
Contextual Modal Types for Algebraic Effects and Handlers
Nikita Zyuzin and Aleksandar Nanevski

IMDEA Software Institute

Algebraic effects and handlers [2, 9] provide a modular and compositional description for
computational effects. In this view, only a designated set of operations invokes side effects
during evaluation of a term. Moreover, the use of such operations can be eliminated by a
handler that provides definitions for these operations.

In this work, we propose that algebraic effects and handlers can be naturally typed using
a variation of Contextual Modal Type Theory [5]. CMTT distinguishes between contextual
modal variables u :: A[∆], and normal variables x : A, having two separate contexts Θ and Γ
for them respectively. The type [∆]A classifies terms that depend on normal variables in the
context ∆, but no other normal variables. The typing rules of CMTT are:

2I
Θ;∆ ⊢ s : A

Θ;Γ ⊢ box ∆. s : [∆]A
2E

Θ;Γ ⊢ s : [∆]A Θ, u :: A[∆]; Γ ⊢ t : B

Θ;Γ ⊢ let box u = s in t : B

ctxhyp
(u :: A[∆]) ∈ Θ Θ;Γ ⊢ σ : ∆

Θ; Γ ⊢ handle u with σ : A
explsub

Θ;Γ ⊢ si : Ai i = 1, n

Θ;Γ ⊢ ⟨si/xi, . . . ⟩ : (xi : Ai, . . . )

The 2I rule introduces contextual modality; the term under the box constructor may only use
normal variables bound by the context ∆, but not by Γ. The rules 2E and ctxhyp allow to
use a boxed term, by binding it to a variable in the context (2E), and then using this variable
(ctxhyp). One can use contextual variables by applying an explicit substitution (explsub) that
replaces all box-bound variables with appropriate terms.

We propose to view the context ∆ as the algebraic theory of computations of type [∆]A.
Thus the calculus immediately provides a type-and-effect system. Consider the program P
that uses algebraic effects from theories St =̂ get : unit → nat, put : nat → unit of state and
Ex =̂ raise : unit → ⊥ of exceptions:

P =̂ box St, Ex. let x = get() in
if x = 42 then raise() else put(x + 1)

P has the type [St, Ex]unit, signifying that P can cause effects from St and Ex, but no others.
To run P , we must provide an explicit substitution σ that defines all the operations from St

and Ex, and then execute let box u = P in handle u with σ.
Explicit substitution is thus similar to handling of algebraic effects, which is why we write

handle to denote applying it. Unfortunately, the similarity is not strong enough, as in CMTT
we cannot define a handler neither for state nor for exceptions in this example. The problem
arises because we want to use the operations get, set and raise as generic effects [8] and pass
no continuation arguments that would allow state manipulation in substitution clauses.

In this paper we modify CMTT to adapt its notion of handling to programming with alge-
braic effects, preserving the type-and-effect discipline of contextual modal types. Specifically:
(1) We use contextual modal types to denote algebraic theories of effectful computations; (2)
We adopt the judgment for monadic computation e ÷ A from [6], whose terms make the se-
quencing of effects explicit. Only terms of this judgment can be boxed; (3) When used left of
⊢ to declare variables, we generalize the judgment to c÷ A ⇒ B. The generalized judgement



Contextual Modal Types for Algebraic Effects and Handlers Zyuzin and Nanevski

denotes computations hypothetical in A (thus, it classifies effectful functions), and gives us suit-
able typing for the effect operators; (4) We extend the notion of applying explicit substitution
in CMTT to handling of algebraic effects. Most important typing rules of our system are:

cnthyp
(k∼: A⊗B ⇝ C) ∈ Γ Θ;Γ ⊢ s : A Θ;Γ ⊢ t : B

Θ;Γ ⊢ throw k s t÷ C
ophyp

Θ;Γ, op÷A ⇒ B ⊢ s : A

Θ;Γ, op÷A ⇒ B ⊢ op s÷B

handler
Θ;Γ, z : D,x : Ai, k∼: Bi ⊗D ⇝ C ⊢ ei ÷ C i = 1, n

Θ;Γ ⊢ z : D.{opi(x, k) ⇒ ei, . . . } ÷D.[opi÷Ai ⇒ Bi, . . . ] ▷ C

ctxhyp
(u :: A[∆]) ∈ Θ Θ;Γ ⊢ h÷B.[∆] ▷ C Θ;Γ ⊢ t : B Θ;Γ, x : A, z′ : B ⊢ e÷ C

Θ;Γ ⊢ handle u with h from t to x.z′.e÷ C

In more detail, in e÷A, e is an effectful computation that runs and produces a value of type A.
This judgement forces computations to be written as a sequence of let forms. The judgments
e÷A and c÷A ⇒ B are related by the effhyp rule. Rule conthyp provides use for continuation
variables also typed by a hypothetical judgement.

We use the rules 2I and 2E from CMTT, adapting them to the judgement for computations.
The handler rule specifies handling of each operation opi÷Ai ⇒ Bi, with corresponding terms
ei. We type check these terms in the extended context, where z : D is a handler-bound variable
shared by all operations, x is the operation’s opi parameter, and k ∼: Bi ⊗ D ⇝ C is the
continuation for opi. The continuation takes opi’s output and a new value for the shared
variable, returning a value of the return type of the handler.

Finally, the ctxhyp rule types handling of computations, and subsumes the old rule from
CMTT. Here, handler h serves as the explicit substitution: h substitutes all the free variables
from the algebra ∆. from t specifies initial value t for the handler-bound variable. to x.z′.e
binds the final value and shared variable after handling to respectively x and z′ in e.

With our new typing rules, we can handle the program P , now setting St =̂ get÷ unit ⇒
nat, put÷ nat ⇒ unit and Ex =̂ raise÷ unit ⇒ ⊥ :

let box u = P in handle u with
s: nat. { get(v, k) => throw k s s,

put(v, k) => throw k v (),
raise(v, k) => ret ((), s) }

from 0 to x. s'. ret (x, s')

This handler has the type nat.[get÷unit ⇒ nat, put÷nat ⇒ unit, raise÷unit ⇒ ⊥]▷unit×nat.
The handler-bound variable s preserves the state of the program between different invocations
of get and put: the body of an operation receives current state in the context and specifies
the resulting state when calling continuation. from 0 sets the initial state to 0 for the handled
computation. Finally, we return the resulting value and state as a pair.

We are currently working on proving type soundness of the proposed calculus. In future,
we plan to scale to dependent types, as context with dependent types will allow us to concisely
specify algebraic theories with equations between algebraic operations. As CMTT has already
been shown to support dependent types [5], we expect that our extension to algebraic effects
will support them as well. Dependent types will also facilitate verification of programs with
generic effects, and we plan to explore potential connections with separation logic. These will
provide a different verification perspective, compared to other systems with algebraic effects
and dependent types, e.g. [1]. We also plan to explore abstraction over handlers and contexts
in the contextual types [4], to obtain abstraction over algebraic theories as an alternative to
row polymorphism [3]. Additionally, our use of contextual types gives another perspective on
scoping for algebraic effects and handlers [7, 10].

2



Contextual Modal Types for Algebraic Effects and Handlers Zyuzin and Nanevski

References
[1] Danel Ahman. Handling fibred algebraic effects. Proc. ACM Program. Lang., 2(POPL), December

2017.
[2] Andrej Bauer. What is algebraic about algebraic effects and handlers? arXiv preprint

arXiv:1807.05923, 2018.
[3] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Abstracting algebraic

effects. Proceedings of the ACM on Programming Languages, 3(POPL):6, 2019.
[4] Andrew Cave and Brigitte Pientka. First-class substitutions in contextual type theory. In Logical

Frameworks & Meta-languages: Theory & Practice (LFMTP), pages 15–24, 2013.
[5] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. ACM

Transactions on Computational Logic (TOCL), 9(3):23, 2008.
[6] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical

structures in computer science, 11(4):511–540, 2001.
[7] Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. Syntax and semantics for op-

erations with scopes. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 809–818, 2018.

[8] Gordon Plotkin and John Power. Algebraic operations and generic effects. Applied categorical
structures, 11(1):69–94, 2003.

[9] Matija Pretnar and Gordon D Plotkin. Handling algebraic effects. Logical Methods in Computer
Science, 9, 2013.

[10] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect handlers in scope. In Proceedings of the 2014
ACM SIGPLAN Symposium on Haskell, pages 1–12, 2014.

3


