
Black box anomaly detection: is it utopian?

Shobha Venkataraman∗, Juan Caballero∗, Dawn Song∗, Avrim Blum∗, Jennifer Yates†

∗Carnegie Mellon University †AT&T Labs-Research

ABSTRACT

Automatic identification of anomalies on network data is
a problem of fundamental interest to ISPs to diagnose in-
cipient problems in their networks. ISPs gather diverse
data sources from the network for monitoring, diagnos-
tics or provisioning tasks. Finding anomalies in this data
is a huge challenge due to the volume of the data col-
lected, the number and diversity of data sources and the
diversity of anomalies to be detected.

In this paper we introduce a framework for anomaly
detection that allows the construction of a black box
anomaly detector. This anomaly detector can be used for
automatically finding anomalies with minimal human in-
tervention. Our framework also allows us to deal with
the different types of data sources collected from the net-
work. We have developed a prototype of this framework,
TrafficComber, and we are in the process of evaluating it
using the data in the warehouse of a tier-1 ISP.

1 INTRODUCTION
ISPs collect large amounts of data from their networks
into warehouses and use this information for provision-
ing, analysis and generally to guarantee the health of the
network. Given this wealth of information, ISPs are in-
terested in using anomaly detection techniques on this
collected data to diagnose incipient problems before they
can significantly impact the network.

The network data collected varies depending on the
ISP’s storage resources and monitoring capabilities but
is generally characterized by its volume and diversity.
The volume of the data collected, which can be in the
order of gigabytes per day for a large national ISP, makes
manual analysis of the data infeasible. In addition to the
volume, the diversity of the data is also daunting. An
ISP could expend significant time studying and model-
ing one feature from a single data source and only gain
insight about a drop in a sea of anomalies. ISPs need
a scalable approach that automates this process and re-
quires no previous knowledge or analysis of the behavior
of the data.

ISPs currently collect measurements such as: byte
counts, link error counts and CPU utilization from SNMP
data; periodic snapshots of the network topology; sys-
tem logs from the servers and routers; end to end path
measurements such as loss or delay; physical measure-
ments such as current through an optical amplifier; con-
figuration files; and many others. Previous approaches
for anomaly detection have usually focused on a small
set of data sources, usually packet traces or SNMP data,
and a small set of features like volume, byte counts, or IP
header features [2, 5, 7, 8, 18, 20, 23, 24]. This kind of

approach only explores a few points in the anomaly de-
tection space and would require an ISP to operate multi-
ple specific anomaly detection systems working in paral-
lel, requiring network analysts to work with different out-
puts from each system, resulting in high operating costs.

In this paper we propose a different approach. We seek
answers to the following question: to what extent can
we build a black box anomaly detector that automatically
finds anomalies in any data source and any feature gath-
ered from the network? This approach would allow an
ISP to deal with the volume and diversity of the collected
data in a scalable and comprehensive way. We introduce
a general framework that splits the problem into two: 1)
transforming multiple data sources into a common in-
put and 2) building a black box anomaly detector that,
given that input, automatically outputs multiple types of
anomalies. In this paper, we tackle the following prob-
lems:

Finding novel anomalies not yet seen in the data: The
traditional approach to automatic detection of anomalies
is to use machine learning algorithms on samples of both
normal data and anomalies, and train a good classifier to
separate these samples [4, 8, 13, 16]. The basic prob-
lem with this approach is that it limits us to the detection
of anomalies which are already present in the samples.
Thus, our approach is different – we aim to find features
of the data that consistently behave in the same way in
normal data. Then, when we see new, possibly mixed
data, we can use this behavior to decide if the data is nor-
mal or contains anomalies. In machine learning terminol-
ogy, we view the problem as learning only with positive
examples [17].

Identifying features of interest: Given a data source,
we are interested in detecting changes in the behavior of
the data source. One could use several features from the
same data source for detecting the change but not all of
them may be equally useful. For example, it is difficult to
detect anomalies in a feature that exhibits a lot of fluctua-
tion and very little regularity in normal data. Our frame-
work automates the exploration of multiple features from
the same data source and the identification of those that
have a consistent behavior in the normal data, according
to the models and metrics defined, and thus can be used
by the black box anomaly detector to detect changes in
the data source.

Detecting anomalies without domain knowledge:
Given a set of features of interest, our black box anomaly
detector finds anomalies in those features, using no apri-
ori domain knowledge about the behavior of those fea-
tures. This is done by automatically extracting the ex-



pected behavior from the normal data and then flag-
ging significant deviations from the expected behavior as
anomalies. Thus, our anomaly detector flags changes in
behavior with respect to the training data.

Handling multiple data source types: Our framework
takes into account the diversity of data sources currently
collected by ISPs and how they can be transformed into
the proper input for the black box anomaly detector.

Gradually increasing the scope of the detection: The
black box anomaly detector provides feedback on when
a model does not apply to a feature, which allows us to
gradually add new models as they are needed. Since each
model allows to detect specific families of anomalies, it
also allows us to gradually add new models that allow
detection of more sophisticated families of anomalies.

2 FRAMEWORK OVERVIEW
We split the question of how to build a black box anomaly
detector that handles multiple data sources and features
into two smaller questions, that we address in turn. The
first one is: can we transform the different types of data
sources collected from the network into a common input
that can be used by our black box anomaly detector? The
second one is: how do we build that black box anomaly
detector? In Section 3 we deal with the issue of different
data source types and then in Section 4 we explain how
to build the black box anomaly detector.

Now, we briefly introduce the four components of our
framework: transformations, features, models and met-
rics. Transformations allow us to convert from data
sources of different types to features of a single type.
Features represent characteristics of the data that we are
interested in. In our framework they are instantiated as a
time series of real values that can be used as input to our
black box anomaly detector. For example, a data source
might be a packet trace captured from the network. From
this data source we can extract multiple features such as
the traffic volume per connection or the number of desti-
nations contacted by every source on port 80. We discuss
both transformations and features in Section 3.

A model is an abstraction that allows us to represent
some property of the data. For example, we can model
the distribution of a feature. Finally, the metrics are used
to evaluate how good the model is representing that prop-
erty of the data and also allow us to find deviations from
the model, that is anomalies. We discuss both models
and metrics in Section 4.

3 HANDLING DATA SOURCE TYPES
In this section we address the question of how to trans-
form the different types of data sources collected from
the network into a common input type, that can be used
by our black box anomaly detector.

3.1 Data source type classification
A time series is a time-ordered sequence of data points.
We classify time series into four different classes ac-
cording to two properties: data point values and data
point time spacing. With respect to the data point val-
ues, we classify a time series into real-valued, when the
data point is a point in ℜk, or structured when the data

SNMP measurements

End-to-End path

measurements


Packet traces

Netflow logs


Configuration files

Syslogs


Periodically sampled

topology information


SNMP measurements with

missing data


Real-valued


Structured


Constant-spaced
 Variable-spaced


Figure 1: Data source type classification

point is a more complex structure. With respect to the
data point time spacing, we classify a time series into
constant-spaced when data points are equally spaced, or
variable-spaced when the spacing between data points is
not constant.

We consider that data sources can be associated with
timestamps, e.g. of the time when they are collected.
Thus, a data source can be considered a time series and
classified into one of the four classes shown in Figure 1.
We can then define functions that convert between the
different classes of time series, which we describe in Sec-
tion 3.3.

3.2 Features
We define a feature to be a representation of some net-
work characteristic that is instantiated as a k-dimensional
real-valued time series. Some of the data sources gath-
ered from the network can be used as features themselves
but others cannot. For example, a common SNMP mea-
surement such as packets per second on a link, collected
every 5 minutes, is a data source and can also be used as
a feature, since it represents a network characteristic and
has the format of a real-valued constant-spaced time se-
ries. On the other hand, a packet trace is a data source but
is not a feature. In fact, many features can be extracted
from this data source such as the traffic volume per con-
nection or the number of destinations contacted by every
source on a specific port.

Note that the input to the black box anomaly detec-
tor is a feature represented as a k-dimensional time se-
ries. In our current implementation, we focus on mod-
eling features that are represented as a one-dimensional
real-valued time series. However, the framework allows
the anomaly detector to take as input k-dimensional time
series (which we could use to represent graphs, matrices,
etc.) in order to support more complex models [3].

3.3 Transformations
We define a transformation as a function that takes as in-
put a time series, and outputs another time series. We
are interested in transformations that take as input a time
series belonging to one of the four classes shown in Fig-
ure 1 and output a time series that belongs to a differ-
ent class. Then, when given a data source we can define
a sequence of transformations that will extract a feature
represented as a real-valued time series.

This allows us to reduce the problem of anomaly de-
tection with different data source types to finding the
proper sequence of transformations, for each data source,
and dealing with features of a single data type.

Whether the input time series needs to be constant-
spaced or variable-spaced depends on how the anomaly

2



Real-valued

Constant-spaced


Structured

Variable-spaced


Structured

Constant-spaced


Real-valued

Variable-spaced


Feature

extraction


e.g. fields from


packet


e.g. number of


sources that


contacted B


Feature

extraction


e.g. number of


paths in


topology


Time-dependent transformations

e.g. time bins


Time-dependent transformations

e.g. time bins


e.g. fill in missing data


Figure 2: Example data sources transformations

detector uses it. For example, we might be interested in
removing periodic spikes because they hide other smaller
spikes of interest, and then a constant-spaced time series
will be needed. But if the model simply defines an upper
bound on the average then the input time series can be
either constant-spaced or variable-spaced.

We can divide transformations into two groups: time-
dependent transformations and feature-extraction trans-
formations. Time-dependent transformations operate
within a single row of the matrix shown in Figure 1.
As examples of time-dependent transformations, we de-
scribe two that we currently use to convert time series
from variable-spaced to constant-spaced. The first is a
bin transformation that divides time into equal size inter-
vals, and bins together data points falling into each inter-
val. The other is a generic missing data transformation,
designed to fill in missing data points in the series [10].

Feature-dependent transformations operate within a
single column of the matrix shown in Figure 1. They al-
low the extraction of network characteristics from more
complex structures such as netflow logs, configuration
files or packet traces. Figure 2 shows the different groups
of transformations.

4 BLACK BOX ANOMALY DETECTOR
In Section 3, we have explained how to transform the
data source into a set of real-valued time series, that we
use as input to the blackbox anomaly detector. We now
discuss how to build the blackbox anomaly detector.

4.1 Overview
An anomaly is a deviation from an expected behavior.
This naturally poses a fundamental question: do we know
the expected behavior of our data? In other words, can
we predict the behavior of our data?

One approach to anomaly detection is to compare the
given data to some domain knowledge of how the data
should behave. However, this approach does not scale
well, and is especially unsatisfactory with network data,
where most often we do not know how the data should
behave or even when we think we do, experimentation
often proves us wrong. Without any domain knowledge
on the data, we need to extract the expected behavior
from the data itself.

Another approach is to analyze the behavior of the
data, computing some measurements on the data, and ex-
amine how these measurements hold in future data. How-
ever, not every measurement will be applicable to future
data. How do we know which ones, if any, will be ap-
plicable and indicative of future data? For example, we

Train


Models


Test


Candidate

profiles


Feature

data


(normal)


Data

Profiles


Anomalies
Evaluate


Feature data

(mixed)


Metrics


Anomaly

detector


Transformations


Data Source


Figure 3: TrafficComber Overview

could measure the maximum value that appears in the
normal data and use that value as an upper bound on fu-
ture data. But how do we know whether that specific
value will really be an upper bound? In order to be able
to relate the past measurements with the future, we need
to know what the relationship is between the data seen
so far and the future data. Since we do not use domain
knowledge about the data, we make the assumption that
a specific property holds on the data, and then we test if
the assumption is true, that is, if the data really behaves
as implied by that underlying property.

Our approach is the following: we search for general
properties of the data, such as independence across time
intervals, and build models of the data based on these
properties. For example, one model we could build is
an upper bound on the data values, while another model
could be an upper bound on the 50th percentile value of
the distribution. Then, we assume that the data follows
that model and test if this assumption is true by verify-
ing if the data agrees with the model according to some
metrics. If it does not, then the underlying property used
to build the model does not hold and we need to test an-
other model, built on a different property. If the model
holds, then we can assume, to the extent tested, that the
underlying property used to build the model holds on the
data. We call this a search-and-test approach because we
search for general properties of the data and test if they
hold.

4.2 Train, Test, Evaluate
Our approach for implementing the black box anomaly
detector is shown in Figure 3. We begin with a class of
models and a set of normal data in the form of a time
series of real values. For each model that we want to test,
we use the input normal data to compute the values of
the model parameters. We call the parameterized models
candidate profiles and refer to this as the Training phase.

Next, in the Testing phase, we assess the candidate pro-
files on a new set of normal data. The candidate profiles
are tested using metrics related to the model and only
candidate profiles that satisfy the metrics are kept, the
rest are discarded. Given sufficient normal traffic data,
this approach will automatically generate profiles that
characterize the input data and automatically discard all
profiles which do not.

The data profiles generated through Training and Test-
ing can then be used during the Evaluation phase for real-
time anomaly detection, by applying them on a set of
mixed data and flagging any deviations from the profile
that the mixed data might present.

3



4.3 Modeling the data
In this section we describe the last two components of our
framework: the models with their underlying assump-
tions and the evaluation metrics.

4.3.1 Models and Assumptions
In order to extract the profile of the traffic and have
some confidence bounds on its prediction, we need to
have some assumptions on the relationship between the
data that we have seen so far, and the data that we ex-
pect to see in the future. Otherwise, the profile can-
not imply anything about the new data. For example,
each month’s traffic might be drawn iid from a distri-
bution over months, that has a 50% chance of being a
high-traffic month, and 50% chance of being a low-traffic
month. Clearly, in this case, training over a month of traf-
fic would not yield a useful model over the next month.

With each assumption that we consider, we can de-
fine a class of models based on that assumption. We then
build the models by computing appropriate values for the
model parameters, and showing that these computed pa-
rameters are tight, i.e., they are not too far from the (un-
known) true parameter values. For every model built for
a given feature, we now need to test that the relevant un-
derlying assumptions hold; if they do not, the model is
not valid. We handle this in the next section with the last
component of our framework, the evaluation metrics. 1

There are always tradeoffs associated with the choice
of assumptions to use for the data. If we choose mod-
els with very strong assumptions, the data may not obey
these assumptions. On the other hand, if we restrict our-
selves to models with very weak assumptions, the guar-
antees we would get from the model would be very weak.
For example, if the only assumption that we make is
that the values have an upper bound, then any guarantee
we can make on the values can only involve this upper
bound. The rest of the distribution might change signifi-
cantly, but we would not be able to detect it with models
involving only this assumption.

Therefore, we explore models based on a range of as-
sumptions in our anomaly detector, and we build models
for the features starting from the strongest assumptions,
weakening them as needed to fit the data.

4.3.2 Evaluation Metrics
We need to be able to evaluate the candidate profiles in
order to check if they fit the data, that is to test the valid-
ity of the model assumptions they are based on. In addi-
tion, we need to evaluate how likely a deviation from the
model is to determine an anomaly.

For every model, we can define some properties that
should be satisfied by feature values that fit this model.
We refer to these as model evaluation properties. Some
example model evaluation properties are the mean, the
variance and the 90% percentile. There may not be a
small (or even finite) set of properties that are sufficient
to ensure that the model holds, so we may have to pick a
subset of these properties to examine.

1Note that it is not always possible to say when an assumption does
hold; the best we can sometimes say is whether data is consistent with
the assumption.

In order to evaluate the model, we examine the values
of these properties, and test how likely they are to have
been generated from the model that we are testing. Thus,
our evaluation metrics for the model are the likelihoods
of the evaluation properties. So, for example, when we
have built a model and our evaluation property for testing
it is the variance, we compute the empirical variance on
the data, and test how likely it is that this value of the
variance was generated from the model that we built.

Thus, our evaluation of the validity of the model can
be only as good as the properties of the model that we
consider. For this reason, we will ask whether a model
and the relevant evaluation property together are valid for
the feature, rather than ask if a particular model is valid.

Since we can have multiple evaluation properties and
associated metrics for a particular model, we may find
that some of them are violated while others are never vi-
olated. If any of the evaluation properties do not hold
during the testing phase, this indicates that the underly-
ing assumption generating the model is violated and that
model does not represent the feature accurately.

Thus, the space of anomalies we can detect is defined
by the classes of models and their evaluation metrics that
we use in the anomaly detector. These allow us to gradu-
ally increase the space of anomalies the detector can de-
tect, e.g. as more sophisticated models and metrics are
added to the anomaly detector, more families of anoma-
lies will be detected. Also, it allows a different evaluation
of the models: the larger the family of anomalies that a
model can detect, the more suited it is for anomaly detec-
tion.

4.3.3 Application of the Framework
As a concrete example of the application of our frame-
work, we now discuss some of the assumptions, models
and the metrics that we consider.

We explore models that work on a single feature of
one-dimensional real-values and consider two examples
of assumptions on the values: interval-independence and
source-independence. For the interval-independence as-
sumption, we assume that each value in the time se-
ries is generated iid from the model (so, independently
of the other values of the time series). For the source-
independence assumption, we assume that each value of
the time series is generated as a sum of independent pro-
cesses. For example, the time series may represent the
number of sources that are active on a particular port,
and it may be reasonable to assume that each source acts
independently of the other sources. With these two as-
sumptions, we build two models: the first uses only in-
terval independence, while the second uses both.

When we use only the first assumption, the data val-
ues could come from any distribution. So, the model we
build consists of upper bounds for the various percentiles
of the distribution. That is, we compute an upper bound
for say, the 50th percentile, 70th percentile, etc. of the
distribution. We evaluate this model by examining if the
upper bound of each percentile is obeyed (under proba-
bilistic guarantees). We refer to this model as the per-
centile model.

4



When we use both assumptions, the class of distribu-
tions the values can belong to is the generalized binomial
distribution. The model we build is an estimate of the
relevant parameters of the generalized binomial distribu-
tion. The evaluation properties we examine are proper-
ties that hold on this distribution, and we test how likely
the property observed on the data is to come from a bino-
mial distribution with the estimated parameters. We refer
to this model as the coin-tossing model.

While the percentile model is clearly more general
than the coin-tossing model, the guarantees we can get
from the percentile model are weaker than those we can
get from the coin-tossing model. For example, in the per-
centile model, any single value could be arbitrarily high
without being anomalous (e.g., we may have an estimate
on the 90th percentile of the distribution, but any indi-
vidual value could be arbitrarily large), whereas in the
coin-tossing model, we estimate how likely a particular
value is to come from the distribution.

These two models capture many aspects of the be-
haviour of a feature, and so metrics can be defined to
find changes in these aspects of the behaviour. For ex-
ample, some data sources exhibit periodicity: there is a
spike in their value periodically. As long as the distribu-
tion itself does not change, this can be modelled using
the percentile model. However, there are other patterns
of behaviour that these models cannot capture. For ex-
ample, if the normal data exhibits an increasing trend,
then the distribution of the values is no longer fixed, and
therefore, we cannot model it with the coin-tossing or the
percentile models. We plan to explore models that are
able to capture these trends using non-parametric mod-
els, time series analysis and forecasting.

5 RELATED WORK
There has been a wealth of research on anomaly detec-
tion. We focus here on the work that we feel is the closest
to ours. One line of previous work has focused on spe-
cific features. McDaniel et al. [12] proposed profiles that
capture the set of peers with which a host communicates
and used the profiles for worm containment. Lakhina et
al. [7] compute the entropy of the distribution of differ-
ent IP header fields, and use it for automatically clas-
sifying network anomalies through unsupervised learn-
ing. LERAD [11] use a different approach that consid-
ers each byte of a packet header as a different attribute.
Barford et al [2] use wavelet analysis to find anomalies.
Thottan et al [20] propose a statistical signal processing
technique to detect abrupt changes. Another line of pre-
vious work has presented frameworks for anomaly de-
tection. Lee et al. [8] presented a framework that uses
both normal and anomalous data to find the characteris-
tic features of anomalies. Zhang et al. [24] presented a
framework for network anomography that builds in the
linear relationship between link loads and traffic matri-
ces. Our work differs in that our framework considers
different data sources types, uses only normal data, and
allows for different features and models with different
kinds of assumptions to be used for anomaly detection.

There have also been a number of studies that ap-

week1 week2 week3 week4

10

20

30

40

50

60

70

80

90

100

Time

C
P

U
 %

 u
til

iz
at

io
n

Change in behavior

Spikes

Figure 4: One month of CPU utilization in a backbone router

plied network profiles to intrusion detection. EMER-
ALD [15] combines signature analysis with statistical
profiling, MINDS [9] and ADAM [1] use data mining
techniques to build profiles through learning network
connections assumed to be normal. SPADE [19] gen-
erates a packet table based on connection history for
each port and hosts and raise an alarm for packets rarely
seen. eBayes TCP [21] employs Bayesian inference
to categorize connections into pre-defined models, and
WSARE [22] adds temporal attributes which allow to de-
tect periodic and seasonal anomalies. Finally, Pang et
al. [14] and Labovitz et al. [6] show anomalies present in
different types of network data.

6 PRELIMINARY RESULTS
We have implemented a prototype of our framework,
TrafficComber, and we are currently in the process of
evaluating it.

Data sources and features We have started evaluation
using two different data sources: packet traces captured
at the border router of a departmental network and SNMP
measurements from the network of a tier-1 ISP.

As a proof-of-concept, we are currently testing two
features extracted from the packet traces: (1) the number
of sources contacting more than k destinations on a fixed
port, and (2) the number of ports in which a fixed source
contacts more than k destinations. We refer to these fea-
tures as port and src respectively. The first feature looks
at the outbound traffic on a single port aggregated over all
of the hosts in the network. The second feature models
the outbound traffic of each individual host in the net-
work. Both features aim to detect events characterized
by one or a few sources having large fan-out. Some ex-
ample applications of these features could be detecting
worm outbreaks or finding hosts with heavy P2P usage
located inside the monitored network.

Given the large number of active hosts and ports in
the network, a manual approach is infeasible. For exam-
ple, the number of hosts in our network is above 1000
and so far the number of active hosts for which we have
automatically built profiles varies from 300 to 975 hosts
depending on the feature and time period.

From the SNMP measurements, we are currently mod-
eling the router CPU utilization. Figure 4 shows one
month of CPU utilization from a backbone router. It in-

5



Data Source Feature % invalid models
Packet traces port 3%
Packet traces src 7%
SNMP measurements cpu 25%

Table 1: Percentage of invalid models when applying the coin-tossing
model on different features

cludes two types of anomalies: spikes and changes in
behavior. We have found that changes in the behavior of
the CPU utilization are widespread among the backbone
routers and so far we have identified two main causes:
software upgrades and hardware replacements.

Models and metrics To validate that the anomaly detec-
tor truly tells us which models are valid for a specific
feature, we apply the coin-tossing model introduced in
Section 4.3.3 to the three different features. We know
that the coin-tossing model uses a source-independence
assumption that does not really apply to the cpu and src
features. If the system determines that the model does
not fit the data it will discard the model.

Table 1 shows how often the anomaly detector dis-
carded models when applying the coin-tossing model for
the different features. Note that 25% of models were dis-
carded for the cpu feature, implying that the coin-tossing
model is not able to create valid profiles for that fraction
of the routers. This in turn suggests that it would be bet-
ter to use a different model (with different assumptions)
for this feature, and we want to evaluate other models for
this feature. The fact that the anomaly detector is able to
tell us when a model does not apply to a feature allows
us to gradually add new models as they are needed.

7 CONCLUSION
Anomaly detection is a fundamental tool for ISPs to
maintain the health of their networks. But the volume and
diversity of the data currently gathered from the network
requires a comprehensive and automatic approach, rather
than a set of individual solutions. In this paper we have
shown that it is possible to build a black box anomaly de-
tector that handles the diversity of data sources and fea-
tures collected from the network. We have introduced
a framework that splits the problem into two: handling
different data sources and building a black box anomaly
detector. We deal with diverse data sources through se-
quences of transformations that convert them into sets of
features with a well defined data type. Then, our search-
and-test black box anomaly detector automatically tests
for the presence of underlying properties in those features
that allow us to detect changes in the behavior. This ap-
proach allows us to detect novel anomalies not yet seen
in the data and to explore the multiple features of interest,
while gradually increasing the scope of the detection. We
have developed a prototype of our framework, Traffic-
Comber, and we are in the process of evaluating it using
the data in the warehouse of a tier one ISP.

8 ACKNOWLEDGEMENTS
We would like to thank Tamraparni Dasu, Zihui Ge,
Ajay Mahimkar, Eric Vance and Jia Wang for many
discussions; Min Gyung Kang and Pongsin Poosankam
for their help with the project, and Vyas Sekar and the
anonymous reviewers for their insightful comments.

REFERENCES
[1] D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N. Wu. Adam:

detecting intrusions by data mining. IEEE Workshop on Informa-
tion Assurance and Security 2001.

[2] P. Barford, J. Kline, D. Plonka, and A. Ron. A Signal Analysis
of Network Traffic Anomalies. Internet Measurement Workshop
2002.

[3] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. An
Information-Theoretic Approach to Detecting Changes in Multi-
Dimensional Data Streams. 38th Symposium on the Interface of
Statistics, Computing Science, and Applications.

[4] G. Giacinto and F. Roli. Intrusion Detection in Computer Net-
works by Multiple Classifier Systems. International Conference
on Pattern Recognition 2002.

[5] Y. Gu, A. McCallum, and D. Towsley. Detecting Anomalies in
Network Traffic Using Maximum Entropy Estimation. Internet
Measurement Conference 2005.

[6] C. Labovitz, G.R. Malan, and F. Jahanian. Internet Routing Insta-
bility. ACM SIGCOMM 1997.

[7] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using
traffic feature distributions. ACM SIGCOMM 2005.

[8] W. Lee and S. Stolfo. A Framework for Constructing Features
and Models for Intrusion Detection. ACM Transactions on Infor-
mation and System Security, 3(4).

[9] L.Ertz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Ku-
mar, and P. Dokas. The MINDS - Minnesota Intrusion Detection
System. In Next Generation Data Mining. MIT Press, 2004.

[10] R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing
Data. John Wiley & Sons, 1987.

[11] M. V. Mahoney and P. K. Chan. Learning Rules for Anomaly
Detection of Hostile Network Traffic. Third IEEE International
Conference on Data Mining.

[12] P. McDaniel, S. Sen, O. Spatscheck, J. Van der Merwe, B. Aiello,
and C. Kalmanek. Enterprise Security: A Community of Inter-
est Based Approach. Network and Distributed Systems Security
2006.

[13] A. W. Moore and D. Zuev. Internet traffic classification using
bayesian analysis techniques. ACM SIGMETRICS 2005.

[14] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson.
Characteristics of Internet Background Radiation. ACM Internet
Measurement Conference 2004.

[15] P. A. Porras and P. G. Neuman. EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances. National
Information Systems Security Conference 1997.

[16] M. Sabhnani and G. Serpen. Application of Machine Learning
Algorithms to KDD Intrusion Detection Dataset within Misuse
Detection Context. International Conference on Machine Learn-
ing, Models, Technologies and Applications 2003.

[17] H. Shvaytser. A Necessary Condition for Learning from Positive
Examples. Machine Learning journal, 5(1):101-113.

[18] A. Soule, K. Salamatian, and N. Taft. Combining Filtering and
Statistical Methods for Anomaly Detection. Internet Measure-
ment Conference 2005.

[19] S. Staniford, J. A. Hoagland, and J. M. McAlerney. Practical
automated detection of stealthy portscans. 7th ACM Conference
on Computer and Communications Security.

[20] M. Thottan and C. Ji. Anomaly Detection in IP Networks. IEEE
Transactions on Signal Processing, 51(8).

[21] A. Valdes and K. Skinner. Adaptive, Model-Based Monitoring for
Cyber Attack Detection. Third International Workshop on Recent
Advances in Intrusion Detection.

[22] W. Wong, A. Moore, G. Cooper, and M. Wagner. Bayesian Net-
work Anomaly Pattern Detection for Disease Outbreaks. Twenti-
eth International Conference on Machine Learning.

[23] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling internet back-
bone traffic: behavior models and applications. ACM SIGCOMM
2005.

[24] Y. Zhang, Z. Ge, M. Roughan, and A. Greenberg. Network
anomography. Internet Measurement Conference 2005.

6


