
SwiftPaxos: Fast Geo-Replicated State Machines

Fedor Ryabinin
IMDEA Software Institute

Universidad Politécnica de Madrid

Alexey Gotsman
IMDEA Software Institute

Pierre Sutra
Télécom SudParis

INRIA

Abstract
Cloud services improve their availability by replicating data
across sites in different geographical regions. A variety of
state-machine replication protocols have been proposed for
this setting that reduce the latency under workloads with low
contention. However, when contention increases, these proto-
cols may deliver lower performance than Paxos. This paper
introduces SwiftPaxos—a protocol that lowers the best-case
latency in comparison to Paxos without hurting the worst-case
one. SwiftPaxos executes a command in 2 message delays
if there is no contention, and in 3 message delays otherwise.
To achieve this, the protocol allows replicas to vote on the
order in which they receive state-machine commands. Differ-
ently from previous protocols, SwiftPaxos permits a replica
to vote twice: first for its own ordering proposal, and then
to follow the leader. This mechanism avoids restarting the
voting process when a disagreement occurs among replicas,
saving computation time and message delays. Our evaluation
shows that the throughput of SwiftPaxos is up to 2.9x better
than state-of-the-art alternatives.

1 Introduction

Context. Today’s cloud services run in data centers scattered
around the world. The critical part of these services is repli-
cated at different geographical sites and maintained strongly
consistent [9, 14, 40, 48]. To achieve this, cloud providers
rely on state-machine replication (SMR) [45], where a ser-
vice is defined by a deterministic state machine and each site
maintains its own replica of the machine. An SMR protocol
coordinates the execution of commands at the sites, ensur-
ing that they stay in sync. The resulting system is lineariz-
able [21], providing an illusion that each command applied
to the service executes instantaneously at all sites.

Unfortunately, common SMR protocols, such as Paxos [29]
and Raft [39], have a high latency in geo-replicated deploy-
ments. These protocols funnel all commands through a leader
site, which orders commands and persists them at replicas.
If the leader fails, a new one is elected; the period when a
given site acts as a leader is called a ballot. In such protocols
the client finds out the result of a command execution after 4
message delays: a round trip from the client to the leader plus
a round trip from the leader to the replicas. This high latency
is made worse by the fact that geo-replicated transaction pro-

cessing systems (such as Spanner [14]) use Paxos multiple
times when executing a single transaction, e.g., to implement
a fault-tolerant version of two-phase commit.

Problem. There have been several proposals of SMR proto-
cols aiming to lower latency. One approach, pioneered by Fast
Paxos [31], is for clients to contact replicas directly, bypassing
the leader, and let each replica order the command indepen-
dently. If enough replicas (usually > 3/4 of the total) agree on
the ordering of the command, it takes the fast path. Otherwise,
it is processed via a slow path, which requires extra message
exchanges to resolve the disagreement. We can increase the
chances of spontaneous agreement on command ordering
by observing that, to satisfy linearizability, it is enough that
replicas only agree on the order of non-commuting (aka con-
flicting) commands [30, 42]. This allows taking the fast path
when there is no contention, i.e., when replicas receive con-
flicting commands in the same order, as is often the case in
application workloads [26, 38, 41]. Unfortunately, protocols
using this approach, such as Generalized Paxos [30], become
very expensive once even a single pair of commands contend:
in this case the protocol changes the ballot, similarly to how
it would handle a leader failure. This requires transferring a
large amount of state between replicas and disrupts the pro-
cessing of all commands, even those that do not conflict. For
this reason, Generalized Paxos has not been used in practice.

An alternative approach eliminates the leader altogether,
allowing the replicas to order commands in a peer-to-peer
manner (EPaxos [38] and follow-ups [3, 6, 17]). To perform
optimally, such leaderless protocols require clients to be co-
located with a data replica. However, as replication is expen-
sive, geo-distributed systems often do not maintain a data
replica at each client site [9, 40]. In addition, the execution of
commands in this class of SMR protocols is often delayed by
a form of a convoy effect. As a consequence, these protocols
have a high tail latency even at low conflict rates; once the
conflict rate increases, the latency skyrockets [6, 19, 50].

Contributions. To address these limitations, in this paper
we present SwiftPaxos—a new SMR protocol providing fast
linearizable operations over geo-replicated data. It processes
a command in 2 message delays when this command com-
mutes with concurrently submitted ones (fast path). Other-
wise, SwiftPaxos takes just one extra delay for the leader to
resolve the conflict, requiring 3 message delays overall (slow

path). Unlike in Generalized Paxos [30], the slow path does
not disrupt the system and does not require transferring sig-
nificant amounts of state. Since in SwiftPaxos conflicts are
resolved by the leader, it also exhibits low tail latency, unlike
EPaxos [38]. Thus, SwiftPaxos lowers the best-case latency
in comparison to Paxos without hurting the worst-case one.

To achieve such benefits, in SwiftPaxos a client sends its
command c directly to the replicas, which compute the set of
c’s dependencies—commands conflicting with c that should
be executed before it. At each replica, dependencies form
a partial order on commands, dictating how they should be
applied to the local copy of the state machine. To compute the
dependencies of a command, replicas make proposals based
on the order in which they receive commands, and then agree
on one of these. If enough replicas make the same proposal,
the command is processed in a single round-trip (fast path).
Otherwise, the replicas adopt the leader’s proposal, requiring
one extra message delay (slow path).

The key novelty of this scheme is that on the slow path a
replica votes for two different proposals: first for its own and
then for the leader’s, with latter superseding the former. Such
double voting would usually be unsafe in Paxos-like SMR
protocols: this is why Generalized Paxos [30] can only resolve
a disagreement by changing the ballot. It is safe in SwiftPaxos
because we include the leader into all fast quorums. Hence,
if a fast quorum replica disagreed with the leader, the replica
knows that the command could not have been committed on
the fast path. The replica can then quickly correct its vote
without compromising safety by sending a new message over-
ruling the previous one. This enables processing a command
on the slow path in just 3 message delays.

We have experimentally evaluated SwiftPaxos across 13
regions on Amazon EC2. Depending on contention, the pro-
tocol delivers 16–29% lower average latency than Paxos, and
in mixed YCSB workloads [13] its throughput is up to 2.9x
higher than EPaxos.

2 System Model

We consider a geo-distributed message-passing system where
processes may fail by crashing, but do not behave maliciously.
The processes are split into replicas, running a distributed
service, and clients using it. We denote the set of replicas by
R and assume that there are N = 2 f + 1 of these, at most
f of which may fail. Each process in R models a server
located in a separate data center; clients can be co-located
with servers or located elsewhere. The set of replicas can be
changed using standard reconfiguration techniques [29, 46],
and we omit details related to this.

State-machine replication (SMR) is a common approach to
designing highly available distributed services in the above
system [14, 45]. The service is defined by a deterministic
state machine, which has a set of states S and accepts a set
of commands C . Given a command c and a state s, a func-

tion exec(c,s) returns a pair (r,s′) of the return value r and
the new state s′ obtained by executing c in s. Each replica
maintains its own copy of the state machine, accessible via
a variable state. An SMR protocol coordinates the execution
of commands at the replicas, ensuring that their copies of the
state machine stay in sync.

Clients are stateless, but they know how to contact the repli-
cas. The SMR protocol allows a client to submit a command
c for execution using an API call submit(c). Each submit-
ted command c is tagged with a unique identifier id(c). A
function client associates each identifier with the client that
submitted the command. When the SMR protocol obtains the
response value r of a command c, it upcalls into the client
with a notification response(id(c),r).

The protocol we propose in this paper satisfies lineariz-
ability [21]. Informally, this means that commands appear
to clients as if executed sequentially on a single copy of the
state machine in an order consistent with the real-time order,
i.e., the order of non-overlapping command invocations. To
satisfy linearizability, it is enough that replicas agree on the
execution order of non-commuting commands [30, 42]. More
precisely, two commands c and d commute if for every state
s of the state machine: (i) executing c followed by d or d
followed by c in s leads to the same state; and (ii) c returns
the same response in s as in the state obtained by executing
d from s, and vice versa. When the two commands do not
commute, we say that they conflict, written c ▷◁ d. Conflicts
can be over-approximated using the service API: e.g., in a
key-value store operations on different keys commute. In
transactional systems with deferred update replication, such
as Spanner [14], conflicts can be detected at commit time.

To give a specification of an SMR protocol, we first define
a relation≺ over C so that c≺ d if: (i) c ▷◁ d and some replica
p executes c before d; or (ii) c was executed by some replica
before any client submitted d. An SMR protocol needs to
satisfy the following properties:

Validity. If a replica executes a command c, then some client
has submitted c before.
Integrity. A replica executes each command at most once.
Ordering. The relation ≺ is acyclic.
Nontriviality. The return value r obtained by the client for a
command c is the result of c’s execution at some replica.
Liveness. If a command c is submitted by a non-faulty client
or executed by some replica, then c is eventually executed by
all non-faulty replicas.

Implementing this specification is sufficient to ensure the
linearizability and responsiveness of the service [30, 42]. In
particular, Ordering guarantees that different replicas can-
not execute conflicting commands in different orders. As is
standard, to ensure liveness we assume that the system is
eventually synchronous [16], so that message delays between
non-failed processes are eventually bounded.

3 Core Concepts and Protocol Overview

We first provide an overview of SwiftPaxos, and then cover
it in detail. We have rigorously proved SwiftPaxos correct,
but due to space constraints we defer this proof to §A. In-
stead, in our explanations we state key protocol invariants and
informally explain why they hold.

3.1 Ballots
As usual for Paxos-like protocols, SwiftPaxos’s execution
is divided into a sequence of ballots. A replica can be in a
single ballot at a time, tracked in a variable bal. Each ballot
b has a fixed leader replica leader(b) = p(b mod N); all other
participants of b are followers. If leader(b) is suspected of fail-
ure, a follower initiates a recovery procedure, which switches
to a higher ballot with a new leader. A variable status at a
replica records whether it is operating normally (NORMAL)
or is recovering (RECOVERING).

We call a majority of replicas a quorum. Each ballot b is
associated with a set of fast quorums FQ (b) and a set of slow
quorums SQ (b); these are respectively used on the fast and
slow paths of SwiftPaxos. For a replica p, we write fast(p,b)
and slow(p,b) if p belongs to a fast and a slow quorum of b,
respectively. We require that the leader of b belong to every
fast and slow quorum of b. Apart from this constraint, slow
quorums can be any majorities of replicas. Fast quorums must
satisfy a stricter condition (as in Fast Paxos [31]), requiring
that any two fast quorums intersect in a majority:

∀Q1,Q2 ∈ FQ (b). |Q1∩Q2|> N/2. (FQI)

This condition can be satisfied in different ways. In the rest
of the paper we consider the following two:

(C1) A fast quorum is any set containing > 3/4 of all replicas,
including the leader.

(C2) There is a unique fast quorum consisting of a fixed
majority of replicas, including the leader.

These two quorum systems offer different optima in the trade-
off defined by (FQI). On the one hand, (C1) supports up to
(N/4− 1) follower failures without blocking the fast path.
On the other, (C2) has a better complexity, only requiring a
majority of replicas to order commands [32, 33, 36, 38], but
may block the fast path when any of these replicas fails.

3.2 Dependencies and Key Invariants
As we noted earlier, to ensure linearizability it is enough for
replicas to only agree on the order of non-commuting com-
mands. SwiftPaxos represents such an order by associating
with each command c the set of its dependencies—commands
conflicting with c that must be executed before it. To compute
this set, the replicas make their proposals and then agree on
one of them. We say that the command c is committed when
the replicas agree on all its transitive dependencies, i.e., the

dependencies of c, the dependencies of these dependencies,
and so on. The protocol ensures:

INVARIANT 1. Any two replicas commit a command with
the same set of dependencies.

A command moves through different phases as it is pro-
cessed, from the initial phase (START) to the final one, where
the command is committed (COMMIT). Each replica tracks
the progress of commands in an array phase, indexed by com-
mand identifiers. The name of the phase written in italics
denotes the set of all commands in this phase, e.g., Commit
stands for {id | phase[id] = COMMIT}. An array dep maps
a command identifier to its direct dependencies: if the com-
mand’s entry in the phase array is COMMIT, then the depen-
dencies are committed; otherwise, they record the replica’s
proposal. The dep array defines the edges of a dependency
graph at a replica. Initially, all the entries are null (⊥).

A replica executes a command once it is committed and all
its dependencies are executed. Since dependencies relate only
conflicting commands, replicas are thus free to execute inde-
pendent commands in any order. Then to satisfy the Ordering
property of SMR (§2), the protocol needs to ensure:

INVARIANT 2. For any two conflicting commands c and c′

committed at a replica, either c belongs to the dependencies
of c′, or the converse holds.

To illustrate, consider commands x, y and z such that x ▷◁ y
and y ▷◁ z and their committed dependencies are dep[id(x)] =
dep[id(z)] = /0 and dep[id(y)] = {x,z}. Then a replica can
execute x and z in any order, provided they execute before y.

Finally, as the protocol delays executing a committed com-
mand until its dependencies are executed, for the protocol to
be live, committed dependencies should not form a cycle:

INVARIANT 3. The committed part of the dependency graph
at each replica is acyclic.

3.3 Agreeing on Dependencies
Before describing SwiftPaxos in detail, we give its overview
using the example in Figure 1. Here the system consists of
5 replicas, thus tolerating 2 faults. Replicas p4 and p5 host
one client each. A third client is not co-located with any of
the replicas. The fast quorum intersection requirement (FQI)
is satisfied with configuration (C2), so that there is a single
fast quorum {p1, p2, p3}. To avoid clutter we omit most of
the interactions with the two replicas outside this quorum.

Propagation. A client sends a submitted command c to the
replicas in a Propagate(c) message. When a replica receives
c, it computes its proposal for c’s dependencies as the set of
the previously received commands that conflict with c—to
satisfy Invariant 2. In Figure 1, proposals are depicted using
→, so that {x,y}→ z means that z depends on x and y.

Fast path. Each replica in a fast quorum broadcasts its pro-
posal in a FastAck message. Replicas wait until they receive

Propagation (1 δ) Fast path (1 δ) Slow path (0-1 δ)
Q
∈

FQ

p4/client1

p5/client2

client3

p1

p2

leader

p3

submit(x)

submit(y)

submit(z)

exec(y)

exec(x)

response(z)

exec(y) exec(x) exec(z)

Reply(z) FastAck(x) FastAck(y) FastAck(z)

FastAck(x) FastAck(y) FastAck(z)

FastAck(z)FastAck(x) FastAck(y)

SlowAck(x)

SlowAck(x)

SlowAck(x) SlowAck(z)

/0→ x /0→ y {x,y}→ z

/0→ y /0→ x {x,y}→ z

/0→ y {y}→ z {z}→ x

Figure 1: An execution of the protocol processing commands x, y and z such that x ▷◁ z and y ▷◁ z.

proposals from all members of some fast quorum. If all such
proposals are the same, then there is a spontaneous agree-
ment [31]. In this case, a replica commits the command once
its dependencies are also committed. This represents the fast
path of the protocol, which under favorable conditions allows
a replica to execute a command within 2 message delays from
the time it was submitted. For example, in Figure 1 replica
p1 commits and executes y immediately after receiving the
same proposal /0→ y from all fast quorum members. Since
each replica computes its proposal from the conflicting com-
mands it has seen before, a command takes the fast path when
there is no contention—something that occurs frequently in
application workloads [26, 38, 41].

Slow path via double voting in a fast quorum. Fast quo-
rum replicas compute their proposals based on the order in
which they receive conflicting commands. As this depends on
the ordering generated by the network, the replicas may dis-
agree, in which case the command takes the slow path. To this
end, each fast quorum replica that disagreed with the leader
adopts its proposal and acknowledges this by broadcasting a
SlowAck message. A replica can commit the command once
it receives a set of matching FastAck and SlowAck messages
from all the members of some fast quorum and it has commit-
ted the command’s dependencies. This may require an extra
message delay in comparison to the fast path. For example,
in Figure 1 replicas p1 and p2 receive x before z, while p3
receives z before x, which results in different proposals. Since
p3 disagrees with the leader p2 on the dependencies of x and
z, it adopts the leader’s proposals /0→ x and {x,y}→ z and
broadcasts SlowAcks for the two commands. Consequently,
replica p1 commits and executes x and z in 3 message delays.

Note that on the slow path a fast quorum replica votes for
two different proposals in the same ballot—once for its own
(FastAck) and once for the leader’s (SlowAck). Such double
voting would usually be unsafe in Paxos-like protocols. In
SwiftPaxos this is safe because the leader belongs to all fast
quorums: if a fast quorum replica disagreed with the leader,
the replica knows that the command could not have been
committed on the fast path, and may safely correct its vote.

Slow path via a slow quorum. SwiftPaxos can also com-

mit commands using a slow quorum, just like Paxos. A slow
quorum replica acts similarly to a fast quorum replica, except
that it does not make proposals of its own. Namely, when it
receives a FastAck from the leader, a slow quorum replica
adopts the leader’s proposal and broadcasts a SlowAck mes-
sage. Any replica can commit the command after receiving
FastAck from the leader and SlowAcks from the followers
of a slow quorum. In a wide-area network, where latencies
between different pairs of replicas vary, the slow path may
be faster than the double-voting mechanism in the fast path.
Going back to Figure 1, assume that the latency between p4
and p3 is higher than between p4 and p5. Instead of waiting
for a SlowAck message for x from p3, replica p4 can use the
earlier SlowAck message from p5 and the FastAck from the
leader p2 to commit x via the slow quorum {p4, p5, p2}. Since
a slow quorum can be any majority, this additional mecha-
nism for committing commands ensures that SwiftPaxos is
at least as fast as Paxos. In fact, on the slow path SwiftPaxos
corresponds to a well-known faster variation of Paxos where
followers broadcast 2B messages to all replicas.

Message complexity. SwiftPaxos has a quadratic message
complexity, as opposed to linear complexity of classical Paxos.
However, for typical geo-replicated SMR deployments (N = 3
or N = 5) [9, 14] the difference between these complexities
is fairly small. Besides, the additional messages issued by
SwiftPaxos are light, as they only carry metadata. We compare
the bandwidth usage of SwiftPaxos and Paxos in §5.1.

3.4 Ensuring Low Tail Latency
Dependencies are also used to order commands in
EPaxos [38] and its follow-ups [3, 17]. However, in EPaxos
dependencies may form cycles, and thus command execution
cannot simply follow their order. Instead, EPaxos waits until
it forms strongly connected components of the dependency
graph and then executes these components one at a time. Since
such components can be arbitrary large, the protocol may de-
lay command execution for an unbounded amount of time.
This phenomenon is known as convoy effect and in practice it
leads to a high tail latency [6, 19, 50].

In contrast, dependencies in SwiftPaxos remain acyclic (In-
variant 3, §3.2), and command execution can simply follow

Dependency graph Dependencies of c3 Paths to c3
leader c1→ c2→ c3 {c2} {[c3,c2,c1]}

p1 c2→ c3 {c2} {[c3,c2]}
p2 c2→ c3 {c2} {[c3,c2]}

Figure 2: To accept the result of optimistic execution, clients wait
for matching dependency paths.

them. The only delay between committing a command and ex-
ecuting it is similar to one present in Multi-Paxos, where each
consensus instance depends on the prior ones. This makes
the tail latencies of SwiftPaxos and Paxos comparable, as we
empirically show in §5.2. We compute the theoretical latency
of SwiftPaxos and compare it against other protocols in §A.6.

3.5 Faster Responses at Non-Collocated Clients

Clients located in the same data center as a replica receive the
result of a command directly from that replica. For instance,
client2 in Figure 1 is co-located with p5 and receives the
response to y immediately after p5 executes y. Clients that are
not co-located with a replica need to wait for an extra message
delay to hear the response. To speed up delivering responses
at such clients, SwiftPaxos optimistically executes commands
at the leader (similarly to Zookeeper [23] and CURP [41]).

In more detail, when the leader receives a command c from
a client that is not co-located with a replica, it computes the
result of executing c and replies to the client with a Reply
message. In Figure 1, client3 gets this message for command
z. Followers send their FastAck and SlowAck messages for
c not only to other replicas—as described before—but also
to the client that submitted c. The client accepts the response
in Reply once it receives matching FastAck or SlowAck
messages from a fast or slow quorum. This ensures that a
client always gets a response within 2 or 3 message delays,
regardless of whether it is co-located with a replica.

There is a subtlety, though: on the fast path a client can-
not accept the result of optimistic execution using only the
dependency sets, because these sets contain direct dependen-
cies of the command but say nothing about their predecessors.
Figure 2 illustrates this. It depicts the dependency graphs at
some point in time where (FQI) from §3.1 is satisfied with a
single quorum {p0, p1, p2}, with p0 as the leader. In Figure 2,
clients submit 3 commands c1, c2 and c3, with c2 conflicting
with both c1 and c3. The replica p0 is the only one to receive
c1, yet all three replicas agree on the ordering of c2 and c3.
Assume that p0 now optimistically executes c1, c2 and c3 in
this order before it gets any messages from other replicas,
and thus before this ordering is durable. It will then send the
result of executing c3 to the client. The leader’s proposal for
the dependency set of c3 matches the proposals of p1 and p2,
but the three replicas disagree on c3’s transitive dependencies.
Hence, the client cannot accept the reply from the leader: if
the leader crashes, its ordering of c1 will be lost, invalidating
the optimistic execution. Notice that this problem does not

occur at replicas, as they execute each command only after it
gets committed, implying that all its transitive dependencies
are also committed, and thus durable.

To ensure that clients accept only valid results from op-
timistic execution, FastAck messages contain not only the
direct dependencies of the command but also the set of all
the paths leading to it in the dependency graph. If these sets
match, the ordering of the command is durable and the client
may accept the result via the fast path. For a command c, we
represent the set of c’s dependency paths as a set of ordered
lists, where each list starts with c and continues with its tran-
sitive dependencies arranged according to the dependency
graph (see Figure 2). In §4.1 we explain how dependency
paths can be efficiently implemented in practice.

In Figure 1 when the fast quorum replicas receive z, their
FastAck replies carry not just dependency sets, but also de-
pendency paths: replicas p1 and p2 send {[z,x]; [z,y]}, while
p3 sends {[z,y]}. Since these sets do not match, the result of
z cannot be accepted by client3 on the fast path.

4 SwiftPaxos in Detail

We define the protocol logic in Figures 3–5 using a set of
handlers, each of which executes atomically once its precon-
ditions are true (keyword pre).

4.1 Normal Operation

Propagation. Upon receiving a Propagate(c) message
from a client (lines 2 and 6), a replica p saves c in an array
cmd and moves c to the PREACCEPT phase, to record that it
is now waiting for the leader’s proposal. If the replica belongs
to some fast quorum, it also computes its proposal dep[id(c)]
for c’s dependencies and broadcasts it in a FastAck message
together with c’s dependency paths paths[id] (line 21).

If p is the leader, upon receiving a command p also exe-
cutes it and sends its result in a Reply message (lines 16-19).
The command is not committed at this point. The execution is
optimistic and p does not modify its local copy of the state ma-
chine. Instead, p maintains a list pending_log of commands
that are received but not committed yet. The command is
added to the list and p determines its result using a function
opt_exec (further discussed in §4.4).

Fast path. A replica p commits a command c via the fast
path when it receives matching dependency sets from a fast
quorum. In this case, p first processes the FastAck message
from the leader (line 22), which advances c to the ACCEPT
phase (line 24). Then p processes FastAcks from the other
quorum members (line 30). Once the dependencies of c are
committed (line 31), p commits c as well. A client receives a
response on the fast path once it gets a Reply message from
the leader and matching dependency paths from the followers
of a fast quorum (line 3).

1 function submit(c):
2 send Propagate(c) to R

3 when received Reply(b, id,P,r) from leader(b) and
FastAck(b, id,_,P) or SlowAck(b, id)
from all followers in Q ∈ FQ (b), or

4 when received Reply(b, id,_,r) from leader(b) and
SlowAck(b, id) from all followers in
Q ∈ SQ (b)

5 response(id,r)

Figure 3: Client code.

Slow path. Upon the receipt of FastAck(b, id,D,P) from
the leader, a fast quorum replica checks whether its local
value of dep[id] is equal to D (line 25). If this is not the
case, the command takes the slow path: the replica overwrites
dep[id] with D, advances the command’s phase to ACCEPT
and notifies the other replicas and the client with a SlowAck
message. A slow quorum replica also sends the SlowAck to
speed up agreement on dependencies, as described in §3.3.
To commit the command, the replica then waits until the
other fast (or slow) quorum members send either a FastAck
matching the leader’s proposal or a SlowAck (line 30).

The client acts similarly to compute the response to its
command, except that it waits for matching dependency paths
instead of dependency sets (line 3). This justifies line 29:
when a fast quorum replica receives the leader’s proposal
that matches its own vote but does not match the dependency
paths, it sends a SlowAck message to the client. In this way
the client learns that the replica is now in sync with the leader
and can thus accept the result of the optimistic execution.

To ensure that the replica is indeed in sync with the leader,
we need the last conjunct of the precondition at line 23. This
requires the replica to handle a FastAck(_,_,D,_) message
from the leader only if it has already handled such messages
from all the commands in D. This condition is automatically
satisfied when communication channels are FIFO. To illus-
trate its role, imagine that in Figure 1 replica p3 updated the
dependencies of z before those of x, violating the precondition
in line 23. Then right after p3 changed dep[z] to {x,y}, the
three replicas of the fast quorum disagree on the set of depen-
dency paths of z: at replicas p1 and p2 the set is {[z,x]; [z,y]}
but according to p3 there is a path [z,x,z]. As seen in §3.5
accepting the result of the execution of z would be unsafe.

Command execution. A replica keeps track of commands
executed on its copy of the state machine using a variable
Exec. A replica executes a command once it is committed and
all its dependencies are executed (line 33). If the replica is the
leader, it then removes the command from pending_log.

Representing dependency paths. Sending full dependency
paths is not an option in practice due to their fast-growing
size. This issue is solved by trimming the paths of a command
c up to the last committed or accepted transitive dependency.
For example, if c’s set of dependency paths is {[c,d,e]} and

6 when received Propagate(c) from client q
7 pre: status= NORMAL∧id(c) ∈ Start
8 phase[id(c)]← PREACCEPT
9 cmd[id(c)]← c

10 if fast(p,bal) then
11 let D = {id | cmd[id] ▷◁ c}
12 let P = pset(id(c))
13 dep[id(c)]← D
14 paths[id(c)]← P
15 if p = leader(bal) then
16 pending_log← pending_log · c
17 let r = opt_exec(pending_log,state)
18 send Reply(bal,id(c),P,r) to q
19 send FastAck(bal,id(c),D,P) to R
20 else
21 send FastAck(bal,id(c),D,P) to R ∪{q}

22 when received FastAck(b, id,D,P) from leader(b)
23 pre: status= NORMAL∧ id ∈ Preaccept∧bal= b

∧D⊆ Accept∪Commit
24 phase[id]← ACCEPT
25 if (fast(p,b)∧dep[id] ̸= D)∨ slow(p,b) then
26 dep[id]← D
27 send SlowAck(bal, id) to R ∪{client(id)}
28 else if fast(p,b)∧paths[id] ̸= P then
29 send SlowAck(bal, id) to client(id)

30 when received FastAck(b, id,D,_) or SlowAck(b, id)
from all followers in Q f ∈ FQ (b), or
SlowAck(b, id) from all followers in Qs ∈ SQ (b)

31 pre: status= NORMAL∧ id ∈ Accept∧bal= b
∧D = dep[id]⊆ Commit

32 phase[id]← COMMIT

33 when there exists id ∈ Commit\Exec with dep[id]⊆ Exec
34 (_,state)← exec(cmd[id],state)
35 Exec←{id}∪Exec
36 if p = leader(bal) then remove(pending_log, id)

37 function pset(id):
38 if dep[id] = /0 then return {[id]}
39 else return {id :: l | ∃id′ ∈ dep[id]. l ∈ pset(id′)}

Figure 4: Normal operation at a replica p.

d is in the COMMIT or ACCEPT phase, the set is reduced to
{[c,d]}. Thanks to the preconditions at lines 23 and 31, this
is safe: if a command is committed or accepted then so is
any of its transitive dependencies. When the reduced sets
match, the omitted parts match as well, as they correspond to
the ordering at the leader. Additionally, instead of the paths
themselves one may send hashes of the (reduced) paths [44].
This optimization is also applied in our implementation.

Garbage collection. Standard periodic checkpoints can be
used to bound memory usage of the protocol [7,23]. In our im-
plementation, we simply trim a command from the protocol’s
state once it is executed at all replicas. In §5.1 we discuss the
memory consumption in more detail.

40 function recover():
41 let b > bal such that leader(b) = p
42 send NewLeader(b) to all

43 when received NewLeader(b) from q
44 pre: b > bal
45 status← RECOVERING
46 bal← b
47 send NewLeaderAck(b,cbal,phase,cmd,dep) to q

48 when received NewLeaderAck(b,cbalq,phaseq,cmdq,depq)

from all q ∈ Q
49 pre: status= RECOVERING∧bal= b∧|Q|> n/2
50 reset phase, cmd and dep
51 let bmax = max{cbalq | q ∈ Q}
52 let U = {q ∈ Q | cbalq = bmax}
53 forall id such that

∃q ∈U.phaseq[id] ∈ {ACCEPT,COMMIT} do
54 phase[id]← phaseq[id]
55 cmd[id]← cmdq[id]
56 dep[id]← depq[id]
57 forall id /∈ Accept∪Commit do
58 if ∃D ̸=⊥.∃Q f ∈ FQ (bmax).Q∩Q f ⊆U

∧∀q ∈ Q∩Q f .depq[id] = D then
59 phase[id]← ACCEPT
60 cmd[id]← cmdq[id]
61 dep[id]←

D∪{id′ | cmd[id′] ▷◁ cmd[id]∧ id /∈ dep[id′]}
62 forall (id, id′) such that id′ ∈ Start∩dep[id] do
63 dep[id]← dep[id]\{id′}
64 arbitrarily break cycles in dep
65 send Sync(b,phase,cmd,dep) to R

66 when received Sync(b,phase,cmd,dep)
67 pre: b≥ bal
68 status← NORMAL; bal← b; cbal← b
69 phase← phase; cmd← cmd; dep← dep
70 clear(pending_log)
71 if slow(p,b) then
72 forall id in an order consistent with dep do
73 if p = leader(b)∧ id /∈ Exec then
74 pending_log← pending_log · cmd[id]
75 else if id ∈ Accept then
76 send SlowAck(b, id) to R

Figure 5: Recovery at a replica p.

4.2 Recovery from Leader Failures
Replicas continuously monitor the progress of the protocol.
When the current leader is suspected of hindering progress,
the protocol nominates a new one to take over. This nomi-
nation can be done in a standard way, e.g., using a failure
detector [8], and we defer the details to §A.4. We now explain
the algorithm followed by the potential leader.

Leadership change. The recovery procedure begins similarly
to Paxos [29]. When a replica p is nominated to become the
new leader, it calls recover (line 40). This function picks
a new ballot b led by p and higher than any ballot p has
previously joined. Replica p then sends b in a NewLeader
message to all replicas, asking them to support its leadership.
A replica acknowledges p as the new leader only if b is higher

than any ballot it has previously joined (line 44). In this case
the replica changes its status to RECOVERING, which stops
normal message handling, and replies with a NewLeaderAck
message carrying the commands it knows about.

Once the leadership of p is approved by a quorum Q
(line 48), p’s next goal is to bring the replicas into the same
state from which they will resume processing commands.

Recovering commands. To maintain consensus on depen-
dencies (Invariant 1), the new leader’s state must include all
commands committed in lower ballots. To ensure this, the
leader computes the initial state of b based on the states and
the values of a cbal variable reported by the replicas in their
NewLeaderAck messages. This variable maintains the last
ballot at which each replica successfully completed recovery.

Similarly to Paxos [29], p focuses on the set U of replicas
that reported the maximal ballot bmax: the state of these repli-
cas supersedes that of replicas from lower ballots. The leader
p then incorporates into its state all the commands that could
have been committed up to bmax. In lines 53–56 the leader
does this for commands that could have been committed on
the slow path. Any such command would have to be accepted
by a slow quorum Qs, which must intersect with the recovery
quorum Q in at least one process. Hence, for each command
c in the ACCEPT or COMMIT phase at a replica q ∈ U , the
leader incorporates c and its dependencies as reported by q
into its state. In lines 58–61 the leader collects all commands
that could have been committed up to bmax on the fast path.
Any such command would have to be preaccepted with the
same dependencies by a fast quorum Q f . Hence, p adds to its
state all commands c such that Q∩Q f ⊆U and all replicas in
Q∩Q f report the same dependency set D for c. This condition
is similar to Fast Paxos [31]; we later explain the rationale for
the second term of the union at line 61 and how we ensure that
we don’t create cycles in the dependency graph. Note that the
condition at line 58 defines D uniquely: there may not be two
different fast quorums Q f and Q′f whose members in Q re-
port different dependency sets. This is because (FQI) implies
(Q∩Q f)∩ (Q∩Q′f) = Q∩Q f ∩Q′f ̸= /0. But then the depen-
dencies reported for the command c by Q∩Q f and Q∩Q′f
cannot be distinct, since they were reported by some replica
belonging to both sets.

Thanks to the conditions at lines 53 and 58, all commands
committed at earlier ballots are included into the new state.
Next, the leader removes from the dependency graph all com-
mands that do not satisfy those conditions (lines 62-63). To
see that the loop at line 62 does not violate safety properties,
note that for a pair of commands c and c′ whose identifiers
id and id′ satisfy the condition at line 62, neither command
can be committed at a previous ballot: c′ is not committed
because it does not satisfy any of the two conditions at line 53
and line 58; c is not committed because it depends on an un-
committed command c′. Thus, it is safe to completely remove
c′ from the state and update the dependencies of c.

Q f 0 = {p0, p1, p3, p4}
Q f 1 = {p1, p2, p3, p4}
Q f 2 = {p0, p2, p3, p4}

p0 : c0→c1→ c2→c3→ c4
p1 : c2→c3→ c4→c5→ c0
p2 : c4→c5→ c0→c1→ c2

Qr = {p0, p1, p2} F = {p3, p4}

(a)

p0 p1

p2

Qr∩Q f 0
Q r
∩

Q
f1

Q
r ∩

Q
f2

(b)

c0
c1

c2
c3

c5

c4

/

(c)

Figure 6: Avoiding dependency cycles during recovery.

After the above computation, the leader breaks cycles in
the dependency graph; we explain this step shortly. The
leader then broadcasts a Sync message, defining the state
from which the new ballot starts. When another replica re-
ceives this message (line 66), it overwrites its state with the
one provided, changes its status to NORMAL, and clears the
log of pending commands. If the replica belongs to a slow
quorum, it broadcasts a SlowAck message for each uncom-
mitted command (line 76), to ensure that such commands are
committed in the new ballot. Finally, if the replica is the new
leader, it adds all unexecuted commands to pending_log in
an order consistent with the dependencies (line 72).

Recovery can be easily optimized so that Sync messages
only transfer the parts each replica is missing (although our
prototype implementation omits this optimization).

Preserving the invariants. During the normal protocol oper-
ation, both on the fast and slow paths replicas commit com-
mands with the dependencies proposed by the leader. Then,
due to the way the leader computes its proposals, commit-
ted conflicting commands cannot be independent, and the
dependencies of committed commands cannot form a cycle,
as respectively required by Invariants 2 and 3. However, pre-
serving these invariants during recovery requires care.

First, during recovery the new leader can introduce a cycle
when it merges replica states. To see how this can happen,
consider the example illustrated in Figure 6. The system con-
sists of five replicas and recovers from Qr = {p0, p1, p2} after
the failure of the remaining replicas F = {p3, p4}. Assume
that on recovery all replicas in Qr report the same cbal = b
and the orderings shown in Figure 6a. Assume also that the
leader of b is p4, and that this ballot is associated with three
fast quorums Q f 0, Q f 1 and Q f 3, defined in the figure. On re-
covery the replicas in Qr ∩Q f 0, Qr ∩Q f 1 and Qr ∩Q f 2 agree
on the orders c2→ c3→ c4, c4→ c5→ c0 and c0→ c1→ c2,
respectively (Figure 6b). According to line 58, the new leader
has to incorporate all of them into its state. But when these
orderings are combined, they yield a cycle over commands
c0, . . . ,c5. To preserve Invariant 3 in such cases, the leader
arbitrarily breaks cycles by inverting relations between any
two commands in them (line 64). For example, the cycle in

Figure 6 can be broken by removing c5 from dep[id(c0)] and
adding c0 to dep[id(c5)] (Figure 6c). Note that this compu-
tation does not violate Invariant 1 because it changes only
those dependencies that could not have been committed in
previous ballots. Namely, if some command on the cycle is
committed, then so are all its predecessors, i.e., all commands
on the cycle (by line 31); but this is impossible by Invariant 3.
We refer to §A for a detailed proof.

When computing the new state during recovery, the new
leader can also end up with two conflicting commands none
of which is a dependency of the other. To see how this can
happen, imagine that in Figure 1 recovery occurs right after
the moment p3 received FastAck(b,x, /0,_) from the leader.
At this moment the replica has x in the ACCEPT phase with an
empty set of dependencies, and z in the PREACCEPT phase,
with y as its only dependency. Incorporating both commands
into the new state with the dependencies reported by p3 would
violate Invariant 2, because neither of the conflicting com-
mands x and z is a dependency of the other. To avoid such
situations, the new leader updates dependency sets of the com-
mands that are not in the ACCEPT or COMMIT phase at some
replica of the recovery quorum (line 61). The leader adds to
the dependencies of c all conflicting commands, excluding
those that already depend on c. In the above example, the
leader includes x in the dependency set of z (line 61), which
is safe because z is not committed at previous ballots. In §A
we prove that this computation is also safe in general.

4.3 Recovery from Client and Follower Failures
Before voting on a command, a replica must know its payload
(lines 6 and 23), which may not be available locally if the
client has failed. To deal with this, if the replica receives an
acknowledgment from the leader regarding this command,
after some time it tries to fetch the payload from the leader.
Additionally, followers re-propose commands if they are not
committed after some timeout. This helps when the payload
is available at followers but missing at the leader.

Follower failures do not impact the availability of
SwiftPaxos. But the failure of a follower within the fast quo-
rum can disable the fast path of the protocol and degrade its
performance. SwiftPaxos can deal with this using the same
procedure as for leader failures, changing the ballot to one
with a different fast quorum.

4.4 Optimistic Execution
The execution performed by the leader to compute the result
of a command (line 17 in Figure 4) is optimistic: at the time
the leader invokes opt_exec, the command has not yet been
accepted by the followers. However, the followers will always
accept the command unless one of them suspects the leader
of failure, which happens rarely. Hence, the work done during
the optimistic execution is rarely lost.

The optimistic execution in SwiftPaxos can be imple-
mented using existing mechanisms [25, 28, 41, 49]. For ex-

ample, the command’s response can be computed by reading
the local copy while taking into account prior uncommit-
ted commands in pending_log, and its side effects can be
buffered until commit. Such a mechanism is already at work
in industrial-grade systems, such as Zookeeper [23].

SwiftPaxos can also be optimized by speculatively exe-
cuting read-only commands not at the leader, but at any fast
quorum replica. A client receives a reply from this replica and,
as before, accepts it on the fast path when other fast quorum
members report matching dependency paths. This optimiza-
tion distributes the load across replicas, preventing the leader
from saturating. We assess its benefits in §5.6.

5 Evaluation

Our evaluation compares SwiftPaxos against several other
protocols, as detailed next. All protocols are written in Go,
building on the codebase of EPaxos [38]. The source code is
publicly available [1].

Paxos [29]. Commands get ordered and disseminated by the
leader replica, which is also in charge of replying to clients.
N2Paxos. A variation of Paxos that broadcasts 2B messages
(corresponding to our SlowAcks) to all replicas. A client
receives the response from the site closest to it. This cuts one
message delay for clients close to a replica, allowing them to
learn a response in 3 message delays instead of 4.
FastPaxos+ [31]. Clients send their requests directly to all
replicas, and a command is committed if enough replicas
agree on its ordering. When replicas disagree, the protocol
starts a new ballot of N2Paxos. We implement uncoordinated
collision recovery [31] (hence the +), which reduces commit
latency in exchange for a fixed collision-recovery quorum. In
this version replicas locally compute a proposal for the next
ballot, bypassing the coordinator and saving one round trip.
GPaxos [30]. Generalized Paxos improves Fast Paxos by
increasing fast path rate using the commutativity of com-
mands. However, it needs heavy metadata that requires fre-
quent checkpointing [20, 47].
CURP+. CURP [41] boosts leader-based SMR protocols by
separating ordering from durability. Each command is opti-
mistically executed at the leader while being stored at > 3/4
of replicas (“witnesses”). If there is no conflict, the result of
the optimistic execution at the leader is usable right away,
without waiting for the command to commit. CURP is a
primary-backup replication protocol, i.e., it uses only f +1
replicas but requires accurate failure detection. We use its vari-
ant for 2 f +1 replicas [41, Appendix B.2] based on N2Paxos,
to reduce latency (hence the +). See §B for the details.
EPaxos [38]. A leaderless protocol where clients connect to
the closest replica, which coordinates access to the replicated
service. In the conflict-free case, clients co-located with a
replica know the response after 2 message delays. Far-away

clients need an extra round trip to receive it. We deploy
EPaxos in thrifty mode, which reduces the overall number of
sent messages and the size of fast quorums.
Mencius [37]. Mencius rotates the role of the consensus
leader among the replicas. This spreads the load, but makes
the system run at the speed of the slowest replica.

We use two benchmarks: a no-op service and a key-value
store with an API following the one of YCSB [13]. The data
model is a set of records that are accessed using the com-
mands insert, get, and update. Each record is stored un-
der some key. Two commands conflict when they access the
same record and one of them is a write. The no-op service
executes commands accessing a random key and carrying a
default payload of 1 KB (the standard YCSB payload size).
Two commands conflict when they are on the same key. Fol-
lowing standard practice [38], to measure performance under
a conflict rate ρ a client chooses key 0 with a probability ρ,
and some unique key otherwise.

We deploy the services on Amazon EC2 over 5 replicas
in different geographical regions, so that the system tolerates
both a failure and a planned outage due to maintenance—a
common deployment configuration [14]. Clients are spread
over 10 regions all around the world, 2 of which also host
replicas. Hence, our experiments use 13 EC2 regions in total
(see §C for more details). Both clients and replicas execute
in virtual machines running Amazon Linux 2 with 16 vCPUs
and 32 GB of main memory. Unless stated otherwise, clients
execute commands in a closed loop, waiting for the previous
command to return before submitting a new one. Leader-
based protocols execute with the leader placed at the site that
minimizes the average (mean) latency across all clients. By de-
fault, our experiments use configuration (C2) to satisfy (FQI)
for both SwiftPaxos and FastPaxos+, as it is slightly more
favorable than (C1). We investigate the trade-offs between
the two configurations in §5.5.

5.1 Impact of the Conflict Rate

Our first experiment varies the conflict rate from 0 to 100% in
10% increments. Each site hosts 100 clients (1000 clients in
total). Figure 7(a) presents the speedup relative to Paxos. The
latency experienced by clients under each protocol depends
on where they are relative to the replicas. The top row of
Figure 7(a) reports the average (mean) latency across all sites.
The middle row reports the speedup observed at the best site
for SwiftPaxos, and the bottom row reports the worst.

The latencies of Paxos, N2Paxos, and FastPaxos+ are in-
dependent of the conflict rate. On average the improvement
of N2Paxos over Paxos is slightly below 1.05x: from 239 ms
to 229 ms. This is due to clients co-located with replicas,
which benefit from the broadcast of 2B messages. FastPaxos+
has an almost null fast path ratio because it is rare that the
replicas receive two concurrent commands (conflicting or
not) in the same order. Its slow path follows the message

1.0×

1.5×

2.0×
Average

0.0

0.2

0.4

0.6

0.8

1.0
Average

1.0×

1.5×

2.0×
Best

0.0

0.2

0.4

0.6

0.8

1.0
Best

1.0×

1.5×

2.0×

0 20 40 60 80 100

Worst

100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0
Worst

sp
ee

du
p

C
D

F

SwiftPaxos
CURP+

EPaxos
GPaxos

FastPaxos+
N2Paxos

Paxos
Mencius

sp
ee

du
p

C
D

F

sp
ee

du
p

conflict rate (%)
(a)

C
D

F

latency (ms)
(b)

Figure 7: (a) Speedup over Paxos when varying the conflict rate
and (b) latency distribution under 2% conflicts. From top to bottom,
we report the average (mean), best, and worst sites for SwiftPaxos.

flow of N2Paxos with one difference: to take the slow path, a
replica must first detect a collision (with a majority of 2B mes-
sages). This explains why FastPaxos+ is slower than N2Paxos:
300 ms against 229 ms. For this reason, the average latency
of FastPaxos+ is omitted from Figure 7(a). The same happens
with Mencius, which displays a latency of 360 ms on average.

The average latency of SwiftPaxos is between 170 ms and
201 ms. With a 0% conflict rate this is 1.4x faster than Paxos.
Each 10% increase in the conflict rate yields a 1–3% increase
in latency. With 100% of conflicts, the speedup is 1.19x. At 7
out of 10 client sites SwiftPaxos is more than 20% faster than
Paxos, achieving more than 40% improvement at 3 of them.

At a low conflict rate, EPaxos and GPaxos are faster than
Paxos, yet both see their performance decrease abruptly as
conflicts increase. This is mainly explained by the drop in the
fast path ratio. Another reason is that at 8 out of 10 client sites
there is no service replica. These clients need an extra round-
trip to get a reply. In EPaxos, performance also deteriorates
due to the convoy effect in command execution (§3.4). Thanks
to its optimistic execution mechanism, CURP+ is the second
best protocol, with a 1.18x speedup on average. Similarly to
other protocols, its performance decreases with conflicts.

SwiftPaxos is faster than other protocols at all sites except
one (last row in Figure 7(a)): this site is too far away from
the fast quorum to leverage it. The improvement over CURP+

0
100
200
300
400
500
600

0 5 10 15 20

la
te

nc
y

(m
s)

throughput (Kcmd/sec)

SwiftPaxos (2%)
CURP+ (2%)

Paxos
EPaxos (2%)

Mencius
N2Paxos

Figure 8: Saturation points for 5 replicas when the total number of
clients increases from 100 up to 5000.

comes from a better fast path condition and smaller fast path
quorums.

5.2 Tail Latency
Figure 7(b) reports the cumulative distribution function (CDF)
of the latency at clients with 2% of conflicts. As before, we
run 100 clients per site. EPaxos has a suboptimal tail latency
distribution due to a convoy effect in its execution mechanism
(§3.4). GPaxos has similar issues because it requires complex
data structures and needs to regularly start new ballots to
minimize metadata. Other leader-based protocols do not suffer
from tail latency issues.

5.3 Metadata Usage
The leader in Paxos sends the payload of each command to the
quorum of replicas. This is not the case with SwiftPaxos, be-
cause the protocol uses command identifiers for ordering. As
a consequence, SwiftPaxos can be cheaper than Paxos when
contention is rare. With 0% conflicts, metadata in SwiftPaxos
consumes 2.83 GB in the experiment of Figure 7(a). This
is 1.16x better than Paxos (3.27 GB). The protocol message
complexity increases with more conflicts. In Figure 7(a) with
100% conflicts data consumption is 3.36 GB, around 3% more
than Paxos. At a replica, the dependency graph grows over
time, but shrinks due to garbage collection (see §4.1). In Fig-
ure 7(a), the average size of a command’s dependency set is
only 24 B. On average, the dependency graph at a replica is
about 8% of the protocol’s memory usage.

5.4 Scalability
To evaluate the scalability of SwiftPaxos, we run an experi-
ment that progressively brings it to saturation. The results are
reported in Figure 8. The total number of clients increases
from 100 to 5000, and the payload of each command is set to
3 KB (this payload size is chosen so as to saturate the system
with a reasonable number of client machines).

During this experiment, Paxos and N2Paxos display sim-
ilar behavior. The two protocols saturate when 2500 clients
are deployed across the 10 sites. This is due to the fact that
the leader is in charge of broadcasting the commands to the

0K

2K

4K

6K

0 20 40 60 80

(a)

(b)

0 20 40 60 80

(a)

(b)

th
ro

ug
hp

ut
(c

m
d/

se
c)

time (sec)
(C1)

time (sec)
(C2)

SwiftPaxos EPaxos Paxos

Figure 9: An execution for configurations (C1) and (C2) where (a)
a replica slows down and (b) the leader fails.

replicas. In the absence of conflicts, the throughput of EPaxos
is around 24% higher than that of Paxos (7.8K ops/s against
6.3K ops/s) at almost the same average latency (≈260 ms).
When we further increase the system load, responsiveness is
affected. Saturation occurs at 400 clients per site, where the
system delivers 12K ops/s at an average latency of 424 ms.

In contrast to Paxos, leader-based algorithms with fast paths
(CURP+ and SwiftPaxos) do not funnel commands through
the leader. Instead, each client is responsible for sending its
commands to the replicas. This increases the throughput of
the protocol by (at least) 30% on average.

5.5 Performance under Asynchrony
Figure 9 compares how SwiftPaxos, EPaxos, and Paxos be-
have under asynchrony. We run this experiment for both con-
figurations (C1) and (C2) with 100 clients per site. For (C2)
the fast quorum of SwiftPaxos and the lowest-latency quorum
of Paxos are the same. For both configurations after 20 s, the
latency at one site increases by 200 ms, and it drops back to
normal after another 20 s (interval (a)). Then the leader fails
(event (b)).

Before and after the first slowdown, SwiftPaxos performs
slightly better in configuration (C2), confirming that a single
majority fast quorum is beneficial in our configuration. How-
ever, during the slowdown the throughput of (C2) decreases
by 27%, whereas it decreases only by 12% for (C1). The
degradation is smoother in the latter case because (C1) allows
multiple fast quorums, and thus makes the fast path more
robust. In Figure 9, SwiftPaxos always outperforms Paxos.
This is because, in the worst case, the protocol can commit
a command using a slow quorum (see §3.3). Upon event (b),
the two algorithms recover at similar speeds. The gap is the
largest with configuration (C2) where SwiftPaxos and Paxos
take respectively 7 s and 6 s. EPaxos is the most stable proto-
col because it is leaderless: during the two experiments, its
throughput never drops by more than 20%.

5.6 Applications
We now evaluate the protocols under two representative appli-
cation scenarios. In a first scenario, we consider applications
that are pipelining state-machine commands. Such a pattern

1
10
100
500
1000
10000

10 20 30 400

SwiftPaxos EPaxos CURP+
61
52
50

609
560
468

throughput (Kcmd/sec)

w
in

do
w

Figure 10: Throughput under a pipelined workload with different
window sizes.

A

B

C

D

5 10 15 200

SwiftPaxos SwiftPaxosreads CURP+ EPaxos

A

B

C

D

5 10 15 20

throughput (Kcmd/sec)

w
or

kl
oa

d

throughput (Kcmd/sec)

w
or

kl
oa

d

Figure 11: Throughput under different YCSB workloads.

occurs in log replication as well as in pub/sub architectures.
In the second scenario, we run the Yahoo! Cloud Serving
Benchmark (YCSB) [13].

Pipelining (Figure 10). In this synthetic benchmark clients
pipeline commands to the protocol. This pattern is common in
distributed applications, for instance in pub/sub systems such
as Apache Kafka [27]: in this case all the messages published
by the producer are appended to a log before being read by the
consumers. A similar pattern is used when updating an object
o accessible through a reference r [23]. The client creates
a new version o′ of o via asynchronous changes, and then
atomically updates r to store the address of o′.

In this experiment, we deploy a client at every datacenter.
Each client pipelines commands accessing the same key. Each
command carries a payload of 4 KB. The window parameter
determines the maximum number of in-flight commands.

Even though commands are received in the same order at
the replicas, CURP+ never takes the fast path. This is because
witnesses in CURP+ cannot process more than one conflicting
command at a time. Conversely, because the run is contention-
free, replicas in EPaxos and SwiftPaxos compute the same
dependencies, enabling the fast path. On average, both proto-
cols improve over CURP+ by 24% and 49%, respectively.

YCSB (Figure 11). This benchmark consists of workloads
with zipfian-like access patterns: workload A is update-heavy
(20% update, 80% get), B is read-heavy (95% get, 5%
update) and C is read-only. Workload D contains repeated

reads (95% of the calls) mixed with insertions of new records.
The key-value store service holds 106 records. A record has
10 fields of 800 B each (8 KB in total). We run 4000 YCSB
clients scattered around the world, 400 per site.

In Figure 11, SwiftPaxosreads indicates that read requests
are optimistically executed at the closest fast quorum replica,
and thus not necessarily at the leader (§4.4). Paxos is not eval-
uated because, as shown in Figures 7 and 8, EPaxos performs
better than Paxos under low conflict rates. This is the case in
YCSB, as the benchmark is read-dominated.

EPaxos is most efficient with the read-only workload (C).
In this case, all commands execute after a single round trip
to the closest quorum, and only the replica that submitted
a command executes it. In Workload C, the performance of
CURP+ and SwiftPaxos without optimized reads is limited, as
only the leader responds to clients. When reads are optimisti-
cally executed at any fast quorum replica, SwiftPaxosreads im-
proves over the base version of the protocol, from 17K ops/s
to 19K ops/s. In Workload D, the protocols behave similarly
to Workload C, as there are also no conflicts.

Workloads A and B contain respectively 20% and 5% of
writes. The access distribution is zipfian, with 20% of chance
to access the 12 most popular records. In Workload B, CURP+
and SwiftPaxos are around 1.8x faster than EPaxos. This
difference is due to the high ratio of slow paths and the convoy
effect: 5% of the slowest commands take 470 ms to execute.
This performance gap further increases with workload A,
where CURP+ and SwiftPaxos provide respectively 2.2x and
2.9x improvement over EPaxos.

6 Related Work

Standard SMR protocols [22, 29, 39] are leader-driven, re-
quiring 4 message delays for a client to receive a response:
a round-trip from the client to the leader plus a round-trip
from the leader to the replicas. Replicas can compute the re-
sponse earlier if they exchange Paxos 2B messages. This cuts
one message delay for clients close to a replica, but faraway
clients still need one more message delay to get notified. We
evaluate this variation of Paxos in §5. SDPaxos [52] separates
durability from ordering. As the leader still orchestrates order-
ing, clients not co-located with a replica wait for 4 message
delays for a response.

Detecting conflicts to boost parallelism has a long history
in distributed systems [10,34,49,51]. Fast Paxos [31] was the
first SMR protocol that used fast paths to minimize latency,
allowing clients to contact replicas directly. Later work lever-
aged commutativity to increase the chances of taking the fast
path [30, 42, 47]. As explained in §1, leader-based protocols
following this approach can only resolve a conflict via a ballot
change, which may require extensive state transfer between
replicas and disrupts the system.

EPaxos, a leaderless SMR protocol, reduces the average
latency under low conflict rates. But as we noted in §3.4 and

§5.2, its tail latency is high due to a convoy effect in command
execution [6, 19, 50]. It also requires clients to route requests
via a data replica, increasing latency. As shown in [18], follow-
ups to EPaxos, such as Caesar [3] and Atlas [17], suffer from
the same problems. Tempo [18] uses a decentralized time-
stamping mechanism to reduce the convoy effect in leaderless
SMR, but does not fully eliminate it. Gryff [6] mixes EPaxos
with ABD [4]. The protocol speeds up blind writes, but like
in ABD, has expensive reads [15]. Mencius [37] distributes
leader responsibilities round-robin. When conflicts are rare,
this protocol is slower than EPaxos [17, 38].

Several protocols rely on optimistic execution to boost per-
formance. Speculative Paxos [44] enforces spontaneous or-
dering in the network to obtain identical optimistic execution
at all replicas. Eve [25] executes state-machine commands
optimistically in parallel, failing back to sequential execution
if the results do not match. In practice, clients might not be lo-
cated near a service replica [2,5]. For such clients, CURP [41]
speeds up the response by executing optimistically commands
at the leader. CURP does not use dependencies but instead
computes a total order. In particular, a client accepts the result
of optimistic execution only if it is conflict-free. SwiftPaxos
is more permissive, allowing the result to be used as long as
the dependency paths match.

Some protocols leverage access locality to boost SMR
performance [11,12,43]. These protocols use Paxos as a black
box, invoking it one or more times per command. Spanner [14]
and CockroachDB [48] also use it to implement the more
complex abstraction of strongly consistent transactions. All
these systems may benefit from the performance improvement
brought by SwiftPaxos.

Some recent works [24, 35] use dedicated network compo-
nents to implement fast SMR protocols. But this approach
has not yet been applied to geo-distributed systems.

7 Conclusion

Over the past decade a plethora of protocols was pro-
posed to improve SMR in geo-distributed systems. Unfortu-
nately, these protocols may deliver a lower performance than
Paxos when contention on the replicated service increases.
SwiftPaxos does not have this drawback. It executes a com-
mand in 2 message delays if there is no contention, and in
3 message delays otherwise. Our experimental evaluation
demonstrates the benefits of this design. SwiftPaxos delivers
16–29% lower average latency than Paxos, and its throughput
is up to 2.9x that of EPaxos.

Acknowledgements. This work was partially supported by
the RACCOON project funded by the European Research
Council, the PRODIGY and DECO projects funded by
MCIN/AEI, and the BLOQUES project funded by the Madrid
regional government. The authors thank the anonymous re-
viewers and their shepherd, Jay Lorch.

References

[1] SwiftPaxos codebase. https://github.com/
imdea-software/swiftpaxos.

[2] M. S. Ardekani and D. B. Terry. A Self-Configurable
Geo-Replicated Cloud Storage System. In Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2014.

[3] B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravin-
dran. Speeding up Consensus by Chasing Fast Decisions.
In Conference on Dependable Systems and Networks
(DSN), 2017.

[4] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing Memory
Robustly in Message-Passing Systems. Journal of the
ACM, 42(1), 1995.

[5] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khor-
lin, J. Larson, J. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing Scalable, Highly Available Stor-
age for Interactive Services. In Conference on Innova-
tive Data Systems Research (CIDR), 2011.

[6] M. Burke, A. Cheng, and W. Lloyd. Gryff: Unifying
Consensus and Shared Registers. In Symposium on
Networked Systems Design and Implementation (NSDI),
2020.

[7] M. Burrows. The Chubby Lock Service for Loosely-
Coupled Distributed Systems. In Symposium on Op-
erating Systems Design and Implementation (OSDI),
2006.

[8] T. D. Chandra and S. Toueg. Unreliable Failure Detec-
tors for Reliable Distributed Systems. Journal of the
ACM, 43(2), 1996.

[9] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and
D. Phillips. Giza: Erasure Coding Objects across Global
Data Centers. In USENIX Annual Technical Conference
(USENIX ATC), 2017.

[10] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.
Morris, and E. Kohler. The Scalable Commutativity
Rule: Designing Scalable Software for Multicore Pro-
cessors. ACM Transactions on Computer Systems, 32(4),
2015.

[11] P. R. Coelho and F. Pedone. Geographic State Machine
Replication. In Symposium on Reliable Distributed
Systems (SRDS), 2018.

[12] P. R. Coelho and F. Pedone. GeoPaxos+: Practical Geo-
graphical State Machine Replication. In Symposium on
Reliable Distributed Systems (SRDS), 2021.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrish-
nan, and R. Sears. Benchmarking Cloud Serving Sys-
tems with YCSB. In Symposium on Cloud Computing
(SoCC), 2010.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
Globally-Distributed Database. In Symposium on Op-
erating Systems Design and Implementation (OSDI),
2012.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-Value Store. In Symposium on Operating
Systems Principles (SOSP), 2007.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the Presence of Partial Synchrony. Journal of the ACM,
35(2), 1988.

[17] V. Enes, C. Baquero, T. França Rezende, A. Gotsman,
M. Perrin, and P. Sutra. State-Machine Replication for
Planet-Scale Systems. In European Conference on Com-
puter Systems (EuroSys), 2020.

[18] V. Enes, C. Baquero, A. Gotsman, and P. Sutra. Effi-
cient Replication via Timestamp Stability. In European
Conference on Computer Systems (EuroSys), 2021.

[19] T. França Rezende and P. Sutra. Leaderless State-
Machine Replication: Specification, Properties, Limits.
In International Symposium on Distributed Computing
(DISC), 2020.

[20] T. França Rezende, P. Sutra, R. Q. Saramago, and L. J.
Camargos. On Making Generalized Paxos Practical.
In International Conference on Advanced Information
Networking and Applications (AINA), 2017.

[21] M. P. Herlihy and J. M. Wing. Linearizability: a Cor-
rectness Condition for Concurrent Objects. ACM Trans-
actions on Programming Languages and Systems, 12(3),
1990.

[22] H. Howard, D. Malkhi, and A. Spiegelman. Flexible
Paxos: Quorum Intersection Revisited. In Interna-
tional Conference on Principles of Distributed Systems
(OPODIS), 2016.

[23] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In USENIX Annual Technical Conference
(USENIX ATC), 2010.

https://github.com/imdea-software/swiftpaxos
https://github.com/imdea-software/swiftpaxos

[24] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica. Netchain: Scale-Free Sub-RTT
Coordination. In Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[25] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi,
and M. Dahlin. All about Eve: Execute-Verify Replica-
tion for Multi-Core Servers. In Symposium on Operating
Systems Design and Implementation (OSDI), 2012.

[26] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-Data Center Consistency. In
European Conference on Computer Systems (EuroSys),
2013.

[27] J. Kreps, N. Narkhede, and J. Rao. Kafka: a Distributed
Messaging System for Log Processing. Workshop on
Networking Meets Databases (NetDB), 2011.

[28] R. Ladin, B. Liskov, and L. Shrira. Lazy Replication:
Exploiting the Semantics of Distributed Services. In
Symposium on Principles of Distributed Computing
(PODC), 1990.

[29] L. Lamport. The Part-Time Parliament. ACM Transac-
tions on Computer Systems, 16(2), 1998.

[30] L. Lamport. Generalized Consensus and Paxos. Techni-
cal report, Microsoft Research, 2005.

[31] L. Lamport. Fast Paxos. Distributed Computing, 19,
2006.

[32] L. Lamport, D. Malkhi, and L. Zhou. Vertical Paxos
and Primary-Backup Replication. In Symposium on
Principles of Distributed Computing (PODC), 2009.

[33] L. Lamport and M. Massa. Cheap Paxos. In Conference
on Dependable Systems and Networks (DSN), 2004.

[34] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making Geo-Replicated Systems Fast as
Possible, Consistent When Necessary. In Symposium on
Operating Systems Design and Implementation (OSDI),
2012.

[35] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Just Say No to Paxos Overhead: Re-
placing Consensus with Network Ordering. In Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

[36] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson,
L. Shrira, and M. Williams. Replication in the Harp
File System. In Symposium on Operating Systems Prin-
ciples (SOSP), 1991.

[37] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building Efficient Replicated State Machine for WANs.
In Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2008.

[38] I. Moraru, D. G. Andersen, and M. Kaminsky. There Is
More Consensus in Egalitarian Parliaments. In Sympo-
sium on Operating Systems Principles (SOSP), 2013.

[39] D. Ongaro and J. Ousterhout. In Search of an Under-
standable Consensus Algorithm. In USENIX Annual
Technical Conference (USENIX ATC), 2014.

[40] R. Pang, R. Cáceres, M. Burrows, Z. Chen, P. Dave,
N. Germer, A. Golynski, K. Graney, N. Kang, L. Kiss-
ner, J. L. Korn, A. Parmar, C. D. Richards, and M. Wang.
Zanzibar: Google’s Consistent, Global Authorization
System. In USENIX Annual Technical Conference
(USENIX ATC), 2019.

[41] S. J. Park and J. Ousterhout. Exploiting Commutativ-
ity For Practical Fast Replication. In Symposium on
Networked Systems Design and Implementation (NSDI),
2019.

[42] F. Pedone and A. Schiper. Generic Broadcast. In Inter-
national Symposium on Distributed Computing (DISC),
1999.

[43] S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B. Ravin-
dran. Making Fast Consensus Generally Faster. In Con-
ference on Dependable Systems and Networks (DSN),
2016.

[44] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Kr-
ishnamurthy. Designing Distributed Systems Using
Approximate Synchrony in Data Center Networks. In
Conference on Networked Systems Design and Imple-
mentation (NSDI), 2015.

[45] F. B. Schneider. Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial. ACM
Computing Surveys, 22, 1990.

[46] A. Shraer, B. Reed, D. Malkhi, and F. P. Junqueira. Dy-
namic reconfiguration of primary/backup clusters. In
USENIX Annual Technical Conference (USENIX ATC),
2012.

[47] P. Sutra and M. Shapiro. Fast Genuine Generalized Con-
sensus. In Symposium on Reliable Distributed Systems
(SRDS), 2011.

[48] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis,
T. Grieger, K. Niemi, A. Woods, A. Birzin, R. Poss,
P. Bardea, A. Ranade, B. Darnell, B. Gruneir, J. Jaffray,
L. Zhang, and P. Mattis. CockroachDB: The Resilient
Geo-Distributed SQL Database. In International Con-
ference on Management of Data (SIGMOD), 2020.

[49] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing Update
Conflicts in Bayou, a Weakly Connected Replicated
Storage System. In Symposium on Operating Systems
Principles (SOSP), 1995.

[50] S. Tollman, S. J. Park, and J. K. Ousterhout. EPaxos
Revisited. In Symposium on Networked Systems Design
and Implementation (NSDI), 2021.

[51] W. E. Weihl. Commutativity-Based Concurrency Con-
trol for Abstract Data Types. IEEE Transactions on
Computers, 37(12), 1988.

[52] H. Zhao, Q. Zhang, Z. Yang, M. Wu, and Y. Dai.
SDPaxos: Building Efficient Semi-Decentralized Geo-
replicated State Machines. In Symposium on Cloud
Computing (SoCC), 2018.

A Correctness

4. If at a replica cmd[id] = c ̸=⊥ then id(c) = id and Propagate(c) is a sent message.

5. At a replica, whenever a command c is in the START phase, it does not belong to the dependencies of any command.

6. When a replica p sends an Ack message, cbal= bal at p.

7. At a ballot b

• if leader(b) sends Ack(b, id,D,_) and Ack(b, id,D′,_) then D = D′;

• if leader(b) sends Ack(b, id,D,_) and Sync(b,_,_,dep) then dep[id] = D;

• if leader(b) sends Sync(b,phase,cmd,dep) and Sync(b,phase′,cmd′,dep′) then phase = phase′, cmd = cmd′ and
dep = dep′.

8. If a replica sends an Ack message at a ballot b and a NewLeaderAck(b′,_,_,_,_) message with b′ > b then it sends Ack
before sending NewLeaderAck.

9. If the leader of a ballot b sends Ack(b,_,_,P) after sending Ack(b, id,D,_) for id ∈ Ids(P) then D = Dep(id,P).

10. If a replica has cbal= b, dep[id] = D and id ∈ Accept∪Commit then there is a moment when leader(b) has cbal= b and
status= NORMAL, and after which whenever it has cbal= b and status= NORMAL it also has dep[id] = D.

11. If 3acc(b, id,c,P) and 3acc(b, id,c′,P′) hold then c = c′ and Dep(id,P) = Dep(id,P′).

12. If 3acc(b,_,_,P) then for all id ∈ Ids(P), whenever a replicas has cbal= b and id ∈ Accept∪Commit, it also has dep[id] =
Dep(id,P).

13. Whenever at a replica a command c is in the ACCEPT or the COMMIT phase, any transitive dependency of c is in the ACCEPT
or the COMMIT phase as well.

14. If 3acc(b,_,_,P) holds then for all id ∈ Ids(P) whenever at a replica we have cbal> b, we also have dep[id] = Dep(id,P)
and id ∈ Accept∪Commit.

Figure 12: Additional invariants of SwiftPaxos.

In this section we prove Invariants 1–3 (defined in §3.2) together with additional low-level invariants listed in Figure 12. We
then show how these invariants imply that SwiftPaxos satisfies the SMR protocol specification (§2).

Definition 1 (acc). We say that a command c with an identifier id is accepted with dependency paths P at a ballot b—and
we write acc(b, id,c,P)—if at b there is a fast or slow quorum such that each replica of this quorum acknowledges P as the
dependency paths of c with FastAck or SlowAck messages.

In the following we say that a replica sends Ack(b, id,D,P) if it sends FastAck(b, id,D,P) or SlowAck(b, id) and by that time
it has dep[id] = D and pset(id) = P.

We write 3acc(b, id,c,P) to denote that at some point of protocol execution acc(b, id,c,P) holds.

Definition 2 (Ids). We say that id appears in a set of dependency paths P (or simply id in P) if there exists at least one path in P
that contains id. We define Ids(P) as the set of all id in P.

Definition 3 (Dep). For a set of dependency paths P and id ∈ Ids(P), we define Dep(id,P) as the dependency set of id inferred
from P.

Note that by definitions of acc and dependency paths, if 3acc(b, id0,c,P) holds for some quorum Q then at the moment when
a replica q ∈ Q sends Ack(b, id0,_,P) message it has dep[id] = Dep(id,P) for all id ∈ Ids(P).

Invariants 4–10 easily follow from the structure of the protocol. We now prove the rest of the invariants.

Proof of Invariant 11. Each time a command c is accepted at a ballot the leader of this ballot must acknowledge c’s dependencies
either with an Ack or a Sync message. By Invariant 7 the leader cannot acknowledge two distinct dependency sets for the same
command at a single ballot.

Proof of Invariant 12. Assume 3acc(b, id0,_,P) and let id be any identifier in Ids(P). Take a replica p with cbal = b and
id ∈ Accept∪Commit. Two cases are possible: either p receives Ack(b, id,D,_) from leader(b), or it receives Sync carrying id
in the ACCEPT or COMMIT phase.

First assume that p receives Ack(b, id,D,_) from the leader of b. Since 3acc(b, id0,_,P) holds, the leader also sends
Ack(b, id0,_,P). Then by Invariant 9, we have D = Dep(id,P). Hence, when p receives Ack(b, id,D,_) from leader(b) it
sets dep[id] to D = Dep(id,P) and after that—according to Invariant 7—dep[id] remains unchanged at b, as required.

Suppose now, that p receives Sync carrying id in the ACCEPT or COMMIT phase with the dependency set D. Then any
replica with cbal= b receives that message, sets dep[id] to D and by Invariant 7 never changes it at b. When leader(b) sends
Ack(b, id0,_,P) message it has dep[id] = Dep(id,P) = D, as required.

Proof of Invariant 13. We prove the invariant by induction on the length of the protocol execution. Initially at any replica each
command is in the START phase and hence, the invariant is satisfied. We now consider transitions at lines 22, 30, and 48, as they
are the only transitions affecting the validity of the invariant in a nontrivial way.
• Transition at line 22. According to line 23 after the execution of the handler at line 22 for a command c, any dependency of c

is in the ACCEPT or COMMIT phase and hence, by induction hypothesis any transitive dependency of c satisfies the invariant.
• Transition at line 30. The handler simply moves an ACCEPTed command to the COMMIT phase, which allows us to conclude

with the induction hypothesis.
• Transition at line 48. By the structure of the protocol after a replica p executes this handler all the commands are in the

START, ACCEPT or COMMIT phase at p. From Invariant 5 the commands that are in the START phase do not belong to the
dependency set of any command, hence our property.

Proof of Invariant 3. By the induction on the length of the protocol execution: at the beginning of the execution dep is empty
at each replica, which makes the dependency graphs acyclic; for the induction step we consider transitions at lines 6, 22, and
48—the only transitions affecting the validity of the invariant in a nontrivial way.
• Transition at line 6. In order to introduce a cycle upon receipt of a Propagate(c) message at a replica p, id(c) must belong

to the dependencies of some other command before the transition is triggered. However, according to the precondition at line
7 at this moment c is in the START phase and, thus, from Invariant 5 no command depends on it, as required.
• Transition at line 22. We prove this case by contradiction. Assume that right after a replica p executed the handler at line 22

for a command c, some command transitively depends on itself at p. According to Invariants 10 and 13, and the precondition
at line 23, all commands of this cycle are in sync with the leader at the time when the leader sends Ack for c. However, by
induction hypothesis, by that time the dependency graph at the leader is acyclic, which yields a contradiction.

• Transition at line 48. According to line 64, after a replica executes the handler at line 48 its dependency graph is acyclic, as
required.

The proof of Invariant 2 relies on the following proposition:

Proposition 1. Whenever at a replica p we have id /∈ p.dep[id′] and id′ /∈ p.dep[id] for two identifiers id and id′ of two conflicting
commands:

1. p is not the leader of its ballot (i.e., p ̸= leader(p.cbal));

2. at p one of two identifiers is in the PREACCEPT phase while the other is in the ACCEPT or the COMMIT phase.

Proof. We prove the proposition by induction on the length of the protocol execution. The property holds at the beginning of the
execution because no commands are recorded at any of replicas. For the induction step we consider transitions at lines 6, 22, and
48, as they are the only transitions affecting the validity of the proposition in a nontrivial way.
• Transition at line 6. Consider a moment when a replica p receives a Propagate(c′) message and take any command c that

conflicts with c′ and which is already recorded in p.cmd. According to line 11, after the execution of handler at line 6 we
have id(c) ∈ p.dep[id(c′)].

• Transition at line 22. Assume that p receives a FastAck(b, id,D,_) message for a command c from the leader. Take any
command conflicting with c with an identifier id′ that is already recorded at p at the moment of the execution of transition.
Let D′ be p.dep[id′] at this moment.
If p is the leader of b then it receives its own proposal, and thus the handler is not affecting dep at p. By induction hypothesis,
before executing this transition process p has id ∈ p.dep[id′] or id′ ∈ p.dep[id], as required.
Suppose that p ̸= leader(b). If by the moment p executes line 22 it has phase[id′] = PREACCEPT then the transition
does not affect the validity of the proposition because in this case p moves id to the ACCEPT phase without changing
phase[id′]. Thus, p has phase[id] = ACCEPT and phase[id′] = PREACCEPT after executing the transition, as required. If
phase[id′] ∈ {ACCEPT,COMMIT} then after the execution of the transition both identifiers are in the ACCEPT or the COMMIT
phase. Therefore, from Invariant 10 there is a moment when leader(b) has dep[id] = D and dep[id′] = D′. By induction
hypothesis at this moment leader(b) has id ∈ dep[id′] or id′ ∈ dep[id], as required.

• Transition at line 48. Let id and id′ be two identifiers of conflicting commands such that process p has dep[id] = D ̸= ⊥
and dep[id′] = D′ ̸= ⊥ after executing transition at line 48. By the structure of the algorithm id ∈ Accept∪Commit and
id′ ∈ Accept∪Commit (lines 54 and 59). We prove that either id ∈ dep[id′] or id′ ∈ dep[id]. We know that both identifiers
satisfy condition at line 53 or condition at line 58. If both identifiers satisfy condition at line 53 then at some point leader(bmax)
has dep[id] = D and dep[id′] = D′ (Invariant 10). By induction hypothesis by this moment either id ∈ D′ or id′ ∈ D, as
required. Assume now that at least one command satisfies condition at line 58. According to line 61 either id ∈ dep[id′] or
id′ ∈ dep[id].

Proof of Invariant 2. Whenever two conflicting commands are committed at a replica p both of them are in the COMMIT phase,
which by Proposition 1 means that one of the two is a dependency of the other.

Proposition 2. If 3acc(b,_,_,P) then whenever there is a quorum Q such that each replica q ∈ Q sends the
NewLeaderAck(b′,cbalq,phaseq,_,depq) message with b′ > b and cbalq ≤ b, the following property holds for any id ∈ Ids(P):

There is a quorum Q′ ∈ FQ (b)∪SQ (b) such that for any replica q ∈ Q∩Q′ we have depq[id] = Dep(id,P), cbalq = b and
if Q′ ∈ SQ (b) then ∀q ∈ Q∩Q′.phaseq[id] ∈ {ACCEPT,COMMIT}.

Proof. Assume 3acc(b, id0,_,P) and let Q be a quorum such that each replica q ∈ Q sends a
NewLeaderAck(b′,cbalq,phaseq,_,depq) message with b′ > b and cbalq ≤ b. Let id ∈ Ids(P). Since 3acc(b, id0,_,P),
there exists a quorum Q′ ∈ FQ (b)∪SQ (b) such that each replica in Q′ sends Ack(b, id0,_,P) message, and by that time it has
dep[id] = Dep(id,P). After sending Acks, replicas in Q′ can change dep[id] at b only if they receive an Ack message from
leader(b) with a proposal different from D. However, according to Invariant 7, once leader(b) has voted for D it never sends a
new proposal at b. Thus, after sending Ack, replicas in Q′ never change dep[id] at b. Moreover, from Invariant 8 we know that at
the moment a replica in Q′ sends a NewLeaderAck message it has cbal ≥ b and since we assume that for all q ∈ Q we have
cbalq ≤ b we also have ∀q ∈ Q∩Q′, cbalq = b. Hence, when a replica q ∈ Q∩Q′ sends the NewLeaderAck message, it has
depq[id] = Dep(id,P), as required. If now we assume that Q′ ∈ SQ (b) then all replicas in Q′ send SlowAck(b, id) messages,
implying that for all q ∈ Q∩Q′, phaseq[id] ∈ {ACCEPT,COMMIT} (lines 24 and 75).

Proof Invariant 14. We prove the invariant by induction on the value of cbal. Assume 3acc(b, id0,_,P) and consider a ballot
b′ > b such that

For all id ∈ Ids(P), whenever a replica has b < cbal< b′, it also has dep[id] = Dep(id,P) and id ∈
Accept∪Commit.

(H)

We prove by induction on the length of the protocol execution that

For all id ∈ Ids(P), whenever a replica has cbal= b′, it also has dep[id] = Dep(id,P) and id ∈ Accept∪
Commit.

(1)

At the beginning of the execution at each replica we have cbal = 0 ≤ b < b′, hence (1) trivially holds. For the induc-
tion step, only handler at line 48 affects validity of the invariant in a nontrivial way. Let p be a replica that receives a
NewLeaderAck(b′,cbalq,phaseq,_,depq) message from each q ∈ Q. Let bmax = max{cbalq | q ∈ Q} and U = {q ∈ Q | cbalq =
bmax}. We prove that after executing transition at line 48, p has dep[id] =Dep(id,P) and id ∈ Accept∪Commit for all id ∈ Ids(P).

We first note that bmax ≥ b. Indeed, from Invariant 8 replicas in Q that have voted for Dep(id,P) at b send an Ack message
before NewLeaderAck, hence bmax ≥ b.

As the first step, we prove that after executing transition at line 48 up to line 61, p has dep[id] = Dep(id,P) and id ∈
Accept∪Commit for any id ∈ Ids(P). We then prove that after executing lines 62–64 the dependency sets of all identifiers in
Ids(P) remain unchanged.
Step 1. Take any id ∈ Ids(P) and c such that id(c) = id.

• Suppose that bmax > b. By (H), id satisfies condition at line 53. Process p sets dep[id] to Dep(id,P) and phase[id] to ACCEPT
or COMMIT, as required.

• Suppose now that bmax = b (i.e., ∀q ∈ Q.cbalq ≤ b). From Proposition 2, either the condition at line 53 or the one at
line 58 is satisfied for id. Assume that the condition at line 53 holds: there exists a replica q ∈ Q such that cbalq = b
and phaseq[id] ∈ {ACCEPT,COMMIT}. Then at line 56 process p sets dep[id] to depq[id] = Dep(id,P) (Invariant 12) and
phase[id] to phaseq[id], as required. Assume now, that the condition at line 58 holds. Then for all q ∈U we have phaseq[id] /∈
{ACCEPT,COMMIT} and there exists a quorum Q′ ∈ FQ (bmax) such that Q∩Q′ ⊆U and all replicas in Q∩Q′ report the
same dependency set D for id. From Proposition 2, there exists a quorum Q0 such that Q∩Q0 ⊆U and that for any replica
in q ∈ Q∩Q0, depq[id] = Dep(id,P). Since Q∩Q′∩Q0 ̸= /0, we have D = Dep(id,P). We now prove by contradiction that
dep[id] computed at line 61 equals D. Assume the converse. Then there exists a command conflicting with c with an identifier
id′ such that id′ /∈ D and by the time p executes line 61 for id it has id /∈ dep[id′] and id′ /∈ Start. Let D′ be dep[id′] at that
moment. Since id′ /∈ Start either condition at line 53 or the one at line 58 is satisfied for id′ with D′.

(a) Assume that condition at line 53 is satisfied. There exists a replica q ∈U such that phaseq[id
′] ∈ {ACCEPT,COMMIT}

and depq[id
′] = D′, with id /∈ D′. From Invariant 10 there is a moment t after which whenever leader(b) has cbal= b it

also has dep[id′] = D′. Moreover, there is also a moment t ′ when leader(b) sends the Ack(b, id0,_,P) message, and by
this moment it has dep[id] = Dep(id,P) = D. Therefore, at max(t, t ′), the leader of b has dep[id] = D and dep[id′] = D′,
with id /∈ D′ and id′ /∈ D, contradicting Proposition 1.

(b) Suppose that the condition at line 58 is satisfied for id′: there exists a fast quorum Q′′ such that Q∩Q′′ ⊆U and all
replicas in Q∩Q′′ report D′ as the dependency set of id′. Since Q∩Q′′ ∩Q0 ̸= /0, there is a replica in q ∈ Q∩Q′′

with depq[id] = Dep(id,P) and depq[id
′] = D′. Recall that we are under the assumption that both identifiers, id

and id′, satisfy condition at line 58. Therefore, they also satisfy loop condition at line 57. As a result we have
∀q′ ∈U.phaseq′ [id] /∈ {ACCEPT,COMMIT}∧phaseq′ [id

′] /∈ {ACCEPT,COMMIT}. Thus, phaseq[id] = PREACCEPT and
phaseq[id

′] = PREACCEPT, contradicting Proposition 1.

We thus have proved that dep[id] computed at line 61 equals D = Dep(id,P), as required.

Step 2. Now that we have proved that after executing transition at line 48 up to line 61, p has dep[id] = Dep(id,P) for all
id ∈ Ids(P), we prove that the loop at line 62 does not affect these dependencies. Let id ∈ Ids(P) and let id′ be any identifier
in dep[id] at p at the moment when p executes lines 62–63. Since at this moment dep[id] = Dep(id,P), we have id′ ∈ Ids(P)
(by definition of Ids). As we saw earlier, either bmax = b or bmax > b and according to Proposition 2 and (H), id′ either satisfies
condition at line 53 or condition at line 58. Thus, at the moment p executes lines 62–63 it has id′ /∈ Start and hence condition at
line 62 does not hold for (id, id′), as required.
Step 3. Finally we prove by contradiction that after executing line 64, p has dep[id] = Dep(id,P) for all id ∈ Ids(P). Assume
that at p, just before the execution of line 64 there is a cycle id1 → ··· → idn → id1 in the dependency graph. We prove by
contradiction that none of the identifiers of this cycle belongs to Ids(P). Assume the converse, i.e., there exists m ∈ [1;n] such
that idm ∈ Ids(P). We have already proved that prior to executing line 64 process p has dep[id] = Dep(id,P) for all id ∈ Ids(P).
Thus idm−1 ∈ Dep(idm,P) also belongs to Ids(P). Moreover, all identifiers of the cycle are in Ids(P) because each of them is a
transitive dependency of each other. Hence, when leader(b) sends an Ack(b, id0,_,P) message it has this cycle in its dependency
graph, contradicting Invariant 3.

Proof of Invariant 1. Take two replicas that commit a command c with an identifier id. We have 3acc(b, id,c,P) and
3acc(b′, id,c,P′) for some b and b′. Let D and D′ be Dep(id,P) and Dep(id,P′), respectively. We prove that D = D′. As-
suming that b equals b′ we conclude with Invariant 11. Suppose now that b ̸= b′ and (without loss of generality) that b < b′.
Consider the moment when a replica p sends Ack(b′, id,D′,P′). From Invariant 6 at this moment cbal= b′ > b at p. Hence, from
Invariant 14 we have D = D′, as required.

A.1 Validity
Proof of Validity. Consider a replica that executes a command c. By Invariant 4, Propagate(c) is a sent message, hence, some
client submitted c.

A.2 Integrity
Proof of Integrity. At a replica, each executed command is tracked with the set Exec: a command can be executed only if its
identifier is not included in the set, and once it is executed, the set is updated to include the identifier. Furthermore, during the
protocol execution no elements are removed from Exec and only one identifier can be associated with a single command. Hence,
at each replica line 34 is executed at most once per command.

A.3 Ordering
To prove Ordering we first introduce the following notations: for two commands c and d we write (i) c ◁p d if c ▷◁ d and some
replica p executes c before d, and (ii) c ◀ d if c was executed by some replica before any process submitted d. Using these
notations the relation ≺ from §2 can be expressed as ≺= (

⋃
p◁p)∪◀.

Proposition 3. If for two conflicting commands c and d we have c ◁p d for some replica p then at the moment when p executes
c, we have id(d) /∈ dep[id(c)].

Proof. Consider the moment when p executes c. The Integrity property and c ◁p d imply that p has not executed d at this
moment, and thus id(d) ̸∈ Exec at p. From the precondition at line 33, dep[id(c)]⊆ Exec, so that id(d) /∈ dep[id(c)].

Proposition 4. The relation
⋃

p◁p is asymmetric.

Proof. Assume the contrary: c ◁p d and d ◁q c for two conflicting commands c and d. From Proposition 3, when p executes c it
has id(d) /∈ dep[id(c)], and when q executes d it has id(c) /∈ dep[id(d)]. But this contradicts Invariant 2.

Proposition 5. Assume c1 ≺ c2. Whenever a replica p executes c2, some replica has already executed c1.

Proof. Assume c1 ≺ c2 and that replica p executes c2. Then we have either c1 ◀ c2 or c1 ◁q c2 for some replica q. Consider
first the case when c1 ◀ c2. Then c1 is executed at some replica before c2 is submitted and, hence, before c2 is executed at p, as
required. Consider now the case when c1 ◁q c2 for some replica q. We must have either c1 ◁p c2 or c2 ◁p c1. The latter case
would contradict Proposition 4, so that c1 ◁p c2, as required.

Proposition 6. Assume c1 ≺ ·· · ≺ cn for n≥ 2. Whenever a replica p executes cn, some replica has already executed c1.

Proof. Follows from Proposition 5 by induction on n.

Proof of Ordering. By contradiction, assume that c1 ≺ ·· · ≺ cn = c1 for n≥ 2. Consider the first time when some replica executes
c1. By Proposition 6, at this time c1 has already executed at some replica, which yields a contradiction.

A.4 Liveness

77 Alive← R ⊆ R
78 trusted← leader(0) ∈ R
79 when 3P ̸= Alive
80 Alive←3P
81 trusted← select(Alive)

82 when leader(bal) ̸= trusted
83 if p = trusted then recover()
84 else send Recover(bal) to trusted

85 when received Recover(b)
86 if p = trusted then recover()

Figure 13: Recovery policy at a replica p.

For simplicity, in this section we assume that the set of slow quorums con-
sists of all majorities, i.e., ∀b.SQ (b) = {Q ∈ P (R) | |Q| ≥ ⌈N/2⌉}. Since
we assume that the system is eventually synchronous (§2), it is possible to
implement an eventually perfect failure detector, denoted 3P [8]. At each
replica p, the failure detector 3P outputs the set of replicas that p believes
are correct. 3P guarantees that eventually all crashed replicas are detected
by p and no correct replica remains indefinitely suspected.

In Figure 13 we present an algorithm according to which a replica p invokes
the recovery mechanism. 3P constantly outputs a set of correct replicas into
a variable Alive (line 80), which is then used to select the trusted replica (line
81), i.e., the replica that (according to p) should be the leader. To this end,
p passes Alive to a function select that deterministically picks one replica
among the set of replicas. A possible implementation of select returns the
replica with the lowest identifier. A replica constantly checks if its leader is
the trusted one (line 82). If this is not the case p checks whether it trusts itself—in which case p initiates recovery (line 83)—or
some other replica—which causes p to send a Recover message to trusted (line 84). With this message p asks trusted to impose
its leadership: upon the receipt of Recover(b), a replica verifies whether it should be a leader and then starts the recovery (line
86). The Recover message carries the value of bal, which helps trusted to choose at line 41 a ballot high enough to convince p
to follow it: when p receives Recover(b) it selects a ballot b′ owned by p such that b′ > b. Additionally, if possible, trusted tries
to choose b′ such that all replicas of at least one fast quorum associated with b′ belong to Alive, i.e., ∃Q ∈ FQ (b′).Q⊆ Alive.

We now describe the measures to be taken on the client-side of the protocol. First of all, a submitted command may be lost
during the recovery if it has not been accepted before. For example, suppose that at some ballot b a replica p receives a command
c submitted by a correct client. Then p starts a new ballot b′ and becomes its leader. If c is not accepted at b before the recovery
is started, p might not include c in the new state (conditions at lines 53 and 58 do not hold for c). Since p already received c, it
will never make a new proposal for c at b′ or any subsequent ballots. To avoid such scenarios, we allow clients to resubmit their
requests. Note that this does not affect the proof of Integrity. In the example above, the leader receives c at b′ or any higher ballot
and eventually makes its proposal.

Finally, as discussed in §4.3 an additional mechanism is needed to deal with client failures. A client may crash at any time
and thus may fail to send a command to a subset of the correct replicas. If for each fast and slow quorum only some replicas
receive request c then further progress is impossible not only for c but also for any command c′ that depends on c at the leader.
To circumvent such situations, a replica tracks the command identifiers that belong to the dependency sets received in leader’s
FastAck messages. If the replica detects that the payload of one of such commands is missing, it asks its leader to retransmit it.
It is enough to contact the leader because no command is committed if it is not received by the leader. It is also possible that
some followers receive a command c while the leader does not. These followers will take a dependency on c for any conflicting
command, disabling a fast path for each of them. To deal with this, followers re-propose c if it is not committed after some
timeout.

To prove that the above mechanisms ensure Liveness we rely on the following propositions.

Proposition 7. Either no correct replica ever receives a NewLeader message, or there exist a correct replica p and a ballot b
owned by p such that

1. each correct replica eventually trusts only p;

2. b is the maximal ballot received by any correct replica in NewLeader messages.

Proof. If no correct replica ever receives a NewLeader message then the proposition trivially holds. Assume that at least one
correct replica receives a NewLeader message. From the properties of 3P, there exist a replica p and a time t0 such that after
this time failures stop occurring and at each correct replica trusted= p and Alive is the set of all correct replicas.

We first prove by contradiction that p sends a finite number of NewLeader messages. Assume the converse. After t0, p is
the only correct replica that can start the recovery. Therefore, there is only a finite number of the NewLeader messages sent
by the correct replicas other than p, because all such messages are sent before t0. Moreover, the number of messages sent by
a faulty replica is finite by definition. Thus, each correct replica joins only a finite number of ballots that are not owned by p.
Since p increases its ballot with each issued NewLeader message and because the number of such messages is infinite, there is
a time t1 ≥ t0 after which each correct replica always follows p (i.e., leader(p.bal) = p). Therefore, at t1, there are no replica
at which the condition at line 82 is satisfied. Hence, no replica sends a Recover message after t1 and thus the total number of
such messages is finite. Let t2 ≥ t1 be the time after which p no longer receives Recover messages. After t2, p never executes
handler at line 85. Therefore, after t2, p never executes lines 83 or 86, and hence, it stops sending the NewLeader messages,
which contradicts our assumption.

Now, that we have proved that there is only a finite number of NewLeader messages sent by p, let b be the maximal ballot
for which p sends a NewLeader message. We prove by contradiction that for each NewLeader(b′) message received by a
correct replica, b′ ≤ b. Assume the contrary. Let q be a correct replica receiving at time t ′ the NewLeader(b′) message from
a replica p′ ̸= p with b′ > b. After t ′, q has bal ≥ b′. Since p never chooses a ballot greater than b < b′, after t ′ we also have
leader(q.bal) ̸= p. Eventually q trusts p and thus at some point it forces p to recover (line 82) with the ballot at least as high
as b′ (lines 83 and 84). As a result, p sends the NewLeader(b′′) message with b′′ > b′ > b, contradicting the fact that b is the
maximal ballot chosen by p during the whole execution.

Proposition 8. There exist a ballot b and a point in time after which every correct replica has status = NORMAL and bal =
cbal= b.

Proof. If during the whole execution no correct replica ever receives a NewLeader message then all correct replicas always
follow the same correct replica at the same ballot, as required. If at least one correct replica receives a NewLeader message
then according to Proposition 7, there exists a correct replica p eventually trusted by all correct replicas and a ballot b such
that b is the maximal ballot received by a correct replica in NewLeader messages. Eventually a correct replica q receives the
NewLeader(b) message and joins b. After that, q never changes its ballot, as it ignores any other NewLeader messages (line 44).
All correct replicas eventually answer to p with a NewLeaderAck message. Thus, eventually p sends Sync to all correct replicas,
as required.

Proposition 9. If a replica p commits c with a dependency set D then any correct replica eventually commits c with D.

Proof. Suppose that a replica p commits c with D at a ballot b. From Proposition 8 we know that there exists a ballot b′ after
which the system stabilizes with the one correct leader.

We first prove by contradiction that b≤ b′. Suppose that b > b′. Since c is committed at b, there is at least one correct replica
q that sends an Ack message for c at b. To this end, q has to join b (i.e., at some point we have q.cbal= b), however, b′ < b is the
maximal ballot joined by q (Proposition 8), hence the contradiction.

We thus have b≤ b′. Suppose that b = b′. This means that there is a quorum of correct replicas sending Ack messages that
lead to acceptance of c. Eventually each correct replica receives all these messages and commits c with D.

Suppose now that b < b′. Eventually each correct replica joins b′ (i.e., cbal = b′). In order to join b′, each correct replica
receives the Sync(b′,_,_,_) message, sent by leader(b′). Moreover, according to Invariant 14 this message carries a state that
contains c with the dependencies D.

Proof of Liveness. We first prove that if a command c is executed by a replica p then c is eventually executed by all correct
replicas. Before executing c, p commits c together with c’s transitive dependencies D. According to Proposition 9, the correct
replicas eventually commit c as well as any command in D, which enables the condition at line 33 for c.

We now prove that if a command c is submitted by a non-faulty client then c is eventually executed by all correct replicas. Let
b be the last stable ballot (Proposition 8). Note that the client submitting c is correct and that it resubmits c if it does not receive a
response after some time. Hence, eventually c is accepted at some ballot. Let D be the set of all transitive dependencies of c.
Similarly to c, those commands in D that are submitted by non-faulty clients are eventually accepted. Moreover, from Invariant 13
and Invariant 14, when c is accepted and the leader of b has cbal= b, it also has payload of any command in D. Therefore, by
contacting the leader and thus obtaining the missing payloads according to the mechanics described at the beginning of the
section, the replicas eventually accept the commands in D submitted by the faulty clients. Regardless of the ballots at which the
different commands in D are accepted, from Invariant 14, each correct replica eventually receives and commits c together with
any command in D. We conclude with Invariant 3 according to which, once committed, c is never blocked in the execution.

A.5 Nontriviality
The proof of Nontriviality relies on the following proposition:

Proposition 10. If 3acc(b,_,_,P) then for all id ∈ Ids(P) all correct replicas eventually commit id with Dep(id,P).

Proof. From Proposition 8 we know that there exist a ballot b′ ≥ b and a time t after which recovery stops occurring and at
least a majority of replicas are correct. If b′ = b then by the structure of the protocol all correct replicas eventually commit
id ∈ Ids(P) with Dep(id,P)—this is because communication between replicas cannot be disturbed by recovery or failures and
because replicas communicate through reliable channels.

Assume that b′ > b. Eventually each correct replica receives a Sync(b′,_,_,_) message carrying id with Dep(id,P) and
phase[id] = COMMIT or phase[id] = ACCEPT (Invariant 14). If phase[id] = COMMIT, a correct replica commits id immedi-
ately after receiving Sync, as required. If phase[id] = ACCEPT, correct replicas of some slow quorum eventually broadcast a
SlowAck(b′, id) message (line 76). Eventually replicas at b′ receive SlowAcks from each replica of this quorum and commit id
with Dep(id,P), as required.

Proof of Nontriviality. A client accepts the result of execution of a command c only if there is a ballot b at which leader(b)
optimistically executes c and replicas of some quorum of b agree on c’s dependency paths P. Thus, if the client gets the result of c
then we have 3acc(b,_,c,P). Note that leader(b) executes client requests in the order inferred form P, i.e., for each id ∈ Ids(P),
cmd[id] is executed with respect to dependency set Dep(id,P). Moreover, according to Proposition 10, each correct replica
eventually commits id ∈ Ids(P) with Dep(id,P), and hence, it eventually executes c following the same order. Thus, the result of
execution of c at any correct replica equals to the result of optimistic execution at leader(b), as required.

A.6 Latency
Asynchrony and failures may arbitrarily delay the execution of a command. For that reason, we measure latency only after the
system stabilizes. We denote by δ the upper bound on the message delay after stabilization (see §2). As usual, we ignore the cost
of local computation (in our setting, it is orders of magnitude lower than latency). The latency of a protocol is the maximum
amount of time a client must wait before delivering a response once the system is stable.

Table 1 summarizes the latency of various state-machine replication protocols. We consider the following classes of runs
commonly found in practice: (sequential) commands are never concurrent, i.e., upon the submission of a command, prior submitted
commands are already committed everywhere; (conflict-free) concurrent commands are all commuting; and (contention-free) all

sequential conflict-free contention-free general
Paxos [29] 4δ

N2Paxos [29] 3δ+1
Mencius [37] 2δ+1 4δ+1
FastPaxos+ [31] 2δ+1 3δ+1
Generalized Paxos [30] 2δ+1 6δ+1
Egalitarian Paxos [38] 2δ+1 O(nδ)

CURP+N2Paxos [41] 2δ 3δ+1
SwiftPaxos 2δ 3δ

Table 1: Latency of state-machine replication protocols. We denote by δ the upper bound on message delay when the system is stable. For
non-colocated clients +1 denotes the additional message delay.

concurrent conflicting commands are received in the same order at the replicas. The last class (general) is the worst-case latency
when the system is stable. For protocols that have a fast path this corresponds to the slow path. Worst-case latency matters for hot
items and when the fast path is no longer available (e.g., if a machine gets disconnected). Notice that these classes are ordered as
follows: sequential ⊊ conflict-free ⊊ contention-free ⊊ general. In Table 1, the notation +1 refers to the additional message delay
to reach non-colocated clients.

Below, we prove that the latency of SwiftPaxos matches the results in Table 1. Namely, we establish that SwiftPaxos executes
state-machine commands in two message delays in the absence of contention, and three otherwise.

Lemma 1. Assume a contention-free run ρ of SwiftPaxos. At any time t in ρ, if p and q in some FQ (b) have both received c at
t, then (i) dep[c] is the same at the two processes, and (ii) the evaluation of pset(id(c)) on the two processes is identical.

Proof. We prove this result inductively. The property holds obviously at t = 0. Assume that it is true at t− 1. At time t, if
no command is newly received by either p or q, we are done. Otherwise, let c be such a command and wlog. consider that q
receives c at time t. Process q executes line 11 for command c at that time. Consider a command d in depp[c] at t. As the run is
contention-free, d is received before time t at q. Thus, it is added to depq[c] at t. This shows that depp[c]⊆ depq[c] at t. Using a
symmetrical argument, we have depq[c]⊆ depp[c], as required. Now consider that q evaluates pset(id(c)) to the set of paths P at
t. By a short induction, because for any received command d, depp[d] = depq[c] at t, the evaluation on p must also return P.

Proposition 11. The latency of SwiftPaxos is 2δ when the run is contention-free, and 3δ otherwise.

Proof. Consider a run ρ of SwiftPaxos. Let t0 be the point in time after which the system is stable in ρ. By Proposition 8, for some
ballot b0 at every correct replica, bal= cbal= b0 and status= NORMAL hold forever after time t0. Let p be the leader of ballot
b0. Pick a command c submitted after time t0. According to SwiftPaxos (line 2), client(c) broadcasts a message Propagate(c)
to all replicas. Any replica receives such a message after δ units When receiving it, p sends a message Reply(bal,id(c),P,r) to
client(c), with r the result of the optimistic execution of c (line 17). There are two cases to consider:
• (ρ is contention-free) Assume a command d non-commuting with c was received at replica p before c. Because c is

uncontended, it must be the case that d was also received before c at any other replica q ∈ FQ (b0). By Lemma 1, p and q
execute the exact same computation at lines 11 and 12. From which, we deduce that all the fast quorum replicas broadcast the
same message FastAck(b0,id(c),D,P) to client(c) (lines 19 and 21). The precondition at line 3 on client(c) triggers
after (at most) δ units of time, delivering the response of c. It follows that the message delay of c is 2δ in this case.

• (Otherwise) Leader p sends a message FastAck(b0,id(c),D,P) to all replicas. Choose some replica q ̸= p in SQ (b0).
Consider the point in time when q has already received c as well as the above message from p. This takes at most 2δ units of
time. Because the system is stable, recovery never takes place after time t0; hence id(c) ∈ Preaccept. Furthermore, we know
that bal= cbal= b0 and status= NORMAL at q. Pick some command d ∈D. From the fact that the system is stable, replica q
has already received a message FastAck regarding command d from the leader. Hence, by a short induction, the precondition
D ⊆ Accept∪Commit is eventually true at q. It follows that replica q eventually sends a message SlowAck(b0, id(c)) to
client(c) (either at line 27, or at line 29). From what precedes, client(c) eventually receives a message SlowAck(b0, id(c))
from all such replicas. Consider the point in time at which this holds for some slow quorum of the ballot b0. Eventually, the
client also receives a Reply message from the leader. When these two happen, the precondition at line 4 is true. In this case,
the response of command c is known at the client after 3δ units of time.

B CURP for Geo-Replication

1 func submit(c):
2 send Record(c) to P

3 when received Reply(b, id,r) from leader(b)
and RecordAck(b, id) from all q ∈ Q

4 pre: |Q|> 3N/4
5 response(id,r)

6 when received SyncReply(id,r)
7 response(id,r)

Figure 14: CURP+N2Paxos: client.

Although CURP is a primary-backup protocol, its authors also describe
a variation for eventually synchronous systems [41, Appendix B.2]. This
variation reuses a black-box leader-driven SMR protocol to enforce the
agreement on the state-machine transitions at the replicas. In Figures 14
and 15 we use N2Paxos for this purpose. For the sake of brevity, we
omit recovery from the protocol’s description. CURP+N2Paxos slightly
differs from the logic described in the CURP paper [41], as highlighted
in blue in the figures.

CURP+N2Paxos is a leader-based protocol. The non-leader replicas
(aka followers) acknowledge each transition proposed by the leader.
The protocol uses a set of witnesses, which are co-located with the
followers and durably store each state-machine command (variable
Unsynced in Figure 15). If a command is conflict-free (line 21), its
client receives the result via the fast path after a single round-trip to the replicas (line 5). Otherwise, the command takes the slow
path (line 7).

CURP+N2Paxos cuts one message delay in comparison to a combination of CURP with Paxos or Raft. This is because a
replica sends an AcceptAck message to all the replicas and not simply to the leader (line 27). Each replica can now rapidly find
out when a command is committed, and the replica closest to the client returns the response (lines 36-37). This change is helpful
in geo-distributed systems, where reducing the latency is key for performance. Another difference with CURP [41, Appendix
B.2] is the client’s logic. To address the problem of zombie leaders, the authors of CURP propose to rely on a cached value of the
term number (or ballot) at each client. Instead, we piggyback this value on the messages addressed to the client, which simplifies
the protocol (see line 3 in Figure 14).

8 when received Record(c) from client q
9 pre: p = leader(b)∧ cmd[id(c)] =⊥

10 cmd[id(c)]← c
11 next← next+1
12 log[next]← id
13 pending_log← pending_log · c
14 if ∀n < next.cmd[log[n]] ▷◁ c =⇒

log[n] ∈ Commit then
15 let r = opt_exec(pending_log,state)
16 send Reply(bal,id(c),r) to q
17 send Accept(bal,id(c),next) to all

18 when received Record(c) from client q
19 pre: p ̸= leader(b)∧ cmd[id(c)] =⊥
20 cmd[id(c)]← c
21 if ∀id ∈ Unsynced.¬(cmd[id] ▷◁ c) then
22 Unsynced← Unsynced∪{id(c)}
23 send RecordAck(bal,id(c)) to q

24 when received Accept(b, id,n) from q
25 pre: bal= b∧ cmd[id] ̸=⊥
26 log[n]← id
27 send AcceptAck(b, id,n) to all

28 when received AcceptAck(b, id,n) from all q ∈ Q
29 pre: bal= b∧|Q|> N/2∧ cmd[id] ̸=⊥ ∧

log[n] = id∧∀n′ < n. log[n′] ∈ Commit
30 Commit← Commit∪{id}
31 if p ̸= leader(b) then Unsynced← Unsynced\{id}

32 when there exists (n, id) such that id /∈ Exec ∧
log[n] = id∧ id ∈ Commit∧∀n′ < n. log[n′] ∈ Exec

33 Exec← Exec∪{id}
34 let (r,state) = exec(cmd[id],state)
35 if p = leader(bal) then remove(pending_log, id)
36 if IsClosest(p,client(id)) then
37 send SyncReply(id,r)

Figure 15: CURP+N2Paxos: replica p.

C Configuration of the Experiments from §5

ap-south-1 ap-northeast-1 eu-west-3 us-west-1 af-south-1 ap-east-1 ap-southeast-2 ca-central-1 eu-west-1 sa-east-1 us-east-1 us-east-2
ap-northeast-1 128 ms

eu-west-3 108 ms 217 ms
us-west-1 231 ms 110 ms 143 ms
af-south-1 164 ms 359 ms 152 ms 292 ms
ap-east-1 91 ms 54 ms 201 ms 156 ms 254 ms

ap-southeast-2 152 ms 111 ms 281 ms 140 ms 414 ms 130 ms
ca-central-1 191 ms 146 ms 86 ms 81 ms 228 ms 192 ms 200 ms
eu-west-1 125 ms 203 ms 20 ms 130 ms 163 ms 216 ms 258 ms 72 ms
sa-east-1 301 ms 259 ms 197 ms 175 ms 344 ms 304 ms 314 ms 127 ms 180 ms
us-east-1 190 ms 147 ms 84 ms 64 ms 232 ms 193 ms 201 ms 17 ms 71 ms 116 ms
us-east-2 201 ms 136 ms 93 ms 55 ms 242 ms 180 ms 191 ms 27 ms 81 ms 125 ms 18 ms
us-west-2 221 ms 99 ms 135 ms 24 ms 277 ms 146 ms 142 ms 61 ms 121 ms 176 ms 65 ms 54 ms

Figure 16: Latency table of AWS regions.

Replicas
ap-south-1

ap-northeast-1
eu-west-3
us-west-1
af-south-1

Clients
ap-east-1

ap-northeast-1
ap-southeast-2

eu-west-1
ca-central-1

sa-east-1
us-east-1
us-east-2
us-west-1
us-west-2

Figure 17: Regions used for replicas and clients.

	Introduction
	System Model
	Core Concepts and Protocol Overview
	Ballots
	Dependencies and Key Invariants
	Agreeing on Dependencies
	Ensuring Low Tail Latency
	Faster Responses at Non-Collocated Clients

	SwiftPaxos in Detail
	Normal Operation
	Recovery from Leader Failures
	Recovery from Client and Follower Failures
	Optimistic Execution

	Evaluation
	Impact of the Conflict Rate
	Tail Latency
	Metadata Usage
	Scalability
	Performance under Asynchrony
	Applications

	Related Work
	Conclusion
	Appendices
	Correctness
	Validity
	Integrity
	Ordering
	Liveness
	Nontriviality
	Latency

	CURP for Geo-Replication
	Configuration of the Experiments from §5

