
Inferring Energy Bounds Statically
by Evolutionary Analysis of Basic Blocks

U. Liqat †
umer.liqat@imdea.org

Z. Banković †
zorana.bankovic@imdea.org

P. Lopez-Garcia
∗ †

pedro.lopez@imdea.org

M.V. Hermenegildo † ‡

manuel.hermenegildo@imdea.org

ABSTRACT
We are currently witnessing an increasing number of energy-bound
devices, including in some cases mission critical systems, for which
there is a need to optimize their energy consumption and verify that
they will perform their function within the available energy budget.
In this work we propose a novel parametric approach to estimat-
ing tight energy bounds (both upper and lower) that are practical
for energy verification and optimization applications in embedded
systems. Our approach consists in dividing a program into basic
(“branchless”) blocks, establishing the maximal (resp. minimal)
energy consumption for each block using an evolutionary algo-
rithm, and combining the obtained values according to the program
control flow, using static analysis, to produce energy bound func-
tions. Such functions depend on input data sizes, and return upper
or lower bounds on the energy consumption of the program for any
given set of input values of those sizes, without running the pro-
gram. The approach has been tested on XMOS chips, but is gen-
eral enough to be applied to any microprocessor and programming
language. Our experimental results show that the bounds obtained
by our prototype tool can be tight while remaining on the safe side
of budgets in practice.

Keywords
Energy Consumption Analysis, Energy Modeling, Embedded Sys-
tems, Static Analysis, Evolutionary Algorithms.

1. INTRODUCTION
We are witnessing an ever-increasing performance and ubiquity

of battery- and/or harvested energy-powered devices. An important
trend in this context is the so called Internet of Things paradigm.
It is estimated that by the year 2020, about 50 billion small au-
tonomous devices, embedded in all kind of objects, in our clothes,
or stuck to our bodies will operate and intercommunicate continu-
ously for long periods of time, such as years. Such devices rely on
small batteries or energy harvested from the environment, which
implies that their energy consumption should be very low.

Although there have been improvements in battery and energy
harvesting technology, they alone are often not enough to achieve
the required level of energy consumption to fully support Internet
of Things and other energy-bound applications. Thus, better tech-
niques for optimizing the energy consumption of embedded sys-
tems are needed. While many energy-saving features have been de-
∗Spanish Council for Scientific Research (CSIC).
†IMDEA Software Institute, Madrid, Spain.
‡Universidad Politécnica de Madrid (UPM).

veloped for hardware, far more energy savings remain to be tapped
by improving the software that runs on these devices. In addition,
there are many critical embedded applications (e.g., sensor-based)
for which, beyond optimizing energy consumption, it is actually
crucial to guarantee that execution will complete within a specified
energy budget, e.g., before the available system energy runs out.

In this work we focus on the static estimation of the energy con-
sumed by program executions (i.e., at compile time, before actually
running them), as a basis for energy optimization and verification.
Such estimations are given as functions on input data sizes, since
data sizes typically influence the energy consumed by a program,
but are not known at compile time. This approach allows abstract-
ing away such sizes and inferring energy consumption in a way that
is parametric on them.

Different types of resource usage estimations are possible, such
as, e.g., probabilistic, average, or safe bounds. However, not all
types of estimations are valid or useful for a given application. For
example, in order to verify/certify energy budgets, safe upper- and
lower-bounds on energy consumption are required [16, 15]. Un-
fortunately, current approaches that guarantee that the bounds are
always safe tend to compromise their tightness seriously, inferring
overly conservative bounds, which are not useful in practice. With
this safety/tightness trade-off in mind, our goal is the development
of an analysis that infers tight bounds that are on the safe side in
most cases, in order to be practical for verification applications, as
well as for energy optimization.

Of the small number of static energy analyses proposed to date,
only a few [20, 13, 12] use resource analysis frameworks that are
aimed at inferring safe upper and lower bounds on the resources
used by program executions. A crucial component in order for such
frameworks to infer hardware-dependent resources, and, in partic-
ular, energy, is a low-level resource usage model, such as, e.g., a
model of the energy consumption of individual instructions. Ex-
amples of such models are [11], at the Java bytecode level, or [10],
at the assembly level.

Clearly, the accuracy of the bounds inferred by analysis depends
on the nature and accuracy of the low-level models. Unfortunately,
models such as [11, 10] provide average energy consumption val-
ues or functions, which are not really suitable for upper- or lower-
bounds analysis. Furthermore, trying to obtain instruction-level
models that provide strict safe energy bounds would result in very
conservative bounds. Although when fed with such models the
static analysis would infer high-level energy consumption functions
providing strictly safe bounds, these bounds would not be useful
in general because of their large inaccuracy. For this reason, the
analyses in [20, 13, 12] used instead the already mentioned instruc-
tion level average energy models [11, 10]. However, this meant

that the energy functions inferred for the whole program were not
strict bounds, but rather approximations of the actual bounds, and
could possibly be below or above. This trade-off between safety
and accuracy is a major challenge in energy analysis. In this paper
we address this challenge by providing a technique for the genera-
tion of lower-level energy models which are useful and effective in
practice for verification-type applications.

The main source of inaccuracy in current instruction-level energy
models is inter-instruction dependence (including also data depen-
dence), which is not captured in most models. On the other hand,
the concrete sequences of instructions that appear in programs ex-
hibit worst cases that are not as pessimistic as considering the worst
case for each of the individual intervening instructions. Based on
this, we decided to use branchless blocks of assembly instructions
as the modeling unit instead of individual instructions. We divide
the (assembly) program into such basic blocks, each a straight-line
code sequence with exactly one entry to the block (the first instruc-
tion) and one exit from the block (the last instruction). We then
measure the energy consumption of these basic blocks, and de-
termine a maximal (resp. minimal) energy consumption for each
block. In this way the inter-instruction data dependence discussed
above and other factors are accounted for. The energy values ob-
tained for each block are fed to our static resource analysis, which
combines them according to the program control flow and produces
the energy bound functions.

In order to find the maximum and minimum energy consump-
tion of each basic block we use an evolutionary algorithm (EA).
We vary the input values and take energy measurements directly
from the hardware for each input combination. This way, we take
advantage of the fast search space exploration provided by EAs.
EAs have also been used for estimating the worst case energy con-
sumption of whole programs [22], due to their fast exploration of
the search space. However, if there are data-dependent branches
in the programs, which is often the case, applying this approach
to whole programs (or program segments that contain branches)
quickly loses accuracy, since different input combinations can trig-
ger different sets of instructions [22]. In contrast, our approach
combines EAs and static analysis techniques in order to get the
best of both worlds. We take out the treatment of data-dependent
branches from the EA, so that the same sequence of instructions is
always executed in each basic block. The worst (resp. best) case
energy of the basic blocks is estimated by the EA with higher accu-
racy since, not having any branches, the most important deficiency
of the EA is avoided. The program control flow dependencies are
taken care instead by the static analysis.

In our experiments we focus for concreteness on the energy anal-
ysis of programs written in XC [28], running on the XMOS XS1-L
architecture. However, our approach is general enough be applied
to the analysis of other programming languages (and associated
lower level program representations) and architectures as well. XC
is a high-level C-based programming language that includes ex-
tensions for concurrency, communication, input/output operations,
and real-time behavior. Our experimental setup infers energy con-
sumption information by processing the ISA (Instruction Set Ar-
chitecture) code compiled from XC [28], and reflects it up to the
source code level. Such information is provided in the form of
functions on input data sizes, and is expressed by means of asser-
tions [7].

In these experiments, the energy estimations produced by our ap-
proach were always safe, in the sense that they over-approximated
the actual bounds (i.e., the inferred upper bounds were above the
actual upper bounds and the inferred lower bounds below the ac-
tual lower bounds). This suggests that, even if we cannot assure

formally that such estimations are always safe, they are quite ac-
curate in the sense that the inferred energy bounds are close to the
actual bounds, and that in practice they will also be safe/strict in
most cases. We argue that our analysis provides a good practical
compromise for the verification/certification of energy budgets.

In summary, the main contributions of this paper are:

• A novel approach that combines dynamic and static analysis
techniques for inferring the energy consumption of program
executions. The dynamic part is based on EAs, and produces
low-level energy models.

• The proposal of a new abstraction level at which to perform
the energy modeling of program components using dynamic
techniques: basic (branchless) blocks of assembly instruc-
tions.

• A method based on EAs to dynamically (i.e., by profiling)
obtain practical upper and lower bounds on the energy of
such basic blocks, with a good safety/accuracy balance.

• The use of a static analysis that takes care of the program
control flow, in order to determine how many times blocks
are executed, which combined with the information provided
by the block models, infers functions that give the energy of
a program and its procedures as functions of input data sizes.

• An experimental study that supports our claims.

In the rest of the paper, Section 2 explains how the information
inferred by our approach can be used for the energy consumption
verification application. Section 3 explains our technique for en-
ergy modeling of program basic blocks. Section 4 shows how these
models are used by the static analysis to infer upper- and lower-
bounds on the energy consumed by programs as functions of their
input data sizes. Section 5 reports on an experimental evaluation of
our approach. Related work is discussed in Section 6, and finally
Section 7 summarises our conclusions.

2. ENERGY CONSUMPTION VERIFICA-
TION/CERTIFICATION

The lower (El) and the upper bound (Eu) inferred by our analysis
can be used for energy consumption verification and certification.
We refer the reader to [14, 15] for a detailed description on how
static analysis information can be used for general resource usage
verification within the CiaoPP system, and to [16] for how it can
be specialized for verifying energy consumption specifications of
embedded programs.

Here we only give some intuitive ideas. Assume that a program
specification expresses energy budget Eb, e.g., defined by the ca-
pacity of the battery, we can conclude the following:

1. Eu ≤ Eb =⇒ the given program can be safely executed
within the existing energy budget.

2. El ≤ Eb ≤ Eu =⇒ it might be possible to execute the pro-
gram, but we cannot claim it for certain.

3. Eb < El =⇒ it it not possible to execute the program (the
system will run out of batteries before program execution is
completed.

3. ENERGY MODELING OF BLOCKS
As mentioned before, the first step of our energy bounds analysis

is to determine upper and lower bounds on the energy consumption
of each basic (“branchless”) program block. We perform the mod-
eling at this level rather than at the instruction level in order to
cater for inter-instruction dependencies. In order to determine such
bounds first all the basic blocks of the program are identified, and
then the energy consumption of each of these blocks is profiled for
different input data using an EA. These steps are explained in the
following sections.

3.1 Generating the Basic Blocks to be Mod-
eled

A basic block over an inter-procedural control flow graph (CFG)
is a maximal sequence of distinct instructions, S1 through Sn, such
that all instructions Sk,1 < k < n have exactly one in-edge and one
out-edge (excluding call/return edges), S1 has one out-edge, and
Sn has one in-edge. A basic block therefore has exactly one entry
point at S1 and one exit point at Sn.

In order to divide a program into such basic blocks (for which an
upper bound on the energy consumption of the program will be de-
termined using the EA), the program is first compiled to the lower
representation, ISA in our case. A data flow analysis of the ISA rep-
resentation yields an inter-procedural control flow graph (CFG). A
final control flow analysis is carried out to infer basic blocks from
the CFG. These basic blocks are further modified so that they can
be run and measured independently by the EA. Modifications for
each basic block include:

1. A basic block with k function call instructions is divided into
k+1 basic blocks without the function call instructions.

2. A number of special ISA instructions (e.g., return, call) are
omitted from the block. The cost of such instructions is mea-
sured separately and added to the cost of the block.

3. Memory read/write instructions are abstracted to a fixed mem-
ory region available to each basic block in order to avoid
memory violations.

An example of the modification 1 above is shown in Figure 1,
Listing 1, which is an ISA representation of a recursive factorial
program where the instructions are grouped together into 3 basic
blocks B1, B2, and B3. Consider basic block B2. Since it has a
(recursive) function call to fact at address 12, it is divided further
into two blocks in Listing 2, such that the instructions before and
after the function call form two blocks B21 and B22, respectively.
The energy consumption of these two blocks is maximized (mini-
mized) by providing values to the input arguments to the block (see
below) using the EA. The energy consumption of B2 can then be
characterized as:

B2A
e = B2A

1e +B2A
2e +blA

e

where B2A
1e, B2A

2e, and blA
e denote the energy consumption of the

B21, B22 blocks and the bl ISA instruction, with approximation A
(where A=upper or A=lower).

For each modified basic block, a set of input arguments is in-
ferred. This set is used for an individual representation to drive the
EA algorithm to maximize the energy consumption of the block.
For the entry block, the input arguments are derived from the sig-
nature of the function. The set gen(B) characterizes the set of vari-
ables read without being previously defined in block B. It is defined

as:

gen(b) =
n⋃

k=1
{v | v ∈ ref (k)∧∀(j < k).v /∈ def (j)}

where ref (n) and def (n) denote the variables referred to and de-
fined/updated at a node n in block b respectively.

For the basic blocks in Figure 1 in Listing 1, the set of input argu-
ments are gen(B1)={r0}, gen(B21)={sp[0x1]}, gen(B22)={sp[0x1],r0}
and gen(B3) = /0.

3.2 EA for Estimating the Energy of a Basic
Block

In the following we detail the most important aspects of the EA
used for estimating the maximal (i.e., worst case) and minimal (i.e.,
best case) energy consumption of a basic block. The only differ-
ence between the two algorithms is the way we interpret the objec-
tive function: in the first case we want to maximize it, while in the
second we want to minimize it.
Individual. The search space dimensions are the different input
variables to the blocks. Our goal is to find the combination of input
values which maximizes (minimizes) the energy of each block. The
set of input variables to a block is inferred using a dataflow analysis
(explained in the next section). Thus, an individual is simply an
array of input values given in the order of their appearance in the
block. The input values in an individual are coded as integers, since
they represent 32-bit values stored in different hardware registers.

The majority of individuals are initialised with random 32-bit
numbers. However, we also include corner cases to the initial pop-
ulation that are known to cause high (low) energy consumption for
particular instructions. For example all 1s for high energy con-
sumption, or all 0s for low energy consumption as operands to a
multiply ISA instruction. This speeds up the EA algorithm in find-
ing inputs to some basic blocks that maximize/minimize their over-
all energy consumption.
Crossover. The crossover operation is implemented as an even-odd
crossover, since it provides more variability than a standard n-point
crossover. In this crossover the first child is created by taking the
first element and every other one after it from one of the parents,
e.g., the mother. The second element and every other one come
from the other parent, i.e., the father. The second child is created in
the opposite way: the first element and every other one after it are
taken from the father, while the second and every other one come
from the mother. The process is depicted in Figure 2, where P1 and
P2 are the parents, and C1 and C2 are their children created by the
crossover operation.
Mutation. For the purpose of this work we have created a custom
mutation operator. Since the energy consumption in digital circuits
is mainly the result of bit flipping, we believe that the most optimal
way to explore the search space is by performing some bit flipping
in the mutation operation. This is implemented in the following
way. For each gene (i.e., input value to the basic block):

1. We create a random 32-bit integer, i.e., a random mask.

2. Then we perform the XOR operation of that integer and the
corresponding gene. This way, we perform random flipping
of the bits of each gene, since we only flip the bits of the gene
at positions where the value of the random mask is 1.

The process is depicted in Figure 3, where the input values are
given as binary numbers.
Objective function. The objective function that we want to maxi-
mize (minimize) is the energy of a basic block, which is measured

Listing 1: Basic blocks of a factorial function.
<fact >:

01: entsp 0x2
02: stw r0, sp[0x1]
03: ldw r1, sp[0x1]
04: ldc r0, 0x0
05: lss r0, r0, r1
06: bf r0, <08>

07: bu <010>
10: ldw r0, sp[0x1]
11: sub r0, r0, 0x1
12: bl <fact >
13: ldw r1, sp[0x1]
14: mul r0, r1, r0
15: retsp 0x2

08: mkmsk r0, 0x1
09: retsp 0x2

Listing 2: Modified basic blocks.
<fact >:
01: entsp 0x2
02: stw r0, sp[0x1]
03: ldw r1, sp[0x1]
04: ldc r0, 0x0
05: lss r0, r0, r1
06: bf r0, <08_NEW >
08_NEW:

07: bu <010>
10: ldw r0, sp[0x1]
11: sub r0, r0, 0x1

12: bl <fact>

13: ldw r1, sp[0x1]
14: mul r0, r1, r0
15: retsp 0x2

08: mkmsk r0, 0x1
09: retsp 0x2

block before call

block after call

B1

B21

B22

B3

B1

B2

B3

Figure 1: Example: Basic block modifications.

Figure 2: Example of even-odd crossover.

directly from the chip. The concrete setting of the experiment will
be explained in the following section.

In general, pipeline effects such as stalls (to resolve pipeline haz-
ards), which depend on the state of the processor at the start of
the execution of a basic block, can affect the upper/lower bound
estimated on the energy consumption of such block. In our ap-
proach intra-block pipeline effects are accounted for, since, the
dependences among the instructions within a block are preserved.
However, the inter-block pipeline effects need to be accounted for.
These can be modeled in a conservative way by assuming a max-
imum stall penalty for the upper bound estimation of each block
(e.g., by adding a stall penalty, say three cycles, to the execution
time of the block). Similarly, for the lower bound estimation a zero
stall penalty can be used. To approximate this effect, in [3], the au-
thors characterize each block through pairwise executions with all
of its possible predecessors. Each basic block pair is characterized

Figure 3: Mutation.

by executing it on an Instruction Set Simulation (ISS) to collect
cycle counts.

The XMOS XS1 architecture used in our experiments does not
have these pipeline effects by design, since exactly one instruction
per thread is executed in a 4-stage pipeline (more details in Sec-
tion 5.1).

4. ENERGY CONSUMPTION OF THE PRO-
GRAM

Once the energy models of each basic block of the program are
known, the energy consumption of the whole program is bounded
by a static analyser that takes into account the control flow of the
program and infers safe upper/lower bounds on its energy con-
sumption. We have implemented such analyser by specialising the
generic resource analysis framework provided by CiaoPP [24] for
programs written in the XC programming language [28] and run-
ning on the XMOS XS1-L architecture. We have also written the
necessary code (i.e., assertions [7]) to feed such analyser with the
block-level upper/lower bound energy model obtained by using the
technique explained in Section 3.

The generic resource analyser ensures that the inferred bounds
are strict/safe if it is fed with energy models providing safe bounds.
As mentioned in the introduction, in [13] we performed a previous
instantiation of such generic analyser by using the instruction-level
energy model described in [10], which provided average energy

values. As a result, the analysis inferred an upper-bound energy
function for the whole program that was an approximation of the
actual upper bound, and could possibly be below it.

The analysis is general enough to be applied to other program-
ming languages and architectures (see [13, 12] for details) provided
that energy models for each architecture exist. It enables a pro-
grammer to symbolically bound the energy consumption of a pro-
gram P on input data x̄ without actually running P(x̄). It is based
on setting up a system of recursive cost equations over a program
P that capture its cost (energy consumption) as a function of the
sizes of its input arguments x̄. The transformation-based analysis
framework of [13, 12] transforms the assembly (or LLVM IR) rep-
resentation of the program into an intermediate semantic program
representation (HC IR), that the analysis operates on, which is a
series of connected code blocks, represented as Horn Clauses. The
analyser deals with this HC IR always in the same way, indepen-
dent of where it originates from, setting up cost equations for all
code blocks (predicates).

Consider the example in Listing 1. The recursive cost equations
are set up over the function fact that characterize the energy con-
sumption of the whole function using the approximation A of each
block inferred by the EA:

f actA
e (R0) = B1A

e + f act_auxA
e (0≤ R0,R0)

f act_auxA
e (B,R0) =

{
B2A

e + f actA
e (R0−1) if B is true

B3A
e if B is false

The cost of the f act function is captured by the equation f actA
e (R0)

under an approximation A (e.g., upper/lower) which in turn depends
on B1A

e (i.e., the energy consumption of block B1) and the equation
f act_auxA

e , which represents the branching originated from the last
instruction of block B1. It captures the cost of blocks B2 and B3
based on the condition on the input size R0.

If we assume (for simplicity of exposition) that each basic block
has unitary cost in terms of energy consumption, i.e., Bie = 1 for
all i, we obtain the energy consumed by fact as a function of its
input data size (R0): f acte(R0) = R0+1.

The functions inferred by the static analysis are arithmetic func-
tions (polynomial, exponential, logarithmic, etc.) that depend on
input data sizes (natural numbers).

5. EXPERIMENTAL EVALUATION
In this Section we report on an experimental evaluation of our

approach to inferring both upper and lower bounds on the energy
consumed by program executions, given as functions on input data
sizes. The experiments have been performed with programs writ-
ten in XC running on the XMOS XS1-L architecture. However, as
already said, our approach is general enough be applied to the anal-
ysis of other programming languages (and associated lower level
program representations) and architectures as well.

5.1 Evaluation Platform
We use a hardware and software platform created by XMOS that

enables us to measure the energy [19], time, and power used dur-
ing program executions on real hardware. The developed board is
a dual-tile board that contains an XS1-A16-128-FB217 processor.
The board is fed with a 3.3 V power supply, and supports voltage
scaling, although both tiles have to run at the same voltage sup-
ply. It also supports frequency scaling, where the tiles can have
different frequencies. The XMOS XS1 [17] is a cache-less, pre-
dictable architecture by design and manages threads on the hard-
ware. The threads are executed in a round-robin fashion, using a
4-stage pipeline which only permits a single instruction per thread

to be active within the pipeline at the same time. This restriction
avoids pipeline hazards.

In order to support the process of measuring power, the following
has been implemented:

• An extension to the XMOS toolchain that allows power mea-
surements to be recorded and/or displayed in real time. In
essence, a small shunt resistor has been added in series with
the voltage supply. By measuring the voltage drop on the
shunt, we can calculate the current I, which is also the cur-
rent of the voltage supply, since the shunt is connected in
series. In this way, we estimate the power consumption as
Vsup · I, where Vsup is the voltage of the power supply.

• A variant of the XTAG-2 debug adapter (called XTAG3) that
enables power to be measured [31]. Basically, it has an ex-
tra connector that carries analog signals necessary to esti-
mate the power consumption, as explained above. The mea-
surements regarding these signals are transported to the host
computer over USB using the xSCOPE interface [32]. In ad-
dition, a protocol that enables power measurements and ap-
plication probing to be performed simultaneously, and data
to be transported simultaneously over the USB connection to
the host computer, has been designed.

The tool that collects data from the XTAG is xgdb, the debugger
that is part of the XMOS toolchain. xgdb connects to the XTAG
over a USB interface (using libusb), and reads both ordinary xS-
COPE traffic and voltage/current measurements. The collected data
is normally stored in an XML file, or instead, xgdb can pipe the
data directly into an analysis program that can only record data that
is relevant (between start and end) and only compute the relevant
metrics (maximum current, total energy, etc.).

5.2 Results and Discussion
The aim of the experimental evaluation is to perform a first com-

parison of actual hardware energy measurements against the upper-
and lower-bounds on energy consumption obtained by evaluating
the functions inferred by our proposed approach (which depend on
input data sizes), for each program considered and for different in-
put data sizes. The actual energy consumption of the programs,
for each value of input data sizes, is measured with the evaluation
platform, i.e., the same used to build the upper- and lower-bound
models of the blocks of each program.

Program Upper/Lower Bounds (nJ)×103 vs. HW

f act(N)
ub = 5.1 N +4.2 7%
lb = 4.1 N +3.8 -11.7%

f ibonacci(N)
ub = 5.2 lucas(N)1+6 f ib(N)−6.6 8.71%
lb = 4.5 lucas(N)+5 f ib(N)−4.2 -4.69%

reverse(N)
ub = 3.7 N +13.3 8%
lb = 2.95 N +12 -8.8%

f indMax(N)
ub = 5 N +6.9 8.7%
lb = 3.3 N +5.6 -9.1%

f ir(N)
ub = 6 N +26.4 8.9%
lb = 4.8 N +22.9 -9.7%

biquad(N)
ub = 29.6 N +10 9.8%
lb = 23.5 N +9 -11.9%

Table 1: Upper and lower bounds accuracy.

1The mathematical function lucas(n) satisfies the recurrence rela-
tion lucas(n) = lucas(n−1)+ lucas(n−2) with lucas(1) = 1 and
lucas(2) = 3.

A number of selected benchmarks are shown in Table 1 that are
either iterative or recursive. The Upper/lower Bounds column de-
picts the energy estimation functions (on input data sizes) for upper
and lower bounds. The column vs. HW shows the average over-
and under-approximations of the estimation versus the actual mea-
surements on the hardware.

The first two benchmarks are small arithmetic benchmarks. The
third benchmark reverse(N) reverses elements of an input array of
size N. The list of benchmarks also includes two filter benchmarks,
namely biquad and f ir (Finite Impulse Response). Both programs
attenuate or amplify specific frequency ranges of a given input sig-
nal. The f ir(N) benchmark computes the inner-product of two vec-
tors: a vector of input samples, and a vector of coefficients. The
more coefficients, the higher the fidelity, and the lower the frequen-
cies that can be filtered. The biquad(N) benchmark is an equaliser,
i.e., it takes a signal and attenuates/amplifies different frequency
bands. It uses a cascade of Biquad filters where each filter atten-
uates or amplifies one specific frequency range. The energy con-
sumed depends on the number of banks N, typically between 3 and
30 for an audio equaliser. A higher number of banks enables a de-
signer to create more precise frequency response curves. A simple
f indMax benchmark (finding the maximum number in an array) is
also included in the list. This is a program where data-dependent
branching can bring significant variations of the worst (best) case
energy consumption. Note that unlike the first three benchmarks,
f ir, biquad, and f indMax all have data-dependent branches..

2 4 6 8 10 12

2

4

6

·104

N

E
ne

rg
y(

nJ
)

upper
actual
lower

Figure 4: f act upper/lower bounds vs. actual measurement.

Figure 4 depicts the upper/lower bound inferred by the analysis
vs. the actual measurement on the hardware for the factorial pro-
gram. The actual program consumption is measured for several
values of N, the input value, resulting in the middle curve. The
other two curves are the result of plotting the upper- and lower-
bound energy functions for different sizes (in the case of an integer,
its size is its value).

The upper bound values inferred by the static analysis and the
EA over-approximate the actual hardware measurements by 7%,
whereas the lower-bound values under-approximate the actual mea-
surements by 11.7% –see Table 1.

The f indMax benchmark, which, as mentioned before, has sig-
nificant data dependent branching, is shown in Figure 5. Unlike
f act, the upper and lower-bounds in f indMax are more distant due

5 10 15 20 25

0.2

0.4

0.6

0.8

1

1.2

1.4
·105

N

E
ne

rg
y(

nJ
)

upper
actual-upper
actual-lower

lower

Figure 5: f indMax example upper/lower bounds vs actual-
lower and upper energy consumption measurement based on
data.

to the data sensitive branching. A call to f indMax with a sorted
array in ascending order will discover a new max element in each
iteration and hence update the current max variable resulting in an
actual worst case of the algorithm. In contrast, if the array is sorted
in descending order then the algorithm will find the max element in
the first iteration and the rest of the iterations will never update the
current max variable, resulting in the actual best case.

Figure 5 depicts the upper and lower bounds inferred by the static
analysis as well as the actual worst and best case measurements of
f indMax (first with ascending order and then with descending or-
der array data). The upper and lower bounds inferred are compared
against the actual worst and best case measurements. The upper
bound over-approximates by 8.7% whereas the lower bound under-
approximates by 9.1%. Note that it is not always trivial to find data
that exhibit program worst and best case behaviors.

In Table 2, different executions of the f indMax benchmark are
shown for particular input sizes N but using a random data input
array in one case and actual worst/best case array input data in the
other case. Column N shows the size of the input array. Column
Cost App indicates the type of approximation of the automatically
inferred cost functions which estimate energy consumption (de-
pending on input data size N): upper bound (U) and lower bound
(L). Such energy functions for the f indMax benchmark are shown
in Table 1. In order to assess the accuracy of the cost functions we
have evaluated them for particular sets of input data corresponding
to different input (array) sizes (N), yielding different energy con-
sumption estimations. We have then compared such estimations
(column Est) with the observed energy consumptions of the hard-
ware measurements (column Obs). Column D shows the relative
harmonic difference between the estimated and the observed en-
ergy consumption, given by the formula:

rel_harmonic_di f f (Est,Obs) =
(Est−Obs)× (1

Est +
1

Obs)

2
The inaccuracies in the energy estimations of our technique come
mainly from two sources: the energy model, which assigns an en-
ergy value to each basic block as described in Section 3, and the
Static Resource Analysis (SRA), described in Section 4, which es-
timates the number of times that the basic blocks are executed de-

pending on the input data sizes.
In order to investigate the source(s) of inaccuracies, we have also

introduced Column Prof. It shows the result of estimating the en-
ergy consumption using the energy model and assuming that the
SRA was perfect and estimated the exact number of times that the
basic blocks were executed. This obviously represents the case in
which all loss of accuracy must be attributed to the energy model.
The values in Column Prof have been obtained by profiling ac-
tual executions of the program with particular input data, where the
profiler has been instrumented to record the number of times each
basic block is executed. The energy consumption of the program
is then obtained by multiplying such numbers by the energy values
provided by the energy model for each basic block, and adding all
of them. Column PrD shows the relative harmonic difference be-
tween Prof and the observed energy consumption Obs, which rep-
resents the inaccuracy due to the energy modeling of basic blocks
using the EA.

In the case of random data, both the SRA and the energy mod-
eling contribute to the inaccuracy of the energy estimation for the
whole program. In contrast, in the second case two sets of array
data are used: one that makes f indMax exhibit its worst case be-
havior and another that makes it exhibit the best. These are then
compared against the upper- and lower-bound estimations. Since
Columns Est and Prof show the same values in this case, it means
that there was no inaccuracy due to the SRA, and that the overall
inaccuracy is due to the over- and under-approximation in the EA
to model energy consumption of each basic block. In other words,
the analysis of the f indMax program provides accurate bounds for
each data size N.

N Cost Energy(nJ)×103
D % PrD %App Est Prof Obs

Random array data

5
L 22.3 24.9 27.3 -20.1 -9.2
U 31.9 30.2 15.6 10

15
L 55.9 61.8 69.1 -17 -11
U 82.1 75.1 21 8.3

25
L 89.4 99.6 110.9 -17.6 -10.7
U 132.2 120.8 21.7 8.5

Actual worst- and best-case array data

5
L 22.3 22.3 25.2 -12.2 -12.2
U 31.9 31.9 29.4 8.1 8.1

15
L 55.9 55.9 62.6 -11.3 -11.3
U 82.1 82.1 75.5 8.3 8.3

25
L 89.4 89.4 100.2 -11.4 -11.4
U 132.2 132.2 121.5 8.4 8.4

Table 2: f indMax: Source of inaccuracies in prediction: static
analysis vs. energy modeling.

Regarding the time taken by the EA, it can vary depending on
the parameters it is initialized with, as well as the initial population.
This population is different every time the EA is initiated, except
for a fixed number of individuals that represent corner cases. In the
experiments, the EA is run for up to a maximum of 20 generations,
and is stopped when the fitness value does not improve for four con-
secutive generations. In all the experiments the biquad benchmark
took the most time (a maximum time of 230 minutes) for maximiz-
ing the energy consumption. In contrast, the fact benchmark took
the least time (a maximum time of 121 minutes). The times re-
mained within the 150-200 minutes range on average. Time speed-
ups were also achieved by reusing the EA results for sequences of
instructions that were already processed in a previous benchmark

(e.g., return blocks, loop header blocks, etc.). This makes us be-
lieve that our approach could be used in practice in an iterative
development process, where the developer gets feedback from our
tool and modifies the program in order to reduce its energy con-
sumption. The first time the EA is run would take the highest time,
since it would have to determine the energy consumption of all the
program blocks. After a focused modification of the program that
only affects a small number of blocks, most of the results from the
previous run could be reused, so that the EA would run much faster
during this development process. In other words, the EA process-
ing can easily be made incremental.

The static analysis, on the other hand, is quite efficient, with
analysis times of about 4 to 5 seconds on average, despite the naive
implementation of the interface with external recurrence equation
solvers, which can be improved significantly.

6. RELATED WORK
Static dataflow analysis of the energy consumed by program ex-

ecutions has received relatively little attention until recently. An
analysis of Java bytecode programs for inferring upper-bounds on
energy consumption as functions on input data sizes was proposed
in [20], where the Jimple (a typed three-address code) represen-
tation of Java bytecode was transformed into Horn Clauses, and
a simple energy model at the Java bytecode level [11] was used.
However the energy model used average estimations of the Java
opcodes and an opcode cost verification found the estimation to be
between -5% and 10%. Furthermore, this work did not compare
the results with actual, measured energy consumption. A similar
approach was proposed in [13] for the analysis of a C-based pro-
gramming language. It performed a transformation of the assembly
code generated by the compilation of the source program into Horn
Clauses, which were then analyzed by using the accurate assembly
level energy models presented in [10]. The experiments, performed
for a number of small numerical programs, showed for the first
time that energy bound functions inferred statically from low-level
model could be inferred that provided energy consumption estima-
tions were reasonably accurate with respect to actual executions for
any input data size.

Similarly to the work presented here, the approaches mentioned
above used instantiations for energy consumption of general re-
source analyzers, namely [21] in [20] and [13], and [24] in [12]
and this paper. Such resource analyzers are based on setting up
and solving recurrence equations, an approach proposed by Weg-
breit [29] that has been developed significantly in subsequent work [23,
4, 5, 26, 21, 1, 24]. Other approaches to static analysis based
on the transformation of the analyzed code into another (interme-
diate) representation have been proposed for analyzing low-level
languages [6] and Java (by means of a transformation into Java
bytecode) [2]. In [2], cost relations are inferred directly for these
bytecode programs, whereas in [20] the bytecode is first trans-
formed into Horn Clauses. The general resource analyzer in [21]
was also instantiated in [18] for the estimation of execution times
of logic programs running on a bytecode-based abstract machine.
The approach used timing models at the bytecode instruction level,
for each particular platform, and program-specific mappings to lift
such models up to the Horn Clause level, at which the analysis was
performed.

Other work has taken as its starting point techniques referred to
generally as “WCET” (worst case execution time analyses), which
have been applied, usually for imperative languages, in different
application domains (see e.g., [30] and its references). These tech-
niques generally require the programmer to bound the number of
iterations of loops, and then apply an Implicit Path Enumeration

technique to identify the path of maximal consumption in the con-
trol flow graph of the resulting loop-less program. This approach
has inspired some worst case energy analyses, such as the one pre-
sented in [9]. It distinguishes instruction-specific (not proportional
to time, but to data) from pipeline-specific (roughly proportional to
time) energy consumption. The approach also takes into account
complex issues such as branch prediction and cache misses. How-
ever, they rely on the user to identify the input which will trigger the
maximal energy consumption. In [27] the same approach is applied
and further refined for estimating hard (i.e., over-approximated)
energy bounds. The main novelty of this work consists in intro-
ducing relative energy models (implemented at the LLVM level in
this case), where the energy of each instruction is given in rela-
tion to each other (e.g., if we assume that all the instructions have
relative energy 1, this means that they all have the same absolute
energy), which does not depend on the specific hardware, but can
be applied for all the platforms where a mapping between LLVM
and low-level assembly instructions exists. On the other hand, in
the situations when the energy bounds are not hard (i.e., the appli-
cation allows their violation) they use a genetic algorithm to ob-
tain an under-approximation of the energy bounds. However, this
approach loses accuracy when there are data dependent branches
present in the program, since different inputs can lead to the execu-
tion of different set of instructions.

A similar approach is used in [22] to find the worst-case energy
consumption of two benchmarks using a genetic algorithm. In con-
trast to our approach, the evolutionary algorithm is applied to whole
programs, and these do not have any data-dependent branching.
The authors further introduce probability distributions for the tran-
sition costs among pairs of independent instructions, which can be
then be convolved to give a probability distribution of the energy
for a sequence of instructions.

In contrast to the work presented here and in [18], all these
WCET-style methods (either for execution time or energy) do not
infer cost functions on input data sizes but rather absolute maxi-
mum values, and, as mentioned before, they generally require the
manual annotation of all loops to express an upper bound on the
number of iterations, which can be tedious (or impossible) and ef-
fectively reduces the case to that of programs with no loops.

Another alternative approach to WCET-style methods was pre-
sented in [8]. It is based on the idea of amortization, which al-
lows inferring more accurate yet safe upper bounds by averaging
the worst execution time of operations over time. It was applied to
a functional language, but the approach is in principle generally ap-
plicable. A timing analysis based on game-theoretic learning was
presented in [25]. The approach combines static analysis to find
a set of basic paths which are then tested. Its main advantage is
that it can infer distributions on time, not only average values. In
principle, both approaches could be adapted to infer energy usage.

7. CONCLUSIONS
We have proposed an approach for inferring parametric upper

and lower bounds on the energy consumption of a program using a
combination of static and dynamic techniques. The dynamic tech-
nique, based on an evolutionary algorithm, is used to determine
the maximal / minimal energy consumption of each basic block.
Such blocks contain multiple instructions, which allows this phase
to take into account inter-instruction dependencies. Since such ba-
sic blocks are branchless, the evolutionary algorithm approach is
more practical and efficient and the technique infers energy values
that are accurate since no control flow-related variations occur. A
static analysis is then used to combine the energy values obtained
for the blocks according to the program control flow, and produce

energy consumption bounds of the whole program. We also car-
ried out an experimental evaluation to validate the upper and lower
bounds on a set of benchmarks. The results support our hypothe-
sis that the bounds inferred in this way are indeed safe and quite
accurate, and the technique practical.

8. ACKNOWLEDGMENTS
This research has received funding from the European Union 7th
Framework Program agreement no 318337, ENTRA, Spanish
MINECO TIN’12-39391 StrongSoft project, and the Madrid
M141047003 N-GREENS program. We also thank Henk Muller,
Principal Technologist, XMOS, for his help with the measurement
boards, evaluation platform, benchmarks, and overall support.

9. REFERENCES
[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form

Upper Bounds in Static Cost Analysis. Journal of Automated
Reasoning, 46(2):161–203, February 2011.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and
D. Zanardini. Cost Analysis of Java Bytecode. In R. D.
Nicola, editor, 16th European Symposium on Programming,
ESOP’07, volume 4421 of Lecture Notes in Computer
Science, pages 157–172. Springer, March 2007.

[3] S. Chakravarty, Z. Zhao, and A. Gerstlauer. Automated,
Retargetable Back-annotation for Host Compiled
Performance and Power Modeling. In Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’13, pages 36:1–36:10, USA, 2013. IEEE
Press.

[4] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task
Granularity Analysis in Logic Programs. In Proc. of the 1990
ACM Conf. on Programming Language Design and
Implementation, pages 174–188. ACM Press, June 1990.

[5] S. K. Debray, P. López-García, M. Hermenegildo, and N.-W.
Lin. Lower Bound Cost Estimation for Logic Programs. In
1997 International Logic Programming Symposium, pages
291–305. MIT Press, Cambridge, MA, October 1997.

[6] K. S. Henriksen and J. P. Gallagher. Abstract interpretation
of PIC programs through logic programming. In Sixth IEEE
International Workshop on Source Code Analysis and
Manipulation (SCAM 2006), pages 184–196. IEEE
Computer Society, 2006.

[7] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera,
J. Morales, and G. Puebla. An Overview of Ciao and its
Design Philosophy. Theory and Practice of Logic
Programming, 12(1–2):219–252, January 2012.

[8] C. Herrmann, A. Bonenfant, K. Hammond, S. Jost, H.-W.
Loidl, and R. Pointon. Automatic Amortised Worst-Case
Execution Time Analysis. In 7th International Workshop on
Worst-Case Execution Time Analysis (WCET’07), volume 6
of OASIcs. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2007.

[9] R. Jayaseelan, T. Mitra, and X. Li. Estimating the
Worst-Case Energy Consumption of Embedded Software. In
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2006), pages 81–90. IEEE
Computer Society, 2006.

[10] S. Kerrison and K. Eder. Energy Modeling of Software for a
Hardware Multithreaded Embedded Microprocessor. ACM
Transactions on Embedded Computing Systems, 14(3):1–25,
April 2015.

[11] S. Lafond and J. Lilius. Energy consumption analysis for two
embedded Java virtual machines. J. Syst. Archit.,
53(5-6):328–337, 2007.

[12] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V.
Hermenegildo, J. P. Gallagher, and K. Eder. Inferring Energy
Consumption at Different Software Levels: ISA vs. LLVM
IR. In Proc. of the Foundational and Practical Aspects of
Resource Analysis, LNCS. Springer, 2015. To appear.

[13] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou,
P. Lopez-Garcia, N. Grech, M. Hermenegildo, and K. Eder.
Energy Consumption Analysis of Programs based on XMOS
ISA-level Models. In Logic-Based Program Synthesis and
Transformation, 23rd International Symposium, LOPSTR
2013, Revised Selected Papers, volume 8901 of Lecture
Notes in Computer Science, pages 72–90. Springer, 2014.

[14] P. López-García, L. Darmawan, and F. Bueno. A Framework
for Verification and Debugging of Resource Usage
Properties. In M. Hermenegildo and T. Schaub, editors,
Technical Communications of the 26th Int’l. Conference on
Logic Programming (ICLP’10), volume 7 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
104–113, Dagstuhl, Germany, July 2010. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[15] P. Lopez-Garcia, L. Darmawan, F. Bueno, and
M. Hermenegildo. Interval-Based Resource Usage
Verification: Formalization and Prototype. In R. P. na,
M. Eekelen, and O. Shkaravska, editors, Foundational and
Practical Aspects of Resource Analysis. Second Iternational
Workshop FOPARA 2011, Revised Selected Papers, volume
7177 of Lecture Notes in Computer Science, pages 54–71.
Springer-Verlag, 2012.

[16] P. Lopez-Garcia, R. Haemmerlé, M. Klemen, U. Liqat, and
M. V. Hermenegildo. Towards Energy Consumption
Verification via Static Analysis. In Workshop on High
Performance Energy Efficient Embedded Systems (HIP3ES
2015), arXiv: 1501.03064, 2015.

[17] D. May. The XMOS XS1 architecture. available online:
http://www.xmos.com/published/xmos-xs1-architecture,
2013.

[18] E. Mera, P. López-García, M. Carro, and M. Hermenegildo.
Towards Execution Time Estimation in Abstract
Machine-Based Languages. In 10th Int’l. ACM SIGPLAN
Symposium on Principles and Practice of Declarative
Programming (PPDP’08), pages 174–184. ACM Press, July
2008.

[19] H. Muller, editor. Metrics and Case Studies. ENTRA Project:
Whole-Systems Energy Transparency (FET project 318337),
November 2013. Deliverable 6.1, http://entraproject.eu.

[20] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe
Upper-bounds Inference of Energy Consumption for Java
Bytecode Applications. In The Sixth NASA Langley Formal
Methods Workshop (LFM 08), pages 29–32, April 2008.
Extended Abstract.

[21] J. Navas, E. Mera, P. López-García, and M. Hermenegildo.
User-Definable Resource Bounds Analysis for Logic
Programs. In International Conference on Logic
Programming (ICLP’07), Lecture Notes in Computer
Science, pages 348–363. Springer, 2007.

[22] J. Pallister, S. Kerrison, J. Morse, and K. Eder. Data
dependent energy modeling for worst case energy
consumption analysis. arXiv preprint arXiv:1505.03374,
2015.

[23] M. Rosendahl. Automatic Complexity Analysis. In 4th ACM
Conference on Functional Programming Languages and
Computer Architecture (FPCA’89), pages 144–156. ACM
Press, 1989.

[24] A. Serrano, P. Lopez-Garcia, and M. Hermenegildo.
Resource Usage Analysis of Logic Programs via Abstract
Interpretation Using Sized Types. Theory and Practice of
Logic Programming, 30th Int’l. Conference on Logic
Programming (ICLP’14) Special Issue, 14(4-5):739–754,
2014.

[25] S. A. Seshia and J. Kotker. Gametime: A toolkit for timing
analysis of software. In P. A. Abdulla and K. R. M. Leino,
editors, TACAS, volume 6605 of Lecture Notes in Computer
Science, pages 388–392. Springer, 2011.

[26] P. Vasconcelos and K. Hammond. Inferring Cost Equations
for Recursive, Polymorphic and Higher-Order Functional
Programs. In 15th International Workshop on
Implementation of Functional Languages (IFL’03), Revised
Papers, volume 3145 of Lecture Notes in Computer Science,
pages 86–101. Springer-Verlag, Sep 2005.

[27] P. Wagemann, T. Distler, T. Honig, H. Janker, R. Kapitza,
and W. Schroder-Preikschat. Worst-case energy consumption
analysis for energy-constrained embedded systems. In
Real-Time Systems (ECRTS), 2015 27th Euromicro
Conference on, pages 105–114, July 2015.

[28] D. Watt. Programming XC on XMOS Devices. XMOS
Limited, 2009.

[29] B. Wegbreit. Mechanical program analysis. Commun. ACM,
18(9):528–539, 1975.

[30] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann,
T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenström. The worst-case execution-time problem -
Overview of methods and survey of tools. ACM Trans.
Embedded Comput. Syst., 7(3), 2008.

[31] XMOS. The XTAG-2 Hardware Manual, September 2009.
Available online at:
https://www.xmos.com/download/private/XTAG-2-
Hardware-Manual

[32] XMOS. Use xTIMEcomposer and xSCOPE to trace data in
real-time, 2013. Available online at:
https://www.xmos.com/download/public/Trace-data-with-
XScope(X9923H).pdf.

