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Abstract
Population protocols are a model for parameterized systems in which a set of identical, anony-
mous, finite-state processes interact pairwise through rendezvous synchronization. In each step,
the pair of interacting processes is chosen by a random scheduler. Angluin et al. (PODC 2004)
studied population protocols as a distributed computation model. They characterized the com-
putational power in the limit (semi-linear predicates) of a subclass of protocols (the well-specified
ones). However, the modeling power of protocols go beyond computation of semi-linear predi-
cates and they can be used to study a wide range of distributed protocols, such as asynchronous
leader election or consensus, stochastic evolutionary processes, or chemical reaction networks.
Correspondingly, one is interested in checking specifications on these protocols that go beyond
the well-specified computation of predicates.

In this paper, we characterize the decidability frontier for the model checking problem for
population protocols against probabilistic linear-time specifications. We show that the model
checking problem is decidable for qualitative objectives, but as hard as the reachability problem
for Petri nets—a well-known hard problem without known elementary algorithms. On the other
hand, model checking is undecidable for quantitative properties.
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1 Introduction

Population protocols [3, 4, 6] are a model of distributed computation by anonymous, identi-
cal, finite-state agents interacting in pairs. Given an initial configuration—an initial distribu-
tion of agents specifying the number of agents at each state—a random scheduler repeatedly
chooses a pair of processes and one of the interactions enabled by their current states. This
naturally assigns to each initial configuration a semantics in terms of a finite Markov Chain.
Thus, the protocol defines infinitely many finite Markov Chains.

Population protocols were originally introduced to study which predicates on an initial
configuration of agents (like, for example, “does the configuration contain more processes
of type A than of type B”) can be computed by the agents themselves in a distributed
way. For this, Angluin et al. [3] introduced a definition of computation by consensus: a
configuration computes a value if all its agents eventually converge to that value (represented
by a particular state or set of states) with probability 1.
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XX:2 Model checking Population Protocols

Population protocols have been used to model systems beyond their initial motivation in
distributed computing. In particular, they can also model trust propagation [15], evolution-
ary dynamics [23], or chemical reaction systems [24, 25]. These systems do not aim at the
computation of predicates, or they do not compute in the way defined by Angluin et al. [3].
With more diverse applications of population protocols comes also new properties one would
like to reason about. For instance, Delporte-Gallet et al. [14] studied privacy in population
protocols. They proved (by hand) different properties of specific protocols, like “the system
can reach a good configuration without any interaction involving a distinguished agent p0”.
Another example is the work of Clement et al. [13] who use the probabilistic model checker
PRISM to check properties including the aforementioned convergence. However, PRISM is
a finite state model checker and therefore the verification was limited to a finite number of
individual initial configurations.

In this paper, we solve the general model checking problem for population protocols
against probabilistic linear-time (LTL) specifications. As opposed to previous work, we can
reason fully automatically starting from sets of initial configurations which can be infinite as
long as they are Presburger definable. We show that the qualitative problem (i.e., deciding
if the formula holds with probability 1) is decidable, but as hard as the reachability problem
for Petri nets (reachability hard). The quantitative problem (deciding if the property holds
with at least a given probability) is undecidable. In particular, our proof of undecidability for
quantitative LTL uses a novel simulation of counter machines by Petri nets with arbitrarily
small error. Additionally, we prove (§4) undecidability for both the qualitative problem for
broadcast protocols (a stronger model where interactions involve all processes, not just a
fixed number) and a natural variant of LTL specifications where atomic propositions are
defined on configurations rather than actions.

From the verification point of view, in this paper we study the decidability of parameter-
ized verification for a class of probabilistic systems. Our work can be seen as an extension
of the approach of German and Sistla [20] to probabilistic verification. Our results estab-
lish certain decidability frontiers for parameterized verification of probabilistic programs,
an area of increasing interest [2, 10, 11, 1, 12]. The question whether all instances of a
parameterized system satisfy a property with probability 1 was also studied by Pnueli and
Zuck with different co-authors [26, 7] and also by Esparza et al. [17]. The emphasis in these
papers was on deductive proof systems, and they do not contain decidability results.

2 Definitions and Examples

A multiset on a finite non-empty set E is a mapping M : E → N. Given e ∈ E, let M(e)
denote the number of elements of type e in the multiset M . Operations on N, like addition,
subtraction, or comparison are implicitly defined on multisets by defining the operation
componentwise. The set of all multisets over E is denoted NE . Given e ∈ E, we denote
by e ∈ NE the multiset consisting of one occurrence of element e, that is, the multiset
satisfying e(e) = 1 and e(e′) = 0 for every e′ ̸= e. We write {x, y, y, z} to denote the
multiset x + y + y + z. Every set S on E is also a multiset which maps E into {0, 1}. The
size of a multiset M ∈ NE , denoted |M |, is defined as

∑
e∈E M(e).

A set of multisets M ⊆ NE is said to be Presburger if it can be denoted by a formula in
Presburger arithmetic, i.e., in the first-order theory of addition FO(N, +). A population P

on E is a multiset on E with two or more elements: P ∈ NE and |P | ≥ 2.1 The set of all

1 Since, as we will see later, the atomic semantic step of population protocols is a pairwise interaction,
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populations on E is denoted by Pop(E).

2.1 Labeled Population Protocols

A (labeled) protocol scheme A = (Q, Σ, ∆) consists of a finite non-empty set Q of states, a
finite set Σ of action labels, and a set ∆ ⊆ Q2 × Σ × Q2. If (q1, q2, a, q′

1, q′
2) ∈ ∆, we write

(q1, q2) a7−→ (q′
1, q′

2) and call it an a-labeled transition. The populations of Pop(Q) are called
configurations. Intuitively, a configuration C describes a collection of identical finite-state
agents with Q as set of states, containing C(q) agents in state q for every q ∈ Q. Pairs of
agents interact using labeled transitions from ∆. Formally, given two configurations C and
C ′ and a transition (q1, q2) a7−→ (q′

1, q′
2), we write C

a−→ C ′ and call it a step if

C ≥ (q1 + q2) holds, and C ′ = C − (q1 + q2) + (q′
1 + q′

2) .

We write C
w−→ C ′ for a sequence w = a1 . . . ak ∈ Σ∗ of labels if there exists a sequence

C0, . . . , Ck of configurations satisfying C = C0
a1−→ C1 · · · ak−→ Ck = C ′. We call this

sequence a finite execution. The notation C
w−→ for an infinite sequence w and the notion

of an infinite execution are defined analogously. The ω-language of A from configuration C,
denoted L(A, C), is the set {w ∈ Σω | C

w−→} ⊆ Σω.
In what follows we assume every protocol scheme has its set of states Q and transitions

∆ satisfying the following condition: for every q1, q2 in Q, there exists q′
1, q′

2 and label a

such that (q1, q2, a, q′
1, q′

2) ∈ ∆. It follows that every configuration enables a transition.
The configuration graph of a protocol scheme A is the infinite labeled, directed graph

(Pop(Q), Σ, →) having the populations over Q as nodes and labeled edges (C, a, C ′) whenever
C

a−→ C ′ holds. Consider the partition {Pop(Q)i}i≥2 of Pop(Q), where Pop(Q)i = {C ∈
Pop(Q) | |C| = i}. (Note that i starts at 2 because every population contains at least
two agents.) Since interactions do not create or destroy agents, the set {→i}i≥2, where
→i=→ ∩ Pop(Q)i × Σ × Pop(Q)i, is also a partition of →. Therefore (Pop(Q), →) consists
of the infinitely many disjoint and finite subgraphs {(Pop(Q)i, Σ, →i)}i≥2.

A strongly connected component (SCC) of the configuration graph is a maximal set of
mutually reachable configurations. An SCC is a bottom SCC if it is closed under reachability,
i.e., if C belongs to the SCC and C ′ is reachable from C, then C ′ also belongs to the SCC.
A configuration is a bottom configuration if it belongs to a bottom SCC of the graph.

We define a population protocol as a protocol scheme equipped with a possibly infinite
Presburger set I of initial configurations and denote it as a pair (A, I). The original paper
[3] introducing population protocols considered, instead of Presburger sets of initial configu-
rations, a restricted class called simple sets defined by means of input variables—a subset of
the states of the protocol scheme. Given a set S ⊆ Q of input variables, the set I of initial
configurations thereof is given by {C ∈ Pop(Q) | ∀q ∈ Q : q ∈ S ∨ C(q) = 0}. When I is
definable using input variables then I is said to be simple.2

The complexity of parameterized verification can differ based on the presence or absence
of a leader, a specific agent starting in a given state. Simple sets of initial configurations are
essential to define leaderless protocols: protocols with no distinguished leader agent. (If we
want to have a distinguished leader we can design a protocol whose set of states is the disjoint
union of two sets Ql ∪ Qa of leader and agent states, and having a distinguished initial state

we require at least two agents in every population.
2 To sum up, unless we state I is simple then it is assumed to be described by a Presburger formula.
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q0 ∈ Ql for the leader. Sets I containing only configurations C satisfying C(q0) = 1 ensure
that there is a unique leader.)

We give a population protocol a semantics as an infinite family of finite-state Markov
Chains, one for each initial configuration. We assume that, given a configuration C, a
probabilistic scheduler picks a pair of agents of C uniformly at random, and then picks
one of the transitions they can execute according to some fixed probability distribution
satisfying two properties: the probability of a transition depends only on the current states
of the agents, and every transition has nonzero probability. This associates with each step
C

a−→ C ′ a probability. Since C
a−→ C ′ implies |C| = |C ′|, the number of configurations

reachable from any configuration C is finite. Thus, for every C, the Markov Chain rooted
at C has finitely many states.

▶ Example 1. Consider a protocol with two states q1, q2 and a configuration
C = (C(q1), C(q2)) = (1, 4). The scheduler picks two agents at state q1 with probabil-
ity 0, two agents at states q1 and q2 with probability 2/5, and two agents at state q2 with
probability 3/5. If the protocol has three transitions (q1, q2) a7−→ (q2, q2), (q1, q2) a7−→ (q1, q1),
(q1, q2) b7−→ (q2, q2), each with probability 1/3, then the steps (1, 4) a−→ (0, 5), (1, 4) a−→ (2, 3)
and (1, 4) b−→ (0, 5) have probability 2/15 each. The probability of doing an a from (1, 4) is
4/15, and the probability of moving from (1, 4) to (0, 5) by means of some action is also 4/15.

Once the set of initial configurations I is fixed, we can talk about the probability of
a measurable set of infinite paths of a Markov Chain rooted at some C ∈ I. We write
Pr[A, C |= E ] to denote the probability that the stochastic process assigns to an event E for
some C ∈ I. Later, events will correspond to formulas of the linear temporal logic.

▶ Example 2. Computation by consensus. Angluin et al. [3] study protocols as a
computation model. In their model, each state has an output, either 0 or 1. A protocol is
well-specified if for every initial configuration, all agents eventually output the same value
b = 0, 1 and stay committed to this value forever. Being well-specified further requires
that the commitment of a population of agents to a value exclusively depends on their
initial distribution. A well-specified protocol computes a predicate over its input variables:
for each initial configuration, the predicate has value 0 (resp. 1) iff agents commit to 0
(resp. output 1) with probability 1.

▶ Example 3. Birth-death processes. A Moran process [23] is a stochastic process for
evolution in a population with N − 1 residents and a mutant. In each step, one agent
is randomly chosen for reproduction and one agent is randomly chosen for death. In the
next step, the agent who dies is replaced with a copy of the agent that reproduces, therefore
keeping the size of the population constant. In this setting, an interesting question is fixation:
whether a single mutant can eventually replace all residents.

Probability vs. fairness

Instead of the probabilistic semantics, the semantics of population protocols is usually de-
fined using fairness [3, 6]. An execution is fair if it is infinite and for every configuration
C appearing in it infinitely often, and for every possible labelled step C

a−→ C ′, the step
also appears infinitely often in the execution. We show later in Proposition 7 that the
fair semantics and the probability semantics are indistinguishable for the questions we are
studying: For every initial configuration C and every property φ expressible in LTL, some
fair execution starting at C satisfies φ iff the set of executions of the protocol (fair or not)
starting at C and satisfying φ has positive probability.
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2.2 Probabilistic Linear Temporal Logic
Let Σ be a finite set of actions labels. The formulas of linear temporal logic (LTL) are
defined by the grammar

φ ::= a | φ ∨ φ | φ ∧ φ | Xφ | φUφ | φWφ where a ∈ Σ.

The semantics of LTL formulas are given in the usual way over traces [9]: an LTL formula
φ defines an ω-language L(φ) ⊆ Σω. We define the following derived symbols: ¬a ≡∨

σ∈Σ\{a} σ, true ≡
∨

σ∈Σ σ, Fφ ≡ trueUφ and Gφ ≡ φWfalse. The derived symbols can
be eliminated with at most a polynomial cost in the size of the formula.

Qualitative and quantitative model checking. Let us now introduce the probabilistic
interpretation for LTL. Given a configuration C, we say that (A, C) satisfies the LTL formula
φ with probability p if Pr[A, C |= φ] = p. The (qualitative) model checking problem consists
of, given a population protocol (A, I), and an LTL formula φ, deciding if Pr[A, C |= φ] = 1
for all C ∈ I. We often work with the complement problem (deciding if Pr[A, C |= ¬φ] > 0
for some C ∈ I). Abusing language, we also call it the model checking problem; the context
should determine which problem we refer to. The quantitative model checking problem has
an additional input p between 0 and 1 and asks whether Pr[A, C |= φ] ≥ p for all C ∈ I.

▶ Example 4. Cont’d from Ex.2 Let Σ be the set of all actions and let Σij , for i, j ∈ {0, 1},
be the set of all transitions in which the output of the first process is i and the second process
is j. Then, if the property Pr[A, C |= F(GΣ00 ∨ GΣ11)] = 1 holds for all C ∈ I, we have
that from any initial configuration, an execution of the protocol stabilizes to an output (0 or
1) with probability 1. Being well-specified actually requires more: all the executions starting
at a configuration must converge to the same value with probability 1. This property can be
expressed as a LTL formula but on a modified protocol instead of the original one. Intuitively,
the modified protocol is the result of running two copies of the protocol side-by-side as we
explained in a previous work [18].

Delporte-Gallet et al. [14] study which predicates can be computed by privacy-preserving
protocols that do not reveal information on the initial configuration to a curious adversary.
They identify a sufficient condition for a protocol to be privacy preserving, expressed as the
conjunction of two properties (plus two other minor conditions). The first one is the existence
from each initial configuration of an execution leading to a given set of configurations G,
and containing no interaction involving a distinguished agent. For the cases studied in the
paper G can be expressed by an LTL-formula φ, and the property can be reduced to the
model-checking problem for the formula (

∨
a∈A a)Uφ for a suitable A ⊆ Σ. The second

one, called G-imitability, requires that for every action a of the distinguished agent and
for every configuration of G there is a finite execution leading to a configuration of G and
containing exactly one occurrence of the action. This can be verified by taking G as set of
initial configurations and checking the formula

∧
a∈Σ (¬a U(a ∧ X(¬a Uφ))).

▶ Example 5. For the Moran process, the property that a mutant takes over the population
is FGΣ0, where Σ0 is the set of actions where a mutant reproduces.

2.3 Deterministic Rabin Automata
A deterministic Rabin automaton (DRA) R = (Q, Σ, δ, q0, F) consists of a finite set Q of
states including an initial state q0, an alphabet Σ, a transition function δ : Q × Σ → Q, and
an acceptance condition F ⊆ 2Q × 2Q.

FSTTCS 2016
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An input for R is an infinite string in Σω. The run of R on w = w0w1 . . . ∈ Σω

is an infinite sequence ρ = r0r1 . . . of states in Q such that r0 = q0, the initial state,
and for each i ≥ 0, we have ri+1 = δ(ri, wi). Since R is deterministic, we can extend
the transition function δ to finite words as follows: δ∗(q, ε) = q for every q ∈ Q and
δ∗(q, a w) = δ∗(δ(q, a), w). Let Inf(ρ) be the set of states that appear infinitely often in ρ.

Let F = {⟨F1, G1⟩, . . . , ⟨Fk, Gk⟩} be the set of Rabin pairs. A run ρ is accepting if there
exists an i ∈ {1, . . . , k} such that Inf(ρ) ∩ Fi = ∅ and Inf(ρ) ∩ Gi ̸= ∅; that is, no state
from Fi is seen infinitely often and some state from Gi is seen infinitely often. A word w is
accepted by R if the unique run of R on w is accepting. The language of R, written L(R),
is the set of all words accepted by R.

For each LTL formula φ, it is well-known that there is a DRA Rφ of size at most doubly
exponential in the size of φ such that L(φ) = L(Rφ).

2.4 Labeled Petri Nets
A labeled Petri net N = (P, T, F, Σ, λ) consists of a finite set P of places, a finite set T of
transitions, a flow function F : (P × T ) ∪ (T × P ) → N, an alphabet Σ of actions and a
labeling function λ : T → Σ. Abusing language, we also use λ to denote the homomorphic
extension of the labeling function to T ∗ ∪ T ω → Σ∗ ∪ Σω. Given a transition t ∈ T , the
multiset •t of input places of t is defined by •t(p) = F (p, t), and the multiset t• of output
places by t•(p) = F (t, p). A Petri net is a labeled Petri net without a labeling function and
alphabet of actions.

A marking M of a net N is a multiset of places. Given a place p, we say that M

puts M(p) tokens in p. A transition t ∈ T is enabled at a marking M , written M [t⟩, if
•t ≤ M . A transition t enabled at M can fire, yielding the marking M ′ = M − •t + t•. We
write this fact as M [t⟩ M ′. We extend enabledness and firing to sequences of transitions
as follows. Let σ = t1 . . . tk be a finite sequence of transitions tj ∈ T . We write M [σ⟩ M ′

and call it a firing sequence if there exists a sequence M0, . . . , Mk of markings such that
M = M0 [t1⟩ M1 · · · [tk⟩ Mk = M ′. In that case, we say that M ′ is reachable from M and
denote by Reach(N, M) the set of markings reachable from M . Given an infinite sequence
σ = t1t2 . . ., we write M [σ⟩ if, and only if, there exists an infinite sequence M0, M1, . . . of
markings such that M = M0 and Mi [ti+1⟩ Mi+1 for every i ≥ 0. Finally, given w ∈ Σ∗ ∪Σω,
we write M [w⟩ and M [w⟩ M ′ if M [σ⟩ and M [σ⟩ M ′ for some sequence σ of transitions such
that λ(σ) = w.

3 Model-checking LTL

In Section 3.1 we first show that the qualitative model checking problem is decidable. We
then prove that it is as hard as the reachability problem for Petri nets, even for simple sets
of initial configurations (that is, for leaderless protocols) and for the formula FGa. Finally,
in Section 3.2, we show the quantitative version is undecidable.

3.1 The Model Checking Problem Is Decidable but Reachability Hard
Our solution to the model checking problem is based on a product construction that, given
a protocol scheme A = (Q, Σ, ∆) and a DRA R = (Q′, Σ, δ, q′

0, F) such that Q ∩ Q′ = ∅,
produces a labeled Petri net N(A, R) = (P, T, F, Σ, λ), defined as follows:

P = Q ∪ Q′.
T contains a transition tδA,q for each δA = (q1, q2) a7−→ (q3, q4) ∈ ∆ and q ∈ Q′.
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For each tδA,q ∈ T with δA = (q1, q2) a7−→ (q3, q4) ∈ ∆: •(tδA,q) = {q1, q2, q} and (tδA,q)• =
{q3, q4, δ(q, a)}. Further, λ(tδA,q) = a.

It follows immediately from the definition of N(A, R) that (C+q′) [w⟩ M for some mark-
ing M and word w ∈ Σ∗ iff M = C ′ + q′′, C

w−→ C ′, and δ∗(q′, w) = q′′, that is, N(A, R)
captures the action-based synchronized product of A and R.

A marking M of N(A, R) is proper if M = C+q where C is a configuration of A and q is
a state of R. In particular, every marking reachable from a proper marking is proper. The
proper reachability graph of N(A, R) contains the proper markings of N(A, R) as nodes and
the steps (C+q′) [a⟩ (C ′+q′′) for a ∈ Σ as edges. We say that an SCC S of the reachability
graph of N(A, R) is accepting if there is a Rabin pair ⟨F, G⟩ of R such that q′ ∈ F for no
marking (C+q′) ∈ S, and q′ ∈ G for some marking (C+q′) ∈ S.

Next, Proposition 6 reduces the qualitative model checking problem to a topological
problem about the (typically infinitely many) SCCs of N(A, R).

▶ Proposition 6. Given a configuration C of A and a Rabin automaton Rφ for a LTL
formula φ: Pr[A, C |= φ] > 0 iff some bottom SCC of the proper reachability graph of
N(A, Rφ) is accepting and reachable from (C+q′

0).

Proof. For simplicity, we conduct the proof for the special case in which every transition of
A is labeled with a different action. The extension to the general case is straightforward.

Observe that, since the interactions on A do not change the size of a configuration, for
every two markings (C1+q1), (C2+q2) of the proper reachability graph of N(A, Rφ) we
have |C1| = |C2|. Since Rφ has finitely many states, the number of markings reachable from
(C1+q1) is at most K(C1) := (n|C1|+1) · m, where n and m are the number of states of A
and Rφ, respectively.

We introduce the following notation. Let τ = C
a1···an−−−−→ Cn be a finite execution of A.

As usual, the cylinder Cyl(τ) denotes all the infinite executions of A starting with τ , and its
probability Pr(Cyl(τ)) is the product of the probabilities of the steps C

a1−→ C1, . . . , Cn−1
an−−→

Cn. Since Rφ is complete and deterministic, the unique state q′
n = δ∗(q′

0, a1 . . . an) is such
that (C+q′

0) [a1 · · · an⟩ (Cn+q′
n) is a firing sequence of N(A, Rφ). We call the run of Rφ

the matching run of τ , and denote it by τ . Further, we denote the firing sequence by (τ, τ).
We extend the notation to infinite executions, runs, and firing sequences.

We first prove a preliminary claim. An infinite execution σ of A starting at a configura-
tion C satisfies the following property with probability 1: the infinite firing sequence (σ, σ)
of N(A, Rφ) from the marking (C+q′

0) eventually reaches a bottom SCC of the proper
reachability graph of N(A, Rφ), and visits all its markings infinitely often.

For the first part, observe that for every finite prefix σ1 of σ there is, by definition, a
finite execution σ2 of length at most K(C) such that the marking reached by (σ1σ2, σ1σ2)
belongs to a bottom SCC of the proper reachability graph of N(A, Rφ). Therefore , there is
a bound p(C) > 0, depending only on σ2 and in particular on C , such that the probability
that for σ ∈ Cyl(σ1) the firing sequence (σ, σ) reaches a bottom marking is at least p(C).
By elementary probability theory, the probability of the infinite execution σ such that (σ, σ)
eventually visits a bottom SCC is equal to 1. For the second part, assume that σ has a prefix
τ such that (τ, τ) leads to a bottom SCC, say S, and let (C ′+q′) be an arbitrary marking
of S. Then, for every finite execution ττ1 of A, there is τ2 of length at most K(C) such
that the firing sequence (ττ1τ2, ττ1τ2) leads to (C ′+q′). So the probability that an infinite
execution of Cyl(ττ1) eventually reaches (C ′+q′) is equal to 1. This concludes the proof of
the claim.

FSTTCS 2016
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We now proceed to prove the proposition. Assume that some bottom SCC S of the
proper reachability graph of N(A, Rφ) is accepting for some Rabin pair ⟨F, G⟩, and is also
reachable from (C+q′

0). Let (σ, σ) be a firing sequence leading to some marking of S,
and let (CG+qG) be a marking of S. Because S is accepting we have qG ∈ G. For the
same reason, no marking of S is of the form (CF +qF) with qF ∈ F . By the claim, an
infinite execution τ ∈ Cyl(σ) satisfies with probability 1 that the infinite firing sequence
(τ, τ) visits (CG+qG) infinitely often and visits no marking (CF +qF) with qF ∈ F . So
Pr[A, C |= φ] ≥ Pr(Cyl(σ)) > 0.

Assume now that no bottom SCC of the proper reachability graph of N(A, Rφ) is ac-
cepting. Then, for every Rabin pair ⟨F, G⟩ and every bottom SCC S, either S contains a
marking (C ′+q′) such that q′ ∈ F , or it contains no marking (C ′+q′) such that q′ ∈ G.
By the claim, for every infinite execution τ of A starting at C, the infinite firing sequence
(τ, τ) gets eventually trapped in a bottom SCC, say S, with probability 1. If S contains a
marking (C ′+q′) such that q′ ∈ F , then, again by the claim, (τ, τ) visits (C ′+q′) infinitely
often with probability 1, and so it is non-accepting with probability 1. If S contains no
marking (C ′+q′) such that q′ ∈ G, then with probability 1 it visits configurations (C ′+q′)
such that q′ ∈ G only finitely often, and so it is not accepting with probability 1. So C

satisfies φ with probability 0. ◀

Using this result we now proceed to prove the indistinguishability of the fair and the
probability semantics we announced in Section 2.1:

▶ Proposition 7. Let (A, I) be a population protocol, C ∈ I, and let φ be an LTL formula.
We have: Pr[A, C |= φ] > 0 iff some fair execution of A starting at C satisfies φ.

Proof. It is easy to show (see Esparza et al. [18, 19]) that every fair execution of A starting
at a configuration C gets eventually trapped in a bottom SCC of the configuration graph
of A, and crosses all its edges infinitely often. Using the same arguments as in Proposition
6, we show that a fair execution starting at C satisfies φ iff its unique counterpart firing
sequence reaches an accepting bottom SCC of the proper reachability graph of N(A, Rφ).
So, by Proposition 6, some fair executions starting at C satisfy φ iff Pr[A, C |= φ] > 0. ◀

We need the following fact about Petri nets from [22] to prove decidability.

▶ Lemma 8. [22] Let N be a Petri net. The set of pairs of markings (M, M ′) such that M

and M ′ are mutually reachable (i.e., M ′ is reachable from M and M is reachable from M ′)
is Presburger, and a Presburger formula MR(M, M′) denoting it can be effectively constructed.

▶ Theorem 9. Let (A, I) be a population protocol, and let φ be an LTL formula. The
problems whether there exists a configuration C ∈ I satisfying Pr[A, C |= φ] > 0 and
Pr[A, C |= φ] < 1 can be reduced to the reachability problem for Petri nets.

Proof. Let Rφ be a DRA for φ. Assume for simplicity that Rφ has only one Rabin pair
⟨F, G⟩ (the generalization to multiple pairs is straightforward). We first show that the set
of markings of N(A, Rφ) that belong to accepting bottom SCCs of the proper reachability
graph is Presburger, and that a formula BA(M) denoting it can be constructed .

Let P(M) be the Presburger formula characterizing the proper markings of N(A, Rφ).
Further, let FO(M, M′) be a Presburger formula that holds if M ′ can be reached from M by
firing one transition. Then we can take for BA(M) the formula

P(M) ∧ ∀M′, M′′ : (MR(M, M′) ∧ FO(M′, M′′)) ⇒ MR(M, M′′)
∧ ∀M′ : MR(M, M′) ⇒

(∧
q∈F M′(q) = 0

)
∧ ∃M′ : MR(M, M′) ∧

∨
q∈G M′ ≥ q
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where MR(M, M′) is obtained following Lemma 8. Similarly, we obtain a formula BR(M) for the
markings that belong to a non-accepting bottom SCCs of N(A, Rφ). By Proposition 6, the
problem whether some configuration C ∈ I satisfies Pr[A, C |= φ] > 0 reduces to deciding
whether some marking M ′ satisfying BA(M′) is reachable from some proper marking M in
the Presburger set given by {(C+q′

0) | C ∈ I}. Similarly, Pr[A, C |= φ] < 1 reduces to
reachability of BR(M′). ◀

We show that the problems of Theorem 9 are reachability hard, i.e., at least as hard as
the reachability problem of Petri nets. In previous works [18, 19], we proved reachability
hardness for the well-specification problem (whether a given protocol computes a predicate).
However, the protocols given by the reduction from the reachability problem always had a
leader (formally, they always had a state such that at all initial configurations that state
was inhabited by exactly one agent, and this was crucial for the proof). When population
protocols are used to compute by consensus (see Example 2), leaderless protocols turn out
to have the same computational power as protocols with leader; the only difference is that
the latter can be faster [3, 5]. Therefore, the question arises whether verification problems
have lower complexity for the special case of leaderless protocols. A positive answer would
mean that one can trade-off efficiency for ease of verification, without losing computational
power. We now show that, unfortunately, this is not the case: the qualitative model-checking
problem for the basic liveness property FGa is reachability hard for leaderless protocols. The
same technique also proves hardness of the well-specification problem.

▶ Theorem 10. The reachability problem for Petri nets can be reduced in linear time to
the following problem: given a population protocol (A, I) where I is simple, decide if some
configuration C ∈ I satisfies Pr[A, C |= FGa] > 0.

Sketch of proof. The proof constructs a sequence of reductions from the Petri net reachabil-
ity problem. Each step in the sequence transform a problem on Petri net into an equivalent
problem closer to the model of population protocols. We first use a result of Hack [21] that
reduces the reachability problem to the problem of deciding for a given Petri net N and
a marking M0 with a distinguished place p̂ if some marking M ∈ Reach(N, M0) satisfies
M(p̂) = 0. Then we introduce a “normal form” for nets: a net N = (P, T, F ) is in normal
form if F (x, y) ∈ {0, 1} for every x, y ∈ (P × T ) ∪ (T × P ), and every transition t satisfies
1 ≤ |•t| ≤ 2 and 1 ≤ |t•| ≤ 2. Transitions of Petri nets in normal form can be simulated
by transitions of population protocols, which only involve two agents. We prove that the
reachability problem reduces to: given a net N in normal form, a place p0 and a set of places
P̂ , decide if some marking M ∈ Reach(N, p0) satisfies M(P̂ ) = 0. The next step applies a
simple but key observation: for any two markings M, M ′ of a net, M ′ is reachable from M

iff M is reachable from M ′ in the reverse net obtained by reversing the arcs. This allows
to reduce the reachability problem to: given a net N in normal form, a place p0 and a set
of places P̂ , decide if p0 ∈ Reach(N, M) for some marking M satisfying M(P̂ ) = 0. The
crucial point is that this set of markings corresponds to a simple set of initial configurations
of the protocol simulating the net. So, starting from this simple set, the protocol can reach a
certain configuration iff p0 is reachable. It still remains to ensure that the protocol satisfies
Pr[A, C |= FGa] > 0 for some initial configuration iff the marking p0 is reachable. This
is achieved by adding “probing” transitions to the protocol, labeled by an action different
from b, ensuring that the protocol can always do a b as long as it has not reached p0. ◀

FSTTCS 2016
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3.2 Quantitative Model Checking Is Undecidable
We prove that, contrary to the qualitative case in the previous section, the quantitative
model checking problem is undecidable. Our proof uses the simulation of deterministic two
counter machines with arbitrarily small error.

Recall that a counter machine is a triple M = (L, Co, In) where L is a finite set of program
labels, Co is a finite set of counters, and In is a set of program instructions, one for each label.
The program instruction for label ℓ is of one of the following types: ℓ : c := c + 1; goto ℓ′

(increment), ℓ : c := c − 1; goto ℓ′ (decrement), ℓ : if c = 0 then goto ℓ′ else goto ℓ′′

(zero-test), or ℓ : halt (termination). Only one label ℓh has an instruction of the last
type, and there is also a distinguished initial label ℓ0. The termination problem for counter
machines consists of deciding if a given machine, starting at ℓ0 with all counters initially set
to 0, eventually halts, i.e., reaches ℓh.

▶ Lemma 11. Given a counter machine M , we can construct in polynomial time a protocol
scheme A with a distinguished state qh, and a set I of initial configurations such that M

halts iff some configuration C ∈ I satisfies the following property: starting at C, the protocol
eventually reaches a configuration with one agent in qh with probability at least 1/2.

Proof. It is convenient to define first the set of states of A, then the set I of initial config-
urations, and then the transitions of A.

A has a state for each label and for each counter of M , three distinguished states Store,
D (for Dummy), and Stop, and two auxiliary states ℓ1, ℓ2 for each zero-test label ℓ. We
set qh := ℓh, i.e., choose the state qh as the one corresponding to the halting label.
I contains the configurations that put one agent in the initial label ℓ0, one agent in D,
arbitrarily many agents in Store, and no agent elsewhere.

Before defining the transitions of A we give some intuition. First, the transitions guar-
antee that every reachable configuration puts one agent in exactly one of the states corre-
sponding to the programs labels L. This models that the next instruction executed by the
machine is the one with label ℓ. We call this agent the control agent. The number of agents
at a state c models the current value of the counter. The transitions also guarantee that the
one agent at D never moves elsewhere (its role is only to enable some transitions).

Increasing and decreasing a counter c is modeled by transitions that transfer an agent
from Store to c, and from c to Store, respectively. Therefore, if an initial configuration puts,
say, K agents in Store, then from that configuration the protocol cannot always simulate
the complete execution of the machine, only the prefix during which the sum of the values
of all counters does not exceed K. A has the following transitions:

For each instruction ℓ : c := c + 1; goto ℓ′, a transition (ℓ, Store) inc7−−→ (ℓ′, c).
For each instruction ℓ : c := c − 1; goto ℓ′, a transition (ℓ, c) dec7−−→ (ℓ′, Store).
For each instruction ℓ : if c = 0 then goto ℓ′ else goto ℓ′′, the following transitions:

(ℓ, D) go7−→ (ℓ1, D), (ℓ, c) nonzero7−−−−−→ (ℓ′′, c)
(ℓ1, Store) back7−−−→ (ℓ, Store), (ℓ1, D) zero7−−→ (ℓ2, D)
(ℓ2, D) zero′

7−−−→ (ℓ′, D) and (ℓ2, c) gameover7−−−−−−→ (Stop, c).
It is convenient to think of the go and back transitions as a loop moving an agent from ℓ to
ℓ1 and back, and of the transitions zero and nonzero as the two possible exits of this loop.

Before proving the lemma, we make an observation. Assume that the control agent of a
configuration C is at the state of a zero-test label ℓ : if c = 0 then goto ℓ′ else goto ℓ′′,
and assume further C(Store) ≥ 1. We consider two cases. In the first case, C puts no agents
in counter c. Then the nonzero exit of the loop is not enabled at C. Therefore, the scheduler
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will eventually move the control agent to ℓ2 with probability 1 (after executing the “loop”
go back a number of times). Further, since the game over action is also not enabled, the
scheduler will eventually move the control agent to ℓ′ with probability 1.

In the second case, C puts at least one agent in c. Then both exits are enabled at C,
and the scheduler eventually chooses one of them with probabilities pz and pnz , respectively.
The key point is that these probabilities depend on the number of agents in Store and in
c. Indeed, for every value of c, increasing the number N of agents in Store also increases
pnz , since it makes it more likely that the scheduler picks agents at Store. In particular, we
have pnz → 1 when N → ∞. So the scheduler eventually moves the control agent to ℓ′′ with
probability that tends to 1 when N tends to infinity.

We prove the left-to-right direction of the lemma. Assume that M halts. We show that
there is a configuration C ∈ I from which the protocol eventually reaches a configuration
with the control agent in qh with probability at least 1/2.

Let k be the length of the halting computation of M . Clearly, during the computation no
counter ever has a value larger than k. So the probability of the protocol taking the wrong
exit when the control agent visits a zero-test label is always bounded by a value p(N) that
tends to 0 as N tends to infinity. Since the computation of M visits zero-test labels at most
k times, the probability that at all these visits the protocol chooses the right exit is at least
(1 − p(N))k, which tends to 1 as N tends to infinity. So, by making N sufficiently large, we
obtain an initial configuration for which the protocol faithfully simulates the computation
of M with probability at least 1/2. Since M halts, that computation visits qh, and we are
done.

We now prove the converse direction, for which we need the game over actions, which have
played no role so far. Assume that M does not halt. We prove that for every configuration
C ∈ I the probability that, starting at C, the protocol eventually reaches a configuration
with the control agent in qh is at most 1/2.

We say that the protocol “cheats” during the simulation of M if, after reaching a con-
figuration with the control agent at a zero-test label ℓ and a strictly positive number of
agents at c, the protocol moves the control agent to ℓ′, and not to ℓ′′, as indicated by the
instruction.

Let C be an arbitrary initial configuration and let the protocol produce an execution.
Since M does not halt, in order to move the control agent to qh the protocol must cheat
at least once. For this, the scheduler must move the control agent to ℓ′ at a moment at
which there is at least one agent in counter c. But then exactly one pair of agents can move
the control agent to ℓ′—namely the agents at ℓ2 and D—and at least one pair of agents
can move it to Stop (the agent at ℓ2 and one of the agents at c). Since after reaching Stop
the protocol cannot reach qh anymore, the probability that after moving to ℓ2 the control
agent eventually reaches qh is at most 1/2. So the probability of reaching qh is bounded
from above by 1/2 times the probability that an execution cheats at least once. Hence, in
particular, the probability is at most 1/2, and we are done. ◀

▶ Proposition 12. The quantitative model checking problem for population protocols is al-
ready undecidable for specifications of the form G(

∨
a∈A a) for some set A of action labels.

Proof. We show that the problem is already undecidable for a formula of the form G(
∨

a∈A a)
for some set A of action labels, and the probability bound 1/2. We proceed by reduction
from the non-termination problem for counter machines. Given a machine M , we con-
struct a protocol A and a set of initial configurations I such that M halts iff Pr[A, C |=
G(

∨
a∈A a)] ≥ 1/2 for every C ∈ I. Almost all the work has been done in Lemma 11. Con-

FSTTCS 2016
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sider the protocol A and the set I defined there, and add a transition (qh, D) halt7−−→ (qh, D).
Then, an execution of A satisfies F halt iff it eventually moves the control agent to state
qh. Applying the lemma, we obtain that M does not halt iff Pr[A, C |= F halt] < 1/2 for
every C ∈ I. Taking A as the set of all actions of A but halt, we get: M does not halt iff
Pr[A, C |= G(

∨
a∈A a)] ≥ 1/2 for every C ∈ I. ◀

In fact, Lemma 11 also implies undecidability of the problem whether the probability of
a property can be made arbitrarily close to 1 by increasing the number of agents. Indeed,
a look at the proof of the lemma shows that the reduction produces a protocol satisfying
the following property: the counter machine halts iff there a bound ρ < 1 (in the lemma,
ρ = 1/2 + ε) such that Pr[A, C |= φ] ≤ ρ for every C ∈ I.

4 Discussion and Further Undecidability Results

We have characterized the decidability frontier for LTL model checking of population pro-
tocols: qualitative model checking is decidable, and quantitative is undecidable. We have
also shown that, though decidable, qualitative model checking is as hard as the reachability
problem for Petri nets (for which no primitive-recursive algorithm is known) even for lead-
erless protocols and for the simple formula FGa. Essentially the same proof shows that the
well-specification problem is also as hard as the Petri net reachability problem even in the
leaderless case, removing the assumption of a leader from our previous hardness proof [19].

In the rest of the section we briefly discuss other undecidability results showing that
Theorem 9 is rather close to the “decidabiliy border.”

LTL on Configurations. Note that we have defined LTL on actions. An alternate definition
could take the set of configurations as atomic propositions. Configuration-based LTL model
checking is known to be decidable for Well-Structured Transition Systems (WSTS)—a gen-
eral class which includes population protocols and much more—provided the reasoning can
be restricted to upward-closed sets. This is the key idea used by Baier et al. [8] who prove
that a state-based fragment of µ-calculus is decidable for all WSTS. It is not known whether
this result can be made more general when focusing on population protocols instead of the
whole class of WSTS. Unfortunately, the model checking problem for population protocols
is undecidable even for very simple classes of atomic propositions.

Given a state q of a protocol, let q≥1 denote the atomic proposition that holds for a
configuration C if C(q) ≥ 1. We call q≥1 a flag, since it flags that state q is inhabited.

▶ Proposition 13. The qualitative model checking problem for population protocols and LTL
specifications over flags is undecidable.

Proof. Instead of using the construction of Lemma 11 for zero-tests, we enable the zero-test
transition always, and use an LTL formula over configurations to catch “cheating”, i.e., the
population protocol taking a zero-test when it should not. Indeed, every zero-test instruction
ℓ : if c = 0 then goto ℓ′ else goto ℓ′′ yields the formula:

G(q≥1 ∧ c≥1 ⇒ q≥1Uq′′
≥1) (1)

where q, q′′ are the states modelling the locations ℓ, ℓ′ and c the state modelling the counter.
The final formula is the conjunction of the formulas given at (1) (one conjunct for each
zero-test) together with F(qh)≥1. If the counter machine halts, then this formula holds
with nonzero probability from an initial configuration with exactly one agent in the control
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location and sufficiently many agents in the Store location. If the counter machine rejects,
then the probability of the formula is zero for every initial configuration. ◀

Broadcast Protocols. Adding broadcasts makes the qualitative model checking undecid-
able as well. Consider an extension of population protocols with broadcast actions [16] where,
in addition to a set ∆ of transitions involving two agents, also a set ∆∗ ⊆ Q×Σ×Q×2Q×Q

of “broadcast” transitions is allowed. Given a broadcast transition (q, a, q′, δ) and a con-
figuration C satisfying C(q) > 0, if the scheduler picks an agent in state q, then the agent
changes its state to q′ and simultaneously, all other agents update their states according
to the function δ. The qualitative model checking problem for this model is undecidable,
because the model can weakly simulate counter machines by slightly modifying the proof of
[16, Theorem 5.1].
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A Appendix

A.1 Proof of Theorem 10
Proof. The proof constructs a sequence of reductions from the Petri net reachability prob-
lem. Each step in the sequence transform a problem on Petri net into an equivalent problem
closer to the model of population protocols.

The first step uses a well-known result of Hack [21]. The reachability problem for Petri
nets can be reduced in polynomial time to the single-place-zero-reachability problem:

Given a Petri net N0, a marking M0, and a place p̂: decide whether some marking
M ∈ Reach(N0, M0) satisfies M(p̂) = 0.

We introduce a normal form for Petri nets. A Petri net N = (P, T, F ) is said to be in
normal form if F (x, y) ∈ {0, 1} for every x, y ∈ (P × T ) ∪ (T × P ), and every transition t

satisfies 1 ≤ |•t| ≤ 2 and 1 ≤ |t•| ≤ 2. For every Petri net N = (P, T, F ) and markings
M1, M2, one can construct a normal form Petri net N ′ = (P ′, T ′, F ′) with P ⊆ P ′ such that
M2 is reachable from M1 in N iff M ′

2 is reachable from M ′
1 in N ′, and M ′

i = Mi + ℓ, where
ℓ is a special lock place. Intuitively, each transition t of N with more than two input and/or
output places is simulated in N ′ by a widget. The widget starts and finishes its execution
by acquiring the lock and releasing it, respectively. This guarantees no two widgets are
executing concurrently. When simulating transition t, its widget first consumes, one by
one, the tokens consumed by t (as given by •t), and then produces, one by one, the tokens
produced by t (as given by t•). Figure 1 shows a transition and its widget. Observe that all
transitions of the widget are in normal form.

p1 p2

p3 p4 p5

t

2

p1 p2

ℓ

p3 p4 p5

Figure 1 A Petri net transition (left) and its associated widget (right).

Let N1 be the result of normalizing N0. Let Paux be the set of places of N1 that are
not places of N0, and are different from the lock place ℓ. The single-place-zero-reachability
problem reduces to

(P1) Does some marking M ∈ Reach(N1, M0 + ℓ) satisfy M(p̂) = 0 and M(Paux) = 0?
(Observe that M(Paux) = 0 guarantees that no widget is in the middle of its execution.)

Now we add to N1 a new place p0 and a new widget simulating a transition t0 with
•t0 = p0 and t0

• = M0 + ℓ. Let the resulting net be N2. Then (P1) reduces to:

(P2) Does some marking M ∈ Reach(N2, p0) satisfy M(p̂) = M(p0) = M(Paux) = 0?
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For our next step, we “reverse” N2: define N3 as the result of reversing all arcs of N2
(i.e., P3 = P2, T3 = T2 but F3(x, y) = F2(y, x) for every two nodes x, y). Clearly, N3 is in
normal form when N2 is. The problem (P2) reduces to:

(P3) Is p0 ∈ Reach(N3, M) for some marking M of N3 satisfying M(p̂) = M(p0) = M(Paux) =
0?

In the last step we reduce (P3) to an instance of the model-checking problem for popu-
lation protocols. Let N3 = (P3, T3, F3). We construct a population scheme A = (Q, Σ, ∆),
and a simple set of initial configurations I defined as follows:

Q = P3 ∪ {Fresh, Used}. That is, A contains a state for each place of N3, plus two
auxiliary places.
I contains all configurations such that there are no agents in the states p̂, p0 or Paux.
However, there might be 0 or more agents in the lock place ℓ.
Σ = {a, b}.
∆ = ∆T3 ∪ ∆P ∪ ∆2 ∪ ∆a.

These sets are formally described below. Intuitively, the transitions of ∆T3 simulate the
behaviour of N3, the transitions of ∆P check the presence of tokens in places other than
the final place p0, and the transition of ∆2—a singleton—checks the presence of more than
one token in p0. All these transitions are b-transitions. Finally, the transitions of ∆a ensure
that every configuration can do an a-step.

The transitions of ∆T3 simulate the behaviour of N3. For this, ∆T3 contains a transition
δt for every net transition t ∈ T3. If t ∈ T3 has two input places p1, p2 and two output places
p′

1, p′
2, then δt = (p1, p2) b7−→ (p′

1, p′
2), The other cases are: if t has one input place p1 and two

output places p′
1, p′

2, then δt = (p1, Fresh) b7−→ (p′
1, p′

2); if t has two input places p1, p2 and one
output place p′

1, then δt = (p1, p2) b7−→ (p′
1, Used); if t has one input place p1 and one output

place p′
1, then δt = (p1, Fresh) b7−→ (p′

1, Used).
The transitions of ∆P test the presence of tokens in places other than the final place

p0. For every pair (p, q) ∈ (P \ {p0}) × Q, the set ∆P contains a transition (p, q) b7−→ (p, q).
Intuitively, these transitions guarantee that as long as the current marking of N3 marks any
place different from p0, the protocol A can execute b-transitions.

The only transition of ∆2 = { (p0, p0) b7−→ (p0, p0) } tests the presence of at least two
tokens in p0. Recall that, no transition removes a token from p0, the number of tokens in
p0 does not decrease. Therefore, if in the course of the simulation the place p0 receives two
or more tokens, then the transition of ∆2 can always occur.

Finally, we have ∆a = { (q1, q2) a7−→ (q1, q2) | q1, q2 ∈ Q}.
Assume that p0 ∈ Reach(N3, M) for some marking M such that M(p̂) = M(p0) =

M(Paux) = 0. Let σ be a firing sequence such that M [σ⟩ p0. Observe that σ is nonempty,
and must end with a firing of transition t0. Let K be the number of times that transitions
with only one input place occur in σ. We claim that the initial configuration C given by
C(Fresh) = K, and C(p) = M(p) for every p ∈ P3 satisfies Pr[A, C |= FGa] > 0. Indeed,
the finite execution of A that simulates σ by executing the corresponding transitions of
∆T3 (and which, abusing language, we also denote σ), reaches a configuration C ′ with
C ′(p0) = 1, C ′(Fresh) = 0, and C ′(p) = 0 for every p ∈ P3 \ {p0}. No transition of
∆T3 ∪ ∆P ∪ ∆2 is enabled at C ′, and so all transitions enabled at C ′ are a-transitions.
Therefore, Pr[A, C |= FGa] ≥ Pr(Cyl(σ)) > 0.

Assume now that Pr[A, C |= FGa] > 0 for some initial configuration C ∈ I. In particu-
lar, C(p̂) = C(p0) = C(Paux) = 0. Recall that, since the number of agents in a configuration
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does not change along an execution, the set of configurations reachable from C is finite. Let
B1, . . . , Bn be the bottom SCCs of the configuration graph reachable from C. At least one
of them must contain no b-labeled edges; otherwise, since a run eventually reaches a bottom
SCC with probability 1, we have Pr[A, C |= GFb] = 1, and therefore Pr[A, C |= FGa] = 0,
contradicting the hypothesis. Assume without loss of generality that B1 contains no b-
labeled edges. By the definition of ∆a every configuration of the protocol enables at least
one a-transition, and so B1 contains a configuration C ′ that enables an a-transition but no
b-transitions. By the definition of ∆, we have C ′(p0) = 1 and C ′(p) = 0 for every p ̸= p0.
Since C ′ is reachable from C, there is a sequence of transitions leading from C to C ′. Let
δt1 . . . δtn

be the projection of this sequence onto the transitions of ∆T3 , and let σ = t1 . . . tn.
Then we have M [σ⟩ M ′ for the markings M, M ′ given by M(p) = C(p) and M ′(p) = C ′(p)
for every p ∈ P . Since M ′ = p0 and M(p̂) = M(p0) = M(Paux) = 0, we are done. ◀
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