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Abstract

Given a linear error correcting code C, its m-th power is defined as
the linear span of the set of all coordinate-wise products of m (not nec-
essarily distinct) codewords in C. The study of powers of codes (and
especially squares) is relevant in a number of recent results in several ar-
eas of cryptography where we need to bound certain parameters (such as
the dimension and the minimum distance) of both a linear code and some
power of it simultaneously. These areas include most notably secret shar-
ing and multiparty computation, but also two-party cryptography and
public key cryptography. In this paper, some of these applications will be
discussed together with several recent results and some open challenges.

1 Powers of codes

We start by recalling some definitions from coding theory and fixing some no-
tations. For additional information on the topic the reader is referred to [27].

Let K be a finite field. A linear code C over K of length n is a K-vector sub-
space C' C K™. The dimension of C' is its dimension as a K-vector space. Given
a vector v € K", its i-th coordinate will be denoted as v;, so v = (v1,va,...,v,).
For a subset A = {iy,42,...,4,} of {1,...,n}, where i1 < iy < --- < i, v4 de-
notes the vector (v;;,vs,,...,v; ). The support of v is suppv := {i : v; # 0}
and its Hamming weight is wy(v) := #supp(v), i.e., the number of nonzero
coordinates of v. The Hamming distance between two vectors v,w € K" is
dy(v,w) = wg(v—w).

The minimum distance of C, denoted as d(C), is

d(C) := min{dy(c,c') : c,c’ € C,c #c'}.
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Equivalently, d(C') = min{wg(c) : ¢ € C, c # 0}.

The dual C+ C K" of C is defined as C*+ := {c* € K" : {(c*,c) =0V c e C}
(where (-,-) denotes inner product). This is also a linear code of length n. If
the dimension of C' is k then the dimension of C* is n — k.

Given v,w € K", their coordinate product is denoted by v*w, i.e., viw =
(v1wr, vawa, . . ., UVpWy ).

DEFINITION 1.1. Let C C K" be a linear code and m > 1 be an integer.
The m-th power of C is the K-linear span of the set {c) x c(?) % ... x c(™) .
c c® .. c"™ € C} and it is denoted C*™.

That is, C*™ is the smallest linear code containing all products of m non-
necessarily distinct words in C'. In the case m = 2, we talk about the square of
C.

It is easy to see that dim C*™ > dim C. Moreover supp(v * v) = suppv
holds for every v € K™ and consequently we have d(C*™) < d(C'). For the
special case of binary codes (linear codes over a field of two elements K = Fy),
we have C' C C*™ for every m (because v x v = v for every v € F%), but this
does not hold for arbitrary finite fields K.

For some well known families of linear codes, their powers belong again to
the same family. For example, let n,k be integers with 0 < k < n < #K.
For vectors x,y € K™, where the coordinates of x are pairwise distinct and
the coordinates of y are nonzero, and a polynomial f € K[z], let c;(x,y) =
(y1f(x1),y2f(x2), ..., ynf(x,)). We define the code

GRSi(x,y) :={cs(x,y) : f € K[z],deg f < k},

a Generalized Reed Solomon code over K of dimension k, length n and minimum
distance n — k + 1. Let C := GRSk(x,y). Then for every m > 1, C*™ =
GRSk (x,y™) where k¥’ = min{(k — 1)m + 1,n} and y™ = (v7", 95", ..., y").
We can therefore determine the parameters (dimension and minimum distance)
of the powers of C.

Another (more general) example is algebraic geometric evaluation codes,
briefly described below (for more information, refer to [33]). Let F/K(z) be a
function field with field of constants K. Let Py, Ps,..., P, be pairwise distinct
places of degree 1. Denote D = P, + P>+ - -+ P,,. For a function f € F without
poles in any P, let c¢(D) = (f(P1), f(P2),..., f(Py)). Now, for a divisor G of
F such that no P; is in the support of G, we define the linear code

Ce(D,G) ={cp(D): f € L(G)}

where £(G) denotes the Riemann-Roch space of divisor G. Its dimension is
dim £(G) — dim £(G — D) and it has minimum distance at least n — deg G. Let
C = Cr(D,G). Then C*™ C Cr(D,mG). In this case equality does not hold
in general. However, the statement above is enough to bound the minimum
distance as d(C*™) > d(Cz(D,mG)) > n —mdegG.



2 Powers of codes in cryptography

2.1 Multiplicative secret sharing

A secret sharing scheme is a method to distribute the knowledge of some secret
information among a number n of pieces of data, called shares, in such a way
that only certain subsets of these shares allow to reconstruct the secret. A
formal definition of a secret sharing scheme is not included here, for reasons of
space, but it can be found in many other works, for example [16]. We will index
the shares by the numbers in {1,...,n}. A set A C {1,...,n} is a privacy set
of the secret sharing scheme if the knowledge of the shares in A gives no more
information about the secret than what is known a priori. On the other hand,
A is a reconstructing set if the secret is completely determined given the shares
in A. A secret sharing scheme has t-privacy if any set of shares of cardinality ¢
is a privacy set, and it has r-reconstruction if any set of shares of cardinality r
is a reconstructing set. E|

There is a well known construction of secret sharing schemes based on linear
codes, first pointed out by Massey [28]. Let C be a linear code over K of length
n + £, dimension at least ¢, such that the set I of its first ¢ coordinates is an
information set. Then one can define the following secret sharing scheme 3,(C),
where the space of possible secrets is K¢ and where each share is in K. In order
to share the secret s = (s1,...,5,) € K’ select uniformly at random a word
c € C such that ¢; = s (which can always be done, by the assumptions on C)
and define as j-th share the value c;1;. Secret sharing schemes of this form
belong to a class known as linear secret sharing schemes (LSSS)H The privacy
and reconstruction thresholds of ¥,(C) can be bounded using the minimum
distance of C' and its dual C*. Indeed we have:

PROPOSITION 2.1. Let %4(C) be a LSSS. Then
o Ifd(C)>n—r+L+1, then o(C) has r-reconstruction.
o Ifd(Ct) >t+{+1, then X4(C) has t-privacy.

A more refined result can be obtained by replacing the minimum distance
by the following notion. Let I denote the set of the n last coordinates in C' and
define

w'(C) = min{wg(c7) : ¢ € C,cr #0}.

PROPOSITION 2.2. Let ¥4(C) be a LSSS. Then
e Y,(C) has r-reconstruction if and only if w*(C) >n —r + 1.

o %,(C) has t-privacy if and only if w*(C+) >t + 1.

It is usually required that a secret sharing scheme has n-reconstruction, but this condition
is dropped here for simplicity.

2The actual definition of a LSSS is more general, as it allows for shares that consist of
more than one element of the field.



Proposition is an easy consequence of the results in [28]. It is easy to see
that d(C) < w*(C) + ¢ and hence Proposition [2.2] implies Proposition

While secret sharing has practical uses as a stand-alone notion, e.g. as a
secure data storage mechanism, it is perhaps more interesting because of its
use as a building block in cryptographic protocols. One of the most relevant
applications, and the one will be concerned with here, is in the area of secure
multiparty computation and requires linear secret sharing schemes with addi-
tional algebraic (multiplicative) properties, which are defined as follows.

DEFINITION 2.3. Let ¥¢(C) be a linear secret sharing scheme. We say that a
set A of shares is product-reconstructing if there exists a linear function pa :
K#4 — K¢ such that for any secrets s,s' € K¢ and any valid sharings a,a’ € K"
of s and s’ respectively, we have s xs’ = pa(aa * a/y).

We say that X¢(C') has ' -product reconstruction if A is product reconstruct-
ing for any set A of size r'.

The following definitions were introduced in [15].
DEFINITION 2.4. We say that a linear secret sharing scheme is

e Multiplicative if it has n-product reconstruction.

e (-strongly multiplicative if it has t-privacy and (n —t)-product reconstruc-
tion.

It is not difficult to see that given a LSSS ¥,(C), we can also define %,(C*2)
(since linear independence of the first ¢ coordinates is preserved under squaring)
and, furthermore, a set A is product reconstructing in X,(C) if and only if it
is reconstructing in 3,(C*?). Combining this observation with Propositions

and 2.2 we have
PROPOSITION 2.5. Let £4(C) be a LSSS.
o %,(C) is multiplicative if and only if w*(C*?) > 1.

o %,(C) is t-strongly multiplicative if and only if w*(C*?) > t + 1 and
wt(CH) >t +1.

In particular, if d(C*?) > £+ 1 then X,(C) is multiplicative, and if d(C*?) >
t+ €+ 1 and d(Ct) >t + €+ 1, then X4(C) is t-strongly multiplicative.

The best known example of LSSS is Shamir’s scheme [32], which is 31 (RSt+1)
where RS;;1 is a Reed-Solomon code of dimension ¢ + 1. It has ¢-privacy and
t + l-reconstruction and it is t-strong multiplicative as long as 3t + 1 < n. On
the other hand, Shamir’s scheme can only be defined for n < #K.

As an aside, it is worth mentioning that a more general notion, known as
arithmetic codez, has been introduced in [5]. Multiplicative and strongly multi-
plicative LSSS are special cases of this notion, which also encompasses as par-
ticular cases the notion of bilinear multiplication algorithm from algebraic com-
plexity. For reasons of space this notion is not discussed further here, see [5, [16]
for more details.

In sections[2.2)2-3|2.4)some applications of multiplicative secret sharing schemes
will be presented.



2.2 Robust secret sharing

The property of r-reconstruction of a secret sharing scheme ensures that the
secret is determined by any r correct shares, but does not provide any guarantee
if some of these shares are incorrect. A robust secret sharing scheme is one that
allows to reconstruct the secret even if a few of the shares are incorrect (and we
do not know which). The following result, which appeared in [I8], shows that
strongly multiplicative secret sharing schemes are robust.

THEOREM 2.6. Let X,(C) be a t-strongly multiplicative LSSS over K. For
any (ay,dasz,...,a,) € K" there exists at most one vector (sy,ss,...,s;) € K¢
such that there is (at least) one word (s1,82,...,8¢,a1,a2,...,a,) € C with
du((ay,az,...,ay),(G1,a2,...,4,)) < t. Furthermore, there exists a polynomial-
time (inn) algorithm that, on input (a1, ag, . .., an), either outputs (s1,S2,...,Sp)
if this value exists, or L otherwise.

The theorem shows that if a LSSS is ¢-strongly multiplicative, the secret can
be recovered efficiently from the set of all shares in the presence of at most ¢
€rroneous ones.

2.3 Secure multiparty computation

Secure computation is concerned with the following situation: n parties, each
holding some private input z;, want to correctly compute f(z1,xa,...,2,) for
some agreed upon function f in such a way that the intended output is the only
new information released. This guarantee should be fulfilled even if a small
number ¢ of the players cheat. Collusions of malicious players are modelled as
an external adversary who corrupts these players and collects all information
seen by them. The adversary is passive if corrupted players follow the specified
protocol and active if they can behave arbitrarily. For formal security definitions
and more information about the topic, see [16].

For the case of a computationally unbounded adversary, Ben-Or et al. [2]
and Chaum et al. [9] established seminal results, proving that secure computa-
tion of any function is possible as long as less than n/2 players are passively
corrupted, or less than n/3 players are actively corruptedEl The results make
implicit use of algebraic properties (linearity, multiplicativity) of the secret shar-
ing scheme involved in their protocols, which is Shamir’s scheme. The notions
of multiplicativity were formally defined in [15], where it was shown that, in
fact, secure multiparty computation protocol secure against a passive (resp.
active) adversary corrupting ¢ players can be constructed from any multiplica-
tive secret sharing scheme with t-privacy (resp. t-strong multiplicative secret
sharing scheme). The idea of the protocol is as follows. Suppose X1(C) is a
LSSS over K. Let s,s" € K be two secrets shared with ¥;(C) and denote the
sharings [s] = (a1,...,a,) and [s'] = (a},...,a)). Now it is easy to see that

’'n

[s] + [¢'] is a sharing of s + ¢'. Indeed (s + s’,a1 +a},...,an +al) is in C,

3Here we suppose each pair of players is connected by a secure point-to-point channel, but
we do not assume the existence of a broadcast channel.



and the distribution of this codeword is uniform conditioned to the secret being
s+ s'. Similarly A[s] is a sharing of As for any A € K. This implies that from

sharings [s(V)],...,[s(™)], and for any linear function f : K™ — K, a sharing
[f(sM,...,5(™)] can be computed by applying f to the vector containing the
i-th shares of [s(V)],... [s(™)], for every i = 1,...,n. These arguments yield a

multiparty computation protocol to compute linear functions secure against a
passive adversary: at the beginning of the protocol, each party shares his input,
making sure the i-th player always receives the i-th share; then, each player
simply computes f on his shares and broadcasts the result; the output can then
be reconstructed from the broadcast values. If the adversary corrupts at most
t parties and ¥, (C) has t-privacy, the protocol leaks no information other than
the output of the computation.

Ideally, we would want to extend this idea to any function f. Since ev-
ery function can be computed as an arithmetic circuit over a finite field (for
example a Boolean circuit), it would be enough if a sharing [ss’] can be cre-
ated from [s] and [s']. However, if s and s’ are secret shared as above, the
vector (ss’,aial,...,anal) belongs to C*2, but not necessarily to C. Further
multiplications would yield vectors in higher powers of C. Hence, if d is the mul-
tiplicative depth of f as an arithmetic circuit, it would be needed that ;(C*%)
has n-reconstruction.

A better alternative is to allow more interaction among the players. This only
requires that 3;(C) is multiplicative (i.e., that $1(C*?) has n-reconstruction).
If this is the case, by definition there is a linear function p such that ss’ =

plaral, ... azal). The following protocol allows to create a sharing [ss] from
[s] and [¢']: Each player i shares the product a;a; of his shares. Now, players
have shares in [a1a]], [a2a)] ..., anal] and they can locally compute [ss'] =
[p(ardl,. .. anal)] since p is linear. This can be shown to be secure against a

passive adversary corrupting at most ¢ parties if the scheme has t-privacy and
it is enough to argue that any function can be securely computed by n players
in this situation.

The case of an active adversary is considerably more difficult, because cor-
rupt players may decide to deal inconsistent shares to the honest players or to
share wrong values. The solution in [I5] involves using verifiable secret sharing,
in which the dealer sends, on top of the shares, additional information to each
player for the purpose of verification. They show that, if the underlying LSSS is
t-strongly multiplicative, this leads to a secure protocol to compute any function
in the presence of an adversary corrupting at most t players.

Therefore, in order to tolerate an adversary who corrupts many parties, it
is sufficient to use t-strong multiplicative secret sharing schemes for large ¢. In
turn, by Proposition these can be constructed from codes C such that both
C+ and C*? have large minimum distance.

2.4 Two-party cryptography

In recent years, secure multi-party computation protocols have found unex-
pected applications in the area of two-party computation. This is in great part



due to the MPC-in-the-head technique, which was introduced in [24] for the
purpose of zero knowledge proofs with high communication efficiency. In short,
the idea is as follows. Alice simulates the execution of a multiparty compu-
tation protocol that will output 1 if and only if the statement she wants to
prove is true. She keeps this execution in her head and only reveals the views
of some subset, chosen by Bob, of the “players” of this virtual protocol. Bob
then verifies the consistency of the views and that the output is indeed 1. The
views revealed still give no information about the input of the protocol to Bob,
but will make sure that with high probability Alice will be caught if she tries
to cheat. The work of [24] has inspired subsequent work using similar ideas in
a host of applications in areas such as multiparty computation with dishonest
majority (including two party computation) [26], [20], OT combiners [22], OT
from noisy channels [23], correlation extraction [25], zero knowledge proofs of al-
gebraic relations [I7] and UC homomorphic commitment schemes [19]. In these
applications, the best results in terms of efficiency are attained by setting up
multiparty computation protocols with a very large number of players, while the
size of the field should be small. This has provided an additional motivation to
the study of asymptotics (large number of players, large t, constant size field) of
t-strongly multiplicative secret sharing schemes. Some results in this direction
will be mentioned later (see Theorem [3.1)).

2.5 Attacks to the McEliece cryptosystem

The McEliece cryptosystem is a public key cryptosystem whose security is based
on the hardness of decoding a general linear code. Roughly speaking, the
McEliece cryptosystem works along the following lines. The public key is a
random generator matrix of a linear code chosen from certain family of linear
codes where t errors can be decoded efficiently. The private key is an efficient
decoding algorithm of this code. In order to encrypt a message, this is first
encoded with the code and then a random error of weight ¢ is added. The secu-
rity relies on the fact that the public generator matrix should appear random
and not reveal any algebraic structure of the code that may lead to an efficient
decoding algorithm. Several families of codes have been proposed for its use in
McEliece cryptosystem. To this day some of them are still considered secure.
However, in other cases there have been attacks that allow to recover the se-
cret key. Some of these attacks are based on the idea that one can distinguish
generator matrices of codes that have certain algebraic structure from those of
random codes, by observing how the dimension of the square of the code grows.
Indeed, consider for example the case of Reed-Solomon codes where squaring
basically doubles the dimension; on the other hand, for a random linear code
C of dimension k, the dimension of C*? is min{n, (]2“)} with high probability;
see Section Based on these ideas, key-recovery attacks for McEliece cryp-
tosystems have been found for some variants based on subcodes of generalized
Reed Solomon codes [34] [12], certain families of Goppa codes [I4] and certain
subcodes of algebraic geometric codes [13].



3 Results

In recent years powers of codes have been the subject of study of several pa-
pers. A nice exposition on the topic of powers (and more generally prod-
ucts) of codes, including many basic results can be found in the paper by
H.Randriambololona [3I]. For basic results on multiplicative secret sharing
see [5] and [I6]. Here the focus will be on a few results on asymptotics that are
particularly interesting for the applications mentioned in this paper. First, we
consider asymptotics of ¢-strongly multiplicative secret sharing schemes, where
we fix a finite field K and consider families of secret sharing schemes over K with
number of shares growing to infinity. The following result has been established
in a series of papers [10, 3 [4].

THEOREM 3.1. For every finite field K, there is a family {Zs,(Cpn)}nen of tn-
strongly multiplicative secret sharing schemes with n shares over K where N C N
is an infinite set, t, = Q(n) and £, = Q(n).

These results are attained using algebraic geometric codes defined on towers
of function fields with many rational places. The result was first established
in [I0] for large enough finite fields, and later the paper [3] extended it to all
finite fields, by using concatenation of the codes in [10] over extension fields with
a dedicated field descent map. Finally, [4] (see also [7]) applied considerably
more involved algebraic geometric arguments to show that the construction [10]
can be used directly over almost all fields. For more information about these
results see the references mentioned above, as well as [5] and the forthcoming
book [I6]. On the other hand, limitations have also been shown [6]: the limit
% cannot approach asymptotically % and hence we have to pay a price for
asymptotics (when n < #K this ratio is attained by Shamir’s scheme and it
is in fact optimal [I5]). The results in [I0] and [4] also show the existence
of asymptotically good families of linear codes such that both their duals and
squares are also asymptotically goodﬁ over all finite fields K with #K = 8,9
or #K > 16. However, it is not known if one can extend this result to the
remaining finite fields, as the concatenation in [3] does not preserve this property.
Nevertheless, if we do not worry about the duals but only about the squares,
then there is the following result [30].

THEOREM 3.2. For every finite field K, there is an asymptotically good fam-
ily {(Cp)}nen of linear codes over K such that the family {(C}?)}nen is also
asymptotically good.

This construction also consists in a concatenation of a family of algebraic ge-
ometric codes, over a large enough finite field, with an appropriate field descent
map. However, more elaborated arguments than in [3] are needed: the proofs re-
quire bounding the distance not only of the squares but also of higher powers of
the initial algebraic geometric codes, and very recent results on asymptotically

4A family of codes such that their length grows to infinity is asymptotically good if both
the dimension and minimum distance grow linearly with the length.



good towers of function fields [I] are essential for the argument to work. Upper
bounds on the minimum distance of C*? relative to the length and dimension
of C have also been derived. See [29] and [3I]. Finally, for every m > 2, it is
not known if for all fields K (and in particular for the binary field) there exist
good linear codes C over K with good powers C*™.

All asymptotical constructions mentioned above rely on algebraic geometry
codes over asymptotically good towers of function fields. Computing the genera-
tor matrices of these codes has a high complexity. It is then natural to wonder if
there are more “clementary” constructions attaining the results in Theorems [3.1]
and Random linear codes may appear as a natural candidate, as it is well
known that with high probability they are asymptotically good, in fact attaining
the Gilbert-Varshamov bound [27]. However, this is not the case for the squares
of random codes. The following result was shown in [§].

THEOREM 3.3. Let k < n < @ Write t = @ —n. Let C be a code
chosen uniformly at random among all codes of length n and dimension k. Then

Pr [0*2 — Kn] —1— 27@(1{2) _ 27@()&).

This means that if, in particular k = ©(n), then C*? will be the full space
K" with overwhelming probability and hence C' and C*? will not be good si-
multaneously. As an aside, the following complementary result was also shown
in [8].

THEOREM 3.4. Let n > @ Write s = n — @ Let C be a code chosen
uniformly at random among all codes of length n and dimension k. Then
k(k+1)

Pr |dim C*? = — | = 1—2790)

It is therefore an important open question to determine whether elementary,
perhaps probabilistic, constructions of codes can be found that attain the re-
sults in Theorems and This would have important consequences in the
computational complexity of several of the applications presented here.
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