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Abstract

Self-adjusting programs respond automatically and effttjeto
input changes by tracking the dynamic data dependenceseof th
computation and incrementally updating the output as retede
In order to identify data dependences, previously propased
proaches require the user to make use of a set of monadic-primi
tives. Rewriting an ordinary program into a self-adjustprggram
with these primitives, however, can be difficult and erroofe due

to various monadic and proper-usage restrictions, somehihw
cannot be enforced statically. Previous work thereforgeats that
self-adjusting computation would benefit from direct laage and
compiler support.

In this paper, we propose a language-based technique for wri
ing and compiling self-adjusting programs from ordinaryo-pr
grams. To compile self-adjusting programs, we use a coation-
passing style (cps) transformation to automatically irfeonser-
vative approximation of the dynamic data dependences. &eept
the inferred, approximate dependences from degradingetferp
mance of change propagation, we generate memoized versions
cps functions that can reuse previous work even when theinare
voked with different continuations. The approach offersatural
programming style that requires minimal changes to exastiode,
while statically enforcing the invariants required by satfjusting
computation.

We validate the feasibility of our proposal by extendingrta
dard ML and by integrating the transformation into MLton, a
whole-program optimizing compiler for Standard ML. Our exp
iments indicate that the proposed compilation techniquepra-
duce self-adjusting programs whose performance is camigtith
the asymptotic bounds and experimental results obtaireedain-
ual rewriting (up to a constant factor).
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1. Introduction

Self-adjusting programs respond automatically and effttyeto
input changes by tracking dependencies between data aeditod
the computation and incrementally updating the output (A&tal.
2006b). After a from-scratch run, the input can be changedl an
the output can be updated vthange propagatigna mechanism
for re-executing the portions of the computation affectgdthe
new values while reusing the unaffected portions. Previgask
developed techniques for performing change propagatidnria
proportional to the affected portions and showed that thpageh

is effective in a number of application domains, includingariant
checking (Shankar and Bodik 2007), motion simulation (Aetaal.
2006¢, 2008b), and machine learning (Acar et al. 2007, 2008c

An ordinary program can be converted into a self-adjustieg v
sion by manually integrating the change-propagation masha
into the program. Since this can be very difficult, previousrkv
proposed systematic techniques for rewriting ordinarygpamns
into self-adjusting versions. These rewriting techniguegon a li-
brary of monadic primitives that enable creating, readarg writ-
ing changeable datai.e., data that can change across runs. The
libraries expect the programmer to obey certain monaditrices
tions, delimit the scope of reads, program in a destingpassing
style, and apply memoization by manually declaring all fvad-
ables of memoized functions. Consequently, rewriting agam
into a self-adjusting program can require substantiaruesitring
of the existing code (Figure 1 (right) shows a function fortian-
ing a list with a predicate written using these monadic ptiras).
Furthermore, safety of memoization primitives is not cteztktat-
ically. In fact, after some attempts at specifying a simpéde, sys-
tematic interface through library support, previous wodirs out
that direct language and compiler support is essential fiting
self-adjusting programs, but leaves the nature of suchukzgeg and
compiler support unspecified (Acar et al. 2006a).

In this paper, we propose a technique for annotating an argin
program with a small nhumber of primitives and compiling them
into equivalent self-adjusting versions. The annotatisas/e to
identify changeable data and memoizing functions withadec
restructuring. Changeable data is indicated by the typgox and
can be created and accessed by sinmpple and get primitives.
Memoizing functions are declared with theun keyword. We
compile an annotated source program by applyingadaptive
continuation-passing-style translatidhat infers the dependencies
between changeable data.

By performing a cps translation, we enable the programmer
to annotate an existing direct-style program with no restring.
There is a cost to this simplicity: the translation uses icoritions
to approximate the programmer-supplied, fine-grained dépece
information made explicit in the monadic approach. Since®m: c
tinuation represents the entire rest of a computation, pipecach
can cause change propagation to re-execute code unnélgessar
continuations are coarse approximations of actual depengie To



datatype ’a list =
nil | cons of ’a * ’a list
fun partition p 1 = let
fun part 1 =
case 1 of
nil => (nil,nil)
cons (h,t) => let
val (a,b) = part t

in

if p h then
(cons(h,a),b)

else
(a,cons(h,b))

end

datatype ’a list =

nil | cons of ’a * ’a list box

afun partition p 1 = let
mfun part 1 =
case get $ 1 of
nil => (put $ nil,put $ nil)
cons(h,t54;> let
val (a,b) = part $ t
in
if p h then
(put $ (cons(h,a)),b)
else
(a,put $ (cons(h,b)))
end

datatype ’a list =
nil | cons of ’a * ’a list mod

fun partition p 1 = let
fun part 1 = read(l, fn 1 =>
case 1 of

nil => write(mod(write(nil) ,mod(write(nil))

| cons(h,t) => memo (h,t) (fn () => let

val ab = mod(part t)
in read(ab, fn (a,b) =>
if p h then

write (mod (write(cons(h,a)) ,b)

else

write(a,mod(write(cons(h,b))))

end))

in part 1 end

in part $ 1 end

in part 1 end

Figure 1. The partition function: ordinary (left), self-adjustinggnter), and with previously proposed monadic interfaiggh).

regain efficiency, the translation produces memoized cpstions
as well as memoized continuations. Memoizing a cps funatien
rectly on its data and continuation arguments does not sufiéz
cause it prevents the result of a function call from beingsesl
when the continuation differs (even if the data argumengsthe
same). We solve this problem by treating continuations seves

To express self-adjusting programs, we use an extended SML
syntax. A self-adjusting program consists of normal (puren-
adaptive) functions anddaptive functionsleclared with thexfun
andmfun keywords; the latter declaresx@emoizingadaptive func-
tion. Adaptive functions have the adaptive function type$> 7.

The infix $ keyword is used for adaptive application; an adaptive

as changeable data. When a memoized cps function encounterspplication may only appear in the body of an adaptive fumcti

previously-seen data but a different continuation, it camedi-
ately pass the memoized result to the (new) continuatiohowit
having to re-execute the body of the function. We formalize t
compilation as a translation (Section 5) from an annotatedce
languageASrc (Section 3) with direct-style primitives to a self-
adjusting target languad®ATgt (Section 4) with cps primitives.

We show that the proposed approach is realistic by exterttiang
Standard ML language and modifying the MLton compiler (MLt)
to compile self-adjusting programs (Section 6). Our impeata-
tion includes a library for self-adjusting computation yiging the
features ofSATgt. We perform an experimental analysis by com-
piling self-adjusting versions of a number of (annotatedhpdh-
marks. Our experiments (Section 7) indicate that the ceedsklf-
adjusting programs can be slower by a constant factor thein th
non-self-adjusting counterparts when run from scratcheklvte-
sponding to input changes, however, self-adjusting prograan
be orders of magnitude faster than recomputing from scréash
compared to the non-adaptive version). The experimenttitate
that the approach performs consistently with the previowsue
ation of self-adjusting computation based on monadic,-lesex
libraries (Acar et al. 2006b,a).

2. Overview
We give an overview of our approach by considering an example

2.1 Self-adjusting programs

A self-adjusting program is a pure program that manipulates
changeablaata, i.e., data that can be changed by external factors.
In typical usage, a hoshutatorprogram contains a self-adjusting
subprogram. The host mutator creates the initial changeaplt
data, runs a self-adjusting program, and observes the bdtpen,

it can change the input data (via side-effecting operajiand force
change propagatiomo update the output of the self-adjusting pro-
gram. To efficiently update the output, change propagatam-c
binesadaptivity, a mechanism for re-executing the portions of the
computation affected by input changes, aneémoizationa mech-
anism for reusing the unaffected portions of the computatio

(and may not appear in the body of a normal function).

The box typer box serves as a container for changeable data.
Theput: a -$> « box primitive places a value into a box, while
theget: a box -$> « primitive returns the contents of a box.
Since the primitives have adaptive function types, they mialy
be used within a self-adjusting computation. The host muotagty
create, modify, and inspect changeable data via a colleaifo
meta-level primitives, which we treat informally in thiscsien.

The distinction between adaptive functions and normal func
tions serves both language design and implementation pespo
From the design perspective, the distinction preventsaglisting-
computation primitives from being used outside of a se|fisiing
computation. From the implementation perspective, thiénditon
improves the efficiency of our compilation strategy and the&uit-
ing self-adjusting programs. In particular, only the adapfunc-
tions need to be compiled into continuation-passing style.

2.2 Writing self-adjusting programs

Figure 1 shows the ordinary (left) and self-adjusting (eenver-
sions of apartition function for lists. In the ordinary version,
lists are defined by the usual recursive datatype and theifunc
traverses the list and constructs the output from tail tahepply-
ing the predicate to each element of the list.

We obtain the self-adjusting version in two steps. First, we
change the list type so that a list tail is boxed. This allotws t
mutator to modify lists by inserting/deleting elementsc&&l, we
change th@artition function to operate on boxed lists by insert-
ing aget operation when destructing a list and insertingua op-
eration when constructing a list. Since the auxiliary fimtipart
is recursive, we memoize it by declaring it wiitfun. Note that
the self-adjusting syntax and primitives (underlined) donequire
significant changes to the code: simply deleting them yighds
ordinary implementation opartition. For the purposes of com-
parison, the right of Figure 1 shows the code pattition with
the previously provided monadic primitives (Acar et al. 8B(x).
As can be seen, the monadic primitives require significaangks,
even for this simple function. (The significance of the chemis



1 datatype ’a list = nil | cons of ’a * ’a list mod
2 fun partition p ml k = let

3 fun part (ml, k) = read ml (fn 1 =>

4 case 1 of

5 nil => write nil (fn ma =>

6 write nil (fn mb => k (ma, mb)))
7 | cons(h,mt) => let

8 val k> = fn (a,b) =>

9 if p h then

10 write (cons(h,a)) (fn ma => k (ma,b))
11 else

12 write (cons(h,b)) (fn mb => k (a,mb))
13 in part_memo mt k’ end)

14  and part_memo ml k = let

15 val k.memo = fn r => memo k r

16 in

17 write k.memo (fn mk => let

18 val k’ = fn r => read mk (fn k => k r)
19 in memo part (ml, k’) end)

20 end

21 in part_memo ml k end

Figure 2. The partition function compiled.

best measured by considering the differences in the albstatax
trees, not the differences in the lexical tokens.)

2.3 Compiling self-adjusting programs

Compilation translates a source self-adjusting progratn Bn
intermediate language that generalizes the previouslpqsed
monadic primitives. In this section we use a simplified inter
mediate language that provides two cps primitives rondifi-
able referenceswrite: o -> (o mod -> res) -> res and
read: o mod -> (a -> res) -> res, wWhereres is an ab-
stract result type. Therite primitive initializes a new modifi-
able with a value and passes the reference to the continuafibe

any invocation of the continuation, but without having teeseecute
the body of the matched function. We memoize functions amd co
tinuations with a primitivenemo: (o -> res) -> a -> res.
Figure 2 shows the compiled code fpartition. To obtain
this code, we translate the functiopartition and part and
adaptive applications into cps, replgoes/get with write/read,
and memoizgart aspart_memo. TO dO SOpart_memo memoizes
its continuation and writes it into a modifiable. It then salkrt
with a continuation that, when invoked, reads and invokes th
original continuation. Since the applicationpirt is memoized,
it will match when it is called with the same modifiable listdan
the continuatiork is written into the same modifiable. (This can
be ensured by “remembering” the continuation modifiableseimo
for each argument modifiable list.) We describe how the céedpi
program achieves efficient change propagation in Sectibn 5.

3. Adaptive Source LanguageASrc)

TheASrc language is a simply-typekt-calculus with natural num-
bers and recursive functiohsextended with a distinguished class
of adaptivefunctions andoxingprimitives. The language does not
directly yield self-adjusting programs: its semanticsrialagous to
that of a call-by-value\-calculus, but the additional forms are used
by the compilation scheme of Section 5 to yield an equivadetft
adjusting program.

The syntax ofASrc is given by the following grammar, which
defines typesr, expressionse, and valuesv, using identifier
metavariableg andzx.

3
nat |7 — 7| 7x — 7| 7 box
zero | succe | caseN ey, e, (z.€5) |
z|fun fa.e|efes |
afun f.z.e | mfun f.o.e | ef $ey |
put$e|getSe |l
v u= zero |succv |z |funfz.e|
afun f.z.e | mfun f.z.e | ¢

with f ¢ FV(e)
As noted above, we distinguish normal (non-adaptive) fionst
7. — 7 from adaptive functions LA Correspondingly, there

T
e

def

Az.e fun f.z.e

read primitive dereferences a modifiable and passes the contentsare separate introduction and elimination forms for the tesses

to the continuation.

To compile a source self-adjusting program, we translagpad
tive functions into equivalent cps functions and memoizgrilif so
indicated (via keywordnfun). We compile boxes intonodifiable
referencesby translating eachox type to amod type, eachget
primitive to aread primitive, and eachput primitive to awrite
primitive. Forread andwrite, we supply the current continuation.

Memoizing functions in cps requires some care. To see this,
recall that to use a function call via memoization, the cuirrar-
guments must match the arguments of a previous call. Siree th
arguments of a cps function include its continuation, mestinon
would require the continuations to match. This decreasesfflec-
tiveness of memoization because we may not match a funcaibn c
when the continuations différWe address this problem by trans-
lating memoized adaptive functions to cps functions trestttheir
continuations as changeable data. This allows the memfized
tion to match when the modifiable (containing the contirargti
matches a previous call, ignoring the contents of the mdaldia
Since the continuation is changeable data, if it differhimcurrent
run from the previous run, then change propagation willxeeete

1The write primitive can reuse modifiables written in the poess run of
the program. This is essential for efficient change propagat
2Note that, for self-adjusting programs, memoization dyithange prop-

agation attempts to match function calls from the previausaf the pro-
gram. There is no attempt to match calls within a run of theypaom.

of functions; amémfun adaptive function indicates that the function
should use memoization when compiled. Boxed typdsox act
like immutable references, with the primitivesit andget acting
like allocation and dereference. Hence, we take a stote be a
finite map from location$ to values; the notatioa[¢ — v] denotes
the stores updated witlY mapped ta. Since stores are immutable,
they are also acyclic. ContextsandX are maps from variables and
locations to types, respectively.

Figure 3 gives the static and dynamic semantica\6fc: the
typing judgements; T H° ¢ : T ascribes the type to the expres-
sione at the modé’ (either normale or adaptive$) and in the con-
textsI” andX, while the large-step evaluation relatione |} o’; v’
reduces the expressienn the stores to the valuev’ and the up-
dated storer’.

The mode component of the typing judgement precludes adap-
tive applications and the boxing primitives from the bodyofmal
functions, but allows normal applications, adaptive agilons,
and the boxing primitives in the body of adaptive functioAs.
noted earlier, in the context of our implementation, thesguire-
ments prevent self-adjusting primitives from being usetsiole of
a self-adjusting computation. While these requirementddcbe

3The ASrc language (as well as thH®ATgt language of Section 4 and
the translation from the former to the latter) may easily kterded with
products, sums, recursive types, etc.; we have omitted soibtructs as
they provide no additional insight, but are supported byiti@ementation.
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Figure 3. ASrc typing judgement; T" H° ¢ : 7 (top) and evaluation judgemeate | ¢’; v’ (bottom).

expressed by a more complicated set of expression subgnanma
expressing them using a mode component of the typing judgeme
scales easily to additional language features and is morEstent
with our implementation. The normal vs. adaptive distiostmay
also be interpreted as a simple effect system (Henglein 208b)
that syntactically distinguishes effectful and non-etfieldunctions
and applications.

Evaluation presupposes that neither the initial expressior
store have free variables, but the initial expressiaay have free
locations that are present in the initial store; these looatrepre-
sent the program’s (changeable) input.

Finally, note that boxed types box and the primitivesgput
andget contribute no computational power to the language. How-
ever, boxing an expression indicates that the correspgnams-
lated expression should write the result into a modifiableremce;
any subsequent uses of the result must read from the modifiabl
making data dependencies explicit.

Although theASrc language does not provide any facilities for
creating and modifying the inputs to a self-adjusting cotapian,
we can sketch the actions and queries made by a host progaam th
(re-)evaluates a self-adjusting computation. (Thesta operations
are discussed in Section 6.) Suppose we ha&Sec program
e such thats;- +® e : 7 and an initial storesy such that*

oo @ X W X (for the obvious store typing judgement). Thus, we
may (initially) evaluatec under the storer, yielding the (initial)
resultvy: oo; e | og;vy. Now, suppose we have a modified store
o1 such that~* o; : ¥ W X;. (This modified store may have
been obtained from the initial store by changing contentsoofie
locations, inserting and deleting locatiorss ) We are interested in
the resultv; yielded by (re-)evaluating undero; . The next section
describes a language with a change-propagation relatxmebses
portions of the computation that evaluatedinderoy to yield v}
more efficiently than using the evaluation relatien e |} o/ ; v1.

4. Self-Adjusting Target Language 6ATgt)

The SATgt language is a simply-typed-calculus with natural
numbers and recursive functions, extended withdifiable refer-
encesand amemoizatiorprimitive. The language directly yields
self-adjusting programs: its semantics includes both afuation
relation and a change propagation relation. Section 5 slimws
ASrc programs are compiled int®ATgt programs by a cps trans-
formation that useé\Src annotations to insert primitives for self-
adjusting computation.

The syntax oSATgt is given by the following grammar, which
defines types, expressions, valuesv, and adaptive commands
using identifier metavariableSandz.

T
e

nat | 7 — 7| 7 mod | res

zero | succe | caseN ey, e, (z.€5) |

x| fun fx.e|eseq |

write v v | read v vg | £ | memo e | halt v

zero | succv |z | fun f.xe |l |k

write v v | read v v | memo e | halt v

fun f.x.e with f ¢ FV(e)

Modifiablest mod act like immutable references, with the primi-

tiveswrite andread acting like allocation and dereference. Note

that both primitives are formulated in continuation-pagsstyle,

with vi serving as the continuation of the operation. The tyge

is an opaque answer type for continuations, whitdt is a con-

tinuation that injects a final value into tires type. As before, we

take a storer to be a finite map of locations to values. Contdxts

andX are maps from variables and locations to types, respegtivel
Figure 4 gives the static and dynamic semanticSATgt. The

typing judgement; I" - e : 7 ascribes the type to the expres-

sione in the contextd™ and>.. The large-step evaluation relation

T;o;e g T';0';0" (resp.T;0; 5 Uk T';0';v") reduces the ex-

pressiore (resp. the adaptive commangl under the store to the

valuev’ and the updated stot€. For the present time, we suggest

that the reader ignore tHE and7” components; we discuss them

in detail in Section 4.1. The auxiliary evaluation relatien) »’

reduces an expressiento a valuev’; such evaluation is pure and

v
K

de

Y

Ax.e
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Figure 4. SATgt typing ruleZ; T" - e : 7 (top) and evaluation relations| v’ andT"; o; x x T';¢’;v' andT; o5 e e T'; o’; v’ (bottom).

independent of the store. The three evaluation relationdefrhie
execution of a self-adjusting program as the interleavihgure
computations and adaptive commands. Note that evaluatien p
supposes that neither the initial expression nor store fraeevari-
ables, but the initial expressianayhave free locations which are
present in the initial store; these locations represenptbgram’s
(changeable) input.

A write v v, command yields a fresh locatidrof typer mod
that is delivered to the continuatian and updates the stoseat ¢
with v. A read ¢ v, command yields a value of type 7 (fetched
from the stores at /) that is delivered to the continuatian .

A memoized expressiomemo e in SATgt has no special
behavior when evaluated from scratalh¢mo/miss). However,
memoization enables the reuse of computatiao®ss runsdur-
ing change propagation. This differs from other uses of nmeaio
tion that permit sharing subcomputations within a single ofi a
program. Thehalt v command yields a computation’s final result
value.

4.1 Change Propagation and Memoization

In order to update a program’s output in response to chamgs i
input, achange propagatiomechanism is employed to re-execute
the portions of the computation affected by the changesarelise
the unaffected portions. The evaluation relation recanftsrimation
necessary for change propagation itrace a sequence of write,
read, and memactionsterminated by a halt action:

A =Wk T == H, | AT T

l—v

v
l—v

IR ", | M0

o|T

The evaluation relatiof; o;e g T';0';v" (resp.T:o;k Uk
T';0';v") may now be interpreted as reducing the expression
(resp. the adaptive commang under the storer and the (op-
tional) reuse tracd’”, yielding the valuev’, the updated store’,
and the computation tracE’. A present reuse tracg is itself a
computation trace from a previous evaluation and is sugpiee
change propagation to guide the update; in particular,uetiain
may reuse computations memoized in the previous evaluétien

memoization judgement of Figure 5 used in iemo/hit eval-
uation rule).

The change propagation relatidiyoc ~ T';0’;v" (given in
Figure 5) may be interpreted as replaying the computatiacetf’
under the store, yielding the valuev’, the updated store’, and
the updated computation trag®.

Returning to the evaluation relation, a read operatiead ¢ vy,
dereferenceé and extends the computation trace with a read action
RZQU 0 that records the location dereferenced, the value fetched,
and t%e continuation of the read operation; the read actioa i
computation trace identifies computations that must beeetged
by change propagation. A write operatiorrite v v allocates a
location ¢ and extends the computation trace with a write action
w,*  that records the location allocated, the value written, ted
continuation of the write operation. Note that the choictoohtion
£ is independent of the reuse trdtelt is acceptable (and, indeed,
often desirable) for the locatiofto appear in a write actiow,”
in the reuse trace; we say that such a location is (implicgétglen
from the reuse trace.

The memo/miss rule evaluates a memoization expression
memo e and yields a trac#®-T’, whereT” is the trace of the
evaluation ok. Thememo/hit rule uses the memoization judge-
mentT’; e ~> T (Figure 5) to search the reuse traEdor a suffix
reuse tracel”’ that begins with the memoization actitii. Note
that while the expressionmay have free locations, the memoiza-
tion judgement is independent of the store. Hence, the wiltelses
to change propagatirif’” under the current store in order to correct
any invalid reads or writes in the reuse tracé.

Note that a memoization hibfemo/hit andm/hit) requires
the expression being evaluated and the expression in theomem
action to bea-equivalent. This equivalence requires the location
names appearing in the expressions to be syntacticallyl.€Fhia,
in turn, motivates the implicit stealing of locations by therite
rule: (re-)executing a write, using a location that appearthe
reuse trace, may allow a subsequent memoization action tchma
in the reuse trace.
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Turning to the change propagation relation (Figure 5), lfeca
that we interpretl’;c ~ T";0';v’ as replaying the computation
traceT under the store, yielding the valuey’, the updated store
o', and the updated computation trage. A write w;*_ that
is consistent with the current storevtite/reuse, requiring that
£, ¢ dom o) extends the store with, bound tov and recursively
change propagates the tail of the trace. A write that is isistent
with the current store (if, € dom o) or is nondeterministically
chosen to be re-executesvfite/change) forces the allocation
of a fresh locatior? and re-evaluates the continuatiop with the
location?. A readR,*,  that is consistent with the current store
(read/reuse, requiring o(¢) v =a o) recursively change
propagates the tail of the trace. A read that is inconsistéthtthe
current store (it (¢) = v Za vo) Or is nondeterministically chosen
to be re-executedréad/change) re-evaluates the continuation
v With the current contents df Replaying a memoization action
recursively change propagates the tail of the trace. Rammag
halt action yields the (unchanged) computation result. ieker
change propagation is recursively applied, the updategatation
trace is extended with an appropriate action.

Note that change propagation copies the prefix of the computa
tion trace up to the first read or write that triggers re-exiecu If
there were nanemo/hit evaluation rule, then re-execution would
never return to change propagation and the entire tail ottme-
putation would be re-executed by the evaluation judgenvemich
may be no better (asymptotically) than evaluating from tetra
Hence, memoization is crucial for efficient change propagat

Although thewrite rule may allocate locations in the reuse
trace and the memoization judgement may match computaitions
the reuse trace, the rules are intentionally nondeterirtis avoid
committing to particular allocation and memoization p@g It is
possible to consider the rules as being guided by an oraale th
decides when to steal locations and when to match memaizatio
Since making such choices optimally is undecidable in gentre
adaptive library described in Section 6.1.2 provides mpisimas
that restrict when locations may be stolen and when menioizat
may match.

T" (top) and change propagatih o ~ T";¢’; v’ (bottom).

o1: Tg;01 ~ Ty;01; ;. The correctness of change propagation
asserts that the/, o1, andTy obtained via the change-propagation
relation could also have been obtained via the evaluatitatioa:
O;o1;e U T1;0%;v1. Hence, change propagation suffices to
determine the output of a program on changed inputs.

5. Compiling ASrc to SATgt

The annotations ofASrc programs are used to guide adap-
tive continuation-passing stylgansformation into an equivalent
SATgt program. The transformation is a standard cps conversion,
with the following notable differences: only adapti¥&src func-
tions are converted to continuation-passing style, whienal
ASrc functions remain in direct style (thus, our transformatisn
an instance of a selective cps transformation (Danvy andliffat
1993a,b; Nielsen 2001; Kim and Yi 2001)); tA&rc boxing prim-
itives put andget are converted into explicivrite and read
operations; and memoizing adapti¥&rc functions are converted
using explicitmemo operations. Figure 6 shows the type and ex-
pression translations. The correctness and efficiencyeofrtinsla-
tion is captured by the fact that well-typ@&rc programs are com-
piled into equivalent well-type®ATgt programs with the same
asymptotic complexity for initial runsi.e. SATgt evaluation with

an empty reuse trace).

The type translatiofjr®*] = °*'¢' preserves thaat type, re-
cursively translates the normal function type (withoutaalucing
continuations), converts the adaptive function type t@takcon-
tinuation argument, and converts the boxed type to a motfiab
type. There are two term translatiorfg®]* = e*'¢ translates
expressions appearing as the body of nord&ic functions and
[[eé‘s'c}]$ v = '8 translates expressions appearing as the body
of adaptiveASrc functions (using thEATgt-valuev; " as the ex-
plicit continuation term); the metavariablgandk are used to dis-
tinguish identifiers introduced by the translation. Tlag® transla-
tion recursively translates sub-expressions and apatgbyitrans-
lates the body of normal and adaptive functions, introdgiciontin-
uation arguments for adaptive functions; we explain thediation

We can now sketch the use of change propagation by a hostof mfun in more detail below. Note thdt]* is not defined for

program that (re-)evaluates a self-adjusting computauppose
we have &ATgt programe such that; - - e : res and an initial
storeo such that- oo : ¥ @ 3. Thus, we may (initially) evaluate
e under the storey and an empty reuse trace, yielding the (initial)
resultvy and a computation track,: O; oo; e & To; 06; v5. Now,
suppose we have a modified steresuch that- o1 : ¥ W ;. We
are interested in the result yielded by (re-)evaluating undero.

To obtainv}, we may change propagate the tra¢ainder the store

adaptive applications or the boxing primitives, as theggessions
may not appear in the body of a well-typed normal function.

The [¢]® v, translation is a standard cps conversion for con-
stants gero and/), variables ), adaptive functionsafun f.x.e),
and adaptive applications{($ e2). ForASrc expressions translated
to SATgt expressions that are evaluated in direct styacc e,
caseN e, e (z.€5), ande; e2), the translation delivers the result
to the continuatiorv,. Finally, it translates the boxing primitives
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Figure 6. Type translation[7**“] = 7% (top) and expression
translationge®]* = e and[e*]® v} = =€ (bottom).

(put $ e and get $¢) by extending the continuation, with a
write or read operation. Although théalt expression is not in
the image of the translation, it may be used as an initialinoat
tion for evaluating a cps-converted program.

The translation of memoizing functionsnffun) is central to
producing effective self-adjusting programs through ciation.
Note that a naive translation:

fun f.x.A\k.memo ([[e]]$ k)

is ineffective, becausmemo ([¢]® k) will only result in a mem-
oization hit when both the argumeantand continuatiork are the
same as in the previous run, despite the fact that the computat
e depends only on: and not on the calling context (now explicit in

[mfun f.z.€]®* =

the continuatiork). Ideally, a memoizing function (in cps) should
maintain a map from arguments to results; if the functionaitbed
with a previously-seen argument, then the (possibly dffi€r con-
tinuation is invoked with the memoized result immediatdije
compilation of a memoizing adaptiv&Src function into aSATgt
function consists of two parts, which we explain by refagritm
the line numbers in the translation nffun. Note that, unlike the
translation of a non-memoizing adaptive functiafin), a mem-
oizing adaptive function modifies its continuation befoxeeuting
the function body.

First, memoizing on the argument alone is achieved by trgati
the continuation as changeable data and placing it in a rabdkfi
reference (lines 3-5). Therefore, if change propagatiamtstre-
executing due to an inconsistent read or wiiefore a call to
a memoizing function, then re-executing the function caithw
the same argument can result in a memoization hit even if the
continuation differs. By placing the continuation in a nfable
bound toy;, (line 3), the function is memoized on the argument
and the reference; (line 5). Provided write allocation stores the
new continuation at the same location, the function is éffely
memoized on the argument alone. When the function body ewok
its continuationk’ with the result, the new continuation must be
passed the old result. This is achieved by reading the agation
back from the modifiable intés and invoking it with the resuly,
(line 4).

Second, if change propagation encounters an inconsistadt r
or write during the execution of a memoizing function, then it is
necessary to re-execute the function body but it may be Iplest
avoid invoking the function’s continuation. When an incgtent
read or write occurs during the execution of the body of a memo
ing function, the function’s continuatioky will be the same as on
the previous run. If the function body yields the same regaillie
during re-execution as during the previous run, then it sirdble
to reuse the previous computation, rather than invoking ¢éme)
k1 with (the same) result. This can be achieved by wrapping con-
tinuationk; with the memo operation (line 2).

Although SATgt memoization can match whenever identical
expressions are evaluated, we do not implement this secsargt
cause it would require comparing arbitrary expressions raadh-
taining a global memoization table. Memoizing a functioatdes
using local memo tables indexed by the function’s argumedtis.
sufficient for making change propagation work well in preeti

5.1 An Example Execution

To illustrate how translated programs execute, recall the
partition function (Figure 1) and its translation (Figure 2). Con-
sider executingartition with the constantrue predicate on the
modifiable list[1,3] and then updating the input list {a , 2, 3]

by inserting an element. Figure 7 shows a pictorial represiam

of the traces from the two executions. A trace consists af seal
write actions, and memoized callspart and continuations. The
differences between the two runs are highlighted on the.righ



The continuation passed gartition (and thus to the first
call topart_memo) is namedk0. Each recursive call tpart_memo
memoizes and writes its continuation into a modifiable @il®
and 17) and makes a memoized calptart (line 19), which reads
the next modifiable in the list (line 3), makes a continuatibat
ultimately writes an element to the output (lines 8-12), aats
part_memo. Modifiables containing the continuations are labeled
mki. To insert2 into the input and update the output, we allocate
a new modifiablel2, change the modifiable1, and run change
propagation.

Change propagation starts re-executing the reatlipfwhich
writes the same continuatidtt as before tank2 and callspart
with 12 and mk2. After 12 is read, a new continuatiok2’ is
written tomk3* and part is called with13 andmk3. This call is
in the reuse trace, so there is a memoization hit, which cetesgl
the execution of the first read. Since the continuation emitto
mk3 is new, change propagation starts re-executing the read of
mk3, which calls the continuatiok2’ with 03. The continuation
k2’ writes to 02, readsmk2, and calls the continuatiok1. The
continuationk1 writes to 01®, readsmk1, and callsk0 with o1.
This call is in the reuse trace, so there is a memoizatiomttiich
completes the execution of the second read and, as therepare n
more inconsistent reads, change propagation completeangeh
propagation performs the work for the element before theriien
point and at the insertion point only; regardless of the trgize, the
result is updated by performing a small, constant amountarkw

6. Implementing Self-Adjusting SML

To validate this approach to self-adjusting programming,have
extended the Standard ML programming language with syintact
static typing, and library support for self-adjusting pragns and

we have modified the MLton compiler to support the extendad la
guage® This integration yields direct linguistic support for self
adjusting programming, which has been suggested to be -neces
sary for scaling to large programs and for enforcing the nume
ous invariants required for self-adjusting computatiomtik cor-
rectly (Acar et al. 2006a).

6.1 Self-Adjusting SML

Thorough support for self-adjusting programming in StadddlL

is provided by the combination of language extensions aitmtary
of adaptive and meta-level operations. A user interestedriting

self-adjusting programs need only familiarize herselfrwihese
two components.

6.1.1 Language extensions
Following ASrc, we introduce an adaptive function type,

written  “ty -$> ty". An adaptive function is intro-
duced via either the expression formafh match” or
the declaration forms dfun tyvarseq fvalbind” and

“mfun tyvarseq fvalbind”. All of these forms simply change
the introductory keyword of existing Standard ML forms for
function introduction; hence, adaptive functions enjog game
syntactic support for mutually recursive function defioits,
clausal function definitions, and pattern matching as (r&dym
functions. An adaptive function is eliminated via the exgsien
form “ezp $ ezp”; as in ASrc, adaptive applications may only
appear within the body of an adaptive function.

4 Stealing allows the write to reuse3.
5 Again, stealing allows the write to reuse.

6The implementation may
http://ttic.uchicago.edu/~pl/sa-sml.

be obtained at

signature ADAPTIVE = sig
type ’a box

val put : ’a -$> ’a box
val get : ’a box -$> ’a

(** Stealing, Reuse, and Memoization **)
type ’a eq = ’a * ’a -> bool

val eqDflt : ’a eq
type ’a hash = ’a -> word
val hashDflt : ’a hash

type ’a key = ’a eq * ’a hash

val mkPut’ : ’k key * ’a eq -$> (’k * ’a -$> ’a box)
val mkPut : unit -$> (Ck * ’a -$> ’a box)
val putTh : (unit -$> ’a) -$> ’a box
val memoFix : (’a key * ’r eq *
(Ca -$> ’r) -> (a -$> ’r)))
-> (’a -$> ’r)
val memoCont : (’r eq * (’a -$> ’r))
-> (Pa -$> ’r)
(** Meta operations **)
val new : ’a eq * ’a -> ’a box
val change : ’a box * ’a -> unit
val deref : ’a box -> ’a

datatype ’a res = Value of ’a | Exn of exn

val call : (a -$> ’r) * ’a -> ’r res ref

val propagate : unit -> unit

end
structure Adaptive :> ADAPTIVE

struct ... end

Figure 8. Signature for thidaptive library.

Note that while these language extensions introduce a rysy ty
they do not (significantly) change the type system of StahhHr.”
Hence, all of the familiar features of Standard ML (pararcetr
polymorphism, type inferencetc) are immediately available to
adaptive functions. Furthermore, these extensions aiity éate-
grated into a Standard ML compiler, since their treatmenthsy
front-end is entirely analogous to the treatment of normatfions.

6.1.2 Library interface

Figure 8 gives the interface of thelaptive library. The library
provides thebox type and theget and put adaptive functions
from ASrc. The next group of types and values are mechanisms
to control the nondeterministic stealing, reuse, and meatimin
that appears in the dynamic semantics of Section 4. The laspg
of types and values anmeta operationsised by a host mutator
program to control a self-adjusting computation.

The functions for controlling nondeterminism require diya
predicates and hash functions; they type is an abbreviation for
a tuple consisting of an equality predicate and a hash fomclihe
default equality predicate and hash function use MLtonresitens
that provide a polymorphic structural equality predicatd a poly-
morphic structural hash function, both of which may be instded

"Technically, we must introduce new typing rules for adaptiunctions
and adaptive applications, but they are identical to thentypules for
normal functions and normal applications except for theafske adaptive
function type. Similarly, as ifASrc, a mode component in the typing rules
is used to preclude adaptive applications from the body ohabfunctions.



at any typé; on values of function type, they operate on the struc-
ture of the function closure. The defaults make it easy toratey
an ordinary pure functional program to a self-adjustinggpaon

typically begins re-execution within a nested call of a rsote
function.
In practice, though, the adaptive library may provide dddil

and avoid the need for awkward tagged values used in previous operations with different memoization properties. Forrepée, the

work (Acar et al. 2006a).

Controlling the nondeterministic stealing, reuse, and wiee
tion during change propagation is the most complex and suaistl
pect of using the adaptive library. However, these mechasizre
only necessary to improve the efficiency of change propagatiot
to enforce its correctness.

ThemkPut’ operation takes a key and an equality predicate and
returns arallocator, a function for allocating boxes. The allocator
records the locations that were allocated for individuatee dur-
ing an execution. When those writes are re-executed dutingge
propagation, the library attempts to reuse the locatiolveated in
the previous execution by matching the supplied key elemént
hash table is used to map key elements to locations, whick mot
vates the components of the key. The mechanism is robusein th
presence of repeated key elements: collisions may deghadzfft-
ciency of change propagation, but not its correctness. Wheio-
cation of a box is reused, the equality predicate determiresther
the contents of the box have chanded.

ThemkPut operation is a special case mfPut’ that uses the
default equality predicate and hash function:

afun mkPut () =
mkPut’ $ ((egDflt, hashDflt), eqDflt)

The putTh operations corresponds to a common scenario, where
the allocating function returned kPut is used exactly once:

afun putTh th =
let val putM = mkPut $ () in
putM $§ (O, th $ O) end

If change propagation begins re-executing within the boidthe
adaptive thunk, then the result will be stored at the samatioc
that was allocated during the previous execution.

ThememoFix operation is used to create memoized functions.
The operation takes a key tuple on the argument, an equatiti-p
cate on the result, and the function to memoize; sincatheFix
operation is used to memoize recursive functions, it takegunc-
tion to memoize in the form suitable for a fixed-point combina
tor. Recall the translation ofnfun from Figure 5. In order to
reuse the location returned byrite k2 (Ayx.---) at line 3, the
equality predicate and hash function on the function argqurage
used to match the correspondimgrite k2 (Ayx.---) in the pre-
vious execution. The equality predicate and hash functiothe
function argument are also used to effect themo ([¢]® k') at
line 51° The equality predicate on the result is used to implement
thememo (k1 ) at line 2.

A subtlety ofmemoFix is that it memoize®nly the recursive
calls: re-executing the call of a function memoizedueyioFix will
only attempt to match calls of the function in the previousaxion
that are nested within the same root call of the function Hsdse-
executing call. Despite this apparent limitatiarmoFix suffices
for most self-adjusting computations, since change prajag

8This differs from Standard ML’s polymorphic equality, whiegnay only
be instantiated at equality types.

9This is the implementation realization of the =, v predicate in the
read/reuse rule of Figure 5. Since there is a degree of nondeterminism
between theread/reuse andread/change rules, the equality predi-
cate need only be conservative.

10As before, a hash table is used to map arguments to contnutica-
tions.

memoCont operation implements only th@emo (k1 y,) at line 2
and only for non-recursive calls of the memoized function.

The new, change, andderef operations are used by the host
mutator program to create and modify inputs for and inspett o
puts of a self-adjusting computation. Tb&l1 operation is used to
perform the initial execution of a self-adjusting compigat Note,
that thecall operation is theonly means of “applying” an adap-
tive function outside the body of another adaptive functidhe
result of thecall operation is a mutable reference cell containing
the output (distinguishing between normal and exceptiterahi-
nation) of the self-adjusting computation. After changthg in-
puts, thepropagate operation is used to perform change propaga-
tion; the new output may be observed as the new contents of the
mutable cell. Since the meta operations are impure, theyldmmt
be used within adaptive functions — correctness demandséifa
adjusting computations not make calls to impure normaltions.

6.2

To implement Self-Adjusting SML, we modified the MLton com-
piler (version 20070826) to support the language extessfon
adaptive functions and to perform a cps-transformatiors paat
converts adaptive functions into continuation-passigtesind we
developed libraries to support self-adjusting computation top
of which the Adaptive library is implemented. Both the lan-
guage extensions and the compiler modifications that weritbesc
below are agnostic to the fact that they have been introduced
to support self-adjusting computations. Indeed, the ctenpiro-
vides no direct support for tracking the dynamic data depanés
of self-adjusting computations or for re-executing conagions
during change propagation. That support comes from the self
adjusting-computation libraries. This approach minirdidee nec-
essary compiler modifications.

In total, we added or modified 1600 lines of code in the MLton
compiler, of which 760 correspond to the cps-transfornmapass,
and wrote 2800 lines of code for the libraries.

Implementation

6.2.1 Compiler modifications

Front-end. As suggested above, the language extensions are eas-
ily integrated into MLton, since their treatment by the framnd

is entirely analogous to the treatment of normal functiddsst
changes simply generalize the existing function introducand
function application forms to adaptive functions in a snmalinber

of the compiler intermediate languages.

To support thenfun keyword, the front-end desugaisun dec-
larations to adaptive functions whose bodies are memoizéd w
(generalizations of) theemoFix operation. The desugaring uses
the default equality predicate and hash function and suppou-
tually recursivenfun declarations.

Adaptive cpstransformation. The cps-transformation pass is im-
plemented as an SXML-program to SXML-program transforma-
tion; SXML is the name of a simply-typed, higher-order, Armal-
form intermediate language in the compiler. This is the rsagtif-
icant change to the compiler. Each of the ILs prior to andudirig

the SXML IL were extended with adaptive function and adaptiv
application forms and the optimizations on and transfoionatbe-
tween these ILs were extended to handle the new forms. The cps
transformation pass eliminates all adaptive functions ahaptive
applications in the input SXML program. The output SXML pro-
gram (having no adaptive forms) corresponds to an SXML agr

in the unmodified compiler; hence, no subsequent ILs, optimi
tions, or transformations in the compiler require any cleng



The actual cps transformation is entirely straightforwaird
deed, the fact that the input program is in A-normal form ngtke
transformation even simpler than the one presented in @eéti
The only additional notable features of the transformaimithe
treatment of exceptions. Since the SXML IL has explicitise
andhandle constructs for exceptions, we use a double-barrelled
continuation-passing style transformation (Kim et al. 89%hi-
elecke 2002), where each adaptive function is translate@ke
two continuations: a return continuation and an excepiianeller
continuation. When transforming the body of an adaptivefiom,
raises are translated to invocations of the exception contibuati

andhandles are translated to pass a local handler continuation to

the body. This treatment of exceptions allows adaptive tfans
to freely raise and handle exceptions, just like hormal fioms.
Indeed, an adaptive function may handle an exception rdigex
normal application appearing in its body.

Primitives. Bridging the gap between the compiler and the self-
adjusting-computation libraries are two primitives thatness the
implementation of adaptive functions in continuationgiag style:

type ’a cont = ’a -> unit
type (’a, ’b) xfn = (°b cont * exn cont * ’a) cont
val afn_to_xfn : (’a -$> ’b) -> (’a, ’b) xfn

val xfn_to_afn : (’a, ’b) xfn -> (Pa -$> ’b)

These primitives are not exposed to the user, as they coulddum
to violate invariants expected by the self-adjusting cotation
libraries described below. The primitives are eliminatgdte cps-
transformation pass, where they are implemented as theitiglen
function.

6.2.2 Self-adjusting computation libraries

A low-level self-adjusting-computation library effectily imple-
ments the semantics 8ATgt, providing operations for writing and
reading modifiables, for memoizing functions, and for perfo
ing change propagation. It is an implementation of the sty
proposed monadic libraries (Acar et al. 2006b,a) spe@dlifor
cps. To provide efficient change propagation, the impleatéont
maintains a priority queue of continuations from incoreistreads
of modifiable references. The implementation represeatsetel-
ements (e.g., writes, reads) with a time-stamp data steicnd
uses hash tables as described above for stealing and méiomiza
By taking advantage of the fact that continuations are eitplve
are able to simplify the representation of reads to use oméytone
stamp (previous work required two) and eliminate the muteal
cursion between change propagation and memoization.

The high-levelAdaptive library described in Section 6.1.2 is
implemented as a wrapper around the low-level library. Sithe
high-level library uses the adaptive functions from theglaage
extensions while the low-level library uses explicit comttion-
passing style, we use the thén_to_xfn andxfn_to_afn primi-
tives to convert between the two representations.

7. Experiments

We describe a preliminary experimental evaluation of oumpita-
tion technique. In summary, the experiments indicate thata-
proach to compiling self-adjusting programs is consisteith the
previously reported asymptotic bounds and experimentaluav
tions (Acar et al. 2006b) of the monadic libraries (Acar eR@l06a)
for self-adjusting computation.

7.1 Synthetic applications

Benchmarks. We implemented self-adjusting versions of the fol-
lowing algorithms, which are used in previous evaluations.

o filter, map, reverse fold: The standard list functions.

e merge-sort, quick-sort The merge-sort and quick-sort algo-
rithms for list sorting.

e diameter: An algorithm (Preparata and Shamos 1985) for com-
puting diameter (extent) of a planar point set.

e quick-hull: The quick-hull (Barber et al. 1996) algorithm for
the convex-hull of a planar point set.

These algorithms utilize a number of computing paradigms in
cluding simple iteration filter, map), accumulator passing
(reverse, quick-sort), random samplingflc1d), and divide-
and-conquerferge-sort, quick-sort, quick-hull).

Our benchmarks are specific instances of the algorithmdisAll
benchmarks operate on integer lists. Biater benchmark keeps
the even elements in an integer list. Thep benchmark adds a
fixed value to each element in an integer list. Batthimum and
sum are instances of theold algorithm. The sorting benchmarks
(gsort, msort) sort integer lists. The computational-geometry
benchmarksdiameter, quick-hull) operate on lists of points
in two dimensions.

The input to our experiments is randomly generated. To gen-
erate a list ofn. integers, we choose a random permutation of the
integers from1 to n. To generate points in two dimensions, we
choose random points uniformly from within a disc of radiis:.

Measurements. Our experiments were performed on a desktop
computer (two single-core 2GHz AMD Opteron processors; 8GB
physical memory; Linux 2.6.23 operating system (Fedora 7))
Benchmarks were executed with thgc*summary” runtime op-
tion, which reports GC statistice.g, GC time). In this evaluation,
we do not report GC times.

To understand the effects of the cps-transformation on ttilie o
nary (non-self-adjusting) version of our benchmarks, westder
two instances of each ordinary benchmark. The cps instaihae o
ordinary benchmark is written using adaptive functions adep-
tive applications, but does not use the adaptive librasyctbmpiler
transforms these adaptive functions and adaptive apjgitatnto
cps. The direct-style instance is written using normal fioms and
normal applications (and does not use the adaptive librémngse
functions and applications are unchanged by the cps-tanstion
pass. Our results show that there is a slight performanderdif
ence between directly-style instance and the cps instadaest
style is often slightly faster, but not always. This confirthat our
selective cps translation is effective in reducing the beads of
continuations. We therefore use the direct-style instaric¢he or-
dinary version for comparing ordinary and self-adjustirgsions.
We measure the following quantities:

e Time for from-scratch execution: The time for the from-
scratch execution of the ordinary or self-adjusting versio

Average propagation time for a single insertion/deletionfor
each element in the input list, we delete the element, rungdna
propagation, insert the element (at the same point), and run
change propagation. The average is taken over all propeargati

Overhead: This is the ratio of the time for the from-scratch
execution of the self-adjusting version to the time for troai-
scratch execution of the ordinary version with the sametinpu

Speedup:This is the ratio of the time for the from-scratch run
of the ordinary version to the average time for propagating a
single insertion/deletion.

In our measurements, we isolate the quantity of interest;, th
is, we exclude the time to create the initial input and, inngex
propagation timings, we exclude the time to perform theahrtn.

Results. Table 1 gives summaries for the benchmarks at fixed in-
put sizes. Each columns show the measurements for the ieanti
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Figure 9. Selected measurements fprick-hull.

Application Ord. Self-Adj. | Self-Adj. Avg. Overheac’
(Input size) Exec. (s)| Exec.(s)| Propagate (s) Speedup
filter (109) 0.22 4.00 0.000007 18.2 | 33170
map(10°) 0.32 9.53 0.000018 30.0 | 17427
reverse(10%) 0.20 4.83 0.000014 24.3 | 14410
minimum (10%) 0.12 2.80 0.000020 23.5 5877
sum(10%) 0.12 2.94 0.000155 25.6 740
msort(10°) 0.56 17.96 0.001442 32.3 386
gsort(10?) 0.35 11.16 0.000949 32.3 365
diameter(10%) 1.25 3.54 0.000343 2.8 3628
quick-hull (105) 1.08 3.52 0.000325 3.3 3313

Table 1. Summary of benchmark timings.

described above. The overheads range betvgesnd 33. The in-
teger benchmarks have higher overheads because the périfiorm
ial work between self-adjusting computation primitiveaniputa-
tional geometry benchmarks have less overheads becauge-the
ometry operations are more expensive (relative to selfisiiljg
computation primitives). Change propagation leads to rsraé
magnitude speedups over from-scratch executions. Thisdause
there is often a near-linear time asymptotic gap betweeauixey
from scratch and performing change propagation.

Figure 9(a) compares the from-scratch executions of the ord
nary and self-adjusting versions @iick-hull. The figure shows
that there is a small difference between the cps and thetditgle
instance of the ordinary version. Figure 9(b) shows the ayer
change-propagation time for a single insertion/deletimthe fig-
ure shows, the time remains nearly constant. Intuitivélig is be-

cause many of the input changes do not change the outputhwhic
change propagation can take advantage of to update thetoutpu

quickly. Figure 9(c) shows the average speedup, which asae
linearly with the input size to exceed three orders of magtat

7.2 Raytracer application

For a less synthetic benchmark, we implemented a self-tljus
raytracer. This application would have been quite cumbeesto
write using the previous monadic libraries (Acar et al. 2806
but was straightforward using this work. The raytracer sutp
point and directional lights, sphere and plane objects,diffidse,
specular, transparent, and reflective surface propefles surface
properties of objects are changeable data; thus, for a fixedt i
scene (lights and objects) and output image size, we carerend
multiple images (via change propagation) that vary the aserf
properties of objects in the scene. Note that this appbioas not
always well suited to self-adjusting computation becauaking a
small change to the input can affect a large portion of theutut

For experiments, we ren-
der an input scene (shown on
the right) of 3 light sources
and 19 objects with an out-
put image size 06512 x 512
and then repeatedly change
the surface properties of a sin-
gle surface (which may be
shared by multiple objects in
the scene). AP change in-
dicates that the surface was
toggled with a diffuse (non-
reflective) surface, while an
M change indicates that the
surface was toggled with a mirror surface. We measure the fim
from-scratch execution for both the ordinary & self-adingtver-
sions, and the average propagation time for a single togglleeo
surface. For each change to the input, we also measure thgeha
in the output image as a fraction of pixes.

Figure 10. Ray-tracer output.

Image Size Self-Adj. Exec. (s) Ord. Exec. (s)
512 x 512 7.643 2.563
Surface | Image Diff. Self-Adj. Avg. Ord. Avg.
Changed| (% pixels) Propagate (s) From-Scratch (s),
AP 57.22% 3.430 2.805
AM 57.22% 11.277 3.637
BP 8.43% 0.731 2.817
BM 8.43% 1.471 2.781
cb 9.20% 0.855 2.810
cM 9.20% 1.616 2.785
DP 1.85% 0.142 2.599
DM 1.85% 0.217 2.731
EP 19.47% 2.242 2.154
EM 19.47% 4.484 2.237

Table 2. Summary of raytracer timings.

Table 2 shows that self-adjusting raytracer is about three
times slower than the ordinary version. Change propagafields
speedups of 1.6 to 18.0 when less than 10% of the output image
changes. If the output changes more significantly (surfacesd
E), then the change-propagation can be slower than the eoydina
version. This is expected because the amount of work chaioge p
agation performs is roughly proportional to the fractioncbinge
in the output (e.g., updating half the output requires hafwork of
a from-scratch execution). Changes that makes a surfaeetied



(the-* changes), are more expensive, because they require casting Functional Reactive Programming (FRP) (e.g., Elliott and H

new rays in addition to updating existing rays.

8. Related Work

We review related work on incremental computation and some
recent interactions between functional reactive programgnand
incremental computation. For a more complete list of refees
and other approaches to incremental computation, we réfer t
reader to the hibliography of Ramalingam and Reps (1993).
Dependence-graph techniques record the dependenciesdretw
data in a computation, so that a change-propagation ahgoigan
update the computation when the input is changed. Demeps, Re

and Teitelbaum (1981) and Reps (1982) introduced the idea of

static dependence graplasd presented a change-propagation al-
gorithm for them. The main limitation of static dependencaphs

is that they do not permit the change-propagation algoritmp-
date the dependence structure. This significantly restii types

of computations to which static-dependence graphs canfiedp
For example, the INC language (Yellin and Strom 1991), which
uses static dependence graphs for incremental updates,ndoe
permit recursion. Another approach to incremental contpnés
based on memoization (Bellman 1957; McCarthy 1963; Michie
1968), where function calls are remembered and re-used pien
sible. Pugh and Teitelbaum (1989) were the first to apply memo
ization (also called function caching) to incremental cotagion.
Since their work, others have investigated applicationsasfous
forms of memoization to incremental computation (Abadi ket a
1996; Liu et al. 1998; Heydon et al. 2000; Acar et al. 2003).

The first work on self-adjusting computation, called Adegti
Functional Programming (AFP) generalized dependencehgap-
proaches by introducing dynamic dependence graphs (DDisk) a
proposing language facilities for writing adaptive pragsa(Acar
et al. 2002). As an adaptive programs executes, a run-tirae sy
tem construct its DDG. When data changes takes place, aehang

propagation algorithm updates both the output and the DDG by

re-executing the parts of the computation affected by ttenghs
as necessary. In AFP, the change-propagation algorithreecea-
tively deletes the parts of the DDG that might have a contesl d
pendence on changed data and constructs replacementsdy-exe
ing code as necessary. This can cause change-propagafen-to
form more work than optimal. Subsequent work identified al-dua
ity between change propagation and memoization to imprioge t
effectiveness of change propagation by enabling the restiseb-
graphs of deleted DDGs via a form of memoization (Acar et al.
2006b). Recent work showed that self-adjusting computatiay
be generalized to support updateable (imperative) modifiaber-
ences (Acar et al. 2008a).

Self-adjusting computation has been implemented by extend

ing several existing languages. Carlsson (2002) presaméaudple-
mentation of the original AFP library (Acar et al. 2002) inskall.
By using monads, the Haskell library ensures some correatyel
properties that the AFP library did not enforce. A later vems
of our SML library applied a techniques similar to Carlssoto
ensure safe usage of certain primitives (Acar et al. 2008aje
usage of memoization primitives, however, could not be et
statically in the library setting. Shankar and Bodik (Shemné&nd
Bodik 2007) gave a specialized implementation of self-stiljig
computation in the Java language. The implementation jetad
to invariant-checking and is not sound in general. It resrihe
kinds of programs that can be written (e.g., return valuesffunc-
tions calls can only be used in certain ways). Recent workgmied
an implementation of self-adjusting computation in the i@jlaage
and extended change-propagation to support efficient garbal-
lection (Hammer and Acar 2008).

dak 1997; Elliott 1998; Nilsson et al. 2002; Courtney 200ff¢rs
techniques for programming reactive system. FRP providies-p
itives for programming with behaviors and events, which @re-
tinuous and discrete functions of time respectively. Alihlo FRP
research remained largely orthogonal to incremental caatioun,

it may benefit from incremental computation, because coaiput
tions performed at consecutive time steps can be similgpain
ticular, self-adjusting computation may be applied to FRRdp-
resenting time-varying values (e.g., behaviors, eveigsats) us-
ing modifiable references and by performing change-prapaga
to update the computation when necessary. Cooper and lgrishn
murti (2004; 2006) give a Scheme implementation of Adaptive
Functional Programming (AFP) (Acar et al. 2002) for thisgmse.
The approach is also adapted to the Java language (fla). @here
some differences between their implementation and AFP. gtbP
vides safe language facilities for controlling the gramityaof de-
pendence tracking, while pointing out that all dependeceaesalso
be tracked. The Scheme implementation tracks all depeeddnc
placing all time-varying values (called signals) in modifes. Sub-
sequent work develops static optimization techniquesdducing
the cost of tracking all dependences (Burchett et al. 2007 fhers

no comparison to the AFP approach. AFP provides techniques f
correct and efficient implementation of DDGs; a key compoén
the implementation is a representation of DDGs using tapotd
orders and order-maintenance data structures. The Schmapte-i
mentation uses depth/height information instead of a tagiohl
order; this complicates the handling of cyclic dependercesthe
dynamic maintenance of the DDG. It can also be inefficient, be
cause deleting a DDG node can change the height of all themema
ing nodes, requiring linear time in the size of the DDG. Thihats

do not discuss how their implementation relates to or diffeom
that of AFP. As suggested elsewhere (Cooper and Krishnamurt
2004), AFP (and more generally self-adjusting computtioray

be used to support FRP directly.

9. Conclusion

In this paper, we develop a safe interface for self-adjgstom-
putation and describe techniques for compiling self-aagspro-
grams written in the interface. The interface consists wixde get
andput operations and anfun keyword for declaring memoizing
functions. These primitives can be inserted anywhere inctioe
subject to some simple type constraints. Programs writtéh w
these primitives can be statically checked using simpleresions
to conventional type systems. Type safe programs are gig&n
to respond to changes correctly via change propagation.

We show that self-adjusting programs written in the propose
interface can be compiled by an adaptive-cps translatiba tians-
lation recovers sufficient information about the programeto-
ploy the previously proposed primitives. In particular tinensla-
tion uses continuations as a coarse approximation to progea-
supplied fine-grain dependences. To ensure that changagaep
tion remains efficient with the compiler-inferred depencies) the
translation generates memoized cps functions that may-beee
even when their continuations differ. This is achieved bynmoging
continuations and by treating continuations as changeddike by
writing them into pre-allocated modifiables.

We show that the proposal can be realistically incorporateal
a language by extending the SML language and an existing opti
mizing compiler (MLton). We present a preliminary evaloatiof
the implementation by considering a number of applicatidtee
experiments indicate that the approach is consistent Wélptevi-
ous proposal based on manual re-writing in terms of pralgties
formance and asymptotic complexity. Whether this corresipoce
can be proved (or disproved) remains to be an open question.
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