Programming Language Techniques for Cryptographic Proofs

Gilles Barthe¹
Benjamin Grégoire² Santiago Zanella-Béguelin¹

¹IMDEA Software, Madrid, Spain

²INRIA Sophia Antipolis - Méditerranée, France

ITP 2010

Formal verification of cryptographic primitives

Security of cryptographic primitives is hard to achieve:

- "Secure schemes" broken after more than 10 years
- "Security proofs" remaining flawed over more than 15 years

First step: acknowledging the problem

- Do we have a problem with cryptographic proofs? Yes, we do
 [...] We generate more proofs than we carefully verify (and as
 a consequence some of our published proofs are
 incorrect)—Halevi, 2005
- In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor—Bellare and Rogaway, 2006

(In)Famous example: RSA-OAEP

- 1994 Purported proof of chosen-ciphertext security
- 2001 Proof is flawed, but can be patched
 - 1 ...for a weaker security notion, or
 - 2 ...for a modified scheme, or
 - ...under stronger assumptions
- 2004 Filled gaps in Fujisaki et al. 2001 proof
- 2009 Security definition needs to be clarified
- 2010 Filled gaps and marginally improved bound in 2004 proof

Exact IND-CCA security of OAEP

Game IND-CCA:

$$(pk, sk) \leftarrow \mathcal{KG}(\eta);$$

 $(m_0, m_1) \leftarrow \mathcal{A}_1(pk);$
 $b \stackrel{\$}{\leftarrow} \{0, 1\};$
 $c^* \leftarrow \mathcal{E}(m_b);$
 $\tilde{b} \leftarrow \mathcal{A}_2(c^*)$

Game PD-OW:
$$(pk, sk) \leftarrow \mathcal{KG}_f(\eta);$$

$$s \stackrel{\$}{\leftarrow} \{0, 1\}^{n+k_1};$$

$$t \stackrel{\$}{\leftarrow} \{0, 1\}^{k_0};$$

$$\tilde{s} \leftarrow \mathcal{I}(f(pk, s \parallel t))$$

Security statement

$$\forall \mathcal{A}, \exists \mathcal{I},$$

$$2\left|\Pr[\mathsf{IND\text{-}CPA}: \tilde{b} = b] - \frac{1}{2}\right| \le q_{\mathsf{H}} \Pr[\mathsf{PD\text{-}OW}: \tilde{s} = s] + \frac{3q_{\mathcal{D}}q_{\mathsf{G}} + q_{\mathcal{D}}^2 + 4q_{\mathcal{D}} + q_{\mathsf{G}}}{2^{k_0}} + \frac{2q_{\mathcal{D}}}{2^{k_1}}\right|$$

The proof has been machine-checked in the Coq proof assistant.

Exact IND-CCA security of OAEP

Game IND-CCA:

$$(pk, sk) \leftarrow \mathcal{KG}(\eta);$$

 $(m_0, m_1) \leftarrow \mathcal{A}_1(pk);$
 $b \stackrel{\$}{\leftarrow} \{0, 1\};$
 $c^* \leftarrow \mathcal{E}(m_b);$
 $\tilde{b} \leftarrow \mathcal{A}_2(c^*)$

Game PD-OW:
$$(pk, sk) \leftarrow \mathcal{KG}_f(\eta);$$

$$s \overset{\$}{\leftarrow} \{0, 1\}^{n+k_1};$$

$$t \overset{\$}{\leftarrow} \{0, 1\}^{k_0};$$

$$\tilde{s} \leftarrow \mathcal{I}(f(pk, s \parallel t))$$

Security statement

$$\forall \mathcal{A}, \exists \mathcal{I},$$

$$2\left|\Pr[\mathsf{IND\text{-}CPA}: \tilde{b} = b] - \frac{1}{2}\right| \le q_{\mathsf{H}} \Pr[\mathsf{PD\text{-}OW}: \tilde{s} = s] + \frac{3q_{\mathcal{D}}q_{\mathsf{G}} + q_{\mathcal{D}}^2 + 4q_{\mathcal{D}} + q_{\mathsf{G}}}{2^{k_0}} + \frac{2q_{\mathcal{D}}}{2^{k_1}}\right|$$

The proof has been machine-checked in the Coq proof assistant.

How?

Exact IND-CCA security of OAEP

Security statement

$$\begin{split} \forall \mathcal{A}, \exists \mathcal{I}, \ \textit{WF}(\mathcal{A}) \ \land \\ & \text{Pr}\left[\mathsf{IND\text{-}CCA}: \ \frac{|\mathbf{L}_{\mathbf{G}}| \leq q_{\mathsf{G}} + q_{\mathcal{D}} \land |\mathbf{L}_{\mathbf{H}}| \leq q_{\mathsf{H}} \land |\mathbf{L}_{\mathcal{D}}| \leq q_{\mathcal{D}}}{\land (\mathsf{true}, c^*) \notin \mathbf{L}_{\mathcal{D}}} \ \right] = 1 \\ & \Longrightarrow \ 2 \left| \Pr[\mathsf{IND\text{-}CCA}: \tilde{b} = b] - \frac{1}{2} \right| \leq \\ & q_{\mathsf{H}} \Pr[\mathsf{PD\text{-}OW}: \tilde{s} = s] + \frac{3q_{\mathcal{D}}q_{\mathsf{G}} + q_{\mathcal{D}}^2 + 4q_{\mathcal{D}} + q_{\mathsf{G}}}{2^{k_0}} + \frac{2q_{\mathcal{D}}}{2^{k_1}} \end{split}$$

• How do we formalize the statement?

• Games = (Families of) Probabilistic programs

Game G_0^{η} : ... $\leftarrow \mathcal{A}(\ldots)$; ...

 $\Pr_{\mathsf{G}_0^{\eta}}[A_0]$

- Games = (Families of) Probabilistic programs
- How do we perform the proof?

Game G_0^η : ... $\leftarrow \mathcal{A}(\ldots);$...

 $\Pr_{\mathsf{G}_0^{\eta}}[A_0]$

- Games = (Families of) Probabilistic programs
- Game transformation = Program transformation

$$\mathsf{Pr}_{\mathsf{G}_0^{\eta}}[A_0] \qquad \leq \quad h_1(\mathsf{Pr}_{\mathsf{G}_1^{\eta}}[A_1]) \qquad \leq \; \ldots \; \leq \quad h_n(\mathsf{Pr}_{\mathsf{G}_n^{\eta}}[A_n])$$

CertiCrypt: machine-checking provable security

Certified framework for checking exact provable security proofs in the Coq proof assistant

- A combination of general methods from programming languages and of cryptographic-specific tools
- Game-based methodology, natural to cryptographers
- Focus on exact security bounds
- Several case studies:
 - Encryption schemes: ElGamal, Hashed ElGamal, OAEP, IBE
 - Signature schemes: FDH, BLS
 - Zero-knowledge proofs: see talk at CSF!

Inside CertiCrypt

- Semantics and cost model of probabilistic programs
- Model for adversaries
- Standard tools to reason about probabilistic programs
 - Semantics-preserving program transformations
 - Observational equivalence
 - Relational Hoare Logic
- In this talk: automation of 2 reasoning patterns in crypto:
 - Bounding failure events
 - Moving sampling of random values accross procedures

pWhile: a probabilistic programming language

 $x \triangleq d$: sample x according to distribution d, typically the uniform distribution on a set (e.g. $\{0,1\}$, $\{0,1\}^{\ell}$)

Deep Embedding

The syntax of programs is formalized as an inductive type

Dependently-typed Syntax

```
 \begin{split} & \text{Inductive } \mathcal{I} := \\ & | \; \mathsf{Assign} : \forall t, \; \mathcal{V}_t \to \mathcal{E}_t \to \mathcal{I} \\ & | \; \mathsf{Rand} \; : \forall t, \; \mathcal{V}_t \to \mathcal{DE}_t \to \mathcal{I} \\ & | \; \mathsf{Cond} \; : \mathcal{E}_{\mathbb{B}} \to \mathcal{C} \to \mathcal{C} \to \mathcal{I} \\ & | \; \mathsf{While} \; : \mathcal{E}_{\mathbb{B}} \to \mathcal{C} \to \mathcal{I} \\ & | \; \mathsf{Call} \; : \forall \textit{I} \; t, \mathcal{P}_{(\textit{I},t)} \to \; \mathcal{V}_t \to \mathsf{dlist} \; \textit{I} \; \mathcal{E} \to \mathcal{I} \\ & \text{where } \mathcal{C} := \mathsf{list} \; \mathcal{I} \end{split}
```

- Programs are well-typed by construction
- Semantics as a total function
- Allows richer specification (e.g. enforce size constraints on bitstrings)

Semantics

Measure Monad —courtesy of Christine Paulin

Distributions represented as functions of type

$$\mathcal{D}(A) \stackrel{\text{def}}{=} (A \rightarrow [0,1]) \rightarrow [0,1]$$
 s.t.

- $\bullet f \leq g \implies \mu(f) \leq \mu(g);$
- $\mu(1-f) \leq 1-\mu(f);$
- **3** $f \le 1 g \implies \mu(f + g) = \mu(f) + \mu(g);$
- **⑤** $f: \mathbb{N} \to (A \to [0,1])$ is monotonic and for all $n \in \mathbb{N}$ f(n) is monotonic, then μ (sup f) ≤ sup $(\lambda n. \mu(f(n))$

All arithmetic is in the unit interval [0,1]

$$\begin{array}{ll} \text{unit} \ : A \to \mathcal{D}(A) & \stackrel{\text{def}}{=} \ \lambda x. \ \lambda f. \ f \ x \\ \text{bind} \ : \mathcal{D}(A) \to (A \to \mathcal{D}(B)) \to \mathcal{D}(B) & \stackrel{\text{def}}{=} \ \lambda \mu. \ \lambda F. \ \lambda f. \ \mu(\lambda x. \ F \ x \ f) \end{array}$$

Semantics

Not axioms: actual function built from small-step semantics

Semantics

 $[x \leftarrow p(\vec{e})] m$

Not axioms: actual function built from small-step semantics

= bind ($\llbracket p.bodv \rrbracket \dots$

Observational Equivalence

Games G_1 and G_2 are observationally equivalent w.r.t. input variables I and output variables O iff:

- IF m_1 and m_2 coincide on I
- THEN $\llbracket G_1 \rrbracket$ m_1 and $\llbracket G_2 \rrbracket$ m_2 coincide on O (i.e. their projections on O are equal)

$$m_1 =_X m_2 \stackrel{\text{def}}{=} \forall x \in X, \ m_1 \ x = m_2 \ x$$

$$f =_X g \stackrel{\text{def}}{=} \forall m_1 \ m_2, \ m_1 =_X m_2 \implies f \ m_1 = g \ m_2$$

$$\models \mathsf{G}_1 \simeq_O^I \mathsf{G}_2 \stackrel{\text{def}}{=} \forall m_1 \ m_2 \ f \ g, \ m_1 =_I m_2 \ \land \ f =_O g \implies \|\mathsf{G}_1\| \ m_1 \ f = \|\mathsf{G}_2\| \ m_2 \ g$$

- Generalized to arbitrary relations
- Probabilistic Relational Hoare Logic

...but this is not what this talk is about

Reasoning about Failure Events

Lemma (Fundamental Lemma of Game-Playing)

Let A, B, F be events and G_1, G_2 be two games such that

$$\Pr[\mathsf{G}_1:A\wedge\neg F]=\Pr[\mathsf{G}_2:B\wedge\neg F]$$

Then, $|\Pr[G_1 : A] - \Pr[G_2 : B]| \le \max(\Pr[G_1 : F], \Pr[G_2 : F])$

Automation

Syntectic Criterion

When A = B and F = bad. If G_0, G_1 are syntactically identical except after program points setting bad e.g.

```
\begin{tabular}{ll} \textbf{Game} $G_0:$\\ ...\\ bad $\leftarrow$ true;$$ $\emph{$c_0}$\\ ...\\ \end{tabular}
```

```
\begin{tabular}{ll} \textbf{Game} & G_1: \\ \dots \\ \text{bad} & \leftarrow \text{true}; \textbf{$c_1$} \\ \dots \\ \end{tabular}
```

...and bad is never reset, then

- $\Pr[\mathsf{G}_0 : A \land \neg \mathsf{bad}] = \Pr[\mathsf{G}_1 : A \land \neg \mathsf{bad}]$
- If game G_i (c_i) terminates with probability 1: $Pr[G_{1-i} : bad] \le Pr[G_i : bad]$
- If both c_0, c_1 terminate absolutely: $Pr[G_0 : bad] = Pr[G_1 : bad]$

Automation

Syntectic Criterion

When A = B and F = bad. If G_0, G_1 are syntactically identical except after program points setting bad e.g.

$$\label{eq:Game G0} \begin{aligned} \textbf{Game} & \ \mathsf{G}_0: \\ \dots \\ & \ \mathsf{bad} \leftarrow \mathsf{true}; \\ & \ \mathsf{c}_0 \\ \dots \end{aligned}$$

...and bad is never reset, then

- $\Pr[\mathsf{G}_0 : A \land \neg \mathsf{bad}] = \Pr[\mathsf{G}_1 : A \land \neg \mathsf{bad}]$
- If game G_i (c_i) terminates with probability 1: $\Pr[G_{1-i} : \mathsf{bad}] \leq \Pr[G_i : \mathsf{bad}]$
- If both c_0, c_1 terminate absolutely: $Pr[G_0 : bad] = Pr[G_1 : bad]$

Failure Event lemma

Motivation: the Fundamental Lemma is typically applied in games where only oracles trigger bad.

- IF the probability of triggering bad in an oracle call can be bound as a function of the number of oracle calls so far
- THEN the probability of the whole game triggering bad can be bound if the number of oracle calls is bounded

Failure Event Lemma (constant case)

Assume that m(bad) = false

- IF $\Pr[\mathcal{O}, m : \mathsf{bad}] \leq p$ for every memory m such that $m(\mathsf{bad}) = \mathsf{false}$
- THEN $Pr[G, m : bad] \leq p \ q_{\mathcal{O}}$

Hypothesis holds for oracle

$$\mathcal{O}(x)$$
: $y \leq T$; if $y = y_0$ then bad \leftarrow true else ...

with p = 1/|T|

Logic of Failure Events

A variant of Probabilistic Hoare Logic

$$\vdash \llbracket c \rrbracket g \preceq f \quad \stackrel{\text{def}}{=} \quad \forall m. \llbracket c \rrbracket \ m \ g \leq f(m)$$

Selected Rules

Relation to Hoare Logic (for Boolean-valued P, Q)

Partial correctness:
$$\{P\}c\{Q\} \iff \llbracket c \rrbracket \mathbb{1}_{\neg Q} \preceq \mathbb{1}_{\neg Q}$$

Total correctness: $\{P\}c\{Q\} \iff \llbracket c \rrbracket \mathbb{1}_{Q} \succeq \mathbb{1}_{P}$

Logic of Failure Events

A variant of Probabilistic Hoare Logic

$$\vdash \llbracket c \rrbracket g \preceq f \stackrel{\text{def}}{=} \forall m. \llbracket c \rrbracket \ m \ g \leq f(m) \\
\vdash \llbracket c \rrbracket g \succeq f \stackrel{\text{def}}{=} \forall m. \llbracket c \rrbracket \ m \ g \geq f(m)$$

Selected Rules

$$\vdash \llbracket \mathsf{skip} \rrbracket f \preceq f \quad \vdash \llbracket x \leftarrow e \rrbracket g \preceq \lambda m. \ g(m\{\llbracket e \rrbracket \ m/x\})$$

$$\vdash \llbracket x \not \cdot T \rrbracket g \preceq \lambda m. | \llbracket T \rrbracket |^{-1} \sum_{t \in \llbracket T \rrbracket} g(m\{t/x\})$$

$$\vdash \llbracket c_1 \rrbracket g \preceq f \quad \llbracket c_2 \rrbracket h \preceq g \quad \qquad \vdash \llbracket c_1 \rrbracket g \preceq f \quad \llbracket c_2 \rrbracket g \preceq f$$

$$\vdash \llbracket c_1; c_2 \rrbracket h \preceq f \quad \qquad \vdash \llbracket if \ e \ then \ c_1 \ else \ c_2 \rrbracket g \preceq f$$

$$\vdash \llbracket f = I \vdash c \simeq_O^I c' \quad g = O \vdash \llbracket c' \rrbracket g \preceq f$$

$$\vdash \llbracket c \rrbracket g \preceq f \quad \qquad \vdash \llbracket c \rrbracket g \preceq f$$

Relation to Hoare Logic (for Boolean-valued P, Q):

Partial correctness:
$$\{P\}c\{Q\} \iff \llbracket c \rrbracket \mathbb{1}_{\neg Q} \preceq \mathbb{1}_{\neg P}$$

Total correctness: $\{P\}c\{Q\} \iff \llbracket c \rrbracket \mathbb{1}_{Q} \succeq \mathbb{1}_{P}$

Application: PRP/PRF Switching Lemma

$$\begin{aligned} & \textbf{Game } \mathsf{G}_{\mathsf{RP}} : \\ & \textbf{L} \leftarrow \mathsf{nil}; \ b \leftarrow \mathcal{A}() \\ & \textbf{Oracle } \mathcal{O}(x) : \\ & \text{if } x \notin \mathsf{dom}(\textbf{L}) \text{ then} \\ & y \overset{\$}{\leftarrow} \{0,1\}^{\ell} \setminus \mathsf{ran}(\textbf{L}); \\ & \textbf{L} \leftarrow (x,y) :: \textbf{L} \\ & \mathsf{return } \textbf{L}(x) \end{aligned}$$

Game
$$G_{RF}$$
: $L \leftarrow \text{nil}; \ b \leftarrow \mathcal{A}()$

Oracle $\mathcal{O}(x)$: if $x \notin \text{dom}(L)$ then $y \stackrel{s}{\leftarrow} \{0,1\}^{\ell};$ $L \leftarrow (x,y) :: L$ return $L(x)$

Suppose A makes at most q queries to O. Then

$$|\Pr[\mathsf{G}_{\mathsf{RP}}:b] - \Pr[\mathsf{G}_{\mathsf{RF}}:b]| \leq \frac{q(q-1)}{2^{\ell+1}}$$

- First introduced by Impagliazzo and Rudich in 1989
- Proof fixed by Bellare and Rogaway (2006) and Shoup (2004)

Proof

```
Game GRP:
\mathbf{L} \leftarrow \mathsf{nil}; \ b \leftarrow \mathcal{A}()
Oracle \mathcal{O}(x):
if x \notin dom(\mathbf{L}) then
   v \triangleq \{0,1\}^{\ell};
    if y \in ran(\mathbf{L}) then;
         bad ← true:
        y \not = \{0,1\}^{\ell} \setminus \operatorname{ran}(\mathbf{L})
    \mathbf{L} \leftarrow (x, y) :: \mathbf{L}
return L(x)
```

```
Game GRF:
 \mathbf{L} \leftarrow \mathsf{nil}; \ b \leftarrow \mathcal{A}()
Oracle \mathcal{O}(x):
 if x \notin dom(\mathbf{L}) then
   v \triangleq \{0,1\}^{\ell};
    if y \in ran(\mathbf{L}) then;
        bad ← true
    \mathbf{L} \leftarrow (x, y) :: \mathbf{L}
 return L(x)
```

$$|\Pr[\mathsf{G}_{\mathsf{RP}}:b] - \Pr[\mathsf{G}_{\mathsf{RF}}:b]| \leq \Pr[\mathsf{G}_{\mathsf{RF}}:\mathsf{bad}]$$

Proof

Failure Event Lemma (less simplified)

Let k be a counter for \mathcal{O} and m(bad) = false:

- IF $\Pr[\mathcal{O}, m : \mathsf{bad}] \le f(m(k))$ for all memories m such that $m(\mathsf{bad}) = \mathsf{false}$
- THEN $\Pr[\mathsf{G}, m : \mathsf{bad}] \leq \sum_{k=0}^{q_{\mathcal{O}}-1} f(k)$

Oracle
$$\mathcal{O}(x)$$
: if $x \notin \text{dom}(\mathbf{L})$ then $y \stackrel{s}{\leftarrow} \{0,1\}^{\ell}$; if $y \in \text{ran}(\mathbf{L})$ then bad \leftarrow true; $\mathbf{L} \leftarrow (x,y) :: \mathbf{L}$ return $\mathbf{L}(x)$

Prove that

$$\Pr[\mathcal{O}, m : \mathsf{bad}] \leq \frac{|m(\mathsf{L})|}{2^{\ell}}$$

Eager/Lazy Sampling

- Interprocedural code motion
- Eager sampling: from an oracle to main game
- Lazy sampling: from main game to an oracle

Motivation

In crypto proofs

- Often need to know that some values are independent and uniformly distributed at some program point
- This holds when values can be resampled preserving semantics!

To prove correctness of eager and lazy sampling, we developed a logic for swapping statements

$$\models E, (c; S) \simeq E', (S; c')$$

Selected Rules

Assume modifies $(E, S) \cup \text{modifies}(E', S) \subseteq X$ and $\models E, S \simeq_X^X E', S$

$$x \notin X \qquad \text{fv}(e) \cap X = \emptyset$$

$$\models E, (x \leftarrow e; S) \equiv E', (S; x \leftarrow e)$$

$$x \notin X$$

$$\models E, (x \Leftrightarrow T; S) \equiv E', (S; x \Leftrightarrow T)$$

$$\models E, (c_1; S) \equiv E', (S; c'_1) \qquad \models E, (c_2; S) \equiv E', (S; c'_2)$$

$$\models E, (c_1; c_2; S) \equiv E', (S; c'_1; c'_2)$$

$$\models E, (c_1; S) \equiv E', (S; c'_1) \qquad \models E, (c_2; S) \equiv E', (S; c'_2)$$

$$\models E, (c_1; S) \equiv E', (S; c'_1) \qquad \models E, (c_2; S) \equiv E', (S; c'_2)$$

$$fv(e) \cup X = \emptyset$$

$$\models E, (\text{if } e \text{ then } c_1 \text{ else } c_2; S) \equiv E', (S; \text{if } e \text{ then } c'_1 \text{ else } c'_2)$$

Application: PRP/PRF Switching Lemma

Game
$$G_{RF}^{eager}$$
:
 $L \leftarrow nil; S; b \leftarrow \mathcal{A}()$
Oracle $\mathcal{O}(x)$:
if $x \notin dom(L)$ then
if $0 < |\mathbf{Y}|$ then
 $y \leftarrow hd(\mathbf{Y}); \mathbf{Y} \leftarrow tl(\mathbf{Y})$
else $y \notin \{0,1\}^{\ell}$
 $L \leftarrow (x,y) :: L$
return $L(x)$

where
$$S \stackrel{\text{def}}{=} \mathbf{Y} \leftarrow []$$
; while $|\mathbf{Y}| < q$ do $y \not = \{0,1\}^{\ell}$; $\mathbf{Y} \leftarrow \mathbf{Y} + [y]$

Prove using the logic:

$$\models E_{RF}, (b \leftarrow \mathcal{A}(); S) \equiv E_{RF}^{\text{eager}}, (S; b \leftarrow \mathcal{A}())$$

Prove by induction:

$$\Pr[\mathsf{G}_{\mathsf{RF}}; S : \mathsf{bad}] = \Pr[\mathsf{G}_{\mathsf{RF}}^{\mathsf{eager}} : \mathsf{collision}] = \sum_{i=0}^{q-1} \frac{i}{2^{\ell}}$$

Summary

CertiCrypt: crypto proofs using programming language techniques

- Observational equivalence
- Relational Hoare Logic
- Certified program transformations

...including a few non-standard techniques

- Failure events
- Eager and lazy sampling

Tools in this paper increase automation and abstraction.

Proof of the PRP/PRF Switching Lemma:

- Original (POPL'09): 900 lines
- Using logic of swapping statements: 400 lines
- Using Failure Event Lemma: 100 lines

The road ahead

Increasing abstraction and automation will hopefully make verifiable security a reasonable and profitable alternative for cryptographers (see FCC'10 talk next week)