
Grado en Matemáticas e Ingeniería Informática

Universidad Politécnica de Madrid
Escuela Técnica Superior de Ingenieros Informáticos

TRABAJO DE FIN DE GRADO

Implementing Fully Homomorphic
Encryption Schemes

in FPGA-based Systems

Autor: Alejandro Ranchal Pedrosa
Director: Manuel Carro Liñares

MADRID, ENERO 2016

Contents

1 Summary 1
1.1 Spanish . 1
1.2 English . 3

2 Introduction 5

3 Architecture Overview 9
3.1 Maxeler IDE and MaxJ Language . 14

4 Background & Related Work 19
4.1 Number Theoretic Transform . 21
4.2 Polynomial Multiplication . 25
4.3 Chinese Remainder Theorem . 26
4.4 Modular Reduction . 29
4.5 Brakerski-Gentry-Vaikuntanathan Homomorphic Encryption 31
4.6 Parameter set . 32
4.7 Related Work . 33

5 Implementation 35
5.1 Parameter set Selection . 37
5.2 BGV & Polynomial Multiplication (CPU) 40
5.3 Polynomial Multiplication (FPGA) 43

6 Evaluation 54
6.1 Targeted Board . 54
6.2 Modular Reductions . 54
6.3 Polynomial Multiplication (CPU) . 57
6.4 Pease’s Polynomial Multiplication (FPGA) 60

6.4.1 Generic Polynomial Multiplication 64

1

6.5 Cooley’s Polynomial Multiplication (FPGA) 66
6.5.1 BGV (CPU vs FPGA) . 68

6.6 Comparison with Other Work . 69

7 Conclusions and Future Work 71

2

List of Figures

2.1 Client-server communication using HE and a traditional approach. . . 6

3.1 Circuit result of implementing algorithm 1 in a FPGA. Note the
pipeline architecture allows the elements to advance in the circuit at
the same cycle (tick). The diamonds represent accessing to the current
position plus an offset, the squares are just the values at that point of
the circuit, the circles represent operations and the upper and lower
sequence of numbers represent the input and output streams, respec-
tively. 12

4.1 Pease’s (left) and Cooley-Tukey’s(right) NTT(i.e. FFT over finite
fields of the form Zq[X]/Φm(X)) algorithms 23

4.2 Datapath of the Cooley-Tukey(top) and the Pease(bottom) FFT 16
ω (a).

The last stage of the Cooley-Tukey FFT leaves pairs of indexes to-
gether for the starting IFFT (with bit reversal order). The Pease
FFT follows the same I/O pattern within all the stages. 24

4.3 Straight forward (left) and Barret (right) modular reduction methods.
Note the algorithm is essentially the same but avoiding the division
in Barret’s. 29

5.1 Diagram illustrating the different blocks (modules) implemented and
how they are related. 36

5.2 Diagram illustrating the execution of PRECOMPUTED PARAM-
ETERS. Notice that pi follows the same notation as in section 4.6.
export_params writes the parameters inside the "data" subdirec-
tory. 39

5.3 Diagram illustrating the execution of BGV. 42
5.4 Butterfly FPGA execution graph. Note the different circuit depending

on the parity of the tick in order to write in even and odd RAMs in
each tick. 46

3

5.5 Pease’s FFT and bit reversal (for IFFT) I/O patterns for case N=16.
Note that the pair of coefficients (coefficients in the same cell) remain
intact between stage 2 and stage 3 & reverse_bits(x). Only
the position of the pairs is changed. Pairs of coefficient represent
coefficients that are read at the same time to perform the butterfly. . 47

5.6 FPGA simplified Kernel graph of the FFT. 49
5.7 Cooley-Tukey’s RAMs I/O patters for case N=16, numpipes=4 50
5.8 Different types of horizontal parallelism. All of them can be combined

to maximize the available resources. 53

6.1 FPGA Pease’s version, its equivalent CPU implementations and fastest
CPU implementation, without taking into account conversion into
CRT, for a polynomial length N=16384 63

4

List of Tables

6.1 Resource usage for simple 64bit and 128bit multiplication of two values
in FPGA. 55

6.2 Resource usage and latency for each of the reductions using pseudo-
Mersenne numbers. (I) is for 64bits words using p=0x439f0001, whereas
(II) for 128bits words using p=0x439f000000000001. 56

6.3 Resources and latency for each of the reductions using pseudo-Fermat
numbers. (I) is for 64bits words using p=0x40000003. (II) for 128bits
words using p=0x4000000000000031. 56

6.4 Resources and latency for each of the reductions using numbers that
are neither Fermat-like nor Mersenne-like. (I) uses p=0x40008901,
whereas (II) p=0x40000000809f0001 and (III) p=0x40000000039f0001. 57

6.5 CPU implementations of the PM given N = 2n = 16384. The rows
within the same row delimiters perform the same PM (are comparable). 59

6.6 Pease’s algorithm final version resources and latency. 60
6.7 FPGA Pease’s version, its equivalent CPU implementations and fastest

CPU implementation, taking into account conversion into CRT, for a
polynomial length N=16384 . 62

6.8 FPGA Pease’s version, its equivalent CPU implementations and fastest
CPU implementation, without taking into account conversion into
CRT, for a polynomial length N=16384 62

6.9 Times for using CRT for multiplicative groups that are not suitable
for them by extending the group to a bigger one. PMGMP represents
the multiplication not using CRT. Rows in the same block perform
exactly the same multiplication. 65

5

6.10 Results and configuration of Cooley’s different implementations, and
extended resource usage of Cooley-Tukey’s parallel implementation
(numpipes = 4) within the FPGA. numCRT represents the number
of parallel multiplication over different pi (horizontal parallelism).
numpipes represents the number of pipes used within each multipli-
cation over Zpi (vertical parallelism). 67

6.11 Execution times of the final versions of each of the algorithms, com-
pared to its equivalent in CPU and with the fastest CPU algorithm
for N = 32768 = 2n . 68

6.12 Encryption and decryption times depending on the chosen multiplica-
tion. 68

6

Chapter 1

Summary

1.1 Spanish

Las nuevas tecnologías orientadas a la nube, el internet de las cosas o las ten-
dencias "as a service" se basan en el almacenamiento y procesamiento de datos en
servidores remotos. Para garantizar la seguridad en la comunicación de dichos datos
al servidor remoto, y en el manejo de los mismos en dicho servidor, se hace uso de
diferentes esquemas criptográficos. Tradicionalmente, dichos sistemas criptográficos
se centran en encriptar los datos mientras no sea necesario procesarlos (es decir,
durante la comunicación y almacenamiento de los mismos). Sin embargo, una vez
es necesario procesar dichos datos encriptados (en el servidor remoto), es necesario
desencriptarlos, momento en el cual un intruso en dicho servidor podría a acceder
a datos sensibles de usuarios del mismo. Es más, este enfoque tradicional necesita
que el servidor sea capaz de desencriptar dichos datos, teniendo que confiar en la
integridad de dicho servidor de no comprometer los datos. Como posible solución a
estos problemas, surgen los esquemas de encriptación homomórficos completos.

Un esquema homomórfico completo no requiere desencriptar los datos para operar
con ellos, sino que es capaz de realizar las operaciones sobre los datos encriptados,
manteniendo un homomorfismo entre el mensaje cifrado y el mensaje plano. De esta

1

manera, cualquier intruso en el sistema no podría robar más que textos cifrados,
siendo imposible un robo de los datos sensibles sin un robo de las claves de cifrado.

Sin embargo, los esquemas de encriptación homomórfica son, actualmente, drás-
ticamente lentos comparados con otros esquemas de encriptación clásicos. Una op-
eración en el anillo del texto plano puede conllevar numerosas operaciones en el anillo
del texto encriptado. Por esta razón, están surgiendo distintos planteamientos sobre
como acelerar estos esquemas para un uso práctico.

Una de las propuestas para acelerar los esquemas homomórficos consiste en el
uso de High-Performance Computing (HPC) usando FPGAs (Field Programmable
Gate Arrays). Una FPGA es un dispositivo semiconductor que contiene bloques de
lógica cuya interconexión y funcionalidad puede ser reprogramada. Al compilar para
FPGAs, se genera un circuito hardware específico para el algorithmo proporcionado,
en lugar de hacer uso de instrucciones en una máquina universal, lo que supone una
gran ventaja con respecto a CPUs. Las FPGAs tienen, por tanto, claras difrencias
con respecto a CPUs:

• Arquitectura en pipeline: permite la obtención de outputs sucesivos en tiempo
constante

• Posibilidad de tener multiples pipes para computación concurrente/paralela.

Así, en este proyecto:

• Se realizan diferentes implementaciones de esquemas homomórficos en sistemas
basados en FPGAs.

• Se analizan y estudian las ventajas y desventajas de los esquemas criptográficos
en sistemas basados en FPGAs, comparando con proyectos relacionados.

• Se comparan las implementaciones con trabajos relacionados

2

1.2 English

New cloud-based technologies, the internet of things or "as a service" trends are
based in data storage and processing in a remote server. In order to guarantee a
secure communication and handling of data, cryptographic schemes are used. Tradi-
tionally, these cryptographic schemes focus on guaranteeing the security of data while
storing and transferring it, not while operating with it. Therefore, once the server
has to operate with that encrypted data, it first decrypts it, exposing unencrypted
data to intruders in the server. Moreover, the whole traditional scheme is based on
the assumption the server is reliable, giving it enough credentials to decipher data to
process it. As a possible solution for this issues, fully homomorphic encryption(FHE)
schemes is introduced.

A fully homomorphic scheme does not require data decryption to operate, but
rather operates over the cyphertext ring, keeping an homomorphism between the
cyphertext ring and the plaintext ring. As a result, an outsider could only obtain
encrypted data, making it impossible to retrieve the actual sensitive data without
its associated cypher keys.

However, using homomorphic encryption(HE) schemes impacts performance dras-
tically, slowing it down. One operation in the plaintext space can lead to several
operations in the cyphertext space. Because of this, different approaches address the
problem of speeding up these schemes in order to become practical.

One of these approaches consists in the use of High-Performance Computing (HPC)
using FPGAs (Field Programmable Gate Array). An FPGA is an integrated circuit
designed to be configured by a customer or a designer after manufacturing – hence
"field-programmable". Compiling into FPGA means generating a circuit (hardware)
specific for that algorithm, instead of having an universal machine and generating a
set of machine instructions. FPGAs have, thus, clear differences compared to CPUs:

• Pipeline architecture, which allows obtaining successive outputs in constant

3

time.

• Possibility of having multiple pipes for concurrent/parallel computation.

Thereby, In this project:

• We present different implementations of FHE schemes in FPGA-based systems.

• We analyse and study advantages and drawbacks of the implemented FHE
schemes, compared to related work.

4

Chapter 2

Introduction

Cryptography, the use of codes and ciphers to protect data has been used for
centuries. Cryptographic methods have traditionally focused on encrypting data
only when it is stored. Therefore, whenever someone wants to use such encrypted
data, decryption needs to be done first, after which one can use the data for whatever
purposes and encrypt the result (if stored).

With the rise of the Internet and "as a Service" approaches, however, this tradi-
tional workflow seems inappropriate. As shown in figure 2.1, traditional encryption
systems ensure the data is secure throughout the communication with the server.
Once the data is in the server and needs to be used for arithmetic operations or
program executions, it needs to be decrypted. For instance, in a client-server model,
as soon as the client data is transferred to the server and decrypted there, that data
can be seen by any intruder in the server, as well as by the server itself (which might
not be reliable). If the client has high security requirements because the data he
is sharing is private and sensible then not use these traditional cryptosystems in-
appropriate. Besides, the data might be confidential and whoever or whatever will
perform the computation in the server is not be trusted. From the server point of
view, ensuring high levels of security ensures more clients would be more willing to
share more data and, therefore, use more the servers.

5

message:
1 + 2 + 3 =?

Encrypt message

AxByC−

AxByC−

Operate over
encrypted data,
obtaining F

AxByC → F

No need to decrypt
F to use it

CLIENT

SERVER

HOMOMORPHIC CRYPTOSYSTEM

message:
1 + 2 + 3 =?

Encrypt message

AxByC−

AxByC−

Decrypt message
obtaining

1 + 2 + 3 =

Operate over
unencrypted data

obtaining 6

encrypt 6→F

Decrypt F to use 6

CLIENT

SERVER

TRADITIONAL CRYPTOSYSTEM

Figure 2.1: Client-server communication using HE and a traditional approach.

A possible solution to the previous issue would be to follow the protocol below:

1. Client encrypts data

2. Client sends encrypted data to server

3. Server computes over encrypted data

4. Client receives encrypted Output

5. Client decrypts output, receiving the same answer as he would have gotten if
he had sent unencrypted data.

Since traditional approaches cannot compute over encrypted data (step 3), Ho-
momorphic Encryption (HE) is introduced. From the mathematical point of view,
encrypting is roughly applying an injective application ϕ : M →M,M being the set
of elements of the unencrypted message (plaintext) andM the set of elements of the
encrypted message (ciphertext). Following the previous mathematical definition, an
Homomorphism between M andM implies that for any given a, b ∈M (that is, for
two messages), and a defined operation over elements in M (that is, a desired com-
putation over the two messages), ∗M , then ϕ(a∗M b) = ϕ(a)∗Mϕ(b). In other words,
the computation over two messages can be performed by encrypting both of them,
doing a different computation and decrypting. As the definition of homomorphism
requires one operation per set, we speak of homomorphism over groups (if only one
operation) or rings (if each of the sets have two operations). Taking the mathemat-
ical definition into the computation, the two operations refer to multiplication and
addition, with equality (since the application is injective). Any known program can
be rewritten using only these three operations, being possible therefore to encrypt a
whole program using HE and compute it without knowing the actual computation.

However, using HE, one operation in the plaintext space can lead to several op-
erations in the cyphertext space. Consequently, HE and decryption operations take
a rather significant amount of time compared to non-Homomorphic approaches. For
this reason, great effort goes to speeding up HE.

7

One of the approaches to speeding up Homomorphic schemes consists of using
High-Performance Computing (HPC) using FPGAs (Field Programmable Gate Ar-
ray), which covers HPRC (High-Performance Reconfigurable Computing). An FPGA
is an integrated circuit designed to be configured by a customer or a designer after
manufacturing – hence "field-programmable". FPGAs have, thus, clear advantages
for some algorithms , being the main one that, once a specific algorithm is compiled
into FPGA, a specific hardware circuit is generated, instead of generating instruc-
tions to be interpreted. The generated circuit is made of a finite set of different
modules that can be nested together in different ways and controlled through sig-
nals in order to perform the specific algorithm. FPGAs use a pipeline architecture,
which allows obtaining successive outputs in constant time and gives the possibility
of having multiple pipelines in parallel.

As a result of these differences between CPUs and FPGAs, the latter have specific
requirements that complicate programming for them. Furthermore, because com-
piling for FPGAs means programming a circuit, it is necessary to control circuit
signals as well as to design an interface for CPU-FPGA communication. Also, some
operations that can be performed in constant time for CPUs, such as accessing to a
random position in an array, are, if not impossible, rather expensive in terms of time
and resources. Finally, if the circuit to be generated for some algorithm requires more
modules than available in the specific board used, such algorithm simply cannot be
implemented in that specific FPGA. Consequently, the goal is optimizing execution
times and resources in a challenging programming paradigm and environment.

8

Chapter 3

Architecture Overview

As explained during the Introduction, a way of reducing the time consumption
of using FHE cryptosystems is through FPGAs (Field Programmable Gate Array),
which covers HPRC (High-Performance Reconfigurable Computing). An FPGA is
an integrated circuit designed to be configured by a customer or a designer after
manufacturing – hence "field programmable". FPGAs offer clear advantages for
some algorithms:

• pipeline architecture, which allows obtaining successive outputs in constant
time.

• Possibility of having multiple pipes for concurrent/parallel computation.

All industries have adopted FPGA-based systems since they offer hardware-timed
speed and reliability the same way application-specific integrated circuits (ASIC) do,
but they do not require costs higher than processor-based systems.

Every FPGA is made of a finite number of modules interconnected in a reconfig-
urable way. These modules are basically of four different types:

• Flip-Flops (FFs): Flip-flops are binary shift registers used to synchronize logic
and save logical states between clock cycles within an FPGA circuit. On every

9

clock edge, a flip-flop latches the 1 or 0 (TRUE or FALSE) value on its input
and holds that value constant until the next clock edge.

• Lookup tables (LUTs): LUTs are the essence of the logic units in the FPGA.
They are basically just a truth table that can be reconfigured depending on
the combinatorial logic needed (AND,XOR,OR,...). The programmer can also
configure its own lookup tables.

• DSPs: given the high resource consumption of implementing multipliers using
combinatorial logic, DSPs are prebuilt multiplier circuits.

• Blocks of RAM (BRAMs): Another key specification when programming for
FPGAs is the memory resource. BRAMs can be combined into a larger struc-
ture or used separated enhancing the parallelism within FPGAs.

The basic logic unit of an FPGA is referred to as configurable logic blocks(CLB),
also known as slices or logic cells, they are made from FFs and LUTs.

As previously mentioned, parallel pipes are one of the advantages of using FP-
GAs instead of processor-based systems. As long as the parallelized algorithm fits
within the resources of the target FPGA board, such algorithm can be implemented
efficiently. As an example , the datapaths shown in figure 4.2 can be implemented
as a parallel circuit, having each of the coefficients running parallel, assuming that
amount of multiplications and logic is small enough to fit in the FPGA resources.

Thanks to their pipeline architecture, FPGAs can benefit from instruction pipelin-
ing, illustrated in figure 3.1, which enables different data to queue through the circuit,
enabling a faster throughput.

10

Data: x
Result: y
for i = 1 to length(x)− 2 do

yi ← (xi + xi−1 + xi+1)/3;
end
return y;

Algorithm 1: Sample algorithm for figure 3.1.

11

Figure 3.1: Circuit result of implementing algorithm 1 in a FPGA. Note the pipeline
architecture allows the elements to advance in the circuit at the same cycle (tick).
The diamonds represent accessing to the current position plus an offset, the squares
are just the values at that point of the circuit, the circles represent operations and
the upper and lower sequence of numbers represent the input and output streams,
respectively.

Figure 3.1 shows a circuit for algorithm 1. A tick is the term used when referring
to a cycle in the FPGA execution. A tick can be thought of as a high-level clock tick
in an ideal FPGA in which every native operation takes exactly one tick to execute.
As such, figure 3.1 illustrates 6 ticks (or cycles) of algorithm 1. Notice during the
first 2 ticks the circuit performs no operation whatsoever, since it needs to fill the
offset −1, corresponding the xi−1 index in algorithm 1 (illustrated as a diamond with
−1 inside).

One can find a good illustration of instruction pipelining in the tick 5 of figure 3.1.
Prior to tick 5, no real output has been generated yet. However, by the end of tick
5, the first output, 1, is computed. At the same time, the result 5 is computed from
the first adder, the result 6 from the second one and the result 1 from the division
by 3. Since the first real output is calculated at tick 5, the latency (the number of
ticks from the first input to the first output) of algorithm 1 is 5. Note that, after
5 (the latency) ticks, each output elements comes in constant time, in this case one
per tick.

Besides the previously explained, one of the most interesting advantages of FPGAs
compared to CPUs has to do with its energy efficiency. When Fowers et al. [14]
compared the same algorithm in three different average targeted devices (CPU,GPU
and FPGA), they found that, being FPGA the fastest of them, it is at the same time
the most energy efficient. More recently, Microsoft is reporting a 3x higher energy
efficiency when using FPGAs as opposed to NVIDIA hardware [22]. However, as
Mittal et al. [19] recently stated when observing a general energy efficiency hierarchy,
even though FPGAs are clearly more energy efficient than GPUs and CPUs in a big
majority of works, the energy consumption greatly depends on the algorithm and its
specific implementation in each of the three units.

However, programming for FPGAs has some drawbacks that should be remarked.
The main drawback is its resource limitation. An FPGA has a number of resources
(FFs,LUTs,DSPs,BRAMs), which means that an algorithm can be executed by a

13

specific FPGA only if the amount of resources needed is lower than the amount
of resources available in the FPGA, obviating resource-related workarounds (such
as using LUTs to implement Multipliers instead of DSPs). Also, loops or if-then
control statements cannot be directly coded in FPGAs. Finally, random access to
arrays (data streams) is also not possible (apart from some specific exceptions which
will be detailed in section 5). This, among many other FPGA-specific programming
requirements, makes programming for FPGA a much more difficult task than just
adapting the algorithm from CPU.

Storing values within ticks, though possible using BRAMs, is not simple given the
impossibility of having more than two ports per RAM. Also, these ports cannot point
at the same memory position in the same tick. This basically means that one can
only read or write from two positions in each tick, not being possible to read from
the same position compute and store in the same position later. Also, compared to
CPUs and GPUs, FPGAs have low clockspeed, ranging from 60-300 MHz.

3.1 Maxeler IDE and MaxJ Language

When programming for FPGAs, there are some possible options. Two of the most
used programming languages are Verilog and VHDL (VHSIC Hardware Description
Language), syntactically similar to C and Assembly, respectively. Nevertheless, these
languages need to control hardware logic and signals, being clearly low-level. As any
other low-level language, they are tedious to program and maintain, being perhaps
not the best option when developing complex algorithms. Other option is to use a
cross-compiler generating VHDL or Verilog code out of a different language, such
as ROCCC [5], a C-to-HDL compiler. However, one of the most tedious tasks when
programming for FPGAs is not only generating FPGA-compatible code but also
interfacing with CPU. Other options similar to ROCCC are Bambu[1] (C-to-Verilog),
Nios-II C2H Acceleration Compiler [4] (by Altera) or FpgaC[2].

Maxeler Technologies [3] offers a set of tools, a Java-like language for FPGAs,

14

named MaxJ; MaxJ-to-HDL compiler with built-in interface to CPU through PCIe (a
serial bus standard used for high speed communication between devices); an extensive
documentation, debugging tools and FPGAs (hardware) already prepared to work
out of the box with some additional plugins (such as intercommunication between
FPGAs using shared Memory) in what they referred to as a Dataflow Engine (DFE).

Maxeler recommends using MaxIDE,an integrated development environment based
on Eclipse IDE. Every Maxeler project consists of three main parts:

• Engine Code: it is the code executed by the DFE (i.e. by the FPGAs), and
the code that defines its configuration and the type of interface with CPU.

• CPU Code: it is the code executed by the CPU, in which there should be an
specific invocation to the Engine Code.

• Run Rule: it defines the different compile options (Simulation or DFE, name
of the executable, etc.).

DFEs consist of a set of FPGAs and two types of memory: FMem (Fast Memory)
which can store several megabytes of data on-chip with terabytes/second of access
bandwidth and LMem (Large Memory) which can store many gigabytes of data
off-chip.

The dataflow engine is programmed with one or more Kernels and a Manager.
Kernels implement computation while the Manager controls data movement within
the DFE and with CPU. Given Kernels and a Manager, MaxCompiler generates
dataflow implementations which can then be called from the CPU via the SLiC in-
terface. The SLiC (Simple Live CPU) interface is an automatically generated inter-
face to the dataflow program, making it easy to call dataflow engines from attached
CPUs. This interface can be configured within the Manager. The overall system
is managed by MaxelerOS, which sits within Linux and also within the Dataflow
Engine’s manager. MaxelerOS manages data transfer and dynamic optimization at
runtime.

15

Code 3.1: AdderManager.maxj
1 package adder ;
2 class AdderManager {
3 public stat ic void main (String [] args) {
4 Manager manager = new Manager (new EngineParameters (args)) ;
5 Kernel kernel = new AdderKernel (manager . makeKernelParameters ()) ;
6 manager . setKernel (kernel) ;
7 manager . setIO (IOType . ALL_CPU) ;
8 manager . createSLiCinterface () ;
9 manager . build () ;

10 }
11 }

Code 3.2: AdderKernel.maxj
1 package adder ;
2 class AdderKernel extends Kernel {
3

4 AdderKernel (KernelParameters parameters)
5 {
6 super (parameters) ;
7

8 // Input
9 DFEVar x = io . input ("x", dfeUInt (32)) ;

10 DFEVar y = io . input ("y", dfeUInt (32)) ;
11

12

13 // Output
14 io . output ("z", x+y, dfeUInt (32)) ;
15 }
16 }

Code 3.3: adder.c
1 uint32_t dataIn [1 0 2 4] ;
2 uint32_t dataIn2 [1 0 2 4] ;
3 uint32_t dataOut [1 0 2 4] ;
4 const int size = 1024 ;
5

6 void main ()
7 {
8 for (int i = 0 ; i < size ; i++) {
9 dataIn [i] = i ;

10 dataIn2 [i] = size−i−1;
11 dataOut [i] = 0 ;
12 }
13 printf ("Running DFE.\n") ;
14 Adder (size, dataIn, dataIn2, dataOut) ;
15 }

Code 3.4: adder_roccc.c
1 typedef int ROCCC_int32 ;

16

2 void Adder (ROCCC_int32 in,ROCCC_int32 in2, ROCCC_int32& out)
3 {
4 out=in+in2 ;
5 }

Codes 3.1,3.2 and 3.3 illustrates the code of an example of adding two streams using
Maxeler tools. Also, code 3.5 shows the same example in VHDL, without interfacing
with CPU, generated by the subset of C needed for ROCCC, also shown in code 3.4.
Note that, although ROCCC C takes few lines of code, the generated VHDL has to
deal with signals (clk, rst, etc.). As ROCCC does not generate an interface VHDL-
CPU, using the generated VHDL code would mean understanding each of the signals
and write code for the interface. Maxeler generates such interface automatically with
the code in the Manager. At the same time, the Kernel implements the addition itself,
offering a code easy to understand and develop.

Code 3.5: adder.vhdl
1 l ibrary IEEE ;
2 use IEEE .STD_LOGIC_1164 . a l l ;
3 use IEEE .STD_LOGIC_ARITH.ALL;
4 use IEEE .STD_LOGIC_UNSIGNED. a l l ;
5 use work . HelperFunct ions . a l l ;
6 use work . HelperFunctions_Unsigned . a l l ;
7 use work . HelperFunctions_Signed . a l l ;
8

9 entity PassThrough i s
10 port (
11 c l k : in STD_LOGIC;
12 r s t : in STD_LOGIC;
13 inputReady : in STD_LOGIC;
14 outputReady : out STD_LOGIC;
15 done : out STD_LOGIC;
16 s t a l l : in STD_LOGIC;
17 in_in : in STD_LOGIC_VECTOR(31 downto 0) ;
18 in2_in : in STD_LOGIC_VECTOR(31 downto 0) ;
19 out_out_out : out STD_LOGIC_VECTOR(31 downto 0)
20) ;
21 end entity ;
22

23 architecture Synthes i zed of PassThrough i s
24 signal in21024 : STD_LOGIC_VECTOR(31 downto 0) ;
25 signal out_out1428 : STD_LOGIC_VECTOR(31 downto 0) ;
26 signal in719 : STD_LOGIC_VECTOR(31 downto 0) ;
27 signal s t a l l_p r ev i ou s : STD_LOGIC ;
28 signal a c t i v eS t a t e s : STD_LOGIC ;
29 signal PassThrough_done : STD_LOGIC ;
30 begin
31 done <= PassThrough_done ;

17

32 out_out1428 <= ROCCCADD(in719 , in21024 , 32) ;
33 process (c lk , r s t)
34 begin
35 i f (r s t = ’1 ’) then
36 s t a l l_p r ev i ou s <= ’ 0 ’ ;
37 a c t i v eS t a t e s <= ’ 0 ’ ;
38 in719 <= "00000000000000000000000000000000";
39 in21024 <= "00000000000000000000000000000000";
40 outputReady <= ’ 0 ’ ;
41 PassThrough_done <= ’ 0 ’ ;
42 out_out_out <= "00000000000000000000000000000000";
43 e l s i f (c lk ’ event and c l k = ’1 ’) then
44 outputReady <= ’ 0 ’ ;
45 s t a l l_p r ev i ou s <= s t a l l ;
46 i f (((s t a l l /= ’1 ’) or (s t a l l_p r ev i ou s = ’0 ’))) then
47 a c t i v eS t a t e s <= inputReady ;
48 end i f ;
49 i f (((inputReady = ’1 ’) and ((s t a l l /= ’1 ’) or (s t a l l_p r ev i ou s = ’0 ’))))

then
50 in719 <= in_in ;
51 in21024 <= in2_in ;
52 end i f ;
53 i f (((a c t i v e S t a t e s = ’1 ’) and ((s t a l l /= ’1 ’) or (s t a l l_p r ev i ou s = ’0 ’)))

) then
54 end i f ;
55 i f (((a c t i v e S t a t e s = ’1 ’) and ((s t a l l /= ’1 ’) or (s t a l l_p r ev i ou s = ’0 ’)))

) then
56 outputReady <= ’ 1 ’ ;
57 PassThrough_done <= ’ 1 ’ ;
58 out_out_out <= out_out1428 ;
59 end i f ;
60 end i f ;
61 end process ;
62 end Synthes i zed ;

18

Chapter 4

Background & Related Work

Our project implements a somewhat homomorphic version of the Brakerski-Gentry-
Vaikuntanathan cryptosystem (BGV) [9] inspired by Fiore et al. [13]. Details of
this scheme will be explored later in this section (see section 4.5). The most time-
consuming part of the BGV scheme is the Polynomial Multiplication (PM), being
critical speeding it up in order to speed up the whole scheme. The PM we im-
plement, explained in section 4.2, uses the Number Theoretic Transform (NTT) to
reduce its complexity to O(n log(n)), compared to the quadratic complexity (O(n2)))
of a straight forward approach, described in section 4.1. Also, to enable new levels
of parallelism when using the, one can use the Chinese Remainder Theorem (CRT)
so as to split the computation of one big PM into several small PMs, illustrated in
section 4.3. Each of the multiplication of two integers over a bounded ring, such as
Zp, requires the result to be reduce by the value that bounds it (p, in this case).
Section 4.4 explores different modular reductions. Finally, in order to be able to
execute for a wide range of different spaces bounded by different numbers and with
different configurations, we spent some time into developing an algorithm to generate
different precomputed parameters that define the whole context of the cryptosystem,
detailed in section 4.6.

The BGV cryptosystem allows HE using as plaintext spaceM a ring (that is, a set
of elements and two operations over them that represent addition and multiplication)

19

Rp := Fp[X]/Φm(X), being Φm(X) the m-th cyclotomic polynomial. As we have a
quotient ring (that is, a ring reducted by a generator, Φm(X) in this case), the
maximum degree of polynomial is the degree of Φm(X), being that degree Φ(m) (the
Euler’s totient function). However, as we will see later in section 4.1, the chosen
PM algorithm needs the polynomial length to be of maximum degree of the form
2n−1, n ∈ Z, so that the number of coefficients is a power of two, which means that
Φm(X) must be of degree 2n. Consequently, we have Φ(m) = 2n ⇐⇒ m = 2n+1.
Finally, as Φm(X) = Φ2n+1(X) one can see that Φ2n+1(X) = x2

n
+ 1. Also, the

notation N = 2n will will be used, which means Φ2n+1(X) = x2
n

+ 1 = xN + 1.
The operations of this ring are denoted with + and · for polynomial addition and
multiplication, respectively. For the implementation, elements inM are represented
as elements in Zn ' Z[X]/Φm(X) with infinity norm bounded by p; in other words,
represented as elements in Znp .

Similarly, ciphertext elements are elements in a ring Rq[Y] such that:

1. Rq = Z/qZ[X]/Φm[X]. In other words, elements in Rq are polynomials of
maximum degree N − 1 and with coefficients of value smaller than q.

2. gcd(q, p) = 1 (q and p are co-prime).

3. q is big enough (compared to p) to satisfy lemma 1 of [13].

Operations on the ciphertext space (also denoted with + , ·) are as follows:

∞∑
i=0

aiY
i +

∞∑
i=0

biY
i =

∞∑
i=0

(ai + bi)Y
i ; (4.1)

∞∑
i=0

aiY
i ·

∞∑
i=0

biY
i =

∞∑
i=0

i∑
j=0

ajbi−jY
i (4.2)

One should notice that the coefficients ai in equation 4.2 are elements in Rq. That
is, the multiplication shown is over elements in Rq[Y], which is the space of the

20

encrypted messages. As such, elements in Rq[Y] are polynomials which coefficients
are, in turn, polynomials. One can notice that multiplying two elements in Rq[Y]

increments the degree of the polynomial in Y. However, in order to keep this degree
low, the main focus lies on the polynomial addition. This means that this work
focuses in level 1 ciphertexts which means that the elements in Rq[Y] that we are
going to work with are elements of the form a0 + a1Y , with a0, a1 ∈ Rq. Multiplying
two level 1 ciphertexts would return a level 2 ciphertext, (with degree 2), which
is not in the scope of this project. It is perfectly possible to work with bigger
levels of ciphertexts, focusing in multiplication as much as in addition. However,
because the degree of the resulting polynomial increases when multiplying, it should
be necessary to consider how to keep the degree of the polynomial as low as possible.
Such task should have to be performed entirely in CPU, without affecting encryption
nor decryption of the BGV Cryptosystem. Moreover, this implementation in CPU
has already been studied by other works, such as Fiore et al. [13] or HELib [28].
Consequently, ciphertexts of levels higher than one are not the main focus of this
work. It is for this reason that the presented implementation of the BGV is referred to
as somewhat homomorphic. Nevertheless, this is an habitual practice when measuring
speedup for HE cryptosystems given that speeding up the computation for level 1
ciphertexts is directly related with speeding up for higher levels ciphertexts.

4.1 Number Theoretic Transform

The PM is the most consuming part during the encryption. Compared to the
quadratic complexity of the straight forward approach for the PM, using the Fast
Fourier Transform (FFT) for PM offers a linearithmic time approach (that is, its
complexity is O(n log(n))) . In turn, the FFT, and its inverse (IFFT), are the core
operations within the PM. Therefore, our work focus on speeding up the FFT-IFFT
operations in each PM, which ultimately speeds up the whole BGV cryptosystem. As
one can see in figure 4.1, the complexity of performing the FFT is O(n log(n)), dom-
inating over the actual multiplication of two polynomials, which can be performed
element-wise (that is, only multiply coefficients of the same degree) with a complexity

21

of O(n), resulting in an overall complexity of O(n log(n)), compared to the complex-
ity O(n2) of directly multiplying a ·b instead of multiplying FFT (a)∗FFT (b), being
∗ the element-wise multiplication.

Given the chosen representation, the FFT algorithm has to operate over elements of
a finite field of the form Zq[X]/Φm(X), being q prime. This type of FFT is generally
referred to as NTT. Notice the NTT operates over coefficients of the ciphertext Rq[Y],
being q relatively prime to p. That is, it operates over elements in Rq. Thus, the NTT
algorithm over finite fields restricts q to be prime. There are possible workarounds
for using co-primes, which will be explored later in this section (see section 4.3).
Also, there are several approaches when implementing the NTT ([12],[24],[17],[25]).
Typically, non-recursive NTT algorithms consist of two loops. Iterations of the
outer loop are commonly known as "stages", whereas iterations of the inner loop are
referred to as "iterations" of the respective stage. It is worth mentioning that in some
Cooley-Tukey’s [12] implementation there are two outer loops which perform the
stages. Moreover, the notation NTTNω is generally used for the NTT of polynomials
of degree N using the primitive Nth root of unity ω, that is, a value ω such that
ωN ≡ 1 mod p, ωr 6≡ 1mod q; 0 < r < N , necessary for the computation of the
NTT.

Pease’s [24] and Cooley-Tukey’s (see figure 4.1) are two of the most common NTT
algorithms. Pease’s constant geometry (i.e.,regular input/output patterns in the
inner for loop) eases the programming complexity of the algorithm in the FPGA,
optimizing FPGA resources (in comparison with Cooley-Tukey’s, approach), which
can be used to speed up parallelizing later. However, the patterns between the stages
the stages of Cooley-Tukey’s are better suited for algorithm devices with pipeline
architectures (such as the FPGA) which, again, optimizes FPGA resource usage (see
figure 4.2).

Figure 4.1 shows both FFT (NTT) approaches. It should be remarked that, to
obtain the indexes in natural order, at the end of FFT-IFFT it is necessary to place

22

the input vector in bit reversed order of the indexes. That is, given a polynomial a(x)

of degree N = 2n, the elements in positions i and j, where i and j are bit-reversed,
are swapped. This operation is performed calling Bit_reverse(polynomial) in the
algorithms (see figure 4.1).

Data: a,ω,ω−1,n,p,N=2n

Result: A=NTTNw (a)
a← Bit_reverse(a);
for i=0 to n− 1 do

for j=0 to N/2 − 1 do
Pij ← b j

2n−1−i c · 2n−1−i ;
u← a2j;
t← a2j+1 · ωPij ;
Aj ← u+ t;
Aj+N/2 ← u− t;

end
if i 6= n− 1 then

a← A
end

end
return A;

Algorithm 2: Pease NTT

Data: a,ω,ω−1,n,p,N=2n

Result: A=NTTNw (a)
a← Bit_reverse(a);
for i = 2 to N by i = 2i do

ωi ← ωN/i;
ω ← 1;
for m=0 to i/2− 1 do

for j=0 to N − 1 by i do
u← aj+m;
t← aj+m+i/2 · ω;
Aj+m ← u+ t;
Aj+m+i/2 ← u− t;

end
ω ← ω · ωi;

end
a← A

end
return A;
Algorithm 3: Cooley-Tukey NTT

Figure 4.1: Pease’s (left) and Cooley-Tukey’s(right) NTT(i.e. FFT over finite fields
of the form Zq[X]/Φm(X)) algorithms

Regardless of the specific NTT in Zq[X]/Φm(X), it is necessary to determine a
primitive Nth root of unity ω such that: ωN ≡ 1 mod p, ωr 6≡ 1mod q; 0 < r < N ,
and its powers. Both, NTT and INTT use these values, although INTT also requires
the calculation of N−1 such that N−1 · N ≡ 1 (mod q), used at the end of INTT
multiplying each of the output coefficients by N−1.

23

a(0)
a(8)
a(4)
a(12)
a(2)
a(10)
a(6)
a(14)
a(1)
a(9)
a(5)
a(13)
a(3)
a(11)
a(7)
a(15)

A(0)
A(1)
A(2)
A(3)
A(4)
A(5)
A(6)
A(7)
A(8)
A(9)
A(10)
A(11)
A(12)
A(13)
A(14)
A(15)

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

ω0
16

ω0
16

ω0
16

ω0
16

ω4
16

ω4
16

ω4
16

ω4
16

ω0
16

ω0
16

ω2
16

ω2
16

ω4
16

ω4
16

ω6
16

ω6
16

ω0
16

ω1
16

ω2
16

ω3
16

ω4
16

ω5
16

ω6
16

ω7
16

a(0)
a(8)
a(4)
a(12)
a(2)
a(10)
a(6)
a(14)
a(1)
a(9)
a(5)
a(13)
a(3)
a(11)
a(7)
a(15)

A(0)
A(1)
A(2)
A(3)
A(4)
A(5)
A(6)
A(7)
A(8)
A(9)
A(10)
A(11)
A(12)
A(13)
A(14)
A(15)

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

W0
16

W0
16

W2
16

W2
16

W4
16

W4
16

W6
16

W6
16

W0
16

W0
16

W2
16

W2
16

W4
16

W4
16

W6
16

W6
16

W0
16

W1
16

W2
16

W3
16

W4
16

W5
16

W6
16

W7
16

Figure 4.2: Datapath of the Cooley-Tukey(top) and the Pease(bottom) FFT 16
ω (a).

The last stage of the Cooley-Tukey FFT leaves pairs of indexes together for the
starting IFFT (with bit reversal order). The Pease FFT follows the same I/O pattern
within all the stages.

24

4.2 Polynomial Multiplication

When multiplying two polynomials using the NTT, a(x) and b(x), of degreeN−1 =

Φ(m), the result is a polynomial c(x) of degree 2n. However, given the ciphertext
spaceM = Rq[Y] is bounded by Φm(X) = Φ2N(X) = xN + 1, the maximum degree
of an element a ∈ Rq is N − 1. Therefore, it is necessary to reduce such degree of a
by operating a modΦm(X), also known as polynomial reduction.

Though the polynomial multiplication using FFT and IFFT can be computed with
linearithmic complexity, it firstly needs to double the degree of the input polynomials
zeropadding and perform the FFT-IFFT over the superspace of polynomials of degree
2N − 2 doubling, in turn, the number of pointwise multiplications. After that, the
polynomial reduction would be performed, obtaining the result polynomial of degree
N − 1.

As we use xN + 1 as generator for the quotient rings Rp and Rq, the polynomial
multiplication can be simplified in comparison with equation (4.2) using xN ≡ −1:

∞∑
i=0

aix
i ·

∞∑
i=0

bix
i =

N−1∑
i=0

N−1∑
j=0

(−1)b
i+j
n
caibjx

i+j modn (4.3)

To avoid doubling the operations (because of having to double the degree of the
polynomials by zeropadding), it is possible to use the Negative Wrapped Convolution
(NWC), as illustrated by [18], based on equation 4.3 and implemented in the first and
third for loops in algorithm 4. A study of the advantages of using NWC compared
to the zeropadding approach (both previously detailed) has been already made by
Donglong et al. [11]. When using NWC, it is necessary to find a primitive 2Nth root
of unity φ. That is, a value φ such that: φ2N ≡ 1mod p, φr 6≡ 1mod p; 0 < r < 2N .
As shown in algorithm 4, the power of this root multiplies first the coefficients of the
input polynomials and, after the INTT, the power of its inverse multiplies the output
polynomial, computing the polynomial reduction by xN − 1. For the correctness of
the NWC, φ2 ≡ ωmod p should hold, as well as p ≡ 1mod 2N . Notice that, satisfying

25

these two last equations, ωN ≡ 1mod p, ωr 6≡ 1mod p; 0 < r < N gets satisfied.

Finally, using the NWC, the polynomial reduction can be replaced by a pointwise
multiplication by the powers of φ before starting the PM algorithm, and a pointwise
multiplication by the powers of φ−1 at the end (see algorithm 4).

Data: a,b, ω, ω−1, φ, φ−1, N−1, p,N = 2n

Result: c = a · b
for i = 0 to N − 1 do

ai ← aiφ
imod p;

bi ← biφ
imod p;

end
A← NTTNw (a);
B← NTTNw (b);
for i = 0 to N − 1 do

Ci ← AiBimod p;
end
c← INTTNw (C);
for i = 0 to N − 1 do

ci ← ciφ
−imod p;

end
return c;

Algorithm 4: Polynomial Multiplication algorithm

4.3 Chinese Remainder Theorem

As detailed during section 4.1, the NTT limits the ciphertext message Rq to use a
prime q. However, the CRT, allows q to be a product of different primes q =

∏
pi,

perform the PM over each of these pi and then reconstruct the resulted polynomial.
This approach enables new levels of parallelism for the FPGA implementation, as
well as it enables the possibility of using multiple FPGAs to work in parallel with
multiple pipes. Algorithm 5 shows how the previous algorithm 4 can be called several
times with small parameters (the call to PM(...) in algorithm 5) instead of once with

26

big parameters, obtaining the same result. The CRT approach encapsulates the PM
with NTT-INTT, using it.

One of the forms of enunciating the CRT is as follows: let q be a product of
different coprimes, that is: q =

∏r
i=0 pi , pi 6= pj ∀i 6= j, i, j ≥ 0, r > 0, then

using CRT the quotient ring Rq = Z/qZ[X]/Φm[X] = Zq[X]/Φm[X] is isomorphic
to Zp0 [X]/Φm[X]× ...× Zpr [X]/Φm[X]. That is:

Rq
∼= Zp0 [X]/Φm[X]× ...× Zpr [X]/Φm[X]

Bijection

Therefore, CRT proves that there exists a bijective application ϕ : Zq[X]/Φm[X]→
Zp0 [X]/Φm[X] × ... × Zpr [X]/Φm[X]. This application is necessary to be able to
transform the coefficients of the polynomials to be multiplied to several polynomials
with coefficients of smaller size to be multiplied, and to transform the result of those
smaller coefficients into a single polynomial. However, such application is yet to be
defined. The direct application consists just of the operation:

ϕ(x) = (xmod p0, ...,xmod pr) (4.4)

For the inverse application, ϕ−1, it is necessary to use the Extended Euclidean Algo-
rithm to calculate ai, bi, 0 ≤ i ≤ r such that aipi + bi(q/pi) = 1. Once we have these
values, the inverse ϕ−1 is as follows:

ϕ−1(x0, ...,xr) = b0(q/p0)x0 + ...+ br(q/pr)xr (4.5)

Polynomial Multiplication using Chinese Remainder Theorem

Using the CRT in order to allow q to be coprime, it is possible to enable new levels
of parallelism, since the PM over each pi are independent. This has been referred to
as horizontal parallelism by related work [27], in contrast with vertical parallelism,

27

which takes place within the same NTT-INTT. Algorithm 5 shows the PM using
CRT.

Data: a,b, ω, ω−1, φ, φ−1, N−1, q =
∏r

i=0 pi, N = 2n, e
Result: c = a · b
for i = 0 to r − 1 do

ai ← amod pi;
bi ← bmod pi;
ωi ← ωmod pi;
ω−1i ← ω−1mod pi;
φ
−1
i ← φmod pi;
φ
−1
i ← φ−1mod pi;
N
−1
i ← N−1mod pi;

end
for i = 0 to r − 1 do

ci ← PM(ai,bi, ωi, φi, ω−1i , φ−1i , pi);
end
c←

∑r
i=0 ci ∗ eimod q;

return c;
Algorithm 5: Polynomial Multiplication using CRT. The parameters ei represent
the coefficients obtained by applying the Extended Euclidean Algorithm (i.e. the
bi values in equation (4.5)). For the rest of parameters see section 4.2.

Apart from the fact that, using CRT, q can be coprime, the possibility of perform-
ing the PM over each of the pi allows the FPGA to use multipliers of small bitsize,
which have small latency and take less resources. Also, the new levels of horizontal
parallelism enabled by the CRT approach give more versatility when optimizing the
algorithm in FPGAs, or even allows to split the multiplication into different FPGAs
if the amount of pi is too big for the PM to fit in one board (bigger security, as q
would be bigger as well).

28

4.4 Modular Reduction

Within any PM algorithm performed over Rq or Rp, the polynomial coefficients
are bounded. Therefore, a modular reduction must be performed after each multi-
plication in order to work with elements in the proper ring at all times. Modular
reductions can take a significant amount of time and resources, representing a critical
part within the PM. As a result, it is important to choose the proper reduction.

Some previous work implemented algorithms for specific primes, such as Solinas
primes [26, 31] or pseudo-Fermat primes([11, 33]), whereas most of them chose the
Barret modular reduction ([32, 27, 23]).

Data: a, p
Result: b = a mod p
b← a− ba/pc · p;
if b < 0 then

b← b+ p;
end
return b;

Algorithm 6: Straight forward modular
reduction method.

Data: a, p
Result: b = a mod p

count← size((a)2)− size((p)2);
b← |a|;
p← p� count;
for i = 0 to count− 1 do

if b− p ≥ 0 then
b← b− p;

end
p← p� 1;

end
if a<0 then

b← p− b;
end
return b;

Algorithm 7: Barret modular reduc-
tion.

Figure 4.3: Straight forward (left) and Barret (right) modular reduction methods.
Note the algorithm is essentially the same but avoiding the division in Barret’s.

Examining algorithm 8, inspired by ([31, 33], one can find that a small value of
p[k − 2 : 0], that is, a small value of p minus the most significant bit, reduces the

29

number of loops. Moreover, the lower is the Hamming weight (that is, the less bits
set to 1) of p, the less consuming the computation is.

It is easy to identify that the best prime case for algorithm 8 is a Fermat number.
However, the largest known Fermat prime is 216 + 1 [21]. For this reason, primes p
with low Hamming weight and small values for p[k − 2 : 0] are typically referred to
as pseudo-Fermat primes.

Data: a, p
Result: b = a mod p
k ← bitlength(p);
m← bitlength(a);
while m > k do

a← a[k − 2 : 0]− a[m− 1 : k − 1]p[k − 2 : 0];
m← m− k + l + 2;

end
if a<0 then

b← a+ p;
else

b← a;
end
return b;
.

Algorithm 8: Modular reduction for pseudo Fermat primes. Note that for this to
work, a should be such that bitlength(a) ≤ 2k

In section 6.2 one can find a comparison table regarding latency and FPGA re-
sources between Barret, Fermat-like primes reduction and the straight forward ap-
proach. Solinas reduction has been discarded from the comparison and from the
project itself since it requires a specific type of primes (Solinas primes), instead of
allowing modular reduction by any number, and there have been already compari-
son tables ([31]) between these algorithm with others that prove Solinas approach is
definitely a better choice when dealing with Solinas numbers (generalised Mersenne
numbers).

30

4.5 Brakerski-Gentry-Vaikuntanathan Homomorphic

Encryption

As mentioned at the beginning of section 4, the main interests is in level 1 ci-
phertexts (only use addition) in order to maintain the degree one of elements in
Rq[Y].

The following random distributions are used by BGV’s Key_Generation, En-
cryption and Decryption functions, detailed below, in order to ensure crypto-
graphic security:

• DZn,σ: Discrete Gaussian with parameter σ, rounded by the nearest integer
vector in Zn. Referring to [10], we use σ = 3.2.

• ZOn: randomly sample a vector of size n with xi ∈ {−1, 0, 1} and Pr[xi =

−1] = 1/4; Pr[xi = 0] = 1/2; Pr[xi = 1] = 1/4.

As such, the simplified BGV using using Rp as plaintext space and Rq[Y] as ci-
phertext space consists of three main functions (notice $←− means randomly sample):

• Key_Generation()→ (pk, dk): Sample pk1
$←− Rq, and dk, e

$←− DZn,σ. Com-
pute pk2 ∈ Rq as pk2 ← pk1 · dk + p ∗ e.

• Encryptionpk(m, r) → (c0, c1, c2): being (u, v, w)
$←− (ZOn, DZn,σ, DZn,σ), the

output is c0 ← pk2 · u+ p ∗ w +m and c1 ← pk1 · u+ p ∗ v.

• Decryptiondk(c)→ m: m← (c0 − dk · c1 − (dk)2 · c2) mod p.

Note that · represents the polynomial multiplication of elements in Rq, as explained
in sections 4.2 and 4.3, whereas ∗ represents pointwise and scalar-polynomial multi-
plication. Additionally, + represents the addition over Rq. Using previous functions,
one can generate keys, encrypt as much data as wanted, compute operations over it
and decrypt the results of the computations using the generated keys.

31

4.6 Parameter set

Given the big amount of parameters needed for the CRT,NTT,PM and BGV,
and its requirements, generating valid parameters to successfully perform BGV can
be tricky. Moreover, generating several representative set of parameters can take
a big amount of time. As a result, it is worth dedicating some time to designing
and algorithm to generate such parameters choosing the plaintext space and some
performance and security requirements for the encryption.

The required parameters already mentioned throughout section 4 are calculated
by an algorithm which, taking a bitsize for q and a bitsize for each of the pi such
that q =

∏
pi, generates each of the pi, calculates a generator of Zq and computes

φ, ω and its inverses.

For the calculation of the generator of Zq (hence, of each Zpi), Shoup’s approach
[29] is used. Since we do not need any specific pi, but rather generate them ourselves,
it is possible to generate pi such that the factorization of pi− 1 is known, needed for
algorithm 9 to obtain a generator of the group Zpi−1.

In order to know the factorization of q−1, and to satisfy all the conditions needed to
ensure the existence of φ and ω, already described in section 4.2, each pi is generated
such that pi = 2Npi + 1, being pi an odd number of known factorization (such as a
prime).

This way, having a generator geni of Zpi , we have φi = genpi mod pi and, as
always, ωi = φ2

i mod pi. Furthermore, using equation (4.5) one can obtain φ,ω and q.
Finally, the values for ϕ−1 and N−1 are obtained computing the Extended Euclidean
Algorithm.

32

Data: p, p− 1 =
∏t

i=0 q
ei
i

Result: gen = find_gen(p,
∏t

i=0) such that genp ≡ 1 mod p and
geni 6≡ 1 mod p∀1 < i < t

for i = 0 to t do
β ← 1;
while β 6= 1 do

α
$←− Zp;

β ← α(p−1)/qi ;
end
γi ← α(p−1)/qeii ;

end
gen←

∏t
i=0 γi;

return gen;
Algorithm 9: algorithm for finding a generator of Z∗p given a prime p and the
factorization of p− 1.

4.7 Related Work

Previous work have already addressed the implementation of FHE schemes. An
example is the proposed by Pöppelmann et al. [26] describe an implementation of the
Cooley-Tukey cached-FFT [7, 6] What to be used for the primitive operations of the
YASHE [8] HE. However, they do not use the CRT, leading to big multipliers which
makes it difficult to achieve good latency with few resources. They mention a promis-
ing avenue when using several FPGAs for parallelism, which can be achieved through
CRT and proper hardware. They decided to use Solinas primes in order to use its
ad hoc modular reduction [31]. For the polynomial reduction, their implementation
is based on the negative wrapped convolution [11], adding just N multiplications at
the beginning of each FFT/IFFT (being the length of the polynomial).

Roy et al. [27] implement a parallelized Cooley-Tukey FFT for the polynomial
multiplication throughout the YASHE encryption scheme , using CRT in order to
split the computation. However, that computation does not take advantage of such
level of parallelism, but rather is used to work with 32bits words, reducing resources

33

usage and enabling parallelization within each small prime used for CRT. Although
they accomplish to reduce resource usage values, they do not exploit the available
space on the FPGA to perform some extra computations. Moreover, they do not
report actual times of HE computation, but estimations. Similarly, Erdinç Öztürk
et al. [23] use CRT for homomorphic AES evaluation. Even though they take into
account the CRT parallelization, their approach forces them to iterate several times
over the FPGA which, again, has an important amount of resources unused. More-
over, This iteration requires additional data transmission. They report estimated
times for HE computations. Both papers decided to use Barret polynomial reduc-
tion along with Barret modular reduction, with a CRT prime bit size that ranges
from 30 to 32 bits.

Donglong et al. [11] implement the PM using a constant geometry (CG) FFT.
Although this might seem an optimization of the algorithm over FPGAs, this ap-
proach generates difficulties when parallelizing the algorithm, mainly because of the
bit reversal performed before the IFFT. Also, the set of parameters used are not
representative of homomorphic cryptosystems. They also dedicate some time at the
parameter set selection, pointing out key observations that might affect critically the
final reduction. For the modular reduction, they use the bitwise reduction described
in [33]. They also decided to use the same polynomial reduction used by [26].

Most of the related work is implemented using VHDL or Verilog which makes the
code more difficult to maintain and thus more prone to bugs. To the best of our
knowledge, the most recent published related work using Maxeler tools [15] is from
2010, having this work focused solely on a FFT implementation.

34

Chapter 5

Implementation

In this chapter, our implementation of the BGV scheme is introduced. First, we
show the chosen implementation to generate parameters depending on the require-
ments for the cryptographic scheme in section 5.1. Then, section 5.2 introduces our
BGV implementation, using different versions of the PM implemented for CPUs.
Finally, we show the different versions and design decisions made for the PM imple-
mented for FPGAs in 5.3. Figure 5.1 shows different blocks (PRECOMPUTED
PARAMETERS, CONTEXT and BGV) and the functions implemented in all
of them as well as the input data they receive and how they communicate with each
other. The execution of the project is as follows: first, one generates the precomputed
parameters needed for the project, such as the specific plaintext ring and ciphertext
ring parameters, roots of unity, length of polynomials, etc.. These parameters are
referred to as context and are stored in a directory structure in different files. After-
wards, one can import them at the beginning of the execution of the BGV scheme
in order to generate the keys. After that, one can encrypt any input data, operate
over it and decrypt. All of these functions (key generation, encryption, decryption,
operation over encrypted data...) use functions that depend on the specific context
imported, such as the PM or the conversion into CRT format.

35

uses

Context generation

PRECOMPUTED PARAMETERS

CONTEXT
DATA

CONTEXT

OPERATIONS

PMcxt Addcxt

etc.

FPGA

BGV

Key generation

Encryption

Operate over encrypted data

Decryption

export
context

uses

import
context

output
data

input
data

Figure 5.1: Diagram illustrating the different blocks (modules) implemented and
how they are related.

36

5.1 Parameter set Selection

As detailed throughout section 4, some parameters used for the Polynomial Mul-
tiplication using NTT-INTT are automatically calculated in order to be able to use
different sets. This is implemented by the block PRECOMPUTER PARAME-
TERS (see figure 5.1).

The block PRECOMPUTED PARAMETERS, detailed in figure 5.2, re-
ceives as input a minimum bitsize required for the value q (final_bitsize), a min-
imum and maximum bitsize required for each of the primes pi such that q =

∏
pi

(pi_min_bitsize and pi_max_bitsize) and the length of the polynomials (that
is, Φ(m) following the notation of the beginning of section 4) (N = 2n), and gener-
ates:

• the number q used for the ciphertext Rq, as well as the primes pi such that
q =

∏
pi (call to find_p_gen in figure 5.1).

• pi such that pi = 2Npi + 1, following the generation algorithm explained at
section 4.6 (calling find_p_gen).

• the bit representation and bitsize of pi and pi − 1, needed for algorithm 8.

• a generator geni of the field Zpi (calling find_p_gen).

• the powers of ω, ω−1, φ and φ−1, as described in sections 4.1 and 4.2 (calling
root_values and powers).

• the bit-reversed indexes as needed for the Bit_reverse(a) used in the NTT
and INTT (see figure 4.1 and 4.2).

• the value of N−1 in Rq, first mentioned in section 4.1 (calling find_inverse).

• the parameters bi needed for the bijection Zq[X]/Φm[X] = Zp0 [X]/Φm[X] ×
...×Zpr [X]/Φm[X], as detailed in section 4.3 (referred to as euclidean_coeffs
when calling extended_euclidean_algorithm).

These parameters are referred to as the context of the ciphertext.

37

The project’s CPU code uses the mpz_t C types from the library GMP [16] in order
to work with numbers bigger than one machine word. Finally, the algorithm performs
some checks to verify that the exported data fulfills the so-called requirements. The
execution is illustrated in figure 5.2.

This project uses different subblocks: extended_euclidean_algorithm (which
implements the algorithm detailed in section 4.3), bijection_CRT_Q (with a set of
functions to convert data between isomorphic rings, such as the bijective application
from section 4.3) and gmp_extra_functions (with useful auxiliary functions, such
as printing multidimensional mpz arrays or initializing them).

38

nprimes = d final_bitsize
pi_max_bitsizee

p0_bitsize = max(32, final_bitsize−
(nprimes− 1) ∗ pi_min_bitsize+ 1)
q = 1

q_bitsize N = 2n

pi_max_bitsize pi_min_bitsize

[pi, pi, geni] = find_p_gen(start, stop = 2pi_max_bitsize)
q = q ∗ pi

i = 0
start = 2p0_bitsize

[φ, ω] = root_values(pi, pi, geni)
[φ,ω] = powers(φ, ω)
N−1i = find_inverse(N, pi)
pseudofermat_paramsi = bits_modulus(pi)

i < nprimes

i+ +
start = pi−1

Yes

euclidean_coeffs = extended_euclidean_algorithm({pi}nprimes−1i=0 , {q/pi}nprimes−1i=0)

No

export_context()

Figure 5.2: Diagram illustrating the execution of PRECOMPUTED PARAME-
TERS. Notice that pi follows the same notation as in section 4.6. export_params
writes the parameters inside the "data" subdirectory.

5.2 BGV & Polynomial Multiplication (CPU)

The block BGV (see figure 5.1 hosts the main execution of the project (key gen-
eration, encryption, operate over encrypted data and decryption). It uses the blocks
CONTEXT, bijection_CRT_Q, gmp_extra_functions and the library lib-
herandom.a. As one can observe from the documentation of GMP, "raw output" of
their random functions "is unsuitable for cryptographic applications without further
hashing or the like". For this reason, the randomness implemented uses the functions
and types from Number Theory Library (NTL) [30], which implements "high quality,
cryptographically strong pseudo-random numbers". However, given that NTL is a
C++ library, the library libherandom.a was implemented encapsulating only the
needed methods from NTL into a C library. These methods include a bijective con-
version between NTL ZZ and GMP mpz_t types, as well as a wrapper for returning
int64_t types.

The program execution is illustrated in figure 5.3. First, one should import a
context in the format exported by PRECOMPUTED PARAMETERS. Then,
one can start the keygeneration, generating a decipher key dk and a public key
pk ∈ Rq[Y], pk = pk0 + pk1y. Afterwards, the encryption of the input messages
a and b takes place, generating a = a0 + a1Y and b = b0 + b1Y . Then, one can
operate with these two messages (in this case we add a+b as an example), generating
encrypted output (c). Finally, the generated output is decrypted, producing plaintext
output c.

NTL has several methods to generate cryptographically strong random numbers
within an uniform distribution. Nevertheless, as detailed throughout section 4.5,
a Discrete Gaussian Distribution is also needed for the BGV encryption scheme.
As a result, we implement the Box-Muller method (BM) [20] to generate a Discrete
Gaussian Distribution out of two Uniform Distributions, proposed by George Edward
Pelham Box and Mervin Edgar Muller in 1958, BM algorithm is a transformation
of two Uniformly distributed random numbers to generate a pair of independent

40

Gaussian distributed random numbers.

41

cxt = import_context()

σ = 3.2
pk0

$←− Rcxt.q

[dk,e]
$←− DZcxt.n,σ

pk1 = PMcxt(pk0,dk) + e ∗ p

keygen

r $←−[ZOcxt.n, DZcxt.n,σ, DZcxt.nn,σ]
a0 = PMcxt(pk1, r0) + r2 ∗ p+ a
a1 = PMcxt(pk0, r0) + r1 ∗ p
r $←−[ZOcxt.n, DZcxt.n,σ, DZcxt.nn,σ]
b0 = PMcxt(pk1, r0) + r2 ∗ p+ b
b1 = PMcxt(pk0, r0) + r1 ∗ p

encryption

a b

c0 = a0 + b0

c1 = a1 + b1

c = c0 − PMcxt(dk, c1)

decryption

Figure 5.3: Diagram illustrating the execution of BGV.

42

5.3 Polynomial Multiplication (FPGA)

the FPGA base implementation of the PM consists basically of two inputs (each
of the polynomials to be multiplied), and two outputs (one representing the first half
x0, ..., xN/2−1 of the output polynomial and the second one the other half xN/2, ..., xN),
instead of two inputs and one output as shown in algorithm 4. The reason for this
is that the output polynomial has to be split between first and second half since,
as shown in algorithm 4, two outputs in equivalent indexes relative to the first and
second half are generated at the same time and, as explained in section 3 FPGAs
do not allow random access to positions in output streams. Three counters help
controlling the execution of the FPGA, given the pipelined architecture of the FPGA
(detailed throughout section 3). One of these counters, i, keeps track of the number of
ticks since the execution started. The second and third counter k and j, respectively,
are chained counters in such a way that j increments in each tick from 0 to N/2− 1,
when it wraps again to 0 and k increments its value by 1. That is, k represents each
"stage" (block of N/2 ticks), and j represents each tick relative to the stage, the
same way two nested for loops work in CPU programming. This nested loops are
the ones already mentioned in section 4.1 (i for stages and j for ticks within stage in
algorithm 2).

Given the programming paradigm of FPGAs, random access to different indexes
of an array is simply not possible for streams (such as the input and output poly-
nomials). As such, the initial bitreversal operation of the NTT has to be performed
explicitly reordering the indexes. It can be either performed in CPU or at the be-
ginning of the FPGA, reading in natural order the input and storing in the proper
position in RAMs (by adding another stage at the beginning of the FPGA execution,
delaying the execution of the actual NTT stages). Additionally, as mentioned in sec-
tion 3, BRAMs can not have more than two ports, and both ports can not point
at the same position in memory, which forces the usage of a Ping-Pong approach as
in [11]. This approach consists simply of having two RAMs for the same data, but
depending on the tick, one of the RAMs is for reading and the other for writing data,

43

or the other way around, illustrated in figure 5.6.

One can notice that the stages are of N/2 ticks whereas the input polynomials are
of degree N-1. This is because the butterfly operation (operations in the innermost
loop of both algorithms in figure 4.1) uses two coefficients of the polynomial. Again,
regardless of the specific chosen NTT (Pease’s or Cooley-Tukey’s), this restriction
along with the access patterns for both algorithms are incompatible with having just
two Ping-Pong RAMs per polynomial, as it would imply having more than four ports
per RAM, two writing ports or two reading ports. Thus, at least 4 RAMs are needed:
2 ’Ping’ and 2 ’Pong’ equivalents. For Pease’s algorithm, a feasible approach is to
store even indexes (coefficients) (such as x0, x2, x4, ...) in one of the RAMs; whereas
odd indexes in the other one. Notice that when speaking of odd and even indexes, it
is relative to the stage, regardless of the absolute coefficient that the index represents.
That is, after the bitreversal, the coefficient of xN/2 is in the index 1 and for such
reason it is an odd coefficient within the first stage (it would be the first position of
the RAM for odd coefficients).

Furthermore, the butterfly operation returns indexes of the same parity (both odd
or even numbers) and therefore they cannot be written during the same tick as they
are generated, given the two-port limitation in BRAMs (one is for reading). As a
solution, it is possible to access to the data in a stream (a variable along ticks in
FPGA) with a tick offset (relative to the current tick). A tick offset allows accessing
future/previous values of a stream in different ticks relative to current tick. Figure
3.1 shows both types of offsets (negative and positive), represented in the shape of
a diamond. Offsets should not be used for random access to array positions, since
they slow down execution (if the offset is positive the entire execution path needs to
increase latency in order to wait for the specific value to arrive) and consume LUTs
(if the offset is negative it needs to store previous values for when useful). In this
case, however, an offset of +1 (that is, accessing the value of the same variable in
the following tick) for even ticks and of -1 (that is, accessing the value of the same
variable in the previous tick) solves the parity problem, since the parity of both

44

output values of butterflies changes within consecutive ticks (see figure 5.4).

Moreover, using 4 RAMs with Pease’s gives a reduced latency in the most critical
part of the algorithm: linking the output patterns of both FFTs with the bitreversal
at the beginning of the IFFT (see algorithm 4). As illustrated by figure 5.5, when
reading in bitreversal during the last FFT stage, the output is properly paired (when
there is no parallelism) for the IFFT which allows an execution path with no extra
latency derived from waiting for data to be ready; other than the ticks needed to
ensure that the bitreversal indexes of the data to be read has already been stored.
This approach is used when reading in bit reversal order in Figure 5.6.

It is worth noticing that there is a number of ticks at the beginning of the algorithm
itself which do not write into RAM just because the data is not ready to be written.
This is referred to as the initial latency. For this to be solved it is necessary to work
with an offset over the ticks since the beginning, since the compiler does not calculate
the offset automatically. This offset negative value varies significantly depending of
the bitsize of the specific project, as well as the modulus implemented, because the
latency of the pipe changes significantly according to these parameters (see section
6.2). Also, as both FFT of the input polynomials are completely independent, they
can be performed simultaneously in parallel pipes that converge into one at the end
of both FFTs, to perform the element-wise multiplication for the finishing IFFT.

45

YesNo

x2∗j x2∗j+1ωPij

butterfly0 =
x2∗j + ωPijx2∗j+1

butterfly1 =
x2∗j − ωPijx2∗j+1

is j even? is j even?

write in even RAM write in odd RAM

x2∗j x2∗j+1ωPij

butterfly0 =
x2∗j + ωPijx2∗j+1

butterfly1 =
x2∗j − ωPijx2∗j

is j even? is j even?

write in even RAM write in odd RAM

−

No

∗

+−

Yes

∗

+

j=2*r (even tick) j=2*r+1 (odd tick)

Figure 5.4: Butterfly FPGA execution graph. Note the different circuit depending
on the parity of the tick in order to write in even and odd RAMs in each tick.

46

polynomial
ram0, x0 x1 x2 x3 x4 x5 x6 x7
ram1, x8 x9 x10 x11 x12 x13 x14 x15

reverse_bits(x)
x0 x8 x4 x12 x2 x10 x6 x14
x1 x9 x5 x13 x3 x11 x7 x15

stage 0
x0 x4 x8 x12 x2 x6 x10 x14
x1 x5 x9 x13 x3 x7 x11 x15

stage 1
x0 x8 x4 x12 x2 x10 x6 x14
x1 x9 x5 x13 x3 x11 x7 x15

stage 2
x0 x8 x4 x12 x2 x10 x6 x14
x1 x9 x5 x13 x3 x11 x7 x15

stage 3 & reverse_bits(x)
x0 x1 x2 x3 x4 x5 x6 x7
x8 x9 x10 x11 x12 x13 x14 x15

Figure 5.5: Pease’s FFT and bit reversal (for IFFT) I/O patterns for case N=16.
Note that the pair of coefficients (coefficients in the same cell) remain intact between
stage 2 and stage 3 & reverse_bits(x). Only the position of the pairs is changed.
Pairs of coefficient represent coefficients that are read at the same time to perform
the butterfly.

47

Optimizations

Regarding data transfer between CPU and FPGA, the precomputed parameters
can be directly stored in the FPGA or transferred from CPU via PCIe bus at the
beginning of each execution. Transferring from CPU increments the overhead time
spent in transferring data, whereas directly storing into the FPGA causes the FPGA
to reload when the context changes. Therefore, the proper approach should involve
transferring the context from CPU, via PCIe bus trying to optimize the data. A
quick look at the precomputed parameters evidences some optimizations. Given
that φ2 = ω mod q and φi = (φ−1)N−i mod p (φ is a primitive Nth root of unity),
we can simply transfer φi , i = 0, ..., N − 1. This optimizes the transfer time and
the BRAMs used in FPGA, but it uses extra LUTs. The resource usage feedback
by MaxCompiler shown in section 6 helps tell the proper option depending on the
context.

Whether the context is finally transferred from CPU or stored in ROMs (read-
only BRAMs), there are at least two streams of data from CPU (the two vectors)
and another two to CPU (the output vector). In this case, MaxCompiler gives the
possibility of using the already mentioned LMem as part of their DFE engine. Using
LMem one can define an asynchronous write to the FPGA while performing different
tasks, invoke the FPGA for execution (after having waited for the write asynchronous
task to finish), and then read from FPGA when needed. Another option is to use
CPUStreams, which are transferred from and to CPU (to and from FPGA, respec-
tively) within the same invocation to the actual Kernel. Again, there is no clear
winner for all cases, since using LMem implies there has to be three calls to the DFE
with different SLiC, which has an overhead compared to different times. Besides,
the actual invocation of the Kernel can be implemented to be asynchronous too.
Furthermore, LMem requires data to be accessed burst aligned, being burst a fixed
number of bits that vary depending on the specific DFE (192 bits for our targeted
Board), which causes the data to be zero-padded and the read/write operations to
take more time than needed.

48

Stage Starts

is stage
0?

Read data from
LMem/Stream

is stage
even?

NoYes

is last
stage?

is last
stage?

Yes No

read data from
RAM ping

in natural order

read data from
RAM ping in

bit reversal order

Yes No

read data from
RAM pong

in natural order

read data from
RAM pong

in bit reversal order

Yes No

perform butterfly (using corresponding ω power)

is last
stage?

is stage
even?

store data
in pong RAM

store data
in ping RAM

No

Yes No

start IFFT

Yes

Figure 5.6: FPGA simplified Kernel graph of the FFT.

Other important optimizations lie in the use of the same resources for the IFFT
and for (one of) the FFT. Though the butterfly operations, RAMs, modulus opera-
tions,... take a significant amount of resources, they can be reused for the IFFT by
using more logic cells that distinguish between FFT stages and IFFT stages. This
way, one can use the same DSPs and BRAMs of one of the FFTs for the following
IFFT by increasing the logic utilization resulting from selecting the FFT or IFFT
read/write pattern and ω or ω−1 depending on which one (FFT or IFFT) is being
performed in the specific tick. Therefore, We perform two parallel FFTs and one
IFFT without almost any extra resources compared with two parallel FFTs.

polynomial
ram0, x0 x1 x2 x3
ram1, x4 x5 x6 x7
ram2, x8 x9 x10 x11
ram3 x12 x13 x14 x15

reverse_bits(x)
x0 x8 x4 x12
x2 x10 x6 x14
x1 x9 x5 x13
x3 x11 x7 x15

stage 0
x0 x4 x8 x12
x2 x6 x10 x14
x1 x5 x9 x13
x3 x7 x11 x15

stage 1
x0 x8 x4 x12
x2 x10 x6 x14
x1 x9 x5 x13
x3 x11 x7 x15

stage 2
x0 x8 x4 x12
x2 x10 x6 x14
x1 x9 x5 x13
x3 x11 x7 x15

stage 3
x0 x8 x4 x12
x2 x10 x6 x14
x1 x9 x5 x13
x3 x11 x7 x15

Figure 5.7: Cooley-Tukey’s RAMs I/O patters for case N=16, numpipes=4

FPGA Parallelism

Apart from the already mentioned parallelization of both FFTs of the input poly-
nomials, there are three main levels of parallelization when using CRT in order to
divide the PM over Rq into many PMs (PMpi) over rings of smaller size, as explained
in section 4.3: using multiple FPGAs for different PMpi (horizontal parallelism), us-
ing different PMpi (horizontal parallelism) in the same FPGA and using multiple
pipes within the same PMpi (vertical parallelism). The three of them can be com-
bined limited only by the amount of resources available in the FPGAs. Figure 5.8

50

shows the two horizontal parallelism cases compared to no parallelism for a case with
3 pi. Notice that any of the three parallelism requires a high amount of resources or
even several FPGAs. The parallelism that takes the least amount of resources would
be the vertical one, since there is no need to increase BRAM usage at all, given
that the precomputed parameters remains the same for all the pipes. Regarding the
vertical parallelism, it should be noticed that the multiplicity of pipes only works
for numbers of pipes which are power of two. Because of this latter level of paral-
lelization, Cooley-Tukey’s approach comes up easier for FPGAs, given that, despite
of not having a uniform geometry (constant I/O pattern), the inputs and outputs
have the same patterns in their positions. The other two levels of parallelism come
for free since they have no dependency whatsoever.

As for the parallelization within the same FFTpi , the main issue is to design a
suitable, resource-efficient I/O pattern for storing the coefficients into RAMs. It is
obvious that to have numpipes=4 (following example shown in figure 5.7) parallel
pipes it is necessary to read 8 different coefficients to perform 4 butterflies. Therefore,
it is necessary to distribute the coefficients into 4 (8 Ping-Pong) RAMs. Moreover,
this RAMs store different coefficients in different stages, as the I/O patterns vary.
Finally, it is also necessary to be able to store the coefficients again in a feasible way
for the next stage to be performed.

Figure 5.7 shows a possible solution, consisting of splitting the polynomial into
numpipes, having the ith partition the coefficients xi∗N/numpipes, ..., x(i+1)∗N/numpipes−1,
showing the approach for the case numpipes=4, N=16. With this approach, repre-
sented as a matrix in figure 5.7, all the necessary coefficients are available at each
stage. Notice that the coefficient in red background represents the coefficient to read
in order to operate the butterfly with the coefficient x0, in red font, while the coeffi-
cient in blue represents the same for coefficient x9, in blue font. At each stage, the
coefficient in red/blue to be read is either in the same pair of the row as the corre-
sponding red/blue font coefficient, or in the same column. Given that each of the
rows represent a different RAM of a vector of size 2 (that is, always read and write

51

two consecutive coefficients), it can be ensure that all the dependent coefficients are
to be read and written during the same ticks. Notice that figure 5.7 shows how the
coefficients change the position within the row, in order to maintain the read (and
not the write) pattern somewhat constant within the same RAM. Note also that in
each tick different RAMs allow reading the same position (two values) in each row
in figure 5.7.

However, one of the drawbacks of using Cooley-Tukey is related to the bitreversal
operation at the beginning of the IFFT, which can not be perform simultaneously
(that is, during the same read tick) with the last stage of the FFT. Nevertheless,
the amount of ticks that were needed to wait for the data to be ready where big
enough (around N ticks) to reduce the importance of such drawback, as in the end
the amount of ticks needed is roughly the same. Again, the first arrow of figure
5.7 shows another stage dedicated to perform such bitreversal, when is possible to
simultaneously compute the first stage of the IFFT.

52

convert input data from a ∈ Rq to
a ∈ Zp0 [X]/Φm[X]× ...× Zpr [X]/Φm[X]

FPGA0

PMp0

FPGA0

PMp1

FPGA0

PMp2

No parallelism

convert output back data from
a ∈ Zp0 [X]/Φm[X]× ...× Zpr [X]/Φm[X] to a ∈ Rq

FPGA0

PMp0

FPGA1

PMp1

FPGA2

PMp2

Horizontal parallelism 3 FPGAs

FPGA0

| PMp0 | PMp1 | PMp2 |

Hor. parall.
1 FPGA

Figure 5.8: Different types of horizontal parallelism. All of them can be combined
to maximize the available resources.

53

Chapter 6

Evaluation

Section 6.2 analyses the resources usage and latency of each of the modular reduc-
tions for different configurations. Different CPU versions of the PM seen in chapter
4 are compared in section 6.3. Some of those CPU versions are compared with dif-
ferent FPGA versions of the PM, along with some times regarding the whole BGV
encryption scheme in sections 6.4 and 6.5.

6.1 Targeted Board

As the target FPGA board, we use Altera Stratix V 5SGSD5, within the MaxWork-
station kit. It comes with a Intel Core i7-3770S CPU @ 3.10GHz, 16GB RAM CPU,
which is the CPU used for the CPU times in chapter 6. DFEs connect to CPU via
PCI Express gen2 x8.

6.2 Modular Reductions

As mentioned in section 4.4, there are three main possible modular reductions,
illustrated by algorithms 6, 7 and 8. As explained in section 4.4, algorithm 8 depends
greatly on the chosen ’prime’ p used for the modular reduction. Specifically, the
Hamming weight and the value of p minus its most significant bit (with respect to

54

the value of p) increases significantly the computation of the algorithm. For this
reason, there are several tables evaluating resources and latency depending of the
type of prime used: pseudo-Mersenne primes (primes with big Hamming weight and
value of p minus its most significant bit), pseudo-Fermat primes (primes with small
Hamming weight and value of p minus its most significant bit), and standard primes
(primes that have neither big nor small Hamming weight and value of p minus its
significant bit). The following tables study the resources usage and latency (number
of clocks) needed per modular reduction. It should be noted that in order to perform
a successful modular reduction within the FPGA, it is necessary (at least) to input
two values (from two input streams), multiply them and generate an output. These
additional operations add latency and take resources to complete. As a result, all of
the shown resources are with respect to a basic resource usage and latency shown in
table 6.1. In other words, all the tables in this section have the amounts of resources
shown in table 6.1 (first or second row depending of the bits) plus the amount of
resources of each modular reduction.

Configuration LUT FFs BRAMs DSPs Latency
64bit 60 410 0 8 5
128bit 506 1934 0 15 7

Table 6.1: Resource usage for simple 64bit and 128bit multiplication of two values
in FPGA.

Table 6.2 shows the latency and the amount and percentage of LUTs,FFs,BRAMs
and DSPs needed when operating modulo over two different pseudo-Mersenne ’primes’
for algorithms 6, 7 and 8, named Modulus, Barret and Fermat-like in table 6.2, re-
spectively. The chosen ’primes’ are p = 0x439f0001 (I), which has a high Hamming
weight and value of p minus its most significant bit close to p (0x039f0001), and
p=0x439f000000000001 (II), with the same characteristic as the previous value but
extended to operate with numbers of 128 bits.

As can be seen in table 6.2, when operating with pseudo-Mersenne numbers the
Fermat-like reduction uses a great amount of DSPs compared to modulus and Barret

55

Reduction LUT FFs BRAMs DSPs latency
Barret(I) 3176(0.92%) 4729(0.68%) 0 8(0.5%) 108
Fermat-like(I) 15956(4.62%) 41363(5.99%) 0 345(21.7%) 119
Modulus(I) 5701(1.65%) 6226(0.90%) 50(2.48%) 16(1.01%) 83
Barret(II) 11570(3.35%) 18843(2.73%) 0 15(0.94%) 206
Fermat-like(II) 31324(9.07%) 80905(11.72%) 0 645(40.57%) 219
Modulus(II) 20534(5.95%) 21647(3.14%) 114(5.66%) 15(0.94%) 146

Table 6.2: Resource usage and latency for each of the reductions using pseudo-
Mersenne numbers. (I) is for 64bits words using p=0x439f0001, whereas (II) for
128bits words using p=0x439f000000000001.

reductions and therefore it should not be the chosen scheme. The straight forward
approach (Modulus in table 6.2), however, has the lowest latency, not using much
more resources than Barret’s, apart from BRAMs.

Table 6.3, shows the same resources and latency as table 6.2 but for pseudo-Fermat
primes. As such, 0x40000003 (I) represents the first three rows of the table, whereas
0x4000000000000031(II) the second three rows, both with low Hamming weight and
low values without the most significant bit.

Reduction LUT FFs BRAMs DSPs Latency
Barret(I) 3176(0.92%) 4729(0.68%) 0 8(0.5%) 108
Fermat-like(I) 946(0.27%) 2327(0.34%) 0 15(0.94%) 17
Modulus(I) 5701(1.65%) 6226(0.90%) 50(2.48%) 16(1.01%) 83
Barret(II) 11570(3.35%) 18843(2.73%) 0 15(0.94%) 206
Fermat-like(II) 1426(0.41%) 2815(0.41%) 0 15(0.94%) 17
Modulus(II) 20534(5.95%) 21647(3.14%) 114(5.66%) 15(0.94%) 146

Table 6.3: Resources and latency for each of the reductions using pseudo-Fermat
numbers. (I) is for 64bits words using p=0x40000003. (II) for 128bits words using
p=0x4000000000000031.

Table 6.3 illustrates a significant optimization for the Fermat-like approach, spe-
cially in the latency. For this reason, there should be no doubt that the Fermat-like
prime modular reduction is the best option when using pseudo-Fermat primes.

56

Finally, table 6.4 follows the same structure as the two previous tables but using
’standard primes’, that is, primes that are as close to being pseudo-Fermat as they are
of being pseudo-Mersenne. In this case, the chosen values are 0x40000000039f0001(III),0x40000000809f0001(II)
and 0x40008901(I).

Reduction LUT FFs BRAMs DSPs Latency
Barret(I) 3176(0.92%) 4729(0.68%) 0 8(0.5%) 108
Fermat-like(I) 5000(1.45%) 13016(1.89%) 0 105(6.60%) 39
Modulus(I) 5701(1.65%) 6226(0.90%) 50(2.48%) 16(1.01%) 83
Barret(II) 11570(3.35%) 18843(2.73%) 0 15(0.94%) 206
Fermat-like(II) 5192(1.5%) 13461(1.95%) 0 105(6.6%) 39
Modulus(II) 20534(5.95%) 21647(3.14%) 114(5.66%) 15(0.94%) 146
Barret(III) 11570(3.35%) 18843(2.73%) 0 15(0.94%) 206
Fermat-like(III) 3719(1.08%) 9800(1.42%) 0 75(4.72%) 29
Modulus(III) 20534(5.95%) 21647(3.14%) 114(5.66%) 15(0.94%) 146

Table 6.4: Resources and latency for each of the reductions using numbers that
are neither Fermat-like nor Mersenne-like. (I) uses p=0x40008901, whereas (II)
p=0x40000000809f0001 and (III) p=0x40000000039f0001.

Again, Fermat-like modular reduction requires a much lower latency, without a
significant difference in the resource usage, since Fermat-like uses around 5% more
DSPs but around 5% less of the rest altogether for 128bit. Consequently, it is clearly
a better approach using the Fermat-like algorithm. The reason for having case (II)
and (III) in table 6.4 is that all the primes we generate and use (see sections 4.6
and 5.1) have a Hamming weight similar to cases (II) and (III), and its second most
significant bit is between the 26th (case (III)) and 32nd (case (II)) bits.

6.3 Polynomial Multiplication (CPU)

The best configuration of the PM for the FPGA might not be the best one for CPU.
For this reason, several CPU versions are considered. This way, one can compare
equivalent versions in CPU and FPGA as well as the best case for each of them.

57

Table 6.5 shows different times of different versions for the PM for a polynomial
length N = 2n = 16384. Note that, for each bit length of the final coprime q,
different approaches are possible. PMCRT shows times for an approach in which,
because of using pi of 32 bits, GMP is not needed, but the PM must be invoked
dbits(q)/32e times. PMGMP , on the other hand, uses only GMP, without any CRT
at all. In this case, the Polynomial Multiplication is performed once but with big
integers (mpz_t type of GMP). Finally, PMCRT,GMP uses a combination of the two
previous, with different cases depending on the bit length desired for q and for each of
the pi. It should be note that the values the columns bitsize(q),numpi , and bitsize(pi)
are directly related, because using CRT means bitsize(q) ≤ numpi ∗ bitsize(pi). This
means that modifying one of them in table 6.5 changes the value of the other two.

One can see that, as expected, since using GMP means not being able to perform
multiplications using primitive types, the best option is to avoid GMP at all times.
Moreover, increasing the number of pi in case PMCRT,GMP increases computation
time in all cases.

58

case bitsize(q) numpi bitsize(pi) CRT GMP Microseconds
PMCRT 64 2 32 YES NO 25227
PMGMP 64 1 64 NO YES 69875
PMCRT,GMP 64 2 32 YES YES 141238
PMCRT 128 4 32 YES NO 49472
PMGMP 128 1 128 NO YES 86577
PMCRT,GMP 128 4 32 YES YES 281200
PMCRT,GMP 128 2 64 YES YES 147866
PMCRT 256 8 32 YES NO 100787
PMGMP 256 1 256 NO YES 129443
PMCRT,GMP 256 8 32 YES YES 570764
PMCRT,GMP 256 4 64 YES YES 299480
PMCRT,GMP 256 2 128 YES YES 185223
PMCRT 512 16 32 YES NO 204035
PMGMP 512 1 512 NO YES 230858
PMCRT,GMP 512 16 32 YES YES 1124334
PMCRT,GMP 512 8 64 YES YES 600584
PMCRT,GMP 512 4 128 YES YES 370839
PMCRT,GMP 512 2 256 YES YES 273417
PMCRT 1024 32 32 YES NO 423224
PMGMP 1024 1 1024 NO YES 535700
PMCRT,GMP 1024 32 32 YES YES 2318944
PMCRT,GMP 1024 16 64 YES YES 1205310
PMCRT,GMP 1024 8 128 YES YES 665287
PMCRT,GMP 1024 4 256 YES YES 667428
PMCRT,GMP 1024 2 512 YES YES 492946

Table 6.5: CPU implementations of the PM given N = 2n = 16384. The rows within
the same row delimiters perform the same PM (are comparable).

59

6.4 Pease’s Polynomial Multiplication (FPGA)

As explained in section 5, Pease’s algorithm was firstly used because of its constant
geometry. Our version of Pease’s algorithm uses Streams instead of Large Memory
since the amount of data to transfer can be transferred in less than 300 microseconds
(for the largest case N=32768) via PCIe bus, not being worth calling two more
times (read and write) if using LMem. Regarding resource usage, table 6.6 shows
percentage of them and latency for a polynomial length of N = 16384 = 213, and
bits(pi) = 64. Using CRT and calling several times to this DFE’s algorithm one can
generate a size of q as big as desired.

Version LUT FFs BRAMs DSPs latency

Pease’s 62588(18.13%) 160352(23.23%) 1466(72.79%) 1090(68.55%) 178

Table 6.6: Pease’s algorithm final version resources and latency.

Note that the latency is just the number of clocks needed to have the first output,
assuming the i-th output is generated in the i-th tick. Given that for this algorithm we
need to calculate several stages within the FPGA, the number of ticks is significantly
bigger than the length of the polynomials, which means that throughout the first ticks
the output is not correct, but just undefined values. Specifically, the number of ticks
is (2∗n+1)∗N/2; being N−1 = 2n−1 the maximum degree of the polynomials. Also,
the operating frequency of the DFE for this algorithm is set to 180MHz. As studied
before, depending on the specific second most significant bit of each pi, the resulting
resources may vary (because of the Fermat-like modular reduction). Nevertheless, in
order to achieve a generic algorithm (that is, being able to call the same algorithm
with different precomputed parameters), the implementation performs for the worst
case possible. Taking into account that, as previously mentioned, the worst case
for the primes generated by the block PRECOMPUTED PARAMETERS has
its second most significant in the 32nd position, whereas the first (and best) prime
generated has it in the 26th, each time algorithm 8 is called it computes with value

60

m = 32, iterating more times than needed for some cases where m can be smaller
than 32. These differences do not affect latency (hence execution time) significantly,
having to increase in 0.89% the execution time for the best case, whereas it does
affect resources usage (see tables from section 6.2). However, table 6.6 shows a large
amount of resources still unused, although not enough to enable parallelization within
the same DFE via CRT or multiple pipes (since the amount of BRAMs and DSPs
use is already bigger than 50% and having two PMs would require at least twice
the amount of resources). Still, as seen in chapter 5, the parallelization is performed
with Cooley’s approach, and not with Pease’s. Later in this chapter an optimised
version of the same Pease’s implementation but using Cooley’s I/O patterns will be
shown.

Table 6.7 shows a comparison between the fastest CPU version (which, as seen
in table 6.5 is always case PMCPUCRT

) , the equivalent CPU version to the one in
the FPGA (PMCPUCRT,GMP

) and the FPGA Pease’s version (PMFPGAPease′s
). Note

that, for each call to the DFE (each pi), data must be converted from GMP into an
FPGA-compatible format. Table 6.7 provides times including such conversion. One
can see that DFE’s implementation (PMCRT,FPGA) is much faster even though these
times include the computation (in CPU) of converting data into CRT format and
back (which is performed in CPU for all the three cases). For a table without such
times see tables 6.8. Also, figure 6.1 avoids such conversion, showing faster times for
the FPGA relative to CPU times.

One can see in figure 6.1 and table 6.8 that the FPGA is significantly faster
compared to the equivalent algorithm in CPU (PM_CPU_CRT_GMP), obtaining
a speedup of more than 11 when comparing the case bits(q)=1088. Also, when
compared with the best case for CPU, the speed up is of more than 3.

61

case bits(q) numpi bits(pi) CRT GMP Microseconds
PMCPUCRT

1088 34 32 YES NO 394091
PMCPUCRT,GMP

1088 17 64 YES YES 1253793
PMFPGAPease′s

1088 17 64 YES 181320
PMCPUCRT

576 18 32 YES NO 203004
PMCPUCRT,GMP

576 9 64 YES YES 656712
PMFPGAPease′s

576 9 64 YES 84988
PMCPUCRT

320 10 32 YES NO 124500
PMCPUCRT,GMP

320 5 64 YES YES 364278
PMFPGAPease′s

320 5 64 YES 50670

Table 6.7: FPGA Pease’s version, its equivalent CPU implementations and fastest
CPU implementation, taking into account conversion into CRT, for a polynomial
length N=16384

case bits(q) numpi bits(pi) CRT GMP Microseconds
PMCPUCRT

1088 34 32 YES NO 300931
PMCPUCRT,GMP

1088 17 64 YES YES 1160633
PMFPGAPease′s

1088 17 64 YES - 88160
PMCPUCRT

576 18 32 YES NO 153684
PMCPUCRT,GMP

576 9 64 YES YES 627392
PMFPGAPease′s

576 9 64 YES - 55668
PMCPUCRT

320 10 32 YES NO 97100
PMCPUCRT,GMP

320 5 64 YES YES 336878
PMFPGAPease′s

320 5 64 YES - 23270

Table 6.8: FPGA Pease’s version, its equivalent CPU implementations and fastest
CPU implementation, without taking into account conversion into CRT, for a poly-
nomial length N=16384

62

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 300 400 500 600 700 800 900 1000 1100

tim
es

 (m
icr

os
ec

on
ds

)

bits(q)

mainCRT
mainCRTGMP

mainCRTFPGA

Figure 6.1: FPGA Pease’s version, its equivalent CPU implementations and fastest
CPU implementation, without taking into account conversion into CRT, for a poly-
nomial length N=16384

63

6.4.1 Generic Polynomial Multiplication

One of the drawbacks of using CRT for the PM is that it requires a specific coprime
q of known factorization q =

∏
pi. However, given any two polynomials over Z[x],

by taking the maximum degree of them, and the maximum coefficient coeff , one
can use the DFE as long as q > degree ∗ coeff 2 and N = 2n ≥ degree. One can see
that doing this requires more operations over bigger data than simply multiplying
them using PM without CRT (case PMCPUGMP

, but the advantage of doing it is the
possibility of using FPGA’s implementation, since without using CRT one can not
split the computation of big integers into different calls to the FPGA and therefore
one can not use the proposed FPGA algorithm (since the coefficients are too big to
fit with the available modules). Table 6.9 shows CPU times and FPGA times using
this approach. In this case, times are shown including CRT conversions when needed,
since in this case neither input nor output data can be in CRT format. Again, all the
times shown are again for case N = 2n = 16384 being PMFPGACRT

being the fastest
of them. Also, remember that changing the value of any of bitsize(q), numprimes and
bitsize(pi) modifies the rest of them. Notice that, unlike in the previous tables, in
table 6.9 makes sense comparing PMCPUGMP

with smaller bitsize(q) than the rest
of the cases, since such case does not need CRT and thus it can perform the PM
over q, q being the number (not necessarily coprime as q) that defines the ring Rq

of the elements that are multiplied. Finally, when having bitsize(pi) ≥ 64 (case
PMCPUCRT,GMP

) the first of the pi is actually of size 64, (shown as p0 ← 64 in table
6.9), in order to obtain a small value of bitsize(q). Similarly, when bitsize(pi) = 32,
the value of bitsize(q) can be smaller than for cases with bitsize(pi) ≥ 64, since
bitsize(q) has to be a power of 32 instead of a power of 64.

64

case bitsize(q) numpi bitsize(pi) CRT GMP Microseconds
PMCPUCRT

1056(≥1038) 33 32 YES NO 380391
PMCPUGMP

512 1 512 NO YES 230858
PMCPUCRT,GMP

1056(≥1038) 33 32 YES YES 2296859
PMCPUCRT,GMP

1088(≥1038) 17 64 YES YES 1253793
PMCPUCRT,GMP

1088(≥1038) 9 128(p0 ←64) YES YES 794472
PMCPUCRT,GMP

1088(≥1038) 5 256(p0 ←64) YES YES 597683
PMCPUCRT,GMP

1088(≥1038) 3 512(p0 ←64) YES YES 529330
PMFPPGAPease′s

1088(≥1038) 17 64 YES - 181320
PMCPUCRT

544(≥526) 17 32 YES NO 193134
PMCPUGMP

256 1 256 NO YES 129443
PMCPUCRT,GMP

544(≥526) 17 32 YES YES 1177621
PMCPUCRT,GMP

576(≥526) 9 64 YES YES 656712
PMCPUCRT,GMP

576(≥526) 5 128(p0 ←64) YES YES 425017
PMCPUCRT,GMP

576(≥526) 3 256(p0 ←64) YES YES 332477
PMFPGAPease′s

576(≥526) 9 64 YES - 84988
PMCPUCRT

288(≥270) 9 32 YES NO 103647
PMCPUGMP

128 1 128 NO YES 86577
PMCPUCRT,GMP

288(≥270) 9 32 YES YES 616060
PMCPUCRT,GMP

320(≥270) 5 64 YES YES 364278
PMCPUCRT,GMP

320(≥270) 3 128(p0 ←64) YES YES 246213
PMFPGAPease′s

320(≥270) 5 64 YES - 50670
PMCPUCRT

160(≥134) 5 32 YES NO 58575
PMCPUGMP

64 1 64 NO YES 69875
PMCPUCRT ,CPUGMP

160(≥134) 5 32 YES YES 342770
PMCPUCRT,GMP

192(≥134) 3 64 YES YES 218448
PMFPGAPease′s

192(≥134) 3 64 YES - 23581

Table 6.9: Times for using CRT for multiplicative groups that are not suitable for
them by extending the group to a bigger one. PMGMP represents the multiplication
not using CRT. Rows in the same block perform exactly the same multiplication.

65

6.5 Cooley’s Polynomial Multiplication (FPGA)

In order to achieve a parallel version of the DFE algorithm, several optimizations
where made (including reducing the amount of precomputed data stored to reduce
BRAM usage and increasing the multiplication paths increasing ticks in order to
reduce DSPs). Also, the I/O patterns changed from Pease’s to Cooley-Tukey’s, since
it supports better parallelization within the FPGA. As explained in chapter 5, there
are several levels of parallelization, that can be divided into horizontal (using CRT,
independent PMs) and vertical (within the same PM multiple pipes).

Table 6.10 shows resources, latency and execution time of different configurations
of Cooley’s approach, including parallel cases (numcrt represents horizontal paral-
lelism and numpipes vertical parallelism). Note that there is no case with numcrt 6= 1

in table 6.10, given that, even though the algorithm supports horizontal parallelism
within the FPGA, the implementation exceeds BRAMs when increasing its value. It
also should be remarked that, when focusing on the extended resources of the case
numpipes = 4, the resource usage is maximize, having all of them more than 77%
usage, apart from secondary FFs and LUTs. This means that we are using most of
the available resources in our specific FPGA. notice how, when having numpipes > 1,
the number of ticks increases by N/2 (one stage), since, instead of executing in the
first same stage the multiplication φi and the butterfly, we split that into another
stage, reusing the same DSPs for both multiplications, in order to save some DSPs.

With table 6.10, and with some of the times already shown in table 6.7, one can
generate the times shown in table 6.11. Notice that, in this case, the times follow the
same structure as in table 6.11, but removing the common parts executed in CPU
(that is, the conversions for and back CRT), in order to show the speedup of using
FPGA. Besides, one can execute the whole BGV without executing such conversion.

Nevertheless, one should note all this times include a conversion into FPGA-
compatible types, as well as many of them also include a conversion using CRT
(prior to the conversion into FPGA-compatible types). Again, although for the

66

numcrt 1 1 1 1
numpipes 1 2 2 4
Clock Frequency 180MHz 100MHz 180MHz 100MHz
Ticks (2*n+1)*N/2 ((n+2)*N)/numpipes ((n+2)*N)/numpipes (n+2)*N)/numpipes

N=2n 32768 32768 32768 32768
LUTs 35644(10.33%) 80757(23.39%) 80757(23.39%) 145381(42.12%)
FFs 92648(13.42%) 203129(29.42%) 203129(29.42%) 343836(49.80%)
BRAMs 1226(60.87%) 1041(51.69%) 1041(51.69%) 1402(69.61%)
DSPs 645(40.57%) 1261(79.31%) 1261(79.31%) 1494(93.96%)
Latency 106 93 93 98
Microseconds 4794 3303 2533 2029

Extended Resources case numpipes=4
Logic utilization: 134108 / 172600 (77.70%)
Primary FFs: 291147 / 345200 (84.34%)
Secondary FFs: 93265 / 345200 (27.02%)

Multipliers (18x18): 2988 / 3180 (93.96%)
DSP blocks: 1494 / 1590 (93.96%)

Block memory (M20K): 1769 / 2014 (87.84%)

Table 6.10: Results and configuration of Cooley’s different implementations, and
extended resource usage of Cooley-Tukey’s parallel implementation (numpipes = 4)
within the FPGA. numCRT represents the number of parallel multiplication over
different pi (horizontal parallelism). numpipes represents the number of pipes used
within each multiplication over Zpi (vertical parallelism).

specific state of the algorithm it is necessary to perform them, it is possible to
design an algorithm that does not require any of such conversions. For such reason,
one can reasonably compare times avoiding both of them. For instance, in table
6.11, avoiding conversions into FPGA-compatible format, the actual times for the
FPGA correspond to 114920 and 34493 microseconds for Pease’s and Cooley’s final
versions, respectively. One should notice a speedup of 4.84 when comparing our best
FPGA case (FPGACooley′s) with our best CPU case CPUCRT . Moreover, our fastest
FPGA case is 2.22 times faster than our best Pease’s implementation and 18 times

67

case bits(q) numpi bits(pi) CRT GMP Microseconds
CPUCRT 1088 34 32 YES NO 317243
CPUCRT,GMP 1088 17 64 YES YES 1176945
FPGAPease′s 1088 17 64 YES - 145972
FPGACooley′s 1088 17 64 YES - 65545

Table 6.11: Execution times of the final versions of each of the algorithms, compared
to its equivalent in CPU and with the fastest CPU algorithm for N = 32768 = 2n

faster than the equivalent algorithm in CPU. Furthermore, if avoiding the previously
mentioned conversions, and taking into account a time of 34493 microseconds instead
of 65545, the speedup increases to 9.19 and 34.12 when compared with CPUCRT and
CPUCRT,GMP , respectively.

6.5.1 BGV (CPU vs FPGA)

Having shown PM times, table 6.12 represents the different times for Encryption and
Decryption of the BGV algorithm. Notice that this times actually include conversions
into FPGA-compatible types, assuming a great part of the computation time.

Case Encryption Time Decryption Time
CPUCRT 669687 324449
CPUCRTGMP 2389091 1184151
FPGAPease′s 327145 153178
FPGACooley′s 166291 72751

Table 6.12: Encryption and decryption times depending on the chosen multiplication.

Table 6.12 shows a speedup of FPGACooley′s of 4.02 when encrypting and 4.459
decrypting compared with our fastest CPU implementation. Moreover, compared
to FPGAPease′s, the speedup is of roughly 2 for both cases. Compared with the
equivalent CPU implementation, FPGAPease′s is 14.36 times faster encrypting and
16.27 times decrypting.

68

Apart from our CPU implementation, compared to NTL ZZ_pX types, the execu-
tion of the PM for N=32768 and bits(q)=1024 is 404573 microseconds, which gives
a speedup for the DFE of 12. Moreover, for the case N=32768, bits(q)=64; that is,
calling the DFE once, the speedup is 16, avoiding conversion time.

6.6 Comparison with Other Work

Comparing performance and resources usage with related work is not easy, spe-
cially in cases where the targeted board uses a complete different architecture as a
result of being designed by a different company, such as [23, 27]. [27] does not report
actual times of a polynomial multiplication, but rather clocks of implemented algo-
rithms within the FPGA, excluding interfacing with CPU. As any of the algorithms
in the FPGA is the actual polynomial multiplication, but rather some parts of it,
it is not possible to compare our implementation with theirs in a fair way. Also,
their FPGA (Xilinx Virtex-7 XC7V1140T-2) is the largest device of the Virtex-7
FPGA family, but their resources are underused (with 53% usage of DSP48 as the
biggest usage percentage). Our implementation, though using a smaller device in
terms of resources, maximize the resources at our disposal. Nevertheless, as their
device disposes more resources, we appear to use less LUTs and DSPs, whereas the
same amount of FFs (Registers) and more BRAMs (which is necessary when avoiding
several calls to the FPGA so as to implement the polynomial multiplication, as they
would need).

Öztürk et al. [23] seem to use about half the area (resources) compared to
our presented implementation. Again, given their targeted board (Xilinx Virtex 7
XC7VX690T), it is difficult to compared with accuracy. Their design allows them to
execute using 250MHz, which is not possible for our targeted board, with 200MHz
as highest frequency to ensure the correctness of the output data. Also, as they
implement the polynomial reduction outside of the FPGA, they need to use less
resources and have a lower latency. Nevertheless, they obtain a total time for the
execution of a full polynomial multiplication (as explained in this project) of 28.51

69

milliseconds, compared to 40 milliseconds that we obtain with the same parameters
(executing at 100MHz). However, most of this time takes place in CPU (because
they compute the polynomial reduction in CPU) meaning that, though they have
more resources in the FPGA to parallelize more the (I)NTTs, their project scales
worse with the power of the FPGA. Furthermore, their resource usage is at about
50% (with a bigger board compared to ours), meaning that their approach spends
more energy than ours. In any case, the comparison seems odd, given the disparity
of both FPGAs and designs.

Pöppelmann et al. [26] use a fairly comparable Altera board (Stratix V 5GSND5H).
Their modular reduction (Solinas) allows them to reduce their DSP usage to 577.
However, this reduction is designed for a subset of all the primes. Besides, they do
not use CRT, having to lead with big word sizes and limiting the possibility of Rq

having q to be a Solinas primes, instead of a product of Solinas primes. There is
no significant difference with the rest of the resources. Furthermore, our execution
would complete a full polynomial multiplication in less than 16.37ms, compared to
the 27.88ms they need.

Finally, any of the mentioned projects report actual complete times of encryption
or decryption, though some of them report times of the primitives of a FHE Cryp-
tosystem. We presented, to the best of our knowledge, the first execution times of
a complete Cryptosystem in an FPGA-based system. Also, thanks to using Maxeler
Tools, our design would be easily parallelized by using more than FPGA, something
already described as ’promising’ by Pöppelmann et al. [26].

70

Chapter 7

Conclusions and Future Work

We showed that modern FPGAs have sufficient resources for efficient computation
of primitives required for evaluating functions on FHE encrypted data. Despite this,
maximizing the resources of its FPGA is critical, and interfacing with CPU should
be minimized. For this purpose, a proper approach would be an implementation of
the algorithm that admits several sequential PMs with one call, avoiding overhead
derived from calling several times. This approach is easy to implement. Also, for the
sake of saving time, the FPGA code can be executed asynchronously the computer.

We presented several designs of modular reduction, showing the benefits of using
the Fermat-like modular reduction when the number to reduce by is not Mersenne-
like. In other cases, Barret Reduction proof to make a better job. Apart from this,
Fermat-like modular reduction should always be used when having plenty of resources
left. Also, we studied different versions of the PM in the FPGA and in CPU.

To the best of our knowledge, we present here the first FPGA implementation
used by an encryption system, with actual times of such implementation as well
as the encryption and decryption algorithm. We saw the benefits of using CRT
for splitting the PM of big integers into several PMs of smaller ones. Moreover,
we showed advantages of parallelizing using Cooley-Tukey’s NTT algorithm rather
than Pease’s. In order to accelerate the execution, we consider using several FPGAs

71

in the future working together to enable parallel calls to several PMs over 64bits.
For example, given the case bits(q) = 1088, N = 32768, one could use 17 FPGAs to
parallelize all 17 of the PMs over 64bits. One execution of the FPGA algorithm takes
2029 microseconds, of which 310 microseconds are needed for data transfer. Since the
17 FPGAs would theoretically use the same PCIe bus (thanks to the DFEs designs
by Maxeler), the final computation of all the 17 calls wold take 6989 microseconds,
compared with 34494 microseconds of a sequential call. Finally, we are studying
ways of increasing the frequency of the case numpipes = 4 since that would allow a
decrease of over 500 microseconds in each of the calls to FPGA.

As changes in the implementation itself, we are studying the use of multiple CRTs
within the same FPGA by reducing the bits of each pi to 32bits, avoiding the use of
GMP and also the conversion into FPGA-compatible format. Furthermore, compar-
ing different bit lengths implementation’s resources, latencies and execution times to
conclude which one is more recommendable for the FPGA implementation would be
an interesting study, the same way it was done for the CPU one. Using more than
64bits would require declaring variables in the FPGA of more than 128bits feature
Maxeler is working on in order to provide MaxJ with that and bigger bit sizes for
variables at the moment. Finally, we also considered introducing our different PMs
into HELib, replacing the built-in PM in HELib, in order to study the speedup of
both algorithms in a reputable HE library.

72

Bibliography

[1] Bambu: A Free Framework for the High-Level Synthesis of Complex Applica-
tions.

[2] FpgaC compiler.

[3] Maxeler technologies.

[4] Nios-II C-to-Hardware Acceleration Compiler.

[5] ROCCC: Riverside Optimizing Compiler for Configurable Computing.

[6] B.M. Baas. A generalized cached-fft algorithm. In Acoustics, Speech, and Signal
Processing, 2005. Proceedings. (ICASSP ’05). IEEE International Conference
on, volume 5, pages v/89–v/92 Vol. 5, March 2005.

[7] M. Baas. An approach to low-power, high performance, fast fourier transform
processor design. Technical report, 1999.

[8] JoppeW. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved se-
curity for a ring-based fully homomorphic encryption scheme. In Martijn Stam,
editor, Cryptography and Coding, volume 8308 of Lecture Notes in Computer
Science, pages 45–64. Springer Berlin Heidelberg, 2013.

[9] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. In Proceedings of the 3rd In-
novations in Theoretical Computer Science Conference, pages 309–325. ACM,
2012.

73

[10] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Advances in
Cryptology–CRYPTO 2011, pages 505–524. Springer, 2011.

[11] D.D. Chen, N. Mentens, F. Vercauteren, S.S. Roy, R.C.C. Cheung, D. Pao, and
I. Verbauwhede. High-speed polynomial multiplication architecture for ring-lwe
and she cryptosystems. Circuits and Systems I: Regular Papers, IEEE Trans-
actions on, 62(1):157–166, Jan 2015.

[12] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Math. Comput., 19, 1965.

[13] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable compu-
tation on encrypted data. Cryptology ePrint Archive, Report 2014/202, 2014.

[14] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. A performance
and energy comparison of fpgas, gpus, and multicores for sliding-window appli-
cations. In Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA ’12, pages 47–56, New York, NY, USA, 2012.
ACM.

[15] Haohuan Fu, Robert G. Clapp, and Olav Lindtjorn. Revisiting Convolution and
FFT on Parallel Computation Platforms, chapter 602, pages 3071–3075. 2015.

[16] Torbjörn Granlund and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library, 6.1.0 edition, 2015.

[17] David Harvey. Faster arithmetic for number-theoretic transforms. J. Symb.
Comput., 60:113–119, 2014.

[18] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
SWIFFT: A Modest Proposal for FFT Hashing, volume 5086 of Lecture Notes
in Computer Science, pages 54–72. Springer Berlin / Heidelberg, 2008.

74

[19] Sparsh Mittal and Jeffrey S. Vetter. A survey of methods for analyzing and
improving gpu energy efficiency. ACM Comput. Surv., 47(2):19:1–19:23, August
2014.

[20] Mervin E. Muller. A comparison of methods for generating normal deviates on
digital computers. J. ACM, 6(3):376–383, July 1959.

[21] Henri J Nussbaumer. Fast Fourier transform and convolution algorithms, vol-
ume 2. Springer Science & Business Media, 2012.

[22] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin
Strauss, and Eric S. Chung. Accelerating deep convolutional neural networks
using specialized hardware, February 2015.

[23] Erdinç Öztürk, Yarkın Doröz, Berk Sunar, and Erkay Savaş. Accelerating some-
what homomorphic evaluation using fpgas. Cryptology ePrint Archive, Report
2015/294, 2015.

[24] Marshall C. Pease. An adaptation of the fast fourier transform for parallel
processing. J. ACM, 15(2):252–264, 1968.

[25] John M Pollard. The fast fourier transform in a finite field. Mathematics of
computation, 25(114):365–374, 1971.

[26] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrián Macías.
Accelerating homomorphic evaluation on reconfigurable hardware. IACR Cryp-
tology ePrint Archive, 2015:631, 2015.

[27] Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dimitrov, and
Ingrid Verbauwhede. Modular hardware architecture for somewhat homomor-
phic function evaluation. Cryptology ePrint Archive, Report 2015/337, 2015.

[28] Victor Shoup Shai Halevi. HELib: Homomorphic-Encryptio Library, 2015.

[29] Victor Shoup. A computational introduction to number theory and algebra. Cam-
bridge university press, 2009.

75

[30] Victor Shoup. NTL: A Library for doing Number Theory, 9.6.2 edition, 2015.

[31] Jerome A. Solinas. Generalized mersenne numbers. Technical report, 1999.

[32] Joachim von zur Gathen. J.gerhard: Modern computer algebra, 1999.

[33] Reto Zimmermann. Efficient vlsi implementation of modulo (2n plusmn;1) addi-
tion and multiplication. In Computer Arithmetic, 1999. Proceedings. 14th IEEE
Symposium on, pages 158–167, 1999.

76

	Summary
	Spanish
	English

	Introduction
	Architecture Overview
	Maxeler IDE and MaxJ Language

	Background & Related Work
	Number Theoretic Transform
	Polynomial Multiplication
	Chinese Remainder Theorem
	Modular Reduction
	Brakerski-Gentry-Vaikuntanathan Homomorphic Encryption
	Parameter set
	Related Work

	Implementation
	Parameter set Selection
	BGV & Polynomial Multiplication (CPU)
	Polynomial Multiplication (FPGA)

	Evaluation
	Targeted Board
	Modular Reductions
	Polynomial Multiplication (CPU)
	Pease's Polynomial Multiplication (FPGA)
	Generic Polynomial Multiplication

	Cooley's Polynomial Multiplication (FPGA)
	BGV (CPU vs FPGA)

	Comparison with Other Work

	Conclusions and Future Work

