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Abstract

The Concurrent Logic Framework (CLF) is a foundational type theory for en-
coding concurrent computations by representing resources with linearity and
encapsulating the effects of concurrency in a monad. The definition of concur-
rent equality via commuting conversions identifies computations differing only
in the order of execution of independent steps, capturing a form of true concur-
rency in a proof-theoretic way. However, some example encodings suffer from
spurious dependencies whereby independent computations cannot be reordered
because they use the same shared resource but are not causally linked, or com-
putations are distinguished even though they only differ in the use of isomorphic
objects. We address these limitations by incorporating a linear proof irrelevance
modality and adopting a richer definition of equality that admits reordering
computations modulo proof irrelevant terms. We present several encodings of
stateful concurrent systems to demonstrate the usefulness of this extension.
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1 Introduction

A logical framework is a formal system that serves as a meta-language for defin-
ing and reasoning about logics and programming languages. A framework con-
sists of a formal meta-logic or type theory that internalizes features that are
common to deductive systems and an informal representation methodology for
encoding object languages and establishing the adequacy of encodings. Logi-
cal frameworks are useful for formalizing meta-theoretic properties of deductive
systems and, moreover, mechanized implementations can provide a logic pro-
gramming environment for automated proof checking and proof search.

The Logical Framework (LF) [Harper et al., 1993] is a foundational intu-
itionistic type theory with an intrinsic notion of bound variable, α-conversion,
and substitution. A deductive system is represented in LF as an object lan-
guage specified by a signature consisting of constants at the object and type
levels. Judgments pertaining to the logic and its meta-theory are encoded by
types, while computations and deductions are encoded by objects. The Concur-
rent Logical Framework (CLF) [Watkins et al., 2004] augments the dependent
type theory of LF with selected connectives from linear logic [Girard, 1987]
as type constructors and a definition of concurrent equality. Linearity can be
used to represent resources and thus model imperative computation, while the
multiplicative conjunction connective of linear logic can represent concurrent
execution. The synchronous fragment (e.g., multiplicative conjunction and re-
lated connectives) of the language is encapsulated in a monad to segregate the
effects of concurrency. Therefore linear hypotheses model state, linear func-
tions model imperative computations, and monadic objects model concurrent
computations.

To capture true concurrency [Mazurkiewicz, 1995], semantic models of con-
currency typically quotient the interleaving of events by an equivalence rela-
tion that allows permuting independent events, which makes the order of in-
dependent events indistinguishable. In modern presentations of LF, objects
are restricted to β-normal, η-long canonical form and definitional equality is
a structural congruence. In CLF, definitional equality achieve a form of true
concurrency by extending the structural congruence to admit commuting con-
versions: monadic computations are identified if they only differ in the order of
execution of independent steps. Adjacent computation steps are recognized as
independent if they are not causally linked, that is, if the effects of one compu-
tation step do not affect the behavior of the other, and vice versa. This notion
generalizes straightforwardly to sequences of steps. In terms of the framework’s
language, two concurrent computations are independent if the variables bound
by one monadic computation are not used by the other, and vice versa. This
definition of independence is too weak for some encodings and the resulting
notion of equality is deficient in two ways. First, equality distinguishes compu-
tations that only differ in the use of distinct but isomorphic objects. Second,
some computations suffer from spurious synchronizations whereby independent
computations cannot be reordered because they use the same shared resource,
even though the order of their occurrence is not causally related.
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Proof irrelevance has been suggested as a solution to these limitations [Watkins
et al., 2004], and here we develop a formulation of CLF with proof irrelevance
and a richer concurrent equality that can eliminate spurious synchronization.
In prior work, Pfenning [2001] developed an extension of the LF type theory
with an intuitionistic proof irrelevance modality wherein objects of the same
type are equated. The computational interpretation of proof irrelevant objects
in that setting is that only their existence matters, which is a static property in
the absence of stateful computation. In CLF, however, it is desirable to have
linear proof irrelevant objects that can be produced and consumed as resources
with the equational condition that proof irrelevant objects of the same type are
indistinguishable.

In this paper, we extend CLF to CLF4 by incorporating such a linear proof
irrelevance modality and adopting a richer definition of equality that admits
reordering concurrent computations modulo proof irrelevant terms. Proof irrel-
evant objects of the same type are identified, so computations that use different
but isomorphic proof irrelevant objects are also indistinguishable. Crucially,
spurious causal dependencies can be eliminated by making the pertinent shared
resources proof irrelevant in the encoding. Note that CLF4 itself does not iden-
tify which actions may commute but rather provides a framework for describing
varying degrees of concurrency. We refer to certain causal dependencies in CLF
encodings as spurious because they are an artifact of the framework, whereas
they should not be regarded as spurious in CLF4 because their occurrence can
be controlled.

In §2 we present the type theory and meta-theory of CLF4. In §3 we give
encodings of concurrent systems and exhibit how proof irrelevance can be used
to eliminate spurious synchronizations and ignore the use of isomorphic objects.
In §4 we discuss future and related work and we conclude in §5.

2 CLF4

In this section we give an overview of CLF and present the CLF4 extension
with proof irrelevance and a richer definition of concurrent equality. The syntax
is presented in §2.1 and the typing judgements in §2.2; linear proof irrelevance
is discussed in §2.3 and concurrent equality is discussed in §2.4. The reader
may refer to Watkins et al. [2002] for a detailed treatment of CLF and to López
et al. [2005] for an operational semantics of proof search. We illustrate CLF4’s
constructs throughout this section with examples from the AI planning domain
Blocks World (cf. §3.2).

CLF integrates an intuitionistic dependent type theory and a complement
of connectives from linear logic for the succinct representation of concurrent
computations with state. Types represent the state of computation and objects
represent sequences of actions in a computation; under the semantics of proof
search, types may also be considered as reachability predicates. Concurrent
systems can, of course, already be encoded in LF alone, but it is awkward to
describe stateful computation and difficult to work with the resulting encodings.
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CLF incorporates connectives from linear logic which permit the representation
of state with linear hypotheses. Moreover, imperative computation is repre-
sented with linear implication (A2 ( A1), nondeterminism with additive con-
junction (A1 & A2), and arbitrary resource consumption with the additive unit
(>). Following the terminology of Andreoli [1992], we refer to the above connec-
tives as asynchronous because of their behavior in proof search; the synchronous
connectives are introduced below.

Example. The Blocks World domain consists of a virtual world where stacks
of blocks are manipulated with robotic arms. The CLF encoding of Blocks
World models the blocks and arms with the types blk and arm, respectively.
For example, a system with two blocks named a and b and one arm named h is
represented by: a:blk, b:blk, h:arm. Here, a sequence separated by commas (”,”)
represents a multiset of unrestricted variables—i.e., the variables can be used
an unrestricted number of times.

The dynamic properties of the objects are modeled by linear variables of the
following types:

type description
on a b block a is on top of block b
ont a block a is on the table
clr a block a is reachable (nothing is on top of it)

freeh arm h is available
holdsh a arm h is holding block a

Since we consider arms indistinguishable, we henceforth ignore their names: we
elide unrestricted variables of type arm. In particular, we omit them from the
types:

type description
free an arm is available

holds a an is holding block a

For example, the configuration with a stacked on top of b and an empty-
handed arm is represented by the linear variables of the appropriate type:
o
∧
:on a b

∧
;f

∧
: free. Here, the colon with a caret (

∧
:) indicates the typing of linear

variables and a sequence separated by semicolons with carets (”
∧
; ”) represents a

multiset of linear variables—i.e., each variable must be used exactly once. We
use the following mnemonics for variables: f to witness an arm is free, hx for
the arm holds block x, cx for block x is clear, o for a is stacked on b, tx for
block x is on the table.

Consider an operator for picking up a reachable block a that is on top of a
block b. Intuitively, the operator causes a transition from an initial state where
a is on top of b (on a b), a is reachable (clr a), and a robotic arm is available
(free), to a final state where the robotic arm is holding a (holds a) and now
b is reachable (clr b). Since CLF includes the linear function type A2 ( A1

that consumes a linear argument of type A2 and produces a result of type A1,
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the operator’s transition can intuitively be represented as a linear function. The
synchronous connectives alone, however, cannot directly express the (multiplica-
tive) conjunction of the initial conditions transformed into the conjunction of
the final conditions. A (multiplicative) conjunction of hypotheses can nonethe-
less be encoded with the linear function type by using a continuation-passing
style with an abstract answer type res. More precisely, the operator can be
encoded by the constant:

upk : (holdsx ( clr y ( res) ( (onx y ( clrx ( free ( res)

that transforms a continuation of type holdsx ( clr y ( res that consumes the
final state into a continuation of type onx y ( clrx ( free ( res that consumes
the initial state.

Consider a configuration with block a on top of b and a free arm:

ca
∧
:clr a

∧
;o
∧
:on a b

∧
; tb

∧
:ont b

∧
;f

∧
: free.

Given a continuation: k:holds a ( clr b ( ont b ( res that expects a to be held
by the arm and b to be reachable and on the table, the term:

upk
∧(

∧

λha, cb.k∧ha∧cb∧tb)∧o∧ca∧f

has type res thus transitioning to a state where k can proceed. Here, the infix

caret (∧) is linear application and
∧

λx1, . . . , xn.N denotes the iterated abstraction
of linear variables x1, . . . , xn from the term N .

Blocks World exhibits concurrency in the presence of multiple stacks of
blocks or arms. As an example where two arms can manipulate separate stacks
concurrently, consider a configuration with block ai on top of bi (i ∈ 1..2) and
two free arms:

ca1
∧
:clr a1

∧
;o1

∧
:on a1 b1

∧
; tb1

∧
:ont b1

∧
;f1

∧
: free

∧
;

ca2
∧
:clr a2

∧
;o2

∧
:on a2 b2

∧
; tb2

∧
:ont b2

∧
;f2

∧
: free.

Given a continuation:

k12:holds a1 ( clr b1 ( ont b1 ( holds a2 ( clr b2 ( ont b2 ( res

that expects each ai to be held by an arm and each bi on the table, both of the
terms:

upk
∧(

∧

λha1, cb1.upk
∧(

∧

λha2, cb2.k12
∧ha1

∧cb1
∧tb1

∧ha2
∧cb2

∧tb2)∧o2
∧ca2

∧f2)∧o1
∧ca1

∧f1

upk
∧(

∧

λha2, cb2.upk
∧(

∧

λha1, cb1.k12
∧ha1

∧cb1
∧tb1

∧ha2
∧cb2

∧tb2)∧o1
∧ca1

∧f1)∧o2
∧ca2

∧f2

pick up a1 and a2 in different order and transition to a state where k12 can
proceed. Intuitively, there is concurrency between the two upk applications be-
cause the order in which a1 and a2 are picked up shouldn’t matter. Nevertheless,
structural equality would distinguish the two terms.
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Representing stateful transitions with the asynchronous connectives, thus,
requires an awkward continuation-passing style. In the presence of nondetermin-
ism, this amounts to an interleaving semantics because the definitional equality
of the asynchronous fragment does not identify computations that only differ
in the order of independent steps. It is possible to define a judgment in the
object language that equates traces modulo ordering of independent steps, but
since this is a common feature of concurrent systems it is preferable to inter-
nalize this notion of equality in the meta-language. To this end, the framework
also includes synchronous connectives from linear logic (multiplicative unit 1
and conjunction A1 ⊗ A2, existential ∃x:A.S, unrestricted modality !A) and a
definition of concurrent equality, which obviate the continuation-passing style
representation and admit an intrinsic form of true concurrency semantics.

Expressions are similar to Mazurkiewicz traces [Mazurkiewicz, 1977] as the
equivalence class of action sequences modulo an independence relation, where
actions correspond to monadic objects and concurrent equality generates inde-
pendence. Since commutativity of actions relies on variable dependence, CLF4

is also comparable to Pratt’s pomsets [Pratt, 1984] where the dependence graph
of the term language induces the partial ordering, and to Winskel’s event struc-
tures [Winskel, 1980] where the causality relation is variable dependence and
resource availability determines incompatibility between events.

The notion of a β-normal, η-long canonical form is central to the LF fam-
ily of frameworks. Proving adequacy of an encoding requires demonstrating
a bijective correspondence between the language of the deductive system and
the canonical forms of its LF encoding. The introduction of synchronous con-
nectives threatens the uniqueness of canonical forms at a given type because
the effects of concurrency cannot be identified. CLF employs a monad [Moggi,
1989], written {S}, to encapsulate synchronous propositions S of the language
and thus contain the effects of concurrency. Each monadic object corresponds to
a step in a concurrent computation and a sequence of let-bindings corresponds
to concurrent execution.

Example. The final state of the operator for picking up a block can be ex-
pressed directly using CLF’s multiplicative conjunction type A1 ⊗ A2. More-
over, the monad type {S} is used to encapsulate the effectful computation of
performing the transition. Therefore, the operator can be encoded by the con-
stant:

up : onx y ( clrx ( free ( {holdsx⊗ clr y}.
The function is linear because resources (the arguments) are consumed, and the
result is monadic because it is an effectful concurrent computation: the arm is
occupied holding x and simultaneously y is reachable.

Returning to the previous example where block a is on top b and there’s a
free arm, the term:

up∧o∧ca∧f

produces the desired state transition without the need of a continuation-passing
style.
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CLF extends syntactic equality to concurrent equality by admitting the re-
ordering of independent monadic computations. A sequence of monadic let-
bindings is considered independent if their reordering does not affect the struc-
ture of dependencies on bound variables. This notion of independence is too
stringent because independent computations may use a shared resource, which
causes a spurious dependence between otherwise causally unrelated computa-
tions. Moreover, computations that only differ in the use of distinct but isomor-
phic objects are also distinguished by CLF’s equality. The type theory of CLF4

extends CLF with a linear proof irrelevance modality (4) in the synchronous
fragment and associated connectives for producing and consuming objects of
proof irrelevant type. Equality of proof irrelevant terms of the same type is
trivial, so adequate encodings can avoid spurious causal dependencies by using
proof irrelevance where appropriate.

Example. In a CLF encoding of Blocks World, two arms independently manip-
ulating disjoint stacks of blocks are concurrent because no resources are shared.
Returning to the previous example where block ai is on top bi (i ∈ 1..2) and
there are two free arms, suppose we have a term M that expects each ai to
be held by an arm and each bi on the table. Then both of the terms (using
let–binding notation):

let {ha1 ⊗ cb1} = up∧o1
∧ca1

4f1

{ha2 ⊗ cb2} = up∧o2
∧ca2

4f2

in M

let {ha2 ⊗ cb2} = up∧o2
∧ca2

4f2

{ha1 ⊗ cb1} = up∧o1
∧ca1

4f1

in M

perform the transition to a state where M can proceed. Since reordering the
bindings doesn’t affect the dependencies on bound variables, CLF’s concurrent
equality allows the two bindings to commute and thus the two terms are equated.

Unfortunately, the CLF encoding suffers unwarranted synchronization when
independent operations (e.g., moving different stacks) involve some shared re-
source (e.g., a single arm). For example, a single arm manipulating two blocks
is shared and causes a spurious synchronization because CLF does not permit
reordering the actions, even if they are on separate stacks and thus causally
unrelated. Assume an additional operator for releasing a block on the table:

dnt : holdsx ( {ontx⊗ clrx⊗ free}

that transitions from a state where an arm holds a block x (holdsx) to a state
where x is on the table (ontx) and reachable (clrx) and the arm is available
(free). Consider a configuration with two stacks and a single arm: block ai is
reachable (cai

∧
:clr ai) and on top of bi (oi

∧
:on ai bi) (i ∈ 1..2), and the arm is free

(f
∧
: free). Then the terms:

let {ha1 ⊗ cb1} = up∧o1
∧ca1

∧f
{ta1 ⊗ ca1 ⊗ f ′} = dnt∧ha1

{ha2 ⊗ cb2} = up∧o2
∧ca2

∧f ′

{ta2 ⊗ ca2 ⊗ f ′′} = dnt∧ha2

in . . .

let {ha2 ⊗ cb2} = up∧o2
∧ca2

∧f
{ta2 ⊗ ca2 ⊗ f ′} = dnt∧ha2

{ha1 ⊗ cb1} = up∧o1
∧ca1

∧f ′

{ta1 ⊗ ca1 ⊗ f ′′} = dnt∧ha1

in . . .
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K ::= type | Πx:A.K Kinds

A ::= A2 ( A1 | A2

4
( A1 | Πx:A2.A1 Asynchronous types

| A1 & A2 | > | {S} | P
P ::= a | P N Atomic type constructors

S ::= S1 ⊗ S2 | 1 | ∃x:A.S Synchronous types

| A | !A | 4A

N ::=
∧
λx.N |

4
λx.N | λx.N Normal objects

| 〈N1, N2〉 | 〈〉 | {E} | R

R ::= c | x | R∧N | R4N | RN Atomic objects

| π1R | π2R

E ::= let B in M Expressions

B ::= · | {p} = R,B Bindings

M ::= M1 ⊗M2 | 1 | [N,M ] Monadic objects

| N | !N | 4N
p ::= p1 ⊗ p2 | 1 | [x, p] | x | !x | 4x Patterns

Ψ ::= · | p∧:S,Ψ Pattern contexts

Γ ::= · | Γ, x:A Unrestricted contexts

∆ ::= · | ∆, x∧:A Linear contexts

Ω ::= · | Ω, x4:A Linear irrelevant contexts

Σ ::= · | Σ, a:K | Σ, c:A Signatures

Figure 1: Syntax of CLF4

encode the two possible sequences for picking up each ai and placing it on the
table—moving a1 then a2, or vice versa. CLF’s notion of concurrent equality
does not allow the terms to be equated, however, because there is a spurious
causal dependency between the second binding—which releases the arm f ′—
and third binding—which consumes the free arm f ′. In §3.2, we return to this
example to show how linear proof irrelevance and a more general notion of
concurrent equality allows these operations to commute.

2.1 Syntax

The syntax of CLF4 is given in Figure 1. The types and objects of CLF4

are stratified to respect the segregation of the synchronous fragment from the
dependent and asynchronous fragment. Synchronous types S classify monadic
objects M , which represent suspended concurrent computations. Dependent
and asynchronous types A classify (βη-)normal objects N and atomic objects
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R. The definition of binding B generalizes the standard presentation of nested
bindings by explicitly collecting all bindings in a single let-block, this is done
to simplify the definition of concurrent equality. An expression E of the form
let {p} = R,B in M should be read as the computation of R that binds the
variables in p, which are then in scope for the computation of let B in M . We
abbreviate Πx:A2.K as A2 → K and Πx:A2.A as A2 → A, respectively, when
x is not free in K and A. We only extend contexts with fresh variables that do
not already appear in the context in order to avoid an ambiguous reading of the
context.

The terms containing 4 correspond to the new language constructs used to
support proof irrelevance. The synchronous type 4A is the type of linear proof
irrelevant objects introduced by the modal operator 4N in the monad and
pattern-matched by 4x. The linear irrelevant implication A2

4
( A1 classifies a

linear function that consumes a linear irrelevant object of type A2 and produces

an object of type A1, this type is introduced by the abstraction
4

λx.N over a
linear irrelevant variable and eliminated by the application R4N . In addition
to the unrestricted and linear contexts, CLF4 includes a context Ω for linear
irrelevant variables.

Example. In our CLF4 encoding of Blocks World, the availability of a single
arm has proof irrelevant type 4free to let the arm be a shared resource without
incurring spurious synchronization. An operator for self-testing the arm would
have type free

4
( {4free} since the arm is available before and after the action.

2.2 Judgments

The type theory of CLF is carefully designed to make adequacy proofs expose
the concurrent nature of computation. This is realized in the syntax by avoid-
ing mutual dependence between objects and types, and in the typing rules by
restricting objects to have canonical β-normal and η-long form1. The reader
may refer to Watkins et al. [2002] for a detailed treatment of the meta-theory
of CLF.

In the absence of βη-conversion, equality can be defined as α-equivalence
augmented with concurrent equality. In classical formulations of LF and its
variants, definitional equality and typing were mutually-defined. In particular,
the following typing rule depends on equality:

Γ `M : A Γ ` A = B : type

Γ `M : B

while equality for types Γ ` A = B : type and objects Γ ` M = N : A is
defined for well-kinded types and well-typed objects. In CLF, the judgement

1Throughout this paper, we use canonical to refer to terms that are β-normal and η-long.
Because of commuting conversions and proof irrelevance as discussed below, canonical forms
may be equal without being syntactically identical, contrary to some uses of this term in the
literature.
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A1 =A A2 P1 =P P2 S1 =S S2 [Type equality]

A =A A′

(4A) =A (4A′)

A2 =A A′2 A1 =A A′1

(A2

4
( A1) =A (A′2

4
( A′1) (All other congruences.)

N1 =N N2 R1 =R R2 M1 =M M2 p1 =p p2 [Object and pattern equality]

N =N N ′

(
4
λx.N) =N (

4
λx.N ′)

R =R R′

(R4N) =R (R′4N ′) (4N) =M (4N ′)

(4x) =p (4x) (All other congruences.)

E1 =E E2 [Expression equality]

σ ∈ Sym(|B|) σB =B B′ M =M M ′

(let B in M) =E (let B′ in M ′)
a

B1 =B B2 [Binding equality]

· =B ·
p =p p

′ R =R R′ B =B B′

({p} = R,B) =B ({p′} = R′, B′)

Figure 2: CLF4 equality rules
acf. side condition in §2.4

C =C C ′, for each syntactic category C, denotes the equality of the terms C and
C ′ without referring to their type or the ambient context. This eliminates the
mutual dependency between equality and typing (cf. rule ⇒R⇐N in Figure 6),
but imposes the caveat that a derivation of equality only makes sense when
applied to well-typed objects of the same type in the same hypothetical context.

In CLF, equality is defined as a structural congruence for each syntactic cat-
egory: two terms are equal if their subterms are equal. In addition, expressions
are equal modulo the reordering of independent steps (cf. concurrent equality
in §2.4). The definition of CLF4 equality is given in Figure 2 with explicit rules
for the proof irrelevance connectives and their proof constructors, concurrent
equality, and bindings. Objects in irrelevant position (N in R4N and 4N)

are always equal, but equality of irrelevant types (4A and A2

4
( A1) is struc-

tural. Concurrent equality for expressions allows reordering independent steps,
subject to a side condition on variables in the bindings (cf. § 2.4) that allows
proof irrelevant variables to be reordered. Bindings for irrelevant objects (x in
4

λx.N and 4x) are not irrelevant occurrence positions and therefore they are
only equated when the variables match.
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Since concurrent equality implies structural equality of expressions and equal-
ity of irrelevant objects is trivial, structural equality need not be explicitly given
for expressions or irrelevant objects. Thus equality can be characterized as
the least congruence containing α-equivalence, concurrent equality, and trivial
equality on irrelevant objects.

Alternatively, we can define a homomorphic translation (·)∗ of CLF4 terms
that replaces objects in irrelevant position with a distinguished constant ∗ but
preserves the remaining structure of terms. The cases for irrelevant connectives
and constructors are given below, the cases for the remaining terms are defined
by congruence.

(4N)∗ ≡ 4∗ (4A)∗ ≡ 4(A∗)

(
4

λx.N)∗ ≡
4

λx.(N∗) (A2

4
( A1)∗ ≡ (A∗2)

4
( (A∗1)

(R4N)∗ ≡ (R∗)4∗ (4x)∗ ≡ 4x

It follows that equality is the least congruence containing α-equivalence and
concurrent equality of the translated terms.

Example. The availability of each arm is represented by a corresponding ob-
ject of type 4free. Two available arms can be used indistinguishably because
their respective 4free witnesses must occur in irrelevant position. Consider
an encoding with a self-testing operation test, a suspension operation susp, an
operation turnoff for shutting down all unused arms:

test:free
4
( {4free} susp:free

4
( {4down} turnoff:>( off

where the type down denotes an inactive arm and the type off denotes shut-
ting down any number of unused arms. Assume there are two available arms
x, y

4
: free. Note that by the typing rule >I (Figure 6), turnoff acts as a sink for

any number of unused linear resources. The expressions:

let {4w} = test4x in 4w ⊗4y and let {4w} = test4y in 4w ⊗4x

test different arms (x and y) and leave the other untested, but they are equal
because they have the same type4free⊗4free and only differ by proof irrelevant
terms: (test4x) =R (test4y) and (4w ⊗ 4y) =M (4w ⊗ 4x). Terms with
different free variables may still be equal if they typecheck under the same
context: 4x ⊗ (turnoff∧〈〉) and 4y ⊗ (turnoff∧〈〉) have different free variables,
but they are equal because they have the same type 4free ⊗ off in context
x, y

4
: free and only differ by proof irrelevant terms: 4x =M 4y. Although both:

let {4y} = test4x in turnoff∧〈〉 and let {4y} = susp4x in turnoff∧〈〉

have type off and the binding patterns coincide, but the expressions are not
equated because the bound objects and their types differ:

test4x 6=R susp4x {4free} 6=A {4down}.
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Observe that in this encoding test4x and test4y are equated because proof
irrelevance does not distinguish the arms. Token synchronization (cf. write
synchronization in §3.3) is an encoding methodology that can be used to enforce
selective synchronization of individual operators or between operators.

In this presentation of CLF, the typing rules (cf. rules ΠE in Figure 6 and
∃I in Figure 7) employ hereditary substitutions to perform a standard substitu-
tion and additionally preserve (βη-)canonical forms. Hereditary substitutions
are realized by an instantiation operator [N0/x]CA0

C ≡ C ′, for each syntactic
category C, which denotes the capture-avoiding substitution of object N0 of
type A0 for the free occurrences of x in C, which produces result C ′ with the
necessary β-reductions and η-expansions to maintain canonical form. If both C
and N0 are canonical then C ′ is guaranteed to be canonical, but if either C or
N0 fail to be canonical then C ′ may not be canonical either.

Instantiation additionally relies on the following auxiliary reduction and
matching operators. When the head ofR is x, the reduction operator reduceA0(x.R,N0) ≡
N computes the canonical form N of the substitution of object N0 of type A0

for x in R, and the type reduction operator treduceA0(x.R) ≡ A computes the
associated type A of N . The matching operators match eS0(p.E,E0) ≡ E′

and match mS0(p.E,M0) ≡ E′ compute the instantiation E′ resulting from the
substituend-directed hereditary substitution in E resulting from binding E0 or
M0 of type S0 to pattern p.

Furthermore, we define an expansion operator denoted expandA(R) ≡ N ,
which produces the type-directed η-long form N of the atomic object R of type
A, and an auxiliary pattern expansion operator pexpandS(p) ≡M for generating
the canonical expansion of patterns.

The definition of the hereditary substitution operators for the linear proof
irrelevance connectives and constructors of CLF4 are given in Figure 3, the
definition for the rest of the language is the same as in CLF. The cases of in-
stantiation, matching, and pattern expansion for the proof irrelevance modality
are straightforward recursions and mimic the corresponding cases of the un-
restricted modality !. The cases of instantiation and expansion for irrelevant
implication, instantiation, type reduction, and reduction for irrelevant applica-
tion, and instantiation for irrelevant abstraction are similar to the respective
cases of the linear versions.

The typing judgments of CLF4 (Figure 4) are bidirectional and syntax-
directed in the objects. Typing derivations are parameterized in a CLF4 signa-
ture Σ of constants. Each judgment has an unrestricted context Γ of variables
that may be used any number of times, a linear context ∆ of variables that must
be used exactly once, and a linear irrelevant context Ω of variables that must be
used exactly once in a proof irrelevant object. The full typing rules are shown
in Figures 6 and 7. The irrelevant context, like the linear context, is used addi-
tively or multiplicatively in the typing rules according to the connective under
consideration. The typing rules for the linear proof irrelevant modality, impli-
cation, abstraction, and application constructors are discussed in §2.3. Observe
that objects may only refer to variables in the unrestricted context (rule x!) and
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[N0/x]AA0(A2

4
( A1) ≡ ([N0/x]AA0A2)

4
( ([N0/x]AA0A1)

[N0/x]SA0(4A) ≡ 4([N0/x]AA0A)

[N0/x]NA0(
4
λy.N) ≡

4
λy.([N0/x]NA0N)

where y 6= x, y /∈ FV(N0)

[N0/x]RA0(R4N) ≡ ([N0/x]RA0R)4([N0/x]NA0N)

[N0/x]MA0(4N) ≡ 4([N0/x]NA0N)

treduceA0(x.R4N) ≡ A1

where treduceA0(x.R) ≡ A2

4
( A1

reduceA0(x.R4N) ≡ [[N0/x]NA0N/y]NA2N
′

where treduceA0(x.R,N0) ≡ A2

4
( A1,

reduceA0(x.R,N0) ≡
4
λy.N ′,

y 6= x, y /∈ FV([N0/x]NA0N)

match m4A0(4x.E,4N0) ≡ 4([N0/x]EA0E)

expand
A2

4
(A1

(R) ≡
4
λx.expandA1

(R4expandA2
(x))

where x /∈ FV(R)

pexpand4A(4x) ≡ 4expandA(x)

Figure 3: Hereditary substitution operators for proof irrelevant connectives

Γ; ∆; Ω `Σ N ⇐N A Normal object checking

Γ; ∆; Ω `Σ R⇒R A Atomic object inference

Γ; ∆; Ω `Σ E ⇐E S Expression checking

Γ; ∆; Ω `Σ B ⇒B Γ′; ∆′; Ω′ Binding typing

Γ; ∆; Ω; Ψ `Σ E ←p S Pattern expansion

Γ; ∆; Ω `Σ M ⇐M S Monadic object checking

Figure 4: Typing judgments of CLF4

linear context (rule x). Variables in the irrelevant context may only be used if
they appear in proof irrelevant position (rule 4I), which requires defining mu-
tually inverse translations of context promotion Ω⊕ ≡ ∆ and context demotion
∆	 ≡ Ω between irrelevant and linear contexts (Figure 5).
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·⊕ ≡ · ·	 ≡ ·

(Ω, x
4
:A)

⊕
≡ Ω⊕, x

∧
:A (∆, x

∧
:A)
	
≡ ∆	, x

4
:A

Figure 5: CLF4 context promotion and demotion

Γ; ∆; Ω `Σ N ⇐N A [Normal object checking]

Γ; ∆, x
∧
:A2; Ω ` N ⇐N A1

Γ; ∆; Ω `
∧

λx.N ⇐N A2 ( A1

( I
Γ; ∆; Ω, x

4
:A2 ` N ⇐N A1

Γ; ∆; Ω `
4

λx.N ⇐N A2

4
( A1

4
( I

Γ, x:A2; ∆; Ω ` N ⇐N A1

Γ; ∆; Ω ` λx.N ⇐N Πx:A2.A1

ΠI

Γ; ∆; Ω ` N1 ⇐N A1 Γ; ∆; Ω ` N2 ⇐N A2

Γ; ∆; Ω ` 〈N1, N2〉 ⇐N A1 & A2

& I
Γ; ∆; Ω ` 〈〉 ⇐N >

>I

Γ; ∆; Ω ` E ⇐E S

Γ; ∆; Ω ` {E} ⇐N {S}
{}I

Γ; ∆; Ω ` R⇒R P ′ P ′ =P P

Γ; ∆; Ω ` R⇐N P
⇒R⇐N

Γ; ∆; Ω `Σ R⇒R A [Atomic object inference]

Γ; ·; · ` c⇒R Σ(c)
c

Γ;x
∧
:A; · ` x⇒R A

x
Γ; ·; · ` x⇒R Γ(x)

x!

Γ; ∆1; Ω1 ` R⇒R A2 ( A1 Γ; ∆2; Ω2 ` N ⇐N A2

Γ; ∆1,∆2; Ω1,Ω2 ` R∧N ⇒R A1

( E

Γ; ∆; Ω1 ` R⇒R A2

4
( A1 Γ; Ω2

⊕; · ` N ⇐N A2

Γ; ∆; Ω1,Ω2 ` R4N ⇒R A1

4
( E

Γ; ∆; Ω ` R⇒R Πx:A2.A1 Γ; ·; · ` N ⇐N A2

Γ; ∆; Ω ` RN ⇒R [N/x]AA2
A1

ΠE

Γ; ∆; Ω ` R⇒R A1 & A2

Γ; ∆; Ω ` π1R⇒R A1

& E1

Γ; ∆; Ω ` R⇒R A1 & A2

Γ; ∆; Ω ` π2R⇒R A2

& E2

Figure 6: CLF4 typing rules for asynchronous objects
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Γ; ∆; Ω `Σ E ⇐E S [Expression checking]

Γ; ∆; Ω ` M ⇐M S

Γ; ∆; Ω ` let · in M ⇐E S
⇐M⇐E

Γ; ∆1; Ω1 ` R⇒R {S0} Γ; ∆2; Ω2, p
∧
:S0 ` let B in M ⇐M S

Γ; ∆1,∆2; Ω1,Ω2 ` let {p} = R,B in M ⇐E S
{}E

Γ; ∆; Ω; Ψ `Σ E ←p S [Pattern expansion]

Γ; ∆; Ω ` E ⇐E S

Γ; ∆; Ω; · ` E ←p S
⇐E←p

Γ; ∆; Ω; p1
∧
:S1, p2

∧
:S2,Ψ ` E ←p S

Γ; ∆; Ω; p1 ⊗ p2
∧
:S1 ⊗ S2,Ψ ` E ←p S

⊗L

Γ; ∆; Ω; Ψ ` E ←p S

Γ; ∆; Ω; 1
∧
:1,Ψ ` E ←p S

1L
Γ, x:A; ∆; Ω; p

∧
:S0,Ψ ` E ←p S

Γ; ∆; Ω; [x, p]
∧
:∃x:A.S0,Ψ ` E ←p S

∃L

Γ; ∆, x
∧
:A; Ω; Ψ ` E ←p S

Γ; ∆; Ω;x
∧
:A,Ψ ` E ←p S

AL
Γ; ∆; Ω, x

4
:A; Ψ ` E ←p S

Γ; ∆; Ω;4x∧:4A,Ψ ` E ←p S
4L

Γ, x:A; ∆; Ω; Ψ ` E ←p S

Γ; ∆; Ω; !x
∧
: !A,Ψ ` E ←p S

!L

Γ; ∆; Ω `Σ M ⇐M S [Monadic object checking]

Γ; ∆1; Ω1 ` M1 ⇐M S1 Γ; ∆2; Ω2 ` M2 ⇐M S2

Γ; ∆1,∆2; Ω1,Ω2 ` M1 ⊗M2 ⇐M S1 ⊗ S2

⊗I
Γ; ·; · ` 1⇐M 1

1I

Γ; ·; · ` N ⇐N A Γ; ∆; Ω ` M ⇐M [N/x]SAS
Γ; ∆; Ω ` [N,M ]⇐M ∃x:A.S

∃I
Γ; ∆; Ω ` N ⇐N A

Γ; ∆; Ω ` N ⇐M A
AI

Γ; Ω⊕; · ` N ⇐N A

Γ; ·; Ω ` 4N ⇐M 4A
4I

Γ; ·; · ` N ⇐N A

Γ; ·; · ` !N ⇐M !A
!I

Figure 7: CLF4 typing rules for synchronous objects
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2.3 Linear Proof Irrelevance

The type theory developed by Pfenning [2001] extends LF with an intuition-
istic proof irrelevance modality. That type theory does not consider linearity,
so the LF context is used for both (unrestricted) normal and proof irrelevant
variables. The hypothetical judgments permit typing objects both at a normal
type or at an irrelevant type. An object has an irrelevant type 4A if it has
the same underlying type A when all irrelevant variables in the context are pro-
moted to be unrestricted variables. The hypothetical judgment for irrelevant
types is internalized in the language with dependent function types, abstraction
over irrelevantly-typed variables, and irrelevant application. However, there is
no first-class modal operator for proof irrelevance and it is suggested that com-
muting conversions, which are absent in LF’s definitional equality, would be
necessary.

The linear proof irrelevance modality of CLF4 combines properties of proof
irrelevance in the intuitionistic setting with support for linearity, thus permit-
ting the representation of resources without distinguishing objects of the same
irrelevant type. Instead of using the linear context for both linear and irrele-
vant variables, we use a separate irrelevant context to simplify the presentation.
We roughly follow the intuitionistic treatment of irrelevant abstraction and ap-
plication but, since CLF lacks linear dependent function types, the irrelevant
function type constructor

4
( isn’t dependent either. Furthermore, we do incor-

porate a proof irrelevance modal operator 4 in the monad for lifting normal
objects to an irrelevant type but preserving linearity, similar to how the unre-
stricted modal operator ! makes objects persistent by lifting them from linear
to unrestricted type.

The computational interpretation of an intuitionistic proof irrelevant type
is that the underlying type is provable, that is, the type is inhabited by some
object but the proof witness itself is unimportant. Objects with the same proof
irrelevant type are equated and interchangeable, thus justifying the rule for
equality of irrelevant objects in §2.2. However, the computational interpretation
of linear proof irrelevance must be refined to support resource accounting, which
is revealed in the typing rules. Given the concurrent nature of computation in
CLF, the distinction between linear and linear irrelevant variables is that the
former represents a resource and its computational origin (which computation
step created the resource), whereas the latter only embodies the existence of a
resource.

Following the introduction rule for linear abstraction, the introduction rule
for linear irrelevant implication:

Γ; ∆; Ω, x
4
:A2 `Σ N ⇐N A1

Γ; ∆; Ω `Σ

4

λx.N ⇐N A2

4
( A1

4
(I

typechecks an irrelevant abstraction with an irrelevant implication type if the
body typechecks at the result type and the bound variable is used exactly once in
irrelevant position, which is guaranteed by its presence in the irrelevant context.
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The corresponding elimination rule:

Γ; ∆; Ω1 `Σ R⇒R A2

4
( A1 Γ; Ω2

⊕; · `Σ N ⇐N A2

Γ; ∆; Ω1,Ω2 `Σ R4N ⇒R A1

4
(E

typechecks an irrelevant application provided the irrelevant context can be par-
titioned such that the function typechecks with all of the linear context and
part of the irrelevant context, and the argument typechecks with the rest of
the irrelevant context promoted to be linear. This follows the intuitionistic case
in that the irrelevant context becomes accessible to objects in irrelevant posi-
tion (recall that there is no rule for variable lookup in the irrelevant context),
and differs from the elimination rule for linear implication in that the linear
context is inaccessible, preventing irrelevant terms from consuming (relevant)
linear variables.

The left rule for the linear proof irrelevance modality:

Γ; ∆; Ω, x
4
:A; Ψ `Σ E ←p S

Γ; ∆; Ω;4x∧:4A,Ψ `Σ E ←p S
4L

inserts the pattern-matching variable into the irrelevant context just as the !L
rule inserts the variable into the unrestricted context.

The corresponding introduction rule:

Γ; Ω⊕; · `Σ N ⇐N A

Γ; ·; Ω `Σ 4N ⇐M 4A
4I

typechecks an irrelevant object with irrelevant type if the linear context is empty
and the object typechecks with the irrelevant context promoted to be linear.
Again, the reason is that irrelevant terms may consume linear irrelevant vari-
ables but not linear variables.

2.4 Concurrent Equality

The basis for concurrent equality is the notion of a commuting conversion. In
the simplest case, two let-bindings can be swapped if the reordering does not
affect the dependence on bound variables. We state this equality using nested
bindings to emphasize the binding structure, but subsequently use a single let-
block.

(let {p1} = R1 in let {p2} = R2 in E)
=E (let {p2} = R2 in let {p1} = R1 in E)

In order to ensure the independence of the concurrent computations R1 and R2,
this rule has the following side conditions: the variables bound by p1 and p2 are
disjoint, no variable bound by p1 appears free in R2, and vice versa.
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In the original formulation of CLF, the definition of concurrent equality
used the auxiliary notion of a concurrent context to generalize a sequence of let-
bindings with a hole. That rule can be stated with the single let-block notation
by requiring the two binding sequences to be equal up to some permutation σ,
which need not be unique (this rule also appears in Figure 2):

σ ∈ Sym(|B|) σB =B B′ M =M M ′

(let B in M) =E (let B′ in M ′)

We write |B| for the number of bindings in B, Sym(n) for the complete permu-
tation group on n elements, and σB for the corresponding permutation of the
bindings. The side conditions generalize as follows: if B is a sequence of bind-
ings {pi} = Ri, then for each 1 ≤ i < j ≤ |B| with σ(i) > σ(j), the variables
bound by pi and pj must be disjoint, no variable bound by pi appears free in
Rj , and vice versa. The hereditary definition of binding equality respects the
trivial equality between proof irrelevant terms, but the above side conditions
prevent equating computations that use different proof irrelevant terms.

Example. Suppose M has type S in an context with only w
4
: free, and the

expressions:

let {4y} = s4x
{4z} = t4y in Mz

let {4z} = t4x
{4y} = s4z in My

have the same type in a context with two self-test operations s, t:(free
4
(

{4free}) and a free arm x
4
: free, whereMy = [y/w]MfreeM,Mz = [z/w]MfreeM . Then

y, z
4
: free in both cases and each must necessarily occur in irrelevant position in

the corresponding monadic objects My,Mz. Since the function arguments oc-
cur in irrelevant position, the above expressions should be considered equal,
but CLF’s concurrent equality distinguishes them because the second condition
fails: swapping the two bindings of the left expression (σ = (12)) leads to y
being free in t4y.

We remedy this by using the same concurrent equality rule except that the
side condition on pi, Rj (and dually pj , Ri) does not apply to linear irrelevant
variables. The side condition of concurrent equality becomes: if B is a sequence
of bindings {pi} = Ri, then for each 1 ≤ i < j ≤ |B| with σ(i) > σ(j), the
variables bound by pi and pj must be disjoint, no unrestricted or linear variable
bound by pi appears free in Rj , and vice versa. Moreover, the trivial equal-
ity on irrelevant subterms permits σB =B B′ to change objects occurring in
proof irrelevant position. The new notion of equality admits reordering com-
putations modulo proof irrelevant terms. In §3 we explore the consequences of
this modification by considering more examples.

Example. The above expressions are equated in CLF4 as they only differ by
proof irrelevant terms. Since both expressions have type S in the same context
and the variable disjointness conditions are satisfied. The derivation of Figure 8
witnesses the equality.
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σ = (12) ∈ Sym(2)

4z =p 4z
t =R t

t4y =R t4x

4y =p 4y
s =R s

s4x =R s4z · =B ·
({4y} = s4x) =B ({4y} = s4z)

σ({4y} = s4x, {4z} = t4y) =B ({4z} = t4x, {4y} = s4z)

...

Mz =M My

(let {4y} = s4x, {4z} = t4y in Mz) =E (let {4z} = t4x, {4y} = s4z in My)

Figure 8: Derivation of equality

The choice of representing expressions with single let-blocks is directly re-
lated to the concurrent equality rule. Using concurrent contexts to represent
reordering is equivalent to restricting permutations to be reverse rotations of a
subsequence of bindings, that is, permutations of the form (` + k . . . `) where
1 ≤ ` ≤ ` + k ≤ |B|. One difficulty with this representation is that it obscures
the complexity of determining equality of expressions. Using a single permuta-
tion makes explicit that at most (|B|)! possibilities need to be considered and
avoids having to factor a general permutation into the restricted form. More
importantly, the restricted permutations of concurrent contexts are insufficient
to represent certain justifiable reorderings, especially when a spurious synchro-
nization occurs due to use of a shared resource between otherwise independent
computations. Even though permutations can be factored into the restricted
form (i.e., the composition of transpositions), the side conditions may hold for
the general permutation but not separately for each permutation of the factor-
ization. Commuting two sequences of computations simultaneously is a more
powerful transformation than reordering the computation steps individually, in
some cases (cf. §3.2) only the former can be performed because a resource is held
throughout each computation sequence, so reordering one computation step at
a time does not yield a well-typed expression.

2.5 Meta-theory

As argued by Watkins et al. [2004], the capture-avoiding substitution of a nor-
mal object for a variable in a canonical term does not preserve canonicity in the
general case, and a variable of higher type is not canonical at that type. There-
fore it is necessary to prove the identity and substitution principles explicitly.

Lemma 1 (Expansion). Asynchronous case: If Γ; ∆; Ω ` R⇒R A is derivable,
then Γ; ∆; Ω ` expandA(R)⇐N A is derivable.

Synchronous case: For any Γ and S, Γ; ·; ·; p∧:S ` let · in pexpandS(p)←p S
is derivable for some p.

Proof. By structural induction on the type.

18



Theorem 2 (Identity). Unrestricted case: For any Γ and A, Γ, x:A; ·; · `
expandA(x)⇐N A is derivable.

Linear case: For any Γ and A, Γ;x
∧
:A; · ` expandA(x)⇐N A is derivable.

Proof. By the typing rules for variables and the Expansion lemma.

Theorem 3 (Substitution). Unrestricted case: If ΓL; ·; · ` N0 ⇐N A0

and ΓL, x:A0,ΓR; ∆; Ω ` N ⇐N A are derivable, and [N0/x]AA0
ΓR ≡ Γ′R,

[N0/x]AA0
∆ ≡ ∆′, [N0/x]AA0

Ω ≡ Ω′, and [N0/x]AA0
A ≡ A′ are defined, then

[N0/x]NA0
N ≡ N ′ is defined and ΓL,Γ′R; ∆′; Ω′ ` N ′ ⇐N A′ is derivable.

Linear case: If Γ; ∆0; Ω0 ` N0 ⇐N A0 and Γ; ∆, x
∧
:A0; Ω ` N ⇐N A are

derivable, then [N0/x]NA0
N ≡ N ′ is defined and Γ; ∆0,∆; Ω0,Ω ` N ′ ⇐N A is

derivable.
Linear irrelevant case: If Γ; ∆0; · ` N0 ⇐N A0 and Γ; ∆; Ω, x

4
:A0 ` N ⇐N A

are derivable, then [N0/x]NA0
N ≡ N ′ is defined and Γ; ∆; Ω,∆0

	 ` N ′ ⇐N A is
derivable.

Proof. The theorem must be strengthened with analogous statements for the
other syntactic categories. By structural induction on the second derivation of
each case.

The proofs closely follow the structure of the corresponding proofs for CLF
given by Watkins [2003]. The cases for the connectives of CLF only need to
carry the extra linear irrelevant context around. The cases for the proof irrele-
vance connectives rely on the bijective translation between linear and irrelevant
contexts, but are otherwise straightforward. There is no identity principle for
the irrelevant context because there is no variable lookup in that context.

The extensions given by CLF4 over CLF preserve the decidability and upper
complexity bounds of hereditary substitutions, equality, and typing.

Theorem 4 (Decidability). Instantiation, expansion, equality, and typing are
decidable.

Proof. The hereditary substitution operators are syntax-directed and terminate
on all inputs.

Decidability of equality is proved by simultaneous structural induction on
the terms being equated.

Decidability of typing is proved by structural induction on the sequent being
proved, appealing to the decidability of instantiation in the case of ΠE and ∃I
and of equality in the case of ⇒R⇐N.

Theorem 5 (Complexity). The complexity of hereditary substitutions, equality
testing, and typing in CLF4 coincides with that of CLF.

Proof. In CLF and CLF4, the hereditary substitution operators are syntax-
directed and have complexity linear in the size of the inputs.

By simultaneous structural induction on the terms being equated, the upper
complexity bound of equality testing is factorial in the size of the terms. The
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fundamental difference between CLF and CLF4 is the definition of concurrent
equality. However, since every permutation can be factored into the composition
of transpositions, which satisfy the restricted form, the aggregate complexity of
applying CLF’s concurrent equality to nested let-bindings is the same as the
complexity of applying CLF4’s concurrent equality once to a single let-block.

The typing rules for the proof irrelevance connectives do not introduce ad-
ditional complexity as they parallel the definitions of the unrestricted modality
and the linear implication connectives. The irrelevant context is used similarly
to the linear context and does not affect the complexity of typing. By struc-
tural induction on the sequent under consideration, the complexity of typing in
CLF and CLF4 coincide, relying on the corresponding agreement of hereditary
substitutions and equality.

3 Examples

We consider CLF4 encodings of Petri nets, a logical AI planning domain, and
an imperative parallel language. Throughout, the corresponding CLF encodings
can be obtained by replacing irrelevant application 4 with linear application ∧,
promoting irrelevant contexts to linear contexts, and deleting all remaining oc-
currences of4. We omit Π quantifiers on free variables in constant declarations,
and also leave the corresponding instantiations implicit in the examples. Where
convenient, we include explicit typing annotations in binding patterns. CLF4

terms in sans-serif typeface denote constants and terms in italic typeface denote
variables in the meta-language.

3.1 Petri Nets

The CLF encoding of Petri nets [Petri, 1962] was the motivating example for
incorporating proof irrelevance into the framework. Petri nets can be repre-
sented in CLF by encoding each place p with a type constant p, each token
in place p is encoded by a linear hypothesis x

∧
:p, and each transition of tokens

from places p1, . . . , pm to places q1, . . . , qn is represented as a linear function
of type p1 ( · · · ( pm ( {q1 ⊗ · · · ⊗ qn}. The definitional equality of CLF
distinguishes tokens at the same place, therefore encoding can only represent
labeled Petri nets [Watkins et al., 2004]. We address this limitation by instead
encoding each token with a linear irrelevant hypothesis x

4
: p and each transition

as a linear irrelevant function of type p1

4
( · · ·

4
( pm

4
( {4q1 ⊗ · · · ⊗ 4qn}.

Therefore general Petri nets can be encoded in CLF4 without distinguishing
computations that are identical except for the names of tokens.

Returning to CLF, a simple Petri net with two places p, q and a single
transition of one token from p to q has CLF signature:

p, q : type t : p ( {q}

If the initial marking has two tokens at p, then the encoding begins with the
linear hypotheses x, y

∧
:p. There are two possible firings depending on whether
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token x or y moves to q. The firings are represented by the expressions:

let {x′∧:q} = t∧x
in x′ ⊗ y

let {y′∧:q} = t∧y
in y′ ⊗ x

The expressions have the same final state q ⊗ p, but the bound objects differ
(t∧x 6=R t∧y) and CLF distinguishes the expressions even though t acts on
isomorphic objects.

In CLF4, the transition has type t:(p
4
( {4q}), the initial state has the ir-

relevant hypotheses x, y
4
: p, and the two firings are witnessed by the expressions:

let {4x′∧:4q} = t4x
in 4x′ ⊗4y

let {4y′∧:4q} = t4y
in 4y′ ⊗4x

We can α-rename the bindings for x′ and y′ to the variable z′:

let {4z′∧:4q} = t4x
in 4z′ ⊗4y

let {4z′∧:4q} = t4y
in 4z′ ⊗4x

Now the the firings (t4x =R t4y) and final states (4z′ ⊗ 4y =M 4z′ ⊗ 4x)
are equal modulo irrelevant terms, and the variable bindings 4z′ =p 4z′ are
identical. Therefore, concurrent equality in CLF4 makes the two possible firings
indistinguishable.

3.2 Blocks World

The classical AI planning domain Blocks World consists of a virtual 2D world
with stacks of blocks on a table and robotic arms that can unstack, hold, or
stack individual blocks. The encoding of the domain as a CLF4 signature is
given in Figure 9. The type blk encodes blocks as unrestricted variables, their
relative position (on and ont, the latter encoding a block on the table) and
accessibility (clr) are encoded by linear variables:

blk : type
on : blk→ blk→ type

ont : blk→ type
clr : blk→ type

The availability of the robotic arm (free) is represented by an irrelevant variable,
but if it is unavailable (holds) then there is a linear variable witnessing which
block it is holding:

free : type
holds : blk→ type

on : blk→ blk→ type
ont : blk→ type

The ability to stack or unstack blocks is encoded by operators for picking up
(up and upt) and putting down (dn and dnt) an unobstructed block relative to
another block or the table:
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blk : type
on : blk→ blk→ type

ont : blk→ type
clr : blk→ type

free : type
holds : blk→ type

up : onx y ( clrx ( free
4
( {holdsx⊗ clr y}

dn : holdsx ( clr y ( {onx y ⊗ clrx⊗4free}
upt : ontx ( clrx ( free

4
( {holdsx}

dnt : holdsx ( {ontx⊗ clrx⊗4free}

Figure 9: Signature of Blocks World

up : onx y ( clrx ( free
4
( {holdsx⊗ clr y}

dn : holdsx ( clr y ( {onx y ⊗ clrx⊗4free}
upt : ontx ( clrx ( free

4
( {holdsx}

dnt : holdsx ( {ontx⊗ clrx⊗4free}

The table is implicitly encoded by the ont type and the operators upt and dnt.
This domain is sufficient to exhibit a spurious synchronization and justify

the need for general permutations. In particular, consider a world with one
robotic arm (one object f

4
: free) and blocks a1, b1, a2, b2 with ai stacked on bi

(i ∈ 1..2). This is represented by the contexts:

Γ = a1, b1, a2, b2:blk

∆ = ca1
∧
:clr a1

∧
;o1

∧
:on a1 b1

∧
; tb1

∧
:ont b1

∧
; ca2

∧
:clr a2

∧
;o2

∧
:on a2 b2

∧
; tb2

∧
:ont b2

Ω = f
4
: free

If we want to move each ai to the table, we have to pick each ai up from
bi and put it down on the table. Since the arm is unavailable while moving
a block, this gives two possible interleavings: move a1 then a2, or move a2

then a1. Computationally, this is witnessed by the expressions below. We
omit typing annotations from the patterns, but they can easily be inferred from
the type of the operators. Suppose we are given some computation M that
expects all blocks on the table, i.e., that typechecks in the context Γ; ∆′; Ω
where ∆′ = ca1

∧
; cb1

∧
; ca2

∧
; cb2

∧
; ta1

∧
; tb1

∧
; ta2

∧
; tb2. Let M ′ = [f ′/f ]MfreeM and M ′′ =

[f ′′/f ]MfreeM . Then the following well-typed expressions represent two ways of
transitioning from the configuration ∆ to the configuration ∆′ where M can
proceed:

let {ha1 ⊗ cb1} = up∧o1
∧ca1

4f
{ta1 ⊗ ca1 ⊗4f ′} = dnt∧ha1

{ha2 ⊗ cb2} = up∧o2
∧ca2

4f ′

{ta2 ⊗ ca2 ⊗4f ′′} = dnt∧ha2

in M ′′

let {ha2 ⊗ cb2} = up∧o2
∧ca2

4f
{ta2 ⊗ ca2 ⊗4f ′′} = dnt∧ha2

{ha1 ⊗ cb1} = up∧o1
∧ca1

4f ′′

{ta1 ⊗ ca1 ⊗4f ′} = dnt∧ha1

in M ′
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In CLF we would have f
∧
: free in the linear context. Observe that in the

first expression concurrent equality prevents moving the dnt∧ha1 computation
down, because the binding structure requires the arm to be available (witnessed
by f ′

∧
: free) before picking a2 up. Therefore there is a causal dependence between

dnt∧ha1—which makes the robotic arm available—and up∧o2
∧c2
∧f ′—which re-

quires the robotic arm to be available. The intermediate object f ′ represents
the availability of the robotic arm and causes a spurious synchronization be-
tween the two operations (i.e., moving a1, then a2). Moreover, the restricted
permutations of CLF would prevent swapping the otherwise independent com-
putation sequences 〈up∧o1

∧c1
∧f, dnt∧ha1〉 and 〈up∧o2

∧c2
∧f ′, dnt∧ha2〉. Even

with general permutations, the reordering would change which bound variable
of type free is used in M ′,M ′′, violating the side condition of the old concurrent
equality rule.

In CLF4 we would have f ′, f ′′
4
: free and each occurs in irrelevant position,

in M ′,M ′′, respectively. Thus the reordering σ = (13)(24) respects the binding
structure and the expressions are equated by the new concurrent equality.

The choice of making free objects proof irrelevant is motivated by this ex-
ample of spurious synchronization. The reader may question why holds or clr
objects aren’t proof irrelevant as well. Indeed, proof irrelevance permits differ-
ent notions of equality depending on the choice of encoding. Although objects
of type holds could be proof irrelevant, they always occur between associated
pick-up and put-down steps, so reordering computation steps does not affect
their binding. The case for clr objects is less clear-cut because they are unique
(at most one clr witness may exist per block) and using proof irrelevance would
not affect equality, but since they are not a source of spurious synchroniza-
tion we consider our encoding suitable. In general, we discourage introducing
unnecessary proof irrelevant types because they can obscure the adequacy of
encodings.

An alternative encoding could provide primitives for moving a block directly
onto another block or the table without the intermediate step of the arm holding
the block. Then this example of spurious dependence would not arise, but
coarsening the granularity is not always possible nor does it necessarily avoid
spurious synchronization.

3.3 Communicating Sequential Processes

The syntax and semantics of a simple imperative language with parallel com-
position [Hoare, 1978] can be encoded in CLF4 using the irrelevant context
to represent memory and multiplicative conjunction for parallel composition.
The operational semantics of parallel composition is that the execution of the
commands is interleaved.
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Syntax
var, exp, cmd : type

get : var→ exp
set : var→ exp→ cmd
rst : var→ exp
par : cmd→ cmd→ cmd

State
contents : var→ exp→ type

write : var→ type
Continuations

dest : type
returne : exp→ dest→ type
returnc : dest→ type

rest : type
setk : var→ dest→ rest
park : dest→ rest
kont : rest→ dest→ type

Evaluation and Execution
eval : exp→ dest→ type
exec : cmd→ dest→ type
eget : eval (getx) d ( contentsx v

4
( {returne v d⊗4contentsx v}

xset1 : exec (setx e) d
( {∃d′:dest.eval e d′ ⊗ kont (setk x d

′) d}
xset2 : returne v d

′ ( kont (setk x d
′) d ( writex ( contentsx v′

4
( {returnc d⊗ writex⊗4contentsx v}

xrst : exec (rstx) d ( writex ( contentsx v
4
( {returnc d⊗ writex⊗4contentsx p0q}

xpar1 : exec (par c1 c2) d
( {∃d′:dest.exec c1 d

′ ⊗ exec c2 d
′ ⊗ kont (park d

′) d}
xpar2 : returnc d

′ ( returnc d
′ ( kont (park d

′) d ( {returnc d}

Figure 10: CLF4 signature of the imperative parallel language

Syntax. We only consider the following fragment of the language:

x Variables
e ::= · · · | x Expressions
c ::= · · · | x := e | resetx | c1 ‖ c2 Commands

Integer expressions e include variables (x) for implicit dereference, and com-
mands c include assignment (x := e), clearing the contents of a variable (resetx),
and parallel composition (c1 ‖ c2). We assume the granularity of actions are
individual variable reads and writes. We use x, y, z for variables in both the im-
perative language and its encoding. The encoding of the syntax and semantics
as a CLF4 signature is given in Figure 10.
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Signature for Syntax. The signature for syntax and state is:

var, exp, cmd : type
get : var→ exp
set : var→ exp→ cmd
rst : var→ exp
par : cmd→ cmd→ cmd

contents : var→ exp→ type
write : var→ type

The types var, exp, cmd describe the syntactic categories of the language. The
constructors get, set, rst, and par represent the corresponding expressions and
commands. The type family contents represents the memory cell associated
with each variable as an irrelevant variable so as to permit the reordering of
concurrent reads, but we require any update to use a linear token associated
with each variable (write) to ensure synchronization of updates to the same
variable.

Encoding. The bijective encoding p·q translates the various syntactic cate-
gories to well-typed CLF4 objects of the corresponding type. In particular, the
translation translates variables pxq:var:

pxq = x,

expressions peq:exp:

pxq = get pxq,

and commands pcq:cmd

px := eq = set pxq

pc1 ‖ c2q = par pc1q pc2q

presetxq = rst pxq

Signature for Semantics. Following Pfenning [2004], we represent concur-
rent computation using a substructural operational semantics and linear destination-
passing style. We introduce the auxiliary types and constructors for destina-
tions, frames, and continuations. Intermediate computations are associated
with a destination of type dest, evaluation of an expression returns the value to
the destination (returne) and execution of commands returns to the destination
(returnc) after performing the desired side-effect:

dest : type
returne : exp→ dest→ type
returnc : dest→ type
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A suspended computation frame of type rest is necessary for assignment (setk)
while the expression is evaluated and before the variable is updated, and for
parallel composition (park) while both commands are executed and before they
both return:

rest : type
setk : var→ dest→ rest
park : dest→ rest

Finally, kont is the type of continuations that recombines a frame with the result.

kont : rest→ dest→ type

The rules for evaluation of expressions and execution of commands are clas-
sified by the type constructors:

eval : exp→ dest→ type
exec : cmd→ dest→ type

Evaluating a variable expression (get) accesses the appropriate memory cell,
returns the value, and leaves memory unchanged:

eget : eval (getx) d ( contentsx v
4
( {returne v d⊗4contentsx v}

Executing variable assignment (set) first creates a fresh destination d′, spawns
a subcomputation to evaluate the expression and a continuation with the ap-
propriate frame:

xset1 : exec (setx e) d
( {∃d′:dest.eval e d′ ⊗ kont (setk x d

′) d}

When the subcomputation returns the result (returne), the assignment resumes
the frame (setk) by consuming the memory cell and write token (writex), and
updates the memory cell and returns control (returnc):

xset2 : returne v d
′ ( kont (setk x d

′) d ( writex ( contentsx v′
4
( {returnc d⊗ writex⊗4contentsx v}

Resetting a variable also requires the memory cell and write token, and imme-
diately sets the contents to zero:

xrst : exec (rstx) d ( writex ( contentsx v
4
( {returnc d⊗ writex⊗4contentsx p0q}

Parallel execution first first creates a fresh destination d′ and spawns concurrent
computations for the constituent commands:

xpar1 : exec (par c1 c2) d
( {∃d′:dest.exec c1 d

′ ⊗ exec c2 d
′ ⊗ kont (park d

′) d}
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The parallel execution joins on the subcomputations when both have completed,
and returns control:

xpar2 : returnc d
′ ( returnc d

′ ( kont (park d
′) d ( {returnc d}

In these examples we use mnemonics that reflect the type, and in particular
we assume each variable v is assigned an initial value n and a write token, whence
the irrelevant context contains a corresponding memory cell cnv

4
: contents v pnq

and the linear context contains a write token wv
∧
:write v. The intended use

of the encoding is that the value resulting from evaluating an expression or
the memory state after executing a command can be obtained with the logic
programs:

eval e d ( {returne v d⊗>}
exec c d ( {returnc d⊗4contentsx v ⊗>}

where e is an expression, c is a command, d is a concrete destination, and v is
a logic variable. In the case of expressions the resulting value of the expression
is bound to v, while in the case of commands the final memory state can be
inspected and in particular variable x has value v. Via the operational semantics
of proof search, a goal of the form A ( {S} is proved by adding the antecedent A
to the linear context, nondeterministically applying clauses of the logic program
to consume and produce resources from the context, and finally attempting
to prove the succedent S from the resulting context. Moreover, the result of
successful search is realized by a proof term that represents the trace of the
concurrent computation that the initial state of the antecedent into the final
state of the succedent. In the expression case, when the clause eval e d is added to
the context and the proof constructors are successfully applied, the computation
completes with returne pnq d in the context for some n, so the goal returne v d can
be solved by unifying v with pnq while the other linear and irrelevant hypotheses
are consumed by >. Similarly in the command case, when the clause exec c d
is added to the context and the proof constructors are applied, the final state
reflects the side effects of variable updates, so the goal returnc d is satisfied
because the execution is complete, 4contentsx v is solved by unifying with the
memory cell contentsx pnq in the irrelevant context, and again the rest of the
state is discarded with >.

Concurrently reading the shared variable x in the command y := x ‖ z := x
has CLF4 encoding par (set y (getx)) (set z (getx)). Executing the command
(xpar1) with a destination d creates an intermediate destination d′ and leads
to the parallel execution of the assignments. The execution of each assignment
(xset1) will in turn create intermediate destinations dy, dz and computations
gxy

∧
:eval (getx) dy, gxz

∧
:eval (getx) dz. In CLF these concurrent reads could not

be reordered because reading from memory cell c−x causes a spurious synchro-
nization, but in CLF4 they can be swapped because proof irrelevance eliminates
contention on the read-only variable and the command has a single execution
sequence modulo reordering.
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We use write objects to enforce uniform write synchronization. The execution
of the command x := 0 ‖ x := 1 concurrently updates x with different values
and has an intermediate step involving destinations d0, d1 and computations
s0
∧
:setk x d0, s1

∧
:setk x d1. These steps cannot be commuted as they lead to

distinct states 4contentsx p0q 6=S 4contentsx p1q which cannot be equated at
the type level. However, the command x := 0 ‖ x := 0 does agree at the
type level and without the write token we would have two indistinguishable
execution sequences. By requiring xset2 to use the writex token, we achieve
write synchronization even when the updates are identical.

If the encoding did not require assignments to hold the write token, we
would lose uniform synchronization and distinct silent writes would be confused.
Without using the write token, the execution term xset2 would be replaced by:

xset′2 : returne v d
′ ( kont (setk x d

′) d ( contentsx v′
4
( {returnc d⊗4contentsx v}

The concurrent update x := 0 ‖ x := 0 would involve the computations
s0
∧
:setk x d0, s′0

∧
:setk x d

′
0. Since s0 and s′0 can commute without violating the

side conditions of the concurrent equality rule, the command would only have
one trace. However, the concurrent update x := 0 ‖ x := 1 would still have two
traces because the final states remain distinguishable.

Token synchronization can also be used to enforce synchronization between
different operators. In order to guarantee synchronization between variable
assignment and reset, both xset2 and rst use the write token. The concurrent
assignment and reset of x in the command x := 0 ‖ resetx has two distinct
traces depending on whether the assignment (xset2) or the reset (xrst) completes
first, even though both subcommands lead to the same state 4contentsx p0q.
In the absence of token synchronization, with the initial value nx = 0 of x
the subcommands would be indistinguishable and the command would have
only one trace. However, with a different initial value nx 6= 0 the order of the
subcommands would be distinguished because the type of the initial contents
cnx
x

4
: contentsx pnxq differs from the intermediate state c0x

4
: contentsx p0q: if the

reset executes first the trace includes xrst′∧ 4cnx
x followed by xset′2

∧ ∧ 4c0x, but
if the assignment executes first the trace includes xset′2

∧ ∧ 4cnx
x followed by

xrst′∧ 4c0x, so the two xrst′ terms are incomparable because they don’t have the
same type and the two traces are not equal up to permutation. Here we use
xset′2 and xrst′ as the constructors that don’t use the synchronization token, and
replace unimportant terms with an underscore ( ).

The concurrent read and write of x in y := x ‖ x := 0 reveals a subtlety in our
design. The computation either first performs the read (eget∧gxy

4cnx
x ) followed

by the write (xset2
∧r∧k∧wy

4cnx
x ), or first performs the write (xset2

∧r∧k∧wy
4cnx

x )
followed by the read (eget∧gxy

4c0x). Since the eget∧gxy
4cmx object has type

{returnemd ⊗4contentsxm} when the value of x is m, the returnemd object
exposes the value of x concealed by the proof irrelevant 4contentsx pmq object.
Therefore the two execution traces are equated only if the initial value of x is
nx = 0. In this work, we defer on whether such silent writes should be allowed
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to commute with reads.

4 Future and Related Work

Watkins et al. [2004] developed CLF as an improved extension of Linear LF
[Cervesato and Pfenning, 2002] with intrinsic support for concurrency. We
closely follow the canonical forms presentation of CLF and augment the type
theory with a proof irrelevance modality and a richer definitional equality.

The second author has considered an unrestricted proof irrelevance modal-
ity [Pfenning, 2001] wherein proof irrelevant variables may be used an arbitrary
number of times whereas our primitive notion of proof irrelevance is linear and
has a first-class modal operator. We conjecture that unrestricted proof irrel-
evance and linear proof irrelevance are orthogonal because neither can be en-
coded with the other. Unrestricted irrelevance cannot directly encode linear
irrelevance because the intuitionistic case lacks primitive support for resource
management. Conversely, representing unrestricted irrelevance with linear irrel-
evance would require a combination of the unrestricted ! and linear irrelevant 4
modality, but due to the syntactic restriction of those modalities only applying
to asynchronous types, it would be necessary to use the monad to compose the
modalities. However, attempting to encode unrestricted irrelevance using the
monad (e.g., 4{!A} or !{4A}) is less general than a pure unrestricted irrele-
vance modality because the monad weakens truth to lax truth.

The LolliMon logic programming language of López et al. [2005] uses a type
theory based on CLF that combines concurrent and saturating computation.
They give an operational semantics that combines committed choice and for-
ward chaining in the monadic fragment with backtracking and backward chain-
ing outside the monad. It will be interesting to consider how the operational
semantics interacts with proof irrelevance and how to efficiently use concurrent
equality to prune the space of computations.

Proof nets [Girard, 1987] constitute a geometrical approach to identifying
notionally equivalent computations in linear logic. The method has been ap-
plied successfully to fragments of linear logic, although the general case remains
an active research topic. For example, Hughes and van Glabbeek [2003] have
recently proposed a new notion of proof net for unit-free MALL. However, we
do not see how proof nets could capture proof irrelevance in our sense, and the
monadic approach with commuting conversions and proof irrelevance of CLF4

appears to be a promising alternative.
Models for true concurrency date back to Mazurkiewicz traces [Mazurkiewicz,

1977] and Pratt’s pomsets [Pratt, 1984]. True concurrency is achieved in CLF4

by considering execution traces modulo reordering of independent steps and ig-
noring proof irrelevant terms. We see our work as a generalization and perhaps
more syntactic, type-theoretic form of these prior approaches.

The next step of this work will involve an implementation of a typechecker
for the CLF4 type theory. Concurrent equality can potentially be described as
graph isomorphism of the dependence graph of let-bindings where objects are
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vertices and each bound variable induces an directed edge to the object where
the variable is consumed. The > connective introduces some difficulty because
it acts as a sink for all unused resources. Trivial equality for proof irrelevant
terms suggests that graph isomorphism should be restricted to the result of the
(·)∗ translation. Furthermore, it may be possible to use partial-order methods
to avoid backtracking over all possible permutations of a sequence of bindings.

5 Conclusion

We have presented the logical framework CLF4, an extension of the CLF type
theory with a linear proof irrelevance modality, which internalizes linear proof
irrelevant hypothetical judgments, and a generalized definition of concurrent
equality, which captures a richer form of true concurrency than that of CLF.
The computational interpretation of linear irrelevant terms is that they are
resources whose computational origin is unimportant and only their existence
matters.

Proof irrelevant terms of the same type are always considered equal, which
can be used to equate computations that use distinct but isomorphic objects.
Concurrent equality is extended to admit the arbitrary reordering of concurrent
computations modulo proof irrelevant terms. Therefore definitional equality
can be used to avoid spurious synchronization due to false causal dependencies.
Incorporating proof irrelevance into CLF achieves a more expressive framework
and preserves the meta-theoretic properties, including decidability and complex-
ity.

We illustrated the effectiveness of these extensions by contrasting the CLF
and CLF4 encodings of Petri nets, an AI planning domain, and an imperative
parallel language. In these examples, named objects of the same type become
truly isomorphic by employing the proof irrelevance modality, spurious syn-
chronization can be eliminated by making the resource under contention proof
irrelevant, and token synchronization provides a general method for controlling
the degree of concurrency between different actions that use the same resource.
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