Programming Language Techniques for
Cryptographic Proofs

Gilles Barthe!
Benjamin Grégoire’  Santiago Zanella-Béguelin!

LIMDEA Software, Madrid, Sp in
e
2INRIA Sophia Antipolis - Méditerranée, France

ITP 2010



/1

Formal verification of cryptographic primitives

Security of cryptographic primitives is hard to achieve:
@ “Secure schemes” broken after more than 10 years

@ “Security proofs” remaining flawed over more than 15 years

First step: acknowledging the problem

@ Do we have a problem with cryptographic proofs? Yes, we do
[...] We generate more proofs than we carefully verify (and as
a consequence some of our published proofs are
incorrect)—Halevi, 2005

@ In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigo—Bellare and Rogaway, 2006




2/1

(In)Famous example: RSA-OAEP

Bellare and Rogaway

Shoup

Pointcheval

Bellare, Hofheinz, Kiltz

1994

2001

2004

Fujisaki, Okamoto, Pointcheval, Stern

2009

1994 Purported proof of chosen-ciphertext security
2001 Proof is flawed, but can be patched

© ...for a weaker security notion, or
Q@ ...for a modified scheme, or
© ...under stronger assumptions

2004 Filled gaps in Fujisaki et al. 2001 proof
2009 Security definition needs to be clarified

2010 Filled gaps and marginally improved bound in 2004 proof




A/1

Exact IND-CCA security of OAEP

Game IND-CCA : Game PD-OW :
(pk, sk) — KG(n); (pk, sk) — KGr(n);
(mo, my) — A1(pk); s & {0, 1}tk
b {0,1}; t & {0,1}k;
c* — E(mp); § — Z(f(pk,s || t))
b «— A2(C*)

VA, 3T,

1

2 |Pr[IND-CPA : b= b] — 5| <

3gpqc + 95 +4g9p + g 2gp

quPr[PD-OW : § = s] + o ok

The proof has been machine-checked in the Coq proof assistant.



A/1

Exact IND-CCA security of OAEP

Game IND-CCA : Game PD-OW :
(pk, sk) — KG(n); (pk, sk) — KGr(n);
(mo, my) — A1(pk); s & {0, 1}tk
b {0,1}; t & {0,1}k;
c* — E(mp); § — Z(f(pk,s || t))
b «— A2(C*)

VA, 3T,

1

2 |Pr[IND-CPA : b= b] — 5| <

3gpqc + 95 +4g9p + g 2gp

quPr[PD-OW : § = s] + o ok

The proof has been machine-checked in the Coq proof assistant.

How?



5/1

Exact IND-CCA security of OAEP

Game IND-CCA : Qracle G(r):

LG, Lu,Lp <« d; if r ¢ dom(Lg) ti;(en
(pk, sk) < KG(n); Lg[r] & {0, 1}"*%;
(IT707 ml) — Al(pk), return LG[r]

b & {0,1}; Oracle H(r) : ...

C: — E(my); Oracle D(c) :

Caer — LIUE: Lo — (€, ¢) = Lp;

b «— AQ(C*)

Security statement

VA, 3T, WF(A) A

< < <
Pr |IND-CCA - |LG‘_qG*‘i‘CI’D/\“-H|_CIH/\“-’D|_q’D —1
A (true, c*) ¢ Lp

~ 1
— 2 |Pr[IND-CCA: b= b] — 5‘ <

39p9c + 95 + 49p + g6 L 2

qguPr[PD-OW : § = s] + o =




A/1

The game-playing methodology

@ How do we formalize the statement?



A/1

The game-playing methodology

@ Games = (Families of ) Probabilistic programs

Game G| :

<—A()

PI’GS [Ao]



A/1

The game-playing methodology

@ Games = (Families of ) Probabilistic programs

@ How do we perform the proof?

Game G| :

<—A()

PI’GB? [Ao]



A/1

The game-playing methodology

@ Games = (Families of ) Probabilistic programs

@ Game transformation = Program transformation

Game G| : Game G : Game G} :

e AC || | e,

Preaf[Ad]l < m(Pra[Al]) < ... < ho(PrgnfA])



7/1

CertiCrypt: machine-checking provable security

Certified framework for checking exact provable security proofs in
the Coq proof assistant

@ A combination of general methods from programming
languages and of cryptographic-specific tools

@ Game-based methodology, natural to cryptographers
@ Focus on exact security bounds
@ Several case studies:

@ Encryption schemes: ElGamal, Hashed ElGamal, OAEP, IBE
@ Signature schemes: FDH, BLS
@ Zero-knowledge proofs: see talk at CSF!



Q/1

Inside CertiCrypt

@ Semantics and cost model of probabilistic programs

@ Model for adversaries
@ Standard tools to reason about probabilistic programs
@ Semantics-preserving program transformations

@ Observational equivalence
@ Relational Hoare Logic

@ In this talk: automation of 2 reasoning patterns in crypto:

© Bounding failure events
@ Moving sampling of random values accross procedures



O/1

pWhile: a probabilistic programming language

T = V<& assignment
| V&DE random sampling
| if £ then C else C conditional
|  while £doC while loop
| V<—PE,....E) procedure call
C = skip nop
| Z,C sequence

x & d: sample x according to distribution d, typically the uniform
distribution on a set (e.g. {0,1}, {0,1}%)

Deep Embedding

The syntax of programs is formalized as an inductive type




Dependently-typed Syntax

Inductive 7 :=

| Assign : Vt, Vi = & — T

| Rand :Vt, Vi = DE — T

| Cond : & —-C—-C—T

| While : &g —C —Z

| Call VI, Py — Ve—dlist | E—T
where C :=list 7

@ Programs are well-typed by construction
@ Semantics as a total function

@ Allows richer specification (e.g. enforce size constraints on
bitstrings)

10/1



Semantics

Measure Monad —courtesy of Christine Paulin

Distributions represented as functions of type

D(A) & (A= [0,1]) — [0,1] s.t.

Q f<g = u(f) < u(g);

Q (1 —f) <1—pu(f);

Q@ F<l-g = uf+g)=plf)+p(e)

Q plk x f) =k x p(f);

Q@ f:N— (A—[0,1]) is monotonic and for all n € N f(n) is
monotonic, then p(sup f) < sup (An. u(f(n))

All arithmetic is in the unit interval [0, 1]

unit : A — D(A) LA ML f x
bind : D(A) — (A — D(B)) — D(B) ¥ Au. A\F. M. u(Ax. F x f)

11/1



Semantics

19 /1

[cel]: M — D(M)

[skip] =
[i; c] m

[x —e] m
[x & d] m =

[if e then ¢ else o] m =

[while e do c] m =
where
[while e do c]o
[while e do c],,,

[x — p(&)] m =

skip
if e then ¢; [while e do ¢,

unit

= bind ([i] m) []
= unit m{([e]e m)/x}

bind ([d]pe m) (Av. unit m{v/x})
{ [ci] m if [e]e m = true

[c2] m if [e]le m = false
Af.sup (An. [[while e do c],] m f)

bind ([p.body] ...



Semantics

19 /1

[cel]: M — D(M)

[skip]

[i; c] m
[x —e] m
[x & d] m

[if e then c; else cp] m

[while e do c] m
where
[while e do c]o =
[while edo c],., =

[x = p(E)] m

skip

unit
bind ([/] m) [c]
unit m{([e]s m)/x}
bind ([d]pe m) (Av. unit m{v/x})
{ [ci] m if [e]e m = true

[co] m if [e]e m = false
Af.sup (An. [[while e do c],] m f)

if e then ¢; [while e do ¢,

bind ([p.body] ...

Not axioms: actual function built from small-step semantics

)



Observational Equivalence

Games G and Gy are observationally equivalent w.r.t. input
variables / and output variables O iff:

@ IF m; and my coincide on /

@ THEN [G1] m; and [Gz]] my coincide on O (i.e. their
projections on O are equal)

m=xm = VYxeX, m x=mx
f=xg = Vmimy, m=xm = fm=gm

':GlﬁlOG2 def lemzfg,m1:/m2/\f:og:>
[[Gl]] ma f:[[G2]] my g

o Generalized to arbitrary relations
@ Probabilistic Relational Hoare Logic

...but this is not what this talk is about

12/1




Reasoning about Failure Events

Lemma (Fundamental Lemma of Game-Playing)
Let A, B, F be events and Gy, Gy be two games such that

Pr[Gy : AN =F] =Pr[Gy : BA—F]

Then,

Pr[G;y : A] — Pr[G2 : B]| < max(Pr[G; : F],Pr[G2 : F])

14/1



Automation

Syntectic Criterion

When A = B and F = bad. If Gg, G; are syntactically identical
except after program points setting bad e.g.

Game Gq : Game Gy :

bad < true; ¢y bad « true; ¢

15 /1



Automation

Syntectic Criterion

When A = B and F = bad. If Gg, Gy are syntactically identical
except after program points setting bad e.g.

Game Gq : Game Gy :

bad < true; ¢y bad « true; ¢

...and bad is never reset, then
@ Pr[Gp : AA —bad] = Pr[G; : AA —bad]

o If game G; (¢;) terminates with probability 1:
Pr[Gi_; : bad] < Pr[G; : bad]

o If both ¢p, 1 terminate absolutely:
Pr[Gp : bad] = Pr[G; : bad]

15 /1



Failure Event lemma
Motivation: the Fundamental Lemma is typically applied in games
where only oracles trigger bad.
@ |F the probability of triggering bad in an oracle call can be
bound as a function of the number of oracle calls so far

@ THEN the probability of the whole game triggering bad can
be bound if the number of oracle calls is bounded

Failure Event Lemma (constant case)

Assume that m(bad) = false

o |F Pr[O, m: bad] < p for every memory m such that
m(bad) = false

@ THEN Pr[G, m : bad] < p qo

Hypothesis holds for oracle
O(x):y & T;if y = yp then bad « true else ...

with p = 1/|T|

16 /1



Logic of Failure Events
A variant of Probabilistic Hoare Logic

Flclg = f = m[e] mg < f(m)

Selected Rules

F [skip]f = f + [x < e]g < Am. g(m{[e] m/x})
Flx & Tlg 2 Aam|[T]7 Xy &(m{t/x})

Flalg 2 f [e)lh=g

Flalg 2 f [elg=f

= [[Cl; C2]]h = f
f=

IFZCf:'OC’

F [if e then ¢; else co]g < f
g= OF][]lg=f

Fclg = f

17 /1




Logic of Failure Events
A variant of Probabilistic Hoare Logic

Flclg=f < VYm.[c] mg < f(m)
Flclg=f % Vm.[c] mg > f(m)

Selected Rules

F [skip]f = f + [x < e]g < Am. g(m{[e] m/x})
Flx & Tlg 2 Aam|[T]7 Xy &(m{t/x})
Flalg 2 f [e]h=2g Flalg 2 f [elg=f
Flease]h =< f F [if e then ¢ else ]lg < f
f= IFc~hd g= OF[d]g=f
Flclg = f

Relation to Hoare Logic (for Boolean-valued P, Q):

Partial correctness: {P}c{Q} <= [c]l-@q <1-p
Total correctness:  {P}c{Q} < [c]lq = 1p

17 /1



Application: PRP/PRF Switching Lemma

Game Ggp : Game Ggf :

L —nil; b+ A() L — nil; b+ A()

Oracle O(x) : Oracle O(x) :

if x ¢ dom(L) then if x ¢ dom(L) then
y < {0,1}\ ran(L); y & {0,1}%
L—(x,y):L L—(x,y):L

return L(x) return L(x)

Suppose A makes at most g queries to O. Then

-1
|P1“[GRP . b] — Pr[GRF . b]| < %

@ First introduced by Impagliazzo and Rudich in 1989
@ Proof fixed by Bellare and Rogaway (2006) and Shoup (2004)

12/1



Proof

' Game Ggrp :

L —nil; b+ A()

Oracle O(x) :
if x ¢ dom(L) then
y & {0,1}%;
if y € ran(L) then ;
bad « true;
y & {0,1}*\ ran(L)
L—(x,y):L
return L(x)

10/1

' Game Ggrf :

L —nil; b+ A()
Oracle O(x) :
if x ¢ dom(L) then
y & {0,1}%
if y € ran(L) then ;
bad « true

L—(x,y):L

return L(x)

|Pr[Grp : b] — Pr[GgE : b]| < Pr[Ggr : bad]




Proof

Failure Event Lemma (less simplified)
Let k be a counter for O and m(bad) = false:

o IF Pr[O, m: bad] < f(m(k)) for all memories m such that
m(bad) = false

qo—1
o THEN Pr[G, m:bad] < ) (k)
k=0

Oracle O(x) :

if x ¢ dom(L) then
y & {0,1}%; if y € ran(L) then bad « true;
L—(x,y):L

return L(x)

@ Prove that
|m(L)|

Pr[O, m : bad] < o

2" /1



Eager/Lazy Sampling

@ Interprocedural code motion
@ Eager sampling: from an oracle to main game

@ Lazy sampling: from main game to an oracle

Motivation

In crypto proofs
@ Often need to know that some values are independent and
uniformly distributed at some program point

@ This holds when values can be resampled preserving
semantics! )

To prove correctness of eager and lazy sampling, we developed a
logic for swapping statements

FE, (¢;S)~FE, (S;c)

971 /1



Selected Rules

Assume modifies(E, S) U modifies(E’,S) C X and F E, S ~X E/, S

xgX fu(e)N X =10
EE (x—eS)=FE (S;x—e)

x & X
FE(x& T,S)=E,(S;x&T)

EE (c;S)=FE'(S;¢c]) FE, (c;S)=E,(S;¢)
EE,(c1;¢;S)=E',(S;cf; )

FE (c;S)=E,(S ) EE (c;8)=E,(S;¢)
fu(e)uX =10
E E, (if e then ¢ else cp; S) = E',(S;if e then ¢] else ¢})

7 /1



Application: PRP/PRF Switching Lemma

Game G
L—nil; S; b~ A()
Oracle O(x) :
if x & dom(L) then
if 0 < |Y| then
y < hd(Y); Y —tl(Y)
else y & {0,1}*
L—(x,y):L
return L(x)
where S &Y « []; while |[Y| < gdoy < {0,1}; Y « Y +[y]
Prove using the logic:
= Ene, (b AQ): )= i, (Si b— A()
Prove by induction: a1 .
Pr[Ggr; S @ bad] = Pr[GRF®" : collision] = Z é
i=0

7" /1



Summary
CertiCrypt: crypto proofs using programming language techniques
@ Observational equivalence
@ Relational Hoare Logic
@ Certified program transformations
...including a few non-standard techniques
o Failure events
@ Eager and lazy sampling
Tools in this paper increase automation and abstraction.
Proof of the PRP/PRF Switching Lemma:
@ Original (POPL’09): 900 lines
@ Using logic of swapping statements: 400 lines
@ Using Failure Event Lemma: 100 lines

The road ahead

Increasing abstraction and automation will hopefully make
verifiable security a reasonable and profitable alternative for
cryptographers (see FCC'10 talk next week)

2"1/1





