Shape Analysis with Reference Set Dominance

Mark Marrort, Rupak Majumdaf, Darko Stefanovit, and Deepak Kaptir

Luniversity of New Mexico{marron, darko, kapur t@cs.unm.edu
2University of California Los Angelesupak@cs.ucla.edu

Abstract. Precise modeling of the structure of the heap and how obpaets
shared between various arrays or data structures is fundahte understanding
the behavior of a program. This paper introduces a novelenighder relation,
reference set dominancerhich subsumes the concept of aliasing and enables ex-
isting shape analysis techniques to, efficiently and atelyranodel many types
of containment properties without the use of explicit qifardtion or special-
ized logics for containers/sets. We extend an existingeshaplysis to model the
concept ofreference set dominanc&his concept allows the analysis to track a
number of important relationsnust=, andmustC) between the sets of objects
that are the targets of two given sets of references (vasatn pointers).

In combination with shape properties, an analysis thatk$aeference domi-
nance information can precisely reason about sharing pgiep®n the heap (are
the contents of one array a subset of another array?), andlaring influences
the results of destructive updates (does modifying all thieais in one array
imply that all the objects in another array are modified ad?yePrecisely and
efficiently reasoning about these kinds of sharing propettias been beyond the
abilities of previous analyses. We show that shape anadysjmented with dom-
inance information is able to precisely model sharing foargé range of data
structures in real programs and in contrast to more exmepsoposals based on
logic languages (e.qg., extensions of first-order predilcgfie with transitive clo-
sure), dominance properties can be efficiently implemeintedshape analyzer.

1 Introduction

Precise reasoning about the structure of the program heapdgal to understanding
the behavior of a given program, particularly for objectented languages. Traditional
points-toanalyses, which calculate sharing properties based oseaagregations of
the heap (for example by coalescing all cells from the saioeation site and ignoring
program flow [17]), are known to be too imprecise for many ayaions. More precise
shape analysitechniques [1,6-9,12,15,18,19] have been proposed whexnanourate
information is desired. These analyses recover precigenmgtion by distinguishing
heap cells based on additional reachability, allocatite sir type information. Using
this kind of information, these analyses can precisely rhi@aeirsive data structures [6,
8,12,15] and composite structures [1,7,12,19] (such & afllists or a tree containing
pointers to user—defined multi-component objects).

Most work on shape analysis has focused on existential)(sharing properties
(and by negation, separation properties) of pointers dabbrs—the fundamental ques-
tion asked of the abstract heap representations is whetbeatistract referencesay

represent pointers thatias each other. While this is often enough to prove many so-
phisticated properties of data structures that have larat®mounts of sharing or where
the sharing pattern is simple (e.g., variable aliasing rdasoning becomes overly re-
strictive (and imprecise) for more complex subset relatidps among sets of shared
objects. Such relationships arise in programs that useiptaultiews of the same col-
lection of objects (for efficiency a class might keep the saat®f objects in &ectoras
well as in aHashtabld, and in algorithms that extract and manipulate sub-cttas
(in mergesorwith auxiliary storage, the contents of the two partitions disjoint and
their union is the same as the original list) and when perfiognupdates on a set of
shared elements (if the arrdycontains the same set of objects as the ai#yen ap-
plying the functionf to every element i\ implies thatf mustalso have been applied
to every element ifB).

We introducereference set dominancelations that track set relationmgst=,
andmustC) between the targets of sets of variables/pointers in tinerede program.
Thus, reference set dominance is stronger than, and subsliasing (which only
tracksmust= between single variables/pointers). We show that when estirg shape
analysis is extended with two simple relations to track thesihtommonly occurring
reference set dominance relations we can efficiently andggly model many sharing
properties in the program and how these properties effedbd¢havior of the program.

We have implemented a shape analysis framework with doro@afiormation and
evaluated the effectiveness of the dominance relationsairkwown Java benchmarks
that manipulate shared heap structures. Our benchmarhissists of a version of the
JOlden [3] benchmarks, and several benchmarks from the SR8 [16] suite, for
which we recover precise shape information within less #haminute of running time.

Sharing relations between sets of objects, including damge relations, can be
simulated in general logic languages by quantification witfiorall-exists” quantifier
structure (i.e., for all objects pointed to by a referencariray A, does there exist a
reference in arraf pointing to the same object?) along with support for disfiomcof
reachability relations. However, the introduction of geguantification and disjunc-
tion makes abstract reasoning computationally expeng2ivéristead, as demonstrated
in this paper, these properties can be efficiently trackeidpof existing shape analysis
techniques with enough accuracy to prove many importamirghproperties.

2 Example and Motivation

Consider the three loops in Figure 1: array initializatifittering elements into a sub—
collection, and updating the contents of the sub—collecfithe example uses a dummy
object of typeData which has a single integer fiefd

The first code fragment allocates an arfathen fills it with Data objects which
have random non—negative values stored in thefields. The second loop scans the
array for elements that have positive values inftlields and constructs a neésector
of these elements. If these loops are analyzed using a sthsttipe analysis (described
in Section 5), we get the abstract heap graph shown in Figlae & this figure we
simplified the edge/node labels to focus on the concept of mastsharing relations
between sets of objects can be used to precisely model tlawibelf a program.

1 Data[] A = new Data[N]; 4 Vector V = new Vector ();

2 for(int i = 0; i < N; ++i) 5 for (int i = 0; i < A.Length; ++i)
3 Ali] = new Data(abs(randint())); 6 if (A[i].f > 0) V.add(A[i]);

7 for(int i = 0; i <V.size(); ++i)

8 V.get(i).f = 0;

Fig. 1. Initialize Array, Filter positive values, and Upddtdields

1 A] B.V]

((1oatan) [3 Vector]

[2.7]

2, Data, f:0

[4,7] v [5.7]

4, Data, f:+

@)

Fig. 2. Abstract model and two possible concrete heaps it represent

The simplified model shows the variablereferring to a node with af tag of 1
which abstracts an object of tyfata[] . There may be many pointers stored in this
array (these pointers are abstracted by the edges wiild'th2, 4) since these pointers
are stored in an arrays we give them the special stooffget?. Since there are two
outgoing edges the pointers stored in the array may eitlier te objects abstracted
by node 2 or to objects abstracted by node 4. The notdtibn andf:+ indicates
the values of the integer fields using a simpign domain [5], wherd:0 in node 2
indicates that all the objects that are abstracted by thde fi@ve the value 0 stored in
thef field while thef:+ entry in node 4 indicates that all the objects abstractetaty t
node have values in the randeco) in theirf fields. Figure 2(a) also shows the variable
V which has an edge to a node abstractingator object. The pointers stored in this
vector are abstracted by edge 5 and these pointers refeject®bbstracted by node 4.

Based on this information either of the concrete heaps shiowigure 2(b) or 2(c)
are consistent with this model (i.e., they are valid conzagibns). In Figure 2(b) we see
that arrayA contains 3Data objects (some of which have 0 field values and some of
which have positive values) the first and third of which asoatored in th&/ector
V (which only contains objects with positive values). Thispes clearly a possible
result of the construction and filter loops in our examplewéf look at the concrete
heap shown in Figure 2(c) it is apparent that this prograne stainfeasible since the
contents oV are not a subset & and there is ®ata object inA with a positive field
value but this object is not iW. However, this program model is consistent with the
information provided by the abstract graph model, as thetfet edges 4 and 5 end at
the same node only means that theray exist an object that is referred to by both a
pointer abstracted by edge 4 and a pointer abstracted byZedgeorder to precisely
represent these desirgdistsharing relations between various sets of pointers stored i
the array and vector we need to extend the model with additioformation.

While there are shape analysis techniques [7] that canrditey using reachability
and connectivity information, that after the executionlué# first two loops théata

DomEQ={(4, 5)}
[1, A] [3, V]

[1, Datall, ((1})] [3, Vector, ((3})]

[6,7] [57

5, Data, f:0, ({6}) 4, Data, f:+, ({4}, {5})

Fig. 3. Model With Dominance Information

objects in the vecto¥ are a subset of the objects in the array they cannot model the
stronger property; that evefyata object with apositivef field in the arraymustalso
be in the vectoWw.

The second property is critical to the ability to determine ¢ffect of the third code
fragment, where all of the elements in the vecdtonave theirf field set to 0. If the
analysis was unable to determine that every obje& with a non—zerd field must
be in the vectol then it will be unable to determine that setting thdield of every
elementinV to 0 implies that thé field of every object imPA mustalso be 0.

To accomplish this our analysis traatsminance equivalencelations on the heap
(in addition to connectivity and shape properties). Thawestrack if two edges abstract
sets of references thatustalways refer to exactly the same set of objects and given a
node which sets of edges abstract references such that@vject represented by the
node is referred to by a reference in this set.

These additional dominance properties allow the analggisdcisely model the re-
sult of the construction and filter loops in our example, thedel enhanced with the
dominance properties is shown in Figure 3. In Section 4 wendefnd add two dom-
inance relations to the model. TRB®MEQelation which tracks which edges abstract
sets of references that always refer to the same sets oftepgaa for each node we
add a list of sets of edges such that every object abstragtéitetnode is referred to
by a references represented by one of the edges in the setiviely these additional
relations tell us that the set of objects referred to by mfees abstracted by edge 4 is
equal to the set of objects referred to by references asttdy edge 5. This informa-
tion and the structure of the graph implies that every olgemted in the vectov must
also be stored i and also that if an object is storedArit either has the value 0 stored
in thef field or it is also stored itV (which as desired, excludes the concrete heap in
Figure 2(c) from the set of feasible concretizations).

This last property then allows us to precisely model thedthdop in the running
example. In particular we know that since every objechiwith a non—zerd field is
stored inV we can infer that if every object i has thef field set to 0 then after the
loop every object i will have 0 in thef field. A detailed example of how the analysis
of the update loop and the subset computation is accomglistie Section 6.

3 Concrete Heap and Reference Set Dominance

The semantics of memory are defined in the usual way, usingsdroament mapping
variables into values, and a store, mapping addressesatites; We refer to the en-

vironment and the store together as the concrete heap, whicbated as a labeled,
directed multi-grapliV, O,R) where eaclv € V is a variable, eacb € O is an object

on the heap and eache R is a reference (either a variable reference or a pointer be-
tween objects). The set of referenées (V UO) x O x L whereL is the set of storage
location identifiers (a variable name in the environmentglfidentifier for references
stored in objects, or an integer offset for references dtorarrays/collections). For a
referencda, b, p) € R, we use the notatioa-> bto indicate that the object (or variable)

a refers taob via the field name (or variable identifigp)

A regionof memoryd = (C, P,Rin, Rout) consists of a subs&C O of the objects in
the heap, all the pointeB= {(a,b,p) e R|a,b e Crab b} that connect these objects,
the references that enter the regRp= {(a,b,r) e R|ac (O\C)AbeCAra- b}
and similarly a set of references that exit the reglan = {(a,b,r) e R|ac CAbe
(O\C)ra- b}

Definition 1 (Reference Set Dominance).etl = (C,P,Riy, Rout) be a region, and let
Rs C Ry and R, C Rip. We define theargetsof these reference sets, ¥ {o eC|Jac
OrelLst(aor)eR}and T={0deC|3a €O,;r' eLs.t(d,0,r) R} We
define the following relations:

1. RydominateX,if T, C Ts.
2. R, R, aredominance equal Ts = T.
3. Rsregion dominate8! if C C T.

We note that iRs region dominate§&], wherel = (C, P,Rin, Rout), then for anyR, C Riy
then Rs dominates R Which is useful later for compactly representing simpled(a
common) subset relations.

4 Abstract Dominance

Our abstract heap domain is based ondtwage shape grap@] approach. Arab-
stract storage grapiis a tuple of the forn{V N E) whereV is a set of abstract nodes
representing the variablel,is a set of abstract nodes (each of which abstracts a region
O of the heap), an& C (VUN) x N x L are the graph edges, each of which abstracts
a set of pointers, and is a set of abstract storagéfsets(variable names, field offsets

or the special offse? for references stored in arrays/collections). We extersddéfini-

tion with a set of additional relatiors that further restrict the set of concrete heaps that
eachstorage shape grapaibstracts. Thiabeled storage shape graphs (Issghich we
refer to simply asbstract graphsare tuples of the forrﬂ\/ N,E U)

Definition 2 (Valid Concretization of a Issg). A given concrete heap h isvalid con-
cretizationof alabeled storage shape grapff there are functionsgly, Mo, Iy such that
the following hold:

—r,:V—Vandis 1-1/1,: O— N andfT; : R— E are functions.
— h, Iy, Mo, N, satisfy all the relations itJ.
— h, Iy, Mo, 1, are connectively consistentith g.

Where h1y, Mo, [1; are connectively consistentith g if:

— V01,00 € 0s.t.(01,02,p) €R,Je€ Este= Iy ((01,02,p)), € starts atl1y(01),
ends atll,(02) and eoffset= p. A

—-VYveV,0e0st(v0,v) e R,JecE s.t. e=TI((v,0,V)), e starts atlly(v), ends
at 1,(0) and eoffset=v.

In Section 2 we implicitly introduced several relatiomgpe and sign, which are
relations on the nodes in the abstract graph. To check if engdoncrete heap and
maps/lly, Mo, [, satisfy these relations (and the other properties we usa)egd to
look at the pre—images of the nodes and edges in the absteqttggunder the maps
Iy, Mo, My. We use the notatioh | 4 e to indicate the set of references in the concrete
heaph that are in the pre—image efunder the maps and similarlly,| 4 n, to indicate
the region of the heap that is the imagenafnder the maps.

As an example for théype relation, we add a relatiotn, {ty,...,7}) to U for
each node irN, where Tj are types in the program and sayfly, o, 1 satisfies
(n,{1y,...,7}) iff {typeof (o)]|objectoch |gn} C {1y,...,Tc}. Thesignrelation
can be similarly defined and a number of other useful progedre added in Section 5.

We introduce two instrumentation relations which allow agrack many useful
dominanceproperties:edge dominancewhich relates two abstract edges, amtle
dominancewhich relates a set of abstract edges to an abstract node.

Edge Dominance Given two edge® € € E, we saye is edge dominance equivalent
to €, writtene=qom €, iff every valid concretizatioh of the abstract grapgpmust
satisfy(h | g €) dominance equeh |4 €). .

Node Dominance Given a set of edgels’ C E and an abstract nodec N we sayE’
node dominates,nwritten E’ O n, iff every valid concretizatiorh of the abstract
graphg must satisfyJ{h |g € | € € E’} region dominatesh |4 n).

Proposition 1. Let g= (V,N,E,U) be an abstract heap, h a valid concretization of
g, nn’ € N be abstract nodes, € € E abstract edges, and,E’ C E sets of abstract
edges.

. If{e}0nandh|ge=0thenh|gn=0and h|4€ = 0for all € ending at n.
. Ife=gom€ andh|ge=0thenh|g€ = 0.

. If {e} Onand{€} Onthen e=4on €.

. If{e}0nandh|gel =1thenlh |gn|=1.

A WDNPF

We have restricted the definition of tlabstract dominanceelations to equality of
edges plus a special relation on nodes. We could define a reasra relation, where
subset relations between the targets of sets of edges akedraHowever, this later
formulation would require tracking a binary relation on thewer set ofE which is
undesirable from a computational standpoint.

5 Full Abstract Heap Graph Definition

In order to analyze programs with the desired level of precige need to use a number
of other relations that have been introduced in previouskyjb—14] to the graph
model.

5.1 Additional Instrumentation Properties and Relations

In addition to tracking edge and node dominance relatidms,nodes and edges of
storage graphs are augmented with the following instruatemt relations.

Linearity. To model the number of objects abstracted by a given nodeferences by

an edge) we uselmearity property which has two possible values: 1, which indicates
that the node (edge) concretizes to either O or 1 objectsré@e€es), and the value,
which indicates that the node (edge) concretizes to any euwitobjects (references)

in the rangd0, «).

Abstract Layout. To approximate the shape of the region a node abstractsnéheses
uses theabstract layoutproperties{(S)ingleton (L)ist, (T)ree (M)ultiPath, (C)ycle}.

The (S)ingletonproperty states that there are no pointers between any afbijeets
abstracted by the node. Tfig)ist property states each object has at most one pointer to
another object in the region. The other properties cornedpothe standard definitions
for trees, DAGs, and cycles.

Connectivity and I nterference. The heap model uses two relations to track the potential
that two references can reach the same heap object in ttnrbgit a particular node
represents. For this paper we use simplified versions aed tfe reader to [13] for a
more extensive description of these relations.

Given a concrete regidd = (C, P, Rin, Rout) and objects, b € C, we sayaandb are
relatedin O if they are in the samereakly—connectédcomponent of the grapit, P).

To track the possibility that two incoming edge® to the noden abstract refer-
ences that reach the same object in the region abstractedbyntroduce theonnec-
tivity relation. We say, € areconnecteavith respect ta if theremay3(a, b,r) € (h |4
e),(@,b,r') e (hlg€)s.tbb e(h|gn) A (b b arerelated. Otherwise we say the
edges arelisjoint.

To track the possibility that a single incoming edgto the noden abstracts mul-
tiple references that reach the same object in the regiomaaisd byn we intro-
duce theinterfererelation. An edgee representinterfering pointers {p) if there may
J(a,b,r),(@,b,r") e (h|ge) s.it.(a,b,r) # (&,b/,r') A (b, b’ arerelated). Otherwise
we say the edge representsradn—interferingoointers Qp).

5.2 Heap Representation

We represent abstract graphs pictorially as labeled, @idemulti-graphs. Each node
in the graph either represents a region of the heap or a Varighe variable nodes are
labeled with the variable that they represent. The nodessepting the regions are rep-
resented as a recofidl type scalar layout linearity nodeDom] that
tracks the instrumentation properties for the object tyjgsd, the simple scalar do-
main (scalar), thelayout, the number of objects represented by the ndidedrity), and
the edge sets that dominate the nagledeDon). To simplify the figures we omit fields
from the labels when they are the default domain vallsg(t= S, linearity = 1).

As in the case of the nodes, each edge contains a record dois tadditional
information about the edge. The edges in the figures are septed as recordsd

1 Two nodes are weakly—connected if there is a (possibly mopsg path between them treat-
ing all edges as undirected.

offset linearity interfere connto }. Theoffsetcomponent indicates the
offsets (abstract storage location) of the referencesattesabstracted by the edge. The
number of references that this edge may represent is tracikedhe linearity relation.
Theinterfererelation tracks the possibility that the edge represerféseaces that in-
terfere. Finally, we have a fieltbnntowhich is a list of all the other edges/variables that
the edge may be connected to according todtwenectedelation. Again to simplify
the figures we omit fields that are the default domain valinedrity = 1, interfere=

np, connto= 0).

Finally, we use a global equivalence relation on the edgashatnacks the domi-
nance equivalence relatiorBdmEQn the figures).

The local data flow analysis is performed usindisjunctive power domaifiL0]
over these graphs. Interprocedural analysis is performadcontext-sensitive manner
and the procedure analysis results are memoized. At eathkiteathe set of graphs
is joined into a single graph and the call is analyzed usiig dghaph as the context;
see [11] for more details.

5.3 Abstract Operations

We now define the dataflow transfer functions for our absgeaph domain, including
how the dominance information is updated. The domain omeraresafeapproxi-
mations of the concrete program operations. For brevity m# proofs of these safety
properties (which rely on straight forward case—wise reaspabout the graph struc-
ture and the instrumentation relations/properties). Res¢ algorithms we also assume
that all the variables have unique targets (in practice ithidone by creating a new
model for each possible variable target as needed).

Tests: When performing tests we generate one version of the abgfragh for each
possible outcome. For the nullity test of a variable we @eate model in which the
variablemustbe null and one model in which the variabheustbe non—null In the
case where the variable is assumed tonbk we are asserting that the concretization
of the edge that represents the variable target is emptys, Thilne variable dominates
a node we infer that the node does not represent any live tsbigal all the other
incoming/outgoing edges must also have empty concratizaitiSimilarly any edge
that is=q4omto the variable must also have an empty concretization (andbe removed
from the graph). Algorithm 1 gives the code for this openatio

In the case of an equality comparison €= y) between two variables whiaghay
be non-nullwe can strengthen the information we have in the models tyaesent
the true and false branches. In the case where we assumsthettens true, ik and
y refer to different nodes in the graph then the only way theyloa equal is if both
variables arewull , otherwise we add the fact that=4on y to the model. In the case
where we assume the test must be false then we can check d#tienx =q4omy and
if it does we can rule this path out as being infeasible.

Variable AssignmentThe variable assignment operatian € y) does not need to per-
form any complex manipulations on the heap since these tipesavere done during
previous analysis steps as needed. Thus, we simply updatartiet node and domi-
nance information for the variableto be the same as the varialgle

Algorithm 1: Assume Var Nully == null istrue)
input : graphg, varv
e, «— the edge representing the targewpf
n « the target node dd;
if ey O nthen
Enun < {all incoming edges ta};
else
Enun < {&v} U{€|€ =gom&v};
for edge e= Epy) do
g.removeEdge);

Load: The load operationx = y.f) first computes which node is the target of the
expressiory.f , creating a more explicit representation as needed (Stibsex4).
Then it adds an edge from to this node and if the target of is unique (represents
a single unique object on the heap) then we know the targetrofist be equal to the
target ofy.f .

Algorithm 2: Load x = y.f)
input : graphg, varx, vary, field f
nullify x;

if y.f # null then
g.materialize(the unique target pff);

n « target node of;
e« the unique edge atf;
assignx to refer to the target of;

if n.linearity = 1 A e.linearity = 1then
setx dominance equal te;
if e dominates the target nodleen setx dominates target node ef

Store: The store operatiox(f = y) begins by determining if the locationxaf can

be strongly updated. If the node)(referred to byx is of linearity 1 then it is possible

to do so. In this case there is at most one object that is litledriarget region so either

X points to this object ok is null, since we assume the latter case cannot happen (it
would be anull pointer dereference) we knowrefers to the single object that the node
represents. Thus, we can erase any edges with filedd. Once we have completed the
testing and removal of any edges stored at the fielk create a new edge representing
the newly stored pointer (which refers to the same thing)adust as in the case of the
loads the new edge is dominance equal tand ify dominates a node then so does the
newly created edge.

5.4 Materialization

The materialization operation is used to transform singlarsary nodes into more
explicit subgraph representations. The operation is defimenodes with_ist, Treg or
Singletonlayouts and is further restricted based on the number ofnriieg edges to
the node and the connectivity relations of these edges.Heoexample this paper we
only need a simple version &ingletonmaterialization. Full definitions for the other
operations can be found in [12].

Our materialization operation oBingletonnodes and is restricted to handle the
following case and otherwise conservatively leave the sargmegion as it is: if the
incoming edges can be partitioned into 2 or more equivaleteesses based on the
connectedelation. Once we have identified a node and the edge pasitie create a
new node for each partition.

When iterating through arrays/collections with an integamiable,i , we split the
edges with the offset (which represent the contents of the array/cotkegtinto mul-
tiple edges with three speciaffsetsthat partition the pointers based on their position
relative to the index variablie. The offsefat (at index) is used for the edge which rep-
resents the single reference stored in indeXhe offsetbi (before index) is used for
edges that represent pointers stored in indices lessi thimally, the offsetai (after
index) is used for edges that represent pointers storedliods greater thain.

DomEQ={} DomEQ={}
[1, A] 3.Vl [1, A] 3, V]

(1. Datal, (1) (3, Vector, (3) 1, Datal], ({1) 3, Vector, ({3))

[2, ai, w]

2, Data, f:0+, w, ({2})
2,7, w] v Y
2, Data, f:0+, w, ({2)) [4: Data, £0+, ((4)

(a) Result From Initialization Loop (b) Load ofAJi] (when i = 0)

[4, at]

Fig. 4. Load of A[0] on result of first loop

Figure 4(a) shows the heap model that captures all of thelpjessates at line 4 of
the example program. The variatfieefers to a node with the identifier 1, which repre-
sents &ata[] array, and we know it represents at most one array (the defanitted
linearity value of 1). This array may have multiple pointers stored,irepresented by
the linearity value w in the edge with id 2. Each of these pointers refers to a unique
Data object since the edge has the defanterferevalue ofnp. Thef:0+ entry in-
dicates that all objects abstracted by node 2 have valuégeirangd0, «) in their f
fields. Finally based on thg2} entry of thenodeDonset for the node 2, we know that
each object abstracted by node 2 is referred to by a poinstreatted by edge 2.

The result of the loadA[i] wheni = 0 during the analysis of the first iteration
of the filter loop (line 5), is shown in Figure 4(b). In this figuwe have split edge 2
from Figure 4(a) into two edges, one representing the positeed at index 0 (edge
4, with offsetat) and one representing all the pointers stored in indites) (edge

2, with offsetai). We have also split the node which representdibta objects into
a node representing the object targeted by the pointer iexi@dnode 4) and a node
representing the objects targeted by the pointers storégkinther indices (node 2).
Since we know that the edge that split edge dominated the thadevas split we
know that the resulting edges in Figure 4(b) must dominaedkulting nodes (edge 2
dominates the node it refers to and edge 4 dominates the hoferis to). Further we
know that edge 4 represents a single pointer (it represkatsingle pointer af\[i])
and, since it dominates the node it refers to, that node repsésent at most one object
(the default omittedinearity value of 1).

6 Examples

6.1 Filter Loop Example

The filter loop (lines 5-6) demonstrates how the analysis aeeninance information
and the control flow predicaté[i].f > 0) toinfer additional information about the
heap. In particular that the set of objects store¥ imustequal the set of objects with
positivef fields inA.

DomEQ={(4, 5)} DomEQ={}
[1,Al B.V] [1, Al B.V]

(1. DataD, (1) (3. vector, @31) (1. Datap, (1) (3. vector, (31)

[4, at] [5, 7]
v [2, ai, w] [4, at]

((4Data f+, (@) (5)) (2 Datafo+,w (2)) (4 Datafo,(4)]

[2, ai, w]

2, Data, f:0+, w, ({2))

(a) Assert Test is True (b) Assert Test is False

Fig. 5. True and False Conditional Results

In Figure 4(b) we show the result of evaluating the expres8iil wheni = 0.
To simulate the effect of the tesA[i].f > 0) on the state of the program we create
two new models; one for when the condition is true and one fegmthe condition is
false.

Figure 5(a) shows the heap model that results from assuméatgte tesAl[i].f
> 0 istrue and the entry is added to thé&ector V . Since the test succeeds and we
know A[i] refers to a single object (the node has the default omiitedrity value
of 1) we can update the scalar information to show thaf thield must be greater than
0 (thef:+ label). We have updated the structural information by agldtie edge 5 to
represent the pointer that is stored into the vector obfgicce we know this pointer
refers to the same object Afi] , which is represented by edge 4, we add the entry (4,
5) to theDomEQrelation and since edge 4 dominates node 4 we also know tgat®d
also dominates node 4.

Figure 5(b) shows the heap model that results from assurhatgte tesh[i].f
> 0 is falseand the entry is not added ¥ Since the test fails and again we know

Ali] refersto a single object we update the scalar informatiahtav that thé field
must equal to O (thE0 label).

DomEQ={(4, 5)} DomEQ={(4, 5)}
[LA] BB.V] [1,A] BV

1, Data[], ({1}) 3, Vector, ({3}) 1, Data[], ({1}) 3, Vector, ({3})

(4, bi, w, (5)] 52w, @) 4,7, w, (5)] [5, 72 w, @]

[2, ai, w] [6, bi, w] v M [6,2, w] \

(2. Data, fo+, w, (2)] | (5 Data £0,w, (6})) (4 Data, £+, w, (4}, (5)) (5. Data, £0, w, ((6))) (4, pata, £+, w, @4}, 51

[7,at]

Y
6, Data, :0+, ({7})

(a) Fixed Point of Loop Analysis (b)i < A.Length False, Exit Loop

Fig. 6. Fixpoint and Exit of Filter Loop

Figure 6(a) shows the fixpoint model which represents allsthées that are gen-
erated in the loop. We see that there may be many elements wettiorV and many
elements that are not added to the vector (represented legties with thdi labels, 4
and 6 respectively). Since we tracked the dominance relafi@ach individual object
as it was processed we know that every object referred to lmjirdagy represented by
edge 4 must have been added to the ve¥tand thus is also referred to by a pointer
represented by edge 5. This implies that edge 5 is dominanpdeagent to edge 4 and
thus both edges 4 and 5 must dominate node 4.

If we assume the < A.Length test returns false then treg andai edges
(edges 7, 2) must have empty concretizations and can benelieti (as they abstract
the pointer stored at indéxand pointers stored at indices larger thdnFigure 6(b).
Thus, as desired the analysis has determined that all tleetshyith a non—zerb field
have been stored in the vectdr(since node 5 only abstracts objects with 0 in the
field and edge 44om edge 5).

6.2 Update Loop Example

For brevity we omit descriptions of how the dominance infatimn is propagated dur-
ing the individual operations of the update loop (lines &) focus on how this infor-
mation is used to improve the precision of the analysis testithe exit of the loop. The
fixpoint model for the loop body is shown in Figure 7(a). Irstfigure we see that the
there are potentially many pointers that come before theentiindex position in the
vectorV (edge 10 wittoffsetbi) (all of which point to objects with 0 in the field). It
also indicates that the edges representing the current Indation (edge 8 witloffset
at) and the set of pointers that come after the current indetipngedge 5 withoffset
ai) dominate their respective target nodes (nodes 4, 8).

Ifthe exittest{ < V.size()) is false then we can infer that there are no entries
in the vector at indices that are greater than or equal fbhis implies that the edges
at andai (edges 8, 5) have empty concretizations since they reprpsériers stored

DomEQ={(4, 5), (7, 8), (9, 10)}

4, Data, f:+, w, ({4}, {5)

[7.7,8)] 18 at, (7)]

3, Vector, ({3})

8, Data, f:+, ({7}, {8})

1, Data[], ({1})

[6, 2, w]

5, Data, f:0, w, ({6})

19,2 w, (10)] [10, bi, w, (9]

9, Data, f:0, w, ({9}, {10})

(a) Fixed Point Update of Loop

DomEQ={(9, 10)}

1, Data[l, (1)) 3, Vector, ({3})

[6, bi, w]

5, Data, f:0, w, ({6})

19,7, w, (10)] 110, 2, w, (9)]

9, Data, .0, w, ({9}, {10)
(b) After Loop Exit

Fig. 7. Fixpoint and Exit of Map Loop

in indices greater than or equalito Based on the dominance equality relations (4, 5)
and (7, 8) this implies that edges 4 and 7 have empty conatietirs as well.

The result of this inference is shown in Figure 7(b). After test (and the removal
of the edges/nodes) there are no longer any pointers to fleetstwith non—zerd
fields in the vectoW or the arrayA. Thus, the loop has successfully strongly updated
all of the objects in the vectdr and this strong update information has been reflected
in the original arrayA. As desired the analysis has determined that all of the thijec
the arrayA have the value 0 stored in théirfields after the filter/map loops.

7 Experimental Evaluation

We have implemented a shape analyzer based on the instatianproperties and
dominance equivalences presented in this paper and esdltlz effectiveness and
efficiency of the analysis on programs from SPECjvm98 [16] thre entire non—trivial
JOlden [3] suite. The JOIden suite contains pointer—iriteriernels that make use of
recursive procedures, inheritance, and virtual methodsnwdified the suite to use
modern Java programming idioms. The benchmaaksace (modified to be single
threaded) andb are taken from SPECjvm98.

The analysis algorithm was written in C++ and compiled udigVC 8.0. The
analysis was run on a 2.6 GHz Intel quad-core machine with 4GRAM (although
memory consumption never exceeded 120 MB).

For each of the benchmarks we provide a brief descriptioroofesof the major
structures/features that are in the program. We mentiomtijer data structures used

Benchmarl.OC|Description Analysis TimeShape(@ShapeNDShapell
bisort 560 |Tree w/ Mod 0.295 Y P Y
mst 668 |Cycle w/ Struct. 0.155 Y Y Y
tsp 910 (Tree to Cycle 0.199 Y Y Y
em3d 1103Bipartite Graph 0.445 N P Y
perimeter |1114Tree w/ Parent Ptr 1.239 Y P P
health 1269 Tree w/ Mod 1.40g N Y Y
voronoi |1324Cycle w/ Struct 2.039 N Y Y
power 1752 Lists of Lists 0.459 Y Y Y
bh 2304N-Body Sim w/ Mo 2.119 N P P
db 1985 Shared/Mod Arrays 0.979 N P Y
raytrace |5809Shared/Cycle/Tree 42.913 N P Y

Fig. 8. ShapeO is the best analysis reported in the literature,e®ags the shape results of the
baseline analysis without dominance information, and 8Baip the analysis in this paper with
dominance information. LOC is for the normalized prograpresentation including library stubs
required by the analysis. Analysis Time is the analysis fion&ShapeD in seconds.

(Trees, Lists of Lists, Cycles, etc.) and if the program liganodifies the data struc-
tures (w/ Mod). Some of the benchmarks have slightly morenoed structuresnst
andvoronoi which build globally cyclic structures that have signifitéocal structure,
bh which has a complex space-decomposition tree and shaiatipres, andaytrace
which builds a large multiccomponent structure which hadicytructures, tree struc-
tures and substantial sharing throughout. We also notesandvoronoi begin with
tree structures and process them building up a final cyelictire during the program.
These benchmarks thus exercise a wide range of features antidysis based on: the
types of structures built, modification of these structusbsring of the structures, use
of multi-component structures, and the use of arrays/ciities?

To assess the accuracy of the analysis, we report, iBllapeQShapeNDShapeD
columns of Table 8, the results of various shape analysimtques. The&Shapedists
the most accurate results from the related literature [, 65, 18, 19], theShapeND
column is the result for the baseline analysis from this pggeminance information
disabled) and th&hapeDcolumn is the result for the analysis from this paper with
dominance information enabled. We use three categorietéoaccuracy of the anal-
ysis. Y(es) means the analysis was able to provide shapehamioshg information for
all of the relevant heap structures in the program. P(ariglans the analysis was able
to determine the precise shape for some of the data strgchutethat some impor-
tant properties were missed. N(0) means the analysis falgaecisely identify the
shape/sharing information for a substantial portion oftthap data structures.

The benchmarksaytrace, db and bh (which to the best of our knowledge have
not been analyzed using other shape analysis techniques) iamge of complex data
structures, destructive operations, and forms of shatgden data structures. In these
benchmarks the information provided by the dominanceicglats critical to precisely
modeling shape, connectivity and sharing properties. @ beschmarks are also a fac-
tor of 2-4 larger, and build much more complex structuresntivhat is usually reported

2 Seewww.cs.unm.edu/ ~ marron/software/software.html| for examples of the
analysis results and an executable analysis demo.

in the literature. Thus, the small runtimes (less than a teiper benchmark) indicate
that even with the addition of the dominance relations thedyesis is computationally
tractable.

Our experiments demonstrate that dominance equivalemdescased to efficiently

and precisely analyze common programming idioms to bulidres, and modify non-
trivial data structures. Based on these results we belieaethe proposed approach
presents a basis for a heap analysis that can be used ircpriactirovide detailed heap
information for a range of optimization and verification &pgtions.

Acknowledgements.The authors thank Mooly Sagiv, Roman Manevich, and Amer
Diwan for their useful comments on earlier versions of ttaper.

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’'He&rWies, and H. Yang. Shape
analysis for composite data structures ClAV, 2007.

J. Berdine, C. Calcagno, and P. O’'Hearn. A decidable feagrof separation logic. In
FSTTCS2004.

. B. Cahoon and K. S. McKinley. Data flow analysis for softevarefetching linked data

structures in Java. IRACT, 2001.

. D.R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis ofteesmand structures. RLDI,

1990.

. P. Cousot and R. Cousot. Systematic design of progranysasdtameworks. IiPOPL,

1979.

. A. Gotsman, J. Berdine, and B. Cook. Interprocedural slzagalysis with separated heap

abstractions. IBAS 2006.

. S. Gulwani and A. Tiwari. An abstract domain for analyzheap-manipulating low-level

software. InCAYV, 2007.

. B. Guo, N. Vachharajani, and D. August. Shape analysis wiductive recursion synthesis.

In PLDI, 2007.

. T.Lev-Ami, N. Immerman, and S. Sagiv. Abstraction forghanalysis with fast and precise

transformers. IICAV, 2006.

R. Manevich, S. Sagiv, G. Ramalingam, and J. Field. &brtlisjunctive heap abstraction.
In SAS 2004.

M. Marron, M. Hermenegildo, D. Stefanovic, and D. Kaytfficient context-sensitive shape
analysis with graph based heap modelsC{z 2008.

M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildostatic heap analysis for shape
and connectivity. IL.CPC, 2006.

M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefaimyp and D. Kapur. Sharing
analysis of arrays, collections, and recursive structureSubmission2008.

M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapdeap analysis in the presence
of collection libraries. IlPASTE 2007.

S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shaplsisavia 3-valued logic. In
POPL, 1999.

Standard Performance Evaluation Corporation. JVM98sive 1.04, August 1998.
http://www.spec.org/jvm98.

B. Steensgaard. Points-to analysis in almost linea.timPOPL, 1996.

R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysi€dn2000.

H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. fasie, and P. OHearn. Scalable
shape analysis for systems code CAV, 2008.

