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ABSTRACT

As XML-based messages have become common in many
client-server protocols, there is a need to protect applica-
tion servers from invalid or dangerous messages. This leads
to the XML stream firewalling problem; that of applying in-
tegrity constraints against a large number of simultaneous
streams. We conduct the first investigation of a constraint
engine optimized for the generation of XML stream firewalls.
We isolate a class of DTDs and XPath constraints which
support the generation of low-space filters, and provide algo-
rithms for generating firewalls with low per-input-character
time and per-stream space. We give experimental results
which show that we have achieved these goals in practice.

Categories and Subject Descriptors

H.2.4 [Database Management]: Query Processing

General Terms

Algorithms
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1. INTRODUCTION
The XML stream filtering problem is a core technical chal-

lenge in XML-based middleware. From the work of Altinel
and Franklin [1] onward, it has been a subject of intense
research activity [6, 5, 12, 9]. In filtering one has a large col-
lection of (user-supplied) XPath queries being executed on
a single (system-supplied) streamed XML document – the
goal of the middleware is to rapidly identify the elements
within the stream that satisfy each query, with the goal of
routing content to an appropriate endpoint. In this paper we
propose the dual XML stream firewalling problem, where a
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single (system-supplied) XPath query is executed on a large
number of (user-supplied) streamed XML documents – the
goal of the middleware is to rapidly identify XML documents
which violate the query, with the goal of rejecting documents
based on security policy.

A typical XML stream firewalling scenario is a server ex-
posing a web service interface to a large number of clients.
For example, consider a web service receiving authenticated
GET and PUT messages, modeled on HTTP:

<messages>

<message type="get" href="foo">

<head>

<userid>12345</userid>

<challenge>abc123def</challenge>

<response>123abc456</response>

...

</head>

</message>

<message type="put" href="bar">

<head>...</head>

<body>...</body>

</message>

...

</messages>

One set of constraints concern the security of the server it-
self. The majority of clients are honest agents and upload
valid XML satisfying appropriate data integrity constraints.
However, the server must be protected against against dis-
honest agents, which may attempt to exploit server vulnera-
bilities by sending crafted messages. For example, to defend
against SQL injection attacks, we could filter incoming mes-
sages and reject userids containing single-quote characters,
by applying the following constraint to the root node:

not(//head[contains(userid,"’")]

Other constraints may enforce conformance to the messaging
protocol, allowing the server to focus on message sequences
that are reasonably well-behaved. For example, one may
want to enforce that any message containing a response must
contain a challenge:

not(//head[response and not(challenge)])

or that each message has at most one userid:

not(//head/userid/preceding-sibling::userid)

The last two constraints could be embodied in the DTD for
the web service (at the cost of increasing complexity of the



DTD) but some constraints cannot, such as a requirement
that GET requests have no body:

not(//message[@type="get"]/body)

Although it is possible to interleave integrity constraint-
checking with web service application code, a more modular
design is to have a separate application-layer firewall dedi-
cated to constraint-checking. In our work we will consider
firewalls that enforce integrity constraints given in a subset
of XPath that includes filters, boolean operations, and both
vertical (parent/child) and horizontal (sibling) navigation.
We will also consider traditional schema constraints, given
as Document Type Definitions (DTDs). Together, these give
a powerful constraint specification mechanism.

In common web service examples, the underlying commu-
nication protocol (such as TCP/IP) fragments each XML
stream into packets. Servers will often have large numbers
of simultaneous streams receiving interleaved fragments of
XML. For each XML fragment, an application layer firewall
must restore the current state of the stream, process the
fragment, and then save the updated state and forward the
fragment (as long as the constraint has not been violated).
Since there may be large numbers of simultaneous streams,
the per-stream space usage of the firewall is of great impor-
tance.

Moreover, it is important that a firewall detect attacks as
early as possible. In the above example, a server may be pro-
cessing messages as they arrive, and so it is important that
a firewall reject an XML fragment as soon as a constraint
violation is detected: waiting for the closing </messages>

will be too late. Indeed, due to interleaving of streams as
described above, even a small delay in detection can result
in many streams being processed while the server is in an
unsafe state. We call this the fast-fail requirement.

Another requirement for XML stream firewalls is that it
is not possible to mount denial-of-service attacks on the fire-
wall itself. In particular the per-input-stream space must be
fixed, as otherwise an attacker could craft a message stream
to cause the firewall to exhaust its memory. In summary,
our priorities are:

• low per-input-character time,

• low, fixed per-input-stream space, and

• fast-fail solutions.

The requirement of bounded per-input-stream space means
that the depth of the input document must be bounded.
Without this restriction, an attacker could open a large num-
ber of streams containing data such as:

<html><body><i><b><i>...

// long sequence of random <i> and <b> tags

Any validator processing documents of this form will have
to store a stack linear in size to the input document, which
will make it simple for an attacker to exhaust the valida-
tor’s memory. Fortunately, XML-based message formats
often do not normally require unbounded documents. To
achieve a fixed per-input-stream footprint, we will require a
nonrecursive DTD, against which input documents will be
validated by the firewall. This restriction ensures that the
XML stream firewall can be implemented as a deterministic
finite automaton (DFA), rather than either a finite state au-
tomaton with a separate stack controller as in [11, 12] or the

pushdown transducers required by [16, 17]. The documents
for our example above might satisfy the nonrecursive given
in Figure 1.

We will also make restrictions on the XPath constraints,
to guarantee that runtime space usage is low:

• we exclude data joins

• we exclude rightward moves, either explicitly (through
axes such as following-sibling::B) or implicitly (through
paths such as ancestor::A/descendant::B), and

• we require all axes to be named (allowing, for example,
ancestor::A but not the wildcard ancestor::∗).

We will show that this sublanguage, which we denote ef-

ficiently streamable XPath, ensures that the XML stream
firewall can be implemented with run-time space that is not
only independent in the stream, but linear in the size of the
constraint. In Section 7, we give experimental evidence to
suggest that these restrictions do not dramatically impact
expressiveness: any XPathMark [10] query which could be
implemented as a DFA was expressible in our XPath frag-
ment. Note that these constraints permit arbitrary boolean
operations, possibly nested; the use of negation and disjunc-
tion is rare in XML filtering, but essential in XML constraint
processing, since constraints specify exactly what must not

happen in a message.
Existing work on XML stream processing focuses on the

dual case of applying large numbers of queries on a single
stream. One common approach is to generate an automaton
that does the enforcement – usually a finite-state automaton
that is coupled at runtime with a fixed PDA. [1] compiles
into a set of automata, while [9] compile into a single non-
deterministic automaton, optimized to exploit the sharing
among queries. The disadvantage of these approaches is
that the complexity of a flat automaton, even a nondeter-
ministic one, can be exponential in the size of a filter. NFA
approaches also do not deal well with negation (which often
plays a crucial role in constraints) as complementation of an
NFA can lead to an exponential blow-up.

An alternative is run-time generation of an automaton
[11], in which states of a (in [11], deterministic) automaton
are generated on-demand. The worst case bounds for this
“lazy automaton” approach are still exponential, as in the
case of pre-compiled automata. Furthermore, the run-time
approach is more limited in what kinds of static pruning can
be done in advance. However, there are advantages of the
run-time approach in the context of the filtering problem.
It can react to the addition of new filters without expensive
recompilation, and can exploit regularities in the data that
are not captured in a DTD. Indeed [11] shows that the size
of the runtime automata can be large only if the runtime
data is itself complex. It is easy to see that the runtime
approach is not a good match for the firewalling problem.
In our context we have the ability to do static optimization,
since our constraints are generally known in advance. In
firewalling we wish to do optimization in order to fail fast

– to abort processing of a corrupt message at the earliest
possible time. Finally, since the goal is to deal with large
numbers of users that may not conform to the constraints,
or even the DTD, we can not assume that most users will
behave in a regular way. As with all security applications,
once attackers discover our worst case, it will soon become
our average case.



Our point of departure will be a third approach to XML
filtering, that of transducer networks. Transducer networks
are a“symbolic”representation of a finite state machine, that
can be exponentially succinct compared to the correspond-
ing NFAs. They can be constructed in time polynomial in
the filter, and can be executed efficiently in term of space
and time. They thus provide a streaming algorithm that is
polynomial time in both filter and the data. As we will show
here, the transducer network construction, when applied to
efficiently streamable XPath constraints, yields finite state
transducers of size linear in the constraint.

The main limitation of transducer networks is that they
are difficult to statically analyze. In particular, the state
pruning and path-sharing techniques that are available in
automata-based approaches [9, 11], as well as the specialized
data structures used there [6], are not applicable to trans-
ducer networks. Static analysis is important to XML stream
firewalling in order to implement fast-fail firewalls. Our so-
lution will be to look at another symbolic representation of
automata.

We will focus on Binary Decision Diagrams [3] (BDDs)
which are a common technique in symbolic model check-
ing [8]. Prior work outside of the XML setting has shown
that BDDs are promising for filtering [4] BDDs can be used
to represent both XPath constraints and DTDs. They retain
the advantages of explicit automata representations: fast
evaluation and the ability to do simplification. In addition,
we will show that XPath constraints and DTDs can be trans-
lated into BDDs with blow-up subquadratic in the size of
the constraints. We show how simplification of BDD-based
automata allows us to obtain fast-fail constraint processors.

We provide details of an implementation of a BDD-based
XPath processor which can execute constraint-checks ex-
tremely rapidly, and compare the performance with state-
of-the-art XPath filtering engines such as XMLtk [11], YFil-
ter [9], XSQ [17], and GCX [19].

In summary, the contributions of this paper are:

• the first investigation of an XPath engine optimized
for the generation of XML stream firewalls,

• the isolation of a fragment of XML/XPath which sup-
ports the generation of low-space filters,

• algorithms for generating transducer networks for en-
forcing such filters,

• the first use of BDDs as a runtime representation of
XML constraints, and

• experimental results which compare performance with
state-of-the-art XPath engines.

2. PRELIMINARIES
For any set Σ let Σ∗ be the set of strings over Σ, and for

any function f : Σ→∆, let f∗ : Σ∗→∆∗ be its extension to
strings. Let Σ×∆ be the cartesian product of Σ and ∆ with
projection functions π1 : Σ ×∆→ Σ and π2 : Σ × ∆→∆.
For any finite set Σ, write |Σ| for the number of elements of
Σ. For any string s ∈ Σ∗, write |s| for the length of s.

By an automaton A over alphabet Σ we will always mean a
finite automaton over words, that is a quadruple (Q,→, I, F )
where Σ and Q are finite sets (the alphabet and state set
respectively), → ⊆ Q×Σ×Q (the transition relation), and

<!ELEMENT messages (message*)>

<!ELEMENT message (head,body?)>

<!ELEMENT head ((userid|challenge|response)*)> ...

messages 7→ message
∗

message 7→ head body?

head 7→ (userid | challenge | response)∗ · · ·

Figure 1: Example DTD D1

I, F ⊆ Q (the initial and final states respectively). We write

q
a
−→ q′ for (q, a, q′) ∈ →. For s ∈ Σ∗, write q

s
=⇒ q′ for the

transitive reflexive closure of →, that is:

q
s

=⇒ q′ whenever q = q0
a1−→ · · ·

an−→ qn = q′

and s = a1 . . . an

The language induced by an automaton A is defined as
usual. A sink state of an automaton is one which can not
reach an accepting state. We write |A| for |Q|+ |→|.

We will deal with XML documents abstracted as ordered

trees over some set of tags Σ. To simplify the presentation,
we will not give an explicit treatment of attributes or PC-
DATA, and instead treat them as nodes like any other.

Stream processing will deal with the standard serialization
of XML documents, as a sequence of begin and end tags. For
a set of tags Σ, we let Tags(Σ) = {〈A〉, 〈/A〉 | A ∈ Σ} be the
set of begin and end tags with labels in Σ. For an ordered
tree T with node labels Σ, let stream(T ) ∈ Tags(Σ)∗ be its
textual representation.

In this paper, we will consider specifications for constraints
using both schemas given as Document Type Definitions
(DTDs) and application-specific constraints given in XPath.

A DTD D over Σ is an initial element A0 ∈ Σ together
with a deterministic (i.e. 1-unambiguous) regular expression
D(A) over Σ for each A ∈ Σ. A DTD is nonrecursive if
Σ = {A1, . . . , An} where Ai ∈ s ∈ L(D(Aj)) implies i >
j. The definition of an ordered tree being validated by a
DTD is standard, and we write S(D) ⊆ Tags(Σ)∗ for the
set containing stream(T ) for any T validated by D. We
write |D| for |D(A1)|+ · · ·+ |D(An)|.

We will focus on XPath constraints that exclude data joins
(sometimes called “Navigational XPath” [14]). XPath over
labels Σ has constraints (ranged over by F, G, H), paths
(ranged over by P, Q,R), and axes (ranged over by π):

F ::= true | false | ¬F | F ∧ F ′ | F ∨ F ′ | P | A (A ∈ Σ)

P ::= π[F ] | P/P ′

π ::= left | right | up | down | left+ | right
+ | up

+ | down
+

For convenience we use abbreviations of XPath’s axes, e.g.
down for child, down+ for descendant, etc. The definition of
when a node in an ordered tree satisfies a constraint F is
standard. We say that a tree satisfies a constraint F when
its root node does, and we write S(D,F ) ⊆ Tags(Σ)∗ for
the set containing stream(T ) for any T validated by D and
satisfying F . We write |F | for the routine definition of the
size of a constraint F , generated by |F ∨ G| = |F ∧ G| =
|F |+ |G| and |π[F ]| = |¬F | = 1 + |F |.

It is also easy to see that XPath constraints can be en-
forced with finite memory over nonrecursive DTDs:

Proposition 1. For any nonrecursive DTD D and XPath



not(//head[response and not(challenge)])

¬down
+::head[down::response[true] ∧ ¬down::challenge[true]]

Figure 2: Example constraint F1

constraint F , the set S(D, F ) is regular.

3. XML STREAM FIREWALLING
The XML stream firewalling problem takes as input a non-

recursive DTD D over Σ, an XPath constraint F over Σ, and
a string s ∈ Σ∗, and determines whether s ∈ S(D,F ).

A streaming solution to the problem is one which reads
s in strict left-to-right order. A compiled solution works in
two phases: the first phase takes D and F as input and
generates an intermediate result I(D, F ), and the second
phase takes D, F , I(D, F ) and s as input and determines
whether s ∈ S(D, F ).

We will discuss the following time and space complexity
classes for compiled, streaming solutions:

• compilation complexity given by the complexity of the
first phase to process D and F ,

• per-stream complexity given by the complexity of the
second phase to process s, and

• per-character complexity given by the per-stream com-
plexity for s, divided by |s|.

Throughout this paper, we will give time and space com-
plexity in terms of a Random Access Machine.

Unfortunately, the minimal deterministic automaton rec-
ognizing S(D, F ) for general XPath constraints may have
doubly exponential size in F , and hence the amount of run-
time space used may be prohibitive. We will thus restrict
to a collection of constraints that can be implemented with
greater space efficiency.

The notion of a subconstraint of a constraint is as usual.
A top-level subconstraint of a constraint F is one which does
not occur inside a subquery of F of the form π[G]. An XPath
constraint has:

• an explicit rightward move if it contains a subcon-
straint right[F ] or right+[F ],

• an implicit rightward move if it contains a subcon-
straint up[F ] or up+[F ] where F has a top-level sub-
constraint down[G] or down+[G],

• supervised leftward moves if every subconstraint left[F ]
or left+[F ] has F of the form G ∧ up[A], and

• named moves if every subconstraint π[F ] is of the form
π[A∧G] (and we write π::A[G] for such named moves).

A constraint is efficiently streamable if it has no implicit or
explicit rightward moves, every leftward move is supervised,
and every move is named. For example, the “every response
must have a challenge” example in the introduction is given
in Figure 2, and is efficiently streamable.

We restrict our attention to efficiently streamable con-
straints, as i) the lack of rightward moves allows us to gener-
ate streaming solutions which process the document stream

in left-to-right order, and ii) the supervision of leftward
moves and the naming of vertical moves allows us to pro-
cess such moves without needing to store a stack of potential
target nodes. These conditions allow us (in Theorem 3) to
solve the XML stream firewalling problem for constraint F
in O(|F |) per-stream space, compared to O(|F |× |Σ|) in [2].

Since S(D, F ) is regular, it is tempting to choose the in-
termediate representation to be automata. Such a solution
would entail constructing an automaton A(D, F ) which val-

idates F in conjunction with D (that is, where we have
L(A(D, F )) = S(D,F )). Unfortunately, even for efficiently
streamable XPath, automata may require exponential space.
There are two sources of this blowup: sharing of element
definitions in DTDs, and the product construction used in
building an automaton for conjunction or disjunction on
XPath. Since the space usage of explicit automata is im-
practical, we will search for symbolic representations of au-
tomata which do not suffer from exponential blowup.

A solution to the XML stream firewalling problem is fast-

fail when, given a string s such that there is no t such that
st ∈ S(D, F ), then any string su is rejected without reading
u. For example, a fast-fail solution for the constraint in
Figure 2 would reject any string beginning:

〈messages〉〈message〉〈head〉〈response/〉〈/head〉

Ideally, we would find a fast-fail solution for efficiently stream-
able XPath constraints with compilation time polynomial
in D and F , per-stream space complexity and per-character
time complexity polynomial in D and F . Unfortunately,
such a fast-fail solution to the XML stream firewalling is
likely to be impossible, as we can show:

Theorem 1. The following are equivalent: i) There is

a fast-fail solution to the XML stream firewalling problem

for efficiently streamable XPath constraints with compila-

tion time polynomial in D and F and per-character time

complexity polynomial in D and F ) and ii) P = PSPACE

The proof that i) implies ii) works by reduction from the
satisfiability problem for efficiently-streamable constraints,
which can be shown to be PSPACE-hard. The other direc-
tion will utilize the transducer network construction given
in the next section.

Since full fast-fail solutions are not feasible, we will first
show that non-fast-fail solutions can be found with compila-
tion time polynomial in D and F , and per-stream space and
per-character time complexity linear in D and F ; our solu-
tions are based on transducer networks (TNs), and are the
topic of Section 4. We will then seek heuristics for fast-fail
solutions: our solutions compile TNs into binary decision
diagrams (BDDs), and are discussed in Section 5.

4. TRANSDUCER NETWORKS
We first investigate a solution to the firewalling problem

using transducer networks. We will use finite state trans-

ducer networks, as opposed to the pushdown transducer net-
works of [17, 16]. For nonrecursive DTDs, our prior work [2]
shows that one can build small transducer networks that are
sufficient for constraint processing. Here we will give a more
detailed (and efficient) construction, which will be the basis
of our work on fast-fail solutions in the next section.

A synchronous transducer T over input alphabet Σ and
output alphabet ∆ is an automaton over alphabet Σ × ∆.



T2

T1 T1 T2

id T1; T2 〈T1, T2〉

Figure 3: Graphical view of transducer networks

Write q
a/b
−→ q′ for (q, (a, b), q′) ∈ →. For s ∈ Σ∗ and t ∈ ∆∗,

write q
s/t
=⇒ q′ for the transitive reflexive closure of →, i.e.:

q
s/t
=⇒ q′ whenever q = q0

a1/b1−→ · · ·
an/bn

−→ qn = q′

and s = a1 . . . an and t = b1 . . . bn

The relation induced by a transducer T is defined to be

R(T ) = {(s, t) | I 3 q
s/t
=⇒ q′ ∈ F}. A transducer is sequen-

tial whenever the transition relation is a partial function
→ : Q×Σ→∆×Q, and there is a single initial state. Note
that automata over Σ are isomorphic with transducers over
input alphabet Σ and output alphabet of size 1.

We will consider three operations on transducers: iden-

tity, composition and product, which are shown graphically
in Figure 3. Let id be the identity transducer with input
and output alphabet Σ (Σ will be clear from context, hence
omitted in the notation). This is a one-state transducer with
transitions:

0
A/A
−→ 0 (A ∈ Σ)

which induces the identity relation on Σ∗:

R(id) = {(s, s) | s ∈ Σ∗}

Let T1 and T2 be transducers where each Ti has states Qi,
input alphabet Σi and output alphabet ∆i. Composition
T1; T2 takes the output of T1 and feeds it as input to T2. For-
mally, T1; T2 is defined when ∆1 = Σ2, has input alphabet
Σ1 and output alphabet ∆2, states Q1×Q2 and transitions:

(q1, q2)
A/C
−→ (q′1, q

′

2) where q1
A/B
−→ q′1 and q2

B/C
−→ q′2

Composition induces the relation:

R(T1; T2) = {(s, u) | (s, t) ∈ R(T1), (t, u) ∈ R(T2)}

Product 〈T1, T2〉 takes a copy of its input and feeds it to
both T1 and T2. Formally, 〈T1, T2〉 is defined when Σ1 = Σ2,
has input alphabet Σ1 and output alphabet ∆1×∆2, states
Q1 ×Q2 and transitions:

(q1, q2)
A/(B1,B2)
−→ (q′1, q

′

2) where q1
A/B1
−→ q′1 and q2

A/B2
−→ q′2

Product induces the relation:

R(〈T , T ′〉) = {(s, t) | (s, π∗

1(t)) ∈ R(T1), (s, π
∗

2(t)) ∈ R(T2)}

Note that id is sequential, and if T1 and T2 are sequential,
then so are T1; T2 and 〈T1, T2〉.

In this paper, we will use a textual representation of trans-
ducer networks, as it makes inductive definitions simpler.
As Figure 3 shows, we can give a graphical reading to this
textual form; examples are in Figures 4 and 6 which are
discussed below. A synchronous transducer network with

TN Output

∩

Tmessages Tmessage · · · T⊥

TN Input

〈Tmessages, Tmessage, . . . , T⊥〉;∩

Figure 4: Transducer network built from D1

TN Intermediate Output TN Final

Input T⊥ Tmessages Tmessage Output State?

〈messages〉 ⊥ ∗ ∗ ⊥ ×
〈message〉 ∗ messages ∗ messages ×
〈head〉 ∗ ∗ message message ×
〈response〉 ∗ ∗ ∗ head ×
〈/response〉 ∗ ∗ ∗ head ×
〈/head〉 ∗ ∗ message message ×
〈/message〉 ∗ messages ∗ messages ×
〈/messages〉 ⊥ ∗ ∗ ⊥ X

Figure 5: Example run of TN built from D1

generators {T1, . . . , Tn} is a synchronous transducer defin-
able by:

N ::= Ti | id | N ;N | 〈N ,N〉

The size of a transducer network |N | extends the definition
of |T | by |id| = 1 and |N1;N2| = |〈N1,N2〉| = |N1|+ |N2|.

We can now show:

Theorem 2. For any nonrecursive DTD D over Σ and

efficiently streamable XPath constraint F over Σ, we can

construct sequential transducer networks N (D) and N (F ),
and so construct automaton:

A(D, F ) = N (D);N (F ); trueAtLast

where trueAtLast is the automaton for ((true + false)∗ true),
such that:

• A(D, F ) validates F in conjunction with D,

• N (D) is computed in time and space O(|D||Σ|), and

• N (F ) is computed in time and space O(|F ||Σ|).

The network for a DTD contains generators TA for each A
in the DTD. It does not just validate the DTD, but also
outputs the parent tags of the stream: when the generator
TA reads a 〈B〉 or 〈/B〉 child from an A node, it outputs
A (on other nodes, it leaves the parent tag unconstrained).
We include a transducer T⊥ to handle the special case of
parent-tagging the root node with a ⊥ tag. These parent
tags will be useful to the constraint transducers.

The transducer TA is based on the automaton for the lan-
guage D(A), with extra transitions to code parent tagging.



TN Output

¬

T3 = T(down+,head,messages)

∧

¬

T1 = T(down,challenge,head) T2 = T(down,response,head)

true true

TN Input

〈id, 〈〈id, true〉; T1;¬, 〈id, true〉; T2〉;∧〉; T3;¬

Figure 6: Transducer network built from F1

TN Input Intermediate Output TN

Tag Parent T1 T2 T3 Output

〈messages〉 ⊥ × × × X

〈message〉 messages × × × X

〈head〉 message × × × X

〈response〉 head × × × X

〈/response〉 head × × × X

〈/head〉 message × X × X

〈/message〉 messages × × × X

〈/messages〉 ⊥ × × X ×

Figure 7: Example run of TN built from F1

The fact that the DTD is nonrecursive is used crucially here:
transducer networks cannot recognize irregular languages
such as those for recursive DTDs.

The network is built as the intersection of all of the gener-
ators, making use of an intersection transducer ∩ with input
alphabet Σn and output alphabet Σ, inducing the intersec-
tion relation R(∩) = {((s, . . . , s), s) | s ∈ Σ∗}. It is routine
to check that R(〈N1, . . . ,Nn〉;∩) = R(N1) ∩ · · · ∩ R(Nn).

We illustrate the construction for DTDs in Figure 4, which
gives the topology of the network for the DTD D1 from Fig-
ure 1, together with a sample run of the network in Figure 5.

The transducer network for a constraint in XPath is built
recursively, and the structure of the network follows the
structure of the formula. For each subconstraint of the form
π::A[F ] ∧ B, (that is, an axis π with target node labeled
A satisfying F , and source node labeled B), we construct
a generator T(π,A,B). This transducer takes as input the
parent-tagged input stream, together with a boolean stream
giving the result of evaluating F . It produces as output a
boolean stream giving the result of evaluating π::A[F ] ∧ B.
The logical operations have simple boolean generators.

The transducer networks for XPath constraints come in
two flavors: end-tagging networks which produce output true

when they reach the end tag of a selected node, or dual
begin-tagging networks. End-tagging networks are used to
handle the case of constraints without upward axes, and
begin-tagging networks are used to handle the case of con-
straints without downward axes. In the case of efficiently
streamable XPath constraints, we can nest these networks
to combine upward and downward axes. For simplicity, we
will discuss only end-tagging networks here, although both
are used in the construction of the transducer network.

To construct an automaton from T (D) and T (F ), we com-
pose the network with a final automaton trueAtLast, which
accepts boolean strings ending with true. Since the last sym-
bol accepted by T (D) is guaranteed to be the end-tag for
the root node, this automaton accepts strings where the root
node satisfies F , and so accepts S(D, F ).

We illustrate the construction for XPath in Figure 6, which
gives the topology of the network for the constraint F1 from
Figure 2, together with a sample run of the network. Note
that in the sample run, there is no string which is accepted
by both the DTD and the constraint, and so the string is
rejected (as it should be).

Theorem 3. Transducer networks provide a solution to

the XML stream firewalling problem for efficiently stream-

able XPath, with compilation time O((|D| + |F |)|Σ|), and

with per-stream space and per-character time O(|D|+ |F |).

However, the transducer network construction does not pro-
vide us with a fast-fail solution – this would require pruning
sink states from the network. Pruning sink states is not a
local operation on networks: there may be sink states of
the network as a whole which are not sink states of any
of the components. It is not clear how a pruning opera-
tion could even be expressed at the level of a rewriting of a
transducer network, without first flattening the network to
a single transducer. Sink states could be removed “on the
fly”, by checking reachability every time a state is reached
(indeed, the checking can be done in PSPACE, which yields
the second half of Theorem 1), but this approach would use
exponential time. We will thus look for a formalism that
can express both kinds of constraints and which supports
compile-time heuristics for pruning sink states.

5. BINARY DECISION DIAGRAMS
We will now look at a different representation, using (Re-

duced Ordered) Binary Decision Diagrams [3] (BDDs), a
compact representation of propositional logic formulae. In
this work, we use BDDs as a compression technique for au-
tomata: BDDs will often give polynomial-space represen-
tations where an explicit automaton would be exponential-
space. In this section, we show that for a class of transducer
networks (which includes the TNs generated from DTDs and
XPath), the BDD representation is polynomial in the size
of the TN. Combined with prior results, this gives us poly-
space representations of automata for DTDs and XPath.

Our motivation for introducing BDDs is to generate fast-
fail XML stream firewalls. We know from Theorem 1 that we
cannot do this in polynomial time (unless P = PSPACE), so
we are interested in heuristic solutions. BDDs provide such
a heuristic, as is demonstrated by the results in this section,
and the experimental results in Section 7.
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Figure 8: BDD for (x↔ y) ∧ z

BDDs represent propositional logic formulas over atomic
variables V as automata with an alphabet V ×Bool, as seen
in Figure 8. Such an automaton gives possible assignments
to variables, for example the above BDD includes the as-
signment x = false, y = false, z = true. It is routine to check
that the above BDD is a representation of the truth table
for (x↔ y) ∧ z. Moreover, it is a canonical representation
(once we fix the variable order x < y < z) in the sense that
it is the only BDD with that truth table.

Formally, a (reduced ordered) binary decision diagram

(BDD) B over linearly ordered variables (V,≤) is a deter-
ministic automaton over alphabet V×Bool with no unreach-
able states, where every state is either:

• a chosen non-final state F with no outgoing transitions,

• a chosen final state T with no outgoing transitions, or

• a non-final state q with only two transitions of the form

q
(x,true)
−→ q′ and q

(x,false)
−→ q′′,

which is ordered :

• if q
(x,b)
−→ q′

(y,c)
−→ q′′ then x < y,

and reduced :

• if q
(x,true)
−→ ·

(x,true)
←− q′ and q

(x,false)
−→ ·

(x,false)
←− q′ then

q = q′, and

• if q
(x,true)
−→ q′ and q

(x,false)
−→ q′′ then q′ 6= q′′.

A function σ : V → Bool is a satisfying assignment for B
(written σ � B) when there is a string s ∈ L(B) such that
σ(x) = b for every (x, b) ∈ s. BDDs have the pleasant prop-
erty that whenever two BDDs over (V,≤) have the same
satisfying assignments, then they are isomorphic. In partic-
ular, the only tautology is the BDD with initial state T, and
the only unsatisfiable BDD is the one with initial state F.

Propositional logic operations can be performed directly
at the BDD level. That is given BDDs B and B′ over (V,≤)
we can construct the following BDDs, also over (V,≤):

• true such that σ � true for any σ,

• x such that σ � x whenever σ(x) = true,

• B∧B′ such that σ � B∧B′ whenever σ � B and σ � B′,

• ¬B such that σ � ¬B whenever σ 2 B,

• ∃x . B such that σ � ∃x . B whenever σ, x 7→ b � B for
some b,

• B[x := y] such that σ � B[x := y] whenever σ, x 7→
σ(y) � B, and

• B[x := b] such that σ � B[x := b] whenever σ, x 7→ b �

B.

Note that all of the above functions depend upon the vari-
able ordering (which will always be clear from context, hence
we omit it in the notation). Since BDDs are canonical, there
is at most one BDD up to isomorphism satisfying each of the
above properties, for a given ordering.

We will be interested in using BDDs to represent au-
tomata. This is relatively straightforward, once we fix a
binary representation for the state set and alphabet. If we
can represent the state set in Boolk and the alphabet in Boolj

then we fix variables ~x ∈ Boolk, ~ı ∈ Boolj and ~x′ ∈ Boolk

then build propositions over those variables, for example
trans is over ~x (the source state), ~ı (the input action) and ~x′

(the target state).
A BDD representation for an automaton with states Q ⊆

Boolk over alphabet Σ ⊆ 2j is given by:

• a variable set (V,≤),

• state variables ~x, ~x′ ∈ Vk and action variables ~ı ∈ Vj ,

• BDDs state, init and final over variables {~x}, and

• BDD trans over variables {~x,~ı, ~x′}.

which represents an automaton with:

Q = {~b | ~x 7→ ~b � state}

I = {~b | ~x 7→ ~b � init}

F = {~b | ~x 7→ ~b � final}

→ = {(~b,~c, ~d) | ~x 7→ ~b,~ı 7→ ~c, ~x′ 7→ ~d � trans}

Such BDD representations may be extremely efficient in
space: there are families of automata of size O(2n) with
BDD representations of size O(n). However, they are not
necessarily efficient in time, in that given q and a, com-
puting the q′ such that q

a
−→ q′ may require backtracking

through the BDD. The source of this backtracking is when
the value for a variable x′

i may depend on the value of xj

where x′

i < xj : we may have to search both branches on x′

i

to find a successful assignment.
We will say that a BDD over variables ~x < x < ~y uniquely

determines x whenever σ(~x) = σ′(~x) implies σ(x) = σ′(x)
for all satisfying assignments σ and σ′.

The BDD representation of an automaton is runtime-

friendly whenever the variables ~x′ are uniquely determined
in trans. Such BDD representations can be executed in time
linear in the bitlength of the state space, and so are good
candidates for a runtime representation of an automaton:

Proposition 2. Given a runtime-friendly BDD represen-

tation of an automaton A with states Q ⊆ Boolk over alpha-

bet Σ ⊆ 2j , we can recognize s ∈ L(A) in O(j +k) space and

per-character time.

For deterministic automata, we have efficient runtime-friendly
BDD representations.

Proposition 3. Any deterministic automaton A with states

Q ⊆ Boolk over alphabet Σ ⊆ Boolj has a runtime-friendly

BDD representation computed in time and space O((j +
k)|Q||Σ|).



The BDD representation of a transducer is given in the same
way as an automaton, but the action variables are parti-
tioned into ~ı for input and ~o for output. We can improve on
Proposition 3 in the case of sequential transducers:

Proposition 4. Any sequential transducer T with states

Q ⊆ Boolk over input alphabet Σ ⊆ Booli and output alpha-

bet ∆ ⊆ Boolj has a runtime-friendly BDD representation

computed in time and space O((i + j + k)|Q||Σ|).

This can be generalized to a network of transducers. If N1

and N2 have BDD representations B1 and B2 respectively,
where each Bi has state variables ~xi and ~x′

i, input variables
~ıi and output variables ~oi, then 〈N1,N2〉 has BDD represen-
tation:

~x = ~x1, ~x2

~ı = ~ı1
~o = ~o1, ~o2

~x′ = ~x′

1, ~x
′

2

state = state1 ∧ state2

init = init1 ∧ init2
final = final1 ∧ final2
trans = trans1 ∧ trans2[~ı2 :=~ı1]

Similarly, N1;N2 has BDD representation:

~x = ~x1, ~x2

~ı = ~ı1
~o = ~o2

~x′ = ~x′

1, ~x
′

2

state = state1 ∧ state2

init = init1 ∧ init2
final = final1 ∧ final2
trans = ∃~o1 . (trans1 ∧ trans2[~ı2 := ~o1])

This construction leaves open an issue that may have an
exponential impact on the size of the final BDD: the ordering
on variables.

We first consider the kinds of variable orderings needed
to perform the composition N1;N2 of transducers efficiently.
This includes two potential sources of inefficiency:

• We need to form a conjunction, which we do by an
appropriate “gluing” of the BDD trans2[~ı2 := ~o1] to
the leaves of trans1. This gluing can be done with-
out blowup if the variable ordering on B1 places the
assignment to variables ~o1 at the leaves of trans1, and
the decisions based on variables~ı2 at the root of trans2.
This can be achieved by requiring ~o1 to be maximal in
the variable order used by trans1 and ~ı2 to be minimal
in the variable order used by trans2.

• We need to existentially quantify over the output vari-
ables ~o1 of B1, which we do by an appropriate “dele-
tion” of nodes in the BDD. This deletion in a general
BDD is not a cheap operation, as it may require merg-
ing of the child nodes, but it is cheap on uniquely de-
termined variables. As long as we require (as above)
the variables ~o1 to be maximal in the variable order for
trans1, they are guaranteed to be uniquely determined.

For this reason, we define a BDD representation of a trans-
ducer to be composition-friendly whenever the variable order
has the input variables ~ı minimal and the output variables
~o maximal. The variable order we choose for N1;N2 is:

~ı1 < (~x1, ~x
′

1) < (~x2, ~x
′

2) < ~o2

which gives us a linear-space construction for composition:

Proposition 5. If N1 and N2 are sequential transduc-

ers with runtime- and composition-friendly representations

B1 and B2, then we can find a runtime- and composition-

friendly representation for N1;N2 of size |B1|+ |B2|.

Unfortunately, the same argument does not hold for the
product operation 〈N1,N2〉, and the best result we can get
creates a blowup in the size of the alphabet:

Proposition 6. If N1 and N2 are transducer networks

with input alphabet Σ and output alphabets ∆1 and ∆2, and

with runtime- and composition-friendly representations B1

and B2, then we can find a runtime- and composition-friendly

representation for 〈N1,N2〉 of size |Σ||B1|+ |∆1||B2|.

This multiplicative factor for each use of product results in
a potential exponential blowup in the size of a BDD for a
general transducer network, and so we will need to exploit
the special properties of transducer networks which we gen-
erated for DTDs and XPath constraints.

We first consider the transducer networks generated from
DTDs. These are of a very particular form:

N = 〈T1, . . . , Tn〉;∩

where each Ti is deterministic (but not necessarily sequen-
tial), and N as a whole is sequential: we will call transducer
networks in this form flat intersection networks. A nice
property of flat intersection networks is that on any tran-
sition of the whole network, we have that every generator
Ti has the same input and output. For this reason, we can
show that they have small representations:

Proposition 7. Any flat intersection network N with

states Q ⊆ Boolk over input alphabet Σ ⊆ Booli and out-

put alphabet ∆ ⊆ Boolj has a runtime- and composition-

friendly BDD representation in time and space O((i + j +
k)|N ||Σ||∆|).

The case of the transducer networks generated from XPath
constraints is slightly more complex. As the example in
Figure 6 shows, these networks are very tree-like: the only
sharing is of the top-level input to the network. In partic-
ular, XPath constraints never generate networks containing
“diamonds” such as:

T4

T2 T3

T1

Formally, we define a transducer network to be boolean when-
ever each generator has output alphabet Bool, and tree-like

when it is can be generated by the following grammar:

N ::= id | 〈N ,N〉; Ti

The reader can verify that the above grammar prevents “di-
amonds”. We shall now consider the size of the BDD repre-
sentation of a boolean tree-like transducer network. We shall
first consider the case when |Σ| = 1. The general case fol-
lows from this, since we can decompose the transition BDD
as a disjunction over all possible inputs. The interesting case
in computing a bound on the size of a boolean tree-like net-
work is N = 〈N1,N2〉; T3 where the components have BDD
representations B1, B2 and B3 respectively. An application
of Propositions 5 and 6 gives us the bound |B1|+2|B2|+|B3|.
However, we can swap the order of N1 and N2, in which case
the same propositions gives us bound |B2|+ 2|B1|+ |B3|.



Unfortunately, this still gives a multiplicative factor for
each use of product, which raises the potential of exponential
blowup. Fortunately, we can choose to double the smaller
of B1 and B2, and so the size of the BDD representation
of a boolean tree-like network is bounded by the function
f : N→ N defined:

f(0) = 0

f(1) = 1

f(n) = max{f(i) + 2f(j) | n > i ≥ j ∈ N, i + j = n}

Now consider the function g : R→ R defined:

g(x) = xlog2(3)

It is routine to verify that:

max{plog2(3) + 2(1− p)log2(3) | 0.5 ≤ p < 1} = 1

and hence that, for any n ∈ N:

g(n) = nlog2(3) max{plog2(3) + m(1− p)log2(3) | 0.5 ≤ p < 1}

= max{(pn)log2(3) + ((1− p)n)log2(3) | 0.5 ≤ p < 1}

= max{g(pn) + g((1− p)n) | 0.5 ≤ p < 1}

≥ max{g(i) + g(j) | n > i ≥ j ∈ N, i + j = n}

Thus, since g dominates the defining equation for f , we have
that f(n) ≤ nlog2(3). We thus have the following bound:

Proposition 8. Any boolean tree-like network N with

states Q ⊆ Boolk over input alphabet Σ ⊆ Boolj has a

runtime- and composition-friendly BDD representation in

time and space O((j + k)|N |log2(3)|Σ|).

We now have enough results to state the complexity of our
BDD solution to the XML stream firewalling problem.

Theorem 4. BDDs provide a solution to the XML stream

firewalling problem for efficiently streamable XPath over al-

phabet Σ ⊆ Boolj, with compilation time and space O(j(|D|2+

|F |log2(3))×|Σ|2), and with per-stream space and per-character

time per-character time O(|D| + |F |).

The linear per-character time follows because the number of
state variables in the BDDs is linear, and this bounds the
depth of the BDD. The quadratic dependence on the alpha-
bet Σ above is caused by the need for the XPath transducers
to use parent-tagged input.

The advantage of BDDs for fast-fail firewalling is is that
pruning of sink states can be performed in a natural man-
ner, with an application of symbolic model-checking tech-
niques [8]. We can approximate the reachability relation on
states by BDDs reachn over variables ~x, ~x′ defined:

reach1 = (~x = ~x′) ∨ (∃~ı . ∃~o . trans)

reachn+1 = ∃~x′′ . (reachn[~x′ := ~x′′] ∧ reachn[~x := ~x′′])

This sequence will reach a fixed point reach after log2(|s|)
iterations, where s is a maximal acyclic path through the
automaton; since BDDs are canonical, we can detect reach-
ing a fixed point in constant time. We can then prune sink
states by defining:

state
′ = ∃~x′ . (reach ∧ final[~x := ~x′])

In the worst case, reachn+1 may be double the size of reachn,
and so state′ may be exponentially larger than state; this

typedef unsigned int nfaE_t;
nfaE_t nfaE_u[473][16] = { ... }

int nfaE_v[1061][16] = { ... }
int nfaE_w[256] = { ... }
int nfaE_sink(nfaE_t q) { return (q == 0x1); }

int nfaE_accept(nfaE_t q) { return (q&0x1 == 0x1) && (q != 0x1); }
nfaE_t nfaE_init() { return 0x0; }

nfaE_t nfaE_next(nfaE_t q, char c) {
int v0 = nfaE_w[c & 0xFF];

int v1 = nfaE_v[v0][(q >> 24) & 0xF];
int v2 = nfaE_v[v1][(q >> 20) & 0xF];
int v3 = nfaE_v[v2][(q >> 16) & 0xF];

int v4 = nfaE_v[v3][(q >> 12) & 0xF];
int v5 = nfaE_v[v4][(q >> 8) & 0xF];

int v6 = nfaE_v[v5][(q >> 4) & 0xF];
nfaE_t u = nfaE_u[v6][q & 0xF];

nfaE_t r = q ^ u;
return (u == 0x1? 0x1: r);

}

Table 1: Table-based C code for XPathMark Q1

blowup is to be expected, due to Theorem 1. However, in
many cases, BDDs give an acceptable heuristic for generat-
ing fast-fail firewalls, as will be demonstrated in the next
section.

6. IMPLEMENTATION
Tree Fort is an implementation of the transducer network

given in Theorem 2, using a BDD as in Section 5. The im-
plementation contains two optimizations for common cases
in automata: near self-loops and transitions to sink states:

• In the transition relation trans, it is common for most
state variables to remain unchanged, that is xi = x′

i

for most i. We call such cases near self-loops, and note
that they are common in transducer networks since on
most inputs, most of the transducers in the network
stay in the same state. In the straightforward rep-
resentation of the transition relation trans, near self-
loops do not result in sharing, since x′

i depends on xi.
There are more opportunities for sharing in the BDD
for the following state offset representation:

trans
′ = ∃~x′ . ((~x′ = (~x xor ~x′′)) ∧ trans)

In trans′, when xi = x′

i we have that x′′

i = false, which
does not depend on xi, so trans′ often has a smaller
BDD representation than trans.

• The state offset representation has a drawback for sink
states. For every state that transitions into a sink
state, there is a distinct offset, and hence there is no
opportunity for sharing. To counter this problem we
use an alternative representation for sink states. We

find an assignment ~b such that:

~x′′ 7→ ~b � @~x, ~x′ . trans
′

that is, ~b is a value never assigned by trans′, so can be
used as a “null” value. The BDD we implement is:

trans
′′ = trans

′ ∨ ((~x′′ = ~b) ∧ (@~x′′ . trans
′))

We can then recover trans from trans′′ as:

trans = ∃~x′′ . ((~x′′ 6= ~b) ∧ (~x′ = (~x xor ~x′′)) ∧ (trans
′′))

Since the original automaton was deterministic, ~x′′ is
uniquely determined in trans′′.



• To execute a transition of the state machine given by
the variable ordering described in Section 5, we would
need to determine the output a few variables at a time
(since input and output were interleaved). In Tree Fort
the ordering we use for trans′′ has ~x < ~x′′, which allows
for a simple trie-like implementation, since the assign-
ment to ~x′′ is given only at leaf nodes. This can be

seen in Table 1 (where both the “null offset”~b and the
chosen sink state are 0x1). There is a potential blowup
in this ordering, but in practice space was acceptable.

The XPathMark test suite is based on returning nodesets
for queries, and not on firewalling; furthermore, many prior
XPath processors that we wished to compare against imple-
ment only nodeset queries. We thus extended our approach
to implement nodeset queries:

• As we did with constraints, we build an automaton to
recognize the end-tag of any selected node. However,
when it accepts, we search backwards through the doc-
ument to find the matching begin-tag, which we copy
to the output stream. This requires a buffer of size
equal to the largest candidate node in the document.

• We implement nodeset queries by translating XPath
paths P into XPath constraints C(P ). The interesting
cases for this translation are:

C(P/π[F ]) = π−1[C(P )]∧F C(π[F ]) = π−1[A0]∧F

for example:

C(down::B/down
+::C) = C ∧ up

+::B[up::A0]

Note that this translation inverts the axes, which im-
pacts the definition of “efficiently streamable”. A node-
set query is considered to be efficiently streamable when
its translation is.

• Even when we are implementing nodeset queries, we
can still benefit from a fast-fail implementation. An
implementation of nodeset queries is fast-fail when-
ever, given an input string s such that for any t the
output generated by s and st are equal, the imple-
mentation terminates without reading t. For example,
given a DTD including A 7→ B∗C∗, the nodeset query
down::B can fast-fail after reading input 〈A〉〈B/〉n〈C〉
and generating output 〈B/〉n.

The implementation includes some additional features:

• We extend XPath with regex-matching on PCDATA,
where regexes are given in Augmented Backus Normal
Form (ABNF) syntax. The constraint P = R is true
whenever a node in the nodeset returned by P has
PCDATA recognized by regex R.

• We construct a transducer network that parses as well
as validates; that is, we generate automata recognizing
subsets of char∗ rather than Tags(Σ)∗. The transducer
for the DTD is therefore nondeterministic (as the regex
(〈A〉 · · · ) + (〈B〉 · · · ) both begin with the character 〈)
but can be sequentialized.

• The proofs of the size bounds for BDDs generate fresh
variables, which gives good complexity bounds, but at
the cost of large state size. In the implementation, we
reuse variables where possible.

Q1 /site/regions/*/item

Q7 //keyword/ancestor-or-self::mail
Q9 /site/open_auctions/open_auction[@id=’open_auction0’]

/bidder/preceding-sibling::bidder

Q36 /site/regions/*/item[contains(description,’gold’)]
Q42 /site/regions/*/item

[string-length(normalize-space(string(description))) > 1000]

Table 2: Sample of Original XPathMark queries

Q1 /site/regions//item

Q7 //keyword/ancestor-or-self::mail
Q9 cannot be implemented as a DFA
Q36 /site/regions//item[description = (*OCTET ’gold’ *OCTET)]
Q42 /site/regions//item[description = 1000*OCTET]

Table 3: Sample of Modified XPathMark queries

Q1 //UniProtKB_ID
Q2 //UniProtKB[UniProtKB_ID/text() = ’1433F_HUMAN’]
Q3 //Protein_Name_and_ID/UniProtKB

[UniProtKB_ID/text() = ’1433F_HUMAN’]
/following-sibling::IPI

Q4 //GENERAL_INFORMATION/Complex
[not(preceding-sibling::Tissue_Specificity)]

Q5 //Protein_Name[not(preceding::Protein_Name)]

Table 4: iProClass queries

• The run-time representation of the automaton is BDD-
based, but uses a 16-way decision rather than a 2-way
decision. Increasing the fan-out lowers the number of
memory accesses, at the cost of larger arrays. In a
RAM model, this results in a space–time tradeoff, but
in practice increasing the space usage has an impact on
time, since L2 cache performance is impacted. Experi-
mentally, we found that a 16-way branching produced
optimal runtimes.

The implementation is approximately 13k lines of Standard
ML [20] code, and generates a direct table-based C imple-
mentation of the 16-way decision diagram for trans′′, as seen
in Table 1. Two alternate implementation strategies were
investigated:

• A code-based rather than table-based implementation
was generated, which used switch-statements rather
than array lookups to implement branching. This re-
sulted in no change in space usage, but a 2–3× blowup
in runtime (conjectured to be due to less accurate
branch prediction by the CPU).

• Sparse arrays were used as an alternative implementa-
tion of missing transitions. (Sparse arrays are a data
structure which efficiently represent“arrays with holes”
with constant-time lookup.) This resulted in a 2–4×
decrease in space usage, with a 20% increase in run-
time (conjectured to be due to larger numbers of local
variables, and so more variables being placed on the
stack rather than in the few available registers on the
x86 architecture used for testing).

7. EXPERIMENTAL RESULTS
For evaluation, we have used our implementation on the

XPathMark query set [15] against a nonrecursive variant of



Implemented (26):

No rewriting required (9)

�
Q2, Q3, Q4, Q6, Q7, Q12,

Q22, Q23, Q24

�
Rewritable in input fragment (17)

8<: Q1, Q5, Q8, Q10, Q13, Q15,

Q25, Q31, Q32, Q36, Q37, Q38,

Q39, Q40, Q41, Q42, Q47

9=;
Unimplemented (21):

Is not end-determined (3)
�

Q9, Q11, Q30
	

Uses missing features (18)

8<: Q14, Q16, Q17, Q18, Q19, Q20,

Q21, Q26, Q27, Q28, Q29, Q33,

Q34, Q35, Q43, Q44, Q45, Q46

9=;
Table 5: XPathMark query coverage

the XMark DTD, and on the Integrated Protein Knowledge-
base for H. Sapiens [13].

The XPathMark [15] query set is based on the XMark [18]
document set. The XMark auction DTD is recursive, due
to the presence of text mark-up elements such as <parlist>
and <listitem> which may be arbitrarily nested. The XPath-
Mark synthetic reference document D1 was edited to re-
move approximately 30k <parlist> and <listitem> tags:
the resulting D1-norec document is 115.9MB compared to
the original 116.5MB. XPathMark contains 47 queries, some
of which are given in Table 2.

Tree Fort does not support all of XPath, only the effi-
ciently streamable fragment, without features such as names-
paces and comment nodes, some of which are used by XPath-
Mark. Tree Fort does not support functions or data joins,
but does allow regular expression matching on PCDATA, for
example Q36 (in Table 2) is rewritten to remove the wildcard
* axis, and the contains function, to give the equivalent
(under the XMark auction DTD) query (given in Table 3).

Efficiently streamable formulae are end-determined [2] in
the sense that membership of a node in a nodeset can be
determined when the end-tag is read. This is a requirement
for the automaton implementation strategy, and so Tree Fort
is unable to process non-end-determined queries such as Q9;
indeed, any approach which uses buffer space bounded by
the size of the largest bidder node will not be able to process
this query.

We also tested our constraint-checking code on an ad-
ditional dataset. The Integrated Protein Knowledgebase
(iProClass) is a bioinformatics application, containing links
to other biological databases. The iProClass DTD is nonre-
cursive, so no special treatment of nested documents is re-
quired. The H. Sapiens knowledgebase is 485.6MB, and was
used for testing. The queries used for benchmarking are in
Table 4. Note that these queries are all efficiently stream-
able, and that Q5 is fast-fail: once the first Protein_Name is
returned, the query is unsatisfiable.

Experiments were carried out on a 1GB 2.8GHz P4 run-
ning Ubuntu Linux, gcc 4.0.3 and Sun Java 1.5.0. We com-
pare our implementation to the XPath engines GCX [19],
Spex [16], XMLtk [11], XSLTproc [21], XSQ [17] and YFil-
ter [9]. We also compare our implementation to XMLWF [7],
which only checks for a well-formed XML document.

The XPathMark test coverage results are given in Table 5.
Comparing with Table 6 (where blank space denotes queries
not covered), we see that Tree Fort has better test coverage
results than any tool other than XSLTproc, which imple-
ments all of XPath (but is tree- rather than stream-based).
In addition, Tree Fort is performing DTD validation (in this

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Tree Fort 1.62 2.87 2.23 2.18 1.52 2.74 1.29 4.20

XMLtk 2.16 1.76 2.08 1.74 2.04 2.02
GCX 3.38 1.70 2.28 2.21 2.79 2.38
Spex 28.5 17.0 20.0 29.7 26.4
XSQ 21.7 9.91 11.6

XSLTproc 116 11.0 – – 31.4 107 24.0 3.62

YFilter – – –

Q9 Q10 Q12 Q13 Q15 Q17 Q21
Tree Fort 2.26 1.38 4.17 2.56

XMLtk 1.81 1.79 1.77
GCX 6.60
Spex 28.5 17.0 20.0 29.7 26.4
XSQ 21.7 9.91 11.6

XSLTproc 3.52 114 6.08 – 35.7 8.41 4.28
YFilter

Q22 Q23 Q24 Q25 Q31 Q32 Q36
Tree Fort 1.54 1.76 1.57 1.76 2.59 1.42 1.37

XMLtk
GCX 2.18 2.18
Spex 23.0
XSQ

XSLTproc 31.5 22.7 38.9 3.48 6.22 118 4.81
YFilter

Q37 Q38 Q39 Q40 Q41 Q42 Q47
Tree Fort 1.72 1.74 1.72 1.83 1.78 2.57 1.58

XMLtk
GCX 2.18
Spex 23.0
XSQ

XSLTproc 4.41 4.52 4.50 13.2 12.6 23.2 38.9
YFilter

XMLwf 1.60 ( – = Timeout after 120s)

Table 6: XPathMark query performance

case, against the auction DTD), which is not the case of any
other tool.

The performance results for XPathMark and iProClass
are shown in Tables 6 and 7. Note that Tree Fort is much
faster than many of the implementations, such as YFilter
and XSQ. Its performance is competitive with GCX and
XMLtk: in all but one test Tree Fort is either fastest or
second-fastest. Throughput is 200–400Mbps. Queries Q1
and Q7 (where Tree Fort outperforms all other processors)
are both ones which can fast-fail (in both cases, the query
only returns subtrees of <regions>, which is guaranteed by
the DTD to be the first child of the root node).

The space usage is shown in Tables 8 and 9. We see that:

• The automata have 13k–7m states; the largest automa-
ton by a factor of 60× is Q42, which includes the 1000-
state regex 1000*OCTET.

• The BDD-based representation for the automata gives
between 5× (Q13) and 8000× (Q42) compression ra-
tios compared to an explicit table-based representa-
tion.

• The fixed space usage in all cases is 109–891KB. The
per-stream space usage is 4 or 8 bytes.

In summary, on these experiments we have achieved our
goals of low per-input-character time (achieving throughput
of 200–400Mbps), low per-stream space (4 or 8 bytes), and
fast-fail execution.



Q1 Q2 Q3 Q4 Q5
Tree Fort 11.0 16.3 16.5 10.8 0.01

XMLtk 12.1
GCX 12.7 13
Spex 106 – 87
XSQ 55.7 55.2 56.4

XSLTproc – – – – –
YFilter –

XMLwf 11.2 ( – = Timeout after 120s)

Table 7: iProClass query performance

Q1 Q2 Q3 Q4 Q5 Q6 Q7
(N) 13k 19k 25k 21k 13k 30k 20k
(X) 13MB 19MB 25MB 21MB 13MB 30MB 20MB
(B) 116KB 273KB 227KB 238KB 134KB 270KB 153KB
(S) 4B 4B 4B 4B 4B 4B 4B

Q8 Q10 Q12 Q13 Q15 Q22 Q23
(N) 21k 51k 25k 18k 18k 13k 18k
(X) 21MB 51MB 25MB 18MB 18MB 13MB 18MB
(B) 379KB 194KB 135KB 381KB 243KB 136KB 224KB
(S) 8B 8B 4B 8B 4B 4B 4B

Q24 Q25 Q31 Q32 Q36 Q37
(N) 16k 16k 28k 13k 120k 17k
(X) 16MB 16MB 28MB 13MB 120MB 17MB
(B) 215KB 183KB 219KB 247KB 109KB 288KB
(S) 4B 4B 4B 4B 4B 4B

Q38 Q39 Q40 Q41 Q42 Q47
(N) 16k 17k 17k 16k 7134k 16k
(X) 16MB 17MB 17MB 16MB 7134MB 16MB
(B) 196KB 219KB 238KB 212KB 891KB 188KB
(S) 8B 8B 8B 8B 8B 4B

(N) = no. of states in DFA (X) = explicit table-based DFA
(B) = BDD-represented DFA (S) = per-stream space usage

Table 8: XPathMark space usage

8. FUTURE WORK
In this paper we have defined, investigated, and proposed

solutions for the XML stream firewalling problem. Many
issues are are left open for future work:

• The input stream is required to be an XML document:
can we apply the same techniques to other message
formats? In particular, will the techniques scale to
support message formats which do not support deter-
ministic parsers?

• Can we find similar results for recursive DTDs? We
cannot hope to validate documents in finite space. How-
ever, our techniques should allow us to get efficient
symbolic representations of wider classes of automata
– e.g. automata that can make use of the ancestor
chain of a current element.

9. REPEATABILITY ASSESSMENT RESULT
Tables 6 and 7 have been verified by the SIGMOD re-

peatability committee.
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