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In many applications source code and debugging symbols of a target program are not available, and what
we can only access is the program executable. A fundamental challenge with executables is that during
compilation critical information such as variables and types is lost. Given that typed variables provide
fundamental semantics of a program, for the last 16 years a large amount of research has been carried out
on binary code type inference, a challenging task that aims to infer typed variables from executables (also
referred to as binary code). In this article we systematize the area of binary code type inference according
to its most important dimensions: the applications that motivate its importance, the approaches used, the
types that those approaches infer, the implementation of those approaches, and how the inference results are
evaluated. We also discuss limitations, point to underdeveloped problems and open challenges, and propose
further applications.
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1. INTRODUCTION

Being the final deliverable of software, executables (or binary code, as we use both
terms interchangeably) are everywhere. They contain the final code that runs on a
system and truly represent the program behavior. In many situations, such as when
analyzing commercial-off-the-shelf (COTS) programs, malware, or legacy programs,
we can only access program executables since the source code and debugging symbols
are not available.

Analyzing executables is challenging because during compilation much program in-
formation is lost. One particularly critical piece of missing information is the variables
that store the data, and their ¢ype, which constrains how the data is stored, manipu-
lated, and interpreted. Given their importance, for the last 16 years a large amount
of research has been carried out on binary code type inference, a challenging task that
aims to infer typed variables from executables.
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In this paper we systematize the area of binary code type inference according to its
most important dimensions: the applications that motivate its importance, the pro-
posed approaches, the types that those approaches infer, the implementation of those
approaches, and how the inference results are evaluated. We also discuss limitations
and point to underdeveloped problems and open challenges.

Binary code type inference is required, or significantly benefits, many applications
such as decompilation [Cifuentes 1994; Breuer and Bowen 1994; Schwartz et al. 2013;
Zeng et al. 2013], binary code rewriting [Sites et al. 1993; Larus and Ball 1994;
Schwarz et al. 2001; Abadi et al. 2009], vulnerability detection and analysis [Slowin-
ska et al. 2011; Caballero et al. 2012a], binary code reuse [Caballero et al. 2010; Kol-
bitsch et al. 2010], protocol reverse engineering [Caballero et al. 2007; Wondracek et al.
2008; Lin et al. 2008; Cui et al. 2008], virtual machine introspection [Payne et al. 2008;
Dolan-Gavitt et al. 2011; Vogl et al. 2014], game hacking [Bursztein et al. 2011; Urbina
et al. 2014], hooking [Yin et al. 2008; Payne et al. 2008; Vogl et al. 2014], and malware
analysis [Jiang et al. 2007; Cozzie et al. 2008].

We have systematically compared 38 binary code type inference works and have ex-
amined over a hundred papers around this area. Our analysis shows that existing bi-
nary code type inference solutions widely differ in their approaches. For example, they
can use static analysis, dynamic analysis, and combinations of those. They can infer
types using value-based or flow-based inference starting from different sources of type
information. Our analysis also reveals that they widely differ in the types that they
infer, which include primitive types such as integers, floats, and pointers; aggregate
data structures such as records and arrays; classes in object-oriented programs; and
higher level recursive types such as lists and trees. Even program code can be typed
and types can be recovered for function prototypes. However, no single work tries to
infer all types and most solutions focus on a small set of types. We also show that the
field of binary code type inference is multidisciplinary; works have been published in
a variety of areas including security, systems, software engineering, and programming
languages. Given the variety of approaches, types inferred, and the interdisciplinary
character, it becomes critical to have an article that jointly discusses them.

We also examine existing solutions according to their implementation including the
platforms they built on, the intermediate representations used, and the architectures
and operating systems supported. Furthermore, we systematize the evaluation of the
type inference results, examining the benchmarks and methodologies used. We ob-
serve that many works perform qualitative evaluation for a specific application and
highlight the need for quantified results. We examine the accuracy metrics that have
been proposed and whether works compare with prior solutions. Our analysis suggests
the need for a common type representation for easier result comparison.

An overview of the organization of this article is presented in Figure 1. We begin in
§2 with an overview of binary code type inference and the scope of the article. Then, in
83 we describe the applications that motivate binary code type inference. Next, in §4
we systematize binary code type inference works according to their approaches and in
§5 we systematize the inferred types. We discuss how each system gets implemented
and evaluated in §6 and §7, respectively. In §8 we discuss other insights beyond the
ones in §2—-§7, point out open areas of research, and introduce future trends on binary
code type inference. Finally, we conclude in §9.

2. OVERVIEW

In this section, we discuss the goal and scope of binary code type inference.
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Fig. 1. Paper organization and overview.

2.1. Binary Code Type Inference

The input to type inference can be source code, byte code, or binary code. For exam-
ple, the area of type inference started from programming languages like ML where
developers do not specify types in the source code. Instead, types are inferred directly
from the source code during compilation [Milner 1978]. This article systematizes works
on binary code type inference, i.e., those that recover types from compiled programs.
Note that compiled programs are distributed as binary code, which is challenging since
during compilation variable and type information is not included in the resulting ex-
ecutable. In contrast, interpreted code is distributed as source code or byte code with
much type information.

Binary code type inference is affected by the programming language, the compiler,
the operating system, and the target architecture. The programming language defines
built-in types and mechanisms for the programmer to define her own types. The com-
piler chooses the application binary interface (ABI), which covers among others type
representations, data structure alignment, calling conventions, layout of classes with
inheritance, and the object file format (e.g., PE/ELF). The target architecture also in-
fluences data representation, e.g., big-endian vs. little-endian and integer/pointer size.
Even the operating system may affect the representation, e.g., Windows may convert
strings internally to UTF-16.

While the proposed approaches may be generic, most are evaluated on specific com-
binations of programming languages and architectures. As shown in §6, the most com-
mon target platform for binary code type inference is x86 (36/38 approaches evaluated),
followed by x86-64 (7). All approaches evaluate at least on C/C++ programs.

2.2. Problem Definition

The high level goal of binary code type inference is, given the executable of a com-
piled program, to recover a typing for the program that is as close as possible to the
typing the developers used in the source code. For decompilation, it is also important
that recompiling the decompiled code with the recovered typing produces binary code
semantically equivalent to the original.

Binary code type inference predominantly deals with typing variables storing pro-
gram data. However, in this article we propose a unified view of binary code type in-
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ference in which an executable comprises both data and code, both of which strongly
influence program behavior and can be targets of binary code type inference.

Our work shows that types are everywhere in binary code analysis. Specifically,
in our unified view, many problems in binary code analysis can be seen as subprob-
lems of binary code type inference recovering different types. For example, disassem-
bly [Schwarz et al. 2002; Kruegel et al. 2004] can be seen as the subproblem of binary
code type inference that types memory locations into two basic types (code and data)
and may refine some code locations as the start of an instruction or a function, or
belonging to a specific function. Data type inference [Lin et al. 2010; Lee et al. 2011; El-
Wazeer et al. 2013] can be seen as the combination of variable recovery [Balakrishnan
and Reps 2007], i.e., recovering the start position and size of variables, and recovering
primitive types for those variables, e.g., integer, float, pointer. Data structure identifi-
cation [Cozzie et al. 2008; Slowinska et al. 2011] recovers aggregate data types such as
records and arrays. Shape analysis [Raman and August 2005; Jung and Clark 2009]
recovers recursive types such as linked lists or trees. Object recovery [Fokin et al. 2011;
Jin et al. 2014; Srinivasan and Reps 2014] infers classes in object-oriented programs.
Function prototype inference [Caballero et al. 2010; E1Wazeer et al. 2013] recovers func-
tion types specifying a function’s parameters and return values. Even protocol format
reverse-engineering [Caballero et al. 2007; Wondracek et al. 2008; Lin et al. 2008] can
be seen as the subproblem of binary code type inference that types buffers storing
protocol messages such as those passed to the recv and send functions.

Scope. To keep the paper scope manageable we consider works that deal exclusively
with disassembly out of scope and focus on binary code type inference works that
assume a (mostly) correct disassembly. Thus, works dealing with challenges such as
translating machine code to assembly instructions (e.g., [Schwarz et al. 2002; Kruegel
et al. 2004]), identifying function boundaries (e.g., [Bao et al. 2014; Shin et al. 2015]),
and recovering jump table targets (e.g., [Cifuentes and Emmerik 1999]) are out of
scope. However, we do include data types related to code such as function prototypes
and data embedded in code such as immediate values and offsets in the memory
operands of instructions. While we do not target the recovery of indirect jump/call
targets, we do include virtual table recovery since it is intrinsic to object recovery.

Typing data. In source code, a program stores data in program variables, each with an
associated type. However, in binary code, program data is stored in untyped CPU reg-
isters and memory. Since architectures have few registers, most variables are stored in
memory regions, namely in function stack frames, heap allocations, and global sections.
Thus, binary code type inference maps locations in memory regions (and registers) to
high-level types such as primitives, records, arrays, class objects, and recursive types.

A variable can be characterized by the start offset in a memory region, its size, and
its type. Variables in global sections can be identified by their offsets from the begin-
ning of the section (or module). Memory locations in the stack and the heap can be
reused to store different stack frames and memory allocations over time, thus these
areas need to be split into unique memory regions. A separate stack frame region is
created for each program function, typically identified by the function’s start address.
For heap allocations, base addresses are not available statically and they may change
across program executions. Therefore, a separate heap region is created for each allo-
cation callsite, i.e., program point that invokes a heap allocation function (e.g., malloc).
Static approaches often identify these regions by the address of the allocation call [Bal-
akrishnan and Reps 2007], but this may be problematic with custom allocators or al-
location wrappers [Chen et al. 2013]. For example, a safe malloc function may invoke
malloc and check that the return pointer is not null. The callsite of malloc inside
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safe_malloc cannot be uniquely assigned to one type, as different safe malloc callers
will request allocations of different types. Dynamic approaches address this issue by
using the last 3—4 callstack entries to identify heap allocations [Slowinska et al. 2010;
Lin et al. 2010; Slowinska et al. 2011].

3. APPLICATIONS

Binary code type inference is a fundamental capability when the program’s source code
and debugging symbols are not available (e.g., malware, proprietary software) or have
been lost. In this section we motivate its importance and wide impact by describing 10
applications that require or significantly benefit from binary code type inference.

(1) Reverse engineering — Understanding binary code without its source code or de-
bugging symbols is a common need for analysts. Types provide rich semantics on a
program’s functionality and their inference is a fundamental capability for binary
code reverse engineering tools such as IDA [Guilfanov 2001]. One goal of binary
code type inference is to regenerate missing debug symbol tables for stripped bina-
ries enabling further analysis [Slowinska et al. 2011; Jacobson et al. 2011].

(2) Decompilation — Automatically reconstructing program source code from assem-
bly or machine code [Cifuentes 1994; Breuer and Bowen 1994; Schwartz et al. 2013]
is useful for program understanding, program optimization, and program modifi-
cation. Inferring types from binary code is one of the fundamental challenges in
decompilation [Mycroft 1999; Dolgova and Chernov 2009].

(3) Binary code rewriting — An executable can be rewritten into a different pro-
gram with equivalent functionality (but with additional checks). Such rewriting is
useful for porting the program to another architecture [Sites et al. 1993; Silberman
and Ebcioglu 1993; Hookway and Herdeg 1997], profiling the code [Larus and Ball
1994], for optimization [Schwarz et al. 2001], and to insert an inlined security refer-
ence monitor for control-flow-integrity (CFI) [Abadi et al. 2009] and software fault
isolation (SFI) [Wahbe et al. 1993; McCamant and Morrisett 2006; Erlingsson et al.
2006]. Binary code type inference helps rewriting legacy clients (e.g., with no reloca-
tion tables) by identifying absolute memory addresses (i.e., data and code pointers)
that may need to be adjusted when new code is added to the program.

(4) Binary code reuse - Reusing binary code enables security applications such as
active botnet infiltration [Caballero et al. 2010; Caballero et al. 2011], malware
analysis [Kolbitsch et al. 2010; Zeng et al. 2013], binary code retrofitting [Zeng et al.
2013], and virtual machine introspection (VMI) [Dolan-Gavitt et al. 2011; Fu and
Lin 2012]. One of the main challenges in binary code reuse is interfacing with the
code to be reused, which requires recovering its prototype, including the types of the
input and output variables.

(5) Protocol reverse engineering — The format of messages of an undocumented
protocol can be recovered by analyzing the binary code implementing the proto-
col [Caballero et al. 2007; Wondracek et al. 2008; Lin et al. 2008; Cui et al. 2008].
Recovering the format of the protocol messages is analogous to typing the buffer
holding a message received by the protocol implementation (e.g., the buffer passed
to the recv function) and typing the buffer holding the message about to be sent
on the network (e.g., the buffer passed to the send function). A similar problem is
recovering the format of undocumented files [Lim et al. 2006].

(6) Vulnerability detection, analysis, and prevention - Type information is im-
portant to defend against software vulnerabilities. Inferring the location of return
addresses and function pointers in the stack [Lin et al. 2010] and recovering the
size of buffers (not available in binary code) [Slowinska et al. 2011] enables detect-
ing buffer overflows. Using variable type information executables can be rewritten
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to prevent buffer overflow exploitation [Slowinska et al. 2012]. Inferring and track-
ing pointers throughout program execution enables the detection and debugging of
use-after-free and double-free vulnerabilities [Caballero et al. 2012a].

Hooking - A hook is a function callback point where a particular inspection action
can be performed during program execution. Hooks have been extremely valuable
for malware analysis [Yin et al. 2008], VMI [Payne et al. 2008], and attack construc-
tion [Vogl et al. 2014]. Binary code type inference enables effective use of hooks
when types are not available. For example, function hooks that execute code at the
entry and exit points of a target function may require (e.g., when the function is in-
ternal or private) recovering the function prototype, including the types of function
arguments and return value.

Memory forensics and introspection - Extracting data of interest from live
memory or a memory snapshot is a fundamental capability for VMI [Garfinkel and
Rosenblum 2003] and memory forensics [Petroni et al. 2006]. Prior work shows that
data type definitions can be used for building data structure signatures [Lin et al.
2011; Lin et al. 2012], for bridging the semantic gap in VMI [Garfinkel and Rosen-
blum 2003], for out-of-the-box malware analysis [Jiang et al. 2007], and for travers-
ing OS kernel data structures to detect kernel rootkits [Carbone et al. 2009]. How-
ever, these works assume the availability of source code or debugging symbols to
obtain the data type definitions. While some OSes are open source, there are pro-
prietary OSes like Windows that only include data type definitions in the symbols
of selected modules. Furthermore, VMI and memory forensics can also be applied
to application-level programs that are often proprietary [Urbina et al. 2014]. Bi-
nary code type inference (e.g., on OS kernels [Zeng and Lin 2015]) can enable these
applications when source code and debugging symbols are not available.

Program data manipulation - There are also incentives to manipulate program
data in memory. One such incentive is cheating in computer games by modifying
the game’s memory during execution, e.g., increasing unit lifetime. Prior works
propose snapshot-based approaches for revealing and modifying important gaming
data types such as terrain maps or unit life points [Bursztein et al. 2011; Urbina
et al. 2014]. Another incentive is defeating OS defenses, e.g., loading unsigned ker-
nel drivers [Allievi 2014]. These approaches could identify those data types more
accurately using binary code type inference.

Program fingerprinting — The use of complex data structures can uniquely iden-
tify a program. It can identify malware binaries of the same family despite poly-
morphism [Cozzie et al. 2008] and the operating system version running on a VM
in a cloud environment [Gu et al. 2012; Gu et al. 2014]. However, these works either
operate on memory snapshots [Cozzie et al. 2008] or assume the availability of the
kernel data type definitions [Gu et al. 2012; Gu et al. 2014]. Binary code type infer-
ence can improve the accuracy over snapshot-based approaches, and enable these
applications when data type definitions cannot be obtained.

Our analysis above not only highlights the importance of binary code type inference,
but also reveals applications whose state of the art can be improved through binary
code type inference. For example, program data manipulation and program finger-
printing approaches operate on snapshots and could be improved through binary code
analysis. Also, most current memory forensics and introspection approaches require
data structure definitions, which limit their applicability on proprietary programs.

4. APPROACHES

After discussing why to type (i.e., the motivating applications), we now discuss how to
type and what to type. Tables I and II systematize 38 works for automatic binary code
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Table I. Comparison of the characteristics of binary code type inference approaches. For boolean columns symbol
v/ means supported and symbol X unsupported. For other columns, symbol O denotes unsupported, © partial support,
and @ fully supported.

Approach Characteristics |
[

System | Year | Venue
MYCROFT [Mycroft 1999] | 1999 | ESOP
IDA [Guilfanov 2001] | 2001 | WCRE
EwW [Emmerik and Waddington 2004] | 2004 | WCRE
RDS [Raman and August 2005] | 2005 | MSP
X86SA [Christodorescu et al. 2005] | 2005 | PASTE
DYNCOMPB [Guo et al. 2006] | 2006 | ISSTA
FFE [Lim et al. 2006] | 2006 | WCRE
DiIVINE [Balakrishnan and Reps 2007] | 2007 | VMCAI
POLYGLOT [Caballero et al. 2007] | 2007 | CCS
AUTOFORMAT [Lin et al. 2008] | 2008 | NDSS
WCKK [Wondracek et al. 2008] | 2008 | NDSS
LAIKA [Cozzie et al. 2008] | 2008 | OSDI
TUPNI [Cui et al. 2008] | 2008 | CCS
Dc [Dolgova and Chernov 2008] | 2008 | WCRE
DISPATCHER [Caballero et al. 2009] | 2009 | CCS
DDT [Jung and Clark 2009] | 2009 | MICRO
BCR [Caballero et al. 2010] | 2010 | NDSS
REWARDS [Lin et al. 2010] | 2010 | NDSS
Frc [Fokin et al. 2010] | 2010 | CSMR
DDE [Slowinska et al. 2010] | 2010 | APSYS
TDA [Troshina et al. 2010] | 2010 | SCAM
TIE [Lee et al. 2011] | 2011 | NDSS
HOWARD [Slowinska et al. 2011] | 2011 | NDSS
SMARTDEC [Fokin et al. 2011] | 2011 | WCRE
RECALL [Dewey and Giffin 2012] | 2012 | NDSS
POINTERSCOPE [Zhang et al. 2012] | 2012 | NDSS
ARTISTE [Caballero et al. 2012b] | 2012 | TR
UNDANGLE [Caballero et al. 2012a] | 2012 | ISSTA
SECONDWRITE [ElWazeer et al. 2013] | 2013 | PLDI
RHK [Robbins et al. 2013] | 2013 | PPDP
MEMPICK [Haller et al. 2013] | 2013 | WCRE
TOP [Zeng et al. 2013] | 2013 | CCS
YM [Yan and McCamant 2014] | 2014 | TR
OBJDIGGER [Jin et al. 2014] | 2014 | PPREW
LEGO [Srinivasan and Reps 2014] | 2014 | CC
YB [Yoo and Barua 2014] | 2014 | APSEC
VFGUARD [Prakash et al. 2015] | 2015 | NDSS
VTINT [Zhang et al. 2015] | 2015 | NDSS

] AX]XX XXX XXX AN XX NN XXX X AKX XXX XXX XXX XXX X X X% Combines execution result:
AR CURBXXAURXXXXXRXXXXXAXNAUXXXNXXXX XXX N X X % Value-based type inference
CAAXRCCARCANANANANAANACNCNAXCARX NN AX AN N NN NN % &« & Flow-based type inference
CAARRCARCACAAANANCNCNCNCNAUXCAUX X A% XXX XXX XXX % % < Instruction type sources
MA]MAMAMMAI AR ARXRX RN AUAXRCUAR XXX XAAX NN N N X % % % % & Memory access analysis
]3]]I} }XXCN N XX NN XXX XN XX AKX N X X XN XXX X XXX N\ X X X% Memory graph analysis

Tl H B~ B W w W m W w W W w W W — Binary (B) / IR (I)
MHRRXARRXACARXRRACCARRXACAKX AR CACCNANANCNCNANN A %X X A% N % % % Dynamic analysis
JM]HAMMBXMAX X AR CAURXX X XXX NAUX XXX XXX XXX XX N X x| Function type sources
J|J M} N]M M X MR MR M} N X XK X X XXX XX XN XXX X XXX XXX XXX X % Merges callsites
O00000000O®Se®OO®OO®OOOOOOOOOOOOOOOOOOO|Data in code

CAAXRCARRAUARR R CARCAR AR CAUX XXX A% XN XN % NN 4 Static analysis
B} ] B¢ I N ]CN JOMNZM™X ™’ AN XK KN K X XN XXX NN X NN X X X % % % Nested types
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type inference based on characteristics of the approach (Table I) and the types each
approach infers (Table II).

To select these 38 works we first made a list of seed papers that we knew related
to binary code type inference. To identify more works, we then examined the papers
published since 1998 in the venues where those seed papers were published, and per-
formed searches on engines like Google Scholar for binary code type inference terms.
For every work on binary code type inference or its applications, we examined its refer-
ences for missing papers. We selected works that present techniques and approaches
for automatic binary code type inference and also works whose goal may be a different
application (e.g., protocol reverse-engineering, vulnerability and exploit analysis), but
that frame their approach as binary code type inference or propose techniques later
adapted to binary code type inference. We do not include all works in those other ar-
eas because we only systematize binary code type inference. We limit the survey to
papers published on peer-reviewed venues and technical reports from academic insti-
tutions. We do not include tools, but rather the works describing their techniques (e.g.,
IDA [Guilfanov 2001] and CODESURFER [Balakrishnan and Reps 2007]).

Papers are identified by their system name if available, otherwise by the author’s
initials. The approaches are sorted by publication date creating a timeline of the de-
velopment of the field. These 38 works have been published in 18 venues and 2 techni-
cal reports (TR). The top 3 venues for publishing papers on binary code type inference
are: NDSS (10 papers), WCRE (6), and CCS (4). The field of binary code type inference
is multidisciplinary with papers appearing in venues from different areas like secu-
rity (e.g., NDSS, CCS), reverse engineering (e.g., WCRE), systems (e.g., OSDI), pro-
gramming languages (e.g., PLDI, CC), and software engineering (e.g., ISSTA, PASTE).
Works focusing on reverse-engineering and decompilation are more likely to be pub-
lished at specialized venues like WCRE. Works published at top security conferences
typically target other security applications. One goal of Tables I and II is helping read-
ers quickly locate works dealing with subsets of binary code type inference regardless
of the venue they appeared in.

We split the discussion of both tables into two sections. The rest of this section details
the approach characteristics (Table I) with each subsection describing a subset of table
columns. Then, in §5 we detail the types inferred by each approach (Table II).

4.1. Input

] Column: Binary (B) / IR (I)

Strictly speaking, the input to binary code type inference should be just the binary
code. The vast majority of approaches (36/38) fall into this case. However, we include
two exceptions that take as input an intermediate representation (IR). MYCROFT is
the first approach for binary code type inference. It takes as input an RTL IR obtained
from BCPL, an untyped predecessor of C. A front-end from x86 to RTL is available in
the Boomerang decompiler [Boomerang 2004]. DDT takes as input LLVM IR obtained
from the program’s source code. However, the authors argue that they do not use any
type information in the IR and present the techniques as if operating on binary code.
It has been cited by follow-up work and constitutes the only example on abstract type
recovery (§5.8). An x86 to LLVM front-end such as the one in SECONDWRITE would in
theory enable DDT to work on binary code.

In [Guo et al. 2006] two tools are presented: one operating on x86 code (DYNCOMPB)
and the other on Java bytecode (DYNCoOMPJ). While the type synonym inference prob-
lem (§5.6) addressed in this work makes sense even with the additional type informa-
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tion in bytecode, our focus is on binary code type inference. Since both tools use the
same approach we include DYNCOMPB, but exclude DYNCOMPJ.

4.2. Type of Analysis

Columns: Static analysis; Dynamic analysis; Combines execution results

Binary code type inference approaches can be classified by the type of analysis per-
formed: static analysis, dynamic analysis, and combinations of both. Static analysis
examines the disassembled binary code, while dynamic analysis examines program
executions by running the program on given inputs.

Table I shows that 21 out of 38 works use static analysis, 21 use dynamic analysis,
and 4 combine static and dynamic analysis (WCKK, DDT, BCR, TIE). The advantages
of dynamic analysis are accuracy and simplicity. Both advantages come from the fact
that memory addresses, operand values, and control-flow targets are known during
execution. Also, static analysis requires proper disassembly of the code that may be
difficult in some situations, e.g., obfuscated code. On the other hand, static analysis
has better code coverage. While dynamic analysis examine one execution at a time,
static analysis can analyze all program paths without the challenge of obtaining an
input suite that executes all program paths, and without re-executing the program on
all those inputs, which can be slow.

Of the dynamic approaches only 3 combine type inference results from multiple ex-
ecutions (HOWARD, BCR, ARTISTE). Combining multiple executions can improve dy-
namic binary code type inference results because variables may only be used (and thus
their types inferred) in some program paths. Also, different types may be inferred for
the same variable in different executions and combining results from multiple execu-
tions enables assigning a more refined inferred type for each variable.

One reason for the use of dynamic approaches, despite their limited coverage, may
be that many applications do not require typing the whole program, but only certain
data structures or functions of interest. For example, game hacking recovers only map
and unit data structures [Bursztein et al. 2011; Urbina et al. 2014] and binary code
reuse may need only the prototype of the functions to be reused [Caballero et al. 2010].

4.3. Value-Based Type Inference

Column: Value-based type inference ‘

Approaches can infer types by examining the values stored in registers and mem-
ory (value-based), by propagating types from available type sources (flow-based), or by
combining both. Value-based type inference does not require examining the code, only
the content of memory/registers. But, it is based on heuristics that can introduce er-
rors. It is typically used only for identifying pointers and strings [Raman and August
2005; Cozzie et al. 2008; Haller et al. 2013; Srinivasan and Reps 2014]. For example,
the strings Unix command identifies strings as sequences of bytes of some minimum
length that could represent printable characters in popular encodings (e.g., ASCII,
UTF-16). For pointers, these approaches check if 4 consecutive bytes (8 bytes in 64-bit
architectures) in live memory (or a register) form a value corresponding to the address
of a live memory byte, i.e., an address in global data sections, live heap allocations,
or live stack frames. If so, those bytes could store a pointer variable. Unfortunately,
those bytes could also correspond to an integer variable, (part of) a string, or be un-
related. Fine-grained information about what constitutes live memory increases the
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accuracy, e.g., tracking heap allocations and the current stack height is more accurate
than considering alive all bytes in pages mapped to the program.

In total, 8 out of 38 use value-based inference, which is also commonly used together
with memory graph analysis (§4.6).

4.4. Flow-Based Type Inference

Columns: Flow-based type inference; instruction type sources; function type sources

Flow-based type inference is used by 32 out of 38 approaches. At a high level, vari-
ables are assigned types based on how the program uses them. The program code
introduces two kinds of constraints: type propagation and type inference. Type infer-
ence constraints assign types to variables based on how they are used. There exist two
major sources of type inference constraints: instructions that operate on their data,
e.g., arithmetic instructions, and calls to external functions for which their prototype is
known [Ramalingam et al. 1999; Guilfanov 2001]. For example, imul %esi,%edi mul-
tiplies the values in 32-bit registers ESI and EDI, which constrains the variables in
ESI and EDI as numbers. Similarly, a call to the standard C library function size_t
strlen(const char *) constrains the location storing the parameter at function entry
as a string pointer, and the return value at function exit as an unsigned integer.

Type propagation constraints are produced by instructions that simply move data
(e.g., mov, push, pop) or assignment statements in the IR. These instructions introduce
constraints of the type that the destination should have the same type as the source.
However, it is important to note that different works handle these instructions dif-
ferently. Some works assume that such data movement instructions introduce some
type information regarding size. For example, given an instruction mov %ecx, (%edi)
that moves the content of register ECX into the memory location pointed by register
EDI, some approaches (e.g., TIE) may add the constraints that, after the instruction
executes, the content of the memory location will have the same type as the content
of ECX, which will be a 32-bit type since that is the size of ECX and the destination
memory range. However, a program may move a variable from one location to another
without regard to its size. For example, a program could move a 32-bit integer variable
one byte at a time using four instructions, or in a 32-bit architecture it could move
a C long long variable (64-bit) using two instructions that move 4 bytes at a time.
Furthermore, there exist functions (e.g., memcpy) that copy a source memory range to a
destination memory range without regard to the internal structure of the source mem-
ory range. Thus, the instructions that implement memcpy may move chunks without
respecting the internal field structure, e.g., one loop iteration may move 4 bytes that
correspond to the last two bytes of one variable and two char variables stored next to
it. This does not matter as the semantics of the function guarantee that the destination
range contains the same data as the source range after the function returns. Solutions
to this issue include not adding a size constraint to instructions that move data, ignor-
ing propagation inside memory copy functions, and establishing type constraints at a
byte level granularity.

Note that an instruction may introduce both typing and propagation constraints. In
the above example, mov %ecx, (%edi), in addition to the type propagation constraints,
some approaches add a type inference constraint that register EDI must hold a pointer
since its value is being dereferenced to access memory.

Flow-based approaches introduce type propagation constraints as they analyze code
paths, either statically or dynamically, until the untyped variables flow into an instruc-
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tion operand or function parameter for which the type is known. Similarly, when the
output operand of an instruction or the return value of a function has a known type, it
is propagated forward, typing the variables the type flows into.

Static memory analysis. Static flow-based approaches need a points-to (or alias)
analysis to identify if a memory location being overwritten is later read, so that
type propagation constraints can be updated through memory accesses. Dynamic ap-
proaches do not require such analysis as memory addresses have concrete values at
runtime. Early static approaches such as MYCROFT and IDA do not support alias
analysis. X86SA uses an alias analysis for strings. FFE and DIVINE leverage value-
set-analysis (VSA) [Balakrishnan and Reps 2004], a sound flow-sensitive, context-
sensitive, inter-procedural, abstract-interpretation algorithm that over-approximates
the set of numeric values and addresses that each register and memory location holds
at a program point. VSA enables tracking the flow of values through indirect mem-
ory accesses. TIE uses a variant of VSA called DVSA. SECONDWRITE introduces the
concept of best-effort pointer analysis, which sacrifices soundness for improved perfor-
mance (further discussed in §8).

Online and offline solving. Flow-based dynamic approaches (e.g., REWARDS, POINT-
ERSCOPE, UNDANGLE) implement constraint propagation using tainting, where con-
straints are solved online, as soon as a type source or a type sink is reached. Thus,
at any point during the execution it is possible to output the currently inferred types
for a region, e.g., when heap allocations are freed or when a function returns. Static
approaches such as MYCROFT, TIE, and RHK use a different approach that outputs
constraints as code paths are analyzed and solves them offline using a custom solver,
i.e., at the end of the analysis when all constraints are available. It is possible for
both static and dynamic approaches to output a solution where no bytes can be typed,
e.g., all bytes are assigned bottom from the primitive type lattice (§5.1). Offline ap-
proaches often mention this situation (MYCROFT, TIE, RHK) and some (MYCROFT,
TIE) describe additional mechanisms to identify the constraints causing the failure
and handling them in a special way, e.g., removing them or converting them to unions
and casts. Online approaches do not typically mention this situation, which could in-
dicate it does not affect them as frequently as offline approaches. This could be due
to online approaches limiting conflict propagation by performing more localized con-
straint propagation (e.g., one path at a time, outputting types for a heap region when
it is deallocated).

Unification. In unification, instructions that move data (dst < src) unify the types of
dst and src so that not only the type of the src affects the dst, but also the other way
around. This is problematic when dst is a location used for temporary storage that may
hold variables of different types over time. Static approaches handle this issue by em-
ploying single static assignment (SSA) notation, so that writing to a location creates a
fresh variable. Dynamic approaches that do not use an IR handle this issue in different
manners. REWARDS disables unification when dst is a register, but not in other prob-
lematic situations such as stack locations where a type lifetime is associated based on
the data lifetime. POINTERSCOPE unifies only on source operands, overwriting the dst
type with the src type after an instruction executes. Independent evaluation has com-
pared these two dynamic approaches [Caballero et al. 2012b], showing how unifying
only on source operands improves typing accuracy and performance.

Instruction type sources. 20 approaches derive types using instruction type sources.
We have identified two issues that may point to the difficulty of extracting type infor-
mation at the instruction level. First, some instruction type inference constraints seem
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too general. For example, MYCROFT considers the xor operands to be integers, but en-
cryption algorithms may XOR any data type. This issue also affects other bitwise op-
erations, e.g., and, or. In addition, differences on the type inference constraints for the
same instruction are not uncommon, leading to differences in the typing results even
if the same algorithm is used. For example, TIE authors consider the operand of unary
negation a signed integer, but YM authors consider that operation on unsigned val-
ues perfectly legal. Similarly, SECONDWRITE authors consider operands in a left/right
shift of the same type, and POINTERSCOPE authors consider them to be integers, but
they may not even be of the same size. We believe there is a need for more thorough
evaluation of type inference rules for instructions, e.g., quantifying the errors and type
conflicts different constraints for the same instruction introduce.

Function type sources. External function calls provide a wealth of semantic types
such as IP addresses and timestamps. For example, REWARDS defines 150 types from
84 standard library functions. Among the 38 approaches, 10 use function sources to
derive semantic types. One problem in those approaches is that semantic types are
not included in the type lattice, so it is unclear how to relate them to other types, e.g.,
whether they are synonyms of other types. Note also that mapping parameters and
return values to registers and stack locations requires knowing the calling convention
used by the compiler (e.g., obtained from the library symbols), assuming a specific
convention (e.g., cdecl in REWARDS), or inferring the function prototype (§5.9).

4.5. Memory Access analysis

Column: Memory access analysis

Memory access patterns reveal the variable layout of aggregate types such as records
and arrays [Mycroft 1999; Ramalingam et al. 1999]. This intuition has been widely
applied to binary code to recover variables by examining the offset of memory ac-
cesses with respect to a base pointer and the size of the access. A base pointer can
belong to the heap, the stack, or a global region. The base pointer for heap regions is
the pointer returned by the allocation function (e.g., malloc) and for stack frames the
value of the stack register (e.g., ESP) at the function’s entry point. For global variables,
base pointers can be identified using relocation tables and fields in the executable’s
header [Slowinska et al. 2010]. Intuitively, all memory accesses in a memory region
should (directly or indirectly) derive from its base pointer. For example, the sequence
call <malloc>; movl $0x3, Ox4(%eax) indicates the existence of a 32-bit variable at
offset 4 in the heap allocation whose address was returned by malloc in register EAX.
The size of the variable comes from the length of the movl memory operand.

Limitations. Although memory access pattern based variable recovery is very popu-
lar, it also has some known limitations. An obvious limitation is that it can only recover
fields that the program accesses (or accessed in an execution for dynamic approaches).
There are three other less-obvious limitations. One limitation is that a memory re-
gion can be accessed without considering its layout. For example, the function memcpy
copies a memory region in word-size chunks, regardless of the structure of that region.
To address this problem DDE and HOWARD propose giving preference to non-regular
accesses and strides not equal to the word size.

Another limitation is that it can only identify variables of at most the word size. For
example, storing a 64-bit (double) float variable in memory requires two instructions in
a 32-bit architecture, which would incorrectly recover two consecutive 4-byte variables
as discussed in §4.4.
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Yet another limitation is that variables in an aggregate type may be accessed using
different base pointers. For example, variables in a record local variable may be ac-
cessed through the base pointer of the stack frame, or through the base pointer of the
record structure. If accessed only through the base pointer of the stack frame the mem-
ber variables of the record will be correctly identified, but the record that stores them
becomes indistinguishable. A similar issue may occur with nested aggregate types (e.g.,
a record inside another record, see §4.7).

Column memory access analysis in Table I marks whether an approach analyzes
memory accesses to identify the location and size of variables. 15 out of 38 works use
memory access analysis. Among them, protocol reverse engineering works heavily use
this approach for identifying message fields.

4.6. Memory Graph Analysis

Columns: Memory graph analysis

The analysis of the points-to relationships between memory regions can reveal re-
cursive types such as lists and trees (§5.5). To analyze those relationships dynamic
approaches may build memory graphs, directed graphs where nodes correspond to
memory regions (e.g., heap allocations, loaded modules) and edges are pointers be-
tween those regions. Note that if a type (e.g., a class) is allocated multiple times, each
instance (object) has a node in the memory graph. Multiple memory graphs can be
built at different execution times as heap regions are allocated/deallocated and mod-
ules loaded/unloaded.

There are 6 approaches, all dynamic, that build memory graphs (RDS, LAIKA, DDT,
REWARDS, ARTISTE, MEMPICK). Static approaches do not build memory graphs since
concrete region start addresses are not available statically, which makes it difficult to
map allocations to deallocations. Furthermore, if regions are created in loops it may
not be possible to statically infer how many nodes the allocation creates, e.g., if the
number of loop iterations depends on external input.

All 6 approaches identify the start address and size of nodes by tracking heap al-
locations/frees throughout program execution, except LAIKA that applies a (less accu-
rate) machine learning approach that infers that information directly from the memory
snapshot. Recent work [Urbina et al. 2014] adds loaded modules to the memory graph
and shows that it is possible to extract live heap allocations and loaded modules from a
memory snapshot by introspecting the OS memory manager data structures, without
requiring the approximations used by LAIKA.

For edges, both value-based (RDS, LAIKA, DDT, MEMPICK) and flow-based (RE-
WARDS, ARTISTE) pointer type inference are used. Nodes are annotated with their
inferred type, which can be the allocation callsite (RDS, REWARDS), the merged call-
sites in §4.8 (DDT, ARTISTE), or a type assigned to allocations processed by the same
pointer manipulation instructions (MEMPICK).

The memory graph can be output at selected times (LAIKA, REWARDS), quiescent
points without activity (MEMPICK), before and after each function (DDT), periodically
(ARTISTE), or its information can be accumulated over time (RDS).

4.7. Nested Types

Column: Nested types

A byte in a memory region can belong to multiple nested types, e.g., to a primitive
integer type and to several aggregates such as an integer array, and a record storing
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[0:31] struct Box

typedef struct
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malloc(sizeof(Box));

Fig. 2. Data structure definition and example tree that captures its variable layout.

the integer array. There are 8 works that capture nested types using diverse represen-
tations. The most common representation are trees used by 5 works (DIVINE, WCKK,
AUTOFORMAT, DISPATCHER, ARTISTE). Other representations include FFE that cap-
tures nested types in hierarchical finite state machines (HFSMs), and HOWARD that
provides a textual representation of nested types, e.g., an array inside a record.

In the tree representations the root node typically corresponds to a memory region
(stack frame, heap allocation, loaded module) and the other nodes to variables with a
specific type. The leaf nodes correspond to primitive types and the internal nodes to
aggregate types such as records, arrays, or class objects. An example tree representa-
tion is illustrated in Figure 2. On the left, it shows the data structure definition of a
Box type comprising 3 variables: an integer, a float, and an array of two Point types.
On the right, it shows the tree for the heap allocation pointed to by the myBox pointer.
Depth one captures the variables in the Box type; the rest captures the array struc-
ture. Each edge is annotated with a variable name (not available in the binary code)
and each node with the range of bytes it occupies, and its type. To account for the
compiler aligning data structures to 64-bit, a fake padding variable has been added.

DIVINE first used trees and called them ASI trees, but only defined the variable size
and the relative ordering between variables. Protocol reverse-engineering works [Won-
dracek et al. 2008; Lin et al. 2008] extended the trees by adding the variable/field type
and the start offset (to account for variables not accessed by the program).

4.8. Merges Callsites

Column: Merges callsites

The same type can be allocated at different program points. Initially, each heap re-
gion is considered a separate recovered type identified by the callsite. Merging callsites
of the same type can improve accuracy by combining data from the different callsites,
e.g., adding variables only recovered for one callsite, refining types for variables at the
same offset, and performing the union of recovered methods for class callsites.

Only three works identify and merge callsites of the same type. DDT identifies call-
sites of the same type if allocations from those callsites are accessed by the same func-
tions. OBJDIGGER merges two recovered classes if they use the same constructor or
the same virtual table. ARTISTE merges format trees from different callsites in two
situations. First, it merges callsite trees that are pointed to by the same pointer at
different points in time. Second, it clusters callsite trees based on their format and
profiling information on the instructions that operate on them. We have not found any
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work that attempts to identify that two aggregate types in different stack frames, or
in a combination of heap allocations and stack frames, are of the same type.

4.9. Data in Code

Column: Data in code

As explained, we consider disassembly out-of-scope, which includes separating code
from data and typing code locations as instructions and functions. Instead, this sub-
section deals with special cases in which code locations may be typed as containing
data. In particular, memory locations inside an instruction can be further subtyped as
data if they contain immediate values or an offset value in a memory operand, since
those values may be of different types such as integer or pointer. For example, instruc-
tion mov %eax,0x7c90ec15(%esi) moves the content of register EAX to an entry in a
global table starting at address 0x7c¢90ec15. This instruction occupies 7 bytes in mem-
ory, of which the last four bytes contain the offset 0x7¢90ec15. All 7 bytes are typed
by the disassembler to be an instruction, but the last four bytes could be subtyped
as a pointer. In contrast, in instruction mov %eax,0xc(%esi) the offset value Oxc could
be subtyped as a short integer. Immediates can be handled similarly. Instruction mov
$0x77c11fe8,%edi occupies 5 bytes of which the last four correspond to the immediate
0x77c11fe8, which could be typed as a pointer, but in instruction mov $0x1,0x8(%esi)
the immediate would be a short integer.

A popular approach to identify pointers to global data is using relocation tables
(e.g., [Zhang et al. 2013]), which contain the locations inside instructions that need
to be patched if the module is relocated. In Table I we assign partial data in code sup-
port to works that identify code pointers using relocation tables, and full support to
those that also identify non-pointer types in immediates and offsets.

5. INFERRED TYPES

This section discusses Table II, which captures the types inferred by each approach.
In the table, ® indicates complete support, © partial support, and O lack of support.
A quick glance shows that there exists many different types that may be targeted by
binary code type inference and that support is very sparse. This is one important con-
clusion of this work. No single work tries to recover all types; some types have little
support (e.g., type synonyms, unions); and some like abstract types received signifi-
cant less attention, constituting good candidates for future work. One reason for the
sparse support is that some works recover only the types needed by their applications,
e.g., pointers for vulnerability and exploit analysis [Zhang et al. 2012; Caballero et al.
2012a] and function prototypes for binary code reuse [Caballero et al. 2010]. However,
even works focusing on reverse-engineering and decompilation show sparse support.
Regarding the final output of the type inference, most approaches produce a single
type for the identified variable, and one (TI1E) outputs a type range.

5.1. Primitive Types

Columns: Primitive type lattice; Integer; Floating point; Pointer & Pointer target

Primitive types are the smallest type units and are provided as built-in types by the
programming language, e.g., integer, pointer, char, bool, float, double. A primitive type
lattice captures the refinement relationships between primitive types, which dictates
how an approach unifies variables of different types. Unfortunately, only 5 works
that recover primitive types detail their primitive type lattice. The rest simply list
the inferred primitive types, without their refinement relationships.
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Table 1l. Comparison of the inferred types of binary code type inference approaches. Symbol O denotes a type is
not supported (not inferred), © denotes partial support, and @ denotes full support.

Primitive Types | Classes Other Types

System

MYCROFT [Mycroft 1999]

IDA [Guilfanov 2001]

EwW [Emmerik and Waddington 2004]
RDS [Raman and August 2005]
X86SA [Christodorescu et al. 2005]
DYNCOMPB [Guo et al. 2006]

FFE [Lim et al. 2006]

DIVINE [Balakrishnan and Reps 2007]
PoOLYGLOT [Caballero et al. 2007]
AUTOFORMAT [Lin et al. 2008]
WCKK [Wondracek et al. 2008]
LAIKA [Cozzie et al. 2008]

TUPNI [Cui et al. 2008]

Dc [Dolgova and Chernov 2008]
DISPATCHER [Caballero et al. 2009]
DDT [Jung and Clark 2009]

BCR [Caballero et al. 2010]
REWARDS [Lin et al. 2010]

Frc [Fokin et al. 2010]

DDE [Slowinska et al. 2010]

TDA [Troshina et al. 2010]

TIE [Lee et al. 2011]

HOWARD [Slowinska et al. 2011]
SMARTDEC [Fokin et al. 2011]
RECALL [Dewey and Giffin 2012]
POINTERSCOPE [Zhang et al. 2012]
ARTISTE [Caballero et al. 2012b]
UNDANGLE [Caballero et al. 2012a]
SECONDWRITE [ElWazeer et al. 2013]
RHK [Robbins et al. 2013]
MEMPICK [Haller et al. 2013]

TOP [Zeng et al. 2013]

YM [Yan and McCamant 2014]
OBJDIGGER [Jin et al. 2014]

LEGO [Srinivasan and Reps 2014]
YB [Yoo and Barua 2014]

VFGUARD [Prakash et al. 2015]
VTINT [Zhang et al. 2015]

| ZM ;XX ™| X AR AR XRANARN XX AR XXX XXX XXX XXX XXX XX XX X Primitive type lattice
OCO®O00O®000®00200000002200000000OOOOOOO® @ Integer (signed & unsigned
OCO®O000000O®00000000000O00OOOOOOOO0OO OO ®O| Floating point
0200200200202 00200 2022202020000 0OO®O @ @ Pointer & Pointer target
CO®e®00000O0OO0OO®O0OO®OOOOOOOOOOOOOOO®O 0| Class hierarchy
000000000000V VOVOOOOOOOOOOOOOOOOOOO O Virtual tables
CO00®00®*0000000020000000®e 002200 ® O™ @ Records

C0O@0000000®00C000e0 0000002000 0O0O0O®® Arrays
O000000OOO0O0OOOOOOOOOOOOOOOOOOOOOO @O OO OO0| Type synonyms

e820000000000O®OO0O000OO0OOOOOOOOOOOOOOOOOO0|Class methods
O00O00O0O0OOO®O®0O0O®®s 0000000220 00O O®O Strings
OCO000000e®® 0000000000 ®OOOOO®OOOOOOO®O O O|Recursive types
O00000O0OOOO®OOOO®OOOOOOOOOOOOOOOOOOO®® Unions
OCO0O00O00OOOOOOOOOOOOOOOO®OOOOOOOOOOOOOOO|Abstract types
CO000O®O0OOO00000O0O®O000OOOOOOOOOOOOOO0OO®™ S Function types
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a) TIE primitive lattice
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Fig. 3. Primitive type lattices in TIE and ARTISTE. Above the horizontal line are the inferred primitive
types and below the mapping to 32-bit C types. All leaf types above the horizontal line are implicitly con-
nected to L. We have slightly modified the TIE type names to facilitate the comparison between both
lattices. The original TIE lattice appears in [Lee et al. 2011].

Figure 3 shows the primitive type lattices of TIE and ARTISTE, the most complete
we found. In the lattices, T represents an unknown type and all types are implicitly
connected to |, which represents a type conflict. The goal is to infer refined primitive
types, i.e., as far down the lattice as possible without reaching 1.

Both lattices are largely similar, but contain differences due to additional types sup-
ported by ARTISTE, e.g., floating-point and 64-bit data, and some author decisions, e.g.,
separating code from data and considering pointers to be number subtypes (i.e., ptr32
refines num32). The latter change makes arithmetic operations (e.g., add, sub) to oper-
ate on numbers, regardless of whether performing integer or pointer arithmetic [Ca-
ballero et al. 2012b]. This is a simplification over previous approaches that use disjunc-
tive type constraints for arithmetic operations (since the operands could be integers or
pointers) [Mycroft 1999; Lee et al. 2011]. It also helps with zero constants, which could
be both integer or NULL pointer and can be assigned num32 in the meantime.

The dotted line marks the translation used from the inferred primitive types to C
types in a 32-bit architecture. Note that some inferred types could correspond to differ-
ent source types with identical representation. For example, compilers often represent
bool using one byte! so they can only be distinguished from char by checking that their
value is always zero or one.

IThe C++ specification does not mandate the bool representation.
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The approaches studied in Table II recover three primitive types: integers, floats, and
pointers. Other primitive types like char and bool are considered one-byte integers.
Pointers are the most commonly inferred type since they are a prerequisite to infer
aggregate types such as records, arrays, and recursive types. They are also the target of
works on vulnerability and exploit analysis [Zhang et al. 2012; Caballero et al. 2012al].
In Table II we assign full pointer support to approaches that differentiate pointers
by their target type, i.e., they distinguish between a struct a* and a struct b*, and
partial support otherwise. Works that fully support pointers parameterize them with a
single target type, except ARTISTE that uses a set. A set is useful for pointers that point
to instances of the same type allocated at different callsites, and for class inheritance
where a pointer may point to objects of the parent and child classes (§5.2).

In Table IT an approach gets full integer support if it infers integers of different sizes
(1,2,4,8 bytes) and signedness, and partial if it recovers only one of those properties.
YM authors argue that inferring signedness is highly challenging due to the absence
of casts in binary code and that few instructions truly manifest signedness [Yan and
McCamant 2014]. Thus, many variables are inferred as generic numbers (e.g., num32)
rather than their more refined signed and unsigned subtypes.

The x86 floating point registers can operate on single precision (32-bit), double pre-
cision (64-bit), and extended precision (80-bit) floats. We assign full float support to
approaches that infer floats of different sizes and partial if they do not differentiate
sizes. Of the static approaches, only SECONDWRITE performs height analysis of the
floating point stack.

5.2. Classes

Columns: Class methods; Class hierarchy; Virtual tables

Classes in C++ object-oriented programs are also a popular target of binary code type
inference. Existing approaches focus on four main challenges to class recovery. First,
recovering the class methods, e.g., constructors and destructors. Second, recovering the
class hierarchy lattice produced by inheritance, which manifests in the embedding of
an object of each superclass inside the object of the subclass. Third, recovering virtual
methods and the virtual tables used to dispatch them. Fourth, recovering the data
member layout. This subsection focuses on the first three challenges. The last one is
identical to the recovery of record layouts discussed in §5.3. SMARTDEC and YB also
tackle the recovery of exception handling mechanisms, but we consider this part of
structural analysis and out of scope.

Important properties of C++ classes such as where to pass the this pointer, how to
dispatch virtual methods, and how to combine parent classes are dictated by the appli-
cation binary interface (ABI). Most Unix compilers including modern versions of g++
follow the Itanium ABI, while most Windows compilers follow the MSVC ABI. Seven
approaches (Ew, FTc, SMARTDEC, RECALL, OBJDIGGER, VTINT, VFGUARD) assume
MSVC ABI and two (LEGO, YB) Itanium ABI. However, most proposed techniques
could be applied to both ABIs with some effort.

EWw first proposed recovering class hierarchy information leveraging run-time type
information (RTTI) and Windows message maps. An RTTI data structure is emitted
by the compiler for each polymorphic class (i.e., with a virtual method) to support the
typeid and dynamic_cast C++ operators. It includes the class name, inheritance hierar-
chy, and parts of the class layout. However, it is not available for classes without virtual
methods; it is often absent in commercial software; and it does not provide information
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on non-virtual methods. More recent approaches do not assume RTTI availability (the
exception being YB) but leverage it if present.

In both MSVC and Itanium ABIs, a pointer to the RTTI data structure precedes
the virtual table. Thus, identifying virtual tables reveals RTTI structures as well. Ap-
proaches that recover virtual tables essentially scan the data sections for arrays of
function pointers using value-based type inference or leverage the executable’s reloca-
tion and export tables.

FTcC proposes a technique (also used by SMARTDEC) to recover a polymorphic class
hierarchy by tracking virtual table pointer modifications in constructors and destruc-
tors. The technique assumes that each polymorphic class inherits from at most one
parent class and does not work for non-polymorphic classes. SMARTDEC proposes to
identify non-polymorphic methods and assign them to a specific class by monitoring
the value of the this pointer passed in ECX to the method (assuming MSVC’s thiscall
calling convention). Tracking the this pointer is also used by RECALL with polymor-
phic classes and by OBJDIGGER (statically) and LEGO (dynamically) for all methods.
LEGO proposes a class hierarchy recovery technique based on destructor sequences.

In Table IT we assign full class method support to an approach if it identifies poly-
morphic and non-polymorphic class methods and it does not require RTTI, and partial
support if it requires RTTI or only identifies polymorphic methods. Similarly, we assign
full class hierarchy support if the hierarchy of both polymorphic and non-polymorphic
classes is recovered without RTTI, and partial support if RTTI is required or it only
recovers polymorphic class hierarchies. We assign full virtual table support to all ap-
proaches recovering virtual tables. We also give partial pointer support to approaches
that track the propagation of this pointers.

Remaining challenges. There exists a number of challenges not fully solved by cur-
rent approaches. These include: identifying static methods (which do not use the this
pointer), inlined constructors and destructors, elimination of virtual table references
in constructors through optimization, distinguishing composition from inheritance, re-
covering public/private/protected method attributes, and handling templates.

5.3. Records and Arrays

Columns: Records; Arrays

Record types are derived by combining multiple primitive types, e.g., a record com-
prising two integers created using the C struct keyword. They are often informally
called data structures. Arrays are a common built-in type for sequences of elements of
the same type. In records, each element (or field) may have a different type that needs
to be inferred. In arrays, all elements have the same type; once an element’s type is
inferred, the type of the array is known.

One commonality between records and arrays is that to access one of their elements,
a program often uses a base pointer and an offset. This is particularly true when they
are allocated in the heap. Therefore, memory access analysis (§4.5) has been proposed
to infer records and arrays both statically [Ramalingam et al. 1999] and dynami-
cally [Slowinska et al. 2010]. To differentiate arrays from records, those approaches
leverage that each element of an array has the same type (and size). Thus, regularly-
spaced offsets accessed using the same base pointer, (e.g., {0,4,8,12}) may indicate an
array with a stride of 4 bytes, i.e., with 4-byte elements. To differentiate a record with
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4 integer variables from an array of 4 integers, they leverage that arrays are more
commonly processed in loops compared to records.

One challenge common to records and arrays is estimating their size if they do not
have an explicit size field, e.g., in C programs. An incorrect estimate may miss the
last elements of the record/array or may include unrelated data stored next to them.
Three approaches used to estimate the size are: (1) approximate it by the largest offset
the base pointer is used with plus the size of that access; (2) bound the size by the
starting address of the next variable inferred in the memory that follows; and (3) for
heap-allocated records/arrays bound their size by the size of the heap allocation that
contains them.

Column Records assigns partial support to approaches that recover the variable lay-
out of records and full support to approaches that also type variables with primitive
types. Column Arrays assigns partial support to approaches that analyze strides in
memory accesses to identify arrays and the size of their elements, and full support if
they recover nested arrays.

Some open challenges remain. One is accurately identifying records and arrays in
global memory regions and the stack. This is challenging with global memory regions
because a program can directly access their elements with a fixed virtual address, in-
stead of using a base pointer and an offset. In the stack, their elements can be accessed
through their base pointer, but also through the base pointer of the stack frame, which
may differ if there is another local variable in the stack before the beginning of the
record/array. Other open challenges include identifying multi-dimensional arrays, ar-
rays accessed using SIMD instructions, and padding fields introduced by the compiler
for alignment.

5.4. Strings

Column: Strings

Strings are sequences of characters with some particular encoding such as ASCII
or Unicode. In C, strings are represented as null-terminated arrays of characters.
Many other string representations exist. For example, strings can be implemented
as a class (e.g., basic_string C++ class) or with abstract data types that define the op-
erations, but hide the representation (§5.8). Strings are difficult to differentiate from
their underlying representation, e.g., from arrays of characters. In Table II we assign
partial string support to approaches that identify arrays. We assign full support to
approaches that distinguish between arrays and C strings using value-based type in-
ference (LAIKA), function type sources (X86SA, REWARDS), or instruction type sources
(REWARDS). None of the approaches identifies other string representations.

Dynamic arrays. Dynamic arrays are variable-length buffers that may change size
during execution through reallocation. They do not exist as such in C/C++ source code
but are commonly used to implement other types like strings or the C++ vector class.
For example, a common string representation is a record holding the maximum string
size, the current string size, and a pointer to a dynamic array storing the characters.
Only ARTISTE identifies dynamic arrays.

5.5. Recursive Types

Column: Recursive types

Recursive types are aggregate types storing recursive pointers (pointers to the same
aggregate type storing them) forming shapes such as lists and trees. Note that a global
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or local pointer to another pointer (e.g., char** a) is a primitive type rather than a
recursive type since it does not belong to an aggregate type. In Table II, we assign
partial support to approaches identifying recursive pointers (RDS, LAIKA, REWARDS,
RHK, SECONDWRITE) and full support if memory regions are assigned recursive types
through shape analysis (DDT, ARTISTE, MEMPICK).

Of the 8 works that support recursive types, 6 are dynamic and 2 are static ap-
proaches. The two static approaches (RHK, SECONDWRITE) only recover recursive
pointers. While there has been a wealth of prior work on static shape analysis [Chase
et al. 1990; Ghiya and Hendren 1996; Sagiv et al. 1999; Manevich et al. 2005; Berdine
et al. 2007; Marron et al. 2009], those techniques have only been applied to source
code so far. The process for identifying recursive types using dynamic approaches has
three high level steps: build memory graphs (already detailed in §4.6), identify mem-
ory graph regions corresponding to recursive types, and apply dynamic shape analysis
to assign types to regions (e.g., linked list, binary tree).

Identifying regions in the memory graph. The high level intuition behind parti-
tioning a memory graph into regions (recursive types), first used in RDS, is that nodes
in the same region should be of the same type and regions should be separated by
nodes of different type. One challenge only addressed by MEMPICK is identifying over-
lapping data structures with nodes of the same type, e.g., a tree where leaf nodes form
a linked list. DDT differs from other approaches in assuming access to the recursive
data structures happens through a small set of interface functions, so it misses them if
they are accessed through inline manipulation, i.e., without separate function calls.

Dynamic shape analysis. Types are assigned to memory regions by checking the
shape of the regions against shape invariants. For example, a doubly-linked list node
should have two pointers (forward, back) satisfying n—forward—back = n. The three
approaches using dynamic shape analysis (DDT, ARTISTE, MEMPICK) output shapes
of different granularity. All 3 identify cycles, lists (singly linked, doubly linked, circu-
lar singly linked, circular doubly linked), generic trees, and trees with parent pointer.
In addition, DDT and MEMPICK analyze imbalance properties to refine trees, e.g., bal-
anced binary search trees, AVL trees, splay trees, and red-black trees. MEMPICK also
identifies threaded trees.

5.6. Type Synonyms

Column: Type Synonyms

Type synonyms are refinements of other types?. For example, in C a programmer
could define a type synonym for integers to represent currency amounts, sizes, zip
codes, or unit life in a game (e.g., typedef int Dollars). Their representation is iden-
tical to the parent type, so they can only be distinguished from the parent type (and
from other synonyms of the parent type) by how they are used. No work explicitly tar-
gets the recovery of type synonyms, but we have found two very related techniques,
which we present here with a unifying view. Both techniques identify groups of vari-
ables used together by the program. Since all variables of the same type are not used
together by the program, this essentially produces a partitioning of variables of the
same type into type synonyms.

The first technique was introduced for source code by LACKWIT [O’Callahan and
Jackson 1997] and applied to binary code (and byte code) in DYNCOMP [Guo et al.
2006]. It uses a flow-based unification approach where the first time a variable is ac-

2Called abstract types in [Guo et al. 2006]. They may also be called type abbreviations and type aliases.
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cessed by the program a fresh type is created for it. The type is propagated similar
to the primitive typing approaches, but with the difference that no type sources are
defined. Thus, the type is never mapped to a known type, i.e., the type system of the
program is ignored. Variables that end up with the same type represent an abstract
type that the programmer could (but may not) have used.

The second technique was introduced by REWARDS. It corresponds to assigning finer-
grained types to the parameters or return values of external functions, instead of the
types in the source code or debugging symbols. For example, a call to the open Unix
function returns an integer, but REWARDS ascribes it instead a more refined file_d
type representing a file descriptor. Another possible approach would be propagating
the names of the parameters instead of their types. For example, given the function
int cost(int miles, int price) we could assign the parameters the integer type
synonyms miles and price. Thus, any variables using the parameters would be as-
signed those type synonyms instead of int.

5.7. Unions

Column: Unions

Unions specify a number of member variables they may store at the same memory
location, but only one of those variables is stored at any given time. Untagged unions
do not store an additional type tag to track the current member being used, and are
only supported in weakly-typed languages such as C/C++ and Cobol. Tagged unions
are commonly used in functional languages (e.g., ML, Haskell) and can be seen as a
record of a type tag and an untagged union.

Support for untagged unions requires handling multiple (possibly incompatible)
types at the same location in the inferred type system. This can be done by represent-
ing a union as a record with multiple elements at the same (zero) offset (MYCROFT,
IDA) or by defining a separate union type (TIE, ARTISTE).

A fundamental challenge with untagged unions is how to distinguish them from
a typing conflict. While a sound analysis may not generate typing conflicts, none of
the examined works makes such a strong soundness claim. In fact, approaches that
solve constraints offline may use unions during constraint solving to resolve constraint
violations. For example, MYCROFT uses a C union to represent the target of pointers
that access variables of different size. Approaches that solve constraints online need to
decide whether to keep a single type for a location, thus resolving incompatible types
immediately to L, or to keep track of all incompatible types as part of a union type
(compatible types are refined using the U lattice operation). Given this fundamental
challenge, we do not assign full union support to any approach in Table II, but only
partial support to approaches that can represent unions.

5.8. Abstract Types

Column: Abstract types

Abstract types specify an interface (i.e., a set of allowed operations) but not the rep-
resentation [Dekker and Ververs 1994]. For example, a stack is a common abstract
type with push/pop/top operations, which can be represented using a linked list or an
array. Similarly, sets and maps can be represented using trees or arrays of linked lists.
Interestingly, we did not find any work that infers abstract types other than DDT that
partially focuses on this problem. This is likely because abstract types cannot be iden-
tified by their representation, e.g., an array of linked lists is not always a map. Instead,
identifying abstract types may require examining the set of operations performed on
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the data structure. This is somewhat similar to object recovery that requires identify-
ing the class methods. We believe abstract types are a good candidate for future work,
especially if there is a need for data structure reuse.

5.9. Function Types

Column: Function types

A function type captures the prototype of a function, i.e., the number, location, and
type of parameters and return values. Recovering function prototypes (function types)
is a fundamental problem in binary code reuse [Caballero et al. 2010] and for inter-
procedural static analysis. This problem differs from identifying a function’s entry
point and boundary, i.e., the instructions belonging to the function, which we consider
part of disassembly [Kruegel et al. 2004; Bao et al. 2014].

The challenges in function type recovery are that parameters and return values are
not explicitly defined in the binary code, that their locations (e.g., how many parame-
ters are passed on register and stack) are dictated by an unknown calling convention,
and that callee-saved registers may look like function parameters. In Table II we as-
sign partial support to approaches that include function types in their recovered type
system (e.g., MYCROFT, IDA, TIE) and full support to those (BCR, SECONDWRITE) that
identify callee-saved registers and recover the prototype without assuming a calling
convention.

The intuition for identifying function parameters and return values was first intro-
duced in [Zhang et al. 2007]. A parameter is any register or memory location read by
a function before being written, with some exceptions like callee-saved registers and
the stack pointer. Return values are locations written by a function and used by the
program after the function returns. This definition captures not only the return value
but also the function’s side effects, e.g., a memory buffer passed by reference that the
function modifies.

Some limitations of this definition are that return values not used by the program
cannot be identified, and unused parameters only in some situations (e.g., if placed
between two other stack parameters). Some limitations of current approaches are that
they do not recover complex parameters, e.g., a pointer to a nested or recursive type,
and that they do not support variadic functions, i.e., functions which may take a vari-
able number of arguments such as printf.

6. IMPLEMENTATIONS

This section systematizes the implementation of the 38 approaches. Building a bi-
nary code type inference approach from scratch requires significant effort. Thus, 35/38
approaches build on top of previously available binary analysis platforms, which pro-
vide basic functionality such as disassembly and control flow graphs for static analy-
sis and instruction-level monitoring for dynamic analysis. This section first describes
the platforms used by the approaches (Table III) and then the implementation of the
approaches using those platforms (Table IV). Note that the implementation of an ap-
proach may only use a subset of the functionality offered by the underlying platform.

Platforms. Table III summarizes the 15 platforms used by the 38 approaches in Ta-
ble IV. The most common platform is BitBlaze, which provides both static and dynamic
analysis support. However, 5 of 7 approaches using BitBlaze only use its TEMU [Yin
and Song 2010] dynamic analysis component, built on top of QEMU [Bellard 2005].
DDE, HOWARD, and TOP also build on top of QEMU. Among dynamic approaches,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 J. Caballero and Z. Lin

Table 11l. Comparison of the binary analysis platforms used in the implementation of binary code type inference
approaches. Platform information collected early October 2015.
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BAP [BAP 2011] | BIL vV VIV VIV X X X|v Vv X X
BitBlaze [Bitblaze 2008] | VINE V VIV X X X X XV Vv X X
Boomerang [Boomerang 2004] | RTL Vo X ||V XX v v VIV VIV X X
CodeSurfer/x86 [CodeSurfer 2005] | CodeSurfer | vv X ||V X | X X X X |V V|| X X X
Dyninst [Dyninst 2009] | X V VIV VXXX XX VI YoX X
IDA [IDA 2005] | IDA vV XV VIV Vv Vv VIV XX
iDNA [Bhansali et al. 2006] | Nirvana X V||V V|X X X X|v X||Xx x X
LLVM [LLVM 2004] | LLVM IR Vo XX XX X X X|X X|\|v X X
PIN [PIN 2005] | X X V||V V|X X X X|v v|X v X
QEMU [Qemu 2006] | TCG X Vi|v vIv v v V|V V]|V X X
ROSE [Rose 2000] | SAGE III Vo oX |V XV v v VIV VIV X X
SecondWrite [SecondWrite 2013] | LLVM IR VX ||V XX X X X|Vv VI|Xx X V
SmartDec [SmartDec 2011] | Formulae Vo XV VX X X XV Vv X X
Udis86 [Udis 2009] | X VoX |V VX X X XX XV X X
Valgrind [Valgrind 2007] | VEX X Viiv vIv v v V|V V]|V X X

QEMU (including TEMU) is most popular (10 approaches), followed by PIN [Luk
et al. 2005] (6), and Valgrind [Nethercote and Seward 2007] (2). Most popular among
static approaches is IDA [IDA 2005] (5), followed by SmartDec [Fokin et al. 201113 (3),
CodeSurfer/x86 [Balakrishnan et al. 2005] (2), and SecondWrite [ElWazeer et al. 2013]
(2). Note that these numbers may not reflect overall popularity of a platform.

Table III shows the intermediate representation (IR) used by the platform, whether
it supports static and dynamic analysis, the target architectures and operating sys-
tems it supports, and how it is released (open source, free binary, or sold commercially).

Binary code analysis can operate directly on a particular instruction set (e.g., x86,
ARM) or convert the instruction set into an IR. Using an IR has two main advantages.
First, it is easier to reuse the analysis as a component for other analysis and for apply-
ing it to different architectures (by adding front-ends that convert another instruction
set to the IR). Second, complex instruction sets such as x86/x86-64 with hundreds of
instructions, each with side-effects such as implicit operands and conditional flags, can
be converted into a smaller set of simpler constructs, making the analysis code sim-
pler. Among the 15 platforms, 12 use an IR. Only SecondWrite reuses directly the IR
of another platform (LLVM). However, IRs may influence each other, e.g., VINE uses
VEX as an intermediate step and BIL evolved from VINE.

Among the 15 platforms, 11 support static analysis and 7 dynamic analysis. The
functionality provided by static analysis platforms widely varies. IDA and Udis86
are disassemblers, Boomerang and SmartDec are decompilers, and the rest (BAP, Bit-
Blaze, CodeSurfer/x86, Dyninst, LLVM, ROSE, SecondWrite) offer diverse static anal-
ysis functionality such as disassembly, building control flow graphs and call graphs,
IR simplifications, and data flow propagation. All dynamic analysis platforms can run
unmodified binaries (i.e., no need to recompile or relink). QEMU is a whole system em-

30riginally called TyDec.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



Type Inference on Executables

Table IV. Comparison of the implementations of binary code type inference approaches.
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MYCROFT [Mycroft 1999] | - VX Xx|v v v V|V V||X X X

IDA [Guilfanov 2001] | IDA VIV VIV Vv Vv V|V VX X V

EW [Emmerik and Waddington 2004] | Boomerang ViV XX v v V|V V||V X X
RDSs [Raman and August 2005] | PIN XX VX X X XX V||X X X
X868SA [Christodorescu et al. 2005] | IDA VIV XX X X X| X V||X X X
DYNCOMPB [Guo et al. 2006] | Valgrind VIV VX X X X|X V|v X X

FFE [Lim et al. 2006] | CodeSurfer/x86 | v || v X | X X X X |v V|| X X X

DI1VINE [Balakrishnan and Reps 2007] | CodeSurfer/x86 | v || v X | X X X X |v V|| X X X
PoLYGLOT [Caballero et al. 2007] | BitBlaze X|\v XX X X X|v VI|Xx X X
AUTOFORMAT [Lin et al. 2008] | Valgrind XI||v X| X X X X | X v |X X X
WCKK [Wondracek et al. 2008] | - XI||v X| X X X X| X v |X X X
LAIKA [Cozzie et al. 2008] | - X||v vVI]X X X X|v VI|Xx X X

TUPNI [Cui et al. 2008] | iDNA X||v XX X X X|v X||Xx X X

Dc [Dolgova and Chernov 2008] | SmartDec VIV X| X X X X|v vV |X X X
DISPATCHER [Caballero et al. 2009] | BitBlaze X||v XX X X X|v VI|Xx X X
DDT [Jung and Clark 2009] | LLVM VIV VIV Vv Vv VX VX X X

BCR [Caballero et al. 2010] | BitBlaze X||v XX X X X|v VI|Xx X X
REWARDS [Lin et al. 2010] | PIN X||v XX X X X|Xx vV]|Xx X X

Frc [Fokin et al. 2010] | IDA VIV XX X X X|v V|X X X

DDE [Slowinska et al. 2010] | QEMU X||v XX X X X| X VI|Xx X X

TDA [Troshina et al. 2010] | SmartDec VIV XX X X X|X V|X X X

TiIE [Lee et al. 2011] | BAP,PIN VIV XX X X X| X V|X X X

HOWARD [Slowinska et al. 2011] | QEMU X||v XX X X X|Xx V]|Xx X X
SMARTDEC [Fokin et al. 2011] | SmartDec VIV vVIX X X X|v VI|v X X
RECALL [Dewey and Giffin 2012] | IDA VIV XX X X X|v X||Xx X X
POINTERSCOPE [Zhang et al. 2012] | BitBlaze X||v XX X X X|v VI|Xx X X
ARTISTE [Caballero et al. 2012b] | BitBlaze XI||v X| X X X X|v v ||X X X
UNDANGLE [Caballero et al. 2012a] | BitBlaze X||v X| X X X X|v v ||X X X
SECONDWRITE [ElWazeer et al. 2013] | SecondWrite VIV XX X X X|Vv V|X X V
RHK [Robbins et al. 2013] | Dyninst VIV vV |X X X X|X V||X X X
MEMPICK [Haller et al. 2013] | PIN X||v XX X X X|Xx V|Xx X X

ToOP [Zeng et al. 2013] | QEMU X||v XX X X X|v VI||Xx X X

YM [Yan and McCamant 2014] | BitBlaze VIV XX X X X|X vV||X X X
OBJDIGGER [Jin et al. 2014] | ROSE VIV XX X X X|v X||X v X

LEGO [Srinivasan and Reps 2014] | PIN X||v XX X X X| X V]|Xx X X
YB [Yoo and Barua 2014] | SecondWrite VIV XX X X X|X V|X X X
VFGUARD [Prakash et al. 2015] | IDA,PIN VIV XX X X X|v X||X X X
VTINT [Zhang et al. 2015] | Udis86 X|\v XX X X X|v X||Xx X X

ulator that can run a full guest OS (e.g., Windows) on a potentially different host OS
(e.g., Linux). Dyninst, iDNA, PIN, and Valgrind execute an unmodified target program
with customizable instrumentation (e.g., through binary rewriting) on the CPU of the
host system. BAP and BitBlaze build their dynamic analysis components on top of PIN

and QEMU.

We mark support for an architecture if the platform provides a front-end for read-
ing the architecture’s machine code at the time of writing*. Note that Table III does
not show any architectural support for LLVM because currently LLVM does not pro-
vide front-ends for reading their machine code into the LLVM IR, though it provides

4Qctober 2015

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.




A:26 J. Caballero and Z. Lin

back-ends to write out machine code for all the architectures in Table III. Other plat-
forms like ROSE and Secondwrite can read machine code and output statements in
the LLVM IR. Three platforms (BitBlaze, CodeSurfer/x86, and SecondWrite) support
only x86, another 4 x86 and x86-64 (Dyninst, iDNA, SmartDec, Udis86), and another
three (IDA, QEMU, and Valgrind) support all 6 architectures evaluated. Overall, 14
platforms support x86, 9 support x86-64, and 5 platforms support ARM, MIPS, SPARC,
and PowerPC. We mark support for an OS if the platform can read executables for that
OS (PE or ELF) at the time of writing. Udis86, a popular x86/x86-64 disassembler, has
no OS support marked because it disassembles a string of machine code, rather than
an executable.

Of the 15 platforms in Table III, 10 are open source, PIN is released as a free binary
without source code, IDA and SecondWrite are commercial tools acquired in binary
form®, and CodeSurfer/x86 and iDNA are internal tools not released to the public.

Approach implementation. Table IV summarizes the implementation of the ap-
proaches. For each approach, it shows the platforms it builds on, the target archi-
tectures and operating systems it supports, and how it is released.

More than half of the approaches (20/38) use an IR, typically provided by the under-
lying platform. All static approaches use an IR, but a majority of dynamic approaches
(18/22) do not (even if the underlying platform has an IR). Of those 18, 4 are value-
based approaches that do not use information flow (RDS, LAIKA, MEMPICK, LEGO) for
which the benefit of using an IR is unclear. The other 14 perform flow-based analy-
sis without an IR. These approaches only need to propagate flows on the small set of
move-like instructions (e.g., mov, push, pop) that propagate type constraints. Since they
do not need to reason about other instructions, using an IR may be an overkill for their
goal. Another reason could be that the effort to learn the IR may be too high.

The fact that a platform has support for an architecture in Table III does not neces-
sarily mean that an approach built on top of that platform supports that architecture,
as support for that architecture may have been added to the platform later or the ap-
proach may not have targeted that architecture. For example, BAP currently supports
x86, x86-64, and ARM, but TIE (built on top) only supports x86.

Of the 38 approaches, three are open source (Ew, DYNCOMPB, SMARTDEC); one is
released as a free binary (OBJDIGGER); two are commercial tools acquired in binary

form (IDA, SECONDWRITE); and 32 approaches have not been released in any form
(independent of the platform they build on being open source).

7. EVALUATIONS

In this section we examine how the accuracy of binary code type inference approaches
is evaluated, and systematize this in Table V. We analyze 2 dimensions: benchmarks
(87.1) and evaluation methodologies (§7.2).

7.1. Benchmarks

Three of the papers do not evaluate their techniques at all (MYCROFT, IDA, DC). How-
ever, IDA is a popular commercial platform whose capabilities have since been widely
tested. Overall, the average number of benign programs tested is 18, the median 9,
the standard deviation 28, and the maximum 112 (TOP). Only 31% of approaches are
evaluated on at least 10 programs, but there is an increase since 2013, which may

5IDA provides a free binary of the 2006 5.0 version.
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Table V. Comparison of the evaluations of binary code type inference approaches.
Benchmark Methodology
)]

# Benign programs

System

MYCROFT [Mycroft 19991

IDA [Guilfanov 2001]

EW [Emmerik and Waddington 2004]
RDS [Raman and August 2005]
X868SA [Christodorescu et al. 2005]
DYNCOMPB [Guo et al. 2006]

FFE [Lim et al. 2006]

Di1vINE [Balakrishnan and Reps 2007]
PoOLYGLOT [Caballero et al. 2007]
AUTOFORMAT [Lin et al. 2008]
WCKK [Wondracek et al. 2008]
LAIKA [Cozzie et al. 2008]

TUPNI [Cui et al. 2008]

Dc [Dolgova and Chernov 2008]
DISPATCHER [Caballero et al. 2009]
DDT [Jung and Clark 2009]

BCR [Caballero et al. 2010]
REWARDS [Lin et al. 2010]

F1c [Fokin et al. 2010]

DDE [Slowinska et al. 2010]

TDA [Troshina et al. 2010]

TIE [Lee et al. 2011]

HOWARD [Slowinska et al. 2011]
SMARTDEC [Fokin et al. 2011]
RECALL [Dewey and Giffin 2012]
POINTERSCOPE [Zhang et al. 2012]
ARTISTE [Caballero et al. 2012b]
UNDANGLE [Caballero et al. 2012a]

= DN
VUIONTIOJOOWOUNIHPROOIIFRAWIHIWOHOO

=

[u—y

o] =

—

SECONDWRITE [ElWazeer et al. 2013] 18
RHK [Robbins et al. 2013] 84

MEMPICK [Haller et al. 2013] 26

TOP [Zeng et al. 2013] 112

YM [Yan and McCamant 2014]
OBJDIGGER [Jin et al. 2014]
LEGO [Srinivasan and Reps 2014]
YB [Yoo and Barua 2014]
VFGUARD [Prakash et al. 2015]
VTINT [Zhang et al. 2015]

TACAUAXACUARAAANACNAXAAUAXACNUAXACANNNANA NN A % A % X Other benign

MM I]NU M X XK KR AN XK XRXR XX AN K X X XXX XXX XXX XXX XXX X X Fine-grained metric
B¢ 3¢ O D% D% B 3 3¢ B¢ N M N X X X X KN X X X XK XK X X X X X X X X X X X X X X X X| Cross-compared
ARXMARXRXARCAAANARHRARNRN R ACAUANNX X AN XXX XN XN X X X Runtime overhead
3% % % % % ¢ ¢ ¢ M X M X M| M X XN N XN XN X X X X X X XX XXX\ XN X X X Memory overhead

XA X XXX ™R UM XX RN XX XX XXX XXX XXX XXX XXX\ XXX SPEC
ARACLAHARX AR AN ACCACAAACNCNCNAXCNNA XN X N X% X X X X% Quantitative

XX B MU AUZXAUX XN XK XXX AN X XXX XXXXXXXXXXN XXX X Coreutils
J|JI]]|AZDAUJCR XX XXX XXX XXX ANX N XX AKX N XXX XN XX X X Malware

indicate that techniques are becoming more robust, or a higher bar for acceptance.
The programs most used for evaluation are the GNU Core Utilities (Coreutils), which
comprise basic file, shell, and text manipulation utilities of Unix/Linux. Coreutils are
used by 7 approaches. The SPEC CPU benchmark that contains computing intensive
programs for integer and floating point manipulation is used by 4 approaches, split be-
tween SPEC CPU 2006 (3) and SPEC CPU 2000 (1). The majority (24/38) of approaches
evaluate their techniques on other, often less popular, benign programs of their choice.

Of the 8 approaches that are evaluated on malware, 6 use dynamic approaches (BCR,
REWARDS, AUTOFORMAT, LAIKA, DISPATCHER, TOP) and the other two (X86SA, OB-
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JDIGGER) static. The predominance of dynamic approaches can be explained by the
widespread used of polymorphism (e.g., packing) across malware families.

7.2. Evaluation Methodologies

The first three columns in the methodology section of Table V capture the methodolo-
gies used to evaluate the accuracy of the binary code type inference, while the last two
columns capture the performance evaluation.

We have identified 3 categories of methodologies used to evaluate the accuracy of
binary code type inference results. The first category comprises 15 approaches that do
not perform quantitative evaluation of their type inference results (have X in Quan-
titative column). These approaches can be split into 3 subcategories. As mentioned, 3
approaches do not evaluate at all (MYCROFT, IDA, DC). Another 6 approaches compare
against the ground truth (i.e., source code, debugging symbols, protocol or file specifica-
tion) only qualitatively (EW, X86SA, FFE, POLYGLOT, RECALL, RHK). The remaining
6 approaches perform application-specific evaluation. These approaches do not evalu-
ate their type inference techniques, but instead evaluate their final application (RDS,
POINTERSCOPE, UNDANGLE, TOP, VFGUARD, VTINT). For example, UNDANGLE does
not evaluate its pointer inference technique against ground truth, but does quantify
its dangling pointer detection, and TOP evaluates its results by recompiling the de-
compiled source code.

The second category comprises 19 approaches that perform coarse-grained quantita-
tive evaluation of their type inference results against ground truth. These approaches
have v' in the Quantitative column and X in the Fine-grained Metrics column. These
approaches use boolean correctness metrics that count the number of (in)correctly
typed variables. These metrics are coarse-grained because types can overlap each other
or be nested (e.g., primitive types inside arrays), and a type can subtype another, e.g.,
a num32 compared with a ground truth of int could be considered incorrect or correct
(but imprecise).

The third category comprises 3 approaches that use the following 4 finer-grained
metrics for quantifying their inference (T1E, SECONDWRITE, LEGO). TIE proposes two
evaluation metrics: distance and conservativeness. Distance addresses how to compare
compatible (but different) types. The distance between two types is the number of
levels between them in the primitive lattice if they are subtypes of each other, and
the maximum lattice height otherwise. Conservativeness is based on the fact that
TIE outputs a range of primitive types for a variable (upper and lower bound). It is
a boolean metric that is true if the type in the source code is between the inferred up-
per and lower bound types. However, the other approaches output a single primitive
type instead and need to artificially create a type range to use this metric (e.g., SEC-
ONDWRITE). SECONDWRITE defines another metric to compare multi-level pointers
since in TIE int** was equivalent to int*. This metric measures the ratio from the
inferred pointer levels to the source pointer levels. LEGO proposes a metric to compare
two class hierarchies that compares the sets of recovered methods and the inheritance
relationships.

Cross-comparison. A separate categorization is whether the type inference results
are cross-compared against prior approaches (TIE, ARTISTE, SECONDWRITE). This
is complicated by the fact that most approaches are not open source (§6). TIE and
ARTISTE compare against REWARDS, which was made available by its authors. TIE
also compares against the HexRays commercial decompiler. In these cases the com-
parison is done on Coreutils using TIE’s distance and conservativeness metrics. The

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



Type Inference on Executables A:29

comparison with HexRays shows that TIE is more conservative (90% conservativeness
compared to 45% on structural types), In terms of distance, TIE is 1.5 away from the
original C type, about 200% better than HexRays [Lee et al. 2011]. SECONDWRITE
compares with DIVINE and TIE using the same metrics, but on different benchmarks,
likely because the SECONDWRITE authors did not have access to the other systems.
Thus, the comparison is not fair as SECONDWRITE evaluates on SPEC CPU 2006, TIE
on Coreutils, and DIVINE on a different benchmark.

Performance. The rightmost two columns capture whether the works evaluate the
performance, in particular, the runtime and memory overhead. Accuracy seems to be
considered more important, as there are 18 approaches that evaluate the result accu-
racy, but not the performance. Overall, 17 works measure the runtime overhead and 3
measure the memory overhead.

8. DISCUSSION

In this section, we discuss further insights obtained through our systematization, point
out remaining problems, and share some thoughts on future research.

A common representation. Research on binary code type inference would benefit
from a common intermediate representation that allowed a common type system for
binary and source code (at least C/C++) and even for debugging symbol information.
Such IR would greatly help on evaluating the accuracy of the inferred types. Some
intermediate representations such as BAP or VEX have been designed to represent
binary code. Others like LLVM or SAGE III are intermediate levels between source
and binary levels in a compiler and closer to the above requirement. Of these LLVM is
quite popular, mature, and supports multiple architectures. For these reasons it seems
to be gaining traction as an intermediate representation for binary code as well. How-
ever, the type information LLVM includes is less rich than what exists at the source
level. In addition it is not clear how to accommodate some specificities of binary code
type inference such as storing incomplete type information, handling conflicting types,
extending the type system to accommodate new types, and capturing types that do not
explicitly appear in the source code (e.g., dynamic arrays). We believe that extensions
to popular IRs such as LLVM to handle these specificities, and the design of new IRs
that handle them, would be important contributions to binary code type inference.

Evaluation metrics. Most works perform qualitative evaluation of their type infer-
ence results. A reason for this is the shortage of evaluation metrics. Only 3 works (TIE,
SECONDWRITE, LEGO) propose metrics for performing fine-grained quantification of
the type inference results. The proposed metrics cover only primitive types, multi-level
pointers (e.g., char**), and class hierarchies. We believe that new metrics that are more
fine-grained, cover other types (e.g., records, arrays, unions, function types), and sup-
port nested types should be considered an important contribution of binary code type
inference works. An additional benefit is that well-established metrics may enable the
comparison of different approaches despite the corresponding tools not being released.

Under-inferred types. Our analysis reveals that some types have been targeted by
little work, e.g., type synonyms, abstract data types, and function types. For example,
recovering function types where parameters are pointers to aggregate or recursive
types is an interesting problem related to the recovery of abstract data types. Typing
variadic functions requires identifying how the (variable) number of parameters is
passed to the function, which can use a separate count parameter, a sentinel value
at the end of the list, or a format string. Furthermore, recovery of format-string-like
types is an open area for research.
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Type refinement. Types can be decorated with boolean predicates (and propositions
with quantifiers), which constrain the set of values described by the type. Such refine-
ment types can capture invariants of the underlying values such as a range of possible
integer values (e.g., Booleans, C enumerations), bounds for array indices, or valid ad-
dress ranges for pointers.

Other languages. Nearly all works surveyed focus on programs written in C/C++, but
it would be interesting to test binary code type inference approaches against executa-
bles compiled from other language families such as functional programming languages
(e.g., Haskell, OCaml) or logic programming languages. One challenge is that those
languages provide a wealth of higher types. Another challenge is the different types of
polymorphism at the source level. Some types of polymorphism such as function over-
loading in C++, which produces different functions in the binary code, can already be
handled. Others may be more challenging such as parametric polymorphism, which
allows one definition of each polymorphic function that executes the same code with
arguments of different type.

Other architectures. The vast majority of approaches focus on the x86/x86-64 ar-
chitectures but other architectures are also widespread. For example, while ARM and
PowerPC are commonly used by embedded devices, and have been the subject of re-
cent vulnerability finding approaches [Cui et al. 2013; Zaddach et al. 2014; Costin
et al. 2014], no approaches evaluate yet on those architectures.

Source code techniques. Adapting source code techniques to binary code is a com-
mon trend that can still be pursued. For example, current approaches to recover recur-
sive types from binary code use dynamic shape analysis (§5.5). Existing static shape
analysis operate on source code [Chase et al. 1990; Berdine et al. 2007; Yahav and Sa-
giv 2008]. The application of static shape analysis would enhance the type coverage
of static analysis platforms such as SECONDWRITE and BAP. The challenge will be
scalability as static shape analysis has proven expensive even on source code.

Handling obfuscated executables. The vast majority of approaches assume the ex-
ecutable is not obfuscated. Some obfuscation techniques that focus on obfuscating the
program code can be bypassed through dynamic analysis, but data structure obfus-
cations have also been proposed [Lin et al. 2009; Giuffrida et al. 2012]. Recent work
examines how secure variable splitting and merging obfuscations are [Slowinska et al.
2014], but further work on binary code type inference on obfuscated code is needed.

Expanding dynamic analysis coverage. A shortcoming of dynamic analysis is the
limited coverage. Despite this, we observe rather limited support in existing dynamic
approaches for increasing coverage through combining results from multiple execu-
tions. Two possible reasons may be the high learning curve for multi-path exploration
engines and that many applications do not require typing the full program code, but
only some data of interest (e.g., game units, protocol messages, key malware data struc-
tures). We believe that the combination of static analysis and dynamic analysis will
allow to more easily expand coverage, specially for obfuscated executables.

Static analysis tradeoffs. The authors of SECONDWRITE propose that static analy-
sis approaches trade off soundness for increased performance, as long as the reduced
soundness does not result in significant accuracy degradation. In their experiments
they achieve a 352x improvement over previous techniques with similar accuracy by
using a flow and context insensitive points-to analysis with limited cardinality and
number of iterations. Such tradeoffs are an interesting avenue for future work.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



Type Inference on Executables A:31

9. CONCLUSION

Type inference on executables is a challenging problem in binary code analysis, which
is required, or significantly benefits, many applications. In the last 16 years, a large
amount of research has been carried out to infer the data and code types from exe-
cutables. In this paper, we have systematized binary code type inference by examining
its most important dimensions: the applications that motivate its importance, the pro-
posed approaches, the types that those approaches infer, the implementation of those
approaches, and their evaluation. We have also discussed limitations and pointed to
underdeveloped problems and open challenges.
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