
Compiling Self-Adjusting Programs with Continuations

Ruy Ley-Wild∗

Carnegie Mellon University
rleywild@cs.cmu.edu

Matthew Fluet Umut A. Acar†

Toyota Technological Institute at Chicago
{fluet,acar}@tti-c.org

Abstract
Self-adjusting programs respond automatically and efficiently to
input changes by tracking the dynamic data dependences of the
computation and incrementally updating the output as needed.
In order to identify data dependences, previously proposedap-
proaches require the user to make use of a set of monadic primi-
tives. Rewriting an ordinary program into a self-adjustingprogram
with these primitives, however, can be difficult and error-prone due
to various monadic and proper-usage restrictions, some of which
cannot be enforced statically. Previous work therefore suggests that
self-adjusting computation would benefit from direct language and
compiler support.

In this paper, we propose a language-based technique for writ-
ing and compiling self-adjusting programs from ordinary pro-
grams. To compile self-adjusting programs, we use a continuation-
passing style (cps) transformation to automatically infera conser-
vative approximation of the dynamic data dependences. To prevent
the inferred, approximate dependences from degrading the perfor-
mance of change propagation, we generate memoized versionsof
cps functions that can reuse previous work even when they arein-
voked with different continuations. The approach offers a natural
programming style that requires minimal changes to existing code,
while statically enforcing the invariants required by self-adjusting
computation.

We validate the feasibility of our proposal by extending Stan-
dard ML and by integrating the transformation into MLton, a
whole-program optimizing compiler for Standard ML. Our exper-
iments indicate that the proposed compilation technique can pro-
duce self-adjusting programs whose performance is consistent with
the asymptotic bounds and experimental results obtained via man-
ual rewriting (up to a constant factor).

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms Languages

Keywords self-adjusting computation, continuation-passing
style, memoization

∗This author was partially supported by a Bell Labs Graduate Fellowship
and NSF Grant 0429505.
† This author was partially supported by a gift from Intel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

1. Introduction
Self-adjusting programs respond automatically and efficiently to
input changes by tracking dependencies between data and code in
the computation and incrementally updating the output (Acar et al.
2006b). After a from-scratch run, the input can be changed and
the output can be updated viachange propagation, a mechanism
for re-executing the portions of the computation affected by the
new values while reusing the unaffected portions. Previouswork
developed techniques for performing change propagation intime
proportional to the affected portions and showed that the approach
is effective in a number of application domains, including invariant
checking (Shankar and Bodik 2007), motion simulation (Acaret al.
2006c, 2008b), and machine learning (Acar et al. 2007, 2008c).

An ordinary program can be converted into a self-adjusting ver-
sion by manually integrating the change-propagation mechanism
into the program. Since this can be very difficult, previous work
proposed systematic techniques for rewriting ordinary programs
into self-adjusting versions. These rewriting techniquesrely on a li-
brary of monadic primitives that enable creating, reading,and writ-
ing changeable data, i.e., data that can change across runs. The
libraries expect the programmer to obey certain monadic restric-
tions, delimit the scope of reads, program in a destination-passing
style, and apply memoization by manually declaring all freevari-
ables of memoized functions. Consequently, rewriting a program
into a self-adjusting program can require substantial restructuring
of the existing code (Figure 1 (right) shows a function for partition-
ing a list with a predicate written using these monadic primitives).
Furthermore, safety of memoization primitives is not checked stat-
ically. In fact, after some attempts at specifying a simple,safe, sys-
tematic interface through library support, previous work points out
that direct language and compiler support is essential for writing
self-adjusting programs, but leaves the nature of such language and
compiler support unspecified (Acar et al. 2006a).

In this paper, we propose a technique for annotating an ordinary
program with a small number of primitives and compiling them
into equivalent self-adjusting versions. The annotationsserve to
identify changeable data and memoizing functions without code
restructuring. Changeable data is indicated by the typeα box and
can be created and accessed by simpleput and get primitives.
Memoizing functions are declared with themfun keyword. We
compile an annotated source program by applying anadaptive
continuation-passing-style translationthat infers the dependencies
between changeable data.

By performing a cps translation, we enable the programmer
to annotate an existing direct-style program with no restructuring.
There is a cost to this simplicity: the translation uses continuations
to approximate the programmer-supplied, fine-grained dependence
information made explicit in the monadic approach. Since a con-
tinuation represents the entire rest of a computation, the approach
can cause change propagation to re-execute code unnecessarily—
continuations are coarse approximations of actual dependencies. To

datatype ’a list =

nil | cons of ’a * ’a list

fun partition p l = let

fun part l =

case l of

nil => (nil,nil)

| cons (h,t) => let

val (a,b) = part t

in

if p h then

(cons(h,a),b)

else

(a,cons(h,b))

end

in part l end

datatype ’a list =

nil | cons of ’a * ’a list box

afun partition p l = let

mfun part l =

case get $ l of

nil => (put $ nil,put $ nil)

| cons(h,t) => let

val (a,b) = part $ t

in

if p h then

(put $ (cons(h,a)),b)

else

(a,put $ (cons(h,b)))

end

in part $ l end

datatype ’a list =

nil | cons of ’a * ’a list mod

fun partition p l = let

fun part l = read(l, fn l =>

case l of

nil => write(mod(write(nil),mod(write(nil))

| cons(h,t) => memo (h,t) (fn () => let

val ab = mod(part t)

in read(ab, fn (a,b) =>

if p h then

write(mod(write(cons(h,a)),b)

else

write(a,mod(write(cons(h,b))))

end))

in part l end

Figure 1. The partition function: ordinary (left), self-adjusting (center), and with previously proposed monadic interface (right).

regain efficiency, the translation produces memoized cps functions
as well as memoized continuations. Memoizing a cps functiondi-
rectly on its data and continuation arguments does not suffice be-
cause it prevents the result of a function call from being reused
when the continuation differs (even if the data arguments are the
same). We solve this problem by treating continuations themselves
as changeable data. When a memoized cps function encounters
previously-seen data but a different continuation, it can immedi-
ately pass the memoized result to the (new) continuation without
having to re-execute the body of the function. We formalize the
compilation as a translation (Section 5) from an annotated source
languageASrc (Section 3) with direct-style primitives to a self-
adjusting target languageSATgt (Section 4) with cps primitives.

We show that the proposed approach is realistic by extendingthe
Standard ML language and modifying the MLton compiler (MLt)
to compile self-adjusting programs (Section 6). Our implementa-
tion includes a library for self-adjusting computation providing the
features ofSATgt. We perform an experimental analysis by com-
piling self-adjusting versions of a number of (annotated) bench-
marks. Our experiments (Section 7) indicate that the compiled self-
adjusting programs can be slower by a constant factor than their
non-self-adjusting counterparts when run from scratch. When re-
sponding to input changes, however, self-adjusting programs can
be orders of magnitude faster than recomputing from scratch(as
compared to the non-adaptive version). The experimental indicate
that the approach performs consistently with the previous evalu-
ation of self-adjusting computation based on monadic, user-level
libraries (Acar et al. 2006b,a).

2. Overview
We give an overview of our approach by considering an example.

2.1 Self-adjusting programs

A self-adjusting program is a pure program that manipulates
changeabledata, i.e., data that can be changed by external factors.
In typical usage, a hostmutatorprogram contains a self-adjusting
subprogram. The host mutator creates the initial changeable input
data, runs a self-adjusting program, and observes the output. Then,
it can change the input data (via side-effecting operations) and force
change propagationto update the output of the self-adjusting pro-
gram. To efficiently update the output, change propagation com-
binesadaptivity, a mechanism for re-executing the portions of the
computation affected by input changes, andmemoization, a mech-
anism for reusing the unaffected portions of the computation.

To express self-adjusting programs, we use an extended SML
syntax. A self-adjusting program consists of normal (pure,non-
adaptive) functions andadaptive functionsdeclared with theafun
andmfun keywords; the latter declares amemoizingadaptive func-
tion. Adaptive functions have the adaptive function typeτ -$> τ .
The infix $ keyword is used for adaptive application; an adaptive
application may only appear in the body of an adaptive function
(and may not appear in the body of a normal function).

Thebox typeτ box serves as a container for changeable data.
Theput: α -$> α box primitive places a value into a box, while
the get: α box -$> α primitive returns the contents of a box.
Since the primitives have adaptive function types, they mayonly
be used within a self-adjusting computation. The host mutator may
create, modify, and inspect changeable data via a collection of
meta-level primitives, which we treat informally in this section.

The distinction between adaptive functions and normal func-
tions serves both language design and implementation purposes.
From the design perspective, the distinction prevents self-adjusting-
computation primitives from being used outside of a self-adjusting
computation. From the implementation perspective, the distinction
improves the efficiency of our compilation strategy and the result-
ing self-adjusting programs. In particular, only the adaptive func-
tions need to be compiled into continuation-passing style.

2.2 Writing self-adjusting programs

Figure 1 shows the ordinary (left) and self-adjusting (center) ver-
sions of apartition function for lists. In the ordinary version,
lists are defined by the usual recursive datatype and the function
traverses the list and constructs the output from tail to head, apply-
ing the predicate to each element of the list.

We obtain the self-adjusting version in two steps. First, we
change the list type so that a list tail is boxed. This allows the
mutator to modify lists by inserting/deleting elements. Second, we
change thepartition function to operate on boxed lists by insert-
ing aget operation when destructing a list and inserting aput op-
eration when constructing a list. Since the auxiliary function part
is recursive, we memoize it by declaring it withmfun. Note that
the self-adjusting syntax and primitives (underlined) do not require
significant changes to the code: simply deleting them yieldsthe
ordinary implementation ofpartition. For the purposes of com-
parison, the right of Figure 1 shows the code forpartition with
the previously provided monadic primitives (Acar et al. 2006b,a).
As can be seen, the monadic primitives require significant changes,
even for this simple function. (The significance of the changes is

1 datatype ’a list = nil | cons of ’a * ’a list mod

2 fun partition p ml k = let

3 fun part (ml, k) = read ml (fn l =>

4 case l of

5 nil => write nil (fn ma =>

6 write nil (fn mb => k (ma, mb)))

7 | cons(h,mt) => let

8 val k’ = fn (a,b) =>

9 if p h then

10 write (cons(h,a)) (fn ma => k (ma,b))

11 else

12 write (cons(h,b)) (fn mb => k (a,mb))

13 in part memo mt k’ end)

14 and part memo ml k = let

15 val k memo = fn r => memo k r

16 in

17 write k memo (fn mk => let

18 val k’ = fn r => read mk (fn k => k r)

19 in memo part (ml, k’) end)

20 end

21 in part memo ml k end

Figure 2. The partition function compiled.

best measured by considering the differences in the abstract syntax
trees, not the differences in the lexical tokens.)

2.3 Compiling self-adjusting programs

Compilation translates a source self-adjusting program into an
intermediate language that generalizes the previously proposed
monadic primitives. In this section we use a simplified inter-
mediate language that provides two cps primitives onmodifi-
able references: write: α -> (α mod -> res) -> res and
read: α mod -> (α -> res) -> res, where res is an ab-
stract result type. Thewrite primitive initializes a new modifi-
able with a value and passes the reference to the continuation.1 The
read primitive dereferences a modifiable and passes the contents
to the continuation.

To compile a source self-adjusting program, we translate adap-
tive functions into equivalent cps functions and memoize them if so
indicated (via keywordmfun). We compile boxes intomodifiable
referencesby translating eachbox type to amod type, eachget
primitive to aread primitive, and eachput primitive to awrite
primitive. Forread andwrite, we supply the current continuation.

Memoizing functions in cps requires some care. To see this,
recall that to use a function call via memoization, the current ar-
guments must match the arguments of a previous call. Since the
arguments of a cps function include its continuation, memoization
would require the continuations to match. This decreases the effec-
tiveness of memoization because we may not match a function call
when the continuations differ.2 We address this problem by trans-
lating memoized adaptive functions to cps functions that treat their
continuations as changeable data. This allows the memoizedfunc-
tion to match when the modifiable (containing the continuation)
matches a previous call, ignoring the contents of the modifiable.
Since the continuation is changeable data, if it differs in the current
run from the previous run, then change propagation will re-execute

1 The write primitive can reuse modifiables written in the previous run of
the program. This is essential for efficient change propagation.
2 Note that, for self-adjusting programs, memoization during change prop-
agation attempts to match function calls from the previous run of the pro-
gram. There is no attempt to match calls within a run of the program.

any invocation of the continuation, but without having to re-execute
the body of the matched function. We memoize functions and con-
tinuations with a primitivememo: (α -> res) -> α -> res.

Figure 2 shows the compiled code forpartition. To obtain
this code, we translate the functionspartition and part and
adaptive applications into cps, replaceput/get with write/read,
and memoizepart aspart memo. To do so,part memo memoizes
its continuation and writes it into a modifiable. It then calls part
with a continuation that, when invoked, reads and invokes the
original continuation. Since the application ofpart is memoized,
it will match when it is called with the same modifiable list and
the continuationk is written into the same modifiable. (This can
be ensured by “remembering” the continuation modifiable chosen
for each argument modifiable list.) We describe how the compiled
program achieves efficient change propagation in Section 5.1.

3. Adaptive Source Language (ASrc)
TheASrc language is a simply-typedλ-calculus with natural num-
bers and recursive functions3, extended with a distinguished class
of adaptivefunctions andboxingprimitives. The language does not
directly yield self-adjusting programs: its semantics is analogous to
that of a call-by-valueλ-calculus, but the additional forms are used
by the compilation scheme of Section 5 to yield an equivalentself-
adjusting program.

The syntax ofASrc is given by the following grammar, which
defines typesτ , expressionse, and valuesv, using identifier
metavariablesf andx.

τ ::= nat | τx → τ | τx
$
→ τ | τ box

e ::= zero | succ e | caseN en ez (x.es) |
x | fun f.x.e | ef ex |
afun f.x.e | mfun f.x.e | ef $ ex |
put $ e | get $ e | ℓ

v ::= zero | succ v | x | fun f.x.e |
afun f.x.e | mfun f.x.e | ℓ

λx.e
def
= fun f.x.e with f /∈ FV(e)

As noted above, we distinguish normal (non-adaptive) functions

τx → τ from adaptive functionsτx
$
→ τ . Correspondingly, there

are separate introduction and elimination forms for the twoclasses
of functions; anmfun adaptive function indicates that the function
should use memoization when compiled. Boxed typesτ box act
like immutable references, with the primitivesput andget acting
like allocation and dereference. Hence, we take a storeσ to be a
finite map from locationsℓ to values; the notationσ[ℓ 7→ v] denotes
the storeσ updated withℓ mapped tov. Since stores are immutable,
they are also acyclic. ContextsΓ andΣ are maps from variables and
locations to types, respectively.

Figure 3 gives the static and dynamic semantics ofASrc: the
typing judgementΣ;Γ ⊢δ e : τ ascribes the typeτ to the expres-
sione at the modeδ (either normal• or adaptive$) and in the con-
textsΓ andΣ, while the large-step evaluation relationσ; e ⇓ σ′; v′

reduces the expressione in the storeσ to the valuev′ and the up-
dated storeσ′.

The mode component of the typing judgement precludes adap-
tive applications and the boxing primitives from the body ofnormal
functions, but allows normal applications, adaptive applications,
and the boxing primitives in the body of adaptive functions.As
noted earlier, in the context of our implementation, these require-
ments prevent self-adjusting primitives from being used outside of
a self-adjusting computation. While these requirements could be

3 The ASrc language (as well as theSATgt language of Section 4 and
the translation from the former to the latter) may easily be extended with
products, sums, recursive types, etc.; we have omitted suchconstructs as
they provide no additional insight, but are supported by theimplementation.

Σ;Γ ⊢δ zero : nat

Σ;Γ ⊢δ e : nat

Σ;Γ ⊢δ succ e : nat

Σ;Γ ⊢δ en : nat Σ;Γ ⊢δ ez : τ Σ;Γ, x:nat ⊢δ es : τ

Σ;Γ ⊢δ caseN en ez (x.es) : τ

x:τ ∈ Γ

Σ; Γ ⊢δ x : τ

Σ;Γ, f :τx → τ, x:τx ⊢• e : τ

Σ; Γ ⊢δ fun f.x.e : τx → τ

Σ; Γ ⊢δ ef : τx → τ Σ; Γ ⊢δ ex : τx

Σ;Γ ⊢δ ef ex : τ

Σ;Γ, f :τx
$
→ τ, x:τx ⊢$ e : τ

Σ;Γ ⊢δ afun f.x.e : τx
$
→ τ

Σ;Γ, f :τx
$
→ τ, x:τx ⊢$ e : τ

Σ;Γ ⊢δ mfun f.x.e : τx
$
→ τ

Σ;Γ ⊢$ ex : τx
$
→ τ Σ; Γ ⊢$ ef : τx

Σ;Γ ⊢$ ef $ ex : τ

Σ; Γ ⊢$ e : τ

Σ;Γ ⊢$ put $ e : τ box

Σ;Γ ⊢$ e : τ box

Σ;Γ ⊢$ get $ e : τ

l:τ ∈ Σ

Σ;Γ ⊢δ l : τ box

σ; v ⇓ σ; v

σ; e ⇓ σ′; v′

σ; succ e ⇓ σ′; succ v′

σ; en ⇓ σ′′; zero
σ′′; ez ⇓ σ′; v′

σ; caseN en ez (x.es) ⇓ σ′; v′

σ; en ⇓ σ′′; succ v′′

σ′′; [v′′/x] es ⇓ σ′; v′

σ; caseN en ez (x.es) ⇓ σ′; v′

σ; ef ⇓ σ1; fun f.x.e σ1; ex ⇓ σ2; vx

σ2; [fun f.x.e/f, vx/x] e ⇓ σ′; v′

σ; ef ex ⇓ σ′; v′

σ; ef ⇓ σ1; afun f.x.e σ1; ex ⇓ σ2; vx

σ2; [afun f.x.e/f, vx/x] e ⇓ σ′; v′

σ; ef $ ex ⇓ σ′; v′

σ; ef ⇓ σ1;mfun f.x.e σ1; ex ⇓ σ2; vx

σ2; [mfun f.x.e/f, vx/x] e ⇓ σ′; v′

σ; ef $ ex ⇓ σ′; v′

σ; e ⇓ σ′; v′ ℓ′ /∈ dom σ′

σ;put $ e ⇓ σ′[ℓ 7→ v′]; ℓ′
σ; e ⇓ σ′; ℓ σ′(ℓ) = v′

σ; get $ e ⇓ σ′; v′

Figure 3. ASrc typing judgementΣ; Γ ⊢δ e : τ (top) and evaluation judgementσ; e ⇓ σ′; v′ (bottom).

expressed by a more complicated set of expression subgrammars,
expressing them using a mode component of the typing judgement
scales easily to additional language features and is more consistent
with our implementation. The normal vs. adaptive distinction may
also be interpreted as a simple effect system (Henglein et al. 2005)
that syntactically distinguishes effectful and non-effectful functions
and applications.

Evaluation presupposes that neither the initial expression nor
store have free variables, but the initial expressionmayhave free
locations that are present in the initial store; these locations repre-
sent the program’s (changeable) input.

Finally, note that boxed typesτ box and the primitivesput
andget contribute no computational power to the language. How-
ever, boxing an expression indicates that the corresponding trans-
lated expression should write the result into a modifiable reference;
any subsequent uses of the result must read from the modifiable,
making data dependencies explicit.

Although theASrc language does not provide any facilities for
creating and modifying the inputs to a self-adjusting computation,
we can sketch the actions and queries made by a host program that
(re-)evaluates a self-adjusting computation. (Thesemeta operations
are discussed in Section 6.) Suppose we have aASrc program
e such thatΣ; · ⊢$ e : τ and an initial storeσ0 such that⊢•

σ0 : Σ ⊎ Σ0 (for the obvious store typing judgement). Thus, we
may (initially) evaluatee under the storeσ0, yielding the (initial)
resultv′0: σ0; e ⇓ σ′0; v

′
0. Now, suppose we have a modified store

σ1 such that⊢• σ1 : Σ ⊎ Σ1. (This modified store may have
been obtained from the initial store by changing contents ofsome
locations, inserting and deleting locations,etc.) We are interested in
the resultv′1 yielded by (re-)evaluatinge underσ1. The next section
describes a language with a change-propagation relation that reuses
portions of the computation that evaluatede underσ0 to yield v′1
more efficiently than using the evaluation relationσ1; e ⇓ σ′1; v

′
1.

4. Self-Adjusting Target Language (SATgt)
The SATgt language is a simply-typedλ-calculus with natural
numbers and recursive functions, extended withmodifiable refer-
encesand amemoizationprimitive. The language directly yields
self-adjusting programs: its semantics includes both an evaluation
relation and a change propagation relation. Section 5 showshow
ASrc programs are compiled intoSATgt programs by a cps trans-
formation that usesASrc annotations to insert primitives for self-
adjusting computation.

The syntax ofSATgt is given by the following grammar, which
defines typesτ , expressionse, valuesv, and adaptive commandsκ,
using identifier metavariablesf andx.

τ ::= nat | τx → τ | τ mod | res
e ::= zero | succ e | caseN en ez (x.es) |

x | fun f.x.e | ef ex |
write v vk | read v vk | ℓ | memo e | halt v

v ::= zero | succ v | x | fun f.x.e | ℓ | κ
κ ::= write v vk | read v vk | memo e | halt v

λx.e
def
= fun f.x.e with f /∈ FV(e)

Modifiablesτ mod act like immutable references, with the primi-
tiveswrite andread acting like allocation and dereference. Note
that both primitives are formulated in continuation-passing style,
with vk serving as the continuation of the operation. The typeres
is an opaque answer type for continuations, whilehalt is a con-
tinuation that injects a final value into theres type. As before, we
take a storeσ to be a finite map of locations to values. ContextsΓ
andΣ are maps from variables and locations to types, respectively.

Figure 4 gives the static and dynamic semantics ofSATgt. The
typing judgementΣ; Γ ⊢ e : τ ascribes the typeτ to the expres-
sion e in the contextsΓ andΣ. The large-step evaluation relation
Ṫ ; σ; e ⇓E T ′; σ′; v′ (resp.Ṫ ; σ; κ ⇓K T ′; σ′; v′) reduces the ex-
pressione (resp. the adaptive commandκ) under the storeσ to the
valuev′ and the updated storeσ′. For the present time, we suggest
that the reader ignore thėT andT ′ components; we discuss them
in detail in Section 4.1. The auxiliary evaluation relatione ⇓ v′

reduces an expressione to a valuev′; such evaluation is pure and

Σ;Γ ⊢ zero : nat

Σ;Γ ⊢ e : nat

Σ; Γ ⊢ succ e : nat

Σ;Γ ⊢ en : nat Σ;Γ ⊢ ez : τ Σ;Γ, x:nat ⊢ es : τ

Σ; Γ ⊢ caseN en ez (x.es) : τ

x:τ ∈ Γ

Σ;Γ ⊢ x : τ

Σ;Γ, f :τx → τ, x:τx ⊢ e : τ

Σ;Γ ⊢ fun f.x.e : τx → τ

Σ;Γ ⊢ e1 : τx → τ Σ;Γ ⊢ e2 : τx

Σ; Γ ⊢ e1 e2 : τ

Σ;Γ ⊢ v : τ
Σ;Γ ⊢ vk : τ mod → res

Σ; Γ ⊢ write v vk : res

Σ;Γ ⊢ v : τ mod

Σ; Γ ⊢ vk : τ → res

Σ;Γ ⊢ read v vk : res

l:τ ∈ Σ

Σ;Γ ⊢ l : τ mod

Σ;Γ ⊢ e : res

Σ; Γ ⊢ memo e : res

Σ; Γ ⊢ v : τ

Σ; Γ ⊢ halt v : res

v ⇓ v

e ⇓ v′

succ e ⇓ succ v′

en ⇓ zero

ez ⇓ v′

caseN en ez (x.es) ⇓ v′

en ⇓ succ v′′

[v′′/x] es ⇓ v′

caseN en ez (x.es) ⇓ v′

ef ⇓ fun f.x.e ex ⇓ vx

[fun f.x.e/f, vx/x] e ⇓ v′

ef ex ⇓ v′

ℓ /∈ dom σ Ṫ ; σ[ℓ 7→ v]; vk ℓ ⇓E T ′;σ′; v′

Ṫ ; σ;write v vk ⇓K W
vk

ℓ←v
·T ′;σ′; v′

write
σ(ℓ) = v Ṫ ;σ; vk v ⇓E T ′; σ′; v′

Ṫ ; σ; read ℓ vk ⇓K R
vk

ℓ→v
·T ′;σ′; v′

read

Ṫ ; σ; e ⇓E T ′;σ′; v′

Ṫ ;σ;memo e ⇓K Me·T ′;σ′; v′
memo/miss

T ; e
m
; T ′′ T ′′;σ y T ′;σ′; v′

T ;σ;memo e ⇓K T ′;σ′; v′
memo/hit

Ṫ ;σ;halt v ⇓K Hv ;σ; v
halt

e ⇓ κ Ṫ ; σ; κ ⇓K T ′;σ′; v′

Ṫ ; σ; e ⇓E T ′;σ′; v′

Figure 4. SATgt typing ruleΣ; Γ ⊢ e : τ (top) and evaluation relationse ⇓ v′ andṪ ; σ; κ ⇓K T ′; σ′; v′ andṪ ; σ; e ⇓E T ′; σ′; v′ (bottom).

independent of the store. The three evaluation relations model the
execution of a self-adjusting program as the interleaving of pure
computations and adaptive commands. Note that evaluation pre-
supposes that neither the initial expression nor store havefree vari-
ables, but the initial expressionmayhave free locations which are
present in the initial store; these locations represent theprogram’s
(changeable) input.

A write v vk command yields a fresh locationℓ of typeτ mod
that is delivered to the continuationvk and updates the storeσ at ℓ
with v. A read ℓ vk command yields a valuev of typeτ (fetched
from the storeσ at ℓ) that is delivered to the continuationvk.

A memoized expressionmemo e in SATgt has no special
behavior when evaluated from scratch (memo/miss). However,
memoization enables the reuse of computationsacross runsdur-
ing change propagation. This differs from other uses of memoiza-
tion that permit sharing subcomputations within a single run of a
program. Thehalt v command yields a computation’s final result
value.

4.1 Change Propagation and Memoization

In order to update a program’s output in response to changes in its
input, achange propagationmechanism is employed to re-execute
the portions of the computation affected by the changes and to reuse
the unaffected portions. The evaluation relation records information
necessary for change propagation in atrace, a sequence of write,
read, and memoactionsterminated by a halt action:

A ::= W
vk

ℓ←v
| R

vk

ℓ→v
| Me T ::= Hv | A·T Ṫ ::= 2 | T

The evaluation relationṪ ; σ; e ⇓E T ′; σ′; v′ (resp. Ṫ ; σ;κ ⇓K

T ′; σ′; v′) may now be interpreted as reducing the expressione
(resp. the adaptive commandκ) under the storeσ and the (op-
tional) reuse tracėT , yielding the valuev′, the updated storeσ′,
and the computation traceT ′. A present reuse traceT is itself a
computation trace from a previous evaluation and is supplied to
change propagation to guide the update; in particular, evaluation
may reuse computations memoized in the previous evaluation(the

memoization judgement of Figure 5 used in thememo/hit eval-
uation rule).

The change propagation relationT ; σ y T ′; σ′; v′ (given in
Figure 5) may be interpreted as replaying the computation traceT
under the storeσ, yielding the valuev′, the updated storeσ′, and
the updated computation traceT ′.

Returning to the evaluation relation, a read operationread ℓ vk

dereferencesℓ and extends the computation trace with a read action
R

vk

ℓ→σ(ℓ)
that records the location dereferenced, the value fetched,

and the continuation of the read operation; the read action in a
computation trace identifies computations that must be re-executed
by change propagation. A write operationwrite v vk allocates a
location ℓ and extends the computation trace with a write action
W

vk

ℓ←v that records the location allocated, the value written, andthe
continuation of the write operation. Note that the choice oflocation
ℓ is independent of the reuse traceṪ . It is acceptable (and, indeed,
often desirable) for the locationℓ to appear in a write actionWvk

ℓ←v

in the reuse trace; we say that such a location is (implicitly) stolen
from the reuse trace.

The memo/miss rule evaluates a memoization expression
memo e and yields a traceMe·T ′, whereT ′ is the trace of the
evaluation ofe. Thememo/hit rule uses the memoization judge-
mentT ; e

m
; T ′′ (Figure 5) to search the reuse traceT for a suffix

reuse traceT ′′ that begins with the memoization actionMe. Note
that while the expressione may have free locations, the memoiza-
tion judgement is independent of the store. Hence, the rule switches
to change propagatingT ′′ under the current store in order to correct
any invalid reads or writes in the reuse traceT ′′.

Note that a memoization hit (memo/hit andm/hit) requires
the expression being evaluated and the expression in the memo
action to beα-equivalent. This equivalence requires the location
names appearing in the expressions to be syntactically equal. This,
in turn, motivates the implicit stealing of locations by thewrite
rule: (re-)executing a write, using a location that appearsin the
reuse trace, may allow a subsequent memoization action to match
in the reuse trace.

e◦ ≡α e

M
e◦ ·T ; e

m
; M

e·T
m/hit

T ; e
m
; T ′′

A·T ; e
m
; T ′

m/miss

ℓ◦ /∈ dom σ T ; σ[ℓ◦ 7→ v] y T ′; σ′; v′

W
vk

ℓ◦←v·T ; σ y W
vk

ℓ◦←v·T
′; σ′; v′

write/reuse
ℓ /∈ domσ T ; σ[ℓ 7→ v]; vk ℓ ⇓ T ′; σ′; v′

W
vk

ℓ◦←v·T ; σ y W
vk

ℓ←v·T
′; σ′; v′

write/change

σ(ℓ) = v v◦ ≡α v T ;σ y T ′; σ′; v′

R
vk

ℓ→v◦

·T ;σ y R
vk

ℓ→v·T
′; σ′; v′

read/reuse
σ(ℓ) = v T ; σ; vk v ⇓ T ′; σ′; v′

R
vk

ℓ→v◦

·T ; σ y R
vk

ℓ→v·T
′; σ′; v′

read/change

T ;σ y T ′; σ′; v′

M
e·T ;σ y M

e·T ′; σ′; v′
memo

Hv; σ y Hv; σ; v
halt

Figure 5. MemoizationT ; e
m
; T ′′ (top) and change propagationT ;σ y T ′; σ′; v′ (bottom).

Turning to the change propagation relation (Figure 5), recall
that we interpretT ; σ y T ′; σ′; v′ as replaying the computation
traceT under the storeσ, yielding the valuev′, the updated store
σ′, and the updated computation traceT ′. A write W

vk

ℓ◦←v that
is consistent with the current store (write/reuse, requiring that
ℓ◦ /∈ dom σ) extends the store withℓ◦ bound tov and recursively
change propagates the tail of the trace. A write that is inconsistent
with the current store (ifℓ◦ ∈ dom σ) or is nondeterministically
chosen to be re-executed (write/change) forces the allocation
of a fresh locationℓ and re-evaluates the continuationvk with the
locationℓ. A readRvk

ℓ→v◦

that is consistent with the current store
(read/reuse, requiring σ(ℓ) = v ≡α v◦) recursively change
propagates the tail of the trace. A read that is inconsistentwith the
current store (ifσ(ℓ) = v 6≡α v◦) or is nondeterministically chosen
to be re-executed (read/change) re-evaluates the continuation
vk with the current contents ofℓ. Replaying a memoization action
recursively change propagates the tail of the trace. Replaying a
halt action yields the (unchanged) computation result. Whenever
change propagation is recursively applied, the updated computation
trace is extended with an appropriate action.

Note that change propagation copies the prefix of the computa-
tion trace up to the first read or write that triggers re-execution. If
there were nomemo/hit evaluation rule, then re-execution would
never return to change propagation and the entire tail of thecom-
putation would be re-executed by the evaluation judgement,which
may be no better (asymptotically) than evaluating from scratch.
Hence, memoization is crucial for efficient change propagation.

Although thewrite rule may allocate locations in the reuse
trace and the memoization judgement may match computationsin
the reuse trace, the rules are intentionally nondeterministic to avoid
committing to particular allocation and memoization policies. It is
possible to consider the rules as being guided by an oracle that
decides when to steal locations and when to match memoizations.
Since making such choices optimally is undecidable in general, the
adaptive library described in Section 6.1.2 provides mechanisms
that restrict when locations may be stolen and when memoization
may match.

We can now sketch the use of change propagation by a host
program that (re-)evaluates a self-adjusting computation. Suppose
we have aSATgt programe such thatΣ; · ⊢ e : res and an initial
storeσ0 such that⊢ σ0 : Σ⊎Σ0. Thus, we may (initially) evaluate
e under the storeσ0 and an empty reuse trace, yielding the (initial)
resultv′0 and a computation traceT ′0: 2; σ0; e ⇓E T ′0; σ

′
0; v
′
0. Now,

suppose we have a modified storeσ1 such that⊢ σ1 : Σ ⊎ Σ1. We
are interested in the resultv′1 yielded by (re-)evaluatinge underσ1.
To obtainv′1, we may change propagate the traceT ′0 under the store

σ1: T ′0; σ1 y T ′1; σ
′
1; v
′
1. The correctness of change propagation

asserts that thev′1, σ′1, andT ′1 obtained via the change-propagation
relation could also have been obtained via the evaluation relation:
2; σ1; e ⇓E T ′1; σ

′
1; v
′
1. Hence, change propagation suffices to

determine the output of a program on changed inputs.

5. Compiling ASrc to SATgt

The annotations ofASrc programs are used to guide anadap-
tive continuation-passing styletransformation into an equivalent
SATgt program. The transformation is a standard cps conversion,
with the following notable differences: only adaptiveASrc func-
tions are converted to continuation-passing style, while normal
ASrc functions remain in direct style (thus, our transformationis
an instance of a selective cps transformation (Danvy and Hatcliff
1993a,b; Nielsen 2001; Kim and Yi 2001)); theASrc boxing prim-
itives put andget are converted into explicitwrite andread
operations; and memoizing adaptiveASrc functions are converted
using explicitmemo operations. Figure 6 shows the type and ex-
pression translations. The correctness and efficiency of the transla-
tion is captured by the fact that well-typedASrc programs are com-
piled into equivalent well-typedSATgt programs with the same
asymptotic complexity for initial runs (i.e. SATgt evaluation with
an empty reuse trace).

The type translationJτ asrcK = τ satgt preserves thenat type, re-
cursively translates the normal function type (without introducing
continuations), converts the adaptive function type to take a con-
tinuation argument, and converts the boxed type to a modifiable
type. There are two term translations:JeasrcK• = esatgt translates
expressions appearing as the body of normalASrc functions and
JeasrcK$ vsatgt

k = esatgt translates expressions appearing as the body
of adaptiveASrc functions (using theSATgt-valuevsatgt

k as the ex-
plicit continuation term); the metavariablesy andk are used to dis-
tinguish identifiers introduced by the translation. TheJeK• transla-
tion recursively translates sub-expressions and appropriately trans-
lates the body of normal and adaptive functions, introducing contin-
uation arguments for adaptive functions; we explain the translation
of mfun in more detail below. Note thatJeK• is not defined for
adaptive applications or the boxing primitives, as these expressions
may not appear in the body of a well-typed normal function.

The JeK$ vk translation is a standard cps conversion for con-
stants (zero andℓ), variables (x), adaptive functions (afun f.x.e),
and adaptive applications (e1 $ e2). ForASrc expressions translated
to SATgt expressions that are evaluated in direct style (succ e,
caseN en ez (x.es), ande1 e2), the translation delivers the result
to the continuationvk. Finally, it translates the boxing primitives

R : r e a dW : w r i t eP (,) : c a l l t o p a r tk i () : c a l l t o k iW P (l 1 , m k 1) R W P (l 3 , m k 3) R P (l 4 , m k 4)W R W R k 3 (o 4) R k 1 (o 3) W R k 0 (o 1)Wl 1 l 3 l 4 o 4 o 3 o 1m k 4m k 3m k 1
1 : : l 3 3 : : l 4 n i l 3 : : o 4 1 : : o 3 W P (l 1 , m k 1) W P (l 3 , m k 3) R P (l 4 , m k 4)W R W R k 3 (o 4) R k 1 (o 2) W R k 0 (o 1)Wl 1 l 3 l 4 o 4 o 3 o 1m k 4m k 2m k 1

1 : : l 2 3 : : l 4 n i l 3 : : o 4 1 : : o 2R W2 : : l 3l 2P (l 2 , m k 2) m k 3 R k 2 ' (o 3) W o 22 : : o 3
L e g e n d R

Figure 7. Execution ofpartition on lists[1,3] (left) and[1,2,3] (right).

JnatK = nat
Jτx → τK = JτxK → JτKs
τx

$
→ τ

{
= JτxK → ((JτK → res) → res)

Jτ boxK = JτK mod

JzeroK• = zero

Jsucc eK• = succ JeK•
JcaseN en ez (x.es)K• = caseN JenK• JezK• (x. JezK•)

JxK• = x
Jfun f.x.eK• = fun f.x. JeK•q

ef ex

y•
=

q
ef

y• JexK•
Jafun f.x.eK• = fun f.x.λk. JeK$ k

Jmfun f.x.eK• =
fun f.x.λk1. 1

let k2 = λyr .memo (k1 yr) in 2

write k2 (λyk . 3

let k′ = λyr .read yk (λk3.k3 yr) in 4

memo (JeK$ k′)) 5

JℓK• = ℓ

JzeroK$ vk = vk zero

Jsucc eK$ vk = JeK$ (λy.vk (succ y))

JcaseN en et (x.es)K$ vk =

JenK$ (λy.caseN y (JezK$ vk) (x.(JesK$ vk)))

JxK$ vk = vk x

Jfun f.x.eK$ vk = vk Jfun f.x.eK•q
ef ex

y$
vk =

q
ef

y$
(λyf . JexK$ (λyx.vk (yf yx)))

Jafun f.x.eK$ vk = vk Jafun f.x.eK•
Jmfun f.x.eK$ vk = vk Jmfun f.x.eK•

Je1 $ e2K$ vk = Je1K$ (λyf . Je2K$ (λyx.(yf yx) vk))

Jput $ eK$ vk = JeK$ (λy.(write y vk))

Jget $ eK$ vk = JeK$ (λy.(read y vk))

JℓK$ vk = vk ℓ

Figure 6. Type translationJτ asrcK = τ satgt (top) and expression
translationsJeasrcK• = esatgt andJeasrcK$ vsatgt

k = esatgt (bottom).

(put $ e and get $ e) by extending the continuationvk with a
write or read operation. Although thehalt expression is not in
the image of the translation, it may be used as an initial continua-
tion for evaluating a cps-converted program.

The translation of memoizing functions (mfun) is central to
producing effective self-adjusting programs through compilation.
Note that a naı̈ve translation:

Jmfun f.x.eK• = fun f.x.λk.memo (JeK$ k)

is ineffective, becausememo (JeK$ k) will only result in a mem-
oization hit when both the argumentx and continuationk are the
same as in the previous run, despite the fact that the computation of
e depends only onx and not on the calling context (now explicit in

the continuationk). Ideally, a memoizing function (in cps) should
maintain a map from arguments to results; if the function is called
with a previously-seen argument, then the (possibly different) con-
tinuation is invoked with the memoized result immediately.The
compilation of a memoizing adaptiveASrc function into aSATgt
function consists of two parts, which we explain by referring to
the line numbers in the translation ofmfun. Note that, unlike the
translation of a non-memoizing adaptive function (afun), a mem-
oizing adaptive function modifies its continuation before executing
the function body.

First, memoizing on the argument alone is achieved by treating
the continuation as changeable data and placing it in a modifiable
reference (lines 3-5). Therefore, if change propagation starts re-
executing due to an inconsistent read or writebefore a call to
a memoizing function, then re-executing the function call with
the same argument can result in a memoization hit even if the
continuation differs. By placing the continuation in a modifiable
bound toyk (line 3), the function is memoized on the argumentx
and the referenceyk (line 5). Provided write allocation stores the
new continuation at the same location, the function is effectively
memoized on the argument alone. When the function body invokes
its continuationk′ with the result, the new continuation must be
passed the old result. This is achieved by reading the continuation
back from the modifiable intok3 and invoking it with the resultyr

(line 4).
Second, if change propagation encounters an inconsistent read

or write during the execution of a memoizing function, then it is
necessary to re-execute the function body but it may be possible to
avoid invoking the function’s continuation. When an inconsistent
read or write occurs during the execution of the body of a memoiz-
ing function, the function’s continuationk1 will be the same as on
the previous run. If the function body yields the same resultvalue
during re-execution as during the previous run, then it is desirable
to reuse the previous computation, rather than invoking (the same)
k1 with (the same) result. This can be achieved by wrapping con-
tinuationk1 with thememo operation (line 2).

Although SATgt memoization can match whenever identical
expressions are evaluated, we do not implement this semantics be-
cause it would require comparing arbitrary expressions andmain-
taining a global memoization table. Memoizing a function enables
using local memo tables indexed by the function’s argument and is
sufficient for making change propagation work well in practice.

5.1 An Example Execution

To illustrate how translated programs execute, recall the
partition function (Figure 1) and its translation (Figure 2). Con-
sider executingpartition with the constanttrue predicate on the
modifiable list[1,3] and then updating the input list to[1,2,3]
by inserting an element. Figure 7 shows a pictorial representation
of the traces from the two executions. A trace consists of read and
write actions, and memoized calls topart and continuations. The
differences between the two runs are highlighted on the right.

The continuation passed topartition (and thus to the first
call topart memo) is namedk0. Each recursive call topart memo
memoizes and writes its continuation into a modifiable (lines 15
and 17) and makes a memoized call topart (line 19), which reads
the next modifiable in the list (line 3), makes a continuationthat
ultimately writes an element to the output (lines 8-12), andcalls
part memo. Modifiables containing the continuations are labeled
mki. To insert2 into the input and update the output, we allocate
a new modifiablel2, change the modifiablel1, and run change
propagation.

Change propagation starts re-executing the read ofl1, which
writes the same continuationk1 as before tomk2 and callspart
with l2 and mk2. After l2 is read, a new continuationk2’ is
written to mk34 andpart is called withl3 andmk3. This call is
in the reuse trace, so there is a memoization hit, which completes
the execution of the first read. Since the continuation written to
mk3 is new, change propagation starts re-executing the read of
mk3, which calls the continuationk2’ with o3. The continuation
k2’ writes to o2, readsmk2, and calls the continuationk1. The
continuationk1 writes to o15, readsmk1, and callsk0 with o1.
This call is in the reuse trace, so there is a memoization hit,which
completes the execution of the second read and, as there are no
more inconsistent reads, change propagation completes. Change
propagation performs the work for the element before the insertion
point and at the insertion point only; regardless of the input size, the
result is updated by performing a small, constant amount of work.

6. Implementing Self-Adjusting SML
To validate this approach to self-adjusting programming, we have
extended the Standard ML programming language with syntactic,
static typing, and library support for self-adjusting programs and
we have modified the MLton compiler to support the extended lan-
guage.6 This integration yields direct linguistic support for self-
adjusting programming, which has been suggested to be neces-
sary for scaling to large programs and for enforcing the numer-
ous invariants required for self-adjusting computation towork cor-
rectly (Acar et al. 2006a).

6.1 Self-Adjusting SML

Thorough support for self-adjusting programming in Standard ML
is provided by the combination of language extensions and a library
of adaptive and meta-level operations. A user interested inwriting
self-adjusting programs need only familiarize herself with these
two components.

6.1.1 Language extensions

Following ASrc, we introduce an adaptive function type,
written “ty -$> ty ”. An adaptive function is intro-
duced via either the expression form “afn match ” or
the declaration forms “afun tyvarseq fvalbind ” and
“mfun tyvarseq fvalbind ”. All of these forms simply change
the introductory keyword of existing Standard ML forms for
function introduction; hence, adaptive functions enjoy the same
syntactic support for mutually recursive function definitions,
clausal function definitions, and pattern matching as (normal)
functions. An adaptive function is eliminated via the expression
form “exp $ exp ”; as in ASrc, adaptive applications may only
appear within the body of an adaptive function.

4 Stealing allows the write to reusemk3.
5 Again, stealing allows the write to reuseo1.
6 The implementation may be obtained at
http://ttic.uchicago.edu/∼pl/sa-sml.

signature ADAPTIVE = sig

type ’a box

val put : ’a -$> ’a box

val get : ’a box -$> ’a

(** Stealing, Reuse, and Memoization **)

type ’a eq = ’a * ’a -> bool

val eqDflt : ’a eq

type ’a hash = ’a -> word

val hashDflt : ’a hash

type ’a key = ’a eq * ’a hash

val mkPut’ : ’k key * ’a eq -$> (’k * ’a -$> ’a box)

val mkPut : unit -$> (’k * ’a -$> ’a box)

val putTh : (unit -$> ’a) -$> ’a box

val memoFix : (’a key * ’r eq *

((’a -$> ’r) -> (’a -$> ’r)))

-> (’a -$> ’r)

val memoCont : (’r eq * (’a -$> ’r))

-> (’a -$> ’r)

(** Meta operations **)

val new : ’a eq * ’a -> ’a box

val change : ’a box * ’a -> unit

val deref : ’a box -> ’a

datatype ’a res = Value of ’a | Exn of exn

val call : (’a -$> ’r) * ’a -> ’r res ref

val propagate : unit -> unit

end

structure Adaptive :> ADAPTIVE = struct ... end

Figure 8. Signature for theAdaptive library.

Note that while these language extensions introduce a new type,
they do not (significantly) change the type system of Standard ML.7

Hence, all of the familiar features of Standard ML (parametric
polymorphism, type inference,etc.) are immediately available to
adaptive functions. Furthermore, these extensions are easily inte-
grated into a Standard ML compiler, since their treatment bythe
front-end is entirely analogous to the treatment of normal functions.

6.1.2 Library interface

Figure 8 gives the interface of theAdaptive library. The library
provides thebox type and theget and put adaptive functions
from ASrc. The next group of types and values are mechanisms
to control the nondeterministic stealing, reuse, and memoization
that appears in the dynamic semantics of Section 4. The last group
of types and values aremeta operationsused by a host mutator
program to control a self-adjusting computation.

The functions for controlling nondeterminism require equality
predicates and hash functions; thekey type is an abbreviation for
a tuple consisting of an equality predicate and a hash function. The
default equality predicate and hash function use MLton extensions
that provide a polymorphic structural equality predicate and a poly-
morphic structural hash function, both of which may be instantiated

7 Technically, we must introduce new typing rules for adaptive functions
and adaptive applications, but they are identical to the typing rules for
normal functions and normal applications except for the useof the adaptive
function type. Similarly, as inASrc, a mode component in the typing rules
is used to preclude adaptive applications from the body of normal functions.

at any type8; on values of function type, they operate on the struc-
ture of the function closure. The defaults make it easy to migrate
an ordinary pure functional program to a self-adjusting program
and avoid the need for awkward tagged values used in previous
work (Acar et al. 2006a).

Controlling the nondeterministic stealing, reuse, and memoiza-
tion during change propagation is the most complex and subtle as-
pect of using the adaptive library. However, these mechanisms are
only necessary to improve the efficiency of change propagation, not
to enforce its correctness.

ThemkPut’ operation takes a key and an equality predicate and
returns anallocator, a function for allocating boxes. The allocator
records the locations that were allocated for individual writes dur-
ing an execution. When those writes are re-executed during change
propagation, the library attempts to reuse the locations allocated in
the previous execution by matching the supplied key element. A
hash table is used to map key elements to locations, which moti-
vates the components of the key. The mechanism is robust in the
presence of repeated key elements: collisions may degrade the effi-
ciency of change propagation, but not its correctness. Whenthe lo-
cation of a box is reused, the equality predicate determineswhether
the contents of the box have changed.9

ThemkPut operation is a special case ofmkPut’ that uses the
default equality predicate and hash function:

afun mkPut () =
mkPut’ $ ((eqDflt, hashDflt), eqDflt)

The putTh operations corresponds to a common scenario, where
the allocating function returned bymkPut is used exactly once:

afun putTh th =
let val putM = mkPut $ () in
putM $ ((), th $ ()) end

If change propagation begins re-executing within the body of the
adaptive thunk, then the result will be stored at the same location
that was allocated during the previous execution.

ThememoFix operation is used to create memoized functions.
The operation takes a key tuple on the argument, an equality predi-
cate on the result, and the function to memoize; since thememoFix
operation is used to memoize recursive functions, it takes the func-
tion to memoize in the form suitable for a fixed-point combina-
tor. Recall the translation ofmfun from Figure 5. In order to
reuse the location returned bywrite k2 (λyk. · · ·) at line 3, the
equality predicate and hash function on the function argument are
used to match the correspondingwrite k2 (λyk. · · ·) in the pre-
vious execution. The equality predicate and hash function on the
function argument are also used to effect thememo (JeK$ k′) at
line 5.10 The equality predicate on the result is used to implement
thememo (k1 yr) at line 2.

A subtlety ofmemoFix is that it memoizesonly the recursive
calls: re-executing the call of a function memoized bymemoFix will
only attempt to match calls of the function in the previous execution
that are nested within the same root call of the function as isthe re-
executing call. Despite this apparent limitation,memoFix suffices
for most self-adjusting computations, since change propagation

8 This differs from Standard ML’s polymorphic equality, which may only
be instantiated at equality types.
9 This is the implementation realization of thev◦ ≡α v predicate in the
read/reuse rule of Figure 5. Since there is a degree of nondeterminism
between theread/reuse andread/change rules, the equality predi-
cate need only be conservative.
10As before, a hash table is used to map arguments to continuation loca-
tions.

typically begins re-execution within a nested call of a recursive
function.

In practice, though, the adaptive library may provide additional
operations with different memoization properties. For example, the
memoCont operation implements only thememo (k1 yr) at line 2
and only for non-recursive calls of the memoized function.

The new, change, andderef operations are used by the host
mutator program to create and modify inputs for and inspect out-
puts of a self-adjusting computation. Thecall operation is used to
perform the initial execution of a self-adjusting computation. Note,
that thecall operation is theonly means of “applying” an adap-
tive function outside the body of another adaptive function. The
result of thecall operation is a mutable reference cell containing
the output (distinguishing between normal and exceptionaltermi-
nation) of the self-adjusting computation. After changingthe in-
puts, thepropagate operation is used to perform change propaga-
tion; the new output may be observed as the new contents of the
mutable cell. Since the meta operations are impure, they should not
be used within adaptive functions — correctness demands that self-
adjusting computations not make calls to impure normal functions.

6.2 Implementation

To implement Self-Adjusting SML, we modified the MLton com-
piler (version 20070826) to support the language extensions for
adaptive functions and to perform a cps-transformation pass that
converts adaptive functions into continuation-passing style and we
developed libraries to support self-adjusting computation, on top
of which the Adaptive library is implemented. Both the lan-
guage extensions and the compiler modifications that we describe
below are agnostic to the fact that they have been introduced
to support self-adjusting computations. Indeed, the compiler pro-
vides no direct support for tracking the dynamic data dependences
of self-adjusting computations or for re-executing computations
during change propagation. That support comes from the self-
adjusting-computation libraries. This approach minimized the nec-
essary compiler modifications.

In total, we added or modified 1600 lines of code in the MLton
compiler, of which 760 correspond to the cps-transformation pass,
and wrote 2800 lines of code for the libraries.

6.2.1 Compiler modifications

Front-end. As suggested above, the language extensions are eas-
ily integrated into MLton, since their treatment by the front-end
is entirely analogous to the treatment of normal functions.Most
changes simply generalize the existing function introduction and
function application forms to adaptive functions in a smallnumber
of the compiler intermediate languages.

To support themfun keyword, the front-end desugarsmfun dec-
larations to adaptive functions whose bodies are memoized with
(generalizations of) thememoFix operation. The desugaring uses
the default equality predicate and hash function and supports mu-
tually recursivemfun declarations.

Adaptive cps transformation. The cps-transformation pass is im-
plemented as an SXML-program to SXML-program transforma-
tion; SXML is the name of a simply-typed, higher-order, A-normal-
form intermediate language in the compiler. This is the mostsignif-
icant change to the compiler. Each of the ILs prior to and including
the SXML IL were extended with adaptive function and adaptive
application forms and the optimizations on and transformations be-
tween these ILs were extended to handle the new forms. The cps-
transformation pass eliminates all adaptive functions andadaptive
applications in the input SXML program. The output SXML pro-
gram (having no adaptive forms) corresponds to an SXML program
in the unmodified compiler; hence, no subsequent ILs, optimiza-
tions, or transformations in the compiler require any changes.

The actual cps transformation is entirely straightforward; in-
deed, the fact that the input program is in A-normal form makes the
transformation even simpler than the one presented in Section 5.
The only additional notable features of the transformationis the
treatment of exceptions. Since the SXML IL has explicitraise
andhandle constructs for exceptions, we use a double-barrelled
continuation-passing style transformation (Kim et al. 1998; Thi-
elecke 2002), where each adaptive function is translated totake
two continuations: a return continuation and an exception-handler
continuation. When transforming the body of an adaptive function,
raises are translated to invocations of the exception continuation
andhandles are translated to pass a local handler continuation to
the body. This treatment of exceptions allows adaptive functions
to freely raise and handle exceptions, just like normal functions.
Indeed, an adaptive function may handle an exception raisedby a
normal application appearing in its body.

Primitives. Bridging the gap between the compiler and the self-
adjusting-computation libraries are two primitives that witness the
implementation of adaptive functions in continuation-passing style:

type ’a cont = ’a -> unit

type (’a, ’b) xfn = (’b cont * exn cont * ’a) cont

val afn to xfn : (’a -$> ’b) -> (’a, ’b) xfn

val xfn to afn : (’a, ’b) xfn -> (’a -$> ’b)

These primitives are not exposed to the user, as they could beused
to violate invariants expected by the self-adjusting computation
libraries described below. The primitives are eliminated by the cps-
transformation pass, where they are implemented as the identity
function.

6.2.2 Self-adjusting computation libraries

A low-level self-adjusting-computation library effectively imple-
ments the semantics ofSATgt, providing operations for writing and
reading modifiables, for memoizing functions, and for perform-
ing change propagation. It is an implementation of the previously
proposed monadic libraries (Acar et al. 2006b,a) specialized for
cps. To provide efficient change propagation, the implementation
maintains a priority queue of continuations from inconsistent reads
of modifiable references. The implementation represents trace el-
ements (e.g., writes, reads) with a time-stamp data structure and
uses hash tables as described above for stealing and memoization.
By taking advantage of the fact that continuations are explicit, we
are able to simplify the representation of reads to use only one time
stamp (previous work required two) and eliminate the mutualre-
cursion between change propagation and memoization.

The high-levelAdaptive library described in Section 6.1.2 is
implemented as a wrapper around the low-level library. Since the
high-level library uses the adaptive functions from the language
extensions while the low-level library uses explicit continuation-
passing style, we use the theafn to xfn andxfn to afn primi-
tives to convert between the two representations.

7. Experiments
We describe a preliminary experimental evaluation of our compila-
tion technique. In summary, the experiments indicate that our ap-
proach to compiling self-adjusting programs is consistentwith the
previously reported asymptotic bounds and experimental evalua-
tions (Acar et al. 2006b) of the monadic libraries (Acar et al. 2006a)
for self-adjusting computation.

7.1 Synthetic applications

Benchmarks. We implemented self-adjusting versions of the fol-
lowing algorithms, which are used in previous evaluations.

• filter , map, reverse, fold: The standard list functions.

• merge-sort, quick-sort: The merge-sort and quick-sort algo-
rithms for list sorting.

• diameter: An algorithm (Preparata and Shamos 1985) for com-
puting diameter (extent) of a planar point set.

• quick-hull : The quick-hull (Barber et al. 1996) algorithm for
the convex-hull of a planar point set.

These algorithms utilize a number of computing paradigms in-
cluding simple iteration (filter, map), accumulator passing
(reverse, quick-sort), random sampling (fold), and divide-
and-conquer (merge-sort, quick-sort, quick-hull).

Our benchmarks are specific instances of the algorithms. Alllist
benchmarks operate on integer lists. Thefilter benchmark keeps
the even elements in an integer list. Themap benchmark adds a
fixed value to each element in an integer list. Bothminimum and
sum are instances of thefold algorithm. The sorting benchmarks
(qsort, msort) sort integer lists. The computational-geometry
benchmarks (diameter, quick-hull) operate on lists of points
in two dimensions.

The input to our experiments is randomly generated. To gen-
erate a list ofn integers, we choose a random permutation of the
integers from1 to n. To generate points in two dimensions, we
choose random points uniformly from within a disc of radius10n.

Measurements. Our experiments were performed on a desktop
computer (two single-core 2GHz AMD Opteron processors; 8GB
physical memory; Linux 2.6.23 operating system (Fedora 7)).
Benchmarks were executed with the “gc-summary” runtime op-
tion, which reports GC statistics (e.g., GC time). In this evaluation,
we do not report GC times.

To understand the effects of the cps-transformation on the ordi-
nary (non-self-adjusting) version of our benchmarks, we consider
two instances of each ordinary benchmark. The cps instance of an
ordinary benchmark is written using adaptive functions andadap-
tive applications, but does not use the adaptive library; the compiler
transforms these adaptive functions and adaptive applications into
cps. The direct-style instance is written using normal functions and
normal applications (and does not use the adaptive library); these
functions and applications are unchanged by the cps-transformation
pass. Our results show that there is a slight performance differ-
ence between directly-style instance and the cps instances: direct
style is often slightly faster, but not always. This confirmsthat our
selective cps translation is effective in reducing the overheads of
continuations. We therefore use the direct-style instanceof the or-
dinary version for comparing ordinary and self-adjusting versions.
We measure the following quantities:

• Time for from-scratch execution: The time for the from-
scratch execution of the ordinary or self-adjusting version.

• Average propagation time for a single insertion/deletion:For
each element in the input list, we delete the element, run change
propagation, insert the element (at the same point), and run
change propagation. The average is taken over all propagations.

• Overhead: This is the ratio of the time for the from-scratch
execution of the self-adjusting version to the time for the from-
scratch execution of the ordinary version with the same input.

• Speedup:This is the ratio of the time for the from-scratch run
of the ordinary version to the average time for propagating a
single insertion/deletion.

In our measurements, we isolate the quantity of interest; that
is, we exclude the time to create the initial input and, in change-
propagation timings, we exclude the time to perform the initial run.

Results. Table 1 gives summaries for the benchmarks at fixed in-
put sizes. Each columns show the measurements for the quantities

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20000 40000 60000 80000 100000

Quick Hull (Time (s) for from-scratch execution)

Self-Adjusting
Ordinary (CPS)

Ordinary (Direct)

 0.00026

 0.00028

 0.0003

 0.00032

 0.00034

 0.00036

 0.00038

 0.0004

 0 20000 40000 60000 80000 100000

Quick Hull (Average propagation time (s) for a single insertion/deletion)

Propagation Time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20000 40000 60000 80000 100000

Quick Hull (Speedup)

Speedup (vs. CPS)
Speedup (vs. Direct)

(a) Time (s) for from-scratch execution (b) Average propagation time (s) (c) Speedup

Figure 9. Selected measurements forquick-hull.

Application Ord. Self-Adj. Self-Adj. Avg. Overhead

(Input size) Exec. (s) Exec. (s) Propagate (s) Speedup

filter (106) 0.22 4.00 0.000007 18.2 33170

map(106) 0.32 9.53 0.000018 30.0 17427

reverse(106) 0.20 4.83 0.000014 24.3 14410

minimum(106) 0.12 2.80 0.000020 23.5 5877

sum(106) 0.12 2.94 0.000155 25.6 740

msort(105) 0.56 17.96 0.001442 32.3 386

qsort(105) 0.35 11.16 0.000949 32.3 365

diameter(105) 1.25 3.54 0.000343 2.8 3628

quick-hull (105) 1.08 3.52 0.000325 3.3 3313

Table 1. Summary of benchmark timings.

described above. The overheads range between3 and33. The in-
teger benchmarks have higher overheads because the performtriv-
ial work between self-adjusting computation primitives. Computa-
tional geometry benchmarks have less overheads because thege-
ometry operations are more expensive (relative to self-adjusting
computation primitives). Change propagation leads to orders of
magnitude speedups over from-scratch executions. This is because
there is often a near-linear time asymptotic gap between executing
from scratch and performing change propagation.

Figure 9(a) compares the from-scratch executions of the ordi-
nary and self-adjusting versions ofquick-hull. The figure shows
that there is a small difference between the cps and the direct-style
instance of the ordinary version. Figure 9(b) shows the average
change-propagation time for a single insertion/deletion.As the fig-
ure shows, the time remains nearly constant. Intuitively, this is be-
cause many of the input changes do not change the output, which
change propagation can take advantage of to update the output
quickly. Figure 9(c) shows the average speedup, which increases
linearly with the input size to exceed three orders of magnitude.

7.2 Raytracer application

For a less synthetic benchmark, we implemented a self-adjusting
raytracer. This application would have been quite cumbersome to
write using the previous monadic libraries (Acar et al. 2006a),
but was straightforward using this work. The raytracer supports
point and directional lights, sphere and plane objects, anddiffuse,
specular, transparent, and reflective surface properties.The surface
properties of objects are changeable data; thus, for a fixed input
scene (lights and objects) and output image size, we can render
multiple images (via change propagation) that vary the surface
properties of objects in the scene. Note that this application is not
always well suited to self-adjusting computation because making a
small change to the input can affect a large portion of the output.

Figure 10. Ray-tracer output.

For experiments, we ren-
der an input scene (shown on
the right) of 3 light sources
and 19 objects with an out-
put image size of512 × 512
and then repeatedly change
the surface properties of a sin-
gle surface (which may be
shared by multiple objects in
the scene). A·D change in-
dicates that the surface was
toggled with a diffuse (non-
reflective) surface, while an
·M change indicates that the
surface was toggled with a mirror surface. We measure the time for
from-scratch execution for both the ordinary & self-adjusting ver-
sions, and the average propagation time for a single toggle of the
surface. For each change to the input, we also measure the change
in the output image as a fraction of pixes.

Image Size Self-Adj. Exec. (s) Ord. Exec. (s)

512 × 512 7.643 2.563

Surface Image Diff. Self-Adj. Avg. Ord. Avg.

Changed (% pixels) Propagate (s) From-Scratch (s)

AD 57.22% 3.430 2.805

AM 57.22% 11.277 3.637

BD 8.43% 0.731 2.817

BM 8.43% 1.471 2.781

CD 9.20% 0.855 2.810

CM 9.20% 1.616 2.785

DD 1.85% 0.142 2.599

DM 1.85% 0.217 2.731

ED 19.47% 2.242 2.154

EM 19.47% 4.484 2.237

Table 2. Summary of raytracer timings.

Table 2 shows that self-adjusting raytracer is about three
times slower than the ordinary version. Change propagationyields
speedups of 1.6 to 18.0 when less than 10% of the output image
changes. If the output changes more significantly (surfacesA and
E), then the change-propagation can be slower than the ordinary
version. This is expected because the amount of work change prop-
agation performs is roughly proportional to the fraction ofchange
in the output (e.g., updating half the output requires half the work of
a from-scratch execution). Changes that makes a surface reflective

(the·M changes), are more expensive, because they require casting
new rays in addition to updating existing rays.

8. Related Work
We review related work on incremental computation and some
recent interactions between functional reactive programming and
incremental computation. For a more complete list of references
and other approaches to incremental computation, we refer the
reader to the bibliography of Ramalingam and Reps (1993).

Dependence-graph techniques record the dependencies between
data in a computation, so that a change-propagation algorithm can
update the computation when the input is changed. Demers, Reps,
and Teitelbaum (1981) and Reps (1982) introduced the idea of
static dependence graphsand presented a change-propagation al-
gorithm for them. The main limitation of static dependence graphs
is that they do not permit the change-propagation algorithmto up-
date the dependence structure. This significantly restricts the types
of computations to which static-dependence graphs can be applied.
For example, the INC language (Yellin and Strom 1991), which
uses static dependence graphs for incremental updates, does not
permit recursion. Another approach to incremental computation is
based on memoization (Bellman 1957; McCarthy 1963; Michie
1968), where function calls are remembered and re-used whenpos-
sible. Pugh and Teitelbaum (1989) were the first to apply memo-
ization (also called function caching) to incremental computation.
Since their work, others have investigated applications ofvarious
forms of memoization to incremental computation (Abadi et al.
1996; Liu et al. 1998; Heydon et al. 2000; Acar et al. 2003).

The first work on self-adjusting computation, called Adaptive
Functional Programming (AFP) generalized dependence-graph ap-
proaches by introducing dynamic dependence graphs (DDGs) and
proposing language facilities for writing adaptive programs (Acar
et al. 2002). As an adaptive programs executes, a run-time sys-
tem construct its DDG. When data changes takes place, a change-
propagation algorithm updates both the output and the DDG by
re-executing the parts of the computation affected by the changes
as necessary. In AFP, the change-propagation algorithm conserva-
tively deletes the parts of the DDG that might have a control de-
pendence on changed data and constructs replacements by execut-
ing code as necessary. This can cause change-propagation toper-
form more work than optimal. Subsequent work identified a dual-
ity between change propagation and memoization to improve the
effectiveness of change propagation by enabling the re-useof sub-
graphs of deleted DDGs via a form of memoization (Acar et al.
2006b). Recent work showed that self-adjusting computation may
be generalized to support updateable (imperative) modifiable refer-
ences (Acar et al. 2008a).

Self-adjusting computation has been implemented by extend-
ing several existing languages. Carlsson (2002) presentedan imple-
mentation of the original AFP library (Acar et al. 2002) in Haskell.
By using monads, the Haskell library ensures some correct-usage
properties that the AFP library did not enforce. A later version
of our SML library applied a techniques similar to Carlsson’s to
ensure safe usage of certain primitives (Acar et al. 2006a).Safe
usage of memoization primitives, however, could not be enforced
statically in the library setting. Shankar and Bodik (Shankar and
Bodik 2007) gave a specialized implementation of self-adjusting
computation in the Java language. The implementation is targeted
to invariant-checking and is not sound in general. It restricts the
kinds of programs that can be written (e.g., return values from func-
tions calls can only be used in certain ways). Recent work presented
an implementation of self-adjusting computation in the C language
and extended change-propagation to support efficient garbage col-
lection (Hammer and Acar 2008).

Functional Reactive Programming (FRP) (e.g., Elliott and Hu-
dak 1997; Elliott 1998; Nilsson et al. 2002; Courtney 2001) offers
techniques for programming reactive system. FRP provides prim-
itives for programming with behaviors and events, which arecon-
tinuous and discrete functions of time respectively. Although FRP
research remained largely orthogonal to incremental computation,
it may benefit from incremental computation, because computa-
tions performed at consecutive time steps can be similar. Inpar-
ticular, self-adjusting computation may be applied to FRP by rep-
resenting time-varying values (e.g., behaviors, events, signals) us-
ing modifiable references and by performing change-propagation
to update the computation when necessary. Cooper and Krishna-
murti (2004; 2006) give a Scheme implementation of Adaptive
Functional Programming (AFP) (Acar et al. 2002) for this purpose.
The approach is also adapted to the Java language (fla). Thereare
some differences between their implementation and AFP. AFPpro-
vides safe language facilities for controlling the granularity of de-
pendence tracking, while pointing out that all dependencescan also
be tracked. The Scheme implementation tracks all dependences by
placing all time-varying values (called signals) in modifiables. Sub-
sequent work develops static optimization techniques for reducing
the cost of tracking all dependences (Burchett et al. 2007) but offers
no comparison to the AFP approach. AFP provides techniques for
correct and efficient implementation of DDGs; a key component of
the implementation is a representation of DDGs using topological
orders and order-maintenance data structures. The Scheme imple-
mentation uses depth/height information instead of a topological
order; this complicates the handling of cyclic dependencesand the
dynamic maintenance of the DDG. It can also be inefficient, be-
cause deleting a DDG node can change the height of all the remain-
ing nodes, requiring linear time in the size of the DDG. The authors
do not discuss how their implementation relates to or differs from
that of AFP. As suggested elsewhere (Cooper and Krishnamurthi
2004), AFP (and more generally self-adjusting computation), may
be used to support FRP directly.

9. Conclusion
In this paper, we develop a safe interface for self-adjusting com-
putation and describe techniques for compiling self-adjusting pro-
grams written in the interface. The interface consists of simpleget
andput operations and anmfun keyword for declaring memoizing
functions. These primitives can be inserted anywhere in thecode
subject to some simple type constraints. Programs written with
these primitives can be statically checked using simple extensions
to conventional type systems. Type safe programs are guaranteed
to respond to changes correctly via change propagation.

We show that self-adjusting programs written in the proposed
interface can be compiled by an adaptive-cps translation. The trans-
lation recovers sufficient information about the program toem-
ploy the previously proposed primitives. In particular thetransla-
tion uses continuations as a coarse approximation to programmer-
supplied fine-grain dependences. To ensure that change propaga-
tion remains efficient with the compiler-inferred dependences, the
translation generates memoized cps functions that may be re-used
even when their continuations differ. This is achieved by memozing
continuations and by treating continuations as changeabledata by
writing them into pre-allocated modifiables.

We show that the proposal can be realistically incorporatedinto
a language by extending the SML language and an existing opti-
mizing compiler (MLton). We present a preliminary evaluation of
the implementation by considering a number of applications. The
experiments indicate that the approach is consistent with the previ-
ous proposal based on manual re-writing in terms of practical per-
formance and asymptotic complexity. Whether this correspondence
can be proved (or disproved) remains to be an open question.

References
MLton. http://mlton.org/.

Flapjax programming language. www.flapjax-lang.org.

Martı́n Abadi, Butler W. Lampson, and Jean-Jacques Lévy. Analysis and
Caching of Dependencies. InProceedings of the International Confer-
ence on Functional Programming (ICFP), pages 83–91, 1996.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive Functional
Programming. InProceedings of the 29th Annual ACM Symposium on
Principles of Programming Languages, pages 247–259, 2002.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization.
In Proceedings of the 30th Annual ACM Symposium on Principles of
Programming Languages (POPL), 2003.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat
Tangwongsan. A Library for Self-Adjusting Computation.Electronic
Notes in Theoretical Computer Science, 148(2), 2006a.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan.
An experimental analysis of self-adjusting computation. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2006b.

Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge L. Vittes.
Kinetic Algorithms via Self-Adjusting Computation. InProceedings of
the 14th Annual European Symposium on Algorithms (ESA), pages 636–
647, September 2006c.

Umut A. Acar, Alexander Ihler, Ramgopal Mettu, andÖzgür Sümer. Adap-
tive Bayesian Inference. InNeural Information Processing Systems
(NIPS), 2007.

Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-
adjusting computation. InProceedings of the 25th Annual ACM Sym-
posium on Principles of Programming Languages (POPL), 2008a.

Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Duru T¨urkoğlu.
Robust Kinetic Convex Hulls in 3D. InProceedings of the 16th Annual
European Symposium on Algorithms (ESA), September 2008b.

Umut A. Acar, Alexander Ihler, Ramgopal Mettu, andÖzgür Sümer. Adap-
tive Inference on General Graphical Models. InUncertainty in Artificial
Intelligence (UAI), 2008c.

C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The Quick-
hull Algorithm for Convex Hulls.ACM Trans. Math. Softw., 22(4):469–
483, 1996.

Richard Bellman. Dynamic Programming. Princeton University Press,
1957.

Kimberley Burchett, Gregory H. Cooper, and Shriram Krishnamurthi. Low-
ering: A Static Optimization Technique for Transparent Functional Re-
activity. In PEPM ’07: Proceedings of the 2007 ACM SIGPLAN sympo-
sium on Partial evaluation and semantics-based program manipulation,
pages 71–80. ACM, 2007.

Magnus Carlsson. Monads for Incremental Computing. InProceedings
of the 7th ACM SIGPLAN International Conference on Functional pro-
gramming (ICFP), pages 26–35. ACM Press, 2002.

Gregory H. Cooper and Shriram Krishnamurthi. FrTime: Functional Reac-
tive Programming in PLT Scheme. Technical Report CS-03-20,Depart-
ment of Computer Science, Brown University, April 2004.

Gregory H. Cooper and Shriram Krishnamurthi. Embedding Dynamic
Dataflow in a Call-by-Value Language. InProceedings of the 15th
Annual European Symposium on Programming (ESOP), 2006.

Antony Courtney. Frappé: Functional Reactive Programming in Java. In
PADL ’01: Proceedings of the Third International Symposiumon Prac-
tical Aspects of Declarative Languages, pages 29–44. Springer-Verlag,
2001.

Olivier Danvy and John Hatcliff. CPS Transformation after Strictness
Analysis. Letters on Programming Languages and Systems (LOPLS),
1(3):195–212, 1993a.

Olivier Danvy and John Hatcliff. On the Transformation between Direct
and Continuation Semantics. InProceedings of the Ninth Conference on
Mathematical Foundations of Programming Semantics (MFPS), pages
627–648, 1993b.

Alan Demers, Thomas Reps, and Tim Teitelbaum. Incremental Evaluation
of Attribute Grammars with Application to Syntax-directedEditors.
In Proceedings of the 8th Annual ACM Symposium on Principles of
Programming Languages, pages 105–116, 1981.

Conal Elliott. Functional Implementations of Continuous Modeled Anima-
tion. Lecture Notes in Computer Science, 1490:284–299, 1998.

Conal Elliott and Paul Hudak. Functional Reactive Animation. In ICFP ’97:
Proceedings of the second ACM SIGPLAN international conference on
Functional programming, pages 263–273. ACM, 1997.

Matthew Hammer and Umut A. Acar. Memory Management for Self-
Adjusting Computation. InThe 2008 International Symposium on Mem-
ory Management, 2008.

Fritz Henglein, Henning Makholm, and Henning Niss. Effect Types and
Region-based Memory Management. In Benjamin Pierce, editor, Ad-
vanced Topics in Types and Programming Languages, chapter 3, pages
87–135. MIT Press, Cambridge, MA, 2005.

Allan Heydon, Roy Levin, and Yuan Yu. Caching Function CallsUsing
Precise Dependencies. InProceedings of the 2000 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation(PLDI),
pages 311–320, 2000.

Jung-taek Kim and Kwangkeun Yi. Interconnecting Between CPS Terms
and Non-CPS Terms. InProceedings of the Third ACM SIGPLAN
Workshop on Continuations (CW), pages 7–16, 2001.

Jung-taek Kim, Kwangkeun Yi, and Olivier Danvy. Assessing the Overhead
of ML Exceptions. InProceedings of the ACM SIGPLAN Workshop on
ML, pages 112–119, 1998.

Yanhong A. Liu, Scott Stoller, and Tim Teitelbaum. Static Caching for In-
cremental Computation.ACM Transactions on Programming Languages
and Systems, 20(3):546–585, 1998.

John McCarthy. A Basis for a Mathematical Theory of Computation.
In P. Braffort and D. Hirschberg, editors,Computer Programming and
Formal Systems, pages 33–70. North-Holland, Amsterdam, 1963.

D. Michie. ”Memo” Functions and Machine Learning.Nature, 218:19–22,
1968.

Lasse Nielsen. A Selective CPS Transformation. InProceedings of the
Seventeenth Conference on the Mathematical Foundations ofProgram-
ming Semantics (MFPS), volume 45 ofElectronic Notes in Theoretical
Computer Science (ENTCS), pages 311–331. Elsevier, November 2001.

Henrik Nilsson, Antony Courtney, and John Peterson. Functional Reactive
Programming, Continued. InProceedings of the 2002 ACM SIGPLAN
Haskell Workshop (Haskell’02), pages 51–64, Pittsburgh, Pennsylvania,
USA, October 2002. ACM Press.

F. P. Preparata and M. I. Shamos.Computational Geometry. Springer-
Verlag Inc., 1985.

William Pugh and Tim Teitelbaum. Incremental computation via function
caching. InProceedings of the 16th Annual ACM Symposium on Princi-
ples of Programming Languages, pages 315–328, 1989.

G. Ramalingam and T. Reps. A Categorized Bibliography on Incremental
Computation. InProceedings of the 20th Annual ACM Symposium on
Principles of Programming Languages (POPL), pages 502–510, 1993.

Thomas Reps. Optimal-time incremental semantic analysis for syntax-
directed editors. InProceedings of the 9th Annual Symposium on Prin-
ciples of Programming Languages (POPL), pages 169–176, 1982.

Ajeet Shankar and Rastislav Bodik. DITTO: Automatic Incrementalization
of Data Structure Invariant Checks (in Java). InProceedings of the
ACM SIGPLAN 2007 Conference on Programming language Designand
Implementation (PLDI), 2007.

Hayo Thielecke. Comparing Control Constructs by Double-barrelled CPS.
Higher-Order and Symbolic Computation, 15(2/3):367–412, 2002.

D. M. Yellin and R. E. Strom. INC: A Language for Incremental Computa-
tions. ACM Transactions on Programming Languages and Systems, 13
(2):211–236, April 1991.

