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ABSTRACT
As asynchronous programming becomes more mainstream,
program analyses capable of automatically uncovering pro-
gramming errors are increasingly in demand. Since asyn-
chronous program analysis is computationally costly, current
approaches sacrifice completeness and focus on limited sets
of asynchronous task schedules that are likely to expose
programming errors. These approaches are based on pa-
rameterized task schedulers, each of which admits schedules
which are variations of a default deterministic schedule. By
increasing the parameter value, a larger variety of schedules
is explored, at a higher cost. The efficacy of these approaches
depends largely on the default deterministic scheduler on
which varying schedules are fashioned.

We find that the limited exploration of asynchronous pro-
gram behaviors can be made more efficient by designing
parameterized schedulers which better match the inherent
ordering of program events, e.g., arising from waiting for an
asynchronous task to complete. We follow a reduction-based
“sequentialization” approach to analyzing asynchronous pro-
grams, which leverages existing (sequential) program analysis
tools by encoding asynchronous program executions, accord-
ing to a particular scheduler, as the executions of a sequential
program. Analysis based on our new scheduler comes at no
greater computational cost, and provides strictly greater be-
havioral coverage than analysis based on existing parameter-
ized schedulers; we validate these claims both conceptually,
with complexity and behavioral-inclusion arguments, and
empirically, by discovering actual reported bugs faster with
smaller parameter values.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging
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1. INTRODUCTION
In order to improve program performance and responsive-

ness, many modern programming languages and libraries
promote an asynchronous programming model, in which
“asynchronous procedures” can execute concurrently with
their callers, until their callers explicitly wait for their com-
pletion. Accordingly, as concurrently-executing procedures
interleave their accesses to shared memory, asynchronous
programs are prone to concurrency-related errors.

In this work, we develop program analyses capable of
detecting errors in asynchronous programs. To motivate
the need for such analyses, consider the subtle error in
the event-handling C# code of a graphical user interface
found on StackOverflow, which is listed Figure 1. The
MySubClass.onNavigatedTo method accesses image-related infor-
mation (m_bmp.PixelWidth) which is filled in by the LoadState
method, invoked by the OnNavigatedTo method of the base
class. However, the LoadState method has been implemented
to execute asynchronously so that its callers can continue to
execute while the image file is read — which is presumably
a high-latency operation — meaning that base.OnNavigatedTo
can return before m_bmp has been initialized. This creates a
race between the initialization of m_bmp and its use in the call
to Canvas.SetLeft, which results in an error when its use wins.
Not having anticipated this race, the programmer has failed
to provide adequate synchronization to ensure that the call to
LoadState completes before m_bmp is accessed by OnNavigatedTo.

While detecting such concurrency bugs by exhaustive ex-
ploration of all possible program schedules is intractable, one
promising approach is the prioritized exploration of behaviors
whose manifestations rely on a small numbering of ordering
dependencies between program operations. In particular,
the delay bounding approach [1] explores the program be-
haviors arising in executions with a given scheduler S(K)
parameterized by a “delay bound” K ∈ N; while S(0) is a
deterministic scheduler, exhibiting only one order of program
operations, S(K) is given additional nondeterministic choice
with each increasing value of K, allowing additional orders,
and ultimately, exhibiting additional observable program be-
haviors. The approach is particularly compelling under the
hypothesis that interesting program behaviors (e.g., bugs)



// MySubClass
BitmapImage m_bmp;
protected override async void OnNavigatedTo(NavigationEventArgs e)
{
base.OnNavigatedTo(e);
await PlayIntroSoundAsync();
image1.Source = m_bmp;
Canvas.SetLeft(image1, Window.Current.Bounds.Width - m_bmp.PixelWidth);

}
protected override async void LoadState(Object nav, Dictionary <String, Object> pageState)
{
m_bmp = new BitmapImage();
var file = await StorageFile.GetFileFromApplicationUriAsync("ms-appx:///pic.png");
using (var stream = await file.OpenReadAsync())
await m_bmp.SetSourceAsync(stream);

}
// base class
class LayoutAwarePage : Page
{
protected override void OnNavigatedTo(NavigationEventArgs e)
{

// ...
this.LoadState(e.Parameter , null);

}
}

Figure 1: This code contains a subtle bug due to a race condition on the m_bmp field.

manifest with few ordering dependencies: Emmi et al. [1]
demonstrate an efficiently-implementable “depth-first” delay-
ing scheduler DF(K) which can expose behaviors with few
ordering dependencies using small values of K.

In practice, the cost of prioritized exploration with a pa-
rameterized scheduler S(K) is highly sensitive to the value of
K, limiting DF(K)-based exploration to roughly 0 ≤ K < 5,
depending on program size. While such small values of K
may suffice to expose bugs in programs which use very little
synchronization, each program synchronization statement
induces another event-order dependency, possibly forcing
DF(K) to further deviate from its natural deterministic
order by increasing K. For instance, if DF(K)’s default
schedule encounters a statement which acquires a lock held
by another thread, then DF(K) must spend one of its K
delays in order to execute the other thread and eventually
progress past the lock acquisition. In the context of asyn-
chronous programs, e.g., using C#’s asynchronous methods,
DF(K) must spend one if its K delays to advance past a
statement which waits for a non-completed task to complete.
It follows that program behaviors which can appear only
after a high number of synchronization statements carry a
high number of event-order dependencies, which ultimately
may be exercised by DF(K) only for large values of K. As
the cost of program exploration with DF(K) is sensitive to K,
the discovery of such behaviors may require an unreasonable
amount of computing resources.

In this work we demonstrate a delaying scheduler DFW(K)
for which the cost of exploration is not tied to program
synchronization, and yet which still enjoys DF(K)’s strengths,
in particular:

• Sequentialization The program executions allowed
by DFW(K) can be simulated by a sequential program
with nondeterministically-chosen data values.

• Low Complexity The reachability problem for finite-
data programs restricted to DFW(K) executions is
NP-complete1 in K.

1This complexity assumes program variables are fixed in

However, unlike DF(K), the DFW(K) scheduler explicitly
takes program synchronization into account in its schedul-
ing decisions, so that event-order dependencies arising from
synchronization statements do not force K to increase. Ef-
fectively, this means that DFW(K) provides strictly greater
behavioral coverage than DF(K) at virtually no additional
cost.

Our contributions and outline are:

§2 A formal semantics of asynchronous programs with
synchronization.

§3 A formal description of the DFW(K) scheduler, and
comparison with DF(K).

§4 A “compositional semantics” for DFW(K), which fos-
ters sequentialization.

§5 A code translation encoding DFW(K) executions as a
sequential program.

§6 NP-completeness of reachability under DFW(K) for
finite data programs.

§7 An empirical comparison: DFW(K) finds bugs faster,
with smaller K.

In theory, every program behavior observable with DF(K)
is also observable with DFW(K) for any K, yet the reverse
is untrue: for any K0 there exist programs whose sets of
behaviors observable with DFW(K0) are not all observable
with DF(K) for any K; Section 3 demonstrates this fact.
Empirically, Section 7 demonstrates that our sequentializa-
tion of DFW(K) is more effective than DF(K) in finding
bugs in real code examples as the number of synchronization
operations grows.

While our development is centered around a simple pro-
gramming model with asynchronous procedure calls, and
“wait” statements which block until the completion of a given
asynchronous call, our technical innovations also apply to

number and size, as usual [2, 1].



other asynchronous programming primitives provided by
widely-used programming languages, such as the partially-
synchronous procedure calls of C#2 and the wait-for-all
synchronization barriers of, e.g., Cilk and X10. We believe
that the same principles would also apply for other synchro-
nization mechanisms such as semaphores and locks.

2. ASYNCHRONOUS PROGRAMS
In order to develop our theory around synchronization-

exploiting schedulers, we introduce a formal model of asyn-
chronous programs with asynchronously executing proce-
dure calls, and blocking wait-for-completion synchronization.
When a procedure is called asynchronously, control returns
immediately to the caller, who may store a task identifier
with which to refer to the procedure instance, which we
henceforth refer to as a task. The newly-created task then
executes concurrently with the caller, possibly accessing the
same set of global program variables concurrently. While we
suppose for simplicity that task identifiers are not stored in
global program variables, we do allow task identifiers to be
stored in procedure-local variables, passed as arguments to
called procedures, and returned from procedure calls. A task
identifier i may be used to block the execution of another
task j until task i completes, at which point the task’s result
may be stored in a program variable. Together these fea-
tures comprise an expressive model of concurrent programs
which corresponds closely to the features in a diverse range
of programming languages including C#, Cilk, and X10.

Syntactically, a program is a set of global variable decla-
rations, along with a set of procedure declarations whose
statements are given by the grammar:

s ::= s; s | assume e | skip
| if e then s else s | while e do s
| x := e | call x := p e | return e
| async x := p e | x := wait e

Here, x ranges over the set Vars of program variables, p
ranges over procedure names, and e ranges over program
expressions — whose grammar we leave unspecified. The set
of program values Vals includes the set IDs of task identifiers,
including a special polymorphic nil value ⊥. We assume
program expressions are statically typed, that each task-
identifier typed expression evaluates to a single value i ∈ IDs,
and that each non-identifier typed expression evaluates to a
set of values V ⊆ (Vals \ IDs). Furthermore, we suppose that
the set of program expressions contains ?, which can evaluate
to any non-identifier program value, and that each program
contains a single entry-point procedure named main.

Aside from the usual sequential programming statements,
we include the statement async x := p e which creates a
new task to execute procedure p with argument e, storing
its identifier in the procedure-local variable x, and the state-
ment x := wait e, which blocks execution until the task
i ∈ IDs referenced by e completes, at which point the result
which i returns is assigned to the variable x. Furthermore,
to facilitate our translations of programs into sequential pro-
grams with nondeterministically-chosen values, which appear
in later sections, we include the assume e statement, which

2In C#, executing an “await” inside of a procedure returns
control to the caller, executing the remaining continuation
asynchronously.

proceeds only if the expression e evaluates to true, and the
nondeterministic assignment x := ?.

A frame f = 〈`, s〉 ∈ Frames is a valuation ` : Vars→ Vals
to procedure-local variables, along with a statement s ∈
Stmts describing the entire body of a procedure that remains
to be executed; sp denotes the statement body of procedure
p. A task t = 〈i, w, v〉 is an identifier i ∈ IDs, along with
a procedure frame stack w ∈ Frames∗, and a result value
v ∈ Vals. We say a task t = 〈i, w, v〉 ∈ Tasks is completed
when v 6= ⊥, and we maintain that v = ⊥ if and only if
w = ε3; we refer to t as the root task if i = ⊥. A task pool
is a set m ⊆ Tasks in which no two tasks have the same
identifier. A configuration c = 〈g,m〉 ∈ Configs is a valuation
g : Vars→ Vals to the global program variables, along with
a task pool m.

To reduce clutter in our definition of program semantics,
we define a notion of contexts. A statement context S is
a term derived from the grammar S ::= � | S; s, where
s ∈ Stmts. We write S[s] for the statement obtained by
substituting a statement s for the unique occurrence of � in
S. Intuitively, a context substituted by s, e.g., S[s], indicates
that s is the next statement to execute in the statement
sequence S[s]. Similarly, a task context T = 〈`, S〉 · w is
a frame sequence in which the first frame’s statement is
replaced with a statement context, and we write T [s] to
denote the frame sequence 〈`, S[s]〉 · w. Finally, we write
e(g, `) (resp., e(g, T )) to denote the evaluation of a program
expression e given the global and local variable valuations
g, ` : Vars→ Vals (resp., where ` is the topmost local variable
valuation of T ); e(g, `) ⊆ Vals is a set of values since program
expressions may be nondeterministic, using ?.

Figure 2 defines an operational program semantics via a
set of transition rules on program configurations; the remain-
ing transition rules for sequential program statements are
standard. The Call rule invokes a procedure by adding a
new procedure frame on top of the procedure frame stack.
The Async rule adds a newly-created task to execute an
asynchronously called procedure to the task pool, and stores
its task task identifier (in a procedure-local variable). The
Continue rule progresses past a wait statement when the
waited task has already completed, assigning its return value
into the result variable. The Complete rule completes a
task which returns from its bottommost procedure frame,
while the Return assigns the return value of a non-bottom
procedure frame to the caller’s result variable.

The initial configuration c0 = 〈g0,m0〉 of a program P
is the valuation g0 mapping each global variable of P to
⊥, along with a task pool m0 containing a single root task
〈⊥, 〈`0, smain〉,⊥〉 such that `0 maps each variable of the main
procedure to ⊥. A final configuration 〈g,m〉 is a valuation g
along with a task pool m in which all tasks are completed:
for all 〈 , , v〉 ∈ m, v 6= ⊥. An execution of a program P to
cj is a configuration sequence ξ = c0c1 . . . cj starting from
the initial configuration c0 such that ci → ci+1 for 0 ≤ i < j;
ξ is called finalized when cj is final. We define R(P ) as the
set of global valuations reached in finalized executions of P ,
i.e., R(P ) = {g : c0 → . . .→ 〈g, 〉 is finalized}.

Our definition of the reachable valuations R(P ) is pur-
posely restricted to final configurations due to our inclusion
of nondeterministic expressions and the assume statement,
which are needed by our sequentializations in the following

3We denote the empty sequence with ε.



Call
` ∈ e(g, T ) f = 〈`, sp〉

〈g,m ∪ {〈i, T [call x := p e], v〉}〉 → 〈g,m ∪ {〈i, f · T [x := ⊥], v〉}〉

Async
` ∈ e(g, T ) f = 〈`, sp〉 j is fresh

〈g,m ∪ {〈i, T [async x := p e], v〉}〉 → 〈g,m ∪ {〈i, T [x := j], v〉, 〈j, f,⊥〉}〉

Continue
j = e(g, T ) 〈j, , v〉 ∈ m v 6= ⊥

〈g,m ∪ {〈i, T [x := wait e],⊥〉}〉 → 〈g,m ∪ {〈i, T [x := v],⊥〉}〉

Complete
f = 〈`, S[return e]〉 v ∈ e(g, `)
〈g,m ∪ {〈i, f, 〉}〉 → 〈g,m ∪ {〈i, ε, v〉}〉

Return
f = 〈`, S[return e]〉 v ∈ e(g, `)

〈g,m ∪ {〈i, f · T [x := ],⊥〉}〉 → 〈g,m ∪ {〈i, T [x := v],⊥〉}〉

Figure 2: Transition rules over program configurations.

sections. This definition of R(P ) does not lose any generality
since any program can be transformed into one in which any
configuration can reach a completed configuration with the
same global valuation, e.g., by adding an exit flag to simulate
the control flow of an uncaught program exception [3].

3. THE DFW SCHEDULER
The asynchronous program semantics of the previous sec-

tion are defined with respect to an implicit task scheduler,
which enables any non-completed task to execute at any time.
Computing the reachable global valuations R(P ) of arbitrary
programs P is costly. One compelling approach for lowering
the cost of program exploration is by considering specialized
delay-bounded schedulers with limited nondeterminism [1].
In this section, we provide a formal operational characteriza-
tion of Emmi et al.’s K-delay bounded depth-first scheduler
DF(K) [1], as well as our novel synchronization-exploiting
scheduler DFW(K).

A scheduler Ψ = 〈Q, q0, δ, π〉 is a set Q of states with initial
state q0 ∈ Q, a transition function δ : Q× ((IDs×Configs2)∪
{ε}) → Q, and a task-selection predicate π : Q → IDs.
Intuitively, a scheduler state q ∈ Q determines the task
π(q) ∈ IDs that is enabled to make a program transition.
A transition δ(q, i, c1, c2) = q′ determines the scheduler’s
successor state q′ to a program transition c1 → c2 of enabled
task i from scheduler state q. We represent nondeterminism
using ε-transitions δ(q, ε); these transitions affect scheduler
state only, and not program configuration otherwise. We say
Ψ is deterministic when δ(q, ε) = q for all q ∈ Q.

As an example, we could define a completely nondetermin-
istic scheduler 〈Q, q0, δ, π〉, which always enables all pending
tasks, with states Q = IDs∗ represent scheduling queues, hav-
ing initial state q0 = ⊥; the task-selection predicate π(i· ) = i
selects the task at the head of the queue. Transitions modify
the queue accordingly: enqueueing created tasks j on Async
transitions c1 → c2, δ(i · I, i, c1, c2) = i · I · j; otherwise not
modifying the queue, δ(i · I, , , ) = i · I; and rotating the
queue on ε-transitions, δ(i · j · I, ε) = j · I · i. By making
a sequence of ε-transitions, this scheduler can enable any
previously-created task.

To define the executions admitted by a scheduler Ψ, we
make Ψ follow program transitions, and allow Ψ to make ε-
transitions at any time. Formally, an Ψ-execution is an execu-

tion c0c1 . . . cj such that there exists a sequence q0q2 . . . qj′ ∈
Q∗ and a monotonic injection f : N<j → N<j′ such that for
each transition ci → ci+1 of task ui, for 0 ≤ i < j, ui is en-
abled by Ψ: ui = π(qf(i)); and the state of Ψ follows the tran-
sition ci → ci+1: δ(qf(i), ui, ci, ci+1) = qf(i)+1; additionally,
intermediate Ψ-states follow ε-transitions: qi+1 = δ(qi, ε) for
0 ≤ i < j′ where i /∈ range(f). Finally we define R(P,Ψ) as
the set of global valuations reached in finalized Ψ-executions
of P .

We define both the DF(K) and DFW(K) schedulers over
states which represent the ordered tree of tasks of an exe-
cution, in which the children of each node i are the tasks
which task i has called asynchronously, in the order in which
they are called. Formally, the Depth-First Scheduler [1] is
the scheduler DF(K) = 〈Q, q0, δ, π〉 such that

Q is the set of vertex-labeled trees 〈V,E, λ, d〉 with ver-
tices V ⊂ IDs, edges E, and labeling function λ : V →
({R,C}×N), assigning each vertex λ(i) = 〈b, k〉 a Ready
or Completed status b and a round number k ∈ N, along
with a delay counter d ∈ N.

q0 is the tree 〈{⊥}, ∅, {⊥ 7→ 〈R, 0〉}, 0〉.

π(q) is the least, in depth-first order, minimal-round ready
vertex as in Figure 3(a), and is undefined when q does
not contain such a vertex.

• δ(q, i, , ) is obtained from q for Async transitions
creating task j by adding a rightmost child (j 7→ 〈R, k〉)
to the 〈R, k〉-labeled vertex i, as in Figure 3(b).

• δ(q, i, , ) is obtained from q for Complete transitions
by updating i’s label from 〈R, k〉 to 〈C, k〉.

• δ(q, i, , ) = q otherwise.

• δ(q, ε) is obtained from q by incrementing the delay
counter d, and updating π(q)’s label from 〈R, k〉 to
〈R, k + 1〉, so long as d < K; otherwise δ(q, ε) = q.

Note that at each step of δ, the label of at most one task can
change. Furthermore, DF(0) is deterministic.

Intuitively, DF(K) keeps track of a notion of execution
rounds from 0 . . .K over which tasks execute, and executes
lowest-round tasks in depth-first order according to the task
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Figure 3: (a) A tree of the DF(K) scheduler enabling
task i, showing i’s ancestors (A), descendants (D),
and the left (L) and right (R) descendants of i’s an-
cestors. As i is enabled, each node in A ∪ L is either
completed or has round > k, and each node in D ∪R
is either completed or has round ≥ k. (b) When task
i posts j, DF(K) adds (j 7→ R, k) as i’s rightmost child.

tree. For instance, DF(0) allows only a single round of
execution, and executes each task in depth-first order until
either all tasks are completed, or the task currently enabled
by DF(0) blocks. DF(1) executes tasks according to the
same order, except that the execution of one single task can
increment the delay counter, and be postponed to the second
round, resuming if and after which all other tasks complete in
the first round. Note that when the currently enabled task in
DF(K) is blocked, execution can only progress by advancing
the blocked task to a subsequent round, and incrementing
the delay counter. As the delay bound K ∈ N is increased,
the cost of exploration can greatly increase, as DF(K) can
allow exponentially more schedules.

To avoid increasing the delay bound K ∈ N, which expo-
nentially increases the number of alternate schedules explored,
and ultimately increases the cost of exploration, we define a
scheduler that does not enable tasks that are blocked wait-
ing for others to complete. We define the Synchronization-
Exploiting Depth-First Scheduler DFW(K) = 〈Q, q0, δ′, π〉
by extending DF(K) to label each tree node i with an ad-
ditional Waiting status label, and a counter for the number
of tasks that i has posted since its last-encountered wait
statement. (While it is possible to define a “synchronization-
exploiting” scheduler without this counter, the resulting se-
quentialization would be more complicated.) As in DF(K),
the task-selection predicate π(q) selects the least, in depth-
first order, minimal-round ready vertex of q. We define the
transition function δ′(q, i, c1, c2)

def
= f(δ(q, i, c1, c2), c2) by the

composition of transition function δ with post-processing
function f : (Q× Configs)→ Q as follows:

• δ(q, i, , ) is obtained from q for Async transitions cre-
ating task j by adding a rightmost child (j 7→ 〈R, k, 0〉)
to i, as in Figure 3(b), and updating i’s label from
〈R, k, a〉 to 〈R, k, a+ 1〉.

• δ(q, i, , ) is obtained from q for Wait transitions by
updating i’s label from 〈R, k, a〉 to 〈W,k, 0〉.

• δ(q, i, , ) is obtained from q for Complete transitions
by updating i’s label from 〈R, k, a〉 to 〈C, k, a〉.

• δ(q, i, , ) = q otherwise.

• δ(q, ε) is obtained from q by incrementing the delay
counter d, and updating π(q)’s label from 〈R, k, a〉 to

var i: int;
proc p() return i
proc main()
var x: task
var y: int
i := 0;
while ? do
async x := p();
y := wait x;
i := i + 1

return

Figure 4: A program whose valuations are all reach-
able in DFW(0), yet are not all reachable in DF(K),
for any K ∈ N.

〈W,k + 1, a〉, so long as d < K; otherwise δ(q, ε) = q.

• f(q, c) updates the label of each 〈W,k, a〉-labeled vertex
i to 〈R,max(k, k′), a〉 if and only if (i) i is waiting4 for
a 〈C, k′, 〉-labeled task, or i is not waiting and k = k′,
and (ii) the only 〈 ,max(k, k′), 〉-labeled descendants
of i are descendants of i’s a-rightmost children.

In other words, before proceeding past wait statements, the
current round of all created subtasks, waited-for or not, are
executed. Technically, at each step the label of at most one
task can change status from R to W, though multiple labels
can change status from W to R. Furthermore, DFW(0) is
deterministic.

As the following result demonstrates, the DFW(K) sched-
uler is strictly more expressive than DF(K), in the sense
that every global variable valuation that can be reached with
DF(K) can also be reached with DFW(K), for all K ∈ N,
and that for every K0 ∈ N, there are programs whose set
of valuations reached under DFW(K0) cannot be reached
by DF(K) for any finite value K ∈ N; Figure 4 illustrates
such a program, whose set of reachable valuations under
DFW(0) is {i 7→ n : n ∈ N}, while DF(K) is restricted to
{i 7→ n : n ≤ K}, for any K ∈ N. While this example may
appear artificial at first, web programs that chain asyn-
chronous calls are, in fact, quite common. If the loop in
Figure 4 were replaced with one that repeats M times, with
M < K, under the DF(K) scheduler, it would not be possible
to complete program execution at all, since it would not be
possible to move past the K-th iteration.

Theorem 1. R(P,DF(K)) ⊆ R(P,DFW(K)) for all pro-
grams P and K ∈ N; for each K0 ∈ N there are programs P
for which

⋃
K R(P,DF(K)) ( R(P,DFW(K0)).

4. COMPOSITIONAL SEMANTICS
Toward simulating the executions under our DFW(K)

scheduler as the executions of a sequential program, we fol-
low Bouajjani et al.’s intuition of compositional executions [4]
with bounded task interfaces. Intuitively, a task interface is
a summary of the effect on global storage of one task and all
of its subtasks; literally, an interface is a sequence of global
valuation pairs, with each pair summarizing a sequence of
execution steps of a task and its subtasks. Compositional
executions with bounded-size interfaces generalizes various

4We say i is waiting for j in configuration 〈g,m〉 when
〈i, T [x := wait e], 〉 ∈ m and e(g, T ) = j.



bounding strategies for limiting concurrent behaviors to facili-
tate efficient program analysis, including context bounding [5,
2] and delay bounding [1]. We specialize Bouajjani et al.’s
notion of compositional execution in order to fix a tight
correspondence with our DFW(K) scheduler.

A (K+1) round interface is a map I : (K+1)→ (Vars→
Vals)2 from natural numbers k ∈ N : k ≤ K to pairs I(k) =
〈g, g′〉 of global variable valuations; we write I(k).in to denote
g, and I(k).out to denote g′, and we say I is fresh when
I(k).in = I(k).out, for 0 ≤ k ≤ K. To compose interfaces,
we define a partial composition operator ⊕ such that I ⊕ J
is defined when |I| = |J | and I(k).out = J(k).in for all
0 ≤ k < |I|, in which case |I ⊕ J | = |I| and (I ⊕ J)(k) =
〈I(k).in, J(k).out〉 for all 0 ≤ k < |I ⊕ J |. Furthermore, we
say an interface I is complete when I(k).out = I(k + 1).in
for 0 ≤ k < |I| − 1.

A compositional configuration c = 〈g, w, k, d, I, J〉 is a
global valuation g : Vars→ Vals, along with a frame sequence
w ∈ Frames∗, a round k ∈ N, delay counter d ∈ N, and in-
terfaces I and J . Figure 5 defines a transition relation →
on compositional configurations, and ultimately an interface
generation relation ;: the relation 〈p, v1, k1〉; 〈I, d, v2, k2〉
indicates that procedure p called with argument v1 in round
k1, can return the value v2. Furthermore, the effect of execut-
ing p and all of its subtasks, which executed up until round
k2 having spent d delays, is summarized by the interface I.

Intuitively, rather than adding a task to the pool, like
the Async transition of Section 2, the CAsync rule simply
combines the interface J2 of the asynchronously-called task
with the accumulated interfaces J1 of previously-called tasks.
The CWait rule then, by sequencing the accumulated inter-
face J1 of previously-called tasks before the current task’s
interface I, effectively fast-forwards the current task’s execu-
tion to a point after the execution of the previously-called
tasks, and resumes in the round k2 in which the waited task
finished. The CDelay rule simply advances the current
task to its next round, spending a single delay. Finally, the
Summary rule defines the interface generation relation ;
as the composition of the task’s internal interface I2 with
the accumulated interfaces J2 of its subtasks.

We then define R̃(P,K) as the set of global valuations
labeling the output of completed interfaces of the main pro-
cedure:

R̃(P,K) =

{
I[k].out :

〈main, `0, 0〉; 〈I, , , k〉,
|I| = K+1, and I is complete

}
This definition allows us to relate the global valuations reach-
able by executions of DFW(K) with those reached in our
compositional semantics with (K+1)-round interfaces.

Lemma 1. R(P,DFW(K)) = R̃(P,K).

5. SEQUENTIALIZATION
Section 4’s compositional semantics gives an alternate way

to execute programs according to DFW(K), using nondeter-
ministic choice (in the instantiation of fresh task interfaces):
rather than storing tasks for later execution, we simply guess
the global states that each task encounters at the beginning of
its (up toK+1) rounds, to obtain one possible (K+1)-length in-
terface before resuming its caller. In essence, querying a task
for its interface at the point where it is called mimics the same
control flow as a procedure call. We exploit this fact to gen-
erate a sequential program Σ(P,K) which simulates a given

// translation of var g: T
var G[K+1], Guess[K+1], Next[K+1]: T
var delays: int

// translation of proc p(l: T ) s
proc p(l: T , k: K+1)
var Save: ([K+1]: T ) * ([K+1]: T );

s′ // i.e. the translation of s

// translation of proc main() s
proc main()
const Init[K+1]: T := G;
var k: int := 0;
delays := 0;
Next := Guess := ?;

s′; // i.e. the translation of s
assume G = Guess;
assume Init[1..K+1] = Next[0..K]

// translation of access to g
G[k]

// translation of call x := p e
call (x,k) := p(e,k)

// translation of return e
return (e,k)

// translation of async t := p e
Save := (G, Guess);
G := Next;
Next := Guess := ?;
call t := p(e,k);
assume G = Guess;
G, Guess := Save

// translation of x := wait t
assume G = Guess;
G := Next;
Next := Guess := ?;
x, k’ := t; k := max(k,k’)

// at each possible preemption
if (? && delays < K)
delays := delays+1; k := k+1

Figure 6: The K-delay sequentialization Σ(P,K).

asynchronous program P under the DFW(K) scheduler; to
obtain the interface of an asynchronously-called task, Σ(P,K)
calls the task synchronously, with the nondeterministically-
guessed global states constituting the input values of the
task’s interface. Figure 6 lists the statement-by-statement
translation Σ(P,K) of a program P ; for simplicity, we assume
that there is one single global variable g; the extension to
multiple global variables is straightforward, by multiplying
the G, Guess, Next, and Save variables.

Our sequentialization Σ(P,K) essentially encodes the in-
terfaces of the previous section using the global G, Guess,
and Next variables, along with the Save procedure-local vari-
ables, and the Init constant of the main procedure. Initially,
the root task, defined by the main procedure, guesses the
global values it will encounter at the first point at which it
either returns, or waits for a task to complete; this value
is stored in both Next and Guess, and corresponds to the
output values of interface I in the compositional semantics of
Figure 5; the input values of I are stored in Init. If the root
procedure encounters a wait statement, then it validates its
Guess, advances its state to Next, where its previously-called
subtasks have left off, and guesses the next global values at
which it will either return or encounter a wait statement; this
process corresponds to composing the I and J1 interfaces



CAsync
v1 ∈ e(g, T ) 〈p, v1, k1〉; 〈J2, d2, v2, k2〉 d1 + d2 ≤ K

〈g, T [async x := p e], k1, d1, I, J1〉 → 〈g, T [x := 〈v2, k2〉], k1, d1 + d2, I, J1 ⊕ J2〉

CWait
〈v, k2〉 ∈ e(g1, T ) g1 = I[k1].out g2 = J1[k2].out

I[k].in = I[k].out for k1 < k ≤ K J2 is a fresh interface

〈g1, T [x := wait e], k1, d, I, J1〉 → 〈g2, T [x := v], k2, d, I ⊕ J1, J2〉

CDelay
d < K g1 = I[k].out g2 = I[k + 1].out

〈g1, w, k, d, I, J〉 → 〈g2, w, k + 1, d+ 1, I, J〉

Summary
v2 ∈ e(g, `) I1 and J1 are fresh interfaces

〈I1[k1].out, 〈v1, sp〉, k1, 0, I1, J1〉 → . . .→ 〈I2[k2].out, 〈`, S[return e]〉, k2, d, I2, J2〉
〈p, v1, k1〉; 〈I2 ⊕ J2, d, v2, k2〉

Figure 5: The compositional program semantics.

in the CWait rule of the compositional semantics, effec-
tively sequencing the effects of previously-called tasks before
resuming from the wait statement.

The other key interesting aspect of Σ(P,K) is the transla-
tion of the async statement. Similar to the sequentialization
of the DF(K) scheduler [1], the procedure of an asynchronous
task is called synchronously, using the values Next of the
global variables effected by previously-called asynchronous
procedures; furthermore, the global values guessed to be left
behind by the called task are stored into Next, from which
subsequently-called tasks will resume.

While the global values reachable in the K-delay sequen-
tialization Σ(P,K) of a program P are not directly compa-
rable to those of P , since the global variables of Σ(P,K) are
(K+1)-length vectors of values, we can compare values using
a projection function ϕ mapping Σ(P,K)’s configurations
to values of P . In particular, we define ϕ(c) as Next[K](c),
i.e., the valuation of the Next vector’s last element in c; then
we define Rϕ(P ) = {ϕ(c) : c0 → . . .→ c is finalized}. Given
this projection, we can show that the projected reachable
global values in the K-delay sequentialization Σ(P,K) of an
asynchronous program P are precisely equal to the values
reachable in P in the K-bounded compositional semantics.

Lemma 2. Rϕ(Σ(P,K)) = R̃(P,K).

Combining Lemmas 1 and 2, we have equivalence between
the valuations reachable under the DFW(K) scheduler with
those reachable in the sequential program Σ(P,K).

Theorem 2. R(P,DFW(K)) = R(Σ(P,K)).

6. COMPLEXITY
While Section 3 establishes that DFW(K) generally reaches

more program variable valuations than DF(K) does, an ob-
vious concern would be the cost at which it does so. In this
section we demonstrate that despite the increased power of
DFW(K) with respect to reachability, the essential cost of
exploration is roughly equivalent, in that the reachability
problem falls into the same NP-complete class as that of
DF(K). As is standard in the literature, we focus on the
effects on complexity arising from concurrency, factoring out
effects arising from data; we thus measure the asymptotic
complexity of the global-variable value reachability problem
assuming program variables have finite domains, and that
the number of program variables is fixed. Otherwise, general

infinite data domains would lead to undecidability, and the
exponential number of valuations of a non-fixed number of
program variables would interfere with our complexity mea-
surement. Formally, the DFW(K) reachability problem asks
whether a given global program variable valuation g of a
given program P is included in R(P,DFW(K)), for a given
K ∈ N, written in unary.

NP-hardness follows directly from the NP-hardness of
DF(K)’s reachability problem [1], since R(P,DF(K)) =
R(P,DFW(K)) for programs P without wait statements.

Lemma 3. DFW(K) reachability is NP-hard.

Our proof of NP-membership reduces the problem to reach-
ability in sequential programs with a fixed number of vari-
ables in K. While this amounts to a sort of sequentialization,
our sequentialization of Section 5 is inadequate, since Σ(P,K)
has a linear number of program variables in K, evaluating
to an exponential number of valuations in K. The crux of
our proof is thus to design a sequentialization which uses
only a constant number of additional program variables,
independently of K.

Lemma 4. DFW(K) reachability is in NP.

Combining lemmas, we have a tight complexity result.

Theorem 3. DFW(K) reachability is NP-complete.

7. EMPIRICAL EVALUATION
We evaluate our DFW(K) scheduler empirically by compar-

ing its sequentialization with an analogously implemented se-
quentialization of Emmi et al.’s DF(K) scheduler [1]; we have
implemented both sequentializations in the c2s tool5. Since
the DF(K) scheduler does not interpret wait statements, we
pre-process each program given to the DF(K)-based sequen-
tialization with the translation of Figure 7, which outputs
an equivalent program without wait statements. Essentially,
this program keeps track of whether each task has finished
using the global result variable; the translation of each
wait statement for a task cannot proceed until its task has
completed.

All of our experiments are carried out by applying a sequen-
tialization (either DF(K)’s or DFW(K)’s) on a Boogie code

5https://github.com/michael-emmi/c2s

https://github.com/michael-emmi/c2s


// new global declarations
var result[int]: T ;
var uniqueId: int

// translation of proc p(l: T ) s
proc p(l: T , self: int) s

// translation of proc main() s
proc main()
result := [⊥, ⊥, ..];
uniqueId := 0;
s

// translation of call x := p e
call x := p (e,0)

// translation of return e
result[self] := e;
return e

// translation of async t := p e
t := ++uniqueId;
async p(e,t)

// translation of x := wait t
x := result[t];
assume x != ⊥

Figure 7: A preprocessing step for the DF(K) se-
quentialization to remove wait statements.

representation6 of the input asynchronous program, which
is fed to the Corral verification engine [3] to detect whether
an assertion violation can be reached within a given delay
bound K. Our experiments were performed on a typical
laptop (Macbook Pro 2013), and we report single-run times.
We expect little variation in the comparison between DF
and DFW across different hardware configurations, and have
observed very little variation in runtime across multiple runs.

Our first set of experiments measures the delay bound and
total time necessary to discover assertion violations corre-
sponding to errors reported in a set of C# code fragments
found on StackOverflow and MSDN — each around 25-50
LOC. Though we have manually translated the original C#
code to Boogie, we have done so in a mechanical way which
we believe, due to our experience developing mechanical
translations7 would be roughly equivalent to an automatic
translation. Lacking an automatic translation from asyn-
chronous C# programs, our experiments are tedious to carry
out, and are thus limited to a few examples. We note that
for programs without wait statements, the verification con-
ditions ultimately generated by both sequentializations are
quite similar, and the difference in solving them is insignifi-
cant. Experiments from existing works on sequentialization
(e.g. by Emmi et al. [1]) do not consider programs with wait
statements, and are therefore irrelevant to our current study.

Figure 8 shows Corral’s execution time to reach each asser-
tion violation in the DF(K) and DFW(K) sequentializations.
In each run, we begin with the delay bound K = 0 and
increase K until the assertion violation is reachable in the
sequentialized program. Our results demonstrate that the
DFW(K) scheduler requires consistently fewer delays to
reach the assertion violations, which amounts to less explo-
ration time in Corral. The biggest differences appear in the
first and third examples, in which the assertion violation is

6Boogie is an intermediate verification language [6].
7https://github.com/smackers/smack.
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Figure 8: Time to bug detection (in seconds for
three examples using the DFW and DF sequential-
izations. Each bar represents the aggregate time
over increasing delay bounds, starting from zero,
whereas the dark part indicates time spent for the
smallest successful delay bound (K).
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Figure 9: Time to bug detection (in seconds) for
the parameterized example with N (on the X-axis)
chained asynchronous calls. While the DFW sequen-
tialization consistently discovers the bug without de-
lays, DF requires K = N delays, and times out at
100s for N = 10.

preceded by chains of sequenced asynchronous calls — i.e.,
where each asynchronous call in the chain is only made after
the previous one is waited for; intuitively, each link in this
chain forces DF(K) to spend another delay just to progress
its execution, whereas DFW(K)’s natural scheduling order
proceeds past each link without spending a delay. These
examples illustrate that such call chains are commonplace;
even the small bit of code in the third example contains a
chain of 5 calls.

In order to validate the efficacy of our delay-bounded
sequentialization approach, we have also implemented a
“depth-bounded” exploration by translating (by hand) the
first CollectionLoad example into a sequential program
which simulates every asynchronous program execution up
to a given number of program steps — we consider that
each program statement constitutes one program step. This
program’s top-level procedure contains a loop in which each
iteration executes a single step of a nondeterministically-
chosen task; K iterations of this top-level loop thus simulates
all possible asynchronous program executions with up to K
steps. Exploration of this program with Corral is intractable:

https://github.com/smackers/smack


the same bug discovered with DFW(1) requires K = 9 pro-
gram steps, yet Corral is only able to explore up to K = 4,
in 90 seconds, before timing out at 100 seconds for any depth
K ≥ 5. Note that while DFW(K) is practically limited by
the degree K of deviation from DFW(0), of which small val-
ues seem to suffice in exposing concurrency errors, DFW(K)
is not inherently limited by execution depth.

Our second set of experiments attempts to measure the
effect of the aforementioned asynchronous call chains on the
DF(K) and DFW(K) sequentializations using a very simple
parameterized program P (N): for each N ∈ N, P (N) makes
N asynchronous calls (to a procedure which simply returns)
waiting for each before calling the next, ultimately followed
by an assertion violation — i.e., assert false. As Figure 9
illustrates, the DFW(K) scheduler never requires a delay to
reach the assertion, and its sequentialization scales well, with
Corral completing in under 5 seconds even for chains of 50
calls. The DF(K) scheduler, however, requires N delays for
each chain of N calls, and times out at 100 seconds without
completing for chains of 10 calls. The utter simplicity of the
program P (N) suggests that the DF(K) sequentialization is
limited to very small chains, and ultimately small fragments
of synchronization-heavy programs.

8. RELATED WORK
Our work follows the line of research on compositional

reductions from concurrent to sequential programs. The ini-
tial so-called “sequentialization” [7] explored multi-threaded
programs up to one context-switch between threads, and was
later expanded to handle a parameterized amount of context-
switches between a statically-determined set of threads exe-
cuting in round-robin order [5, 2]. La Torre et al. [8] later
extended the approach to handle programs parameterized
by an unbounded number of statically-determined threads,
and shortly after, Emmi et al. [1] further extended these re-
sults to handle an unbounded amount of dynamically-created
tasks, which besides applying to multi-threaded programs,
naturally handles asynchronous event-driven programs [9].
Bouajjani et al. [4] pushed these results even further to a se-
quentialization which attempts to explore as many behaviors
as possible within a given analysis budget. While others have
continued to propose sequentializations for other bounded
concurrent exploration criteria or program models [10, 11,
12, 13, 14, 15], as far as we are aware, none of these sequen-
tializations are based on a parameterized scheduler which
can reduce exploration cost by taking into account program
synchronization.

While Emmi et al.’s work [1] is indeed the starting point
for our work, and the syntactic difference between our sequen-
tializations is small, we believe our contribution is significant
for the following reasons:

First, and more technically, besides the statements ap-
pearing in the translation of the wait statement, our DFW
sequentialization must generalize DF. Our translation must
repeatedly make guesses — once at each encountered wait
statement — for the global state at which begins the sequence
of asynchronous tasks called until the next-encountered wait
statement (which must be equal to the global state reached
by the next-encountered wait statement). In the case of DF,
the global state at which the sequence of all asynchronous
tasks begin is fixed once and for all (and must be equal to
the global state reached by main). This extension is subtle,
yet crucial.

Second, it is challenging to design a translation which

(A) correctly preserves causal information flow in the origi-
nal program, while

(B) ensuring that the concurrent executions simulated by
our sequential program never block because of wait
statements.

While the relatively “easy” alternative translation listed in
Figure 7 does satisfy A, it fails to satisfy B. Our formal
development of the DFW sequentialization is a principled
way to design a translation which satisfies both Properties A
and B: we show that the executions admitted by the DFW
scheduler (satisfying B) coincide exactly with our composi-
tional semantics (satisfying A), bridging the gap between
any given asynchronous program and its sequentialization.

Finally, comparing to approaches based on dynamic pro-
gram exploration, while delay-bounding using techniques
such as Chess [16] could capture the same sets of concurrent
interleavings for a given delay bound, our static approach
promises higher coverage: by using SMT-based symbolic rea-
soning engines, we can reason about many possible program
data values at once, whereas dynamic techniques consider
single concrete values. In practice this could allow us to
catch data-dependent bugs undetected by a given dynamic
technique.
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