
Formal Certification of
Game-Based Cryptographic Proofs

Santiago Zanella Béguelin

IMDEA Software, Madrid, Spain

INRIA Sophia Antipolis - Méditerranée, France

Microsoft Research - INRIA Joint Centre, France

2010.12.09
ENS Paris

A tale of two worlds

Formal World
{({(0,K1)}K2 , 1)}K3

Values as symbols

Primitives as symbolic
expressions

Adversaries as inference engines

Asymptotic security

Indirect
(computation soundness)

ProVerif, PCL, AVISPA

Better suited for protocols?

Computational World
f (G (r)⊕(m‖0k)‖H(G (r)⊕(m‖0k))⊕r)

Values as bitstrings

Primitives as functions on
bitstrings

Probabilistic Polynomial-time
Adversaries

Exact security bounds

Direct

CryptoVerif, CPCL, CIL

Better suited for primitives?

This work is in the computational world

2/44

A tale of two worlds

Formal World
{({(0,K1)}K2 , 1)}K3

Values as symbols

Primitives as symbolic
expressions

Adversaries as inference engines

Asymptotic security

Indirect
(computation soundness)

ProVerif, PCL, AVISPA

Better suited for protocols?

Computational World
f (G (r)⊕(m‖0k)‖H(G (r)⊕(m‖0k))⊕r)

Values as bitstrings

Primitives as functions on
bitstrings

Probabilistic Polynomial-time
Adversaries

Exact security bounds

Direct

CryptoVerif, CPCL, CIL

Better suited for primitives?

This work is in the computational world

2/44

Cryptanalysis-driven design

Propose a cryptographic scheme

Wait for someone to come out with an attack

Patch scheme

3/44

Cryptanalysis-driven design

Propose a cryptographic scheme

Wait for someone to come out with an attack

Patch scheme

3/44

Cryptanalysis-driven design

Propose a cryptographic scheme

Wait for someone to come out with an attackAttack found!

Patch scheme

3/44

Cryptanalysis-driven design

Propose a cryptographic scheme

Wait for someone to come out with an attackAttack found! Patch scheme

3/44

Cryptanalysis-driven design

Propose a cryptographic scheme

Wait for someone to come out with an attack

Patch scheme

Enough waiting

Declare the scheme secure

How much time is enough?

3/44

Cryptanalysis-driven design

Propose a cryptographic scheme

Wait for someone to come out with an attack

Patch scheme

Enough waiting

Declare the scheme secure

It took 5 years to break the Merkle-Hellman cryptosystem

3/44

Cryptanalysis-driven design

Propose a cryptographic scheme

Wait for someone to come out with an attack

Patch scheme

Enough waiting

Declare the scheme secure

It took 10 years to break the Chor-Rivest cryptosystem

3/44

Cryptanalysis-driven design

Propose a cryptographic scheme

Wait for someone to come out with an attack

Patch scheme

Enough waiting

Declare the scheme secure

Can’t we do better?

3/44

The Provable Security paradigm

1 Define a security goal and a model for adversaries

2 Propose a cryptographic scheme

3 Reduce security of the scheme to a cryptographic assumption

IF an adversary A can break the security of the scheme
THEN the assumption can be broken with little extra effort

Conversely,

IF the security assumption holds THEN the scheme is secure

4/44

Proof by reduction

Assume a polynomial adversary A breaks the security of a
scheme

Build a polynomial algorithm B that uses A to solve a
computational hard problem

IF the problem is intractable
THEN the cryptographic scheme is asymptotically secure

B
A

Problem instance Solution

5/44

Exact security

Assume an adversary A breaks the security of a scheme within
time t with probability ε

Build an algorithm B that uses A to solve a computational
hard problem with probability ε′ ≥ f (ε) within time t ′ ≤ g(t)

Bounds matter: the greater f (ε) and the smaller g(t) are, the
closer the security of the scheme is related to the problem.

Choosing scheme parameters

What is the best known method to solve the problem?

Choose parameters so that the reduction yields a better one

6/44

Exact security

Assume an adversary A breaks the security of a scheme within
time t with probability ε

Build an algorithm B that uses A to solve a computational
hard problem with probability ε′ ≥ f (ε) within time t ′ ≤ g(t)

Bounds matter: the greater f (ε) and the smaller g(t) are, the
closer the security of the scheme is related to the problem.

Choosing scheme parameters

What is the best known method to solve the problem?

Choose parameters so that the reduction yields a better one

6/44

Game-based proofs

Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in
taming the complexity of security proofs that might
otherwise become so messy, complicated, and subtle as
to be nearly impossible to verify
V. Shoup

Game G0 :
. . .
. . .← A(. . .);
. . .

Pr[G0 : A0]

Game G1 :
. . .
. . .
. . .

≤ h1(Pr[G1 : A1])

· · ·

Game Gn :
. . .
. . .← B(. . .)
. . .

≤ . . . ≤ hn(Pr[Gn : An])

Start from an initial game encoding the security goal

7/44

Game-based proofs

Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in
taming the complexity of security proofs that might
otherwise become so messy, complicated, and subtle as
to be nearly impossible to verify
V. Shoup

Game G0 :
. . .
. . .← A(. . .);
. . .

Pr[G0 : A0]

Game G1 :
. . .
. . .
. . .

≤ h1(Pr[G1 : A1])

· · ·

Game Gn :
. . .
. . .← B(. . .)
. . .

≤ . . . ≤ hn(Pr[Gn : An])

Stepwise transform the game keeping track of probabilities

7/44

Game-based proofs

B
A

Problem instance Solution

Game G0 :
. . .
. . .← A(. . .);
. . .

Pr[G0 : A0]

Game G1 :
. . .
. . .
. . .

≤ h1(Pr[G1 : A1])

· · ·

Game Gn :
. . .
. . .← B(. . .)
. . .

≤ . . . ≤ hn(Pr[Gn : An])

Reach a final game encoding a computational assumption

7/44

Things can still go wrong (e.g. RSA-OAEP)

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

1994 Purported proof of chosen-ciphertext security

2001 Proof is flawed, but can be patched

1 ...for a weaker security notion, or
2 ...for a modified scheme, or
3 ...under stronger assumptions

2004 Filled gaps in Fujisaki et al. 2001 proof

2009 Security definition needs to be clarified

2010 Filled gaps and marginally improved bound in 2004 proof

8/44

Beyond Provable Security: Verifiable Security

Goal
Build a framework to formalize game-based

cryptographic proofs

Provide foundations to game-based proofs

Notation as close as possible to the one used by
cryptographers

Automate common reasoning patterns

Support exact security

Provide independently and automatically verifiable proofs

9/44

CertiCrypt
Language-based cryptographic proofs

10/44

A language-based approach

Security definitions, assumptions and games are formalized using a
probabilistic programming language

pWhile: a probabilistic programming language

C ::= skip nop
| C; C sequence
| V ← E assignment
| V $← DE random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

x $← d : sample the value of x according to distribution d

The language of expressions (E) and distribution expressions
(DE) admits user-defined extensions

11/44

Some design choices

CertiCrypt is built on top of the Coq proof assistant

Deep-embedding formalization

Strongly-typed language

Syntax is dependently-typed
(only well-typed programs are admitted)

Monadic semantics uses Paulin-Mohring’s ALEA Coq library

12/44

Semantics

Measure Monad

Distributions represented as monotonic, linear and continuous
functions of type

D(A) def
= (A→ [0, 1])→ [0, 1]

unit : A→ D(A) def
= λx . λf . f x

bind : D(A)→ (A→ D(B))→ D(B) def
= λµ. λF . λf . µ(λx . F x f)

Intuition

Given µ ∈ D(A) and f : A→ [0, 1]
µ(f) represents the expected value of f w.r.t. µ

13/44

Semantics

Programs map an initial memory to a distribution on final
memories

Jc ∈ CK :M→D(M)

The probability of an event is the expected value of its
characteristic function:

Pr[c ,m : A] def
= JcK m 1A

Instrumented and parametrized semantics to characterize PPT:

Jc ∈ CKη :M→D(M× N)

14/44

Semantics

Programs map an initial memory to a distribution on final
memories

Jc ∈ CK :M→D(M)

The probability of an event is the expected value of its
characteristic function:

Pr[c ,m : A] def
= JcK m 1A

Instrumented and parametrized semantics to characterize PPT:

Jc ∈ CKη :M→D(M× N)

14/44

Observational equivalence

Definition

f =X g def
= ∀m1 m2. m1 =X m2 =⇒ f m1 = g m2

� c1 'I
O c2

def
= ∀m1 m2 f g .

m1 =I m2 ∧ f =O g =⇒ Jc1K m1 f = Jc2K m2 g

Example

� x $← {0, 1}k ; y ← x ⊕ z '{z}{x ,y ,z} y $← {0, 1}k ; x ← y ⊕ z

Useful to relate probabilities

fv(A) ⊆ O � c1 'I
O c2 m1 =I m2

Pr[c1,m1 : A] = Pr[c2,m2 : A]

Only a Partial Equivalence Relation

� c 'I
O c not true in general (obviously)

Generalizes information flow security (take I = O = Vlow)
15/44

Observational equivalence

Definition

f =X g def
= ∀m1 m2. m1 =X m2 =⇒ f m1 = g m2

� c1 'I
O c2

def
= ∀m1 m2 f g .

m1 =I m2 ∧ f =O g =⇒ Jc1K m1 f = Jc2K m2 g

Example

� x $← {0, 1}k ; y ← x ⊕ z '{z}{x ,y ,z} y $← {0, 1}k ; x ← y ⊕ z

Useful to relate probabilities

fv(A) ⊆ O � c1 'I
O c2 m1 =I m2

Pr[c1,m1 : A] = Pr[c2,m2 : A]

Only a Partial Equivalence Relation

� c 'I
O c not true in general (obviously)

Generalizes information flow security (take I = O = Vlow)
15/44

Generalized relational equivalence

Probabilistic extension of Benton’s Relational Hoare Logic

Definition

� c1 ∼ c2 : Ψ⇒ Φ def
= ∀m1 m2. m1 Ψ m2 =⇒ Jc1K m1 'Φ Jc2K m2

µ1 'Φ µ2 lifts relation Φ from memories to distributions.

µ1 'Φ µ2 holds if there exists a distribution µ on M×M s.t.

The 1st projection of µ coincides with µ1

The 2nd projection of µ coincides with µ2

Pairs with positive measure are in Φ

16/44

Proving program equivalence

Goal

� c1 'I
O c2

A Relational Hoare Logic generalized to arbitrary relations

� c1 ∼ c2 : Φ⇒ Φ′ � c ′1 ∼ c ′2 : Φ′ ⇒ Φ′′

� c1; c ′1 ∼ c2; c ′2 : Φ⇒ Φ′′
[Seq]

� c1 ∼ c2 : Ψ⇒ Φ � c2 ∼ c3 : Ψ′ ⇒ Φ′

� c1 ∼ c3 : Ψ ◦Ψ′ ⇒ Φ ◦ Φ′
[Comp]

. . .

17/44

Proving program equivalence

Goal

� c1 'I
O c2

Mechanized program transformations

Transformation: T (c1, c2, I ,O) = (c ′1, c
′
2, I
′,O ′)

Soundness theorem

T (c1, c2, I ,O) = (c ′1, c
′
2, I
′,O ′) � c ′1 'I ′

O′ c ′2
� c1 'I

O c2

Reflection-based Coq tactic
(replace reasoning by computation)

17/44

Proving program equivalence

Goal

� c1 'I
O c2

Mechanized program transformations

Dead code elimination (deadcode)

Constant folding and propagation (ep)

Procedure call inlining (inline)

Code movement (swap)

Common suffix/prefix elimination (eqobs hd, eqobs tl)

17/44

Proving program equivalence

Goal

� c 'I
O c

An –incomplete– tactic for self-equivalence
(eqobs in)

Does � c 'I
O c hold?

Analyze dependencies to compute I ′ s.t. � c 'I ′
O c

Check that I ′ ⊆ I

Think about type systems for information flow security

17/44

Reasoning about Failure Events

Lemma (Fundamental Lemma of Game-Playing)

Let A,B,F be events and G1,G2 be two games such that

Pr[G1 : A ∧ ¬F] = Pr[G2 : B ∧ ¬F]

Then, |Pr[G1 : A]− Pr[G2 : B]| ≤ max(Pr[G1 : F],Pr[G2 : F])

18/44

Automation

Syntactic Criterion

When A = B and F = bad. If G0,G1 are syntactically identical
except after program points setting bad e.g.

Game G0 :
. . .
bad← true; c0

. . .

Game G1 :
. . .
bad← true; c1

. . .

then

Pr[G0 : A ∧ ¬bad] = Pr[G1 : A ∧ ¬bad]

If game Gi (ci) terminates with probability 1:
Pr[G1−i : bad] ≤ Pr[Gi : bad]

If both c0, c1 terminate absolutely:
Pr[G0 : bad] = Pr[G1 : bad]

19/44

Automation

Syntactic Criterion

When A = B and F = bad. If G0,G1 are syntactically identical
except after program points setting bad e.g.

Game G0 :
. . .
bad← true; c0

. . .

Game G1 :
. . .
bad← true; c1

. . .

then

Pr[G0 : A ∧ ¬bad] = Pr[G1 : A ∧ ¬bad]

If game Gi (ci) terminates with probability 1:
Pr[G1−i : bad] ≤ Pr[Gi : bad]

If both c0, c1 terminate absolutely:
Pr[G0 : bad] = Pr[G1 : bad]

19/44

Failure Event lemma
Motivation: the Fundamental Lemma is typically applied in games
where only oracles trigger bad.

IF the probability of triggering bad in an oracle call can be
bound as a function of the number of oracle calls so far

THEN the probability of the whole game triggering bad can
be bound provided the number of oracle calls is bounded

Failure Event Lemma (simplified)

Assume that m(bad) = false

IF Pr[O,m : bad] ≤ p for every memory m such that
m(bad) = false

THEN Pr[G,m : bad] ≤ p qO

Hypothesis holds for oracle

O(x) : y $← T ; if y = y0 then bad← true else . . .

with p = 1/|T |
20/44

Application: PRP/PRF Switching Lemma

Game GRP :
L← nil; b ← A()

Oracle O(x) :
if x /∈ dom(L) then
y $← {0, 1}` \ ran(L);
L← (x , y) :: L

return L(x)

Game GRF :
L← nil; b ← A()

Oracle O(x) :
if x /∈ dom(L) then
y $← {0, 1}`;
L← (x , y) :: L

return L(x)

Suppose A makes at most q queries to O. Then

|Pr[GRP : b]− Pr[GRF : b]| ≤ q(q − 1)

2`+1

First introduced by Impagliazzo and Rudich in 1989

Proof fixed by Bellare and Rogaway (2006) and Shoup (2004)

21/44

Proof

Game GRP :
L← nil; b ← A()

Oracle O(x) :
if x /∈ dom(L) then
y $← {0, 1}`;
if y ∈ ran(L) then ;

bad← true;
y $← {0, 1}` \ ran(L)

L← (x , y) :: L
return L(x)

Game GRF :
L← nil; b ← A()

Oracle O(x) :
if x /∈ dom(L) then
y $← {0, 1}`;
if y ∈ ran(L) then ;

bad← true

L← (x , y) :: L
return L(x)

|Pr[GRP : b]− Pr[GRF : b]| ≤ Pr[GRF : bad]

22/44

Proof

Failure Event Lemma (less simplified)

Let k be a counter for O and m(bad) = false:

IF Pr[O,m : bad] ≤ f (m(k)) for all memories m such that
m(bad) = false

THEN Pr[G,m : bad] ≤
qO−1∑
k=0

f (k)

Oracle O(x) :
if x /∈ dom(L) then
y $← {0, 1}`; if y ∈ ran(L) then bad← true;
L← (x , y) :: L

return L(x)

Prove that

Pr[O,m : bad] ≤ |m(L)|
2`

23/44

Eager/Lazy Sampling

Interprocedural code motion

Eager sampling: from an oracle to main game

Lazy sampling: from main game to an oracle

Motivation

In crypto proofs

Often need to know that some values are independent and
uniformly distributed at some program point

This holds when values can be resampled preserving
semantics!

To prove correctness of eager and lazy sampling, we developed a
logic for swapping statements

� E , (c ; S) ' E ′, (S ; c ′)

24/44

Application: PRP/PRF Switching Lemma

Game Geager
RF :

L← nil; S ; b ← A()

Oracle O(x) :
if x 6∈ dom(L) then

if 0 < |Y| then
y ← hd(Y); Y ← tl(Y)

else y $← {0, 1}`
L← (x , y) :: L

return L(x)

where S def
= Y ← []; while |Y| < q do y $← {0, 1}`; Y ← Y ++ [y]

Prove using the logic:

� ERF , (b ← A(); S) ≡ E eager
RF , (S ; b ← A())

Prove by induction:

Pr[GRF; S : bad] = Pr[Geager
RF : collision] =

q−1∑
i=0

i

2`

25/44

What does it take to trust a proof in CertiCrypt

Verification is fully-automated!
(but proof construction is time-consuming)

You need to

trust the type checker of Coq
trust the language semantics
make sure the security statement (a few lines in Coq) is as
expected

You don’t need to

understand or even read the proof
trust tactics, program transformations
trust program logics, wp-calculus
be an expert in Coq

26/44

Zero-Knowledge Proofs

27/44

Zero-Knowledge Proofs

Victor Peggy

28/44

Zero-Knowledge Proofs

Victor Peggy

28/44

Zero-Knowledge Proofs

Victor Peggy

28/44

If you ever need to explain this to your kids

How to Explain Zero-Knowledge Protocols to your Children
Jean-Jacques Quisquater, Louis C. Guillou. CRYPTO’89

29/44

Properties of Zero-Knowledge Proofs

Completeness
A honest prover always convinces a honest verifier

Soundness
A dishonest prover (almost) never convinces a verifier

Zero-Knowledge
A verifier doesn’t learn anything from playing the protocol

30/44

Formalizing Σ-Protocols

Prover knows (x ,w) s.t. R(x ,w) / Verifier knows only x

Prover Verifier

Computes commitment r

(r , state)← P1(x ,w)

r

c Samples challenge c

c $← C

Computes response s

s ← P2(x ,w , state, c)

s Accepts/rejects response

b ← V2(x , r , c , s)

31/44

Formalizing Σ-Protocols

Prover knows (x ,w) s.t. R(x ,w) / Verifier knows only x

Prover Verifier

Computes commitment r

(r , state)← P1(x ,w) r

c

Samples challenge c

c $← C

Computes response s

s ← P2(x ,w , state, c) s

Accepts/rejects response

b ← V2(x , r , c , s)

31/44

Formalizing Σ-Protocols

A Σ-protocol is given by:

Types for x ,w , r , s, state

A knowledge relation R

A challenge set C

Procedures P1, P2, V2

The protocol can be seen as a program

protocol(x ,w) :
(r , state)← P1(x ,w);
c $← C ;
s ← P2(x ,w , state, c);
b ← V2(x , r , c , s)

32/44

Formalizing Σ-Protocols

Completeness

∀x ,w . R(x ,w) =⇒ Pr[protocol(x ,w) : b = true] = 1

Soundness

There exists a polynomial time procedure KE s.t.

c1 6= c2

(x , r , c1, s1) accepting
(x , r , c2, s2) accepting

 =⇒

Pr[w ← KE(x , r , c1, c2, s1, s2) : R(x ,w)] = 1

33/44

Honest-Verifier ZK vs. Special Honest-Verifier ZK

protocol(x ,w) :
(r , state)← P1(x ,w);
c $← C ;
s ← P2(x ,w , state, c);
b ← V2(x , r , c , s)

protocol(x ,w , c) :
(r , state)← P1(x ,w);
s ← P2(x ,w , state, c);
b ← V2(x , r , c, s)

Special Honest-Verifier ZK

∃S. ∀x ,w , c . R(x ,w) =⇒
� protocol(x ,w , c) '{x ,c}{r ,c,s} (r , s)← S(x , c)

Honest-Verifier ZK

∃S. ∀x ,w . R(x ,w) =⇒
� protocol(x ,w) '{x}{r ,c,s} (r , c, s)← S(x)

34/44

Honest-Verifier ZK vs. Special Honest-Verifier ZK

protocol(x ,w) :
(r , state)← P1(x ,w);
c $← C ;
s ← P2(x ,w , state, c);
b ← V2(x , r , c , s)

protocol(x ,w , c) :
(r , state)← P1(x ,w);
s ← P2(x ,w , state, c);
b ← V2(x , r , c, s)

Special Honest-Verifier ZK

∃S. ∀x ,w , c . R(x ,w) =⇒
� protocol(x ,w , c) '{x ,c}{r ,c,s} (r , s)← S(x , c)

Honest-Verifier ZK

∃S. ∀x ,w . R(x ,w) =⇒
� protocol(x ,w) '{x}{r ,c,s} (r , c, s)← S(x)

34/44

Σφ-Protocols

Let φ be a homomorphism from an additive group (G,⊕) to a
multiplicative group (H,⊗)

φ(a⊕ b) = φ(a)⊗ φ(b)

Homomorphism φ is special if there exists

1 a constant v ∈ Z
2 a PPT-computable function u : H → G

such that ∀x ∈ φ[G]
φ(u(x)) = xv

35/44

Σφ-Protocols

A special homomorphism φ from an additive group (G,⊕) to
a multiplicative group (H,⊗)
c+ ∈ N smaller than any prime divisor of special exponent v

This protocol is a ZK proof of knowledge of preimages of φ:

R = {(x ,w) | x = φ(w)}

Prover Verifier

y $← G; r ← φ(y) r

c c $← [0..c+]

s ← y ⊕ cw s φ(s) ?
= r ⊗ xc

36/44

Formalized Σφ-Protocols

Protocol G → H φ(x) u(x) v

Schnorr Z+
q → Z∗p g x 0 q

Okamoto (Z+
q ,Z+

q)→ Z∗p g x1
1 ⊗ g x2

2 (0, 0) q

Diffie-Hellman Z+
q → Z∗p × Z∗p (g x , gbx) 0 q

Fiat-Shamir Z∗N → Z∗N x2 x 2

Guillou-Quisquater Z∗N → Z∗N xe x e

Feige-Fiat-Shamir {−1, 1} × Z∗N → Z∗N s.x2 |x | 2

All these protocols are proved sound, complete and sHVZK in Coq

37/44

Combination of Σφ-protocols

Special homomorphisms are closed under direct product

Proof.

Special homomorphisms φ1 : G1 → H1, φ2 : G2 → H2

φ : G1 × G2 → H1 ×H2

φ(x1, x2) = (φ(x1), φ(x2))

v def
= lcm(v1, v2)

u(x1, x2) def
= (u1(x1)v/v1 , u2(x2)v/v2)

A cheap and efficient way of combining Σφ-protocols to prove
knowledge of several preimages!

...which bring us to combining arbitrary Σ-protocols

38/44

Combination of Σφ-protocols

Special homomorphisms are closed under direct product

Proof.

Special homomorphisms φ1 : G1 → H1, φ2 : G2 → H2

φ : G1 × G2 → H1 ×H2

φ(x1, x2) = (φ(x1), φ(x2))

v def
= lcm(v1, v2)

u(x1, x2) def
= (u1(x1)v/v1 , u2(x2)v/v2)

A cheap and efficient way of combining Σφ-protocols to prove
knowledge of several preimages!

...which bring us to combining arbitrary Σ-protocols

38/44

Combination of Σ-Protocols

Given

a Σ-protocol (P1,V 1) for relation R1

a Σ-protocol (P2,V 2) for relation R2

Two basic ways of combining them. Given (x1, x2)

AND-combination: prove knowledge of (w1,w2) such that

R1(x1,w1) AND R2(x2,w2)

R def
= {((x1, x2), (w1,w2)) | (x1,w1) ∈ R1 ∧ (x2,w2) ∈ R2}

OR-combination: prove knowledge of a w such that

R1(x1,w) OR R2(x2,w)

without revealing which is the case

R def
= {((x1, x2),w) | (x1,w) ∈ R1 ∨ (x2,w) ∈ R2}

39/44

AND-Combination

Prover Verifier

r1 ← P1
1 (x1,w1)

r2 ← P2
1 (x2,w2)

r1, r2

c c $← {0, 1}`

s1 ← P1
2 (x1,w1, c)

s2 ← P2
2 (x2,w2, c)

s1, s2
V 1

2 (x1, r1, c , s1) ∧
V 2

2 (x2, r2, c , s2)

Using the same challenge for both proofs is the key

Only possible if protocols are Special HVZK

40/44

OR-Combination

Suppose w is a witness for x1, i.e. R1(x1,w)

Prover Verifier

r1 ← P1
1 (x1,w)

c2
$← {0, 1}`

(r2, s2)← S2(x2, c2)

r1, r2

c c $← {0, 1}`

c1 ← c2 ⊕ c
s1 ← P1

2 (x1,w , c1)
s1, s2

c = c1 ⊕ c2 ∧
V 1

2 (x1, r1, c , s1) ∧
V 2

2 (x2, r2, c , s2)

Sound w.r.t. {((x1, x2),w) | (x1,w) ∈ R1 ∨ (x2,w) ∈ R2}
41/44

Conclusions

42/44

Summary of contributions

A language-based approach to computational crypto proofs

Automated framework to formalize game-based proofs in Coq

Probabilistic extension of Relational Hoare Logic

Foundations for techniques used in crypto proofs

Several case studies

PRP/PRF switching lemma
Chosen-plaintext security of ElGamal
Chosen-plaintext security of Hashed ElGamal in ROM and SM
Unforgeability of Full-Domain Hash signatures
Adaptive chosen-ciphertext security of OAEP
Σ-protocols
IBE (F. Olmedo), Golle-Juels (Z. Luo), BLS (M. Christofi)

43/44

The road ahead

We fulfilled our goals, yet we don’t believe cryptographers will
use proofs assistants (or CertiCrypt) anytime soon

Started to bridge gap between fully formal machine-checked
proofs and pen-and-paper proof sketches

What if we start building from the other side?

Start from a proof sketch and try to fill in the blanks and justify
reasoning steps, building into the tool as much automation as
possible. Record and highlight unjustified proof steps and let the
user give finer-grained justifications—perhaps interactively, using
automated tools.

44/44

	cronominutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:

