactions. For each transaction
in H , we introduce a global variable дt

i , which is initially 0 and is set to 1 by t right after its i-th
transaction completes. We also add a dummy variable дt

0 for every thread t ; we always execute
the program from a state in which all дt

0 are initialized to 1. Before starting the i-th transaction
of thread t , the command Ct

i checks whether all transactions preceding it in the real-time order
in H have finished by reading the corresponding д-variables. If there is a mismatch with H , the
command enters a nonterminating loop.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:36 H. Attiya et al.

Stage II: Constructing s and τ ∈ [[PH]]noRB (s) such that history(τ) = H . We now construct a
particular trace τ of PH by first constructing a trace τ t for every sequential commandCt

H
and then

interleaving the traces τ 1, . . . ,τm in a particular way.
Let τ t be the maximal trace from Tr(Ct)t such that history(τ t) = H |t and τ t does not include ac-

tions coming from a loop command. This trace τ t exists because Tr(Ct)t contains traces for every
possible parameter and return value of method invocations and atomic blocks in Ct

H
(Figure 4).

We now partition every τ t into |H |t | + 1 subsequences that we later interleave to create τ :

τ t = τ t
1 . . . τ

t
|H |t |τ

t
|H |t |+1.

Formally, for every i = 1..|H |t |, there is exactly one interface action ψ t
i in τ t

i and the following
holds:

τ t
i =

⎧⎪⎪⎨
⎪⎪
⎩

ψ t
i , ifψ t

i ∈ {(_, t ,OK), (_, t , ret(_) _)};
ψ t

i _(_, t ,дt
i := 1), ifψ t

i ∈ {(_, t , committed), (_, t , aborted)};
_ψ t

i , otherwise.
(12)

Note that this defines τ t
i , i = 1..|H |t |, uniquely. Therefore, τ t

|H |t |+1
is also defined uniquely as con-

taining the rest of the actions in τ t . Because each subsequence τ t
i , except the last one, contains

exactly one interface action, we can now construct the desired τ by interleaving the subsequences
in the order induced by H :

τ = τ t 1

j1
. . . τ t |H |

j |H |
τ 1
|H |1 |+1 . . . τ

m
|H |m |+1, where H (i) = (_, t i , _), ji = |(H�i) |t i |. (13)

Then history(τ) = H . Since τ t ∈ Tr(Ct)t , we have τ ∈ Tr(PH). Let s be the state where all lo-
cal variables are set to u, and for all t we have дt

i = 0 for i � 0 and дt
0 = 1. It is easy to

check that evalnoRB (s,τ) � ∅, and hence τ ∈ [[PH]]noRB (s). Since H ∈ TC , we furthermore get τ ∈
[[PH]]noRB (s,TC).

Stage III: Obtaining τ ′ ∈ [[PH ,TA]]noRB (s) and analyzing the relationship between its his-
tory and H . By assumption, history(τ) = H ∈ TC . Since τ ∈ [[PH]]noRB (s,TC) and TC �noRB TA,
by Definition 4.1 there exists a trace τ ′ ∈ [[PH]]noRB (s,TA) such that τ ′ |¬trans = τ |¬trans and S1 =

history(τ ′) ∈ TA.
Consider a thread t . Let T be the i-th transaction in H |t and T ′ be the i-th transaction in S1 |t ,

which we call the transaction matchingT . These transactions arise from executing the same com-
mands, and T ′ might not exist if the commands did not execute in τ ′. We now analyze the rela-
tionship between T and T ′. The construction of PH and τ ′ |¬trans = τ |¬trans ensure the following:

(i) If T is committed, then T ′ exists and T ≡ T ′. This is due to the checks of wt
i and yt

i,_ in

PH . These checks succeed in τ , so that the assignment to дt
i is executed. Since τ ′ |¬trans =

τ |¬trans, the assignment to дt
i is executed in τ ′ as well, so the checks also succeed in τ ′.

(ii) IfT is end-aborted, thenT ′ exists andT ≡ T ′. This is due to the checks ofwt
i , yt

i,_, and bt
i

in PH . In particular, since T is end-aborted, the check for bt
i = 1 in lastCheckt

i succeeds
in τ ; hence, the check also has to succeed in τ ′, and so T ′ cannot be mid-aborted.

(iii) IfT is mid-aborted, thenT ′ exists andT ≡ T ′. This is due to the checks ofwt
i , yt

i,_, bt
i and

at
i in PH . In particular, ifT is mid-aborted at its txbegin action (so that |H t

i | = 2), then the

check for at
i � 1 in lastCheckt

i ensures that T ′ is also mid-aborted at its txbegin action.
If T is mid-aborted at its last method invocation (so that |H t

i | � 2), then the check for

bt
i � 1 and at

i = 1 in lastCheckt
i ensures that T ′ behaves the same.

(iv) If T is self-aborted, then T ′ exists and T ≡ T ′. This is due to the checks of wt
i , yt

i,_, and

bt
i in PH .

(v) If T is live, then the nonterminating loop before the end of the corresponding atomic
block in PH ensures that T ′ is live, mid-aborted, or does not exist.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:37

Fig. 18. Summary of transformations used to generate Hc from H = history(τ) and S from S1 = history(τ ′)
in Lemma 7.1. The “Case” column refers to a relationship established between T and T ′ in Stage III of the
proof. The “commit” and “abort” transformations refer to adding a matching committed or aborted action
at the end of H .

(vi) IfT is commit-pending, thenT ′ may have any status or may not exist at all. However, if
T ′ is visible, then the checks of yt

i,_ ensure that the return values of method invocations

inside T and T ′ match.
(vii) If T is abort-pending, then T ′ may have any status or may not exist at all.

Finally, consider another transaction T1 in H and its matching transaction T ′1 in S1. Then:

(viii) If T ≺H T1 and T ′1 exists, then T ′ exists and T ′ ≺S1 T
′
1 . This is because in τ the value of

дt
i is set to 1 after the transaction corresponding to T completes, and д-variables are

checked before the transaction corresponding to T1 starts (see (12)).

Stage IV: Constructing the desiredH c and S . From the preceding analysis, it follows that for any
thread t , the i-th transaction in H |t , except possibly the last one, is the same as the i-th transaction
in S1 |t . We now construct H c from H and S from S1 by applying certain transformations that
reconcile the differences between H and S1. The resulting H c and S are such that

∃H ′.H ′ ∈ rempending(H |¬live) ∧ H c ∈ cendcomplete(H ′) ∧ S ∈ TA ∧ H c �RT S .

We start by applying the transformations in Figure 18 to each transactionT inH and its matching
transaction T ′ in S1. This relies on the analysis of the relationship between T and T ′ performed
in Stage III, and we reference the corresponding cases in the figure. Let H2 and S2 be the resulting
histories obtained fromH and S1, respectively. Given the relationship betweenH and S1 established
in Stage III, it is easy to see that ∀t .H2 |t ≡ S2 |t . Since S1 ∈ TA and TA satisfies closure property C1,
we have S2 ∈ TA. Let S3 be the history obtained from S2 by renaming action identifiers so that
∀t .H2 |t = S3 |t . Then by item (viii) presented previously, we furthermore have H2 �RT S3. Since

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:38 H. Attiya et al.

S2 ∈ TA and TA is closed under renaming action identifiers, we also get S3 ∈ TA. Since TA satisfies
C2, there exists S ∈ complete(S3) ∩ TA. We now construct H c from H2 by removing those commit-
pending transactions in H2 whose matching transactions in S3 become aborted in S , and by adding
the committed actions inserted into S3 to obtain S at the end of the resulting history. This makes
H c complete, and it is easy to check that furthermore

∃H ′.H ′ ∈ rempending(H |¬live) ∧ H c ∈ cendcomplete(H ′).

Since H2 �RT S3, we also have H c �RT S , as required. �

Lemma 7.2. Let TC and TA be TMs such that TC �noRB TA and TA satisfies C1 and C2. Let

H1ψH2 ∈ TC , where ψ is a response action that is not a committed or aborted action. Then ∃H c ∈
cSTMSpast(H1ψ). ∃S ∈ TA.H c �RT S .

Proof. The overall structure of the proof is similar to that of Lemma 7.1. Let ψ = (_, t0, _).
Consider a historyH1ψH2 ∈ TC , whereψ is a response action that is not a committed or an aborted
action. Let H = H1ψ ; since TC is prefix-closed, we also have H ∈ TC .

Stage I: Constructing PH . We define the program PH as in Figure 15, but with the definition of
lastCommand adjusted so that

lastCommandt0

k t0
= fault. (14)

Hence, thread t0 finishes by executing a fault if it detects no mismatch withH in the TM behavior.
This is motivated by the fact that faulting is the only observation that Definition 4.1 allows us to
make about the behavior of the live transaction ofψ .

Stage II: Constructing s and τ ∈ [[PH]]noRB (s) such that history(τ) = H . We construct s and τ as
in Lemma 7.1, but with (13) replaced by

τ = τ t 1

j1
. . . τ t |H |

j |H |
τ 1
|H |1 |+1 . . . τ

t0−1
|H |t0−1 |+1

τ t0+1
|H |t0+1 |+1

. . . τm
|H |m |+1τ

t0

|H |t0 |+1
,

where H (i) = (_, t i , _), ji = |(H�i) |t i |. This ensures that fault is the last action of τ . Then we
again have τ ∈ [[PH]]noRB (s,TC) and history(τ) = H .

Stage III: Obtaining τ ′ ∈ [[PH ,TA]]noRB (s) and analyzing the relationship between its history
and H . Since τ ∈ [[PH]]noRB (s,TC) ends with a fault and TC �noRB TA, by Definition 4.1 there exists
a trace τ ′ ∈ [[PH]]noRB (s,TA) that also ends with a fault, which also has to be by thread t0. Let
S1 = history(τ ′) ∈ TA.

Consider arbitrary threads t and t ′. LetT be the i-th transaction in H |t andT1 be the i-th trans-
action in S1 |t , and let T ′ be the j-th transaction in H |t ′ and T ′1 be the j-th transaction in S1 |t ′ (T1

and T ′1 may not exist). The construction of PH ensures the following:

(i) If T is the last transaction in H |t0 , then T ≡ T ′. This is because τ ′ ends with a fault by t0,
and hence the checks of yt0

i,_ in τ ′ succeed.

(ii) If T1 is visible, then so is T . Indeed, if T is live or mid-aborted, then the nonterminating
loop before the end of the corresponding atomic block ensures that T1 cannot be visible.
Furthermore, due to the checks ofyt

i,_, in this case the return values of method invocations

inside T and T1 match.
(iii) If T ′ ≺H T and T1 exists, then so does T ′1 , and we have T ′1 ≺S1 T1 and the status of T ′ and

T ′1 is the same. This is because before the transaction corresponding to T1 starts in τ ′,
there is a check that a д-variable is 1, and this variable is assigned to 1 only if the check

of wt ′
j succeeds. In fact, we also have the following stronger property.

(iv) If T ′ ≺H T and T1 exists, then so does T ′1 , and we have T ′1 ≺S1 T1 and T ′ ≡ T ′1 . This is due

to the checks of yt ′
j,_, at ′

j , bt ′
j , and wt ′

j .

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:39

Stage IV: Constructing the desired H c and S . Let S2 be the projection of S1 that excludes all
abort-pending and live transactions, except the one that came from the transaction in τ ′ with the
fault. Since S1 ∈ TA and TA satisfies closure property C1, S2 ∈ TA. Since S2 ∈ TA and TA satisfies C2,
there exists a history Sc

3 ∈ complete(S2) ∩ TA.
Let H ′ be the subsequence of H consisting of

—the (live) transaction ofψ ,
—any transaction such that its matching transaction in Sc

3 exists and is committed, and
—any transaction that precedes any of the preceding transactions in the real-time order of H .

We now show that H ′ ∈ STMSpast(H). By the construction of H ′, we have

∀T ∈ tx(H ′).∀T ′ ∈ tx(H).T ′ ≺H T ⇒ T ′ ∈ tx(H ′). (15)

Next, we show

tx(H ′) ⊆ {txof (ψ ,H)} ∪ committed(H) ∪ aborted(H) ∪ compending(H) (16)

and

(midaborted(H ′) ∪ selfaborted(H ′)) ∩maxtx(H ′) = ∅. (17)

ConsiderT ∈ H ′. IfT = txof (ψ ,H), thenT is live and hence is not self- or mid-aborted. Otherwise,
by the construction of H ′, either T is not maximal in H ′ and hence is completed, or its matching
transaction in Sc

3 exists and is committed. Then its matching transaction in S1 is visible. Hence, by
item (ii),T is visible as well and, in particular, cannot be self- or mid-aborted. This establishes (16)
and (17).

Since txof (ψ ,H) ∈ H ′, (15) through (17) show that H ′ ∈ STMSpast(H). Let H c ∈
cendcomplete(maxcom(H ′)); then H c ∈ cSTMSpast(H). Let S3 be the subsequence of Sc

3
consisting of those transactions that have matching transactions in H ′. By the definition of H ′,
this only removes aborted transactions from S3. Since Sc

3 ∈ TA and TA is closed under closure
property C1, we get S3 ∈ TA.

We now show that H c |t ≡ S3 |t for any t . Take an arbitrary transaction T ∈ tx(H c |t) and its
matching transaction T ′ in H ′. We consider several cases:

—If T = txof (ψ ,H c), then by item (i), T is equivalent to its matching transaction in S1 and
hence also that in S3.

—Otherwise, if T ′ is maximal in H ′, then its matching transaction T ′′ in Sc
3 exists and is

committed. Then by item (ii), T ′ is visible and the return values of method invocations
inside it match those in T ′′. By the definition of H c , this implies T ≡ T ′′. Hence, T is also
equivalent to its matching transaction in S3.

—Finally, if T ′ is not maximal in H ′, then it is completed, and by item (iv), it is equivalent to
its matching transaction in Sc

3 . Then by the definition of H c ,T is equivalent to its matching
transaction in Sc

3 and hence also that in S3.

We have thus established ∀t .H c |t ≡ S3 |t . Let S be the history obtained from S3 by renaming
action identifiers such that we have ∀t .H c |t = S |t . Since S3 ∈ TA and TA is closed under renam-
ing action identifiers, we get S ∈ TA. From item (iii), it follows that the real-time order of H c is
preserved in S . This gives us H c �RT S , as required. �

7.2 Proof of Theorem 5.16(ii): Necessity of the TMS Relation

Theorem 5.16(ii) follows from Lemmas 7.3 and 7.4, stated and proved in the following. The former
establishes the conditions in Definition 5.8(i), and the latter establishes the conditions in Defini-
tion 5.8(ii).

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:40 H. Attiya et al.

Lemma 7.3. Let TC and TA be TMs such that TC �RB TA and TA satisfies C1 and C2. The following

holds:

∀H ∈ TC . ∃H ′ ∈ rempending(H |¬live). ∃H c ∈ cendcomplete(H ′). ∃S ∈ TA.H c |¬aborted �RT S .

Proof. The proof is similar to that of Lemma 7.1. Stages I and II go through as before, except
we omit the assignments to at

i and bt
i and the lastCheck commands from PH in Figure 15. The

rationale is that here we are working under the semantics with rollback and thus cannot gain any
information from the assignments to at

i and bt
i inside atomic blocks.

Stage III is again the same as in Lemma 7.1, except we no longer establish items (ii), (iii), and (iv)
in the analysis of the correspondence between a transaction T from τ and a matching transaction
T ′ in τ ′: if the transactionT is aborted, then the check ofwt

i still ensures that so isT ′; however, we
can make no conclusions about the behavior insideT ′. We now describe how Stage IV of Lemma 7.1
is adapted to construct H c from H and S from S1 such that

∃H ′.H ′ ∈ rempending(H |¬live) ∧ H c ∈ cendcomplete(H ′) ∧ S ∈ TA ∧ H c |¬aborted �RT S .

We again start by applying the transformations in Figure 18 to each transaction T in H and its
matching transaction T ′ in S1. Let H2 and S2 be the resulting histories obtained from H and S1.
Given the analysis in Stage III, it is easy to check that ∀t . (H2 |¬aborted) |t ≡ (S2 |¬aborted) |t . Since S1 ∈
TA and TA is closed under closure property C1, we have S2 |¬aborted ∈ TA. Let S3 be a well-formed
history obtained from S2 by renaming action identifiers so that ∀t . (H2 |¬aborted) |t = (S3 |¬aborted) |t .
Then by item (viii) from the proof of Lemma 7.1, we furthermore have H2 |¬aborted �RT S3 |¬aborted.
Since S2 |¬aborted ∈ TA and TA is closed under renaming action identifiers, we also get S3 |¬aborted ∈
TA. Since TA is closed under closure property C2, there exists S4 ∈ complete(S3 |¬aborted) ∩ TA, and
we let S = S4 |¬aborted. Since TA is closed under closure property C1, we get S ∈ TA. Without loss
of generality, we can assume that the identifiers of actions inserted into S3 to obtain S4 do not
occur in H2. We now construct H c by removing those commit-pending transactions in H2 whose
matching transactions in S3 become aborted in S4 and by adding the committed actions inserted
into S3 to obtain S4 at the end of the resulting history. This makes H c complete, and it is easy to
check that furthermore

∃H ′.H ′ ∈ rempending(H |¬live) ∧ H c ∈ cendcomplete(H ′) ∧H c |¬aborted �RT S . �

Lemma 7.4. Let TC and TA be TMs such that TC �RB TA and TA satisfies C1 and C2. Let H1ψH2 ∈
TC , where ψ is a response action that is not a committed or an aborted action. Then ∃H c ∈
cTMSpast(H1ψ). ∃S ∈ TA.H c �RT S .

Proof. The proof is virtually identical to that of Lemma 7.2. Consider a history H1ψH2 ∈ TC ,
where ψ is a response action that is not a committed or an aborted action. Let H = H1ψ ; then
H ∈ TC . Stages I and II go through as before, except we change PH in Figure 15 by omitting
the assignments to at

i and bt
i and the lastCheck commands, and by adjusting the definition of

lastCommand so that (14) holds. Stage III is again the same, except we no longer establish item (iv):
under the semantics with rollback, we can make no conclusions about return values inside aborted
transactions.

In Stage IV, we construct H c ∈ cSTMSpast(H) and S3 ∈ TA as before, except now, due to the
absence of item (iv), we only show that ∀t . (H c |¬aborted) |t ≡ (S3 |¬aborted) |t .

Now letH0 = H c |¬aborted and S0 = S3 |¬aborted. Then ∀t .H0 |t ≡ S0 |t andH0 ∈ cTMSpast(H). Since
S3 ∈ TA and TA is closed under closure property C1, we get S0 ∈ TA. Let S be a well-formed history
obtained from S0 by renaming action identifiers so that ∀t .H0 |t = S |t . Since TA is closed under
renaming action identifiers, we also have S ∈ TA. As in Lemma 7.2, we infer that the real-time order
in H0 is preserved between the corresponding transactions in S , which gives us H0 �RT S . �

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:41

8 RELATED WORK

Previous work has studied TM consistency by

—investigating the semantics of different programming languages with atomic blocks and the
feasibility of their efficient implementation (Harris et al. 2005; Abadi et al. 2008; Moore and
Grossman 2008) or

—defining consistency conditions for TM (Guerraoui and Kapalka 2011, 2011; Doherty et al.
2013; Imbs and Raynal 2012; Attiya et al. 2013b) and proving that particular TM implemen-
tations validate them (Guerraoui and Kapalka 2011; Bieniusa and Thiemann 2011).

Thus, previous work has tended to address the issue from the perspective of either programming
languages or TM implementations and has not tried to relate these two levels in a formal manner.
An exception is the work by Harris et al. (2006), which proved that a specific TM implementation—
Bartok-STM—validates a particular semantics of atomic blocks in a programming language.

This article tries to fill in the gap in existing studies by relating the semantics of a programming
language with atomic blocks to that of a TM system implementing them. Our work is comple-
mentary to previous proofs that particular TM systems satisfy particular consistency conditions
(Guerraoui and Kapalka 2011; Bieniusa and Thiemann 2011), as it lifts such results to the lan-
guage level. Our work is also more general than that of Harris et al. (2006), as our results allow
establishing observational refinement for any TM implementation satisfying a particular consis-
tency condition. However, some of the work mentioned previously (Abadi et al. 2008; Moore and
Grossman 2008) investigated advanced language interfaces that we do not consider, such as nested
transactions and access to shared data both inside and outside transactions.

This work employs a well-known technique from the theory of programming languages—
observational refinement (He et al. 1986, 1987)—to explore the most appropriate way to specify
TM consistency. Observational refinement has previously been used to characterize correctness
criteria for libraries of concurrent data structures. Filipovic et al. (2009) proved that in this setting,
sequential consistency (Lamport 1979) is necessary and sufficient for observational refinement,
and so is linearizability (Herlihy and Wing 1990) when client programs can interact via shared
global variables. Gotsman and Yang (2011) adjusted linearizability to account for infinite compu-
tations and showed its sufficiency for observational refinement in the case when the client can
observe the validity of liveness properties. Our work takes this approach from the simpler setting
of concurrent libraries to the more elaborate setup of TM. It is our hope that in the future, we can
generalize our results to infinite computations, along the lines of Gotsman and Yang (2011).

Even though prior work has not formally connected the notion of observational refinement and
TM consistency conditions, these conditions sometimes came with informal explanations con-
necting them to similar notions. In particular, Doherty et al. (2013) discussed why TMS allows
programmers to think only of serial executions of their programs, in which the actions of a trans-
action appear consecutively. This discussion—corresponding to our Theorem 5.16(i)—is informal,
as their work lacks a formal model for programs and their semantics. Most of it explains how
Definition 5.8(i) ensures the correctness of committed transactions. The discussion of the most
challenging case of live transactions—corresponding to Definition 5.8(ii) and our Lemma 6.8—is
one paragraph long. It only roughly sketches the construction of a trace with an abstract history
allowed by TMS and does not give any reasoning for why this trace is a valid one, but only claims
that constraints in Definition 5.8(ii) ensure this. This reasoning is very delicate, as indicated by
our proof of Lemma 6.8, which carefully selects which actions to erase when transforming the
trace. Moreover, Doherty et al. do not argue that TMS is the weakest condition possible, as we
established by our necessity result for the semantics with rollback.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:42 H. Attiya et al.

A previous version of this work (Attiya et al. 2013a) established a connection between the opac-
ity relation (Section 5.3) and a notion of observational refinement under the semantics without
rollback that we introduced in Definition 6.3 (Section 6.1). As we explained before, this notion of
refinement takes into account aspects of program behavior that are unobservable to the program
user in practice. For this reason, in the current work, we consider a weaker notion of observa-
tional refinement and the STMS consistency condition, which is generally weaker than the opacity
relation. The characterization of TMS using observational refinement was developed in another
precursor of the present work (Attiya et al. 2014).

This article considers three TM consistency conditions—TMS, STMS, and opacity—but there are
more. VWC (Imbs and Raynal 2012) is weaker than opacity but incomparable to TMS. Like TMS, it
allows every operation in a live or aborted transaction to be justified by a separate abstract history.
However, it places different constraints on the choice of abstract histories, which do not take into
account the real-time order between actions. Because of this, VWC does not imply observational
refinement for our programming language: taking into account the real-time order is necessary
when threads can communicate via global variables outside transactions. DU-opacity (Attiya et al.
2013b) andTMS2 (Doherty et al. 2013) are stronger than opacity. These conditions put additional
restrictions on the justifying history: DU-opacity restricts the set of transactions that a transaction
is allowed to read from, whereas TMS2 requires the justifying history to include transactions in
their completion order in the original history. As follows from our results, these conditions are
stronger than necessary for observational refinement.

Similarly to other works using observational refinement to study consistency conditions
(Gotsman and Yang 2011; Filipovic et al. 2009), we formulate STMS, TMS, and the opacity rela-
tion so that they are not restricted to a particular abstract TM TA. This generality has two benefits.
First, our reformulation can be used to compare two TM implementations (e.g., an optimized and
an unoptimized one). Second, dealing with the general definition forces us to explicitly state the
closure properties required from the abstract TM rather than having them follow implicitly from
its atomic behavior. This generality is aligned with the approach that Siek and Wojciechowski
(2015) take for specifying last-use opacity, which allows early release (Herlihy et al. 2003; Marathe
et al. 2005). Cast in our terminology, last-use opacity relates a concrete TM (implementation) to an
abstract TM that is not atomic. However, some of the closure properties that we require of abstract
TMs, such as C1, preclude early release; lifting this limitation is future work.

9 CONCLUSION

This article has presented an approach for evaluating TM consistency conditions from distributed
computing theory using the notion of observational refinement from programming language the-
ory. We introduced STMS, a new consistency condition, and proved that it is necessary and suffi-
cient for observational refinement for a programming language where local variables modified by a
transaction are not rolled back upon an abort. STMS is derived from TMS (Doherty et al. 2013) but,
unlike the latter, requires the abstract history to include all previously aborted transactions. We
further proved that TMS is necessary and sufficient for observational refinement for a program-
ming language where local variables are rolled back upon an abort. Finally, we established that
STMS is equivalent to opacity under certain assumptions on the TM, requiring a liveness property
and the possibility of explicit aborts. Our results demonstrate how TM consistency requirements
are subtly affected by features of the programming model. We believe that the approach to eval-
uating TM consistency conditions that we advocate will enable TM implementors and language
designers to make better-informed decisions. It also reduces the effort of proving that a TM imple-
ments its programming language interface correctly, by only requiring its developer to show that it
satisfies the corresponding consistency condition. We hope that in the future, our approach can be

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

Characterizing Transactional Memory Consistency Conditions 2:43

scaled to settings more complex than the one we considered, including nested transactions (Moss
and Hosking 2006; Ni et al. 2007) and nontransactional access to transactional data (Spear et al.
2007).

REFERENCES

Martín Abadi, Andrew Birrell, Tim Harris, and Michael Isard. 2008. Semantics of transactional memory and automatic

mutual exclusion. In Proceedings of POPL. ACM, New York, NY, 63–74.

Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. 2013a. A programming language perspective on trans-

actional memory consistency. In Proceedings of PODC. ACM, New York, NY, 309–318.

Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. 2014. Safety of live transactions in transactional mem-

ory: TMS is necessary and sufficient. In Proceedings of DISC. 376–390.

Hagit Attiya, Sandeep Hans, Petr Kuznetsov, and Srivatsan Ravi. 2013b. Safety of deferred update in transactional memory.

In Proceedings of ICDCS. IEEE, Los Alamitos, CA, 601–610.

Annette Bieniusa and Peter Thiemann. 2011. Proving isolation properties for software transactional memory. In Proceedings

of ESOP. 38–56.

Luke Dalessandro, Michael F. Spear, and Michael L. Scott. 2010. NOrec: Streamlining STM by abolishing ownership records.

In Proceedings of PPOPP. ACM, New York, NY, 67–78.

David Dice, Ori Shalev, and Nir Shavit. 2006. Transactional locking II. In Proceedings of DISC. 194–208.

Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2013. Towards formally specifying and verifying trans-

actional memory. Formal Aspects of Computing 25, 5, 769–799.

Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. 2009. Abstraction for concurrent objects. In Pro-

ceedings of ESOP. 252–266.

Alexey Gotsman and Hongseok Yang. 2011. Liveness-preserving atomicity abstraction. In Proceedings of ICALP. 453–465.

Rachid Guerraoui and Michal Kapalka. 2008. On the correctness of transactional memory. In Proceedings of PPOPP. ACM,

New York, NY 175–184.

Rachid Guerraoui and Michal Kapalka. 2011. Principles of Transactional Memory. Morgan & Claypool, San Rafael, CA.

T. Harris, J. Larus, and R. Rajwar. 2010. Transactional Memory. Morgan & Claypool, San Rafael, CA.

Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Maurice Herlihy. 2005. Composable memory transactions. In Pro-

ceedings of PPOPP. ACM, New York, NY, 48–60.

Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. 2006. Optimizing memory transactions. In Proceedings of

PLDI. ACM, New York, NY, 14–25.

J. He, C. Hoare, and J. Sanders. 1986. Data refinement refined. In Proceedings of ESOP. 187–196.

J. He, C. Hoare, and J. Sanders. 1987. Prespecification in data refinement. Information Processing Letters 25, 2, 71–76.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. 2003. Software transactional memory for

dynamic-sized data structures. In Proceedings of PODC. ACM, New York, NY, 92–101.

Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory: Architectural support for lock-free data structures. ACM

SIGARCH Computer Architecture News 21, 2, 289–300.

Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan Kaufmann.

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM Trans-

actions on Programming Languages and Systems 12, 3, 463–492.

Damien Imbs and Michel Raynal. 2012. Virtual world consistency: A condition for STM systems (with a versatile protocol

with invisible read operations). Theoretical Computer Science 444, 113–127.

Leslie Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans-

actions on Computers 28, 9, 690–691.

Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. 2005. Adaptive software transactional memory. In Pro-

ceedings of DISC. 354–368.

Katherine F. Moore and Dan Grossman. 2008. High-level small-step operational semantics for transactions. In Proceedings

of POPL. ACM, New York, NY, 51–62.

J. Eliot B. Moss and Antony L. Hosking. 2006. Nested transactional memory: Model and architecture sketches. Science of

Computer Programming 63, 2, 186–201.

Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and

Tatiana Shpeisman. 2007. Open nesting in software transactional memory. In Proceedings of PPOPP. 68–78.

Christos H. Papadimitriou. 1979. The serializability of concurrent database updates. Journal of the ACM 26, 4, 631–653.

Torvald Riegel, Pascal Felber, and Christof Fetzer. 2006. A lazy snapshot algorithm with eager validation. In Proceedings of

DISC. 284–298.

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

2:44 H. Attiya et al.

Scala STM Expert Group. 2012. Scala STM Quick Start Guide. Retrieved October 29, 2017, from https://nbronson.

github.io/scala-stm/quick_start.html.

Konrad Siek and Pawel T. Wojciechowski. 2015. Last-use opacity: A strong safety property for transactional memory with

early release support. arXiv:1506.06275. http://arxiv.org/abs/1506.06275.

Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott. 2007. Privatization techniques for software

transactional memory. In Proceedings of PODC. 338–339.

M. F. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and M. L. Scott. 2008. Implementing and exploiting inevitability

in software transactional memory. In Proceedings of ICPP. IEEE, Los Alamitos, CA, 59–66.

Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. 2008. Irrevocable transactions and their applications. In Proceedings

of SPAA. ACM, New York, NY, 285–296.

Received June 2016; revised July 2017; accepted August 2017

Journal of the ACM, Vol. 65, No. 1, Article 2. Publication date: December 2017.

https://nbronson.penalty -@M github.io/scala-stm/quick_start.html
http://arxiv.org/abs/1506.06275

