
Dynamic Model Checking of
C Cryptographic Protocol Implementations

Alan Jeffrey?1 and Ruy Ley-Wild??2

1 Bell Labs, Lucent Technologies
2 Computer Science Department, Carnegie Mellon University

Abstract. We describe the Dolev–Yao C (DYC) cryptographic protocol message
API. In addition to generating executable protocol implementations, DYC can be
used to generate constraints on an attacker against the protocol. The resulting
constraints can be handed to a constraint solver, which (if successful) will find
an executable attack against the protocol. To our knowledge, this is the first at-
tempt to automate the discovery of flaws with executable cryptographic protocol
implementations, rather than high-level protocol specifications or simulations.

1 Introduction

This paper is a first step in merging two separate fields: model checking cryptographic
protocols and dynamic software model checking.

Model checking [8] is a well-established field, based on efficient state-space explo-
ration techniques. Lowe [22, 23], Marrero, Clarke and Jha [24, 9], Denker, Millen and
Ruess [10] and Blanchet [6], among others, have shown that model-checking techniques
can be used to find flaws in cryptographically-secured communications protocols spec-
ified in high-level domain-specific languages such as CSP [19] or the spi-calculus [2].

Software model checking is a more recent field, in which the state-space explo-
ration techniques of model checking are applied to software artefacts directly, rather
than on domain-specific languages. Godefroid and Klarlund [14] characterize soft-
ware model checkers as dynamic (which work by generating constraints from directed
runs of instrumented executables) or static (which perform static analysis of source
code). Dynamic tools include Godefroid’s VeriSoft [12], Havelund and Pressburger’s
Java PathFinder [17], Musuvathi et al.’s CMC [26], Robby, Dwyer and Hatcliff’s Bo-
gor [29] and Godefroid, Klarlund and Sen’s DART [15]. Static tools include Ball and
Rajamani’s SLAM [3, 4], Henzinger et al.’s BLAST [18] and Clarke, Kroening and
Lerda’s CBMC [7].

In this paper, we provide a first step at using dynamic software model-checking
techniques to verify executable implementations of cryptographic protocols. The closest
prior works to this are:

? This material is partly based upon work supported by the National Science Foundation under
Grant No. 0208549.

?? Supported by a Bell Labs Graduate Research Fellowship from Lucent Technologies.

– Godefroid et al.’s [13, 15] use of C model checkers to analyze the Needham–
Schroeder public key authentication protocol [27]. This analysis, however, was per-
formed on a simulation of the protocol which did not perform any cryptographic
operations.

– Goubault-Larrecq and Parrennes’ [16] use of static program analysis to analyze
cryptographic protocols. Their work is orthogonal to ours, in that they perform
shape analysis to extract constraints, rather than executing the program.

– Bhargavan et al.’s [5] use of Blanchet’s [6] ProVerif model-checker to analyze F#
cryptographic protocol implementations. Their work is based on a static tool fs2pv
which extracts the ProVerif model, rather than model-checking the execution of the
symbolic prototype.

In this work, we give a C API for implementing messages in a cryptographic protocol,
with a natural abstract model based on the Dolev–Yao [11] model of cryptography. In
addition to generating executables which link against the libgcrypt [21] cryptographic
library, DYC supports a simple form of dynamic model checking: executions can gen-
erate constraints on an attacker. We use successive runs of the protocol to generate
increasingly refined constraints, until we have generated constraints for an attack on the
authenticity goals of the protocol. A solution to these constraints constitutes an attack
which can be executed in C.

This exploration is only a first step, and has a number of limitations, notably the
large amount of programmer involvement and the requirement that honest agents are
straight-line code. We hope that the techniques discussed here can be integrated into a
software verification tool which performs state-space exploration.

Acknowledgements. Thanks to Patrice Godefroid for insightful discussions.

2 Using DYC
Dolev–Yao C (DYC) [20] is a collection of C APIs which links against libgcrypt [21]
for cryptographic functions and against XSB Prolog [28] for constraint satisfaction.
The C APIs can be used without any model checking, in which case they just provide a
wrapper around libgcrypt. Enabling model-checking will use constraint satisfaction to
synthesize an attack on the protocol.

In the description of the API, we will ignore details such as initialization functions
and memory de-allocation, which are relatively routine. We will also ignore some “san-
ity” checks performed by the implementation, such as ensuring that memory allocation
succeeds.

2.1 Honest Agents API

The honest agents in a protocol are implemented in C, using the DYC honest agents
API. This API provides type data_t for immutable byte arrays, together with functions
including cryptography and assertions.

The data_t type, together with its associated non-cryptographic functions, is given
in Figure 1. We require all uses of data_t to use the API, in particular this means that
data_t objects are immutable, as there are no functions for performing in-place update.

2

typedef struct _data_t { size_t len; byte_t * val; } * data_t;

data_t data_from_string (char *str);
data_t data_concat (data_t data0, data_t data1);
data_t data_sub (data_t data, size_t o�, size_t len);

void data_assert_nz (data_t data);
void data_assert_eq (data_t data0, data_t data1);
void data_assert_length (data_t data, size_t len);

Fig. 1. Data functions

data_t crypto_pcreate (void);
data_t crypto_pkey_public (data_t key);
data_t crypto_pkey_secret (data_t key);
data_t crypto_pencrypt (data_t key_p, data_t pdata);
data_t crypto_pdecrypt (data_t key_s, data_t cdata);

data_t crypto_nonce_create (void);

Fig. 2. Cryptographic functions

void principal_register (data_t name, data_t key_p);
data_t principal_lookup_key_p (data_t name);

Fig. 3. Principal functions

We provide assert functions for use by honest agents. These can be used to detect
attempts by an attacker to subvert the protocol, for example data_assert_eq will often
be used to ensure that a response to a nonce challenge is correct, and data_assert_nz
(short for non-zero) will be used to ensure that an operation such as substring succeeded.
Failure of one of these assert functions is considered not to violate the security goals of
the protocol, as the honest agents have detected an unsuccessful attack.

The cryptographic functions for data_t are given in Figure 2. The current API only
supports public key encryption and nonce generation: we expect that features such as
symmetric encryption, signing and hashing could be added with little complication, but
this is left for future work.

The cryptographic functions all return 0 in the case of failure such as an attempt to
encrypt with a key of the wrong length, or an attempt to decrypt with the incorrect key.
These functions link against libgcrypt, and so inherit its limitations: in particular, public
key encryption is limited to ciphertexts of length 157. We expect that a different cryp-
tographic library could be used, which would remove these limitations: our techniques
do not depend on them.

Public-key cryptography often requires a binding between principals and their as-
sociated public keys. We provide a very simple API for registering principals, given in

3

Figure 3. The attacker is allowed to register their own public key, but is not allowed to
register other principals, so cannot corrupt principal lookup.

Example: Needham–Schroeder In Figure 4, we provide an implementation of the
Needham–Schroeder public key authentication protocol messages [27], together with
Lowe’s variant [22]. The original Needham–Schroeder protocol is given by:

A → B : {|NA,A|}enc(KB)

B → A : {|NA,NB|}enc(KA)

A → B : {|NB|}enc(KB)

and Lowe’s variant adds B’s name to the second message:

B → A : {|NA,NB,B|}enc(KA)

Each message mN is implemented in C using two functions: ns_msgN builds the Nth
message, and ns_unmsgN deconstructs the message.

Note that in C style, results of functions are provided call-by-reference, and that
functions which find sub-arrays are given using offset-and-length. Both of these features
are exemplified by the assignment:

*Na = data_sub (pair, 0, NS_NONCE_NBYTES);

in ns_unmsg1.

2.2 Test Harness For Honest Agents
In a real protocol implementation, messages are communicated via network sockets. In
future work, we hope to extend DYC to include a socket API, but for now we require
the programmer to provide a test harness for a single run of the protocol. In this section,
we consider the honest agents, and in Section 2.3 we extend this to include the attacker.

The honest agents in a single run are first initialized, then for each message in the
protocol, we construct it (acting as the sending agent) then deconstruct it (acting as
the receiving agent). The most interesting feature of the honest agent test harness is
the specification of the goals of the protocol. There are a number of possible goals we
could aim for, including confidentiality, integrity, authenticity, and non-repudiation. In
this work, we will restrict attention to a simple case: validating one authenticity property
per protocol.

We model authenticity properties by correspondence assertions [30]. Consider a
scenario where honest agent A wishes to contact agent X , and honest agent B believes
they have been contacted by agent Y . At the end of a protocol run, either Y is a dishonest
agent, or X = B and Y = A. This is modeled by having A issue a begin(A,X) statement,
and B issue a end(Y,B) statement. In a safe run, these statements either match (as shown
on the left of the following example), or the recipient has been contacted by a dishonest
agent (as shown on the right):

A issues begin(A,B)
A → B : {|NA,A|}enc(KB)
B → A : {|NA,NB|}enc(KA)
A → B : {|NB|}enc(KB)

B issues end(A,B)

Z → B : {|NZ ,Z|}enc(KB)
B → Z : {|NZ ,NB|}enc(KZ)
Z → B : {|NB|}enc(KB)

B issues end(Z,B)

4

void ns_msg1 (data_t A, data_t Na, data_t Ka_p, data_t Kb_p, data_t *m1) {
data_t pair = data_concat (Na, A);
*m1 = crypto_pencrypt (Kb_p, pair);

}

void ns_unmsg1 (data_t *A, data_t *Na, data_t *Ka_p, data_t Kb_s, data_t m1) {
data_t pair = crypto_pdecrypt (Kb_s, m1);
data_assert_nz (pair);
data_assert_length (pair, NS_NONCE_NBYTES + NS_NAME_NBYTES);
*Na = data_sub (pair, 0, NS_NONCE_NBYTES);
*A = data_sub (pair, NS_NONCE_NBYTES, NS_NAME_NBYTES);
*Ka_p = principal_lookup_key_p (*A);
data_assert_nz (*Ka_p);

}

void ns_msg2 (data_t B, data_t Na, data_t Nb, data_t Ka_p, data_t *m2) {
data_t tuple = data_concat (Na, Nb);
if (NS_LOWE) {
tuple = data_concat (tuple, B);

}
*m2 = crypto_pencrypt (Ka_p, tuple);

}

void ns_unmsg2 (data_t B, data_t Na, data_t *Nb, data_t Ka_s, data_t m2) {
data_t tuple = crypto_pdecrypt (Ka_s, m2);
data_assert_nz (tuple);
if (NS_LOWE) {
data_assert_length
(tuple, NS_NONCE_NBYTES + NS_NONCE_NBYTES + NS_NAME_NBYTES);
data_t B_alleged = data_sub
(tuple, NS_NONCE_NBYTES + NS_NONCE_NBYTES, NS_NAME_NBYTES);

data_assert_eq (B, B_alleged);
} else {
data_assert_length (tuple, NS_NONCE_NBYTES + NS_NONCE_NBYTES);

}
data_t Na_alleged = data_sub (tuple, 0, NS_NONCE_NBYTES);
data_assert_eq (Na, Na_alleged);
*Nb = data_sub (tuple, NS_NONCE_NBYTES, NS_NONCE_NBYTES);

}

void ns_msg3 (data_t Nb, data_t Kb_p, data_t *m3) {
*m3 = crypto_pencrypt (Kb_p, Nb);

}

void ns_unmsg3 (data_t Nb, data_t Kb_s, data_t m3) {
data_t Nb_alleged = crypto_pdecrypt (Kb_s, m3);
data_assert_nz (Nb_alleged);
data_assert_eq (Nb, Nb_alleged);

}

Fig. 4. Messages in the Needham–Schroeder public-key protocol
5

void principal_register_honest (data_t name);
void principal_assert_honest (data_t name);

void ca_auth_begin (data_t send, data_t recv);
void ca_auth_end (data_t send, data_t recv);

Fig. 5. Correspondence assertion functions

In an unsafe run, the statements do not match, and the recipient has been fooled into
believing they have been contacted by an honest agent, for example:

A issues begin(A,Z)
A → Z : {|NA,A|}enc(KZ) Z → B : {|NA,A|}enc(KB)
B → Z : {|NA,NB|}enc(KA) Z → A : {|NA,NB|}enc(KA)
A → Z : {|NB|}enc(KZ) Z → B : {|NB|}enc(KB)

B issues end(A,B)

The C API for this form of correspondence assertion is given in Figure 5. A typical use
of these functions is:

principal_register_honest (A); principal_register_honest (B); ...
ca_auth_begin (A,X); ...
principal_assert_honest (Y); ca_auth_end (Y,B);

The goal of the attacker is to find an unsafe run of the protocol, that is one which reaches
the ca_auth_end (Y,B) statement in a state where X 6= B or Y 6= A.

Example: Test Harness For Needham–Schroeder A test harness for one run of the
Needham–Schroeder honest agents is given in Figure 6. Note that since we are just
executing the honest agents, A gets to choose the identity of X (in this case B) and that
at the end of the run, Y will be bound to A, and so this run is safe.

2.3 Test Harness For The Attacker

We will now introduce the attacker into our model. In this work, we require the pro-
grammer to explicitly model the intervention of the attacker and to keep track of the
attacker knowledge. In future work, we hope to require less programmer intervention.

The important feature of the attacker model is that the programmer is not required
to construct the messages built by the attacker. Instead, these are synthesized by DYC
using a constraint satisfaction engine.

The attacker API is very simple: it consists of one new datatype derivation_t (dis-
cussed in Section 3.2) and the function derivation_build(d, k) in Figure 7. This takes
as arguments a derivation d[] and the attacker knowledge k, and returns a new message
which can be built by the attacker.

A typical use of this function is as follows: we track the attacker knowledge k, and
allow the attacker to mutate each message mN in transit:

6

void ns_run_once () {
/* Honest agents */
data_t A = data_from_string ("A"); data_t B = data_from_string ("B");
data_t Ka = crypto_pcreate (); data_t Kb = crypto_pcreate ();
data_t Ka_p = crypto_pkey_public (Ka); data_t Ka_s = crypto_pkey_secret (Ka);
data_t Kb_p = crypto_pkey_public (Kb); data_t Kb_s = crypto_pkey_secret (Kb);
principal_register (A, Ka_p); principal_register (B, Kb_p);
principal_register_honest (A); principal_register_honest (B);

data_t Na = crypto_nonce_create (); data_t Nb = crypto_nonce_create ();
data_t X, Kx_p, Nx, Y, Ky_p, Ny, m1, m2, m3;

/* A determines who X is */
X = B;

/* At A, talking to X */
Kx_p = principal_lookup_key_p (X); data_assert_nz (Kx_p);
ca_auth_begin (A, X); ns_msg1 (A, Na, Ka_p, Kx_p, &m1);
/* At B, talking to Y */
ns_unmsg1 (&Y, &Ny, &Ky_p, Kb_s, m1); ns_msg2 (B, Ny, Nb, Ky_p, &m2);
/* At A, talking to X */
ns_unmsg2 (X, Na, &Nx, Ka_s, m2); ns_msg3 (Nx, Kx_p, &m3);
/* At B, talking to Y */
ns_unmsg3 (Nb, Kb_s, m3); principal_assert_honest (Y); ca_auth_end (Y, B);

}

Fig. 6. Test harness for the Needham–Schroeder honest agents

data_t derivation_build (derivation_t d, data_t k);

Fig. 7. Attacker function

msgN(..., &mN); // Sending honest agent builds message mN
k = data_concat (k, mN); // Attacker adds mN to the attacker knowledge
mN = derivation_build (d[N], k); // Attacker mutates message mN
unmsgN(..., mN); // Receiving honest agent deconstructs message mN

The problem of finding an attack on a protocol comes down to finding an appropriate
array of derivations d[].

Example: Attacking Needham–Schroeder A test harness for one run of the Needham–
Schroeder protocol, including the attacker, is given in Figure 8. Note that the attacker
gets to choose the identity of X, and gets to mutate each message in transit.

7

void ns_run_once (derivation_t *d) {
...
/* Dishonest agent */
data_t Z = data_from_string ("Z"); data_t Kz = crypto_pcreate ();
data_t Kz_p = crypto_pkey_public (Kz); principal_register (Z, Kz_p);
/* Initial attacker knowledge */
data_t k = data_concat (Ka_p, data_concat (Kb_p, Kz));
/* Attacker determines who X is */
X = derivation_build (d[0], k);

/* At A, talking to X */
Kx_p = principal_lookup_key_p (X); data_assert_nz (Kx_p);
ca_auth_begin (A, X); ns_msg1 (A, Na, Ka_p, Kx_p, &m1);
/* Attacker mutates m1. */
k = data_concat (k, m1); m1 = derivation_build (d[1], k);
/* At B, talking to Y */
ns_unmsg1 (&Y, &Ny, &Ky_p, Kb_s, m1); ns_msg2 (B, Ny, Nb, Ky_p, &m2);
/* Attacker mutates m2. */
k = data_concat (k, m2); m2 = derivation_build (d[2], k);
/* At A, talking to X */
ns_unmsg2 (X, Na, &Nx, Ka_s, m2); ns_msg3 (Nx, Kx_p, &m3);
/* Attacker mutates m3. */
k = data_concat (k, m3); m1 = derivation_build (d[3], k);
/* At B, talking to Y */
ns_unmsg3 (Nb, Kb_s, m3); principal_assert_honest (Y); ca_auth_end (Y, B);

}

Fig. 8. Test harness for Needham–Schroeder including the attacker

2.4 Finding An Attack

So far, we have seen how to execute one run of the protocol, including the attacker, given
an array of message derivations d[]. To find an attack on the protocol, we repeatedly run
the protocol, hoping to find an appropriate d[].

We build a collection of constraints which represent the invariants maintained by
the honest agents. Any successful attack on the system must satisfy these constraints
and violate the correspondence assertion. The initial constraints are trivial and the at-
tacker knowledge is seeded with the public keys, thus the derivation array is initialized
with garbage messages. The DYC functions implicitly accumulate constraints and the
attacker knowledge is accumulated explicitly in the array k.

Most runs of the protocol will fail to find an attack, either because an assert fails, or
because the run is safe. In either case, each run generates additional constraints, which
we hand over to a constraint solver. If the constraint solver fails to find a solution, then
we declare victory to the honest agents, otherwise we try again with the new value for
d[] generated from the solution to the new constraints. A typical main loop for DYC is:

derivation_t d[N];
while (cassert_loop ()) { constraint_resolve (d, N); ... one run ... break; }

8

jmp_buf cassert_env;
#de�ne cassert_loop() (setjmp (cassert_env) || 1)
#de�ne cassert(cond) do { if (!cond) { longjmp (cassert_env, 1); } } while (0)
void constraint_resolve (derivation_t * d, size_t n);

Fig. 9. Top-level functions

int32_t main () {
derivation_t d[4];
while (cassert_loop ()) { constraint_resolve (d, 4); ns_run_once (d); break; }
return 0;

}

Fig. 10. Top-level attack on Needham–Schroeder

K,L,M,N ::= b | k | n | (M1, . . . ,M j) | {|M|}N | dec(M) | enc(M)

b ranges over bytes 0, . . . ,255 k ranges over a set of keypairs n ranges over a set of nonces

Fig. 11. Grammar of messages

This makes use of the top-level functions given in Figure 9. The cassert_loop macro
uses setjmp to restart the protocol from the beginning, which occurs when a cassert
fails and calls longjmp. The constraint_resolve function calls out to XSB Prolog to
find appropriate values for d[] based on constraints generated by the previous run of the
protocol.

Example: Finding The Attack On Needham–Schroeder The main loop for find-
ing the attack on Needham–Schroeder is given in Figure 10. It finds the attack on the
unmodified protocol in 11 runs, and fails to find an attack on Lowe’s variant in 14 runs.

3 Implementing DYC
We will now look under the hood of DYC, to see how the APIs are implemented. The
interesting parts of the implementation are how the honest agents generate constraints
and the model of the attacker, including derivations.

3.1 Implementing Honest Agents

The implementation of the honest agents is relatively straightforward: we provide a
simple formal definition of messages manipulated by the honest agents, and have each
function in the honest agent API generate constraints.

The grammar of messages is given in Figure 11. Atomic messages are either bytes,
keypairs or nonces, and can be built up by tupling, encryption, or by accessing the
decryption or encryption key from a keypair.

9

data_t crypto_pencrypt (data_t key_p, data_t pdata) {
data_t cdata; ... raw libgcrypt ...
constraint_pencrypt (cdata, key_p, pdata); return cdata;

}

Fig. 12. Implementation of public key encryption

prolog_term query;

void constraint_append (prolog_term x) {
/* query = ,(query, x) */
prolog_term tmp = constraint_functor (",", 2);
constraint_arg_term (tmp, 1, query); constraint_arg_term (tmp, 2, x);
query = tmp;

}

void constraint_pencrypt (data_t c, data_t pk_p, data_t p) {
/* =(c, pencrypt(pk_p, p)) */
prolog_term pencrypt, eq;
pencrypt = constraint_functor ("pencrypt", 2);
constraint_arg_data (pencrypt, 1, pk_p); constraint_arg_data (pencrypt, 2, p);
eq = constraint_functor ("=", 2);
constraint_arg_data (eq, 1, c); constraint_arg_term (eq, 2, pencrypt);
constraint_append (eq);

}

Fig. 13. C implementation of constraints for public key encryption

prolog_term constraint_functor (char * f, size_t n);
void constraint_arg_data (prolog_term fn, size_t argn, data_t d);
void constraint_arg_term (prolog_term fn, size_t argn, prolog_term t);

Fig. 14. C API for building Prolog queries

ispencrypt(dec(K), X, pencrypt(enc(K), X)).

Fig. 15. Prolog implementation of constraints for public key encryption

proj([M|_], 0, L, M) :- length(M, L).
proj([M|Ms], O, L, N) :- length(M, Lm), proj(Ms, O-Lm, L, N).

length(key(_), 699). length(dec(_), 528). length(enc(_), 171).
length(pencrypt(_,_), 157). length(nonce(_), 16). length(byte(_), 1).
length([], 0). length([M,Ms], N+Ns) :- length(M, N), length(Ms, Ns).

Fig. 16. Prolog implementation of constraints for tuples

10

We represent messages as Prolog terms, for example {|NA,NB,B|}enc(KA) is repre-
sented in Prolog as:

pencrypt(enc(key(1)), [nonce(1), nonce(2), byte(65)])

Each of the honest agent functions generates a constraint, in addition to performing its
computation. For example, the implementation of public key encryption in Figure 12
generates constraints using the functions given in Figure 13. This in turn makes use of
a C API for building Prolog queries given in Figure 14. The constraints are built up as a
comma-separated list in a prolog_term variable query. For example, the function calls:

m = crypto_pencrypt (k_p, x); y = crypto_pdecrypt (k_s, m);

generates constraints:

Vm = pencrypt(Vk_p, Vx), ispencrypt(Vk_s, Vy, Vm), ...

where Vm is a variable name generated from the memory location of variable m. The
Prolog constraint for public key encryption is given in Figure 15.

When a fresh key or nonce is generated, for example:

k = crypto_pcreate ();

we increment a counter, and generate an appropriate constraint such as:

Vk = key(1), ...

For example, Needham–Schroeder generates nonce(1) for NA, nonce(2) for NB, key(1)
for KA, and so on.

The C API for tuples is based on offset-and-length projections, for example:

x = data_sub (y, o�, len);

which generates a Prolog constraint:

proj(Vy, Vo�, Vlen, Vx), ...

defined in Figure 16.3

The rest of the implementation of honest agents is unsurprising: most of the novelty
of DYC is in the implementation of attackers.

3.2 Implementing Attackers

The attacker model is based on Abadi and Fiore’s [1] model, which in turn is based
on Clarke, Jha and Marrero’s algorithm [9] for Dolev–Yao [11] message derivability.
In addition, we use a technique for termination based on Millen and Shmatikov [25].
The resulting system allows us to make use of the built-in Prolog constraint satisfaction

3 Unfortunately, our implementation currently restricts this predicate so that it will not instanti-
ate Vx as a list: removing this restriction causes XSB to routinely run out of memory. We leave
this for future study.

11

algorithm, in comparison to Millen and Shmatikov, who build a constraint satisfaction
and unification algorithm on top of Prolog’s.

Unfortunately, we cannot quite use Abadi and Fiore’s algorithm off-the-shelf, as it
uses negative conditions (of the form M 6∈ S) which do not interact well with Prolog.
Most of the algorithm is the same, and depends on proof normalization, where introduc-
tion steps are never used as sub-goals of elimination steps. The difference between our
algorithm and theirs is the mechanism for achieving termination, as even normalized
proofs can diverge:

{|dec(k)|}enc(k) ` {|dec(k)|}enc(k)

...
{|dec(k)|}enc(k) ` dec(k)

{|dec(k)|}enc(k) ` dec(k)

Such divergent normalized proofs have the property that they are cyclic: there is a sub-
derivation containing a strict sub-sub-derivation with the same conclusion (in this case
dec(k)). In Abadi and Fiore’s terms, such proofs are not simple. Abadi and Fiore use a
tabulation technique to detect such cycles: they keep track of a set S of messages which
have already appeared as conclusions, and appropriate conditions M 6∈ S to judgments
with conclusion M. This ensures acyclicity, and hence termination. For example, the
previous divergence now becomes a failed derivation:

· · · false
{|dec(k)|}enc(k) ` dec(k) 6∈ {dec(k)}
{|dec(k)|}enc(k) ` dec(k) 6∈ /0

We avoid cycles in a different fashion, similar to Millen and Shmatikov’s [25] use of a
“special term” dMeenc(k) to replace a ciphertext {|M|}enc(k) while deriving the key dec(k)
(their system used this technique for symmetric encryption rather than asymmetric, but
that does not impact its applicability). We do not require any properties of this special
term, and can use any placeholder such as 0 in its stead. For example, the previous
divergence now becomes a failed derivation:

· · · false
{|0|}enc(k) ` dec(k)

{|dec(k)|}enc(k) ` dec(k)

The main formal result of this paper is that this variant of Abadi and Fiore’s algorithm
is sound and complete, and guarantees termination of proof search.

The message derivation relation K ` M is defined in Figure 17. A derivation tree D
is a (possibly infinite) tree with each node labeled by a message derivation rule name.
We will write r(D1, . . . ,Dn) for the derivation tree with root node labeled r and children
D1, . . . ,Dn. We say that D B K ` M is a valid derivation whenever D is a finite deriva-
tion tree for the judgment K ` M, that is r(D1, . . . ,Dn) B K ` M is a valid derivation
whenever there is an instantiation of rule r of the form:

K1 ` M1 · · · Kn ` Mn

K ` M
[r]

12

M ` M
[ID]

K ` (M1, . . . ,Mn)
K ` Mi

[TUPLEEi]
K ` {|M|}enc(k) K ` dec(k)

K ` M
[PENCRYPTE]

K ` enc(M) K ` dec(M)
K ` M

[ENCDECE]
K ` b

[BYTEIb]
K ` M1 · · · K ` Mn

K ` (M1, . . . ,Mn)
[TUPLEI]

K ` M1 K ` enc(M2)
K ` {|M1|}enc(M2)

[PENCRYPTI]
K ` M

K ` enc(M)
[ENCI]

K ` M
K ` dec(M)

[DECI]

Fig. 17. Message derivation

where Di BKi ` Mi are valid derivations for 1 ≤ i ≤ n.
We say that D B K ` M is a diverging derivation whenever D is an infinite deriva-

tion tree showing that the search for judgment K ` M may fail to terminate, that is
r(D1, . . . ,D j) B K ` M is a diverging derivation whenever there is an instantiation of
rule r of the form:

K1 ` M1 · · · Kn ` Mn

K ` M
[r]

where Di BKi ` Mi are valid derivations for 1 ≤ i < j ≤ n and D j BK j ` M j is a diverg-
ing derivation. As noted above, there is a diverging derivation for DB{|dec(k)|}enc(k) `
dec(k) given by the infinite derivation tree D = PENCRYPTE(ID,D).

The active contexts C ,D,E are given by:

C ,D,E ::= · | (M1, . . . ,Mi,C ,Mi+2, . . . ,M j) | {|C |}M

We write C [M] for the message given by replacing the hole · in the context C by the
message M. The active contexts are ones where it is possible to recover the contents, that
is there exists some K such that for any N we have that (K,C [N]) ` N. We can say that
N is an active sub-term of M if we can find some active context C such that M = C [N].
Abadi and Fiore formulated their algorithm using the notion of active sub-term, where
we find it more convenient to use the notion of active context.

The normalized message derivation relation K `N M is given in Figure 18. It differs
from the non-normalized message derivation relation in that:

1. The use of introduction rules as sub-derivations of elimination rules is very re-
stricted: they are only allowed in one particular case, whose equivalent in the non-
normalized message derivation system is:

K ` {|M|}enc(k)
K ` k

K ` dec(k)
[DECI]

K ` M
[PENCRYPTE]

This stratification uses a subsystem K `E M for elimination rules.

13

M `E M
[ID]

K = C [Mi]
K `E (M1, . . . ,M j)

K `E Mi
[TUPLEEi]

K = C [M] K′ = C [0]
K `E {|M|}enc(k) K′ `E dec(k)

K `E M
[PENCRYPTE]

K = C [M]
K `E enc(M) K `E dec(M)

K `E M
[ENCDECE]

K = C [M] K′ = C [0]
K `E {|M|}enc(k) K′ `E k

K `E M
[PENCRYPTE(·, DECI(·))]

K `E M
K `N M K `N b

[BYTEIb]
K `N M1 · · · K `N Mn

K `N (M1, . . . ,Mn)
[TUPLEI]

K `N M1 K `N enc(M2)
K `N {|M1|}enc(M2)

[PENCRYPTI]
K `N M

K `N enc(M)
[ENCI]

K `N M
K `N dec(M)

[DECI]

Fig. 18. Normalized message derivation

2. In any derivation K `E M, we explicitly require M to be an active sub-term of
K, rather than having this be a derived property of the system. This avoids di-
verging derivations such as D B K ` M given by the infinite derivation tree D =
TUPLEE1(D).

3. In the uses of PENCRYPTE, we remove an occurrence of the plaintext M from the
attacker knowledge when deriving the key dec(k). This avoids diverging deriva-
tions such as D B {|dec(k)|}enc(k) ` dec(k) given by the infinite derivation tree
D = PENCRYPTE(ID,D).

We then show that the normalized message derivation system can be used as an algo-
rithm for message derivation, with proofs given in Appendix A

Proposition 1. There are no diverging derivations DBK `N M.

Proposition 2. If DBK `N M is a valid derivation, then so is DBK ` M.

Proposition 3. If D B K ` M is a valid derivation, then there exists a valid derivation
D′ BK `N M.

The Prolog attacker model is almost a direct translation of Figure 18. For example, the
implementation of public key encryption is given in Figure 19. The only place which
is not a direct translation is the treatment of projections, since C uses offset-and-length
to project tuples. This is achieved by including the offset-and-length information in
TUPLEE, and making use of the proj predicate from Figure 16.

The C attacker function derivation_build(D,K) builds a message M such that D B
K ` M. There is a direct representation of the derivation tree D in C, and the implemen-
tation of derivation_build is a direct recursion over D. Note that we do not generate
constraints for the message built by the attacker, except that we put down the constraint
constraint validN(D,K,M).

The only remaining function is constraint_resolve, which takes the query contain-
ing the constraints from the previous run, solves it using XSB Prolog, and translates the
solved derivations back from XSB Prolog into C.

14

validE(pencryptE(D1, decI(D2)), K, M) :-
subtermRemove(K, M, L), validE(D1, K, pencrypt(enc(N), M)), validE(D2, L, N).

validE(pencryptE(D1, D2), K, M) :-
subtermRemove(K, M, L), validE(D1, K, pencrypt(enc(N), M)), validE(D2, L, dec(N)).

validN(pencryptI(D1, D2), K, pencrypt(enc(N), M)) :-
validN(D1, K, enc(N)), validN(D2, K, M).

subtermRemove(M, M, byte(0)).
subtermRemove([M|Ms], N, [L|Ms]) :- subtermRemove(M, N, L).
subtermRemove([M|Ms], N, [M|Ls]) :- subtermRemove(Ms, N, Ls).
subtermRemove(pencrypt(K, M), N, pencrypt(K, L)) :- subtermRemove(M, N, L).

Fig. 19. Attacker model for public key encryption in Prolog

4 Conclusions and Future Work
We have seen how DYC allows C programs written using an appropriate cryptographic
API to be model-checked to find attacks. The attacker model is a direct translation of
Dolev–Yao message derivability into Prolog, and of derivation trees into C. We believe
that this research direction shows great promise, although there a number of limitations,
which we hope to address in future work.

We require honest agents to be straight-line code. The difficult issue here is that
the control flow of the honest agents may depend on message contents, so there many
be an interaction between constraint generation and state-space exploration. We hope to
investigate integration with model checkers such as DART [15] to address this issue. We
hope that such an integration would also avoid the current requirement for programmer-
specified message flow.

The DYC API is missing cryptographic features such as symmetric encryption,
signing, hashing, composite keys and Diffie-Hellman, and is also missing a socket
model. We do not expect that these features will cause significant problems, and would
allow us to investigate more examples.

Despite its rough edges, we believe that DYC is an interesting first step at merging
the fields of software model checking and cryptographic protocol validation, and could
lead to tools capable of validating full-fledged cryptographic protocol implementations
rather than specifications.

A Proofs
Proposition 1. There are no diverging derivations DBK `N M.

Proof. Define the size of a message as:

size(b) = size(n) = 1
size(k) = 2

size(M1, . . . ,Mn) = 1+∑
n
i=1 size(Mi)

15

size({|M|}N) = 1+ size(M)+ size(N)
size(enc(M)) = size(dec(M)) = 1+ size(M)

We first note that if D B K `E M is either a valid or a diverging derivation then M is
an active sub-term of K, and so size(K)− size(M) is guaranteed to be non-negative and
can be used for induction.

We then show by induction on C that if K = C [M] and K′ = C [0] then size(K) =
size(K′)+ size(M)−1.

We then show that there are no diverging derivations D B K `E M. We proceed by
induction on size(K), with a nested induction on size(K)− size(M). D must be of the
form r(D1, . . . ,D j) where r is an elimination rule whose jth hypothesis has a diverging
derivation D j BK j `E M j. The interesting case is r = PENCRYPTE, for which we have:

D1 BK `E {|M|}enc(k)

and by induction on size(K)− size({|M|}enc(k)) we have that D1 B K `E {|M|}enc(k) is
non-diverging, so we must have:

K = C [M] K′ = C [0] D2 BK′ `E dec(k)

We now have two cases, depending on whether size(K′) < size(K) or not. If size(K′) <
size(K) then we can proceed by induction on size(K′). Otherwise, size(K) = size(K′)
and size(M) = 1, so since size(dec(k)) = 3 we can proceed by induction on size(K′)−
size(dec(k)). In either case, we have that D2 B K′ `E dec(k) is non-diverging, and so
we have D B K `E M non-diverging as required. The other cases are either similar, or
are straightforward inductions.

Finally, we show that there are no diverging derivations D B K `N M, which is a
straightforward induction on M, as all the rules are syntax-directed on M.

Proposition 2. If DBK `N M is a valid derivation, then so is DBK ` M.

Proof. We first show by induction on D that if:

DBK′ `E M′ K = C [N] K′ = C [0]

then either:
DBK `E M′

or:
DBK `E M M = D[N] M′ = D[0]

The interesting case is D = PENCRYPTE(D1,D2), for which we have:

K′ = C ′[M′] K′′ = C ′[0]
D1 BK′ `E {|M′|}enc(k) D2 BK′′ `E dec(k)

We can induct on D2 (and note that there is no D ′ such that D ′[0] = dec(k)) to get:

D2 BK′ `E dec(k)

16

and then again to get:
D2 BK `E dec(k)

We can then induct on D1 to get two sub-cases. Either:

D1 BK `E {|M′|}enc(k)

and so:
DBK `E M′

as required. Otherwise:

D1 BK `E L L = E [N] {|M′|}enc(k) = E [0]

and so we must have E of the form E = {|D|}enc(k), and so we can define M = D[N]
and get:

D1 BK `E {|M|}enc(k) M = D[N] M′ = D[0]

and so:
DBK `E M M = D[N] M′ = D[0]

as required. The other cases are similar, or are direct inductions.
We then show that if D B K `N M is a valid derivation, then so is D B K ` M, by

induction on D, making use of the previous result in the cases involving PENCRYPTE.

Proposition 3. If D B K ` M is a valid derivation, then there exists a valid derivation
D′ BK `N M.

Proof. Define:

1. The simple derivations DBK `M are the valid derivations where any sub-derivation
D′ BK ` M′ of D with sub-sub-derivation D′′ BK ` M′′ of D′ has M 6= M′,

2. The eliminatable derivations D B K ` M are the simple derivations where any use
of an introduction rule must be of the form PENCRYPTE(·, DECI(·)), and

3. The normalizable derivations DBK ` M are the simple derivations where any use
of an introduction rule inside an elimination rule must be of the form PENCRYPTE(·, DECI(·)).

We then prove a series of results:

1. If D B K ` M is valid, then there exists a simple D′ B K ` M. The derivation D′ is
given by replacing any sub-derivation violating simplicity by the appropriate sub-
sub-derivation.

2. Any simple derivation is normalizable. This is direct, by analysis of each possible
pair of elimination rules and introduction rules.

3. For any eliminatable derivation: DBK ` N where K = C [M] and K′ = C [0], either:
(a) DBK′ ` N,
(b) DBK′ ` N′ where N = D[M] and N′ = C ′[0], or
(c) DBK ` N has sub-derivation D′ BK ` M.
This is an induction on D.

17

4. For any eliminatable DBK `M, we have valid DBK `E M. This is an induction on
D, where the interesting case is D = PENCRYPTE(D1,D2). Since D is eliminatable,
we have D2 is eliminatable, or is of the form D2 = DECI(D3) and D3 is eliminatable.
We shall consider the first case, the second is similar. We have:

D1 BK ` {|M|}enc(k) D2 BK ` dec(k)

By induction, and inspection of `E :

D1 BK `E {|M|}enc(k) K = C [M]

Thus, by the previous result (and the fact that DBK ` M is simple, and hence can
have no sub-derivation D′ BK ` M) we have:

D2 BK′ ` dec(k) K′ = C [0]

so by induction: D2 BK′ `E dec(k) and hence DBK `E M as required.
5. For any normalizable D B K ` M, we have valid D B K `N M. This is a direct

induction on D.

The result follows: for any valid DBK ` M, we first find a simple (and hence normal-
izable) D′ BK ` M, from which we get D′ BK `N M.

References
1. M. Abadi and M. Fiore. Computing symbolic models for verifying cryptographic protocols.

In Proc. IEEE Computer Security Foundations Workshop, pages 160–173, 2001.
2. M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi calculus. Infor-

mation And Computation, 148:1–70, 1999.
3. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.

In Proc. SPIN Workshop on Model Checking of Software, number 2057 in Lecture Notes in
Computer Science, pages 103–122. Springer-Verlag, 2001.

4. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static anal-
ysis. In Proc. ACM Symp. Principles of Programming Languages, pages 1–3, 2002.

5. K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable implementa-
tions of security protocols. In Proc. IEEE Computer Security Foundations Workshop. IEEE
Computer Society, 2006. To appear.

6. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Proc.
IEEE Computer Security Foundations Workshop, pages 82–96, 2001.

7. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In Proc. Tools
and Algorithms for the Construction and Analysis of Systems, volume 2988 of Lecture Notes
in Computer Science, pages 168–176. Springer-Verlag, 2004.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
9. E. M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a natural deduc-

tion style message derivation engine to verify security protocols. In Proc. IFIP Working
Conference on Programming Concepts and Methods, 1998.

10. G. Denker, J. Millen, and H. Ruess. The CAPSL integrated protocol environment. Technical
Report SRI-CSL-2000-02, Computer Science Laboratory, SRI International, 2000.

11. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Trans. Information
Theory, 29(2):198–208, 1983.

18

12. P. Godefroid. Model checking for programming languages using VeriSoft. In Proc. ACM
Symp. Principles of Programming Languages, pages 174–186, 1997.

13. P. Godefroid and S. Khurshid. Exploring very large state spaces using genetic algorithms.
Int. J. Software Tools for Technology Transfer, 6(2):117–127, 2004.

14. P. Godefroid and N. Klarlund. Software model checking: Searching for computations in the
abstract or the concrete. In Proc. Integrated Formal Methods, volume 3771 of Lecture Notes
in Computer Science, pages 20–32. Springer-Verlag, 2005.

15. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In Proc.
ACM Conf. Programming Language Design and Implementation, pages 213–223, 2005.

16. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In
Proc. Int. Conf. Verification, Model Checking and Abstract Interpretation, volume 3385 of
Lecture Notes in Computer Science, pages 363–379. Springer-Verlag, 2005.

17. K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder. Int.
J. Software Tools for Technology Transfer, 2(4), 2000.

18. T. A. Henzinger, R. Jhala, R. Majumdar, and Gregoire Sutre. Software verification with
Blast. In Proc. SPIN Workshop on Model Checking of Software, number 2648 in Lecture
Notes in Computer Science, pages 235–239. Springer-Verlag, 2003.

19. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
20. A. S. A. Jeffrey and R. Ley-Wild. Dolev–Yao C implementation. http://cm.bell-

labs.com/who/ajeffrey/dyc.tgz.
21. W. Koch et al. Libgcrypt - cryptographic library.

http://directory.fsf.org/security/libgcrypt.html.
22. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using CSP and

FDR. In Proc. Tools and Algorithms for the Construction and Analysis of Systems, volume
1055 of Lectures Notes in Computer Science, pages 147–166. Springer, 1996.

23. G. Lowe. Casper: A compiler for the analysis of security protocols. J. Computer Security,
6:53–84, 1998.

24. W. Marrero, E. M. Clarke, and S. Jha. Model checking for security protocols. In Proc.
DIMACS Workshop on Design and Formal Verification of Security Protocols, 1997.

25. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. In Proc. ACM Conf. Computer and Communication Security, pages 166–175, 2001.

26. M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A pragmatic
approach to model checking real code. In Proc. Symp. USENIX Operating Systems Design
and Implementation, pages 75–88, 2002.

27. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993–999, 1978.

28. I. V. Ramkrishnan et al. XSB Prolog. http://xsb.sourceforge.net/.
29. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model check-

ing framework. In Proc. European Software Engineering Conf. and ACM SIGSOFT Symp.
Foundations of Software Engineering, pages 267–276, 2003.

30. T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In IEEE
Symposium on Security and Privacy, pages 178–194, 1993.

19

