Dominance: Modeling Heap Structures with Sharing

Mark Marron Rupak Majumdar Darko Stefanovic Deepak Kapur
U. of New Mexico UC Los Angeles U. of New Mexico U. of New Mexico
marron@cs.unm.edu rupak@cs.ucla.edu darko@cs.unm.edu kapur@cs.unm.edu

August 27, 2007

Abstract

A number of papers have used predicate languages over s#istodict locations to model the heap
(decorating a heap graph with the predicates, or in conjmegtith an access path abstraction). In this
work we introduce a new predicatigminancewhich is a generalization of aliasing and is used to model
how objects are shared in the heap (e.g. do two lists corftaisame set of objects?) and how sharing
influences the results of destructive updates (e.g. if albtijects in one list are modified does that imply
that all the objects in another list are modified?). The d@mae relation is introduced in the context of
a graph-based heap model but the concept is general and déacolpgorated in other frameworks as a
high-level primitive.

The motivation for introducing a higher-order predicatertodel sharing is based on the success of
existing approaches which use connectivity, reachapdityl sharing predicates to perform shape anal-
ysis using high-level graph-based models. Our approackiges an analysis technique that is efficient
and scalable while retaining a high level of accuracy. Thimicontrast to proposals in the literature
based on using logical languages (usually built on top of-&rder predicate logic) which either are
highly expressive and very general (resulting in a comparatly expensive analysis) or utilize only
fragments of the full logic (which reduces the computatlawest but results in a much less powerful
analysis).

The approach presented in this paper has been implemendediaron a variation of the Jolden
benchmarks. The information extracted using the analyassbieen used to parallelize these programs
with a near optimal speedup for 7 of the 9 benchmarks. Thamastare small enough to make the
analysis practical (a few seconds for each program).

1 Introduction

Precise reasoning about the structure of the program heaqdgal to understanding the behavior of a
given program (particularly for programs written in impira object oriented languages). Traditional
points-toanalyses, which calculate sharing properties based ose@ggregations of the heap (for ex-
ample by coalescing all cells from the same allocation siig ignoring program flow [23]), are known
to be too imprecise for many verification or optimization &ggiions. More precisshape analysisech-
niques [21, 24, 1, 10, 16, 9] have been proposed when morezgednformation is desired. These analyses
recover precise information by distinguishing heap celsdd on extranstrumentation predicatethat
encode reachability or separation information. By a silgtaihoice of instrumentation predicates, these

analyses can precisely model recursive data structures8[21l6, 10] and composite structures [1, 16, 9]
(such as a list of lists or a tree containing pointers to uséindd multi-component objects).

Most work on shape analysis has focused on existentialrgharoperties (and by negation, separation
properties) ofindividual pointers. That is, the fundamental question asked of theaadt$heap representa-
tions is whether a particular pointer may/must point to gedisatisfying some combination of instrumen-
tation predicates, or whether two pointers may possiblpfoithe same object. While this is often enough
to prove many sophisticated properties of data structinashiave limited amounts of sharing or where the
sharing pattern is simple (e.g. variable aliasing), theoaing is overly restrictive (and imprecise) when it
comes to more complex subset relationships among sets r&fdsbhjects. Such reasoning arises in analyz-
ing programs that use multiple views of the same collectibabgects or that rely on the knowledge that
updating all the objects in one collection implies (basedsloaring of the contents) that all the objects in
another collection are also updated.

Take for example the representation of a function in a caenpithe function body may contain a list of
all instructions in the function and a list of all the basiodks in the function. Each basic block would have
a list of all the instructions in the basic block. Thus, thare two views of the instructions in the function.
Further, during processing (perhaps in preparation famimg) we may wish to replace all occurrences of a
variable, say with a fresh variable(. If the programmer has done this vidaeachloop over the list of
instructions in the function, the analysis should detemiratx no longer appears in any of the instructions
and further that this information is projected from the magpover the list of instructions in the function
into the lists of instructions in the basic blocks. That li& &inalysis should be able to determine that none
of the basic blocks contain an instruction that refers to/dreablex.

The reasoning required here involves properties ge¢sof pointers or objects rather than individual
pointers: we would like to know whether tlsetof instruction objects pointed to by a basic block are all
contained in the set of instruction objects in the functemg therefore, by virtue of updating all instructions
in the function, all instructions in a basic block are alsdated.

We introducedominance relationghat enable existing shape analysis approaches to suppbrsabset
reasoning via a number of high-level predicates. Fundaatignthe dominance property is a generalization
of aliasing. While aliasing tracks equality between thgéts of variables or single pointers, dominance
tracks the set relations (subset, equality) between tigetsiof variables and sets of pointers. Thus, the
dominance relation subsumes aliasing and allows the asadysack situations where two sets of references
(pointers/variables) must refer to the same set of objects.

Such sharing relations between sets of objects can be seduty introducing quantification with a
“forall-exists” quantifier structure (i.e. for all objecpminted to by a reference in sf does there exist a
reference in seB pointing to the same object?), or by adding expliedchabilityor transitive closure pred-
icatest However, the introduction of general quantification or $itime closure makes abstract reasoning
complicated, harder to scale, and dependent on the set nétiesiimplemented in the underlying theorem
prover. Instead, as demonstrated by the experimentalai@iun this paper, the dominance relations can be
efficiently encoded and provide extensive information alanous sharing properties. We believe that the
logical languages used in [21, 1, 10, 9] can be extended witlles dominance properties, allowing them
to simulate this limited (but useful) sharing informatiavithout significantly increasing the computational
complexity of the analysis.

IThe use of reachability information to discharge the likefiexample was pointed out by Viktor Kuncak.

Initialize a List Filter elems that point ta Nullify the val fields

list lo =newlist<tl>() list Is = newlist<tl>() iterator i = |s.begin()
t2 a = new t2() iterator i = lo0.begin()
while(i.isValid()) while(i.isValid())
while(*) tlt =i.get().val i.get().val = null
tl v = newtl() if(t == a) i . advance()
v.val = ?2 a: null | s. add_back(t)
| 0. push_back(v) i . advance()

Figure 1: Example Code

To make our proposal concrete and to enable empirical el@tuaf the effectiveness of the dominance
relation we extend an existing heap analysis frameworlkygsed in [16, 17], with dominance information.
This extended analysis has been implemented and sucdgssiulon a collection of well known paral-
lelization benchmarks. The results on the benchmarks dremegly encouraging. Using the information
provided by the heap analysis to drive the parallelizatibih® programs we achieve near optimal speedups
for 7 out of the 9 benchmark programs. This analysis, to ttst beour knowledge, is the only analysis
method (to date) that is capable of providing the heap in&tion needed to parallelize several of these
benchmarks. Further, the analysis times are less than #deg®er program analyzed (most less than 2
seconds).

2 Example Programs

Consider the program segments shown in Figure 1, consisfitigee subprograms manipulating lists: list
construction, filtering elements from the list created ia fiinst program into a sublist, and the update of the
contents of the sublist from the second subprogram. The pbeanses objects of two types1l andt 2.
Thet 1 type has a single fieldal that points to objects of typie2.

The first code segment allocates an obof typet 2 and assigns the variabéeto refer too. Then,
it fills a list with objects of type 1 each of which contains either a pointer to the obj@otr contains the
nul | value in theval field. The second code segment scans the tistor elements that have references
to the objecto and constructs a new lists of all these elements. The final code segment updates all the
elements in the ligt s to havenul | pointers in thesal field.

At the end of this example code, we want the analysis to détertine following properties: that all
the objects in the sublists have had theival field settonul | (there are no longer any references to the
objecto in the sublist) and that there are no objects in the origisal b that have a reference o

Using reachability, connectivity, and shape informatiamieus shape analysis techniques [1, 16, 9] can
determine that after the execution of the first code segnheritdt containet o contains pointers to objects
type oft 1 and each of the pointers Iro points to a unique object. Furthermore, it can be determihed
each of thd 1 objects may have a pointer to the object

These predicates are not however sufficient to verify alpttoperties of interest that arise in the second
code segment, that the objects in thellistare a subset of the objects in the originalllist and furthermore,

that every object with aon-nullval field inl o must also be in the lidts.

The second of these properties is critical to the abilityetedmine the effect of the third code segment
where all of the elements in the sublist have theal field set tonul | . If the analysis was unable to
determine that all the objects liro with anon-nullval field must be in the sublists then it will be unable
to determine thanullifying theval field of every element ith s implies that theval field of every object
in the listl o must also beull.

To accomplish this our analysis will track (in addition taegicates dealing with the connectivity and
shape of data structuredpminance relationsn the heap. That is, we track how various sets of references
share the objects that they point to. Given two sets of rate® (variables/pointer§}; andR, we want to
track the set relations(, O, =) between the sets of objects referred to by the referendésand inRy.

Sharing and Dominance: The execution of the second code segment demonstrates badothinance
relation enables the proposed approach to model the shafizmiipnships between sets of pointers. After
the loop exits, the contents of the liss are a subset of the contents of the list (and conversely every
element in the list o that has anon-nullval field must be ifl s).

Figure 4(f) shows how the heap model presented in this papetle to use the concept of dominance
to precisely model this information. The reader would reticat the edge from the lists (which has the
label “7") refers to the same node as the edge labeled “3” filwarlist] 0. If this was the only information
available about the connectivity properties, the analgars only infer that there are some pointers in the
list | s that point to the same objects as some of the pointers in ¢shedi. But the analysis would be
unable to infer the desired subset relations. With the ¢htction of the dominance properties as discussed
in Section 3, the proposed method is able to determine tieapdinters abstracted by the edge ‘frlst
point to the same set of objects as the pointers abstractdtel®dge “3” (thdDomEQrelation contains the
pair (3,7) which indicates this).

Furthermore, since edge “7” is the only edge out of thellstthis means that all the pointers stored
in the listmustbe abstracted by edge “7”. The objects stored in thd ksare thus a subset of the objects
stored in the list o.

The listl o0 has two outgoing edges “3” and “8". The target set of the mogabstracted by edge “3” is
equal to the set of objects stored in the list, edge “8” refers to a node that only represents objects with
anull val field (there are no outgoing edges). Thus, the proposed agiprean infer that if an object is
stored in the list o and it has anon-nullval field, then it is also stored in the liks.

Modification and Dominance: The second example code segment demonstrated hodotinénance
predicates enable the heap model to accurately represertthects are shared. We also want to be able to
model how the updates of a set of objects is reflected in otb@p Btructures that share these objects. The
third example code segment illustrates this.

In the third code segment, the contents of the subksare modified by setting theal field of every
object in it tonul | . Because of the sharing of these objects with the origiisal b, these updates are
reflected in it as well.

During the analysis of the third code segment the abstraté shown in Figure 5(d) is identified as a
safe approximation of all possible executions of the loogybd he analysis knows that there is the element
that the iteratoi currently refers to (this object is represented by the nadeted to by the edge with the

label “14"), there is some set of objects that still need tplmessed (these objects are represented by the
node pointed to by edge “9”) and some set of objects that Hewady been processed (these are represented
by the node pointed to by edge “10”). The contents of the pablist are partitioned into these nodes plus
an extra node (pointed to by edge “8”) which represents ¢bjbat are il o but notinl s.

After the analysis has determined that the abstract heapgumd-5(d) represents all the possible concrete
states that may occur during the execution of the loop bodyriibines this abstract state information with
the information implied by the exit test to determine thegille program states at the loop exit. In this case
the analysis assumes that iheVal i d exit test returngalse This means that we are done processing the
contents of the list s (the iterator is at the end of the list) which implies thatréhis no current element
to process and there are no unprocessed elements. This dlevanalysis to delete edges “9” and “14”
(which represent the remaining elements and the curremegierespectively).

Without the additional knowledge that the set of objectenrefd to by pointers abstracted by edge “9”
must equal the set of objects referred to by pointers alietiday edge “11” the analysis must conservatively
assume that edge “11” and the node it refers to may remaireiléap graph. The result is that after the
loop the analysis has (very) conservatively concludeddbge “11” represents pointerslim which point
to objects that havaon-nullval fields.

However, the dominance predicate enables the analysigdmuee that if edge “9” does not exist (has
an empty concretization) then edge “11" must also have artyeagmcretization and can be removed from
the model. This of course means that the node that edge “1drsr® is removed as well. A similar series of
deductions can be performed for edges “14” and “15”. Thusltminance information enables the analysis
to determine that there are no pointers in thellsthat refer to objects withon-nullval fields. The result
is shown in Figure 5(e) where the analysis has, as desiréetntieed that there are no longer any objects
in | s that may refer to the same object as the variable

3 Dominance Relation

3.1 Concrete Heap and Concrete Dominance

We illustrate the notion of dominance on a core sequentipkiative language with memory allocation and
destructive updates. We assume our language is statigaglt and treat generic collections (lists and sets)
and iterators over them as basic datatypes present in thadga. The semantics of the language is defined
in the usual way, using an environment mapping variablesvatues, and a store, mapping addresses into
values. We refer to the environment and the store togethiileasoncrete heap of the program.

We model the concrete heap as a labeled, directed multhgy=) where each vertex € V is an
object in the store or a variable in the environment, and &dudied directed edgec E represents a pointer
between objects or a reference from a variable to an objeath [Edge is given a label that is either an
identifier from the program or an intege€ N (the integers label the pointers stored in the collectioRey
an edgga,b) € E labeled withp, we use the notatioa = b to indicate that the object points tob via the
field name (or identifierp.

A region of memory[is a subset of the objects in memory, with all the pointers tomnect these
objects and all the cross-region pointers that start or érath @abject in this region. Formally, 1& CV
be a subset of objects, and Rt={p|Ja,b e C.abt b} andP. = {p|JacC,x ¢ C,axvxb a} be

respectively the set of internal and cross-region poirfier€. Then a region is the tuplec, R, F;). For
a regiond = (C,R,P;) and objectsa,b € C, we saya andb are connectedn [if they are in the same
weakly-connected component of the grd@hPR). Objectsa andb aredisjointin O if they are in different
weakly-connected components of the graph.

Concrete Dominance. Given an edgee € E in the concrete heap we define the functiefiTargetto
return the object thag points to. Given a set of edg&s C E in the concrete heap, we define the concrete
dominance setdomSet(¢ of E’ asdomSetCE’) = {o € V | Je € E',refTargete) = o}. Finally, given a
regiond = (C,R,P.) and some set of edgds C E in the concrete heap we defili® dominates] iff
domSetCE’) =C.

Notice that using thelomSetCdefinition we can define aliasing B =gjias € iff domSetC{e;}) =
domSetC{e,}).

3.2 Abstract Heap and Abstract Dominance

Let (V,E) be a concrete heap. Aabstract heap4, 13, 21] for(V, E) is a labeled, directed multi-graghl, E)
such that there is an abstraction functmnV — V and for allv 2 V' € E, there is an edge (v) = a(V)in
E. Conversely, we assume there aomcretization functions, : V — 2¥ and Yo: E — 2F such that a, y)
form a Galois connection [5], angh(G,V) = {(u,v) € E | a(u) = G,a(v) = V}. We extendy, andy, to sets
of nodes and edges in the natural way. We ¢4JE) a concretization ofV,E). An abstract heafV,E)
can have many concretizations. We say an abstract f\tdp) representshe concrete heafV,E) if the
abstraction functiom maps(V,E) to (V,E).

Given an abstract hedp ,E), we define two dominance relations onétige dominangavhich relates
two abstract edges, ambde dominancgewhich relates a set of abstract edges to an abstract heap nod

Edge Dominance Given two edge, € € E, we saye is edge dominance equivaletnt €, written e =gom
€, iff for all concrete heapgV,E) that are concretizations @¥,E), we have domSetCyy(e)) =
domSetCy,(€)), wherey, is the edge concretization function.

Node Dominance Given a set of edgels’ C E and an abstract nodec V, we defineE’ to node dominate
n, written E’ O n, iff for all concretizationgV, E) of (V,E), we havedomSetQCy,(E’)) = w(n).

Proposition 1 summarizes a number of useful facts about addeode dominance.

Proposition 1 Let nn’ be abstract heap nodes,etabstract edges, and E, Bets of abstract edges.
If {e} O nandyy(e) = 0theny,(n) =0 andy,(€) = 0 for all € pointing to n.

If e=4om€ andyy(e) = 0 theny,(€) = 0.

If {e} Onand{€} Onthen es4om€.

If {e} O nand|y,(e)| = 1then|y(n)| = 1.

a & 0w poE

If E' C E and E Onthen EON.

We have restricted the definition of the dominaecgliivalenceelation on edges to equality on the sets
of objects that must be referred to in the concrete domainreMenerally, we could define dominance
subset relations, where the set of objects pointed to bydheretization of one edge is a subset of the set
of objects pointed to by the concretization of the second. é@periments with the edge dominance relation
indicate that modeling the full range of relations over sftsdges provides only a small boost in accuracy
at a substantial computational cost. Thus, we restrictdige dominance relation to strict equality on single
edges.

4 Extended Abstract Heap Domain

The heap model we work with is a variation on the classic heaplgwhere each node represents a region of
the heap or a variable and each edge represents a set orpaingevariable target. The nodes and edges are
decorated with a number of instrumentation predicates wore the accuracy of the analysis (see [16, 17]
for more details).

4.1 Instrumentation Properties

The heap model uses a simple numeric abstraction, whichwasalues, exactly 1 and the ran{f o]
(written #), to represent the sizes of various components.

Each edge in the abstract graph represents a set of poilitetiick the labels of pointers that the edge
represents the model uses the field identifiers declaredeipribgram or a special offset that is used for
identifying the pointers in a collection. These speciakef§ are? (which represents an arbitrary set of
pointers in the collection)@(which identifies the single pointer that a given iteratdersg to), B@(which
represents the set of pointers that come before the itaérathe collection iteration order), ansi@(which
represents the set of pointers that come after the iterator)

To track the connectivity anshapeof the region a given node abstracts, the analysis usédsainact
Layoutproperty. The possible layouts a&ngleton List, Treg MultiPath, or Cycle Of particular interest
are theSingletonlayout, which indicates that there are no pointers betwegroathe objects in the region,
and theList layout, which indicates that each object has at most ondgrdio another object in the region.
The other shapes correspond to the standard definitiongdesTDags, and Cycles in the literature.

The heap model uses two properties to track the potentieaiMioeareferences can reach the same memory
location in the region that a particular node represents.

The first property is for references that are representedfteyeht edges in the heap model. Given two
edgese;, & that are incoming edges to the nodethe predicate that defin@sConnectedn the abstract
domain is:e;, & areinConnectedvith respect tan if it is possible thafir, € yp(e1) Adra € yp(e2) Ada,b e
% (n) s.t. (r1 refers toa) A (r, refers tob)A (a, b connected).

The second property is for the case where the referencesmesented by the same edge. To model this
theinterfereproperty is introduced. An edgerepresents interfering pointers if there may exist refegsn
ri,r2 € yp(e) such that the objects that, r, refer to are connected. A two-element lattiop,< ip, np for
edges with all non-interfering references apdor edges with potentially interfering references, is used
represent the interference property.

® DomEQ={(a,1)} ® DomEQ={(a,1)} ® DomEQ={(a,1)}
{iist}, S, 1, () ist}, S, 1, flist}, S, 1, ()

{0, 2,1, np, () {0,7,1,np, O} 2 2 1,np, () {0, 7, # rp, ()}
[{t1). 5,1, qOp] [{t1} S, 1, ({2
{1, val, 1, np, (a)} {1, val, 1, np, (a)} {1, val, #, ip, (a)}
{1 {1} {1
(a) After First Analysis Iteration (b) After Second Analysis Iteration (c) Fixpoint and Done

Figure 2: Initializing List

4.2 The Heap Graph

Each node in the graph either represents a region of the hempasiable. The variable nodes are simply
labeled with the variable that they represent. The node®gsepting the regions each contain a record that
tracks the types of the concrete objects that a node repisegme3, the number of objects (either 1 or #)
that may be in the region represented by this nadei(), and the abstract layout of a nodayouf. Each
node also tracks the connectivity relation between eaahgbancoming edges. A binary relatioconnR

is used to track thenConnectedelation. Although the connectivity relation is a propeofithe nodes, for
readability in the figures we associate the information whtéhedges. Finally, for each node we have a field
nodeDom which is a list of the sets of edges that dominate the nodes,Téach node is represented as a
record of the fornf t ypes | ayout count nodeDom .

As in the case of the nodes, each edge contains a recordablas slomain information about the edge.
The offsetcomponent indicates the offsets (labels) of the referetitatsare abstracted by the edge. The
number of references that this edge may represent is trackiedhe maxCutproperty. Thdanterfere prop-
erty tracks the possibility that the edge represents neberethat interfere. Finally, we have a figlonnto
which is a list of all the other edges/variables that the edgg be connected to according to t@nnRre-
lation. Since the variable edges always represent sinfecreces and the offset label is implicitly the name
of the variable the record simply contains tennRinformation or is omitted entirely if theonnRrelation
is empty. To simplify the discussion of the examples eacleedigp has a unique integer label. The pointer
edges in the figures are represented as recdrdbel of fset naxCut interfere connto}.

In order to track the edge dominance equality we use a glajpié@ence relation on the edges/variables,
which tracks the dominance equality relations (this is ledbd omEQin the figures).

The local data flow analysis is performed usindgi@are Power Domair{18, 22] over these graphs.
Interprocedural analysis is performed in a context-semsinanner and the procedure analysis results are
memoized. At each call site the set of graphs is joined infaglesgraph and the call is analyzed using this
graph as the context; see [15] for more details.

4.3 Example 1

To clarify how these properties are combined and how thesesgmt the heap properties that we are inter-
ested in we look at the heap model during the analysis of teediample program, Figure 1. To simplify
the discussion we assume that the analysis knows that theétmy must be executed at least once and that
on the first iteration thg. val = a branch is taken. These assumptions allow us to represergghk of
analyzing each loop as a single graph instead of requiridgiadal graphs for special cases (e.g. the loop
body is never executed).

In Figure 2(a) we show the graph that results from followihgt. val = a path on the first pass
of the analysis through the loop body. The variabtepoints to a node which abstracts thest object
and the variablex points to the node which abstracts an object of tiy@ehat the elements in the list will
reference. The outgoing edge from thiest node (which is labeled by the number “0”) is at the special
offset?, represents at most one pointeraxCutis 1) and since the edge represents at most one pointer the
interfere property must bep (since the definition of interfence requires 2 pointers)isduge points to a
region containing a single object of typd (countis 1) and there are no inter-region pointers (the layout
is Singleton. Finally, we note that since there is only one incoming e@gige “0”) and there are no inter-
region connections, all of the live objects in the region tingspointed to by a pointer represented by edge
“0”. Thus we have edge “0” as@ominatorfor the node.

The edge representing the pointer created by the assignmemtl = a is represented by the edge
with the label “1”. Since the pointer represented by thiseetigconnected to the variabéewe add the
variable to the list of references that the pointers represkeby this edge may be connected to. When we
assign theval field to point to the same object aswe know that the pointer represented by this edge and
the variablea must be dominance equal (thus the entry in the DomEQ eguisaleslation) and sincae
dominates the target node we know the newly created edgelatsimates the node.

Figure 2(b) shows one of the heap models that occur at the fethe cecond iteration of the analysis
(in this case we have assumed that¥heral = nul | branch was taken). In this figure a new node to
represent the newly allocated object has been added todpé& gnodel and the edge “2” has been added to
represent the pointer in the collection that refers to tivaelyereated object. Again we know that since there
is only one incoming edge (“2”) to this node this edge must ihare the node.

After several iterations thought the loop body (and the igppbn of the normalization operator, Sec-
tion 5.5) the analysis will identify the graph in Figure 2é&s)representing the result of all possible executions
of the loop body. There is the list varialdl® which points to a node of typlei st . There is a single edge
(with the label “0”) from the node representing all of thengers stored in the list. This edge has the special
offset? (it represents all the pointers in the collection), repnésan unknown number of pointerm@xCut
is #), and all the pointers abstracted by this edge must tefanique objects in the region that the target
node abstractsriterfereis np).

The edge “0” points to a node which abstracts objects of typethere may be many objects in this
region gountis #), and there are no inter-region pointers (the layo&ingjleton. Finally we know that the
region is dominated by the pointers represented by the e@igeThe pointers stored at theal offset are
represented by the edge “1”. Since the pointers represédmtéiadis edge may point to connected portions
of the target region (in fact we know they must alias) the ddggrfereproperty isip. Since the pointers in
the “1” edge may be connected to the target of the variabtée variablea is included in the connectivity
relation for the edge (and by symmetry the edge “1” is in theneativity relation for the variabla).

Finally, the region containing the2 objects is dominated by the edge “1” as well as by the variable
Again by using our facts about the dominance relation we ktiatedge “1” is dominance equal #oand
thus this is included in thBomEQrelation.

5 Model Operations

Now that we have defined the heap domain that we are working avitt seen how the properties in the
abstract domain represent various properties of the ctntreap we define the domain and simulation
operations for performing the heap analysis. The domairatipas aresafeapproximations of the concrete
program operations (thus the analysis safely approxintagesemantics of the program). For brevity we
omit proofs of these safety properties (which rely on bas®eewise reasoning about the graph structure
and the instrumentation properties).

5.1 Tests

When performing tests we generate one version of the ab&iap for each possible outcome. For a nullity
test of a variable we create one model in which the variahlstbe null and one model in which the variable

is non-null In the case where the variable is assumed tollkewe are asserting that the concretization of
the edge that represents the variable target is empty. s, variable dominates a node we infer that the
node does not represent any live objects and all the othenimg/outgoing edges must also have empty
concretizations. Similarly any edge thatigym to the variable must also have an empty concretization (and
can be removed from the graph). Finally, we perform the faueration, Section 5.5, on any nodes that
may have been affected. Algorithm 1 gives the code for thesaipon.

Algorithm 1: Assume Var Null
input : graphg, varv
Es — all edges that represent the targets;of
Enun < 0;
for edge ec Esdo
Enull — Enun U {€|€ =dgome};
n < the target node of;
if e nthen Eyy < Equ U {all incoming edges ta};
Th < {n|3e € Equi,eis an in edge to};
for edge e= E, do
g.removeEdged);

for node ne T, do
g.focusNoder);

Similarly when the analysis assumes thatite&al i d test isfalseit assumes that the edge representing
the current pointer the iterator refers to (edge with la@ehnd the edge which represents all pointers that
are stored after the current iterator location (with lab@ have empty concretizations. Then, as with the
nullity test, we use the dominance information to identifiier edges and nodes that must also have empty
concretizations and remove all of these from the heap model.

10

In the case of an equality comparison between hwo-null variablesx == y we can strengthen the
information we have in the models that represent the truefalsd branches. For both tieie andfalse
cases we begin by ensuring tixahndy have unique targets by merging (Section 5.3) all the passinget
nodes into a single node. In the case where we assume thigtiests true, ifx andy refer to different
nodes in the graph then we can assume this flow path is infea#ilmot, we add the fact that =qom y to
the model. In the case where we assume this test must betialseve can check if the relation=g4om y
holds and if it does we can rule this path out as being inféasib

5.2 Assign, Load, Store

Assign. The variable assignment operation & y) does not need to perform any complex manipulations
to the heap since these operations were done during presitalgsis steps as needed. Thus, we simply
update the dominance information for the variakléo be the same as the dominance information for the
variabley.

Load. The load operationx(= y. f)is more interesting as we may need to deal with ambiguogstsr

of y. f (there may be multiple targets gf and each of these targets may have multiple outgoing edges
with the labelf) and we may need to refine the node (transform a summary neale@imore explicit
representation, Section 5.4) referred toyoyf before we actually update the target of the variabld-or
simplicity our current implementation (Algorithm 2) resek the problems of ambiguous variable targets
by merging them into a single node/edge.

Algorithm 2: Load
input : graphg, varx, vary, field f
if y has multiple targetthen merge all the targets into a single node;
if multiple edges at.§ then merge all edges into a single edge;
g.refineLoad(the unique target uff);
if y.f is the null valughen
nullify x;

return ;
e« the unique edge atf;

assignx to refer to the target of;
if e.maxCut = lthen
setx dominance equal te;
if e dominates the target nodleen setx dominates target node;

Store. The store operatiorx(f = y) is simpler than the load operation as it does not need tovddal
the resolution of ambiguous field targets or the refinememargiet nodes. As with the load operation we
begin by ensuring that there is a unique target nodexhatfers to. The analysis then determines if the
location atx. f can be strongly updated. If the nodg (eferred to byx is of countl then it is possible to
do so. In this case there is at most one object that is livedriaiget region so either points to this object
or X is null, since we assume the latter case cannot happen (it wouldillé @ointer dereference) we know
x refers to the single object that the node represents. Theisaw erase any edges with théield. Once

11

we have completed the testing and removal of any edges sibthd fieldf we create a new edge for each
possible target of . Just as in the case of the loads these new edges are eacladoenggual tg and ify
dominates a node then so does the newly created edge.

5.3 Merge/Split Nodes and Edges

In several domain operations we need to transform a porfitlrecheap graph into a single node (to remove
ambiguity or to ensure a finite domain) and in others we watratgsform single nodes into a more explicit
sub-graph representation (so that we can accurately dierthia effects of various program statements). For
this paper we focus on the effects the merge and split opesatiave on the dominance properties and only
informally mention how the other properties are handledessied in the figures. More precise definitions
of the merge/split operations can be found in [16].

Merge Nodes. From the definition of dominance equality it is clear that wheo nodes 1, np) are
replaced by a summary noda) any edges that were dominance equal before the summanzat domi-
nance equal after the summarization. For the node domirrafatéon we can infer that if some set of edges
E; O ny and some other set of edgés [np thenE; UE, O ng.

Merge Edges. The summarization of two edges (e,) into a single edgesf) is handled by conservatively
assuming that all dominance equality relations which wwatithere; or e, no longer hold and replacing
each occurrence & or & in the node dominance set wigq

Split Nodes. The node split operation does not affect the edge dominagealigy relation so we only
need to update the information on node dominance. To do thisestrict the relations that held for the
original node) to the set of edges that are incident to the newly created pd That is, if some set of
edges{ey,...,&} O ny (note that by definitiom; represents a subset of the objects represented)ipen
{ey,...,&} On;, thus whatever subset §&1,...,e&} refers ton; must dominate the;.

Split Edges. When splitting an edgeef) into multiple new edgese(,...,e) we conservatively assume
that all dominance equality relations which involegno longer hold and we replace each occurrence; of
in the node dominance sets wih ..., &.

5.4 Refinement

The refinement operation is used to transform single summ@dgs into more explicit subgraph representa-
tions. The operation is defined for nodes wliikt, Treg or Singletonlayouts and is further restricted based
on the number of incoming edges to the node and the conrtgatlations of these edges.

Our refinement operation ddingletonnodes is restricted to handle the following cases and oikerw
conservatively leave the summary region as it is:

¢ If the incoming edges can be partitioned into 2 or more edemce classes based on th€onnected
relation.

12

e If there is a single edge; that is connectedio every other edge and all other edges are pairwise
disjoint

While these two cases are limited our experimentation withencomplex partitioning schemes indicates
that these cases cover a majority of the situations encatchéand the improvements in accuracy from using
more complex approaches are minimal.

In the first case where we have several disjoint partitionsdefine therefineDisjointEdgesnethod,
which creates a new node for each partition. In the seconel wasdefine theefineSingleConmethod,
which creates a new node for each of the edges exgeauid then split®.; so that it points to each of the
newly created nodes (and thus the possibility that it is ected to any one of the other edges is preserved).

There are two uses for the refinement operation. The first enwlormalizing the heap graph, Algo-
rithm 4; the second is when simulating the load operatiogoAthm 2. Algorithm 3 shows the code for the
refinement operation. In this algorithm we first try to splitthe disjoint partitions. Then we attempt to ap-
ply the secondingletonsplitting rule to the partition. Finally, if possible, wepap the List/Treerefinement
operations as described in [16]. Since we do not need to riegiseor tree nodes in our examples we omit a
detailed description of this operator but for completeneissincluded in the algorithm.

Algorithm 3: Refine Load
input : graphg, noden
E, «— partition of the incoming edges tg
if Ep has 2 or more partitionshen
g.refineDisjointEdgesy, Ep);
for each newly created nodé do

g.focusNodef');
allcp +— 3¢ s.t. all edgesonnto €
owdisjoint« all edges exce® are pairwisalisjoint;
if allcp A owdisjointthen
g.refineSingleConm €);
for each newly created nodé do
g.focusNodef');
if n.layoutList or Treeand single in edge of sizetlien
g.refineListTree();
for each newly created nodé do
g.focusNodef');

Figure 3 shows the result of initializing the iteraiorand refining the heap graph from Figure 2. We
initialized the iteratoli to refer to the first element of the lisb, splitting the edge with the labél into
an edge representing the single element referred to byedhear (labeledd and an edge representing all
the other pointers in the collection (which must come after¢urrent element in iteration orda@. We
have also split the node which representsttlieobjects into a node representing the object targeted by the
@edge and a node representing the objects targeted Adekege.

Since we know that the edge dominated the node that was split we know that the editfeshe @and
the A@abels must dominate the resulting nodes (e.g. edge “3” dates the node it refers to and edge “4”
dominates the node it refers to). Further we know that the edth the@label represents a single pointer
(since it represents the unique element in the collectianttte iterator refers to) and, since it dominates the

13

@

DomEQ={}

flist}, S, 1, 0 flisth, S, 1, Ol 4, A@, # np,
3@ 1,np, {f
[11S.1.q3)] [tIL S, % @4

{5, val, 1, np, {a,6}}

16, val, #, ip, {a,5}}

5,6}

Figure 3: Iterator Begin and Refined Contents

node it refers to, that node must represent at most one object

When splitting the node which represents tHe objects we split the outgoing edge as well: the edge
with the label “1” from Figure 2 has been split into the edgdthwhe labels “5” and “6”. Since the
original edge (the edge with the label “1”) abstracted piadi interfering pointers we must assume that
the resulting edges could (and in this case do) refer to theesabject. Again since the original edge
dominated the node it ended at, the edges resulting fromplitensust also dominate the node (thus we
replaced thd1} in the node dominance set with the en{fy, 6}).

5.5 Normal Form
The normal form for the heap graphs enables efficient eguadinparison and provides a simple method

for defining the heap join operation.

FocusNode. ThefocusNodamethod is used to infer and make explicit information thaitriplicitly rep-
resented by various combinations of the domain properti@s/en a noden, a set of incoming edges
E'={é€,...,e,} and a set of outgoing edg&® = {€5,...,€3} the focus operator updates the nodes and
edges using the following heuristics:

e If n.layout= Singletonthenn.nodeDom— n.nodeDonu {E'}.

If {&} OnA{e} Onthene =gome,.
If 3¢, €. maxCut= 1A {€} O nthenn.count— 1.

If n.count= 1 then for eactd, c E' if €_.interfere= np &.maxCut— 1.

If n.count= 1 then for eache} € E° if e.offset¢ {?, B@ A@ then el.maxCut— 1 and
€2.interfere— np.

e If El = 0 thennis irrelevant and should be removed.

14

Ambiguous Edges. When comparing two graplts, g» for equality we need to compute a graph isomor-
phism between the two graph models. Since the comparisoratigre must be fast we must minimize
backtracking. Starting from the variables we want to be &blgick an edge ilg; and match it unambigu-
ously (as much as possible) to an edggdnThe easiest way to do this is to ensure that each out edge for
a given node has a unique offset. However, there are manyg edssre this can lead to overly aggressive
merging and a loss of important information (in our subseinegle, Figure 4(f), the tw8 edges froni 0).

To avoid this we relax the uniqueness requirement to inckaiee information about the target of the
edge as well as the edge offset. That is, two edges are amisiglithey have the same offset and their
target nodes arequivalentunder some relation. We heuristically choose to use eguailithe multi-sets of
incoming edge offsets. Thus, in the subset example one afdties has the incoming offsef8} and the
other node has the incoming offs§¢®, ?} and thus they are not joined when the heap graph is normalized

Recursive Sections. The idea behind the recursive definition is to identify sewi of the heap that are
regular and can be merged with a minimal loss of informatidnlevpreserving the important transition
points in the heap. First we define what it means for two reggtorbe recursive. Given a type system it is
trivial to identify the potentially recursive types. Simpherging all recursive types is too aggressive as it
can lead to the loss of information on the transitions bebhweeursive and non-recursive segments of the
heap. To prevent this loss of information we introduce safdes which represent the important transition
points in the heap. A nodeis safe if either of the following holds:

e There is a variable pointing tm

e There is an incoming edge= (n',n) andVt € n.types, At’ € n'.types, s.t.t andt’ are recursively
related.

Now we can define what it means for two nodagsn, to be recursive:
e There is an edge connecting, ny, 3e = (N, Ny).
e Neither ofn; or n, is safe.

e Jn' s.t. there is a path in the graph frama to n’ that does not contain any safe nodes antypes
n .types# 0.

Based on this definition we see that if a recursive sectiomdkdm by an interesting transition (either
a variable or a transition from a non-recursive componepbiating into it) then the recursive cycle is left
expanded. Thus, the analysis can accurately track théomdabetween variables and the transition points
in the heap.

Normalize. The normalization routine is the repeated application wésd steps until there are no longer
any changes in the heap graph model, Algorithm 4. In the éifgorthe nodes are processed in topological
order to speed convergence.

15

Algorithm 4: Normalize Graph
input : graphg
Remove all unreachable nodes frgm
while g is changinglo
while 3 node n s.t. n the focusNode operation can be applzd
g.focusNoded);
while 3 node n s.t. n has disjoint in edge partitioths
g.refineDisjointEdgesy, partition of the in edges to);
while 3 nodes n, hs.t. n, ri are recursivedo
g.mergeNodes|, n');
while 3 node n s.t. n has ambiguous edge= do
g.mergeEdges(€);

Heap Graph Equality. To compare two graphs for equality we fist compute a graphasphsm between
the two heap graphs (this is efficient since the normal forfacéfely eliminates any ambiguity in the
matching, in our experimental results no equality comparisncountered required backtracking and had
at most one isomorphism). For each possible isomorphismongeghirwise comparison of each node and
edge property for each pair of nodes/edges that are relatit the isomorphism.

Heap Join. To join two heaps we first forget all the dominance informaiio both heap models. Then the
algorithm computes the union of the two graphs and mergegatiable nodes. Finally, the resulting graph
is normalized. This results in only the dominance inforrtihat is implied by the focus operation being
maintained. While this loss of dominance information caogdavoided by a more complex join operation
our experimental results indicate that in conjunction wittHoare Power Domairthe actual information
loss from the use of this simple join is minimal.

6 Examples

Now that we have defined the data flow and program simulatienadipons we look at how they work with
the dominance properties to enable the analysis to acburatalel the effects of the remaining two code
segments from Figure 1.

6.1 Example 2

Figure 4 shows part of the analysis of the second example ssglment from Figure 1. In Figure 4(a) the
analysis performed the load operations required by thersttti . get () . val and assigned the value to
the variablet . Since theval edge (edge “5”) in this path represents at most one poimexCut= 1) we
know that the dominance set of the edge “5” and the variabteust be the same (thus tB®mEQrelation
has been updated with this fact).

Figure 4(b) shows the abstract heap after assumintatbebranch was taken, indexing the iterator and
loading the new value intb. The model shows that the object from the first iteration feenbadded into
the sublist [s) by adding the edge “7” to represent the pointer from the(list) to the node representing

16

the object that has been added. Since we know this pointet meigs to the same object as the pointer
abstracted by the edge “3” we know their dominance sets ara dtpus the dominance set of “ZEyom “3”
and additionally that edge “7” dominates the node. Indetiegterator results in th@edge being relabeled
B@xthe pointer is now before the current iterator position amew@edge (edge “8”) has been split out to
represent the pointer that the iterator refers to afteathenceoperation.

Figure 4(c) shows the result of assuming that the test agairlsl returnstrue. In this case we learn
thatt isnul I which implies that its dominance set is empty. Based on thdiniince equality information
we have this implies that edge “9” also has an empty conet@iz (it isnul |).

The result of again indexing the iterator is shown in Figuia 4If we were to proceed through the loop
several more times we would reach the state shown in Figee #{ this figure we see that there may be
many elements in the sublist and many elements that are detlad the sublist (represented by the edges
with the B@label, “3” and “8” respectively). Since we tracked the doamnoe relation of each individual
object as it was processed we know that every object reféorbgl a pointer represented by edge “3” must
have been added to the sublist and thus is also referred tpbyier represented by edge “7”. This implies
that edge “7” is dominance equivalent to edge “3” and thus lemtges “3” and “7” must dominate their
target node.

If we assume thesVal i dtest returns false then ti@andA@edges must be null and can be eliminated,
Figure 4(f). We know that set of edggs”, “6”, “10” } dominate the node and we now assume that the
concretization of “6” and “10” are both empty, thus it mustthe case that “5” alone dominates the node.
As desired the analysis has determined that all the objdthisamon-nullval field have been stored in the
sublistl s.

6.2 Example 3

Figure 5 shows how the analysis models the strong updatesof element in the sublist (the third example
code segment) and how the dominance relation enables thesian® determine that this update implies
there are no more elements in the original list that hawe-nullval references.

Figure 5(a) shows the state of the abstract heap after ttigization of the list iterator. In this figure
we have drawn the edges representing pointers in the origgihas dotted lines to help clarify which edge
belongs to which collection. It is important to note that whbe node representing the contents of the list
| s was refined the edges from both lists were split and:

e Since edge “3” and edge “7” both dominated the node the iagu#plit edges (“9”, “117), (107,
“12") dominate their respective split nodes. The focus apen can then infer that these newly
created edges are also dominance equal.

e The focus operations infers that since edge “12fpsand it is equivalent to “10” which must be of
maxCut= 1 then edge “12” must also be ofaxCut= 1.

Figure 5(b) shows the result of nullifying theal target for the object referred to by the iterator. Note
that the analysis was able to strongly nullify thel field since the node hasaunt= 1, indicating that
the node represents at most a single object. Before thenassig we have the edge sgti3",“14” } as
dominating their target node. When the assignment occunsuliéy edge “14”, thus after the assignment

17

®

{list}, S, 1, ()

DomEQ={(5,1)}

{list}, S, 1, ()

4, A@, # np, ()}

3@, 1,np, (%

[1.S. 1.6 [LS. 7 (@]

{5, val, 1, np, {a,6,(}}

16, val, #, ip, {a,5,t)}

{2}, S, 1, ({5.6}.{a})
15,6,a} 564

(@) Temp Var Loaded

DomEQ={(3,7)}

flist), S, 1, Ol 4, A@, # np,

@ 1m0
(LS. 1. @8 [t S, # @)

(5 val, 1,mp, (2.6} {6 val % b (o5}

(56}
®
(c) Assert Temp Var is Null

DomEQ={(3,7)}

flist), S, 1, O 4, A@, # np,

{7, 2. % np, {3)}

{3, B@, # np, {}}

9 @ 1,np, {}}

@18, 1. [S # (@]
(10, val, 1, np, {8,5,6)}

18, 8@, # 1p, ()
[{t1}. S. #. (8]

[t} S, # (3107

{5, val, #, ip, {3,6,10}} 6. vol % o, 2.5,10)

t2}, S, 1, ({5.6,10}.{a
56,10}

(e) Fixed Point of Loop Analysis

f

{7, 7,1, np, {3}

list}, S, 1, ()] flist}, S, 1, ()

4. A@, # np, {}}

{3 8@, 1, np, {}

8 @ 1,np {}}

[t1}.S.1.G8)] [{t1L.S. % (N

19, val, 1, np, {a,5,6,4}}

{5, val, 1, np, {3,6,9.t) {6, val, #, Ip, {a,5,9,t}}

{t2}, S, 1, ({5.6.9}.{a})
5,6,9,a} {5,694

(b) Added To Subset and Indexed

DomEQ={(3,7)}

flist}, S, 1, ()

4, A@, % np, {}}

{7, 2,1, np, (3 (3, 8@, 1, np, {}

9 @ 1, {}

{8, B@, 1, np, {}
[{t1. S, 1. @8]

(1S, 1. (317D | (118, 1. 4] [{t1LS, # (D]

{10, val, 1, np, {a,5,6}}

5, val, 1, p, (2,610} 16, val, # bp, (2.9,10}

2}, S, 1, ({5.6,10}.{a
{5.6,10}

(d) Not Added to Subset and Indexed

{list}, S, 1, ()

{iist}, S, 1,0
{7, 7, # np, {3} {3, 2, % np, (Y

{8, 2. % np, {}}

(f) 1sValid False Exit Loop

Figure 4: Computing the sublist of all elements that refdhtosame object as

18

DomEQ={(3,7),(9.1)}

DomEQ={(3,7),(5,a)}

we cannot be sure if edge “13” still dominates the node so wetrmoonservatively assume it does not.
Figure 5(c) shows the result of indexing the iterator andralgased on the dominance relations of the edges
being split the analysis is able to infer tixCutand dominance relations of the newly created nodes/edges.

Figure 5(d) shows the state of the abstract heap after s$éegadions of analyzing the loop body. In this
figure we see that the there are now potentially many poititetscome before the current iterator position
(B@ in the listl s (all of which point to objects with aull val field) and that the edges representing the
current iterator location@ and the set of pointers that come after the current itepaisition A@ dominate
their respective target nodes. This abstract heap is atsfixédd point of the loop analysis.

Finally, Figure 5(e) shows the result of interpreting th&Val i d test asfalse The assumption that
the edges “9” and “14” have empty concretizations impliest tedges “11” and “15” also have empty
concretizations (based on the dominance equal relatiditgr fe test (and the removal of the edges/nodes)
there are no longer any pointers to the object referred théwariablea. Thus, the loop has successfully
strongly updated all of the objects in the sublistand this strong update information has also been reflected
in the original listl o.

7 Experimental Evaluation

The proposed approach has been implemented and the aeffeediv and efficiency of the analysis have been
evaluated on a number of examples (some micro-benchmadka anmber of parallelization kernels). For
the micro-benchmarks we used two small list and tree maatijoul routines as well as the example presented
in this paper. Thédist andtree benchmarks call a range of list/tree procedures (copyckearsert, remove,
filter, recursive subtree swap) from several calling caistéstata elements shared and unshared at call sites)
on singly linked lists and binary trees. The parallelizati@rnels are a variation of the Jolden [2] suite. The
Jolden suite contains pointer-intensive kernels that makeof recursive procedures, inheritance, and virtual
methods. The implementation in [2] is a mostly verbatimsfation of the original C Olden benchmarks [3],
which have some known issues [25]. We modified the suite tanmsdern Java programming idioms and
addressed major concerns raised in the literature aboguites

The analysis algorithm was written in C++ and compiled udig)VC 8.0. The analysis as well as the
parallelization benchmarks were run on an Intel dual-castiBmD 2.8 GHz machine with 1 GB of RAM
(although memory consumption never exceeded 20 MB for atlyeobenchmarks).

To assess the accuracy of the analysis results we repdre 8htapeTcolumn of Table 7, if our algorithm
correctly determined the shape information for the datectires created by the programs. To compare these
results with other work on shape analysis we list the mostirate results from the related literature in the
ShapeCcolumn. We use three categories for the accuracy of a shagsen Y(es) means the analysis
was able to provide shape information for all of the relevasdp structures in the program. P(artial) means
the analysis was able to determine the precise shape for ttne data structures but that some important
properties were missed. N(0) means the analysis failecetmgely identify the shape of a substantial portion
of the heap data structures.

In Table 7 the results for the micro-benchmarks are sephfaben the other results. Since we have
not been able to run a number of the existing heap analydmitpoes on the micro-benchmarks or the
example used in this paper we repdiA for the ShapeCcolumn. However, based on our hand simulation
of the various analysis techniques in the literature [6,220,14, 11, 8, 1, 10, 9] we believe that all of these

19

(9 DomEQ={(9,11),(10,12)}
L (9, A@. #np, {11}
_ &5 S0 - - -
- - st : N {8 7, # np,)
\

| _-- | {11, 2, # np, {9% B
110, @, 1, np, {12))) . --T T (e (1) ! k

@ DomEQ={(9,11),(10,12)}
st ST OF - - -
_ - - \\(& 2, # np, (§

- I

712700108 \ ,’/ %1 (105 \
\
.S, 1, ({10}1.{12}) [{t7), S, # @) [{t1}, S, # (9L{11) [{7}, S, 7, (T05.{12) {11}, S. # ({8)

{14, val, 1, np, {a, 13}

{13, val, # ip, {a, 14}} {13, val, # ip, {a}}

{13}

(a) Initialize Iterator Split Edges (b) Nullify val field

(© DomEQ={(9,11),(10,12),(14,15)} ® @ sonmy © vomEa=(s o1 1415)
flist}, S, 1, 0] {9, A@, #,np, {11}} _) B@, # np, .
_ {ist}, S, 1,0} - - TR L

SN 824wl - TN B2 B
(11, 2.4 mp (% _ _| -~ v (11, 24,09 _ _|--"" \
M RN A \ _SE @ 1 15y

9, A@, # np, (11}

| \

A e | \ P | \
L "(15 21, np, {14 {122, 1, mp, (10§ L’ Jns, 21, np, {14} 1 (12,2, # np, {10)} \\.
(LS # @] [LS T (@405 [1LS 1L A012)] [0S # () LS A @] (LS T (@405 [LS.# (10L02)] [0S # (@)
{16, val, 1, np, {a,13}} {16, val, 1, np, {a,13}}

{13, val, #, ip, {a,16}} {13, val, #, ip, {a, 16}}

t2}, S, 1, ({a
(13.16) (13,16}
@

(c) Index Iterator (d) Fixed Point of Loop

(9 DpomEQ={(10,12)}
Lr 7.5, 1,01 - - -
{60,819 N 182, #1p,

\
|
\

:{72, 2, # np, {10} \
i 3
[t} S, # (100{12)] [{7L S # (8D

©,
(e) IsValid False Exit Loop

Figure 5: Updateral field of all elements in the sublist

20

Benchmark|| Stmts| Methods
example 52 4
tree 247 11
list 250 12
bisort 260 13
em3d 333 13
mst 457 32
tsp 510 13
perimeter 621 41
health 643 21
vVoronoi 981 63
power 1352 29
bh 1616 58
Overall 7322 310

Figure 6: Benchmark Statistics

approaches are unable to satisfactorily handletaenple program.

We used the sharing information from the shape analysisralpkze the benchmarks by using multiple
threads in loops and calls [7, 19, 12] to exploit the two carethe test machine. The speedup column in
table 7 shows the results. In 7 of 9 benchmarks we achieveaptianal speedup. Thest and perime-
ter benchmarks cannot be parallelized using the informationiged by the analysis and the shape-driven
parallelization techniques since they build and traveeseinsive cyclic structures (a tree with parent point-
ers; and an unstructured graph), which our analysis doesunntly model accurately (the features are
represented as generic cycles and are not expanded by tienmefit operation).

The Olden benchmark suite was introduced in 1995 as a clyallproblem to assess how parallelizing
compilers and parallel architectures would be able to ctamgid execute programs that make extensive
use of dynamically allocated data structures. In the igieing years a substantial number of papers have
used benchmarks from this suite to evaluate proposed glization techniques. Our survey of the literature
indicates that despite interest in the problem, the preseri (to the best of our knowledge) is the only
analysis that has identified useful parallelization oputtes in two of the benchmarkrq3d and the
corrected version [25] dfealth), and the only heap analysis (to date) that can identify gagplproperties
needed to successfully parallelize four of the benchmanksd, health, voronoi, andbh).

Although the benchmarks are in fact smallish kernels, osulte represent the only general-purpose
heap analysis technique that is able to address a numbee dédkures in this set of challenge problems
(which use a range of heap structures from lists to treegiartiie graphs and perform a range of destructive
operations on these structures). Given the speed with vihehnalysis is able to produce the information
needed for the parallelization and the large speedup tledttégsned in the benchmarks (1.60 over all of the
benchmarks and 1.76 if we exclude the benchmariss,and perimeter, which utilize properties that we
have not yet added to the analysis), we are pleased with toergatishment.

21

Benchmark|| Time | Speedup ShapeT| ShapeO
example 0.05s NA Y NA
tree 0.52s NA Y NA
list 0.10s NA Y NA
bisort 0.41s 1.72 Y Y
em3d 0.09s 1.75 Y N
mst 0.11s 1.00 Y Y
tsp 0.15s 1.84 Y Y
perimeter 1.35s 1.00 P Y
health 1.22s 1.76 Y N
voronoi 1.93s 1.68 Y N
power 0.17s 1.93 Y Y
bh 3.61s 1.75 P N
Overall 9.71s 1.60 7/2/0 5/0/4

Figure 7: ShapeT is the shape results for the analysis ip#per ShapeO is the best reported in the litera-
ture. The notation 7/2/0 indicates the shape was correetigrohined for 7 of the Olden based benchmarks,
partially for 2, and there were no benchmarks where the aisalgiled to provide useful information.

8 Conclusion

This paper introduced the conceptdifminance which enables predicate decoration approaches to model
many of the sharing and dependence properties that areeddoitrack how objects are stored in multiple
collections (or data structures), and how modification$ieodontents in one collection affect other collec-
tions that have overlapping sets of data elements. Beirgtalshodel these properties is critical to ensuring
that programs which build, share, and modify non-trivialadstructures can be accurately analyzed. Our
generic formulation of thdominanceelation shows that it is fundamentally a generalizatiothefconcept

of aliasing and provides the ability to model a range of intgatr sharing properties.

The example in this paper provided a demonstration of howidamnee information enabled our heap
analysis to discover several important facts about how afsebjects was shared by two lists; we also
demonstrated that the dominance information enables thlysis to determine how the modification of
elements in the sublist affected the contents of the oridjstaOur experimental results using the dominance
relation are very positive. The analysis was able to anabgreshmarks that build and manipulate a variety
of data structures. In addition to small list/tree manipatabenchmarks, our benchmark set includes a
number of kernels that were originally designed as cha#lgmgblems for automatic parallelization. Our
heap analysis was able to provide sufficient informationutessfully parallelize all but 2 of benchmarks
we examined, including several that (to the best of our kedgé) cannot be successfully parallelized using
other proposed shape analysis methods.

We believe that the dominance property introduced in thiep#s a simple concept that captures funda-
mental properties of how objects can be shared and that fimitide provided can be adapted to a variety of
heap models. We thus believe that the proposed approacls toeetonsiderable extent, if not completely,
a challenge posed in [1], where it is stated “[Sharing] asfawe know, is beyond current automatic shape

22

analysis.” and continues “In general real-world systentg@ms contain much more complex data struc-
tures than those usually found in papers on shape analydibardling the full range of these structures

efficiently and precisely presents a significant challén@éne success of the proposed approach on our
example program and the benchmarks is such an illustration.

Encouraged by the range of program structures that our sinatycapable of handling, the utility of

the information provided by our model and the speed with Wwhkds information was computed we are
working on applying the analysis to larger programs.

References

[1]

2]

[3]

[4]
[5]
[6]

[7]

J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’hiedr Wies, and H. Yang. Shape analysis for
composite data structures. GAV, 2007.

B. Cahoon and K. S. McKinley. Data flow analysis for softe/grefetching linked data structures in
Java. InPACT, 2001.

M. C. Carlisle and A. Rogers. Software caching and coragoih migration in OldenJ. Parallel and
Distributed Computing1996.

D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis ohfms and structures. PLDI, 1990.
P. Cousot and R. Cousot. Systematic design of prograrysiadrameworks. IlPOPL, 1979.

R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclappg? A shape analysis for heap-directed
pointers in C. IlPPOPL, 1996.

R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting paraltali;m C programs with recursive data struc-
tures. InCC, 1998.

[8] A. Gotsman, J. Berdine, and B. Cook. Interprocedurapstenalysis with separated heap abstractions.

[9]

[10]

[11]
[12]

[13]

In SAS 2006.

S. Gulwani and A. Tiwari. An abstract domain for analygimeap-manipulating low-level software. In
CAV, 2007.

B. Guo, N. Vachharajani, and D. August. Shape analygis mwductive recursion synthesis. RLDI,
2007.

B. Hackett and R. Rugina. Region-based shape analyignacked locations. IIRPOPL, 2005.

L. J. Hendren and A. Nicolau. Parallelizing program#hwecursive data structureleEE TPDS 1(1),
1990.

N. D. Jones and S. S. Muchnick. Flow analysis and optition of Lisp-like structures. I®ROPL,
1979.

23

[14] T. Lev-Ami, N. Immerman, and S. Sagiv. Abstraction fbiape analysis with fast and precise trans-
formers. INCAV, 2006.

[15] M. Marron, M. Hermenegildo, D. Stefanovic, and D. KapHifficient context-sensitive shape analysis
with graph based heap models. Tech. report, CS Dept., UnNew Mexico, Mar 2007.

[16] M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildé static heap analysis for shape and
connectivity. InLCPC, 2006.

[17] M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapdeap analysis in the presence of collection
libraries. INPASTE 2007.

[18] G. D. Plotkin. A powerdomain constructio®IAM J. Computing.1976.

[19] R. Rugina and M. C. Rinard. Automatic parallelizatidndevzide and conquer algorithms. PPOPR,
1999.

[20] S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shapeialproblems in languages with destructive
updating. InPOPL, 1996.

[21] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shapdyais via 3-valued logic. ?OPL, 1999.
[22] M. B. Smyth. Power domains and predicate transformarspological view. InNICALP, 1983.

[23] B. Steensgaard. Points-to analysis in almost lineaetilnPOPL, 1996.

[24] R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysi<C@n2000.

[25] C. Zilles. Benchmark health considered harmful Computer Arch. New£2001.

24

