
Shape Analysis with Reference Set Dominance

Mark Marron1, Rupak Majumdar2, Darko Stefanovic1, and Deepak Kapur1

1University of New Mexico,{marron, darko, kapur }@cs.unm.edu
2University of California Los Angeles,rupak@cs.ucla.edu

Abstract. Precise modeling of the structure of the heap and how objectsare
shared between various arrays or data structures is fundamental to understanding
the behavior of a program. This paper introduces a novel higher order relation,
reference set dominance, which subsumes the concept of aliasing and enables ex-
isting shape analysis techniques to, efficiently and accurately, model many types
of containment properties without the use of explicit quantification or special-
ized logics for containers/sets. We extend an existing shape analysis to model the
concept ofreference set dominance. This concept allows the analysis to track a
number of important relations (must=, andmust⊆) between the sets of objects
that are the targets of two given sets of references (variables or pointers).
In combination with shape properties, an analysis that tracks reference domi-
nance information can precisely reason about sharing properties on the heap (are
the contents of one array a subset of another array?), and howsharing influences
the results of destructive updates (does modifying all the objects in one array
imply that all the objects in another array are modified as well?). Precisely and
efficiently reasoning about these kinds of sharing properties has been beyond the
abilities of previous analyses. We show that shape analysisaugmented with dom-
inance information is able to precisely model sharing for a large range of data
structures in real programs and in contrast to more expressive proposals based on
logic languages (e.g., extensions of first-order predicatelogic with transitive clo-
sure), dominance properties can be efficiently implementedin a shape analyzer.

1 Introduction

Precise reasoning about the structure of the program heap iscrucial to understanding
the behavior of a given program, particularly for object–oriented languages. Traditional
points-toanalyses, which calculate sharing properties based on coarse aggregations of
the heap (for example by coalescing all cells from the same allocation site and ignoring
program flow [17]), are known to be too imprecise for many applications. More precise
shape analysistechniques [1,6–9,12,15,18,19]have been proposed when more accurate
information is desired. These analyses recover precise information by distinguishing
heap cells based on additional reachability, allocation site, or type information. Using
this kind of information, these analyses can precisely model recursive data structures [6,
8,12,15] and composite structures [1,7,12,19] (such as a list of lists or a tree containing
pointers to user–defined multi–component objects).

Most work on shape analysis has focused on existential (may) sharing properties
(and by negation, separation properties) of pointers or variables—the fundamental ques-
tion asked of the abstract heap representations is whether two abstract referencesmay

represent pointers thatalias each other. While this is often enough to prove many so-
phisticated properties of data structures that have limited amounts of sharing or where
the sharing pattern is simple (e.g., variable aliasing), the reasoning becomes overly re-
strictive (and imprecise) for more complex subset relationships among sets of shared
objects. Such relationships arise in programs that use multiple views of the same col-
lection of objects (for efficiency a class might keep the sameset of objects in aVectoras
well as in aHashtable), and in algorithms that extract and manipulate sub-collections
(in mergesortwith auxiliary storage, the contents of the two partitions are disjoint and
their union is the same as the original list) and when performing updates on a set of
shared elements (if the arrayA contains the same set of objects as the arrayB then ap-
plying the functionf to every element inA implies thatf mustalso have been applied
to every element inB).

We introducereference set dominancerelations that track set relations (must=,
andmust⊆) between the targets of sets of variables/pointers in the concrete program.
Thus, reference set dominance is stronger than, and subsumes aliasing (which only
tracksmust= between single variables/pointers). We show that when an existing shape
analysis is extended with two simple relations to track the most commonly occurring
reference set dominance relations we can efficiently and precisely model many sharing
properties in the program and how these properties effect the behavior of the program.

We have implemented a shape analysis framework with dominance information and
evaluated the effectiveness of the dominance relations on well known Java benchmarks
that manipulate shared heap structures. Our benchmark set consists of a version of the
JOlden [3] benchmarks, and several benchmarks from the SPECjvm98 [16] suite, for
which we recover precise shape information within less thana minute of running time.

Sharing relations between sets of objects, including dominance relations, can be
simulated in general logic languages by quantification witha “forall-exists” quantifier
structure (i.e., for all objects pointed to by a reference inarrayA, does there exist a
reference in arrayB pointing to the same object?) along with support for disjunction of
reachability relations. However, the introduction of general quantification and disjunc-
tion makes abstract reasoning computationally expensive [2]. Instead, as demonstrated
in this paper, these properties can be efficiently tracked ontop of existing shape analysis
techniques with enough accuracy to prove many important sharing properties.

2 Example and Motivation

Consider the three loops in Figure 1: array initialization,filtering elements into a sub–
collection, and updating the contents of the sub–collection. The example uses a dummy
object of typeData which has a single integer fieldf .

The first code fragment allocates an arrayA then fills it with Data objects which
have random non–negative values stored in theirf fields. The second loop scans the
array for elements that have positive values in thef fields and constructs a newVector
of these elements. If these loops are analyzed using a standard shape analysis (described
in Section 5), we get the abstract heap graph shown in Figure 2(a). In this figure we
simplified the edge/node labels to focus on the concept of howmustsharing relations
between sets of objects can be used to precisely model the behavior of a program.

1 Data [] A = new Data [N] ;
2 f o r (i n t i = 0 ; i < N; ++ i)
3 A[i] = new Data (abs (r a n d I n t ())) ;

4 Vec tor V = new Vector () ;
5 f o r (i n t i = 0 ; i < A. Length ; ++ i)
6 i f (A[i] . f > 0) V. add (A[i]) ;

7 f o r (i n t i = 0 ; i < V. s i z e () ; ++ i)
8 V. ge t (i) . f = 0 ;

Fig. 1. Initialize Array, Filter positive values, and Updatef fields

(a) (b) (c)

Fig. 2.Abstract model and two possible concrete heaps it represents.

The simplified model shows the variableA referring to a node with anid tag of 1
which abstracts an object of typeData[] . There may be many pointers stored in this
array (these pointers are abstracted by the edges with theid’s 2, 4) since these pointers
are stored in an arrays we give them the special storageoffset?. Since there are two
outgoing edges the pointers stored in the array may either refer to objects abstracted
by node 2 or to objects abstracted by node 4. The notationf:0 and f:+ indicates
the values of the integer fields using a simplesign domain [5], wheref:0 in node 2
indicates that all the objects that are abstracted by this node have the value 0 stored in
thef field while thef:+ entry in node 4 indicates that all the objects abstracted by that
node have values in the range[1,∞) in their f fields. Figure 2(a) also shows the variable
V which has an edge to a node abstracting aVector object. The pointers stored in this
vector are abstracted by edge 5 and these pointers refer to objects abstracted by node 4.

Based on this information either of the concrete heaps shownin Figure 2(b) or 2(c)
are consistent with this model (i.e., they are valid concretizations). In Figure 2(b) we see
that arrayA contains 3Data objects (some of which have 0 field values and some of
which have positive values) the first and third of which are also stored in theVector
V (which only contains objects with positive values). This heap is clearly a possible
result of the construction and filter loops in our example. Ifwe look at the concrete
heap shown in Figure 2(c) it is apparent that this program state is infeasible since the
contents ofV are not a subset ofA and there is aData object inA with a positive field
value but this object is not inV. However, this program model is consistent with the
information provided by the abstract graph model, as the fact that edges 4 and 5 end at
the same node only means that theremayexist an object that is referred to by both a
pointer abstracted by edge 4 and a pointer abstracted by edge5. In order to precisely
represent these desiredmustsharing relations between various sets of pointers stored in
the array and vector we need to extend the model with additional information.

While there are shape analysis techniques [7] that can determine, using reachability
and connectivity information, that after the execution of the first two loops theData

Fig. 3. Model With Dominance Information

objects in the vectorV are a subset of the objects in the array they cannot model the
stronger property; that everyData object with apositivef field in the arraymustalso
be in the vectorV.

The second property is critical to the ability to determine the effect of the third code
fragment, where all of the elements in the vectorV have theirf field set to 0. If the
analysis was unable to determine that every object inA with a non–zerof field must
be in the vectorV then it will be unable to determine that setting thef field of every
element inV to 0 implies that thef field of every object inA mustalso be 0.

To accomplish this our analysis tracksdominance equivalencerelations on the heap
(in addition to connectivity and shape properties). That is, we track if two edges abstract
sets of references thatmustalways refer to exactly the same set of objects and given a
node which sets of edges abstract references such that everyobject represented by the
node is referred to by a reference in this set.

These additional dominance properties allow the analysis to precisely model the re-
sult of the construction and filter loops in our example, the model enhanced with the
dominance properties is shown in Figure 3. In Section 4 we define and add two dom-
inance relations to the model. TheDomEQrelation which tracks which edges abstract
sets of references that always refer to the same sets of objects, and for each node we
add a list of sets of edges such that every object abstracted by the node is referred to
by a references represented by one of the edges in the set. Intuitively these additional
relations tell us that the set of objects referred to by references abstracted by edge 4 is
equal to the set of objects referred to by references abstracted by edge 5. This informa-
tion and the structure of the graph implies that every objectstored in the vectorV must
also be stored inA and also that if an object is stored inA it either has the value 0 stored
in the f field or it is also stored inV (which as desired, excludes the concrete heap in
Figure 2(c) from the set of feasible concretizations).

This last property then allows us to precisely model the third loop in the running
example. In particular we know that since every object inA with a non–zerof field is
stored inV we can infer that if every object inV has thef field set to 0 then after the
loop every object inA will have 0 in thef field. A detailed example of how the analysis
of the update loop and the subset computation is accomplished is in Section 6.

3 Concrete Heap and Reference Set Dominance

The semantics of memory are defined in the usual way, using an environment mapping
variables into values, and a store, mapping addresses into values. We refer to the en-

vironment and the store together as the concrete heap, whichis treated as a labeled,
directed multi–graph(V,O,R) where eachv∈ V is a variable, eacho∈ O is an object
on the heap and eachr ∈ R is a reference (either a variable reference or a pointer be-
tween objects). The set of referencesR⊆ (V ∪O)×O×L whereL is the set of storage
location identifiers (a variable name in the environment, a field identifier for references
stored in objects, or an integer offset for references stored in arrays/collections). For a
reference(a,b, p)∈R, we use the notationa

p
−→ b to indicate that the object (or variable)

a refers tob via the field name (or variable identifier)p.
A regionof memoryℜ = (C,P,Rin,Rout) consists of a subsetC⊆O of the objects in

the heap, all the pointersP= {(a,b, p)∈R| a,b∈C∧a
p
−→ b} that connect these objects,

the references that enter the regionRin = {(a,b, r) ∈ R | a∈ (O\C)∧b∈C∧a
r
−→ b}

and similarly a set of references that exit the regionRout = {(a,b, r) ∈ R | a∈C∧b∈
(O\C)∧a

r
−→ b}.

Definition 1 (Reference Set Dominance).Letℜ = (C,P,Rin,Rout) be a region, and let
Rs⊆ Rin and R′s⊆ Rin. We define thetargetsof these reference sets, Ts = {o∈C | ∃a∈
O, r ∈ L s.t.(a,o, r) ∈ Rs} and T′s = {o′ ∈C | ∃a′ ∈ O, r ′ ∈ L s.t.(a′,o′, r ′) ∈ R′s}. We
define the following relations:

1. Rs dominatesR′s if T ′s ⊆ Ts.
2. Rs,R′s aredominance equalif Ts = T ′s .
3. Rs region dominatesℜ if C ⊆ Ts.

We note that ifRs region dominatesℜ, whereℜ = (C,P,Rin,Rout), then for anyR′s⊆Rin

then Rs dominates R′s. Which is useful later for compactly representing simple (and
common) subset relations.

4 Abstract Dominance

Our abstract heap domain is based on thestorage shape graph[4] approach. Anab-
stract storage graphis a tuple of the form(V̂,N̂, Ê), whereV̂ is a set of abstract nodes
representing the variables,N̂ is a set of abstract nodes (each of which abstracts a region
ℜ of the heap), and̂E ⊆ (V̂ ∪ N̂)× N̂× L̂ are the graph edges, each of which abstracts
a set of pointers, and̂L is a set of abstract storageoffsets(variable names, field offsets
or the special offset? for references stored in arrays/collections). We extend this defini-
tion with a set of additional relationŝU that further restrict the set of concrete heaps that
eachstorage shape graphabstracts. Thelabeled storage shape graphs (lssg), which we
refer to simply asabstract graphs, are tuples of the form(V̂,N̂, Ê,Û).

Definition 2 (Valid Concretization of a lssg). A given concrete heap h is avalid con-
cretizationof a labeled storage shape graphg if there are functionsΠv,Πo,Πr such that
the following hold:

– Πv : V 7→ V̂ and is 1–1,Πo : O 7→ N̂ andΠr : R 7→ Ê are functions.
– h,Πv,Πo,Πr satisfy all the relations in̂U.
– h,Πv,Πo,Πr areconnectively consistentwith g.

Where h,Πv,Πo,Πr are connectively consistentwith g if:

– ∀ o1,o2 ∈ O s.t.(o1,o2, p) ∈ R,∃ e∈ Ê s.t. e= Πr((o1,o2, p)), e starts atΠo(o1),
ends atΠo(o2) and e.offset= p.

– ∀ v∈V, o∈O s.t.(v,o,v) ∈R,∃ e∈ Ê s.t. e= Πr((v,o,v)), e starts atΠv(v), ends
at Πo(o) and e.offset= v.

In Section 2 we implicitly introduced several relations,typeandsign, which are
relations on the nodes in the abstract graph. To check if a given concrete heaph and
mapsΠv,Πo,Πr satisfy these relations (and the other properties we use) weneed to
look at the pre–images of the nodes and edges in the abstract graphg under the maps
Πv,Πo,Πr . We use the notationh ↓g e to indicate the set of references in the concrete
heaph that are in the pre–image ofe under the maps and similarly,h ↓g n, to indicate
the region of the heap that is the image ofn under the maps.

As an example for thetype relation, we add a relation(n,{τ1, . . . ,τk}) to Û for
each node inN̂, whereτ j are types in the program and say:h,Πv,Πo,Πr satisfies
(n,{τ1, . . . ,τk}) iff {typeof (o) | objecto ∈ h ↓g n} ⊆ {τ1, . . . ,τk}. Thesign relation
can be similarly defined and a number of other useful properties are added in Section 5.

We introduce two instrumentation relations which allow us to track many useful
dominanceproperties:edge dominance, which relates two abstract edges, andnode
dominance, which relates a set of abstract edges to an abstract node.

Edge DominanceGiven two edgese,e′ ∈ Ê, we saye is edge dominance equivalent
to e′, writtene≡dom e′, iff every valid concretizationh of the abstract graphg must
satisfy(h ↓g e) dominance equal(h ↓g e′).

Node DominanceGiven a set of edgesE′ ⊆ Ê and an abstract noden∈ N̂ we sayE′

node dominates n, written E′ ∝ n, iff every valid concretizationh of the abstract
graphg must satisfy

⋃
{h ↓g e′ | e′ ∈ E′} region dominates(h ↓g n).

Proposition 1. Let g= (V̂,N̂, Ê,Û) be an abstract heap, h a valid concretization of
g, n,n′ ∈ N̂ be abstract nodes, e,e′ ∈ Ê abstract edges, and E,E′ ⊆ Ê sets of abstract
edges.

1. If {e}∝ n and h↓g e= /0 then h↓g n = /0 and h↓g e′ = /0 for all e′ ending at n.
2. If e≡dome′ and h↓g e= /0 then h↓g e′ = /0.
3. If {e}∝ n and{e′} ∝ n then e≡dome′.
4. If {e}∝ n and|h ↓g e|= 1 then|h ↓g n|= 1.

We have restricted the definition of theabstract dominancerelations to equality of
edges plus a special relation on nodes. We could define a more general relation, where
subset relations between the targets of sets of edges are tracked. However, this later
formulation would require tracking a binary relation on thepower set ofÊ which is
undesirable from a computational standpoint.

5 Full Abstract Heap Graph Definition

In order to analyze programs with the desired level of precision we need to use a number
of other relations that have been introduced in previous work [12–14] to the graph
model.

5.1 Additional Instrumentation Properties and Relations

In addition to tracking edge and node dominance relations, the nodes and edges of
storage graphs are augmented with the following instrumentation relations.
Linearity. To model the number of objects abstracted by a given node (or references by
an edge) we use alinearity property which has two possible values: 1, which indicates
that the node (edge) concretizes to either 0 or 1 objects (references), and the valueω ,
which indicates that the node (edge) concretizes to any number of objects (references)
in the range[0,∞).
Abstract Layout. To approximate the shape of the region a node abstracts, the analysis
uses theabstract layoutproperties{(S)ingleton, (L)ist, (T)ree, (M)ultiPath, (C)ycle}.
The (S)ingletonproperty states that there are no pointers between any of theobjects
abstracted by the node. The(L)ist property states each object has at most one pointer to
another object in the region. The other properties correspond to the standard definitions
for trees, DAGs, and cycles.
Connectivity and Interference. The heap model uses two relations to track the potential
that two references can reach the same heap object in the region that a particular node
represents. For this paper we use simplified versions and refer the reader to [13] for a
more extensive description of these relations.

Given a concrete regionℜ = (C,P,Rin,Rout) and objectsa,b∈C, we saya andb are
relatedin ℜ if they are in the sameweakly–connected1 component of the graph(C,P).

To track the possibility that two incoming edgese,e′ to the noden abstract refer-
ences that reach the same object in the region abstracted byn we introduce theconnec-
tivity relation. We saye,e′ areconnectedwith respect ton if theremay∃(a,b, r) ∈ (h ↓g
e),(a′,b′, r ′) ∈ (h ↓g e′) s.t.b,b′ ∈ (h ↓g n) ∧ (b, b′ arerelated). Otherwise we say the
edges aredisjoint.

To track the possibility that a single incoming edgee to the noden abstracts mul-
tiple references that reach the same object in the region abstracted byn we intro-
duce theinterfererelation. An edgee representsinterferingpointers (ip) if theremay
∃(a,b, r),(a′,b′, r ′) ∈ (h ↓g e) s.t. (a,b, r) 6= (a′,b′, r ′) ∧ (b, b′ arerelated). Otherwise
we say the edge represents allnon–interferingpointers (np).

5.2 Heap Representation

We represent abstract graphs pictorially as labeled, directed multi–graphs. Each node
in the graph either represents a region of the heap or a variable. The variable nodes are
labeled with the variable that they represent. The nodes representing the regions are rep-
resented as a record[id type scalar layout linearity nodeDom] that
tracks the instrumentation properties for the object types(type), the simple scalar do-
main (scalar), thelayout, the number of objects represented by the node (linearity), and
the edge sets that dominate the node (nodeDom). To simplify the figures we omit fields
from the labels when they are the default domain values (layout= S, linearity = 1).

As in the case of the nodes, each edge contains a record that tracks additional
information about the edge. The edges in the figures are represented as records{id

1 Two nodes are weakly–connected if there is a (possibly non–empty) path between them treat-
ing all edges as undirected.

offset linearity interfere connto }. Theoffsetcomponent indicates the
offsets (abstract storage location) of the references thatare abstracted by the edge. The
number of references that this edge may represent is trackedwith the linearity relation.
The interfererelation tracks the possibility that the edge represents references that in-
terfere. Finally, we have a fieldconntowhich is a list of all the other edges/variables that
the edge may be connected to according to theconnectedrelation. Again to simplify
the figures we omit fields that are the default domain value (linearity = 1, interfere=
np, connto= /0).

Finally, we use a global equivalence relation on the edges which tracks the domi-
nance equivalence relations (DomEQin the figures).

The local data flow analysis is performed using adisjunctive power domain[10]
over these graphs. Interprocedural analysis is performed in a context-sensitive manner
and the procedure analysis results are memoized. At each call site the set of graphs
is joined into a single graph and the call is analyzed using this graph as the context;
see [11] for more details.

5.3 Abstract Operations

We now define the dataflow transfer functions for our abstractgraph domain, including
how the dominance information is updated. The domain operations aresafeapproxi-
mations of the concrete program operations. For brevity we omit proofs of these safety
properties (which rely on straight forward case–wise reasoning about the graph struc-
ture and the instrumentation relations/properties). For these algorithms we also assume
that all the variables have unique targets (in practice thisis done by creating a new
model for each possible variable target as needed).

Tests: When performing tests we generate one version of the abstract graph for each
possible outcome. For the nullity test of a variable we create one model in which the
variablemustbe null and one model in which the variablemustbe non–null. In the
case where the variable is assumed to benull we are asserting that the concretization
of the edge that represents the variable target is empty. Thus, if the variable dominates
a node we infer that the node does not represent any live objects and all the other
incoming/outgoing edges must also have empty concretizations. Similarly any edge
that is≡dom to the variable must also have an empty concretization (and can be removed
from the graph). Algorithm 1 gives the code for this operation.

In the case of an equality comparison (x == y) between two variables whichmay
be non-null we can strengthen the information we have in the models that represent
the true and false branches. In the case where we assume the test returns true, ifx and
y refer to different nodes in the graph then the only way they can be equal is if both
variables arenull , otherwise we add the fact thatx ≡dom y to the model. In the case
where we assume the test must be false then we can check if the relationx ≡dom y and
if it does we can rule this path out as being infeasible.

Variable Assignment:The variable assignment operation (x = y) does not need to per-
form any complex manipulations on the heap since these operations were done during
previous analysis steps as needed. Thus, we simply update the target node and domi-
nance information for the variablex to be the same as the variabley .

Algorithm 1 : Assume Var Null (v == null is true)
input : graphg, varv
ev← the edge representing the target ofv;
n← the target node ofev;
if ev ∝ n then

Enull←{all incoming edges ton};
else

Enull←{ev}∪{e′|e′ ≡dom ev};
for edge e∈ Enull do

g.removeEdge(e);

Load: The load operation (x = y.f) first computes which node is the target of the
expressiony.f , creating a more explicit representation as needed (Subsection 5.4).
Then it adds an edge fromx to this node and if the target ofy is unique (represents
a single unique object on the heap) then we know the target ofx must be equal to the
target ofy.f .

Algorithm 2 : Load (x = y.f)
input : graphg, varx, vary, field f
nullify x;
if y. f 6= null then

g.materialize(the unique target ofy. f);
n← target node ofy;
e← the unique edge aty. f ;
assignx to refer to the target ofe;
if n.linearity = 1∧ e.linearity = 1 then

setx dominance equal toe;
if e dominates the target nodethen setx dominates target node ofe;

Store: The store operation (x.f = y) begins by determining if the location atx.f can
be strongly updated. If the node (n) referred to byx is of linearity 1 then it is possible
to do so. In this case there is at most one object that is live inthe target region so either
x points to this object orx is null, since we assume the latter case cannot happen (it
would be anull pointer dereference) we knowx refers to the single object that the node
represents. Thus, we can erase any edges with thef field. Once we have completed the
testing and removal of any edges stored at the fieldf we create a new edge representing
the newly stored pointer (which refers to the same thing asy). Just as in the case of the
loads the new edge is dominance equal toy and ify dominates a node then so does the
newly created edge.

5.4 Materialization

The materialization operation is used to transform single summary nodes into more
explicit subgraph representations. The operation is defined for nodes withList, Tree, or
Singletonlayouts and is further restricted based on the number of incoming edges to
the node and the connectivity relations of these edges. For the example this paper we
only need a simple version ofSingletonmaterialization. Full definitions for the other
operations can be found in [12].

Our materialization operation onSingletonnodes and is restricted to handle the
following case and otherwise conservatively leave the summary region as it is: if the
incoming edges can be partitioned into 2 or more equivalenceclasses based on the
connectedrelation. Once we have identified a node and the edge partitions we create a
new node for each partition.

When iterating through arrays/collections with an integervariable,i , we split the
edges with the? offset (which represent the contents of the array/collection) into mul-
tiple edges with three specialoffsetsthat partition the pointers based on their position
relative to the index variablei . The offsetat (at index) is used for the edge which rep-
resents the single reference stored in indexi . The offsetbi (before index) is used for
edges that represent pointers stored in indices less thani . Finally, the offsetai (after
index) is used for edges that represent pointers stored in indices greater thani .

(a) Result From Initialization Loop (b) Load ofA[i] (when i = 0)

Fig. 4. Load ofA[0] on result of first loop

Figure 4(a) shows the heap model that captures all of the possible states at line 4 of
the example program. The variableA refers to a node with the identifier 1, which repre-
sents aData[] array, and we know it represents at most one array (the default omitted
linearity value of 1). This array may have multiple pointers stored in it, represented by
the linearity valueω in the edge with id 2. Each of these pointers refers to a unique
Data object since the edge has the defaultinterferevalue ofnp. The f:0+ entry in-
dicates that all objects abstracted by node 2 have values in the range[0,∞) in their f
fields. Finally based on the{2} entry of thenodeDomset for the node 2, we know that
each object abstracted by node 2 is referred to by a pointer abstracted by edge 2.

The result of the load,A[i] when i = 0 during the analysis of the first iteration
of the filter loop (line 5), is shown in Figure 4(b). In this figure we have split edge 2
from Figure 4(a) into two edges, one representing the pointer stored at index 0 (edge
4, with offsetat) and one representing all the pointers stored in indices[1,∞) (edge

2, with offsetai). We have also split the node which represents theData objects into
a node representing the object targeted by the pointer in index 0 (node 4) and a node
representing the objects targeted by the pointers stored inthe other indices (node 2).

Since we know that the edge that split edge dominated the nodethat was split we
know that the resulting edges in Figure 4(b) must dominate the resulting nodes (edge 2
dominates the node it refers to and edge 4 dominates the node it refers to). Further we
know that edge 4 represents a single pointer (it represents the single pointer atA[i])
and, since it dominates the node it refers to, that node must represent at most one object
(the default omittedlinearity value of 1).

6 Examples

6.1 Filter Loop Example

The filter loop (lines 5-6) demonstrates how the analysis uses dominance information
and the control flow predicate (A[i].f > 0) to infer additional information about the
heap. In particular that the set of objects stored inV mustequal the set of objects with
positivef fields inA.

(a) Assert Test is True (b) Assert Test is False

Fig. 5. True and False Conditional Results

In Figure 4(b) we show the result of evaluating the expression A[i] wheni = 0.
To simulate the effect of the test (A[i].f > 0) on the state of the program we create
two new models; one for when the condition is true and one for when the condition is
false.

Figure 5(a) shows the heap model that results from assuming that the testA[i].f
> 0 is true and the entry is added to theVector V . Since the test succeeds and we
know A[i] refers to a single object (the node has the default omittedlinearity value
of 1) we can update the scalar information to show that thef field must be greater than
0 (thef:+ label). We have updated the structural information by adding the edge 5 to
represent the pointer that is stored into the vector object.Since we know this pointer
refers to the same object asA[i] , which is represented by edge 4, we add the entry (4,
5) to theDomEQrelation and since edge 4 dominates node 4 we also know that edge 5
also dominates node 4.

Figure 5(b) shows the heap model that results from assuming that the testA[i].f
> 0 is falseand the entry is not added toV. Since the test fails and again we know

A[i] refers to a single object we update the scalar information toshow that thef field
must equal to 0 (thef:0 label).

(a) Fixed Point of Loop Analysis (b) i < A.Length False, Exit Loop

Fig. 6. Fixpoint and Exit of Filter Loop

Figure 6(a) shows the fixpoint model which represents all thestates that are gen-
erated in the loop. We see that there may be many elements in the vectorV and many
elements that are not added to the vector (represented by theedges with thebi labels, 4
and 6 respectively). Since we tracked the dominance relation of each individual object
as it was processed we know that every object referred to by a pointer represented by
edge 4 must have been added to the vectorV and thus is also referred to by a pointer
represented by edge 5. This implies that edge 5 is dominance equivalent to edge 4 and
thus both edges 4 and 5 must dominate node 4.

If we assume thei < A.Length test returns false then theat and ai edges
(edges 7, 2) must have empty concretizations and can be eliminated (as they abstract
the pointer stored at indexi and pointers stored at indices larger thani), Figure 6(b).
Thus, as desired the analysis has determined that all the objects with a non–zerof field
have been stored in the vectorV (since node 5 only abstracts objects with 0 in thef
field and edge 4≡dom edge 5).

6.2 Update Loop Example

For brevity we omit descriptions of how the dominance information is propagated dur-
ing the individual operations of the update loop (lines 7-8)and focus on how this infor-
mation is used to improve the precision of the analysis results at the exit of the loop. The
fixpoint model for the loop body is shown in Figure 7(a). In this figure we see that the
there are potentially many pointers that come before the current index position in the
vectorV (edge 10 withoffsetbi) (all of which point to objects with 0 in thef field). It
also indicates that the edges representing the current index location (edge 8 withoffset
at) and the set of pointers that come after the current index position (edge 5 withoffset
ai) dominate their respective target nodes (nodes 4, 8).

If the exit test (i < V.size()) is false then we can infer that there are no entries
in the vector at indices that are greater than or equal toi . This implies that the edges
at andai (edges 8, 5) have empty concretizations since they represent pointers stored

(a) Fixed Point Update of Loop

(b) After Loop Exit

Fig. 7. Fixpoint and Exit of Map Loop

in indices greater than or equal toi . Based on the dominance equality relations (4, 5)
and (7, 8) this implies that edges 4 and 7 have empty concretizations as well.

The result of this inference is shown in Figure 7(b). After the test (and the removal
of the edges/nodes) there are no longer any pointers to the objects with non–zerof
fields in the vectorV or the arrayA. Thus, the loop has successfully strongly updated
all of the objects in the vectorV and this strong update information has been reflected
in the original arrayA. As desired the analysis has determined that all of the objects in
the arrayA have the value 0 stored in theirf fields after the filter/map loops.

7 Experimental Evaluation

We have implemented a shape analyzer based on the instrumentation properties and
dominance equivalences presented in this paper and evaluated the effectiveness and
efficiency of the analysis on programs from SPECjvm98 [16] and the entire non–trivial
JOlden [3] suite. The JOlden suite contains pointer–intensive kernels that make use of
recursive procedures, inheritance, and virtual methods. We modified the suite to use
modern Java programming idioms. The benchmarksraytrace (modified to be single
threaded) anddb are taken from SPECjvm98.

The analysis algorithm was written in C++ and compiled usingMSVC 8.0. The
analysis was run on a 2.6 GHz Intel quad-core machine with 4 GBof RAM (although
memory consumption never exceeded 120 MB).

For each of the benchmarks we provide a brief description of some of the major
structures/features that are in the program. We mention themajor data structures used

BenchmarkLOC Description Analysis TimeShapeOShapeNDShapeD
bisort 560 Tree w/ Mod 0.29s Y P Y
mst 668 Cycle w/ Struct. 0.15s Y Y Y
tsp 910 Tree to Cycle 0.19s Y Y Y
em3d 1103Bipartite Graph 0.44s N P Y
perimeter 1114Tree w/ Parent Ptr 1.23s Y P P
health 1269Tree w/ Mod 1.40s N Y Y
voronoi 1324Cycle w/ Struct 2.03s N Y Y
power 1752Lists of Lists 0.45s Y Y Y
bh 2304N-Body Sim w/ Mod 2.11s N P P
db 1985Shared/Mod Arrays 0.97s N P Y
raytrace 5809Shared/Cycle/Tree 42.91s N P Y

Fig. 8. ShapeO is the best analysis reported in the literature, ShapeND is the shape results of the
baseline analysis without dominance information, and ShapeD is the analysis in this paper with
dominance information. LOC is for the normalized program representation including library stubs
required by the analysis. Analysis Time is the analysis timefor ShapeD in seconds.

(Trees, Lists of Lists, Cycles, etc.) and if the program heavily modifies the data struc-
tures (w/ Mod). Some of the benchmarks have slightly more nuanced structures,mst
andvoronoi which build globally cyclic structures that have significant local structure,
bh which has a complex space-decomposition tree and sharing relations, andraytrace
which builds a large multi–component structure which has cyclic structures, tree struc-
tures and substantial sharing throughout. We also note thattsp, andvoronoi begin with
tree structures and process them building up a final cyclic structure during the program.
These benchmarks thus exercise a wide range of features in the analysis based on: the
types of structures built, modification of these structures, sharing of the structures, use
of multi–component structures, and the use of arrays/collections.2

To assess the accuracy of the analysis, we report, in theShapeO, ShapeND, ShapeD
columns of Table 8, the results of various shape analysis techniques. TheShapeOlists
the most accurate results from the related literature [1, 6–9, 15, 18, 19], theShapeND
column is the result for the baseline analysis from this paper (dominance information
disabled) and theShapeDcolumn is the result for the analysis from this paper with
dominance information enabled. We use three categories forthe accuracy of the anal-
ysis. Y(es) means the analysis was able to provide shape and sharing information for
all of the relevant heap structures in the program. P(artial) means the analysis was able
to determine the precise shape for some of the data structures but that some impor-
tant properties were missed. N(o) means the analysis failedto precisely identify the
shape/sharing information for a substantial portion of theheap data structures.

The benchmarksraytrace, db and bh (which to the best of our knowledge have
not been analyzed using other shape analysis techniques) use a range of complex data
structures, destructive operations, and forms of sharing between data structures. In these
benchmarks the information provided by the dominance relations is critical to precisely
modeling shape, connectivity and sharing properties. These benchmarks are also a fac-
tor of 2-4 larger, and build much more complex structures, than what is usually reported

2 Seewww.cs.unm.edu/ ˜ marron/software/software.html for examples of the
analysis results and an executable analysis demo.

in the literature. Thus, the small runtimes (less than a minute per benchmark) indicate
that even with the addition of the dominance relations the analysis is computationally
tractable.

Our experiments demonstrate that dominance equivalence can be used to efficiently
and precisely analyze common programming idioms to build, share, and modify non-
trivial data structures. Based on these results we believe that the proposed approach
presents a basis for a heap analysis that can be used in practice to provide detailed heap
information for a range of optimization and verification applications.

Acknowledgements.The authors thank Mooly Sagiv, Roman Manevich, and Amer
Diwan for their useful comments on earlier versions of this paper.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape
analysis for composite data structures. InCAV, 2007.

2. J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation logic. In
FSTTCS, 2004.

3. B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked data
structures in Java. InPACT, 2001.

4. D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers and structures. InPLDI,
1990.

5. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. InPOPL,
1979.

6. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap
abstractions. InSAS, 2006.

7. S. Gulwani and A. Tiwari. An abstract domain for analyzingheap-manipulating low-level
software. InCAV, 2007.

8. B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion synthesis.
In PLDI, 2007.

9. T. Lev-Ami, N. Immerman, and S. Sagiv. Abstraction for shape analysis with fast and precise
transformers. InCAV, 2006.

10. R. Manevich, S. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap abstraction.
In SAS, 2004.

11. M. Marron, M. Hermenegildo, D. Stefanovic, and D. Kapur.Efficient context-sensitive shape
analysis with graph based heap models. InCC, 2008.

12. M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo.A static heap analysis for shape
and connectivity. InLCPC, 2006.

13. M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic, and D. Kapur. Sharing
analysis of arrays, collections, and recursive structures. In Submission, 2008.

14. M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur.Heap analysis in the presence
of collection libraries. InPASTE, 2007.

15. S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In
POPL, 1999.

16. Standard Performance Evaluation Corporation. JVM98 Version 1.04, August 1998.
http://www.spec.org/jvm98.

17. B. Steensgaard. Points-to analysis in almost linear time. InPOPL, 1996.
18. R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. InCC, 2000.
19. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. OHearn. Scalable

shape analysis for systems code. InCAV, 2008.

