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ABSTRACT
Web service operators set up reverse proxies to interpose the com-
munication between clients and origin servers for load-balancing
traffic across servers, caching content, and filtering attacks. Silent
reverse proxies, which do not reveal their proxy role to the client,
are of particular interest since malicious infrastructures can use
them to hide the existence of the origin servers, adding an indi-
rection layer that helps protecting origin servers from identification
and take-downs.

We present RevProbe, a state-of-the-art tool for automatically
detecting silent reverse proxies and identifying the server infras-
tructure behind them. RevProbe uses active probing to send re-
quests to a target IP address and analyzes the responses looking for
discrepancies indicating that the IP address corresponds to a reverse
proxy. We extensively test RevProbe showing that it significantly
outperforms existing tools. Then, we apply RevProbe to perform
the first study on the usage of silent reverse proxies in both benign
and malicious Web services. RevProbe identifies that 12% of mali-
cious IP addresses correspond to reverse proxies, furthermore 85%
of those are silent (compared to 52% for benign reverse proxies).

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;
H.3.5 [Online Information Services]: Web-based services

Keywords
Reverse Proxies; Active Probing; Web Load Balancers

1. INTRODUCTION
Attackers constantly look for mechanisms to protect their server

infrastructure. A popular approach introduces indirection by adding
intermediate layers of servers that forward traffic between clients
(e.g., bots, victims) and origin servers (e.g., C&C, exploit servers).
Those intermediate servers stay exposed to clients but hide origin
servers that attackers closely manage and that store the most sen-
sitive data. Such intermediaries can serve as disposable resources
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since they do not store essential information and can run on in-
fected machines or cheap cloud VMs. Furthermore, they can dis-
tribute traffic across multiple origin servers, making the malicious
server infrastructure more resilient to take-downs. In contrast, ori-
gin servers are more valuable, should remain hidden, and may use
more expensive “bullet-proof” hosting.

Miscreants can employ different types of intermediate servers to
introduce indirection in malicious infrastructures. Botnet opera-
tors leverage publicly reachable computers in the botnet to serve
as proxies [35, 36], HTTP redirectors are widely used in drive-
by downloads [43], and traffic delivery systems (TDSes) aggregate
traffic towards exploit servers [39]. Reverse proxies form another
type of intermediate servers, set up by Web service operators to in-
terpose the communication between clients and origin Web servers.
They split the communication into two TCP connections: client to
reverse proxy and reverse proxy to origin server. They differ from
forward proxies (that reside in a local network and mediate commu-
nication of local clients to any Web service) and from ISP proxies
(that intercept all HTTP traffic from ISP clients to any Web ser-
vice) in their specificity to one Web service and their role as Web
service endpoints. Benign Web services and content delivery net-
works (CDNs) employ reverse proxies for tasks such as load bal-
ancing [25], caching [25], and filtering attacks [50].

Silent reverse proxies are characterized by the fact that they do
not reveal their proxy role (e.g., by introducing a Via header in the
HTTP response [32]) and thus hide the existence of origin servers
behind them. HTTP redirectors and TDSes differ from reverse
proxies in that they do not hide the IP address of the origin servers,
and also in that once the redirection happens the rest of the com-
munication does not go through them. While reports of silent re-
verse proxies in malicious server infrastructures exist [21], their
prevalence remains unknown. Currently, no effective tool exists to
identify silent reverse proxies. Existing tools (e.g., [5, 7, 40]) fail
to detect silent reverse proxies in common configurations. Further-
more, no tool details the hierarchy of servers hiding behind a silent
reverse proxy, e.g., the number of servers behind a load balancer.

In this work we present RevProbe, a state-of-the-art tool for auto-
matically detecting silent reverse proxies and identifying the server
infrastructure behind them. RevProbe uses active probing to send
requests to a remote target IP address and analyzes the responses
looking for discrepancies and leaks indicating that the IP address
does not correspond to a single server but to a reverse proxy mask-
ing other servers. When it detects a reverse proxy, it outputs a re-
verse proxy tree capturing the hierarchy of servers detected behind
the reverse proxy. When possible, the identified servers are tagged
with their software package, version, and IP address.



We design two novel techniques for detecting silent reverse prox-
ies based on discrepancies they introduce in the traffic: extracting
time sequences from the HTTP Date header and using the structure
of default error pages to identify discrepancies in Web server soft-
ware. We have also performed a comprehensive study of existing
tools for reverse proxy detection (and Web server fingerprinting)
and the techniques they use. We incorporate those techniques as
well as our two novel techniques into RevProbe.

Security analysts can use RevProbe to assist malicious infras-
tructure take-downs, counterintelligence, and attribution. For ex-
ample, a common form of malicious server take-down is performed
voluntarily by ISPs and hosting providers, e.g., when they receive
an abuse notification (from security companies, analysts, or af-
fected users) about a server that violates their terms of use [29,41].
Such take-downs typically simply disconnect the server and per-
haps store the server contents in case they are later required by law
enforcement. However, if the reported server is a reverse proxy, the
origin servers are not affected and the confiscated data is not sensi-
tive. We argue that analysts should use RevProbe to identify if an IP
address to report is a reverse proxy and that providers should mod-
ify take-down procedures for reverse proxies in two ways. First,
the provider should take a network trace of the traffic of the reverse
proxy before disconnecting it, so that the origin servers can be iden-
tified. Second, once the origin servers are identified, the provider
should report them to the upstream providers or law enforcement.
RevProbe can also be combined with recent active probing tools
for detecting malicious servers [42, 51] to determine if identified
servers constitute reverse proxies or origin servers.

RevProbe also has important applications in benign server in-
frastructures. It can be used during penetration testing to identify
vulnerable servers hiding behind a reverse proxy, for exposing vul-
nerabilities introduced by the reverse proxy, for asset management,
for auditing Web application firewall rules, for security compliance
testing (as the hosting network policy may prohibit reverse prox-
ies), for measuring and optimizing performance, and for cloud car-
tography [44].

We evaluate RevProbe in controlled configurations to establish
ground truth, before unleashing it upon both benign and malicious
live websites. To measure its accuracy compared to other reverse
proxy detection tools, we first apply RevProbe alongside 6 other
tools on 44 silent reverse proxy configurations (corresponding to
over 99% of all reverse proxy configurations we observe in the
wild, as described below). RevProbe perfectly recovers the reverse
proxy tree in 77% of the configurations, and the presence of a re-
verse proxy in the remaining 23% configurations, significantly out-
performing all competing tools. lbmap [40] comes closest, recover-
ing the correct reverse proxy tree in 33% of the configurations and
a reverse proxy in another 17%, but it only detects the less popular
HAProxy [6] and Pound [20] reverse proxies, missing Apache [2]
and Nginx [14] acting as reverse proxies.

Then, we use RevProbe to perform the first study of silent re-
verse proxies in both benign and malicious Web services. We apply
RevProbe on the top 100,000 Alexa domains [1] and 46,731 mali-
cious domains from different sources [3, 12, 22]. Our results show
that 12% of active IP addresses in malicious Web infrastructures
and 13% in benign infrastructures correspond to reverse proxies.
The vast majority of malicious reverse proxies (85%) silently mask
origin servers, compared to 52% of benign reverse proxies. Reverse
proxies are predominantly used to load-balance traffic among mul-
tiple servers in benign infrastructures (85%) while in malicious site
the dominant reverse proxy tree configuration (49%) is a reverse
proxy with one server behind. More complex hierarchies also exist
that represent a small percentage of the total.

In summary, we make the following contributions:

• We present RevProbe, a state-of-the-art active probing tool
for detecting silent reverse proxies. RevProbe is the first tool
for identifying the server infrastructure hiding behind a re-
verse proxy.

• We design two novel techniques for detecting reverse proxies
based on discrepancies they introduce in the traffic: extract-
ing time sequences from the HTTP Date header and using
the structure of default error pages to identify discrepancies
in Web server software.

• We perform a comprehensive study of existing tools for re-
verse proxy detection (and Web server fingerprinting) and the
techniques they use. We incorporate those techniques as well
as our two novel techniques into RevProbe.

• We compare the accuracy of RevProbe with 6 other reverse
proxy detection tools on 44 silent reverse proxy configura-
tions, showing that RevProbe outperforms existing tools.

• We apply RevProbe to perform the first study on the use of
silent reverse proxies in malicious (and benign) infrastruc-
tures. Our results shows that 12% of malicious active IP ad-
dresses host reverse proxies and that 85% of those are silent.

2. OVERVIEW
A proxy is explicit if it requires the client application to specify

its IP address and port, and transparent otherwise. Reverse prox-
ies by definition function transparently because they do not require
client configuration. To clients, reverse proxies act as the service’s
endpoints—for example, if a domain name is used to advertise the
service, the domain will resolve to the reverse proxy’s IP address.
Thus, a reverse proxy looks like the origin server and requires the
collaboration of the service owner to be installed.

There exist specialized types of reverse proxies. A Web load bal-
ancer (WLB) is a reverse proxy that load-balances requests across
multiple servers according to some policy (e.g., round-robin, least-
loaded) while a Web application firewall (WAF) filters requests to
remove potential attacks.

Figure 1 (left and center) shows two usage scenarios for reverse
proxies. On the left, one reverse proxy is used as a WLB to dis-
tribute connections across 3 origin servers on the same local net-
work. The center figure shows a more robust server infrastructure
with a line of reverse proxies and WLBs forwarding traffic to origin
servers that may be hosted somewhere else on the Internet. Some
reports (e.g., [21]) link this kind of infrastructure to exploitation-
as-a-service models [34] where the origin servers would be exploit
servers and the reverse proxies would hide them from the victims.

2.1 Problem Definition
In this work we develop a tool for detecting silent reverse prox-

ies. We consider two alternative definitions of our problem: strict
(simpler) and generalized (harder).

Strict problem definition. Given the IP address and port of a re-
mote Web server 〈ip, port〉, output true if 〈ip, port〉 corresponds
to a reverse proxy, false otherwise. This definition only identifies
the existence of a reverse proxy; it does not attempt to identify the
server infrastructure hiding behind it.

Generalized problem definition. Given the IP address and port of
a remote Web server 〈ip, port〉, determine the server infrastructure
behind it. The goal is to output a reverse proxy tree where each
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Figure 1: Reverse proxy usage examples (left and center) and a reverse proxy tree example (right).

node corresponds to a Web server. The root node corresponds to
the input pair 〈ip, port〉, internal nodes correspond to other reverse
proxies, and leaf nodes correspond to origin servers. A node with
children is a reverse proxy and a node with multiple children a Web
load balancer. Each node is annotated with its type: reverse proxy
(RP), Web load balancer (WLB), or origin Web server (WS). Nodes
can have 3 optional attributes: Web server software (e.g., Apache,
Nginx), Web server version (e.g., 2.2.3 for Apache), and IP address.

The right-hand side of Figure 1 shows an example reverse proxy
tree. It shows that the target IP address (1.2.3.4) corresponds to a
WLB that load balances traffic across 3 servers in layer 1. Of those,
two are origin servers and another is a reverse proxy to another
origin server at layer 2. Some nodes have the optional attributes
software package, software version, and IP address.

The goal of RevProbe is identifying whether a given 〈ip, port〉
corresponds to a reverse proxy (strict definition) and, if so, recover
the reverse proxy tree (generalized definition). More specifically,
the goal is to recover the shape of the reverse proxy tree. However,
RevProbe will annotate the tree nodes with software, version, and
IP address if it recovers that information during its processing.

Both problem definitions take as input an IP address. If the input
is instead a domain, our approach first resolves the domain into a
list of IP addresses. If the input is a URL, it follows all HTTP
redirections and then resolves the final domain in the redirection
chain to obtain a list of IP addresses. Our reverse proxy detection
is then applied separately for each IP address.

A related problem is Web server fingerprinting (WSF) [8, 9],
which aims to recover the software package and version running
at a given 〈ip, port〉 endpoint. Current WSF approaches assume
the endpoint corresponds to a single server, which is not true with
reverse proxies. For example, existing WSF tools will incorrectly
label endpoints that correspond to WLBs where responses may
come from multiple servers potentially running different software.
RevProbe can enable WSF on such cases.

2.2 Approach Overview
We assume only black-box access to the remote Web service

identified by 〈ip, port〉. The code of the Web service is not avail-
able in any form. Thus, we use active probing techniques that send
requests to 〈ip, port〉, collect the responses, and infer from those
responses the presence of a reverse proxy and the server infrastruc-
ture behind it. RevProbe acts as a client that interacts with the Web
service over the network.

There exist two general approaches to identify proxies through
active probing: timing-based and discrepancy-based. Timing-based
approaches leverage the property that every reverse proxy intro-
duces an additional hop in the communication, which in turn intro-

duces unnatural additional latency from the client’s perspective [48].
Discrepancy-based approaches focus on identifying changes that
the proxies may introduce in the traffic [49]. We use (mostly) a
discrepancy-based approach because timing-based approaches can-
not identify multiple servers hiding behind the reverse proxy, e.g.,
a WLB. They also have problems detecting reverse proxies when
the delay they introduce is too small to be detectable across the In-
ternet, e.g., when the reverse proxy sits in the same subnet as the
origin server.

In contrast, discrepancy-based approaches can identify multiple
servers behind a reverse proxy. However, they may miss a reverse
proxy if it does not introduce any changes in the traffic, and miss
some origin servers behind a WLB if they are all configured identi-
cally. To address some of these cases, RevProbe includes detection
modules (e.g., Max-Forwards and phpinfo, detailed in Section 4)
that are not based on discrepancies and thus can identify difficult
configurations such as a reverse proxy running the same software
as the origin server behind.

With discrepancy-based approaches, the more servers hide be-
hind a reverse proxy the easier the strict problem definition gets,
since each new server may introduce discrepancies, but the gener-
alized problem definition gets harder as more information needs to
be recovered.

3. STATE OF THE ART
We split the state of the art discussion into related published work

(Section 3.1) and prior tools for reverse proxy detection, better de-
scribed separately (Section 3.2).

3.1 Related Work
Weaver et al. [49] propose a technique to detect ISP and for-

ward proxies by installing an application in client hosts and have it
communicate with a Web server under their control. Discrepancies
between the response sent by their server and the response received
by the client application indicate the presence of a proxy. Our work
focuses instead on detecting reverse proxies that serve as endpoints
of a Web service. In this scenario we do not control the server the
client connects to.

In his M.Sc. thesis, Weant [48] proposes detecting reverse prox-
ies through timing analysis of TCP and HTTP round-trip times.
Timing-based approaches focus on the strict problem definition and
cannot identify multiple servers hiding behind the reverse proxy.
They also fail to detect reverse proxies when the delay they intro-
duce remains too small to be detectable across the Internet. Fur-
thermore, Weant evaluates his technique on a single ground truth
configuration and does not measure the prevalence of reverse prox-
ies in malicious and benign infrastructures.



Reverse Proxy Detection
Explicit Silent WSF

Tool RP WLB WAF RP WLB WAF Exp. Imp. Classes # Req.
RevProbe X X - X X - X X * 45
Halberd [5] - X - - X - X - * 25,570
Htrosbif [7] - X - - X - X X 75 20
http_trace.nasl [10] X - - - - - - - - 1
lbmap [40] X X X X X X X X 6 37
TLHS [33] X - - X - - - - - 3
WAFW00f [24] - - X - - X - - - 13
ErrorMint [4] - - - - - - X - * 9
HMAP [38] - - - - - - X X 28 178
HTTPRecon [8] - - - - - - X X 460 9
HTTPrint [9] - - - - - - X X 118 22
http_version.nasl [11] - - - - - - X - * 2
nikto.nasl [15] - - - - - - X X 1,250 6,297
Nmap [16] - - - - - - X - * 1

Table 1: Summary of existing tools for RP detection and WSF fingerprinting.

Feature Type
Header name hash string
Accept-Ranges string
Allow string
Connection string
Content-Disposition string
Content-Encoding string
Content-Language string
Content-Type string
Date datetime
P3P string
Server string
Status-Line string
Transfer-Encoding string
Upgrade string
X-Powered-By string

Table 2: WLB detection features.

Web server fingerprinting. A number of tools exist to fingerprint
the program and version run by a remote Web server [8, 9, 26, 38,
45]. Among these, tools like Nmap [16] and ErrorMint [4] finger-
print the program version exclusively by examining explicit pro-
gram version information provided by the server, e.g., in the Server
header and error pages. Other tools like HMAP [38], HTTPrint [9],
and HTTPRecon [8] use fingerprints that capture differences be-
tween how different Web server versions construct their responses.
These type of fingerprints do not rely on the program version infor-
mation explicitly provided by the server.

Vulnerability scanners such as Nessus [13] and OpenVAS [17]
detect vulnerabilities in a variety of software, including Web servers.
They first fingerprint the software running at a given endpoint and
then look up those software versions in vulnerability databases.
Both Nessus and OpenVAS run NASL scripts [31], which exist for
WSF [11, 15].

A common limitation of all WSF tools is that they assume the fin-
gerprinted 〈ip, port〉 endpoint corresponds to a single Web server,
which proves incorrect with reverse proxies. When faced with a
reverse proxy, they will often recover the software version of the
origin server behind the reverse proxy, but they get confused if the
reverse proxy manipulates the responses or acts as a load balancer
to servers with different software. One of our conclusions in this
work is that reverse proxy detection and Web server fingerprinting
are best done together.

Automatic fingerprint generation. There exist approaches to au-
tomatically build program version fingerprints [26, 27]. Currently,
RevProbe uses manually generated fingerprints and could benefit
from such approaches. Recent work builds fingerprints for mali-
cious server programs (e.g., C&C, exploit kits) scanning the Inter-
net to locate servers that run them [42, 51]. These tools cannot dis-
tinguish between reverse proxies and origin servers in their results
and could leverage our approach to this end.

IP disclosure. Recent work by Vissers et al. [46] proposes Cloud-
Piercer, a tool that combines novel and known techniques to dis-
close the public IP address of DDoS-protected websites. RevProbe
also uses some of these techniques (e.g., the phpinfo [19] analysis)
to disclose the IP address of servers behind a silent reverse proxy.
While for CloudPiercer it remains necessary to disclose a public IP
address in order to show that a particular website is vulnerable to
DDoS, RevProbe can discover the existence of other IP addresses
behind the contacted server to flag the server as a silent reverse
proxy. RevProbe could be used to extend CloudPiercer to sup-
port cases where the cloud-based DDoS protection services load-
balances across multiple origin servers.

3.2 Reverse Proxy Detection Tools
Table 1 summarizes prior reverse proxy detection tools. For

completeness it also includes Web server fingerprinting tools de-
scribed in the previous section. We break the table into 3 blocks:
reverse proxy detection, Web server fingerprinting, and number
of requests sent by default. Tools with suffix .nasl are NASL
scripts [31] for the Nessus [13] and OpenVAS [17] vulnerability
scanners. All tools take as input a target IP address or domain, and
focus on the strict problem definition. They do not output a reverse
proxy tree or recover the number of servers behind a WLB, but in
some cases may identify a reverse proxy and its origin server.

The reverse proxy detection block distinguishes between detec-
tion of explicit and silent reverse proxies and also separates generic
reverse proxy (RP), WLB, and WAF detection.

The WSF block captures if the software information comes ex-
clusively from explicit version information provided by the Web
server (e.g., Server header and versions in error pages) or if it is de-
tected without trusting the explicit version information (e.g., using
fingerprints). The final column in this block captures the number
of classes (i.e., program versions) the tool can identify. An asterisk
indicates the tool has no predefined classes, but rather outputs any
explicit program version information. The rightmost column cap-
tures the average number of requests that the tool sends in default
configuration to a target IP.

Next we detail each of the tools, the detection approaches they
employ, and a comparison to RevProbe’s approach.

Halberd. This tool focuses exclusively on detecting Web load bal-
ancers. It sends the same request for a period of 15 seconds to
the target IP. Differences in some response headers (e.g., E-Tag,
Server) indicate a load balancer. On our tests, it sends on aver-
age 25,570 requests, the most of all tools. RevProbe incorporates
this technique but it also adds a novel second technique, based on
extracting time sequences from the HTTP Date header, to detect
WLBs and estimate the number of servers they mask.

Htrosbif and lbmap. These tools are similar. They send abnormal
requests (20 and 37, respectively) to the target, trying to elicit a re-
sponse from any reverse proxies. They use a database of signatures
on the responses in order to identify reverse proxy software (i.e.,
HAProxy, Pound, Vanquish). They differ in the database of re-
quests and signatures. Both fail to detect generic Web server soft-
ware (e.g., Apache, Nginx) running as reverse proxy. RevProbe
also incorporates a module for forcing proxy responses, but uses
a novel method to extract fine-grained information from the error
pages that also works with Apache and Nginx.



TLHS. Gregoire [33] presents the HTTP traceroute tool (TLHS),
which leverages the Max-Forwards HTTP header that limits the
maximum number of times a request is forwarded. RevProbe incor-
porates this technique, which cannot be used in isolation because
popular reverse proxy software (e.g., Nginx) ignores the header. In
our experiments it only works well with Apache reverse proxies.

http_trace.nasl. This NASL plugin only detects reverse proxies by
examining the HTTP Via header, thus it cannot detect silent reverse
proxies. RevProbe also includes an explicit RP detection module
for completeness, but its goal is detecting silent reverse proxies.

WAFW00f. This tool exclusively detects WAFs. It sends a benign
and a malicious request to the same URL. Discrepancies between
both responses flag a WAF. This tool incorrectly flags any RP as a
WAF and produces false negatives if the WAF does not return an er-
ror, but a “200 OK” response with an accompanying error message
in the response body. Currently, RevProbe does not differentiate
WAFs from other RPs because their fine-grained classification re-
quires sending attacks (or at least attack-resembling requests) to
third parties, an act easily perceived as offensive.

In addition to the methods used by the tools above, RevProbe
also implements two novel detection techniques, and provides an-
other module that implements a previously known technique not
implemented by these tools (i.e., phpinfo [19]).

4. APPROACH
Figure 2 provides an overview of our approach. The preparation

module first resolves domains and URLs into IP addresses. For
each IP address, RevProbe determines if it corresponds to a reverse
proxy by sending probes and examining the responses. If it finds a
reverse proxy, it outputs a reverse proxy tree for that IP address.

For each IP address, RevProbe runs a number of detection mod-
ules. Each module may send requests to the IP address or simply
examine the responses to requests sent by other modules. Each
module outputs a, possibly partial, reverse proxy tree. Those trees
are combined at the end into a reverse proxy tree for each target IP
address. The rest of this section details the modules in Figure 2.

4.1 Preparation
A user may want to run RevProbe on a DNS domain or URL,

rather than an IP address. The preparation module obtains a set of
IP addresses from those domains and URLs. Then, each IP address
is examined independently.

For domains, the preparation module resolves the domain and
extracts the list of IP addresses it points to. For URLs, the prepara-
tion module fetches the URL and follows all HTTP redirections the
URL may produce. From the final URL in the redirection chain, it
extracts the domain name and resolves it as above.

After the preparation step, any HTTP connection from RevProbe
uses the IP address to connect (i.e., without resolving the domain
again) and provides the domain name if known in the Host header,
otherwise the IP address.

4.2 Web Load Balancer Detection
The goal of the WLB detector is to detect the presence of a WLB

and to provide a lower bound in the number of servers that hide be-
hind it. The WLB detector uses three different tests: same request,
datetime sequences, and load balancer cookie. These tests are de-
tailed next.

Same request test. The first test is to send the same request multi-
ple times to a given target IP address, monitoring for changes in the
responses (e.g., different HTTP Server header values), which may

indicate the existence of multiple Web servers and thus the presence
of a WLB that forwards requests across them. The test checks for
differences in the responses related to a server’s configuration. As
such, it will fail to detect a WLB or provide a lower bound on the
number of origin servers if the origin servers are configured iden-
tically. In practice, running a perfectly homogeneous server infras-
tructure and updating the servers’ content simultaneously proves
challenging and such differences in configuration abound.

The test sends the same request n times to the target IP address
and collects the sequence of responses {r1, . . . , rn}. It also records
the time of each request and response. The larger n, the more con-
fidence in the test results, but the noisier the test results become.

To select the default value of n we test the WLB detection on
two different reverse proxy configurations shown in Figure 4: type
2 (center) and type 3 (right). Figure 3 summarizes the results. For
trees of type 2, detection is perfect starting with only 2 requests
(solid line) because this type of tree has 2 web servers behind the
WLB. For trees of type 3 (dashed line), the detection rate increases
with n but reaches a plateau between 30 and 60 requests. After
n = 30 doubling n increases the detection only by 4.1%. Since
less queries make the tool faster and less noisy, we select n = 30
as default value.

The challenge in building this test is that not all changes in the
responses indicate the presence of a WLB as some parts of the re-
sponse are volatile and change regardless of the request being kept
constant, without this indicating the presence of a WLB.

For each response, it first extracts the features in Table 2. The
first feature is the hash of the sequence of header names (with-
out value) in the order they appear in the response. All other fea-
tures correspond to the value of an HTTP header. These features
have been selected because their content is related to the server’s
configuration. The features do not include headers that are not
standard [32] (except the popular X-Powered-By), volatile headers
that change often (e.g., Set-Cookie), content-related headers (e.g.,
Content-Length, Etag, Last-Modified) since the content can be dy-
namic, caching-related headers (e.g., Cache-Control), and proxy-
related headers (e.g., Via) that are examined in the explicit detec-
tion module (Section 4.3). These features can be of two types:
string or datetime. This test focuses on the string features, the sec-
ond test handles the Date header.

The intuition behind the string features is that their value should
be deterministic for the same request and same server. Observ-
ing different values in responses to the same request indicates the
presence of multiple servers, and thus a WLB. This test outputs
the maximum number of distinct values for a feature c. If c = 1,
no WLB was observed for this test. If c > 1, there is a WLB
with c servers behind it. Note that if the configuration of a server
is changed during the test RevProbe will count the server as two
differently-configured servers. The probability of this event can be
minimized by reducing the time between requests, at the expense
of increasing the load of the target IP, or by repeating the test at a
later time.

Datetime sequences test. The second test proposes a novel tech-
nique to extract time sequences from the HTTP Date header of the
received responses. It does not require sending additional requests,
as it examines responses to the former test. The motivation behind
this test is that timestamps are a good source of information for
identifying servers behind a WLB whose clocks are not synchro-
nized. Multiple interleaved time sequences manifest the presence
of a WLB and the number of servers behind can be approximated
by the number of distinct interleaved sequences observed.

Algorithm 1 describes the datetime sequence identification algo-
rithm. It iterates over the sequence of responses (line 3). For each
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Figure 3: Optimal number of requests for WLB detection. Ex-
amples of T2 and T3 trees are depicted in Figure 4.

response, it first obtains the datetime in the Date header (line 4).
Then, it checks if the datetime is past, but within a threshold th of
the end of any existing sequence (lines 6–12). If so, it adds the re-
sponse to the current sequence (line 8). Otherwise, it creates a new
sequence for the response (lines 13–14). Note that if the date in the
current request is in the past of the examined sequence, it cannot
belong to that sequence as the Date header should monotonically
increase for the same server. The threshold value th is dynamically
updated (line 7) based on the time difference between this request
and the last entry in the sequence that updated the Date header. The
new threshold value is th = d(

∑j
i RTTi) ∗ ce where i is the index

of the last response in the sequence that updated the Date header
value, j the index of the current request, RTTi the round trip time
of request-response pair i, and c a constant factor (by default 2).

Load balancer cookie test. The third test observes that some Web
load balancer software introduces cookies in the responses sent by
the server for persistence, i.e., to make sure that different HTTP
connections of the same Web session are forwarded by the WLB
to the same server. The Set-Cookie header from each response
obtained from the prior test is checked against the subset of the
OWASP cookie database [18]. The OWASP database contains sig-
natures for the cookies produced by different Web applications, in-
cluding 5 signatures for cookies introduced by commercial load
balancers. This test outputs 1 if no WLB is detected and 2 if a WLB
is detected indicating that at least two origin servers are identified
behind a WLB.

The WLB detection module outputs a tree with a root WLB node
and in layer 1 the maximum of the number of servers found by the
same request, date sequences, and load balancer cookie tests. If no
WLB is found, it outputs a singleton tree with a root WS node.

Algorithm 1 Datetime sequence identification
Input: response sequence, R = [r1, . . . , rn]
Output: num_servers ∈ [1,∞)
1: procedure DATETIME–SEQUENCE
2: S = {}
3: for i ∈ [1, n] do
4: currT ime = ri.getDatetime()
5: Found = False
6: for s ∈ S do
7: th = updateThreshold(s, currT ime)
8: if 0 ≤ (currT ime− s.lastT ime()) ≤ th then
9: s.append(currT ime)

10: found = True
11: break
12: end if
13: end for
14: if Found = False then
15: S.newSeq(currT ime)
16: end if
17: end for
18: end procedure

4.3 Explicit Reverse Proxy Detection
While detecting silent reverse proxies is its main goal, RevProbe

also detects explicit reverse proxies that announce their presence.
The explicit RP module does not produce traffic, examining a num-
ber of headers in all responses received from a target IP address.

The Via header must be used by proxies to indicate their pres-
ence1 [32]. Each proxy that forwards an HTTP message (i.e., re-
quest or response) must append a comma-separated entry to the Via
header specifying the protocol version of the message received and
the proxy’s hostname (or pseudonym). Some explicit RPs use the
X-Via header instead. The explicit RP module parses the Via and
X-Via headers if they exist to retrieve the list of explicit proxies.
In practice, many reverse proxies are silent; they do not append
themselves to the Via header and strip these headers. This mod-
ule also examines the following cache-related headers, useful for
detecting caching RPs: X-Served-By, X-Cache, X-Cache-Lookup,
X-Varnish, X-Cache-Hits.

This module outputs a tree with a node for each explicit proxy
identified, or a singleton WS node if no RP is found.

4.4 Max-Forwards
The Max-Forwards header in an HTTP request can be used to

limit the number of proxies that can forward the request [32]. It is
set by the source to a maximum number of hops. Each proxy must
check its value: if the value is zero the proxy must not forward the
request, but must respond as the final recipient; if greater than zero
1The X-Forwarded-For header is analogous but only included in
requests to track the client’s IP address.



it must decrease it and forward the request with the updated Max-
Forwards value. Max-Forwards is only required to be supported
with the TRACE and OPTIONS methods, but may be supported
with other methods such as GET.

This module sends HTTP requests to the target IP each time in-
creasing the value in the Max-Forwards header, from zero to a max-
imum number of hops (by default 3). We compare each response
(starting with value 1) with the prior response. If the two responses
have identical values in the string headers in Table 2, no reverse
proxy is found and the test exits. If there is a difference, then a re-
verse proxy is found, e.g., value zero returns a 400 proxy error and
value one returns 200 OK. In this case, the Max-Forward value is
incremented and the test repeated to check if there may be multiple
reverse proxies chained. A limitation of this technique is that some
Web servers such as Nginx [14], HAProxy [6], and Pound [20], do
not support the Max-Forwards header and always forward the re-
quest. Our test uses the GET method as we have experimentally
observed that TRACE is often not supported.

This module outputs a tree with a node for each RP identified, or
a singleton WS node if no RP is found.

4.5 Error Pages Database
This section describes the error pages database, which is an aux-

iliary module used by other detection modules, rather than a detec-
tion module itself.

The HTML error page in an HTTP error response may explicitly
leak information about the server version and even the server host-
name (or IP address). For example, some default pages for Apache
report the Web server version in the < address > tag. Further-
more, if the server uses the default error page from the Web server
software (rather than a customized error page), the structure of the
error page implicitly leaks the server’s software.

We have built a database of 51 default error pages for popular
Web servers. Each entry in the database is indexed by the hash of
the sequence of HTML tag and attribute names in the error page.
Each entry contains information about the server software the error
page corresponds to, and whether some tag in the HTML content
stores version or endpoint information.

Every time an HTTP error response is received by any module,
RevProbe hashes the error page structure and looks up the hash in
the database. If found, it tags the error page with the server software
and extracts the explicit version and endpoint information, if any.

4.6 Not Found Module
This module sends a request for a non-existing resource, which

triggers a corresponding error. The request will typically be for-
warded by the RP and answered by the origin server since only the
server knows what content exists. Caching RPs will not find the
content in the cache and forward the request as well.

This module identifies a reverse proxy using two methods. The
first method uses the error page database to extract (explicit or im-
plicit) software information about the server returning the error
page. Then, it compares this information with the Server header
in the HTTP response. If it finds a discrepancy it flags a reverse
proxy. For example, if the error page contains an < address >
tag with an Apache version while the Server header corresponds
to Nginx, this indicates the presence of an Nginx RP in front of
an Apache server. This method works because some Web proxies
(like Nginx) overwrite the Server header of a response, even if the
HTTP specification mandates they should not do so [32]. The sec-
ond method checks if the returned error page contains an explicit
hostname (or public IP address), which does not correspond to the

target IP. If so, it also flags a reverse proxy and the hostname (or IP
address) in the error page identifies the origin server.

This module outputs a tree with a root RP node and one WS node
at layer 1 if a RP is found, otherwise a singleton WS node.

4.7 Force Proxy Response
A perfectly silent reverse proxy would forward all requests to

the origin server(s). In reality, RP implementations will often parse
the requests and do some basic checks on them. Based on those
checks they will forward the request or reply to it themselves with
an error. When an RP is present, most requests will be answered
by the origin server, but the reverse proxy may answer incorrect
requests itself.

This module sends a number of requests to the target IP address.
We format some of the requests innocuously and some to trigger
an error from popular Web servers used as RP. Then, it uses two
methods to check for discrepancies between the responses to both
types of requests.

The first method uses a fingerprint on the response to an incorrect
request. In some cases that response is so specific to a particular
Web server that it can be used as a fingerprint for that Web server.
RevProbe has such fingerprints for 3 programs that can only act as
RP but not as WS: HAProxy [6], Pound [20], and Varnish [23].

The second method looks for Web server software discrepancies.
It compares the Web server software information extracted from the
response to a proper request, with the same information extracted
from the error response to an incorrect request. For the latter, it
leverages the error page database. If it finds a discrepancy it flags
a reverse proxy. This method is similar to the first method of the
not found test in Section 4.5. The difference is that here it operates
on software discrepancies found across multiple responses, while
in Section 4.5 it focuses on discrepancies within the same response
(Server header and HTML content).

This module outputs a tree with a root RP node and one WS node
at layer 1 if a RP is found, otherwise a singleton WS node.

4.8 PHPinfo
Web servers that support PHP may serve a phpinfo.php file that

the administrators forgot to remove. This file executes the phpinfo
function [19], returning a wealth of data about the server that the
server thus renders into the response page. The returned data may
include the server’s IP address in the SERVER_ADDR field. For
each target IP, RevProbe tries to fetch this file from 4 common
paths. If it finds it, then it checks if the SERVER_ADDR field
contains a public IP address that differs from the target IP. If so,
this reveals the presence of a reverse proxy, and also deanonymizes
the server behind it.

This module outputs a tree with a root RP node and one WS node
at layer 1 if a RP is found, otherwise a singleton WS node.

4.9 Combiner
The combiner takes as input the possibly partial reverse proxy

trees produced by each of the detection modules and merges them
to produce the final tree for each target IP address. In addition to
merging the tree nodes, it annotates the nodes with the software
package, version, and IP information that may have been recovered
by the different tests.

The output of RevProbe is a reverse proxy tree for each target
IP that has been flagged as a RP, as well as the list of target IP
addresses for which RevProbe found no RP.



Figure 4: Server trees used for tool comparison. These 3 trees
capture 99% of all configurations observed in the wild.

Program RP WS Versions
Apache X X 2.2.22, 2.4.7
Nginx X X 1.1.19, 1.6.2
IIS - X 7.5
HAProxy X - 1.4.24
Pound X - 2.6

Table 3: Programs used in tool comparison.

5. EVALUATION
This section evaluates our approach. First, we compare the accu-

racy of RevProbe with other prior RP detection tools on silent proxy
configurations for which we have ground truth (Section 5.1). Then,
we test RevProbe on live websites, namely on the top 100,000
Alexa domains and on 46,731 malicious domains (Section 5.2).

5.1 Tool Comparison
To compare the accuracy of RevProbe to other tools, we test

them on 44 silent reverse proxy configurations for which we have
ground truth. These 44 configurations correspond to variations of
the 3 reverse proxy trees depicted in Figure 4. Note that RevProbe
can detect arbitrary trees, not only different configurations of these
3 trees. But, we cannot obviously test every possible configuration.
We evaluate on these 3 trees because these are the only trees exist-
ing tools can detect, and also because our measurements with live
sites in Section 5.2 show that these 3 trees capture over 99% of all
RP configurations in the wild.

In Figure 4, Type 1 (T1) corresponds to a reverse proxy with one
origin server behind, Type 2 (T2) is a WLB that distributes con-
nections to 2 or more origin servers, and Type 3 (T3) is a WLB
balancing between one origin server and a reverse proxy that hides
another origin server. For each tree, we test multiple software con-
figurations. We use 7 versions of 5 programs, summarized in Ta-
ble 3. Apache and Nginx can operate as origin server or reverse
proxy, IIS only as origin server, and HAProxy and Pound only as
reverse proxies. We configure all RPs and WLBs silently. The
WLBs use a round-robin policy.

Table 4 summarizes the results. For each of the 44 configura-
tions, it shows the type of tree tested, the server versions at each
layer, and the test results for each tool. For T2 trees we use two
servers in layer 1. In Section 5.2 we evaluate RevProbe on real ser-
vices that include T2 trees with more backend servers. For T3 trees
the server used as RP in layer 1 is marked with an asterisk.

RevProbe results. In all 32 T1 and T2 configurations RevProbe
perfectly recovers the reverse proxy tree. In addition, it also recov-
ers the software package and version of all servers in those trees.

In the more challenging T1 and T2 configurations where the
same software is used at both layers, RevProbe successfully recov-
ers the tree leveraging the HTTP Max-Forward technique in con-
figurations with Apache as RP and the date sequencing technique
in configurations using when Nginx is used as RP.
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T1 Nginx 1.6.2 Apache/2.4.7 X - - - - - -
T1 Nginx 1.6.2 Nginx/1.1.19 X - - - - - -
T1 Nginx 1.6.2 IIS/7.5 X - - - - - -
T1 Apache 2.4.7 Apache/2.2.22 X - - - - R R
T1 Apache 2.4.7 Nginx/1.6.2 X - - - - R R
T1 Apache 2.4.7 IIS/7.5 X - - - - R R
T1 HAProxy 1.4.24 Apache/2.4.7 X - X - X - -
T1 HAProxy 1.4.24 Nginx/1.6.2 X - X - X - -
T1 HAProxy 1.4.24 IIS/7.5 X - R - X - R
T1 Pound 2.6 Apache/2.4.7 X - X - X - -
T1 Pound 2.6 Nginx/1.6.2 X - X - X - -
T1 Pound 2.6 IIS/7.5 X - R - X - R
T1 Apache 2.4.7 Apache/2.4.7 X - - - - R R
T1 Apache 2.2.22 Apache/2.2.22 X - - - - R R
T1 Nginx 1.6.2 Nginx/1.6.2 X - - - - - -
T1 Nginx 1.1.19 Nginx/1.1.19 X - - - - - -
T2 Nginx 1.6.2 Apache/2.4.7 Apache/2.2.22 X W - - - - -
T2 Nginx 1.6.2 Nginx/1.1.19 Nginx/1.6.2 X W - - - - -
T2 Nginx 1.6.2 IIS/7.5 Apache/2.4.7 X W - - - - -
T2 Nginx 1.6.2 Nginx/1.6.2 Nginx/1.6.2 W W - - - - -
T2 Nginx 1.1.19 Nginx/1.1.19 Nginx/1.1.19 W W - - - - -
T2 Apache 2.4.7 Apache/2.4.7 Apache/2.2.22 X W - - - R R
T2 Apache 2.4.7 Nginx/1.1.19 Nginx/1.6.2 X W - - - R R
T2 Apache 2.4.7 IIS/7.5 Apache/2.4.7 X W - - - R R
T2 Apache 2.4.7 Apache/2.4.7 Apache/2.4.7 X W - - - R R
T2 Apache 2.4.7 Apache/2.2.22 Apache/2.2.22 X W - - - R R
T2 HAProxy 1.4.24 Apache/2.4.7 Apache/2.2.22 X W R - X R R
T2 HAProxy 1.4.24 Nginx/1.1.19 Nginx/1.6.2 X W R - X R R
T2 HAProxy 1.4.24 IIS/7.5 Apache/2.4.7 X W R - X R R
T2 Pound 2.6 Apache/2.4.7 Apache/2.2.22 X W R - X R R
T2 Pound 2.6 Nginx/1.1.19 Nginx/1.6.2 X W R - X R R
T2 Pound 2.6 IIS/7.5 Apache/2.4.7 X W R - X R R
T3 Nginx 1.6.2 *Apache/2.4.7 IIS/7.5 IIS/7.5 W W - - - - -
T3 Nginx 1.6.2 *Apache/2.4.7 Apache/2.4.7 Nginx/1.6.2 X W - - - R -
T3 Nginx 1.6.2 *Nginx/1.6.2 Apache/2.4.7 Apache/2.4.7 X W - - - - -
T3 Apache 2.4.7 *Apache/2.4.7 Apache/2.2.22 Nginx/1.6.2 X W - - - R R
T3 Apache 2.4.7 *Apache/2.4.7 IIS/7.5 Nginx/1.6.2 W W - - - R R
T3 Apache 2.4.7 *Apache/2.4.7 Apache/2.4.7 Nginx/1.6.2 X W - - - R R
T3 HAProxy 1.4.24 *Apache/2.4.7 Apache/2.4.7 Nginx/1.6.2 W W R - W R R
T3 HAProxy 1.4.24 *Nginx/1.6.2 Nginx/1.6.2 Apache/2.4.7 W W R - W R -
T3 HAProxy 1.4.24 *Nginx/1.6.2 IIS/7.5 IIS/7.5 W W R - W - -
T3 Pound 2.6 *Nginx/1.6.2 IIS/7.5 IIS/7.5 W W R - W R R
T3 Pound 2.6 *Nginx/1.6.2 Nginx/1.6.2 Apache/2.4.7 W W R - W R -
T3 Pound 2.6 *Nginx/1.6.2 Apache/2.4.7 Apache/2.4.7 W W R - W R R

Table 4: Tool comparison. For each tool test, a Xsymbol means
the reverse proxy tree was perfectly recovered, W that a Web
load balancer was detected but not the rest of the tree, R that a
reverse proxy was detected but not the rest of the tree, and a -
symbol that no reverse proxy was detected. An asterisk before a
server at layer 1 means that server was used as a reverse proxy.

Trees of type 3 have mixed results. In 4 out of 12 T3 configu-
rations our tool recovers the perfect reverse proxy tree. For the re-
maining 8 T3 configurations it identifies that the target IP address
corresponds to a WLB (strict problem definition) but it is not able
to recover the internal tree structure. The main issue in recover-
ing the internal structure of T3 trees is that only the Max-Forwards
and Explicit RP detection modules can recover multiple RP layers.
And, some programs ignore the Max-Forwards header completely,
so silent RPs at intermediate layers are challenging to recover.

Other tools. Among the other tools, Halberd identifies a WLB in
the 24 T2 and T3 trees. However, it fails to identify a RP in the
remaining 8 T1 trees because there is only a Web server and, simi-
larly to our WLB detection module, it requires more than one WS
to identify a RP. Htrosbif fails to completely detect Apache and Ng-
inx as RP, and it only detects HAProxy and Pound for which it has
fingerprints. It does not detect any WLB and fully recovers only 4
T1 trees. http_trace.nasl fails all tests because it only detects ex-
plicit reverse proxies and our configurations only use silent reverse



Domains IPs Root
Source All Active All Active RP Explicit Silent WLB
Alexa Top 100K 100,000 95,713 124,923 97,531 12,522 (12.8%) 5,947 (47.5%) 6,565(52.4%) 10,695 (85.5%)
Malicious 46,731 41,553 26,556 22,529 3,158 (11.9%) 469 (14.1%) 2,689 (85.1%) 1,434 (45.4%)

Table 5: RevProbe results on benign and malicious domains.

proxies. lbmap also fails to detect Apache and Nginx as a reverse
proxy in all configurations. It perfectly recovers the reverse proxy
tree for T1 and T2 trees with HAProxy and Pound at the root, and
the presence of a WLB in T3 trees with HAProxy and Pound at the
root. TLHS uses the Max-Forwards header for detection, which
works well with Apache acting as RP. Surprisingly, it also detects
a RP in some T2 and T3 configurations where Apache is not used
as RP/WLB (or not even used at all). This happens because the er-
ror page titles are different. WAFW00f focuses on detecting WAFs.
None of our configurations has a WAF installed, so these detections
could be considered false positives. WAFW00f uses discrepancies
to identify WAFs but the technique it uses identifies any RP as a
WAF.

Summary. The tool comparison shows that RevProbe outperforms
prior RP detection tools. RevProbe perfectly recovers the reverse
proxy tree in 77% of the configurations and the presence of a re-
verse proxy (strict problem definition) in the remaining 23%. None
of the prior tools is a close competitor or a clear winner over the
others. lbmap perfectly recovers 27% of the configurations and a
WLB in another 14%, but it only detects HAProxy and Pound re-
verse proxies. Htrosbif perfectly recovers 9% T1 trees and a RP in
32% other configurations, but it has no support for WLBs. And,
Halberd only detects WLBs. Furthermore, in Section 5.2 we show
that RevProbe can detect other rare (<1%) configurations, beyond
the 3 tree types in Figure 4, which prior tools do not support.

5.2 Live Websites
We test RevProbe on both benign and malicious live websites to

compare how they use reverse proxies. As representative of likely
benign websites we use the Alexa top 100,000 domains [1]. For
malicious websites we use different sources [3, 12, 22]. For mali-
cious websites, RevProbe uses a virtual private network (VPN) for
anonymity. The VPN has a large pool of exit IP addresses, making
it difficult to identify RevProbe’s probing.

Table 5 summarizes the results. For each dataset, it first shows
the number of domains tested and those that resolved to at least one
IP address. Then, the number of distinct IP addresses that those live
domains resolved to (possibly a larger number) and the number of
those IP addresses that were active, i.e., responded to at least one
probe. Next, it shows the number of active IP addresses where
RevProbe detected a reverse proxy, how many of those root RPs
were explicit and silent, and how many were WLBs.

Overall, RevProbe tests 97,531 distinct active IP addresses from
Alexa and 22,529 from malicious domains. Among the active IP
addresses, RevProbe identifies 12,522 reverse proxies in Alexa and
3,158 in malicious domains. Thus, 12% of malicious and 13% of
benign active IP addresses correspond to a reverse proxy. Of the
malicious reverse proxies, 85% are silent, compared to 52% for
benign RPs. This shows how the vast majority of malicious reverse
proxies are silent and used to hide the servers behind them. The
fraction is significantly smaller among benign RPs, but still more
than half of benign reverse proxies are silent. This may be due to
benign services also wanting to hide their server infrastructure and
to popular Web server software (e.g., Apache, Nginx) to be silent
by default when running as RP.

Figure 5: Number of origin servers found behind WLBs.

Of the malicious RPs, 45% are load balancers, compared to 85%
of benign RPs. Thus, the vast majority of RPs in benign infras-
tructures are used to distribute traffic among multiple servers. Ma-
licious infrastructures seem to use RPs for hiding origin servers
more than for simple load-balancing. Figure 5 shows the distri-
bution of the number of servers that RevProbe identifies behind
WLBs. Of the malicious WLBs 73% have two servers behind, 24%
have three servers, and 3% have more than 3. The maximum num-
ber of servers behind a malicious WLB is 6. For benign WLBs
those percentages are 81% (2), 10% (3), 9% (>3), and the maxi-
mum 30. As expected, the WLBs of highly ranked benign Websites
distribute their traffic among a larger number of servers than WLBs
in malicious infrastructures.

Tree types. Table 7 summarizes the type of reverse proxy trees
RevProbe identifies behind the active IP addresses. The most com-
mon tree is a WLB with a variable number of servers behind (type
2 in Figure 4 with varying number of servers in layer 1) detected for
45% of the malicious and 85% of the benign active IP addresses.
The type 1 tree in Figure 4 (one reverse proxy with a single server)
is detected for 49% of the malicious and 14% of the benign active
IP addresses. The type 3 tree in Figure 4 (one WLB and a RP at
layer 1) occurs in 3% of malicious and less than 1% of benign ac-
tive IP addresses. These results point to most RPs being the root of
simple hierarchies, predominantly T1 and T2 trees. The remaining
trees have a root RP, a WLB in layer 1, and 2 servers in layer 2.
This shows that other configurations also exist in the wild and are
detected by RevProbe.

Web server software. Table 6 summarizes the Web server soft-
ware that RevProbe identifies in the nodes of the recovered trees.
Overall, RevProbe recovers the Web server type for 45% of the
nodes in benign trees and 60% of nodes in malicious trees. The
most common Web server software in malicious infrastructures is
Squid found on 11% of the nodes tagged with Web server software,
followed by Nginx (6%), and Varnish (5%). In Alexa domains, Var-
nish (15%) and Squid (15%) are most common, followed by Nginx
(7%), and Apache (5%).



Program Alexa Malicious
Apache 1,249 (5%) 181 (6%)
IIS 317 (1%) 47 (2%)
Nginx 1,758 (7%) 195 (6%)
Squid 3,888 (15%) 348 (11%)
Varnish 4,070 (15%) 143 (5%)
Others 452 (2%) 958 (30%)
Null 14,768 (55%) 1,286 (40%)
Total 26,502 3,158

Table 6: Software identified running on the nodes in the reverse
proxy trees recovered by RevProbe.

Source RPs Type 1 Type 2 Type 3 Oth.
Alexa 12,522 1,731 (14%) 10,695 (85%) 34 (0%) 62 (0%)
Malicious 3,158 1,555 (49%) 1,434 (45%) 107 (3%) 62 (0%)

Table 7: Reverse proxy tree types identified in benign and ma-
licious domains.

The vast majority of servers use open source software. The
most popular reverse proxy software correspond to caching prox-
ies (Squid and Varnish). This is expected in benign infrastructures
where performance is an important reason of using reverse prox-
ies, but surprising in malicious infrastructures where the RP could
cache sensitive information. Different types of malicious domains
may behave differently in this regard, e.g., phishing domains are
cached but exploit kit data is not.

Deanonymizations. The phpinfo module recovers either public or
private IP address of a origin Web server. Using this approach we
successfully recover 12 public IP addresses of malicious servers.
For the benign domains, we recover the public IP address for 132
public IP addresses and 63 private IP address. To confirm the
deanonymizations we connect to the 132 public IP addresses and
fetch the root page using the corresponding domain in the HTTP
Host header. If the content served is similar to the content served
through the RP, the deanonymization is confirmed. Of the 132 be-
nign IP addresses, 41 are confirmed, 62 did not respond, 23 show
an error page, and 6 show different content. Overall, RevProbe
deanonymizes 12 malicious servers and 41 Alexa servers hiding
behind silent reverse proxies.

Summary. Our results show that reverse proxies are common in
malicious Web infrastructures (12% of active IP addresses). Those
reverse proxies are predominantly silent to hide the existence of
servers behind (85%). Reverse proxies are also common in benign
infrastructures (13% of active IP addresses) but are less often silent
(52%). In benign infrastructures RPs are predominantly used to
load balance traffic among multiple servers (85%), while in ma-
licious infrastructures RPs are most often used to protect a single
server (49%). The vast majority of RPs are root to simple server
hierarchies, predominantly T1 and T2 trees (96%–85%).

6. DISCUSSION
Ethical considerations. Active probing sends traffic to targets that
have not solicited it. Thus, some targets may consider the probes
undesirable or even offensive. In addition, the probes can poten-
tially place a burden on the target. We take this issue seriously and
carefully seek balance between the amount of interaction and the
merits of the results. Since we have no visibility into Web services’
internals, we believe active probing approaches are required to de-
tect reverse proxies and the server infrastructure behind them.

We have designed RevProbe to send a small number of requests
(45 by default) to a remote target, which we believe to be a manage-
able load even for small websites. The requests sent by RevProbe
are all well-formed HTTP requests. Only the “not found” and force
proxy response modules send requests designed to trigger an er-
ror. For our experiments with third-party Web services we limit the
force proxy error module to use a single type of incorrect request,
an incorrect HTTP method such as “GOT / HTTP/1.1” rather than
“GET / HTTP/1.1”.

Modified take-down procedures for proxies. RevProbe can be
used during abuse reporting and take-down of malicious Web servers
to determine if the reported Web server is a reverse proxy. We
argue that take-down procedures by ISPs and hosting providers
should be modified to take into account whether the reported abu-
sive server is a proxy. Simply taking down a proxy means little
harm to the attacker because the origin servers are not affected,
the proxy does not typically store sensitive data that may lead to
the owner, and proxies often use cloud hosting services with cheap
short-term leases (e.g., one month for $15), so that the attacker
loses little money when the server is taken down. We propose that
take-down procedures for proxies are modified in two ways. First,
the provider should take a network trace of the proxy traffic be-
fore disconnecting it, so that the origin servers can be identified.
Second, once the origin servers are identified, the provider should
report them to the upstream providers, national CERTs, or law en-
forcement.

Shared servers. RevProbe identifies the server infrastructure hid-
ing behind an IP address. In some scenarios multiple reverse prox-
ies at different IP addresses may proxy to the same origin servers,
e.g., with domains that resolve to multiple IP addresses and with
Web services pointed at by multiple domains. Currently, RevProbe
only detects whether servers identified behind different reverse prox-
ies (i.e., target IP addresses) are the same if it recovers their public
IP address. We leave as future work exploring other avenues to
combine reverse proxy trees from different target IP addresses.

Incomplete trees. Our evaluation on controlled silent reverse proxy
configurations shows that type 3 configurations with 2 layers of
proxy servers are challenging to fully recover. Only two of our
modules specifically recover sequences of reverse proxies. As next
step, we plan to explore other techniques that may be able to detect
sequences of reverse proxies, including timing-based approaches.
In general, RevProbe cannot always recover a perfect reverse proxy
tree, but it is a significant step forward from prior tools that do not
address the generalized problem definition.

Combining fingerprinting. Current Web server fingerprinting tools
have problems with reverse proxies as they assume an IP address
corresponds to a single server. One conclusion of this work is that
Web server fingerprinting and reverse proxy detection are best com-
bined together. RevProbe takes a step towards this goal, being able
to recover software package information for 40% of all servers.
However, we have not yet built a large database of program version
fingerprints. We plan to further explore this combination next.

Other protocols. In this work we have focused on HTTP commu-
nication, but our techniques should be equally applicable to HTTPS.
Active probing approaches that look at discrepancies in the traf-
fic are also applicable to other protocols, but require the protocol
grammar. For proprietary protocols (e.g., C&C) the protocol gram-
mar can be recovered by analyzing the network traffic [30] or pro-
gram executions [28].



Evasion. A malicious Web service can change its response based
on parameters of the client such as geographical location, User-
Agent, and Referer [37, 47]. To address such cloaking, RevProbe
uses a VPN when connecting to malicious Web services, and can
be configured to change its HTTP parameters including User-Agent
and Referer. To avoid detection, attackers may attempt to remove
discrepancies introduced by the reverse proxy. However, complete
removal requires deep understanding of the reverse proxy code and
configurable options, as well as careful configuration of the origin
servers. The difficulty to get all of these perfectly right is a key
component of RevProbe’s detection.

7. CONCLUSION
In this paper we have presented RevProbe, a state-of-the-art de-

tector for silent reverse proxies that maps the server infrastructure
they mask. RevProbe uses active probing to send requests to a tar-
get IP address and analyzes the responses looking for indications
that this address corresponds to a reverse proxy. When it detects
such a proxy it outputs a reverse proxy tree, capturing the hierarchy
of servers it identified behind the reverse proxy. When possible, it
tags the identified servers with their software distribution, version,
and IP address.

We have compared RevProbe with prior tools on 44 silent reverse
proxy configurations, showing that RevProbe consistently outper-
forms them. We have also employed RevProbe to perform the first
study of the usage of silent reverse proxies in both benign and ma-
licious Web services. Using RevProbe, we find that 12% of mali-
cious and 13% of benign active IP addresses correspond to reverse
proxies, that 85% of those are silent compared to 52% for benign
reverse proxies, and that reverse proxies in benign server infrastruc-
tures load-balance traffic more frequently that those in malicious
ones. Finally, we have shown that reverse proxy detection and Web
server fingerprinting are best done together to handle cases where
an endpoint load balances to multiple origin servers.
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