
Dominance: Modeling Heap Structures with Sharing

Mark Marron
U. of New Mexico

marron@cs.unm.edu

Rupak Majumdar
UC Los Angeles

rupak@cs.ucla.edu

Darko Stefanovic
U. of New Mexico
darko@cs.unm.edu

Deepak Kapur
U. of New Mexico
kapur@cs.unm.edu

August 27, 2007

Abstract

A number of papers have used predicate languages over sets ofabstract locations to model the heap
(decorating a heap graph with the predicates, or in conjunction with an access path abstraction). In this
work we introduce a new predicate,dominance, which is a generalization of aliasing and is used to model
how objects are shared in the heap (e.g. do two lists contain the same set of objects?) and how sharing
influences the results of destructive updates (e.g. if all the objects in one list are modified does that imply
that all the objects in another list are modified?). The dominance relation is introduced in the context of
a graph-based heap model but the concept is general and can beincorporated in other frameworks as a
high-level primitive.

The motivation for introducing a higher-order predicate tomodel sharing is based on the success of
existing approaches which use connectivity, reachability, and sharing predicates to perform shape anal-
ysis using high-level graph-based models. Our approach provides an analysis technique that is efficient
and scalable while retaining a high level of accuracy. This is in contrast to proposals in the literature
based on using logical languages (usually built on top of first-order predicate logic) which either are
highly expressive and very general (resulting in a computationally expensive analysis) or utilize only
fragments of the full logic (which reduces the computational cost but results in a much less powerful
analysis).

The approach presented in this paper has been implemented and run on a variation of the Jolden
benchmarks. The information extracted using the analysis has been used to parallelize these programs
with a near optimal speedup for 7 of the 9 benchmarks. The runtimes are small enough to make the
analysis practical (a few seconds for each program).

1 Introduction

Precise reasoning about the structure of the program heap iscrucial to understanding the behavior of a
given program (particularly for programs written in imperative object oriented languages). Traditional
points-toanalyses, which calculate sharing properties based on coarse aggregations of the heap (for ex-
ample by coalescing all cells from the same allocation site and ignoring program flow [23]), are known
to be too imprecise for many verification or optimization applications. More preciseshape analysistech-
niques [21, 24, 1, 10, 16, 9] have been proposed when more accurate information is desired. These analyses
recover precise information by distinguishing heap cells based on extrainstrumentation predicatesthat
encode reachability or separation information. By a suitable choice of instrumentation predicates, these

1

analyses can precisely model recursive data structures [21, 8, 16, 10] and composite structures [1, 16, 9]
(such as a list of lists or a tree containing pointers to user defined multi-component objects).

Most work on shape analysis has focused on existential sharing properties (and by negation, separation
properties) ofindividual pointers. That is, the fundamental question asked of the abstract heap representa-
tions is whether a particular pointer may/must point to an object satisfying some combination of instrumen-
tation predicates, or whether two pointers may possibly point to the same object. While this is often enough
to prove many sophisticated properties of data structures that have limited amounts of sharing or where the
sharing pattern is simple (e.g. variable aliasing), the reasoning is overly restrictive (and imprecise) when it
comes to more complex subset relationships among sets of shared objects. Such reasoning arises in analyz-
ing programs that use multiple views of the same collection of objects or that rely on the knowledge that
updating all the objects in one collection implies (based onsharing of the contents) that all the objects in
another collection are also updated.

Take for example the representation of a function in a compiler. The function body may contain a list of
all instructions in the function and a list of all the basic blocks in the function. Each basic block would have
a list of all the instructions in the basic block. Thus, thereare two views of the instructions in the function.
Further, during processing (perhaps in preparation for inlining) we may wish to replace all occurrences of a
variable, sayx with a fresh variablex′. If the programmer has done this via aforeachloop over the list of
instructions in the function, the analysis should determine thatx no longer appears in any of the instructions
and further that this information is projected from the mapping over the list of instructions in the function
into the lists of instructions in the basic blocks. That is, the analysis should be able to determine that none
of the basic blocks contain an instruction that refers to thevariablex.

The reasoning required here involves properties oversetsof pointers or objects rather than individual
pointers: we would like to know whether thesetof instruction objects pointed to by a basic block are all
contained in the set of instruction objects in the function,and therefore, by virtue of updating all instructions
in the function, all instructions in a basic block are also updated.

We introducedominance relationsthat enable existing shape analysis approaches to support such subset
reasoning via a number of high-level predicates. Fundamentally, the dominance property is a generalization
of aliasing. While aliasing tracks equality between the targets of variables or single pointers, dominance
tracks the set relations (subset, equality) between the targets of variables and sets of pointers. Thus, the
dominance relation subsumes aliasing and allows the analysis to track situations where two sets of references
(pointers/variables) must refer to the same set of objects.

Such sharing relations between sets of objects can be simulated by introducing quantification with a
“forall-exists” quantifier structure (i.e. for all objectspointed to by a reference in setA, does there exist a
reference in setB pointing to the same object?), or by adding explicitreachabilityor transitive closure pred-
icates.1 However, the introduction of general quantification or transitive closure makes abstract reasoning
complicated, harder to scale, and dependent on the set of heuristics implemented in the underlying theorem
prover. Instead, as demonstrated by the experimental evaluation in this paper, the dominance relations can be
efficiently encoded and provide extensive information about various sharing properties. We believe that the
logical languages used in [21, 1, 10, 9] can be extended with similar dominance properties, allowing them
to simulate this limited (but useful) sharing information,without significantly increasing the computational
complexity of the analysis.

1The use of reachability information to discharge the list-filter example was pointed out by Viktor Kuncak.

2

Initialize a List Filter elems that point toa Nullify the val fields

list lo = new list<t1>()
t2 a = new t2()

while(*)
t1 v = new t1()
v.val = * ? a : null
lo.push_back(v)

list ls = new list<t1>()
iterator i = lo.begin()
while(i.isValid())

t1 t = i.get().val
if(t == a)
ls.add_back(t)

i.advance()

iterator i = ls.begin()

while(i.isValid())
i.get().val = null
i.advance()

Figure 1: Example Code

To make our proposal concrete and to enable empirical evaluation of the effectiveness of the dominance
relation we extend an existing heap analysis framework, proposed in [16, 17], with dominance information.
This extended analysis has been implemented and successfully run on a collection of well known paral-
lelization benchmarks. The results on the benchmarks are extremely encouraging. Using the information
provided by the heap analysis to drive the parallelization of the programs we achieve near optimal speedups
for 7 out of the 9 benchmark programs. This analysis, to the best of our knowledge, is the only analysis
method (to date) that is capable of providing the heap information needed to parallelize several of these
benchmarks. Further, the analysis times are less than 4 seconds per program analyzed (most less than 2
seconds).

2 Example Programs

Consider the program segments shown in Figure 1, consistingof three subprograms manipulating lists: list
construction, filtering elements from the list created in the first program into a sublist, and the update of the
contents of the sublist from the second subprogram. The example uses objects of two types,t1 andt2.
Thet1 type has a single fieldval that points to objects of typet2.

The first code segment allocates an objecto of typet2 and assigns the variablea to refer too. Then,
it fills a list with objects of typet1 each of which contains either a pointer to the objecto or contains the
null value in theval field. The second code segment scans the listlo for elements that have references
to the objecto and constructs a new listls of all these elements. The final code segment updates all the
elements in the listls to havenull pointers in theval field.

At the end of this example code, we want the analysis to determine the following properties: that all
the objects in the sublistls have had theirval field set tonull (there are no longer any references to the
objecto in the sublist) and that there are no objects in the original list lo that have a reference too.

Using reachability, connectivity, and shape information various shape analysis techniques [1, 16, 9] can
determine that after the execution of the first code segment the list containerlo contains pointers to objects
type oft1 and each of the pointers inlo points to a unique object. Furthermore, it can be determinedthat
each of thet1 objects may have a pointer to the objecto.

These predicates are not however sufficient to verify all theproperties of interest that arise in the second
code segment, that the objects in the listls are a subset of the objects in the original listlo; and furthermore,

3

that every object with anon-nullval field in lo must also be in the listls.
The second of these properties is critical to the ability to determine the effect of the third code segment

where all of the elements in the sublist have theirval field set tonull. If the analysis was unable to
determine that all the objects inlo with anon-nullval field must be in the sublistls then it will be unable
to determine thatnullifying theval field of every element inls implies that theval field of every object
in the listlo must also benull.

To accomplish this our analysis will track (in addition to predicates dealing with the connectivity and
shape of data structures)dominance relationson the heap. That is, we track how various sets of references
share the objects that they point to. Given two sets of references (variables/pointers)R1 andR2 we want to
track the set relations (⊆,⊇,=) between the sets of objects referred to by the references inR1 and inR2.

Sharing and Dominance: The execution of the second code segment demonstrates how the dominance
relation enables the proposed approach to model the sharingrelationships between sets of pointers. After
the loop exits, the contents of the listls are a subset of the contents of the listlo (and conversely every
element in the listlo that has anon-nullval field must be inls).

Figure 4(f) shows how the heap model presented in this paper is able to use the concept of dominance
to precisely model this information. The reader would notice that the edge from the listls (which has the
label “7”) refers to the same node as the edge labeled “3” fromthe listlo. If this was the only information
available about the connectivity properties, the analysiscan only infer that there are some pointers in the
list ls that point to the same objects as some of the pointers in the list lo. But the analysis would be
unable to infer the desired subset relations. With the introduction of the dominance properties as discussed
in Section 3, the proposed method is able to determine that the pointers abstracted by the edge “7”must
point to the same set of objects as the pointers abstracted bythe edge “3” (theDomEQrelation contains the
pair (3,7) which indicates this).

Furthermore, since edge “7” is the only edge out of the listls this means that all the pointers stored
in the listmustbe abstracted by edge “7”. The objects stored in the listls are thus a subset of the objects
stored in the listlo.

The listlo has two outgoing edges “3” and “8”. The target set of the pointers abstracted by edge “3” is
equal to the set of objects stored in the listls, edge “8” refers to a node that only represents objects with
a null val field (there are no outgoing edges). Thus, the proposed approach can infer that if an object is
stored in the listlo and it has anon-nullval field, then it is also stored in the listls.

Modification and Dominance: The second example code segment demonstrated how thedominance
predicates enable the heap model to accurately represent how objects are shared. We also want to be able to
model how the updates of a set of objects is reflected in other heap structures that share these objects. The
third example code segment illustrates this.

In the third code segment, the contents of the sublistls are modified by setting theval field of every
object in it tonull. Because of the sharing of these objects with the original list lo, these updates are
reflected in it as well.

During the analysis of the third code segment the abstract state shown in Figure 5(d) is identified as a
safe approximation of all possible executions of the loop body. The analysis knows that there is the element
that the iteratori currently refers to (this object is represented by the node pointed to by the edge with the

4

label “14”), there is some set of objects that still need to beprocessed (these objects are represented by the
node pointed to by edge “9”) and some set of objects that have already been processed (these are represented
by the node pointed to by edge “10”). The contents of the original list are partitioned into these nodes plus
an extra node (pointed to by edge “8”) which represents objects that are inlo but not inls.

After the analysis has determined that the abstract heap in Figure 5(d) represents all the possible concrete
states that may occur during the execution of the loop body itcombines this abstract state information with
the information implied by the exit test to determine the possible program states at the loop exit. In this case
the analysis assumes that theisValid exit test returnsfalse. This means that we are done processing the
contents of the listls (the iterator is at the end of the list) which implies that there is no current element
to process and there are no unprocessed elements. This allows the analysis to delete edges “9” and “14”
(which represent the remaining elements and the current element respectively).

Without the additional knowledge that the set of objects referred to by pointers abstracted by edge “9”
must equal the set of objects referred to by pointers abstracted by edge “11” the analysis must conservatively
assume that edge “11” and the node it refers to may remain in the heap graph. The result is that after the
loop the analysis has (very) conservatively concluded thatedge “11” represents pointers inlo which point
to objects that havenon-nullval fields.

However, the dominance predicate enables the analysis to determine that if edge “9” does not exist (has
an empty concretization) then edge “11” must also have an empty concretization and can be removed from
the model. This of course means that the node that edge “11” refers to is removed as well. A similar series of
deductions can be performed for edges “14” and “15”. Thus thedominance information enables the analysis
to determine that there are no pointers in the listlo that refer to objects withnon-nullval fields. The result
is shown in Figure 5(e) where the analysis has, as desired, determined that there are no longer any objects
in ls that may refer to the same object as the variablea.

3 Dominance Relation

3.1 Concrete Heap and Concrete Dominance

We illustrate the notion of dominance on a core sequential imperative language with memory allocation and
destructive updates. We assume our language is statically typed, and treat generic collections (lists and sets)
and iterators over them as basic datatypes present in the language. The semantics of the language is defined
in the usual way, using an environment mapping variables into values, and a store, mapping addresses into
values. We refer to the environment and the store together asthe concrete heap of the program.

We model the concrete heap as a labeled, directed multi-graph (V,E) where each vertexv ∈ V is an
object in the store or a variable in the environment, and eachlabeled directed edgee∈E represents a pointer
between objects or a reference from a variable to an object. Each edge is given a label that is either an
identifier from the program or an integeri ∈ N (the integers label the pointers stored in the collections). For
an edge(a,b) ∈ E labeled withp, we use the notationa

p
−→ b to indicate that the objecta points tob via the

field name (or identifier)p.
A region of memoryℜ is a subset of the objects in memory, with all the pointers that connect these

objects and all the cross-region pointers that start or end at an object in this region. Formally, letC ⊆ V
be a subset of objects, and letPi = {p | ∃a,b ∈C,a

p
−→ b} andPc = {p | ∃a∈C,x 6∈C,a

p
−→ x∨ x

p
−→ a} be

5

respectively the set of internal and cross-region pointersfor C. Then a region is the tuple(C,Pi ,Pc). For
a regionℜ = (C,Pi ,Pc) and objectsa,b ∈C, we saya andb areconnectedin ℜ if they are in the same
weakly-connected component of the graph(C,Pi). Objectsa andb aredisjoint in ℜ if they are in different
weakly-connected components of the graph.

Concrete Dominance. Given an edgee∈ E in the concrete heap we define the functionrefTarget to
return the object thate points to. Given a set of edgesE′ ⊆ E in the concrete heap, we define the concrete
dominance set (domSetC) of E′ asdomSetC(E′) = {o ∈ V | ∃e∈ E′, refTarget(e) = o}. Finally, given a
region ℜ = (C,Pi,Pc) and some set of edgesE′ ⊆ E in the concrete heap we defineE′ dominatesℜ iff
domSetC(E′) = C.

Notice that using thedomSetCdefinition we can define aliasing bye1 ≡alias e2 iff domSetC({e1}) =
domSetC({e2}).

3.2 Abstract Heap and Abstract Dominance

Let (V,E) be a concrete heap. Anabstract heap[4, 13, 21] for(V,E) is a labeled, directed multi-graph(V̂, Ê)

such that there is an abstraction functionα : V→ V̂ and for allv
p
−→ v′ ∈ E, there is an edgeα(v)

·
−→ α(v′) in

Ê. Conversely, we assume there areconcretization functionsγv : V̂ → 2V andγp : Ê→ 2E such that(α ,γv)
form a Galois connection [5], andγp(û, v̂) = {(u,v) ∈ E | α(u) = û,α(v) = v̂}. We extendγv andγp to sets
of nodes and edges in the natural way. We call(V,E) a concretization of(V̂, Ê). An abstract heap(V̂, Ê)
can have many concretizations. We say an abstract heap(V̂, Ê) representsthe concrete heap(V,E) if the
abstraction functionα maps(V,E) to (V̂, Ê).

Given an abstract heap(V̂, Ê), we define two dominance relations on it:edge dominance, which relates
two abstract edges, andnode dominance, which relates a set of abstract edges to an abstract heap node.

Edge DominanceGiven two edgese,e′ ∈ Ê, we saye is edge dominance equivalentto e′, written e≡dom

e′, iff for all concrete heaps(V,E) that are concretizations of(V̂, Ê), we have domSetC(γp(e)) =
domSetC(γp(e′)), whereγp is the edge concretization function.

Node DominanceGiven a set of edgeŝE′ ⊆ Ê and an abstract noden∈ V̂, we defineÊ′ to node dominate
n, written Ê′ ∝ n, iff for all concretizations(V,E) of (V̂, Ê), we havedomSetC(γp(Ê′)) = γv(n).

Proposition 1 summarizes a number of useful facts about edgeand node dominance.

Proposition 1 Let n,n′ be abstract heap nodes, e,e′ abstract edges, and E, E′ sets of abstract edges.

1. If {e} ∝ n andγp(e) = /0 thenγv(n) = /0 andγp(e′) = /0 for all e′ pointing to n.

2. If e≡dome′ andγp(e) = /0 thenγp(e′) = /0.

3. If {e} ∝ n and{e′} ∝ n then e≡dome′.

4. If {e} ∝ n and|γp(e)|= 1 then|γv(n)|= 1.

5. If E′ ⊂ E and E′ ∝ n then E∝ n.

6

We have restricted the definition of the dominanceequivalencerelation on edges to equality on the sets
of objects that must be referred to in the concrete domain. More generally, we could define dominance
subset relations, where the set of objects pointed to by the concretization of one edge is a subset of the set
of objects pointed to by the concretization of the second. Our experiments with the edge dominance relation
indicate that modeling the full range of relations over setsof edges provides only a small boost in accuracy
at a substantial computational cost. Thus, we restrict the edge dominance relation to strict equality on single
edges.

4 Extended Abstract Heap Domain

The heap model we work with is a variation on the classic heap graph where each node represents a region of
the heap or a variable and each edge represents a set of pointers or a variable target. The nodes and edges are
decorated with a number of instrumentation predicates to improve the accuracy of the analysis (see [16, 17]
for more details).

4.1 Instrumentation Properties

The heap model uses a simple numeric abstraction, which has two values, exactly 1 and the range[0,∞]
(written #), to represent the sizes of various components.

Each edge in the abstract graph represents a set of pointers.To track the labels of pointers that the edge
represents the model uses the field identifiers declared in the program or a special offset that is used for
identifying the pointers in a collection. These special offsets are? (which represents an arbitrary set of
pointers in the collection),@ (which identifies the single pointer that a given iterator refers to),B@ (which
represents the set of pointers that come before the iteratorin the collection iteration order), andA@ (which
represents the set of pointers that come after the iterator).

To track the connectivity andshapeof the region a given node abstracts, the analysis uses anAbstract
Layoutproperty. The possible layouts areSingleton, List, Tree, MultiPath, or Cycle. Of particular interest
are theSingletonlayout, which indicates that there are no pointers between any of the objects in the region,
and theList layout, which indicates that each object has at most one pointer to another object in the region.
The other shapes correspond to the standard definitions for Trees, Dags, and Cycles in the literature.

The heap model uses two properties to track the potential that two references can reach the same memory
location in the region that a particular node represents.

The first property is for references that are represented by different edges in the heap model. Given two
edgese1,e2 that are incoming edges to the noden, the predicate that definesinConnectedin the abstract
domain is:e1,e2 areinConnectedwith respect ton if it is possible that∃r1 ∈ γp(e1)∧∃r2 ∈ γp(e2)∧∃a,b∈
γv(n) s.t. (r1 refers toa)∧ (r2 refers tob)∧ (a, b connected).

The second property is for the case where the references are represented by the same edge. To model this
the interfereproperty is introduced. An edgee represents interfering pointers if there may exist references
r1, r2 ∈ γp(e) such that the objects thatr1, r2 refer to are connected. A two-element lattice,np < ip, np for
edges with all non-interfering references andip for edges with potentially interfering references, is usedto
represent the interference property.

7

(a) After First Analysis Iteration (b) After Second Analysis Iteration (c) Fixpoint and Done

Figure 2: Initializing List

4.2 The Heap Graph

Each node in the graph either represents a region of the heap or a variable. The variable nodes are simply
labeled with the variable that they represent. The nodes representing the regions each contain a record that
tracks the types of the concrete objects that a node represents (types), the number of objects (either 1 or #)
that may be in the region represented by this node (count), and the abstract layout of a node (layout). Each
node also tracks the connectivity relation between each pair of incoming edges. A binary relationconnR
is used to track theinConnectedrelation. Although the connectivity relation is a propertyof the nodes, for
readability in the figures we associate the information withthe edges. Finally, for each node we have a field
nodeDom, which is a list of the sets of edges that dominate the node. Thus, each node is represented as a
record of the form[types layout count nodeDom].

As in the case of the nodes, each edge contains a record that tracks domain information about the edge.
The offsetcomponent indicates the offsets (labels) of the referencesthat are abstracted by the edge. The
number of references that this edge may represent is trackedwith themaxCutproperty. Theinterfereprop-
erty tracks the possibility that the edge represents references that interfere. Finally, we have a fieldconnto
which is a list of all the other edges/variables that the edgemay be connected to according to theconnRre-
lation. Since the variable edges always represent single references and the offset label is implicitly the name
of the variable the record simply contains theconnRinformation or is omitted entirely if theconnRrelation
is empty. To simplify the discussion of the examples each edge also has a unique integer label. The pointer
edges in the figures are represented as records{label offset maxCut interfere connto}.

In order to track the edge dominance equality we use a global equivalence relation on the edges/variables,
which tracks the dominance equality relations (this is labeleddomEQ in the figures).

The local data flow analysis is performed using aHoare Power Domain[18, 22] over these graphs.
Interprocedural analysis is performed in a context-sensitive manner and the procedure analysis results are
memoized. At each call site the set of graphs is joined into a single graph and the call is analyzed using this
graph as the context; see [15] for more details.

8

4.3 Example 1

To clarify how these properties are combined and how they represent the heap properties that we are inter-
ested in we look at the heap model during the analysis of the first example program, Figure 1. To simplify
the discussion we assume that the analysis knows that the loop body must be executed at least once and that
on the first iteration thev.val = a branch is taken. These assumptions allow us to represent theresult of
analyzing each loop as a single graph instead of requiring additional graphs for special cases (e.g. the loop
body is never executed).

In Figure 2(a) we show the graph that results from following thev.val = a path on the first pass
of the analysis through the loop body. The variablelo points to a node which abstracts thelist object
and the variablea points to the node which abstracts an object of typet2 that the elements in the list will
reference. The outgoing edge from thelist node (which is labeled by the number “0”) is at the special
offset?, represents at most one pointer (maxCutis 1) and since the edge represents at most one pointer the
interfere property must benp (since the definition of interfence requires 2 pointers). This edge points to a
region containing a single object of typet1 (count is 1) and there are no inter-region pointers (the layout
is Singleton). Finally, we note that since there is only one incoming edge(edge “0”) and there are no inter-
region connections, all of the live objects in the region must be pointed to by a pointer represented by edge
“0”. Thus we have edge “0” as adominatorfor the node.

The edge representing the pointer created by the assignmentv.val = a is represented by the edge
with the label “1”. Since the pointer represented by this edge is connected to the variablea we add the
variable to the list of references that the pointers represented by this edge may be connected to. When we
assign theval field to point to the same object asa we know that the pointer represented by this edge and
the variablea must be dominance equal (thus the entry in the DomEQ equivalence relation) and sincea
dominates the target node we know the newly created edge alsodominates the node.

Figure 2(b) shows one of the heap models that occur at the end of the second iteration of the analysis
(in this case we have assumed that thev.val = null branch was taken). In this figure a new node to
represent the newly allocated object has been added to the graph model and the edge “2” has been added to
represent the pointer in the collection that refers to the newly created object. Again we know that since there
is only one incoming edge (“2”) to this node this edge must dominate the node.

After several iterations thought the loop body (and the application of the normalization operator, Sec-
tion 5.5) the analysis will identify the graph in Figure 2(c)as representing the result of all possible executions
of the loop body. There is the list variablelo which points to a node of typelist. There is a single edge
(with the label “0”) from the node representing all of the pointers stored in the list. This edge has the special
offset? (it represents all the pointers in the collection), represents an unknown number of pointers (maxCut
is #), and all the pointers abstracted by this edge must referto unique objects in the region that the target
node abstracts (interfereis np).

The edge “0” points to a node which abstracts objects of typet1, there may be many objects in this
region (countis #), and there are no inter-region pointers (the layout isSingleton). Finally we know that the
region is dominated by the pointers represented by the edge “0”. The pointers stored at theval offset are
represented by the edge “1”. Since the pointers representedby this edge may point to connected portions
of the target region (in fact we know they must alias) the edgeinterfereproperty isip. Since the pointers in
the “1” edge may be connected to the target of the variablea, the variablea is included in the connectivity
relation for the edge (and by symmetry the edge “1” is in the connectivity relation for the variablea).

9

Finally, the region containing thet2 objects is dominated by the edge “1” as well as by the variablea.
Again by using our facts about the dominance relation we knowthat edge “1” is dominance equal toa and
thus this is included in theDomEQrelation.

5 Model Operations

Now that we have defined the heap domain that we are working with and seen how the properties in the
abstract domain represent various properties of the concrete heap we define the domain and simulation
operations for performing the heap analysis. The domain operations aresafeapproximations of the concrete
program operations (thus the analysis safely approximatesthe semantics of the program). For brevity we
omit proofs of these safety properties (which rely on basic case-wise reasoning about the graph structure
and the instrumentation properties).

5.1 Tests

When performing tests we generate one version of the abstract heap for each possible outcome. For a nullity
test of a variable we create one model in which the variablemustbenull and one model in which the variable
is non-null. In the case where the variable is assumed to benull we are asserting that the concretization of
the edge that represents the variable target is empty. Thus,if the variable dominates a node we infer that the
node does not represent any live objects and all the other incoming/outgoing edges must also have empty
concretizations. Similarly any edge that is≡dom to the variable must also have an empty concretization (and
can be removed from the graph). Finally, we perform the focusoperation, Section 5.5, on any nodes that
may have been affected. Algorithm 1 gives the code for this operation.

Algorithm 1 : Assume Var Null
input : graphg, varv
Es← all edges that represent the targets ofv;
Enull← /0;
for edge e∈ ES do

Enull← Enull∪{e′|e′ ≡dom e};
n← the target node ofe;
if e∝ n then Enull← Enull∪{all incoming edges ton};

Tn← {n|∃e∈ Enull,e is an in edge ton};
for edge e∈ Enull do

g.removeEdge(e);
for node n∈ Tn do

g.focusNode(n);

Similarly when the analysis assumes that theisValid test isfalseit assumes that the edge representing
the current pointer the iterator refers to (edge with label@) and the edge which represents all pointers that
are stored after the current iterator location (with labelA@) have empty concretizations. Then, as with the
nullity test, we use the dominance information to identify other edges and nodes that must also have empty
concretizations and remove all of these from the heap model.

10

In the case of an equality comparison between twonon-null variablesx == y we can strengthen the
information we have in the models that represent the true andfalse branches. For both thetrue and false
cases we begin by ensuring thatx andy have unique targets by merging (Section 5.3) all the possible target
nodes into a single node. In the case where we assume this testreturns true, ifx andy refer to different
nodes in the graph then we can assume this flow path is infeasible. If not, we add the fact thatx ≡dom y to
the model. In the case where we assume this test must be false then we can check if the relationx ≡dom y
holds and if it does we can rule this path out as being infeasible.

5.2 Assign, Load, Store

Assign. The variable assignment operation (x = y) does not need to perform any complex manipulations
to the heap since these operations were done during previousanalysis steps as needed. Thus, we simply
update the dominance information for the variablex to be the same as the dominance information for the
variabley.

Load. The load operation (x = y.f) is more interesting as we may need to deal with ambiguous targets
of y.f (there may be multiple targets ofy and each of these targets may have multiple outgoing edges
with the labelf) and we may need to refine the node (transform a summary node into a more explicit
representation, Section 5.4) referred to byy.f before we actually update the target of the variablex. For
simplicity our current implementation (Algorithm 2) resolves the problems of ambiguous variable targets
by merging them into a single node/edge.

Algorithm 2 : Load
input : graphg, varx, vary, field f
if y has multiple targetsthen merge all the targets into a single node;
if multiple edges at y. f then merge all edges into a single edge;
g.refineLoad(the unique target ofy. f);
if y. f is the null valuethen

nullify x;
return ;

e← the unique edge aty. f ;
assignx to refer to the target ofe;
if e.maxCut = 1then

setx dominance equal toe;
if e dominates the target nodethen setx dominates target node;

Store. The store operation (x.f = y) is simpler than the load operation as it does not need to dealwith
the resolution of ambiguous field targets or the refinement oftarget nodes. As with the load operation we
begin by ensuring that there is a unique target node thatx refers to. The analysis then determines if the
location atx.f can be strongly updated. If the node (n) referred to byx is of count1 then it is possible to
do so. In this case there is at most one object that is live in the target region so eitherx points to this object
or x is null, since we assume the latter case cannot happen (it would be anull pointer dereference) we know
x refers to the single object that the node represents. Thus, we can erase any edges with thef field. Once

11

we have completed the testing and removal of any edges storedat the fieldf we create a new edge for each
possible target ofy. Just as in the case of the loads these new edges are each dominance equal toy and ify
dominates a node then so does the newly created edge.

5.3 Merge/Split Nodes and Edges

In several domain operations we need to transform a portion of the heap graph into a single node (to remove
ambiguity or to ensure a finite domain) and in others we want totransform single nodes into a more explicit
sub-graph representation (so that we can accurately simulate the effects of various program statements). For
this paper we focus on the effects the merge and split operations have on the dominance properties and only
informally mention how the other properties are handled as needed in the figures. More precise definitions
of the merge/split operations can be found in [16].

Merge Nodes. From the definition of dominance equality it is clear that when two nodes (n1,n2) are
replaced by a summary node (ns) any edges that were dominance equal before the summarization are domi-
nance equal after the summarization. For the node dominancerelation we can infer that if some set of edges
E1 ∝ n1 and some other set of edgesE2 ∝ n2 thenE1∪E2 ∝ ns.

Merge Edges. The summarization of two edges (e1,e2) into a single edge (es) is handled by conservatively
assuming that all dominance equality relations which involve eithere1 or e2 no longer hold and replacing
each occurrence ofe1 or e2 in the node dominance set withes.

Split Nodes. The node split operation does not affect the edge dominance equality relation so we only
need to update the information on node dominance. To do this we restrict the relations that held for the
original node (no) to the set of edges that are incident to the newly created node (ni). That is, if some set of
edges{e1, . . . ,ek} ∝ no (note that by definitionni represents a subset of the objects represented byno) then
{e1, . . . ,ek} ∝ ni , thus whatever subset of{e1, . . . ,ek} refers toni must dominate theni .

Split Edges. When splitting an edge (es) into multiple new edges (e1, . . . ,ek) we conservatively assume
that all dominance equality relations which involvees no longer hold and we replace each occurrence ofes

in the node dominance sets withe1, . . . ,ek.

5.4 Refinement

The refinement operation is used to transform single summarynodes into more explicit subgraph representa-
tions. The operation is defined for nodes withList, Tree, or Singletonlayouts and is further restricted based
on the number of incoming edges to the node and the connectivity relations of these edges.

Our refinement operation onSingletonnodes is restricted to handle the following cases and otherwise
conservatively leave the summary region as it is:

• If the incoming edges can be partitioned into 2 or more equivalence classes based on theinConnected
relation.

12

• If there is a single edgeec that is connectedto every other edge and all other edges are pairwise
disjoint.

While these two cases are limited our experimentation with more complex partitioning schemes indicates
that these cases cover a majority of the situations encountered and the improvements in accuracy from using
more complex approaches are minimal.

In the first case where we have several disjoint partitions wedefine therefineDisjointEdgesmethod,
which creates a new node for each partition. In the second case we define therefineSingleConnmethod,
which creates a new node for each of the edges exceptec and then splitsec so that it points to each of the
newly created nodes (and thus the possibility that it is connected to any one of the other edges is preserved).

There are two uses for the refinement operation. The first is when normalizing the heap graph, Algo-
rithm 4; the second is when simulating the load operation, Algorithm 2. Algorithm 3 shows the code for the
refinement operation. In this algorithm we first try to split all the disjoint partitions. Then we attempt to ap-
ply the secondSingletonsplitting rule to the partition. Finally, if possible, we apply theList/Treerefinement
operations as described in [16]. Since we do not need to refinelists or tree nodes in our examples we omit a
detailed description of this operator but for completenessit is included in the algorithm.

Algorithm 3 : Refine Load
input : graphg, noden
Ep← partition of the incoming edges ton;
if Ep has 2 or more partitionsthen

g.refineDisjointEdges(n, Ep);
for each newly created node n′ do

g.focusNode(n′);
allcp←∃e′ s.t. all edgesconnto e′;
owdisjoint← all edges excepte′ are pairwisedisjoint;
if allcp∧ owdisjointthen

g.refineSingleConn(n, e′);
for each newly created node n′ do

g.focusNode(n′);
if n.layoutList or Treeand single in edge of size 1then

g.refineListTree(n);
for each newly created node n′ do

g.focusNode(n′);

Figure 3 shows the result of initializing the iteratori and refining the heap graph from Figure 2. We
initialized the iteratori to refer to the first element of the listlo, splitting the edge with the label? into
an edge representing the single element referred to by the iterator (labeled@) and an edge representing all
the other pointers in the collection (which must come after the current element in iteration orderA@). We
have also split the node which represents thet1 objects into a node representing the object targeted by the
@ edge and a node representing the objects targeted by theA@ edge.

Since we know that the? edge dominated the node that was split we know that the edges with the@ and
theA@ labels must dominate the resulting nodes (e.g. edge “3” dominates the node it refers to and edge “4”
dominates the node it refers to). Further we know that the edge with the@ label represents a single pointer
(since it represents the unique element in the collection that the iterator refers to) and, since it dominates the

13

Figure 3: Iterator Begin and Refined Contents

node it refers to, that node must represent at most one object.
When splitting the node which represents thet1 objects we split the outgoing edge as well: the edge

with the label “1” from Figure 2 has been split into the edges with the labels “5” and “6”. Since the
original edge (the edge with the label “1”) abstracted potentially interfering pointers we must assume that
the resulting edges could (and in this case do) refer to the same object. Again since the original edge
dominated the node it ended at, the edges resulting from the split must also dominate the node (thus we
replaced the{1} in the node dominance set with the entry{5,6}).

5.5 Normal Form

The normal form for the heap graphs enables efficient equality comparison and provides a simple method
for defining the heap join operation.

FocusNode. The focusNodemethod is used to infer and make explicit information that isimplicitly rep-
resented by various combinations of the domain properties.Given a noden, a set of incoming edges
Ei = {ei

1, . . . ,e
i
m} and a set of outgoing edgesEo = {eo

1, . . . ,e
o
n} the focus operator updates the nodes and

edges using the following heuristics:

• If n.layout= Singletonthenn.nodeDom← n.nodeDom∪{Ei}.

• If {ei
x} ∝ n∧{ei

y} ∝ n thenei
x≡dom ei

y.

• If ∃ei
x,e

i
x.maxCut= 1∧{ei

x} ∝ n thenn.count← 1.

• If n.count= 1 then for eachei
x ∈ Ei if ei

x.interfere= np ei
x.maxCut← 1.

• If n.count = 1 then for eacheo
x ∈ Eo if eo

x.offset 6∈ {?, B@, A@} then eo
x.maxCut← 1 and

eo
x.interfere← np.

• If Ei = /0 thenn is irrelevant and should be removed.

14

Ambiguous Edges. When comparing two graphsg1,g2 for equality we need to compute a graph isomor-
phism between the two graph models. Since the comparison operation must be fast we must minimize
backtracking. Starting from the variables we want to be ableto pick an edge ing1 and match it unambigu-
ously (as much as possible) to an edge ing2. The easiest way to do this is to ensure that each out edge for
a given node has a unique offset. However, there are many cases where this can lead to overly aggressive
merging and a loss of important information (in our subset example, Figure 4(f), the two? edges fromlo).

To avoid this we relax the uniqueness requirement to includesome information about the target of the
edge as well as the edge offset. That is, two edges are ambiguous if they have the same offset and their
target nodes areequivalentunder some relation. We heuristically choose to use equality of the multi-sets of
incoming edge offsets. Thus, in the subset example one of thenodes has the incoming offsets{?} and the
other node has the incoming offsets{?, ?} and thus they are not joined when the heap graph is normalized.

Recursive Sections. The idea behind the recursive definition is to identify sections of the heap that are
regular and can be merged with a minimal loss of information while preserving the important transition
points in the heap. First we define what it means for two regions to be recursive. Given a type system it is
trivial to identify the potentially recursive types. Simply merging all recursive types is too aggressive as it
can lead to the loss of information on the transitions between recursive and non-recursive segments of the
heap. To prevent this loss of information we introduce safe nodes which represent the important transition
points in the heap. A noden is safe if either of the following holds:

• There is a variable pointing ton.

• There is an incoming edgee = (n′,n) and∀t ∈ n.types, 6 ∃t ′ ∈ n′.types, s.t.t and t ′ are recursively
related.

Now we can define what it means for two nodesn1, n2 to be recursive:

• There is an edge connectingn1, n2, ∃e= (n1,n2).

• Neither ofn1 or n2 is safe.

• ∃n′ s.t. there is a path in the graph fromn2 to n′ that does not contain any safe nodes andn1.types∩
n′.types6= /0.

Based on this definition we see that if a recursive section is broken by an interesting transition (either
a variable or a transition from a non-recursive component ispointing into it) then the recursive cycle is left
expanded. Thus, the analysis can accurately track the relations between variables and the transition points
in the heap.

Normalize. The normalization routine is the repeated application of several steps until there are no longer
any changes in the heap graph model, Algorithm 4. In the algorithm the nodes are processed in topological
order to speed convergence.

15

Algorithm 4 : Normalize Graph
input : graphg
Remove all unreachable nodes fromg;
while g is changingdo

while ∃ node n s.t. n the focusNode operation can be applieddo
g.focusNode(n);

while ∃ node n s.t. n has disjoint in edge partitionsdo
g.refineDisjointEdges(n, partition of the in edges ton);

while ∃ nodes n, n′ s.t. n, n′ are recursivedo
g.mergeNodes(n, n′);

while ∃ node n s.t. n has ambiguous edges e,e′ do
g.mergeEdges(e, e′);

Heap Graph Equality. To compare two graphs for equality we fist compute a graph isomorphism between
the two heap graphs (this is efficient since the normal form effectively eliminates any ambiguity in the
matching, in our experimental results no equality comparison encountered required backtracking and had
at most one isomorphism). For each possible isomorphism we do a pairwise comparison of each node and
edge property for each pair of nodes/edges that are related under the isomorphism.

Heap Join. To join two heaps we first forget all the dominance information in both heap models. Then the
algorithm computes the union of the two graphs and merges thevariable nodes. Finally, the resulting graph
is normalized. This results in only the dominance information that is implied by the focus operation being
maintained. While this loss of dominance information couldbe avoided by a more complex join operation
our experimental results indicate that in conjunction withtheHoare Power Domainthe actual information
loss from the use of this simple join is minimal.

6 Examples

Now that we have defined the data flow and program simulation operations we look at how they work with
the dominance properties to enable the analysis to accurately model the effects of the remaining two code
segments from Figure 1.

6.1 Example 2

Figure 4 shows part of the analysis of the second example codesegment from Figure 1. In Figure 4(a) the
analysis performed the load operations required by the statementi.get().val and assigned the value to
the variablet. Since theval edge (edge “5”) in this path represents at most one pointer (maxCut= 1) we
know that the dominance set of the edge “5” and the variablet must be the same (thus theDomEQrelation
has been updated with this fact).

Figure 4(b) shows the abstract heap after assuming thefalsebranch was taken, indexing the iterator and
loading the new value intot. The model shows that the object from the first iteration has been added into
the sublist (ls) by adding the edge “7” to represent the pointer from the list(ls) to the node representing

16

the object that has been added. Since we know this pointer must refer to the same object as the pointer
abstracted by the edge “3” we know their dominance sets are equal, thus the dominance set of “7”≡dom “3”
and additionally that edge “7” dominates the node. Indexingthe iterator results in the@ edge being relabeled
B@ (the pointer is now before the current iterator position) and a new@ edge (edge “8”) has been split out to
represent the pointer that the iterator refers to after theadvanceoperation.

Figure 4(c) shows the result of assuming that the test against null returnstrue. In this case we learn
thatt is null which implies that its dominance set is empty. Based on the dominance equality information
we have this implies that edge “9” also has an empty concretization (it isnull).

The result of again indexing the iterator is shown in Figure 4(d). If we were to proceed through the loop
several more times we would reach the state shown in Figure 4(e). In this figure we see that there may be
many elements in the sublist and many elements that are not added to the sublist (represented by the edges
with theB@ label, “3” and “8” respectively). Since we tracked the dominance relation of each individual
object as it was processed we know that every object referredto by a pointer represented by edge “3” must
have been added to the sublist and thus is also referred to by apointer represented by edge “7”. This implies
that edge “7” is dominance equivalent to edge “3” and thus both edges “3” and “7” must dominate their
target node.

If we assume theisValid test returns false then the@ andA@ edges must be null and can be eliminated,
Figure 4(f). We know that set of edges{“5”, “6”, “10” } dominate the node and we now assume that the
concretization of “6” and “10” are both empty, thus it must bethe case that “5” alone dominates the node.
As desired the analysis has determined that all the objects with a non-nullval field have been stored in the
sublistls.

6.2 Example 3

Figure 5 shows how the analysis models the strong update of every element in the sublist (the third example
code segment) and how the dominance relation enables the analysis to determine that this update implies
there are no more elements in the original list that havenon-nullval references.

Figure 5(a) shows the state of the abstract heap after the initialization of the list iterator. In this figure
we have drawn the edges representing pointers in the original list as dotted lines to help clarify which edge
belongs to which collection. It is important to note that when the node representing the contents of the list
ls was refined the edges from both lists were split and:

• Since edge “3” and edge “7” both dominated the node the resulting split edges (“9”, “11”), (“10”,
“12”) dominate their respective split nodes. The focus operation can then infer that these newly
created edges are also dominance equal.

• The focus operations infers that since edge “12” isnp and it is equivalent to “10” which must be of
maxCut= 1 then edge “12” must also be ofmaxCut= 1.

Figure 5(b) shows the result of nullifying theval target for the object referred to by the iterator. Note
that the analysis was able to strongly nullify theval field since the node has acount= 1, indicating that
the node represents at most a single object. Before the assignment we have the edge set{“13”,“14” } as
dominating their target node. When the assignment occurs wenullify edge “14”, thus after the assignment

17

(a) Temp Var Loaded (b) Added To Subset and Indexed

(c) Assert Temp Var is Null (d) Not Added to Subset and Indexed

(e) Fixed Point of Loop Analysis (f) IsValid False Exit Loop

Figure 4: Computing the sublist of all elements that refer tothe same object asa

18

we cannot be sure if edge “13” still dominates the node so we must conservatively assume it does not.
Figure 5(c) shows the result of indexing the iterator and again based on the dominance relations of the edges
being split the analysis is able to infer themaxCutand dominance relations of the newly created nodes/edges.

Figure 5(d) shows the state of the abstract heap after several iterations of analyzing the loop body. In this
figure we see that the there are now potentially many pointersthat come before the current iterator position
(B@) in the listls (all of which point to objects with anull val field) and that the edges representing the
current iterator location (@) and the set of pointers that come after the current iteratorposition (A@) dominate
their respective target nodes. This abstract heap is also the fixed point of the loop analysis.

Finally, Figure 5(e) shows the result of interpreting theisValid test asfalse. The assumption that
the edges “9” and “14” have empty concretizations implies that edges “11” and “15” also have empty
concretizations (based on the dominance equal relation). After the test (and the removal of the edges/nodes)
there are no longer any pointers to the object referred to by the variablea. Thus, the loop has successfully
strongly updated all of the objects in the sublistls and this strong update information has also been reflected
in the original listlo.

7 Experimental Evaluation

The proposed approach has been implemented and the effectiveness and efficiency of the analysis have been
evaluated on a number of examples (some micro-benchmarks and a number of parallelization kernels). For
the micro-benchmarks we used two small list and tree manipulation routines as well as the example presented
in this paper. Thelist andtree benchmarks call a range of list/tree procedures (copy, search, insert, remove,
filter, recursive subtree swap) from several calling contexts (data elements shared and unshared at call sites)
on singly linked lists and binary trees. The parallelization kernels are a variation of the Jolden [2] suite. The
Jolden suite contains pointer-intensive kernels that makeuse of recursive procedures, inheritance, and virtual
methods. The implementation in [2] is a mostly verbatim translation of the original C Olden benchmarks [3],
which have some known issues [25]. We modified the suite to usemodern Java programming idioms and
addressed major concerns raised in the literature about thesuite.

The analysis algorithm was written in C++ and compiled usingMSVC 8.0. The analysis as well as the
parallelization benchmarks were run on an Intel dual-core PentiumD 2.8 GHz machine with 1 GB of RAM
(although memory consumption never exceeded 20 MB for any ofthe benchmarks).

To assess the accuracy of the analysis results we report, in theShapeTcolumn of Table 7, if our algorithm
correctly determined the shape information for the data structures created by the programs. To compare these
results with other work on shape analysis we list the most accurate results from the related literature in the
ShapeOcolumn. We use three categories for the accuracy of a shape analysis. Y(es) means the analysis
was able to provide shape information for all of the relevantheap structures in the program. P(artial) means
the analysis was able to determine the precise shape for someof the data structures but that some important
properties were missed. N(o) means the analysis failed to precisely identify the shape of a substantial portion
of the heap data structures.

In Table 7 the results for the micro-benchmarks are separated from the other results. Since we have
not been able to run a number of the existing heap analysis techniques on the micro-benchmarks or the
example used in this paper we reportNA for theShapeOcolumn. However, based on our hand simulation
of the various analysis techniques in the literature [6, 20,21, 14, 11, 8, 1, 10, 9] we believe that all of these

19

(a) Initialize Iterator Split Edges (b) Nullify val field

(c) Index Iterator (d) Fixed Point of Loop

(e) IsValid False Exit Loop

Figure 5: Updateval field of all elements in the sublist

20

Benchmark Stmts Methods
example 52 4
tree 247 11
list 250 12
bisort 260 13
em3d 333 13
mst 457 32
tsp 510 13
perimeter 621 41
health 643 21
voronoi 981 63
power 1352 29
bh 1616 58
Overall 7322 310

Figure 6: Benchmark Statistics

approaches are unable to satisfactorily handle theexample program.
We used the sharing information from the shape analysis to parallelize the benchmarks by using multiple

threads in loops and calls [7, 19, 12] to exploit the two coresof the test machine. The speedup column in
table 7 shows the results. In 7 of 9 benchmarks we achieve near-optimal speedup. Themst andperime-
ter benchmarks cannot be parallelized using the information provided by the analysis and the shape-driven
parallelization techniques since they build and traverse recursive cyclic structures (a tree with parent point-
ers; and an unstructured graph), which our analysis does notcurrently model accurately (the features are
represented as generic cycles and are not expanded by the refinement operation).

The Olden benchmark suite was introduced in 1995 as a challenge problem to assess how parallelizing
compilers and parallel architectures would be able to compile and execute programs that make extensive
use of dynamically allocated data structures. In the intervening years a substantial number of papers have
used benchmarks from this suite to evaluate proposed parallelization techniques. Our survey of the literature
indicates that despite interest in the problem, the presentwork (to the best of our knowledge) is the only
analysis that has identified useful parallelization opportunities in two of the benchmarks (em3d and the
corrected version [25] ofhealth), and the only heap analysis (to date) that can identify the heap properties
needed to successfully parallelize four of the benchmarks (em3d, health, voronoi, andbh).

Although the benchmarks are in fact smallish kernels, our results represent the only general-purpose
heap analysis technique that is able to address a number of the features in this set of challenge problems
(which use a range of heap structures from lists to trees to bipartite graphs and perform a range of destructive
operations on these structures). Given the speed with whichthe analysis is able to produce the information
needed for the parallelization and the large speedup that isobtained in the benchmarks (1.60 over all of the
benchmarks and 1.76 if we exclude the benchmarks,mst andperimeter, which utilize properties that we
have not yet added to the analysis), we are pleased with the accomplishment.

21

Benchmark Time Speedup ShapeT ShapeO
example 0.05s NA Y NA
tree 0.52s NA Y NA
list 0.10s NA Y NA
bisort 0.41s 1.72 Y Y
em3d 0.09s 1.75 Y N
mst 0.11s 1.00 Y Y
tsp 0.15s 1.84 Y Y
perimeter 1.35s 1.00 P Y
health 1.22s 1.76 Y N
voronoi 1.93s 1.68 Y N
power 0.17s 1.93 Y Y
bh 3.61s 1.75 P N
Overall 9.71s 1.60 7/2/0 5/0/4

Figure 7: ShapeT is the shape results for the analysis in thispaper ShapeO is the best reported in the litera-
ture. The notation 7/2/0 indicates the shape was correctly determined for 7 of the Olden based benchmarks,
partially for 2, and there were no benchmarks where the analysis failed to provide useful information.

8 Conclusion

This paper introduced the concept ofdominance, which enables predicate decoration approaches to model
many of the sharing and dependence properties that are required to track how objects are stored in multiple
collections (or data structures), and how modifications to the contents in one collection affect other collec-
tions that have overlapping sets of data elements. Being able to model these properties is critical to ensuring
that programs which build, share, and modify non-trivial data structures can be accurately analyzed. Our
generic formulation of thedominancerelation shows that it is fundamentally a generalization ofthe concept
of aliasing and provides the ability to model a range of important sharing properties.

The example in this paper provided a demonstration of how dominance information enabled our heap
analysis to discover several important facts about how a setof objects was shared by two lists; we also
demonstrated that the dominance information enables the analysis to determine how the modification of
elements in the sublist affected the contents of the original list. Our experimental results using the dominance
relation are very positive. The analysis was able to analyzebenchmarks that build and manipulate a variety
of data structures. In addition to small list/tree manipulation benchmarks, our benchmark set includes a
number of kernels that were originally designed as challenge problems for automatic parallelization. Our
heap analysis was able to provide sufficient information to successfully parallelize all but 2 of benchmarks
we examined, including several that (to the best of our knowledge) cannot be successfully parallelized using
other proposed shape analysis methods.

We believe that the dominance property introduced in this paper is a simple concept that captures funda-
mental properties of how objects can be shared and that the definition provided can be adapted to a variety of
heap models. We thus believe that the proposed approach meets to a considerable extent, if not completely,
a challenge posed in [1], where it is stated “[Sharing] as faras we know, is beyond current automatic shape

22

analysis.” and continues “In general real-world systems programs contain much more complex data struc-
tures than those usually found in papers on shape analysis and handling the full range of these structures
efficiently and precisely presents a significant challenge.” The success of the proposed approach on our
example program and the benchmarks is such an illustration.

Encouraged by the range of program structures that our analysis is capable of handling, the utility of
the information provided by our model and the speed with which this information was computed we are
working on applying the analysis to larger programs.

References

[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape analysis for
composite data structures. InCAV, 2007.

[2] B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked data structures in
Java. InPACT, 2001.

[3] M. C. Carlisle and A. Rogers. Software caching and computation migration in Olden.J. Parallel and
Distributed Computing, 1996.

[4] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers and structures. InPLDI, 1990.

[5] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InPOPL, 1979.

[6] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? A shape analysis for heap-directed
pointers in C. InPOPL, 1996.

[7] R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelism in C programs with recursive data struc-
tures. InCC, 1998.

[8] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap abstractions.
In SAS, 2006.

[9] S. Gulwani and A. Tiwari. An abstract domain for analyzing heap-manipulating low-level software. In
CAV, 2007.

[10] B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion synthesis. InPLDI,
2007.

[11] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. InPOPL, 2005.

[12] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures.IEEE TPDS, 1(1),
1990.

[13] N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-like structures. InPOPL,
1979.

23

[14] T. Lev-Ami, N. Immerman, and S. Sagiv. Abstraction for shape analysis with fast and precise trans-
formers. InCAV, 2006.

[15] M. Marron, M. Hermenegildo, D. Stefanovic, and D. Kapur. Efficient context-sensitive shape analysis
with graph based heap models. Tech. report, CS Dept., Univ. of New Mexico, Mar 2007.

[16] M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo. A static heap analysis for shape and
connectivity. InLCPC, 2006.

[17] M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur. Heap analysis in the presence of collection
libraries. InPASTE, 2007.

[18] G. D. Plotkin. A powerdomain construction.SIAM J. Computing., 1976.

[19] R. Rugina and M. C. Rinard. Automatic parallelization of divide and conquer algorithms. InPPOPP,
1999.

[20] S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with destructive
updating. InPOPL, 1996.

[21] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. InPOPL, 1999.

[22] M. B. Smyth. Power domains and predicate transformers:A topological view. InICALP, 1983.

[23] B. Steensgaard. Points-to analysis in almost linear time. InPOPL, 1996.

[24] R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. InCC, 2000.

[25] C. Zilles. Benchmark health considered harmful. InComputer Arch. News, 2001.

24

